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Abstract
Robustly manipulating waves on subwavelength scales
can be achieved by, first, designing a structure with
a subwavelength band gap and, second, introducing a
defect so that eigenfrequencies fall within the band gap.
Such frequencies are well known to correspond to local-
ized modes. We study a one-dimensional array of sub-
wavelength resonators, prove that there is a subwave-
length band gap, and show that by introducing a disloca-
tionwe can place localizedmodes at any pointwithin the
band gap. We complement this analysis by studying the
stability properties of the corresponding finite array of
resonators, demonstrating the value of being able to cus-
tomize the position of eigenvalues within the band gap.
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1 INTRODUCTION

Recent breakthroughs in the field of wave manipulation have led to the creation of structures
that can guide, localize and trap waves at subwavelength scales (that is, at spatial scales that are
significantly smaller than the operating wavelength) [2, 5, 7, 13, 40, 47–50, 52, 57, 58]. The building
blocks of these structures are subwavelength resonators: objects exhibiting resonant phenomena
in response to wavelengths much greater than their size. Examples include plasmonic particles,
Minnaert bubbles and high-index dielectric particles. The highly contrasting material parameters
(relative to the background medium) of these objects are the crucial mechanism responsible for
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F IGURE 1 We start with an array of pairs of subwavelength resonators, known to have a subwavelength
band gap. A dislocation (with size 𝑑 > 0) is introduced to create mid-gap frequencies

F IGURE 2 As the dislocation size 𝑑 increases from zero, a mid-gap frequency appears from each edge of the
subwavelength band gap. These two frequencies converge to a single value within the subwavelength band gap as
𝑑 → ∞

their subwavelength response (see [6], also [3] for a general review). The goal for researchers, now,
is to develop robust versions of these designs, that retain their wave-manipulation properties even
in the presence of structural imperfections [4, 41, 42, 63, 64].
An approach to creating materials with low-frequency localized modes is to start with an array

of subwavelength resonators that exhibits a subwavelength band gap, that is, a range of frequencies
within the subwavelength regime that cannot propagate through the material. We then introduce
a defect to the structure. If done correctly, this perturbation creates subwavelength resonant fre-
quencies that are inside the band gap and correspond to resonant modes whose amplitude decays
exponentially away from the defect [7, 13, 18, 48, 54]. We will refer to these resonant frequencies
asmid-gap frequencies and the associated modes as localized modes.
It is widely understood that both the rate at which the localized mode decays and the stability

of the mid-gap frequency depend on the location of the frequency within the band gap [20, 46].
Typically, the localization is stronger if the frequency is closer to themiddle of the band gap.More-
over, eigenvalues in the middle of the band gap are more robust to imperfections of the material,
particularly since a small perturbation is likely to keep the eigenvalue inside the band gap. With
this in mind, our aim is to introduce defects in such a way that we are able to place a mid-gap
frequency at any given point in the subwavelength band gap, enabling controllable and robust
wave guiding at subwavelength scales.
In this work, we will begin with a one-dimensional array of pairs of subwavelength resonators

which, we prove, exhibits a band gap within the subwavelength regime. We will then introduce a
defect by adding a dislocationwithin one of the resonator pairs (see Figure 1).Wewill see that, as a
result of this dislocation, mid-gap frequencies enter the band gap from either side and converge to
a single frequency, within the band gap, as the dislocation becomes arbitrarily large (see Figure 2).
The localized modes studied in this work are, in particular, edge modes. Localized modes are

known as edge modes when the defect responsible for their existence is the interface between
two materials with different bulk indices. Edge modes will propagate along the interface without
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entering the bulk of the material. The bulk index of a material is a topological quantity associated
with a periodic structure and it is well known that the interface of two materials with different
indices supports robust edge modes [4, 16, 33–35, 51, 53, 56, 62, 65]. A typical example of an edge
mode is that occurring at the interface between amaterial with non-zero bulk index and free space
(corresponding to the fact that free space has a bulk index of zero). It is in this sense that the two
localized modes studied here are edge modes, since it was proved in [4] that the corresponding
array of resonator pairs has non-zero bulk index.
There are a plethora of different ways to introduce an interface capable of supporting edge

modes. An example from the setting of the Schrödinger operator is to introduce dislocations to
periodic potentials. This has been widely studied in both one [21, 22, 25, 43, 44] and two dimen-
sions [36–39].
There are some important differences between the dislocation of an array of resonators (as

studied here) and the dislocation of a periodic potential. Most notably, when a periodic potential
is dislocated, the original configuration will be recovered periodically. Then, a quantity of interest
is the edge index, which can be defined as the net number of eigenvalues which cross a band gap
over a period of dislocation (see, for example, [17, 22]). If the edge index is non-zero, it means that
a mid-gap frequency can be placed at any given position within the band gap (which, we said,
is our goal). Moreover, according to the bulk-edge correspondence [22–24, 29–31], the edge index
coincides with the bulk index of the structure without dislocation.
In our setting, we will not periodically recover the original structure as we increase the dislo-

cation and will, instead, produce two coupled half-space arrays. As the dislocation is increased,
the coupling between the two halves will diminish and bothmid-gap frequencies will converge to
a single frequency. This single frequency corresponds to the edge mode of a half-space array, the
existence of which is predicted by the bulk-edge correspondence. In contrast to the dislocation
of a periodic potential (as in [21, 22, 25, 43, 44]), there will always be either 0 or 2 edge modes in
the present case. There are two main results of our analysis of the dislocated infinite structure.
First, we will show that when a dislocation is introduced, a mid-gap frequency enters the band
gap from each edge (Theorem 3.18). Following this, we prove that there are two mid-gap frequen-
cies which converge to a single frequency within the band gap as the dislocation becomes large
(Theorem 3.36). These two frequencies correspond to the hybridized modes of two semi-infinite
arrays.
Physical realizations of the infinite structures studied here are arrays of finitely many res-

onators, corresponding to truncated versions of the infinite structures. To complement the afore-
mentioned analysis, we also study a finite array of resonator pairs to which a dislocation is intro-
duced (Section 4). We show that, similar to the infinite structure, the finite array decouples into
two half-systems as the dislocation increases and the two half-system hybridize for intermediate
dislocations. We also conduct a stability analysis to demonstrate that the edge-mode frequencies
are more stable with respect to physical imperfections than frequencies in bulk of the bandgap.
We also demonstrate that the optimal stability is achieved when the frequency is in the middle of
the band gap.

2 PRELIMINARIES

In this section, we briefly review the layer potential operators and Floquet-Bloch theory that will
be used in the subsequent analysis. More details on this material can, for example, be found
in [8].
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2.1 Layer potential techniques

Let Ω ⊂ ℝ3 be a bounded domain such that 𝜕Ω is of class 1,𝑠 for some 0 < 𝑠 < 1. Let 𝐺0 and 𝐺𝑘

be the Laplace and outgoing Helmholtz Green’s functions, respectively, defined by

𝐺𝑘(𝑥, 𝑦) ∶= −
𝑒i𝑘|𝑥−𝑦|
4𝜋|𝑥 − 𝑦| , 𝑥, 𝑦 ∈ ℝ3, 𝑥 ≠ 𝑦, Re(𝑘) ⩾ 0.

We define the single layer potential 𝑘
Ω
∶ 𝐿2(𝜕Ω) → 𝐻1

loc(ℝ
3) by

𝑘
Ω
[𝜙](𝑥) ∶= ∫𝜕Ω 𝐺

𝑘(𝑥, 𝑦)𝜙(𝑦) d𝜎(𝑦), 𝑥 ∈ ℝ3.

Here, the space𝐻1
loc(ℝ

3) consists of functions that are square integrable on every compact subset
of ℝ3 and have a weak first derivative that is also locally square integrable. It is well known that
the trace 0

Ω
∶ 𝐿2(𝜕Ω) → 𝐻1(𝜕Ω) is an invertible operator (see, for example, [8, 55]). Here𝐻1(𝜕Ω)

denotes the set of functions that are square integrable on 𝜕Ω and have a weak first derivative that
is also square integrable.
We also define the Neumann–Poincaré operator𝑘,∗

Ω
∶ 𝐿2(𝜕Ω) → 𝐿2(𝜕Ω) by

𝑘,∗
Ω
[𝜙](𝑥) ∶= ∫𝜕Ω

𝜕

𝜕𝜈𝑥
𝐺𝑘(𝑥, 𝑦)𝜙(𝑦) d𝜎(𝑦), 𝑥 ∈ 𝜕Ω,

where 𝜕∕𝜕𝜈𝑥 denotes the outward normal derivative at 𝑥 ∈ 𝜕𝐷.
The following so-called jump relationsdescribe the behaviour of the trace of𝑘

Ω
on the boundary

𝜕Ω (see, for example, [8]):

𝑘
Ω
[𝜙]||+ = 𝑘

Ω
[𝜙]||−,

and

𝜕

𝜕𝜈
𝑘
Ω
[𝜙]
|||± =

(
±
1

2
𝐼 +𝑘,∗

Ω

)
[𝜙],

where |+ and |− are used to denote the limits from outside and insideΩ, respectively, and 𝐼 is the
identity. When 𝑘 is small, we have the following low-frequency expansions [6, Appendix A]:

𝑘
Ω
= 0

Ω
+ 𝑂(𝑘), 𝑘,∗

Ω
= 0,∗

Ω
+ 𝑂(𝑘2). (2.1)

Here, the error terms arewith respect to the operator norms in(𝐿2(𝜕𝐷),𝐻1(𝜕𝐷)) and(𝐿2(𝜕𝐷)),
respectively, where (𝐴, 𝐵) (respectively, (𝐴)) denotes the space of bounded linear operators
𝐴 → 𝐵 (respectively, 𝐴 → 𝐴).

2.2 Floquet–Bloch theory and quasiperiodic layer potentials

A function 𝑓(𝑥) ∈ 𝐿2(ℝ) is said to be 𝛼-quasiperiodic, with quasiperiodicity 𝛼 ∈ ℝ, if 𝑒−i𝛼𝑥𝑓(𝑥)
is periodic. If the period is 𝐿 ∈ ℝ+, the quasiperiodicity 𝛼 is an element of the torus
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𝑌∗ ∶= ℝ∕2𝜋
𝐿
ℤ ≃ (−𝜋∕𝐿, 𝜋∕𝐿], known as the Brillouin zone. Given a function 𝑓 ∈ 𝐿2(ℝ), the Flo-

quet transform of 𝑓 is defined as

[𝑓](𝑥, 𝛼) ∶= ∑
𝑚∈ℤ

𝑓(𝑥 − 𝐿𝑚)𝑒i𝐿𝛼𝑚.

[𝑓] is always 𝛼-quasiperiodic in 𝑥 and periodic in 𝛼. Let 𝑌0 = [−𝐿∕2, 𝐿∕2) be the unit cell for
the𝛼-quasiperiodicity in 𝑥. The Floquet transform is an invertiblemap ∶ 𝐿2(ℝ) → 𝐿2(𝑌0 × 𝑌

∗),
with inverse (see, for instance, [8, 45])

−1[g](𝑥) = 1

2𝜋 ∫𝑌∗ g(𝑥, 𝛼) d𝛼, 𝑥 ∈ ℝ,

where g(𝑥, 𝛼) is the quasiperiodic extension of g for 𝑥 outside of the unit cell 𝑌0.
We will consider a three-dimensional problem which is periodic in one dimension. Define the

unit cell 𝑌 as 𝑌 ∶= 𝑌0 × ℝ2. The quasiperiodic Green’s function 𝐺𝛼,𝑘(𝑥, 𝑦), for 𝑥, 𝑦 ∈ ℝ3, is for-
mally defined as the Floquet transform of 𝐺𝑘(𝑥, 𝑦) in the 𝑥1 direction with fixed 𝑦, that is,

𝐺𝛼,𝑘(𝑥, 𝑦) ∶= −
∑
𝑚∈ℤ

𝑒i𝑘|𝑥−𝑦−(𝐿𝑚,0,0)|
4𝜋|𝑥 − 𝑦 − (𝐿𝑚, 0, 0)|𝑒i𝛼𝐿𝑚.

If 𝑘 ≠ |𝛼 + 2𝜋

𝐿
𝑚| for all𝑚 ∈ ℤ, it is known that this series converges uniformly for 𝑥 in compact

sets of ℝ3, 𝑥 ≠ 0 (see, for example,[8, Section 2.12]).
Let Ω be as above but with the additional assumption that Ω ⋐ 𝑌. The quasiperiodic single

layer potential 𝛼,𝑘
Ω

is defined analogously to 𝑘
Ω
, by

𝛼,𝑘
Ω

[𝜙](𝑥) ∶= ∫𝜕Ω 𝐺
𝛼,𝑘(𝑥, 𝑦)𝜙(𝑦) d𝜎(𝑦), 𝑥 ∈ ℝ3.

It is known that 𝛼,0
Ω

∶ 𝐿2(𝜕Ω) → 𝐻1(𝜕Ω) is invertible if 𝛼 ≠ 0 [8]. There are also jump relations
for the quasiperiodic single layer potential, given by

𝛼,𝑘
Ω

[𝜙]||+ = 𝛼,𝑘
Ω

[𝜙]||−, (2.2)

and

𝜕

𝜕𝜈
𝛼,𝑘
Ω

[𝜙]
|||± =

(
±
1

2
𝐼 + (−𝛼,𝑘

Ω
)∗
)
[𝜙] on 𝜕Ω, (2.3)

where (−𝛼,𝑘
Ω

)∗ is the quasiperiodic Neumann–Poincaré operator, given by

(−𝛼,𝑘
Ω

)∗[𝜙](𝑥) ∶= ∫𝜕Ω
𝜕

𝜕𝜈𝑥
𝐺𝛼,𝑘(𝑥, 𝑦)𝜙(𝑦) d𝜎(𝑦).

For small 𝑘, we have the following expansions [8]:

𝛼,𝑘
Ω

= 𝛼,0
Ω

+ 𝑂(𝑘2), (−𝛼,𝑘
Ω

)∗ = (−𝛼,0
Ω

)∗ + 𝑂(𝑘2). (2.4)
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F IGURE 3 Example of the array in the case 𝑑 = 0. The resonators are drawn to illustrate the symmetry
assumptions

As before, the error terms are with respect to the operator norms in (𝐿2(𝜕𝐷),𝐻1(𝜕𝐷)) and
(𝐿2(𝜕𝐷)), respectively.

3 INFINITE DISLOCATED SYSTEM

We will now study the problem of the dislocation of an infinite array of resonators. We will show
that, in the case corresponding to non-zero bulk index, there are two mid-gap frequencies. These
cover an interval in the middle of the band gap as the dislocation is varied. In Section 3.1 we study
the periodic system, that is, the systemwithout dislocation, and prove that it has a subwavelength
band gap. In Section 3.2, we study the dislocated system in the asymptotic case when the dislo-
cation 𝑑 is arbitrarily small. We show that as the dislocation increases from zero, two mid-gap
frequencies appear, one from each edge of the band gap. In Section 3.3, we study the case when
the dislocation size is an integer number of unit cell lengths 𝐿, using the fact that this special
case is equivalent to removing a finite number of resonators from the periodic structure. Here,
we prove the existence of two mid-gap frequencies in the simplest case 𝑑 = 𝐿, which corresponds
to removing two resonators. We also show that in the limit when 𝑑 → ∞, any mid-gap frequency
corresponds to two, hybridized, frequencies when 𝑑 is finite. Finally, in Section 3.4, we study the
dislocated system for a general dislocation that is larger than the width of one resonator. These
values of 𝑑 include those in Section 3.3, but the corresponding integral operator is significantly
harder to analyse. The main goal of this section is to prove that all mid-gap frequencies will be
bounded away from the edges of the band gap. In Section 3.5, we combine the results of Section 3.3
and Section 3.4 to conclude that the two mid-gap frequencies found in Section 3.3 will converge
to a single point as 𝑑 increases and therefore fill an interval in the middle of the band gap.
We first describe the geometry of the periodic structure, that is, the case without dislocation,

depicted in Figure 3. Let 𝑌 = [−𝐿∕2, 𝐿∕2] × ℝ2 be the unit cell, 𝑌1 = [−𝐿∕2, 0] × ℝ2 and 𝑌2 =
[0, 𝐿∕2] × ℝ2. For 𝑗 = 1, 2, we assume that𝑌𝑗 contains a resonator𝐷𝑗 , which is a bounded domain
𝐷𝑗 ⊂ 𝑌𝑗 such that 𝜕𝐷𝑗 ∈ 1,𝑠 for some 0 < 𝑠 < 1.We denote a pair of resonators, a so-called dimer,
by𝐷 = 𝐷1 ∪ 𝐷2. We assume that the resonators in each dimer are separated by distance 𝑙 and that
each individual resonator has reflection symmetry. More precisely, we assume that

𝑅1𝐷1 = 𝐷1, 𝑅0𝐷 = 𝐷, (3.1)
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where 𝑅1 is the reflection in the plane {−𝑙∕2} × ℝ2 and 𝑅0 is the reflection in the plane {0} × ℝ2.
Observe that 𝑅2 ∶= 𝑅0𝑅1𝑅0 describes reflection in the plane {𝑙∕2} × ℝ2 and therefore the assump-
tions (3.1) also imply that

𝑅2𝐷2 = 𝐷2.

Starting from the periodic system, we assume that half of this structure is dislocated along the
𝑥1-axis. Let 𝐯 = (1, 0, 0) and let 𝑑 denote the dislocation size. We then define the periodic and
dislocated systems, respectively, as

0 =
⋃
𝑚∈ℤ
𝑗=1,2

𝐷𝑚
𝑗 , 𝑑 =

⎛⎜⎜⎜⎝
⋃

𝑚∈ℤ−

𝑗=1,2

𝐷𝑚
𝑗

⎞⎟⎟⎟⎠ ∪
⎛⎜⎜⎜⎝
⋃
𝑚∈ℕ
𝑗=1,2

𝐷𝑚
𝑗 + 𝑑𝐯

⎞⎟⎟⎟⎠.
Here, we use the notation

𝐷𝑚
𝑗 = 𝐷𝑗 + 𝑚𝐿𝐯, 𝑗 = 1, 2, 𝑚 ∈ ℤ,

for the resonators in the mth unit cell. We introduce the notation 𝑙0 = 𝑙∕𝐿, that is, 𝑙0 is the ratio
of the separation of the resonators to the unit cell length. There are two fundamentally different
cases: 𝑙0 < 1∕2 and 𝑙0 > 1∕2. In the first case, the dislocation occurs between dimers of resonators,
keeping each pair of resonators intact. The second case corresponds to the dislocation occurring
within a dimer, splitting one pair of resonators into two ‘edge’ resonators. The case 𝑙0 > 1∕2 was
illustrated in Figure 1, which, we will show, is the only case with mid-gap frequencies.
Wave propagation inside the infinite dislocated system is modelled by the Helmholtz problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δ𝑢 + 𝜔2𝑢 = 0 in ℝ3 ⧵ 𝜕𝑑,
𝑢|+ − 𝑢|− = 0 on 𝜕𝑑,
𝛿
𝜕𝑢

𝜕𝜈

||||+ − 𝜕𝑢

𝜕𝜈

||||− = 0 on 𝜕𝑑,
𝑢(𝑥1, 𝑥2, 𝑥3) satisfies the outgoing radiation condition as

√
𝑥2
2
+ 𝑥2

3
→ ∞.

(3.2)

Here, 𝜕∕𝜕𝜈 denotes the outward normal derivative and |± indicates the limits from outside and
inside 𝐷, respectively. Moreover, 𝜔 corresponds to the frequency of the waves. The outgoing radi-
ation condition for the scattering from non-compactly perturbed structures amounts to choosing
the outgoing Green’s function in Section 3.2 and thereafter [59, 60]. We refer to [1, 32] for the def-
inition of the outgoing radiation condition for the scattering from compactly perturbed periodic
structures. The material parameter 𝛿 represents the contrast between the material inside the res-
onators and the background medium.
We assume that 𝛿 satisfies the high-contrast condition

𝛿 ≪ 1.
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This assumption is crucial for subwavelength resonantmodes to exist, see for example. [3, 6]. Phys-
ically, it means that the resonators interact strongly with waves whose wavelength is considerably
larger than the resonators themselves.
We denote the spectrum corresponding to the problem (3.2) byΛ(𝑑), and𝜔 such that𝜔2 ∈ Λ(𝑑)

are called resonant frequencies. We say that a resonant frequency 𝜔 is subwavelength if 𝜔 scales as
𝑂(
√
𝛿) as 𝛿 → 0. By a mid-gap frequency, we mean a value 𝜔 > 0 that is in the subwavelength

regime and is such that 𝜔2 ∈ Λ(𝑑) but 𝜔2 ∉ Λ(0). Here, the condition 𝜔2 ∉ Λ(0)means that 𝜔 is
within the band gap of the periodic system. Corresponding edge mode 𝑢 is 𝐿2-localized in 𝑥1, that
is, ∫

ℝ
|𝑢(𝑥1, 𝑥2, 𝑥3)|2 d𝑥1 < ∞, and satisfies the outgoing radiation condition as

√
𝑥2
2
+ 𝑥2

3
→ ∞.

It is worth emphasizing that, due to radiation in 𝑥2- and 𝑥3-directions, the resonant frequencies
are complex with negative imaginary parts when the quasiperiodicity 𝛼 is around the origin. Nev-
ertheless, as we will see in Theorem 3.2, the resonant frequencies are real at leading order and,
moreover, the mid-gap frequencies are real.

3.1 Periodic system

This section concerns the infinite system in the case of no dislocation. We first state some prelim-
inary results from [4] concerning the capacitance matrix. In Section 3.1.2, we prove the existence
of a band gap between the first and the second band, which is a strengthening of a result from
[4]. Moreover, we derive the asymptotic behaviour of the integral operator corresponding to the
periodic problem as the frequency 𝜔 approaches the first or the second band.
Taking the Floquet transform of the solution 𝑢 to (3.2), the 𝛼-quasiperiodic component 𝑢𝛼 sat-

isfies the Helmholtz problem

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Δ𝑢𝛼 + 𝜔2𝑢𝛼 = 0 in 𝑌 ⧵ 𝜕𝐷,

𝑢𝛼|+ − 𝑢𝛼|− = 0 on 𝜕𝐷,

𝛿
𝜕𝑢𝛼

𝜕𝜈

||||+ − 𝜕𝑢𝛼

𝜕𝜈

||||− = 0 on 𝜕𝐷,

𝑒−i𝛼𝑥1𝑢𝛼(𝑥1, 𝑥2, 𝑥3) is periodic in 𝑥1,

𝑢𝛼(𝑥1, 𝑥2, 𝑥3) satisfies the 𝛼-quasiperiodic outgoing radiation

condition as
√
𝑥2
2
+ 𝑥2

3
→ ∞.

(3.3)

It is well-known (see, for example, [9, 12, 14]), that (3.3) has two subwavelength resonant fre-
quencies 𝜔𝛼

𝑗
, 𝑗 = 1, 2. We refer to [8] for the definition of the 𝛼-quasiperiodic outgoing radiation

condition. Crucially, when𝜔 is real and |𝛼| > 𝜔, the 𝛼-quasiperiodic outgoing radiation condition
states that the function is exponentially decaying as

√
𝑥2
2
+ 𝑥2

3
→ ∞. Recall that we are studying

the subwavelength regime𝜔 = 𝑂(
√
𝛿). Therefore, when |𝛼| > 𝐾 > 0 for some constant𝐾, and for

small enough 𝛿, the subwavelength resonant problem (3.3) can be viewed as the spectral problem
for a self-adjoint operator. Consequently, the subwavelength resonant frequencies𝜔𝛼

𝑗
, 𝑗 = 1, 2, are

real-valued for |𝛼| > 𝐾 > 0 (see also [3] for a detailed discussion of this).
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Next, we formulate the quasiperiodic resonance problem (3.3) as an integral equation. The solu-
tion 𝑢𝛼 of (3.3) can be represented as

𝑢𝛼(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝜔
𝐷1
[𝜙𝛼,𝑖

1
](𝑥), 𝑥 ∈ 𝐷1,

𝜔
𝐷2
[𝜙𝛼,𝑖

2
](𝑥), 𝑥 ∈ 𝐷2,

𝛼,𝜔
𝐷

[𝜙𝛼,𝑜](𝑥), 𝑥 ∈ 𝑌 ⧵ 𝐷,

for some densities 𝜙𝛼,𝑖
1

∈ 𝐿2(𝜕𝐷1), 𝜙
𝛼,𝑖
2

∈ 𝐿2(𝜕𝐷2) and 𝜙𝛼,𝑜 ∈ 𝐿2(𝜕𝐷) (here, the superscripts 𝑖
and 𝑜 indicate inside and outside, respectively). Throughout, we will identify 𝐿2(𝜕𝐷) = 𝐿2(𝜕𝐷1) ×

𝐿2(𝜕𝐷2). With this identification, we write 𝜙𝛼,𝑖 = (𝜙𝛼,𝑖
1
, 𝜙𝛼,𝑖

2
).

Using the jump relations (2.2) and (2.3), it can be shown that (3.3) is equivalent to the boundary
integral equation

𝛼(𝜔, 𝛿)[Φ𝛼] = 0,

where

𝛼(𝜔, 𝛿) =

( ̂𝜔
𝐷

−𝛼,𝜔
𝐷

−1

2
𝐼 + ̂𝜔,∗

𝐷
−𝛿
(
1

2
𝐼 +
(−𝛼,𝜔

𝐷

)∗)) , Φ𝛼 =

(
𝜙𝛼,𝑖

𝜙𝛼,𝑜

)
, (3.4)

and the operators ̂𝜔
𝐷
and ̂𝜔,∗

𝐷
are defined on 𝐿2(𝜕𝐷) = 𝐿2(𝜕𝐷1) × 𝐿

2(𝜕𝐷2) as

̂𝜔
𝐷 =

(𝜔
𝐷1

0

0 𝜔
𝐷2

)
, ̂𝜔,∗

𝐷
=

(𝜔,∗
𝐷1

0

0 𝜔,∗
𝐷2

)
. (3.5)

Here, and throughout this work, the block-matrix definition is used to reconcile the domains of
the operators; both ̂𝜔

𝐷
and 𝛼,𝜔

𝐷
are operators on 𝐿2(𝜕𝐷), however, ̂𝜔

𝐷
is defined piecewise on

𝐿2(𝜕𝐷1) and 𝐿2(𝜕𝐷2) through (3.5).

Remark 3.1. Here, we use the standard single-layer potential to represent the solution inside the
resonators. This leads to a block 2 × 2 integral equation,whichmight seemmore complicated than
the scalar integral equation studied in [4]. However, this representation will, in fact, simplify the
analysis of the fictitious sources used later in this paper. Another advantage of this representation
is that it easily generalizes to the case of different wave speeds inside and outside the resonators.

3.1.1 Quasiperiodic capacitance matrix

In this section, we state some results from [4] on the quasiperiodic capacitance matrix. Let 𝑉𝛼
𝑗
be

the solution to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δ𝑉𝛼
𝑗 = 0 in 𝑌 ⧵ 𝐷,

𝑉𝛼
𝑗 = 𝛿𝑖𝑗 on 𝜕𝐷𝑖,

𝑒−i𝛼𝑥1𝑉𝛼
𝑗 (𝑥1, 𝑥2, 𝑥3) is periodic in 𝑥1,

𝑉𝛼
𝑗 (𝑥1, 𝑥2, 𝑥3) = 𝑂

(
1√
𝑥2
2
+𝑥2

3

)
as
√
𝑥2
2
+ 𝑥2

3
→ ∞, uniformly in 𝑥1,
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where 𝛿𝑖𝑗 is the Kronecker delta. We then define the quasiperiodic capacitance matrix 𝐶𝛼 = (𝐶𝛼
𝑖𝑗
)

by

𝐶𝛼𝑖𝑗 ∶= ∫𝑌⧵𝐷 ∇𝑉
𝛼
𝑖
⋅∇𝑉𝛼

𝑗 d𝑥, 𝑖, 𝑗 = 1, 2.

Themainmotivation for studying the capacitancematrix is given in the following theorem, proved
in [9, 10].

Theorem 3.2. The subwavelength resonant frequencies 𝜔𝛼
𝑗
= 𝜔𝛼

𝑗
(𝛿), 𝑗 = 1, 2, of the operator

𝛼(𝜔, 𝛿), defined in (3.4), can be approximated as

𝜔𝛼
𝑗
=

√
𝛿𝜆𝛼

𝑗|𝐷1| + 𝑂(𝛿),

where 𝜆𝛼
𝑗
, 𝑗 = 1, 2, are eigenvalues of the quasiperiodic capacitancematrix𝐶𝛼 and |𝐷1| is the volume

of each individual resonator.

In other words, this theorem says that the continuous spectral problem (3.3) can be approxi-
mated, to leading order in 𝛿, by the discrete eigenvalue problem for 𝐶𝛼.

Lemma 3.3. The matrix 𝐶𝛼 is Hermitian with constant diagonal, that is,

𝐶𝛼11 = 𝐶𝛼22 ∈ ℝ, 𝐶𝛼12 = 𝐶𝛼
21
∈ ℂ.

Using the jump conditions, in the case 𝛼 ≠ 0, it can be shown that the capacitance coefficients
𝐶𝛼
𝑖𝑗
are also given by

𝐶𝛼
𝑖𝑗
= −∫𝜕𝐷𝑖 𝜓

𝛼
𝑗
d𝜎, 𝑖, 𝑗 = 1, 2,

where 𝜓𝛼
𝑗
are defined by

𝜓𝛼
𝑗
= (𝛼,0

𝐷
)−1[𝜒𝜕𝐷𝑗 ].

Since 𝐶𝛼 is Hermitian, the following lemma follows directly.

Lemma 3.4. The eigenvalues and corresponding eigenvectors of the quasiperiodic capacitance
matrix are given by

𝜆𝛼1 = 𝐶𝛼11 −
|||𝐶𝛼12|||,

(
𝑎1
𝑏1

)
=

1√
2

(
−𝑒i𝜃𝛼

1

)
,

𝜆𝛼2 = 𝐶𝛼11 +
|||𝐶𝛼12|||,

(
𝑎2
𝑏2

)
=

1√
2

(
𝑒i𝜃𝛼

1

)
,
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where, for 𝛼 such that 𝐶𝛼
12

≠ 0, 𝜃𝛼 ∈ [0, 2𝜋) is defined to be such that

𝑒i𝜃𝛼 =
𝐶𝛼
12|𝐶𝛼
12
| .

Using these eigenvectors, we define bases {𝑢𝛼
1
, 𝑢𝛼

2
}, {𝜒𝛼

1
, 𝜒𝛼

2
} of ker (−1

2
𝐼 + (−𝛼,0

𝐷
)∗)

and ker (−1

2
𝐼 +𝛼,0

𝐷
), respectively, as

𝑢𝛼1 =
1√
2

(
−𝑒i𝜃𝛼𝜓𝛼1 + 𝜓𝛼2

)
, 𝑢𝛼2 =

1√
2

(
𝑒i𝜃𝛼𝜓𝛼1 + 𝜓𝛼2

)
,

𝜒𝛼1 =
1√
2

(
−𝑒i𝜃𝛼𝜒𝜕𝐷1 + 𝜒𝜕𝐷2

)
, 𝜒𝛼2 =

1√
2

(
𝑒i𝜃𝛼𝜒𝜕𝐷1 + 𝜒𝜕𝐷2

)
.

Observe that ⟨𝜒𝛼
𝑖
, 𝑢𝛼

𝑗
⟩ = −𝛿𝑖,𝑗𝜆

𝛼
𝑖
for 𝑖, 𝑗 = 1, 2. Here, ⟨⋅, ⋅⟩ denotes the 𝐿2(𝜕𝐷) inner product
⟨𝑢, 𝑣⟩ = ∫𝜕𝐷 𝑢(𝑦)𝑣(𝑦) d𝜎(𝑦).

In the so-called dilute regime, the capacitance coefficients can be computed explicitly. This
regime is defined by expressing the two resonators 𝐷1 and 𝐷2 as rescalings of the two fixed
domains 𝐵1 and 𝐵2:

𝐷1 = 𝜀𝐵1 −
𝑙

2
𝐯, 𝐷2 = 𝜀𝐵2 +

𝑙

2
𝐯, (3.6)

for some small parameter 𝜀 > 0.
We define the capacitance Cap𝐵𝑖 of the fixed domains as

Cap𝐵𝑖 ∶= −∫𝜕𝐵𝑖 𝜓𝐵𝑖 d𝜎,

where 𝜓𝐵𝑖 ∶= (0
𝐵𝑖
)−1[𝜒𝜕𝐵𝑖 ]. Due to symmetry, the capacitance is the same for the two domains

and therefore will simply be denoted by Cap𝐵;

Cap𝜀𝐵𝑖 = Cap𝜀𝐵𝑖 =∶ Cap𝜀𝐵.

Rescaling the domain, we have that

Cap𝜀𝐵𝑖 = 𝜀Cap𝐵 𝑖 = 1, 2.

Similarly, by rescaling, we find that the capacitance coefficients satisfy

|𝐶𝛼
𝑖,𝑗
| ⩽ 𝜀𝐶 𝑖, 𝑗 = 1, 2, (3.7)

for some constant 𝐶 independent of 𝛼 ∈ 𝑌∗.
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Lemma 3.5. We assume that the resonators are in the dilute regime specified by (3.6). Then, for
every 𝜀0 > 0 and 𝑝 ∈ ℕ there exists a constant𝐴𝑝 such that we have the following asymptotics of the
capacitance matrix 𝐶𝛼

𝑖𝑗
for 𝜀 < 𝜀0:

𝐶𝛼11 = 𝜀Cap𝐵 −
(𝜀Cap𝐵)

2

4𝜋

∑
𝑚≠0

𝑒i𝑚𝛼𝐿|𝑚𝐿| + 𝑜(𝜀2),

𝐶𝛼12 = −
(𝜀Cap𝐵)

2

4𝜋

∞∑
𝑚=−∞

𝑒i𝑚𝛼𝐿|𝑚𝐿 + 𝑙| + 𝑜(𝜀2),

uniformly in 𝛼 for |𝛼| ⩾ 𝐴𝑝𝜀
𝑝.

Lemma 3.5 is a generalization of a result from [4] and shows, essentially, that for smaller 𝜀, the
asymptotic formulas are valid for 𝛼 closer to 0. Lemma 3.5 can be proved by following the steps
in [4] under the additional observation that the sums have a logarithmic behaviour as 𝛼 → 0:

∑
𝑚≠0

𝑒i𝑚𝛼𝐿|𝑚| = − log (2 − 2 cos(𝛼𝐿)).

3.1.2 Bandgap opening and singularity of𝛼

Thenext theoremdescribes the subwavelength band gap opening and the edge points of the bands.

Theorem 3.6. In the dilute regime, we have

max
𝛼∈𝑌∗

𝜆𝛼1 = 𝜆
𝜋∕𝐿
1

, min
𝛼∈𝑌∗

𝜆𝛼2 = 𝜆
𝜋∕𝐿
2

,

for 𝜀 small enough.

Proof. Observe first that if 𝑙0 > 1∕2, we can redefine the unit cell so that 𝑙0 < 1∕2, without chang-
ing the band structure. Therefore, it is enough to consider the case 𝑙0 ⩽ 1∕2. We have

𝜆𝛼1 = 𝐶𝛼11 − |𝐶𝛼12|
⩽ 𝐶𝛼11 + Re

(
𝐶𝛼12
)

=
1

2
Cap𝛼𝐷,

where Cap𝛼
𝐷
is the capacitance of 𝐷 defined by

Cap𝛼𝐷 = ∫𝜕𝐷
(𝛼,0

𝐷

)−1
[𝜒𝜕𝐷] d𝜎.

Using the variational characterisation of Cap𝛼
𝐷
, in the same way as in [14], it is shown that the

maximum of Cap𝛼
𝐷
is attained at 𝛼 = 𝜋∕𝐿. Moreover, in the dilute regime, 𝐶𝜋∕𝐿

12
is a non-positive
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real number [4]. We therefore have

𝜆
𝜋∕𝐿
1

=
1

2
Cap𝜋∕𝐿

𝐷
,

so the maximum of 𝜆𝛼
1
is attained at 𝛼 = 𝜋∕𝐿.

We now turn to the second eigenvalue 𝜆𝛼
2
. Similarly, we have

𝜆𝛼2 = 𝐶𝛼11 + |𝐶𝛼12|
⩾ 𝐶𝛼11 − Re

(
𝐶𝛼12
)
. (3.8)

We can formulate a variational characterization for𝐶𝛼
11
− Re(𝐶𝛼

12
) in terms of theDirichlet energy.

Let ∞𝛼 be the set of functions in ∞(𝑌) that can be extended to 𝛼-quasiperiodic functions in

∞(ℝ3) decaying as 𝑂((𝑥2
2
+ 𝑥2

3
)−1∕2) as

√
𝑥2
2
+ 𝑥2

3
→ ∞. Let

 =

⎧⎪⎨⎪⎩𝑣 ∈ 𝐻1
loc(𝑌)

||| 𝑣(𝑥1, 𝑥2, 𝑥3) = 𝑂

⎛⎜⎜⎜⎝
1√

𝑥2
2
+ 𝑥2

3

⎞⎟⎟⎟⎠ as
√
𝑥2
2
+ 𝑥2

3
→ ∞

⎫⎪⎬⎪⎭
and let𝛼 be the closure of ∞𝛼 in. Then define (see, for instance, [55])

𝛼 =
{
𝑣 ∈ 𝛼

||| 𝑣 = −
1√
2
on 𝜕𝐷1, 𝑣 =

1√
2
on 𝜕𝐷2

}
.

We then have the variational characterization

𝐶𝛼11 − Re
(
𝐶𝛼12
)
= min

𝑣∈𝛼 ∫𝑌⧵𝐷 |∇𝑣|2 d𝑥. (3.9)

Indeed, the minimiser 𝑣0 satisfies Δ𝑣0 = 0 in 𝑌 ⧵ 𝐷 and therefore 𝑣0 =
1√
2
(−𝑉𝛼

1
+ 𝑉𝛼

2
). Equa-

tion (3.9) then follows by expanding the integral.
Define  = ∪𝛼∈𝑌∗𝛼. From (3.9), we find

min
𝛼∈𝑌∗

[
𝐶𝛼11 − Re

(
𝐶𝛼12
)]
= min

𝑣∈ ∫𝑌⧵𝐷 |∇𝑣|2 d𝑥.
Because of the symmetry of 𝐷, the corresponding minimizer 𝑣1 is an odd function in 𝑥1. In other
words, 𝑣1 is a 𝜋∕𝐿-quasiperiodic function, so

min
𝛼∈𝑌∗

[
𝐶𝛼11 − Re

(
𝐶𝛼12
)]
= 𝐶

𝜋∕𝐿
11

− Re
(
𝐶
𝜋∕𝐿
12

)
. (3.10)

At 𝛼 = 𝜋∕𝐿, (3.8) is an equality. This, together with (3.10), proves that the minimum of 𝜆𝛼
2
is

attained at 𝛼 = 𝜋∕𝐿. □
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Corollary 3.7. In the dilute regime and with 𝛿 sufficiently small, there exists a subwavelength band
gap between the first two bands if 𝑙0 ≠ 1∕2, that is,

max
𝛼∈𝑌∗

Re(𝜔𝛼1 ) = 𝜔
𝜋∕𝐿
1

< 𝜔
𝜋∕𝐿
2

= min
𝛼∈𝑌∗

Re(𝜔𝛼2 ),

for 𝜀 and 𝛿 small enough.

Proof. Again, it is enough to consider the case 𝑙0 < 1∕2. Given a constant𝐾 > 0, we know that we
can choose 𝛿 small enough so that 𝜔𝛼

1
and 𝜔𝛼

2
are real-valued for |𝛼| > 𝐾. Corresponding Bloch

modes are exponentially decaying away from the resonators. FromTheorems 3.6 and 3.2, it follows
that

max
𝛼∈𝑌∗

Re(𝜔𝛼1 ) = max|𝛼|>𝐾 𝜔𝛼1 , min
𝛼∈𝑌∗

Re(𝜔𝛼2 ) = min|𝛼|>𝐾 𝜔𝛼2 .
Let ∞𝛼 be the set of functions in ∞(𝑌) that can be extended to 𝛼-quasiperiodic functions in

∞(ℝ3) decaying exponentially as
√
𝑥2
2
+ 𝑥2

3
→ ∞. Let be the set of functions in𝐻1(𝑌) which

decay exponentially as
√
𝑥2
2
+ 𝑥2

3
→ ∞ and let 𝛼 be the closure of ∞𝛼 in . Let 𝜌(𝑥) = 1 +

(𝛿−1 − 1)𝜒𝐷 , and let 𝑅(𝑣) denote the Rayleigh quotient

𝑅(𝑣) =
∫𝑌 𝜌|∇𝑣|2 d𝑥
∫𝑌 𝜌|𝑣|2 d𝑥 .

TheBlochmode 𝑣𝜋∕𝐿
1

at𝛼 = 𝜋∕𝐿 is an even function and hence 𝑣𝜋∕𝐿
1
|𝜕𝑌 = 0. Therefore 𝑣𝜋∕𝐿

1
∈ 𝛼

for each 𝛼 with |𝛼| > 𝐾, and so

𝜔𝛼1 = min
𝑣∈𝛼

𝑅(𝑣) ⩽ min
𝑣∈𝜋∕𝐿

𝑅(𝑣) = 𝜔
𝜋∕𝐿
1

.

Next, take 𝑣 ∈ span(𝑣𝛼
1
)⟂ and write

𝑣 = 𝑤1 + 𝑤2, 𝑤1 ∈ span(𝑣
𝜋∕𝐿
1

)(⟂,𝛼), 𝑤2 ∈ span(𝑣
𝜋∕𝐿
1

),

where (⟂,𝛼) denotes the orthogonal complement with respect to𝛼. Since 𝑅(𝑣) ⩾ 𝑅(𝑤1)we have

𝜔𝛼2 = min
𝑣∈span(𝑣𝛼

1
)⟂
𝑅(𝑣) ⩾ min

𝑣∈span(𝑣
𝜋∕𝐿
1

)(⟂,𝛼)
𝑅(𝑣) ⩾ min

𝑣∈span(𝑣
𝜋∕𝐿
1

)(⟂,𝜋∕𝐿)
𝑅(𝑣) = 𝜔

𝜋∕𝐿
2

.

Finally, from [4], we know that if 𝑙0 ≠ 1∕2, then 𝜆𝜋∕𝐿
1

< 𝜆
𝜋∕𝐿
2

. Hence, Theorem 3.2 gives us that
𝜔
𝜋∕𝐿
1

< 𝜔
𝜋∕𝐿
2

, which concludes the proof. □

Remark 3.8. If 𝑙0 = 1∕2, it follows using arguments analogous to those in [9] that the band gap
closes at 𝛼 = 𝜋∕𝐿:

𝜔
𝜋∕𝐿
1

= 𝜔
𝜋∕𝐿
2

.
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Next, we will explicitly describe the behaviour of (𝛼(𝜔, 𝛿))−1 as 𝜔 approaches the edge of the
first or the second band. The results are similar to Lemmas 4.1 and 4.2 of [13], but generalized to
the case when 𝐷 consists of two connected domains of general shape. Throughout the remainder
of this section, we assume that |𝛼| > 𝐾 > 0 for some 𝐾.
Using 𝑢𝛼

1
, 𝑢𝛼

2
, 𝜒𝛼

1
and 𝜒𝛼

2
as defined in Section 3.1.1, we decompose the operator 1

2
𝐼 + (−𝛼,0

𝐷
)∗

as

1

2
𝐼 + (−𝛼,0

𝐷
)∗ = 𝑃𝛼 + 𝑄𝛼,

where

𝑃𝛼 = −
⟨𝜒𝛼

1
, ⋅⟩

𝜆𝛼
1

𝑢𝛼1 −
⟨𝜒𝛼

2
, ⋅⟩

𝜆𝛼
2

𝑢𝛼2 , 𝑄𝛼 =
1

2
+ (−𝛼,0

𝐷
)∗ − 𝑃𝛼.

Then it follows that 𝑄𝛼[𝑢
𝛼
𝑖
] = 0 and 𝑄∗

𝛼[𝜒
𝛼
𝑖
] = 0 for 𝑖 = 1, 2. Here, 𝑄∗

𝛼 denotes the 𝐿
2(𝜕𝐷)-adjoint

of 𝑄𝛼. As we will see, the reason for using this decomposition is that 𝑄𝛼 will only contribute to
higher order terms when computing the inverse (𝛼(𝜔, 𝛿))−1.
We consider the limit as 𝛿 goes to zero. Recall that for 𝜔 inside the corresponding band gap, we

have 𝜔 = 𝑂(
√
𝛿). Using the operators 𝑃𝛼 and 𝑄𝛼, along with the expansions in (2.1) and (2.4), we

can decompose the operator𝛼(𝜔, 𝛿) as

𝛼(𝜔, 𝛿) =

( ̂𝜔
𝐷

−𝛼,𝜔
𝐷

−1

2
𝐼 + ̂𝜔,∗

𝐷
0

)
− 𝛿

(
0 0

0 𝑃𝛼

)
− 𝛿

(
0 0

0 𝑄𝛼

)
+ 𝑂(𝛿3∕2),

with respect to the operator norm in ((𝐿2(𝜕𝐷))2, 𝐿2(𝜕𝐷) × 𝐻2(𝜕𝐷)). We define

𝐴0(𝜔) =

( ̂𝜔
𝐷

−𝛼,𝜔
𝐷

−1

2
𝐼 + ̂𝜔,∗

𝐷
0

)
, 𝐴1(𝜔, 𝛿) = 𝐼 − 𝛿𝐴−1

0

(
0 0

0 𝑃𝛼

)
.

We introduce the basis {𝑢1, 𝑢2} of ker (−
1

2
𝐼 + ̂0,∗

𝐷
) ⊂ 𝐿2(𝜕𝐷) as

𝑢1 =
1√
2

(
−𝑒i𝜃𝛼𝜓1 + 𝜓2

)
, 𝑢2 =

1√
2

(
𝑒i𝜃𝛼𝜓1 + 𝜓2

)
,

where 𝜓𝑗 are defined by

𝜓𝑗 = (0
𝐷𝑗
)−1[𝜒𝜕𝐷𝑗 ].

We then have the following result.

Lemma 3.9.

(i) For 𝜔 ≠ 0, 𝐴0 ∶ (𝐿
2(𝜕𝐷))2 → (𝐿2(𝜕𝐷))2 is invertible and, as 𝜔 → 0,
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𝐴−1
0 =

⎛⎜⎜⎜⎜⎝
0 −

⟨𝜒𝜕𝐷1 , ⋅⟩𝜓1 + ⟨𝜒𝜕𝐷2 , ⋅⟩𝜓2
𝜔2|𝐷1| + 𝑂

(
1

𝜔

)
−
(𝛼,0

𝐷

)−1
+ 𝑂(𝜔2) −

⟨𝜒𝜕𝐷1 , ⋅⟩𝜓𝛼1 + ⟨𝜒𝜕𝐷2 , ⋅⟩𝜓𝛼2
𝜔2|𝐷1| + 𝑂

(
1

𝜔

)
⎞⎟⎟⎟⎟⎠
,

with respect to the operator norm in (𝐿2(𝜕𝐷)), where |𝐷1| denotes the volume of 𝐷1.

(ii) For 𝜔 ≠
√

𝛿𝜆𝛼
𝑗|𝐷1| , 𝐴1 ∶ 𝐿

2(𝜕𝐷) → 𝐿2(𝜕𝐷) is invertible. As 𝛿 → 0 and 𝜔 = 𝐶
√
𝛿 for 𝐶 ≠

√
𝜆𝛼
𝑗|𝐷1|

we have

𝐴−1
1 =

(
𝐼 −𝑃

(
𝑃⟂𝛼
)−1

0
(
𝑃⟂𝛼
)−1 ) + 𝑂(𝜔),

with respect to the operator norm in ((𝐿2(𝜕𝐷))2), where
𝑃 =

𝛿

𝜔2|𝐷1| (⟨𝜒𝛼1 , ⋅⟩𝑢1 + ⟨𝜒𝛼2 , ⋅⟩𝑢2), 𝑃⟂𝛼 = 𝐼 +
𝛿

𝜔2|𝐷1| (⟨𝜒𝛼1 , ⋅⟩𝑢𝛼1 + ⟨𝜒𝛼2 , ⋅⟩𝑢𝛼2 ).
Proof of (i). Using block matrix inversion, we find that

𝐴−1
0 =

⎛⎜⎜⎜⎝
0

(
−
1

2
𝐼 + ̂𝜔,∗

𝐷

)−1
−
(𝛼,𝜔

𝐷

)−1 (𝛼,𝜔
𝐷

)−1̂𝜔
𝐷

(
−
1

2
𝐼 + ̂𝜔,∗

𝐷

)−1⎞⎟⎟⎟⎠ , (3.11)

which iswell defined since−1

2
𝐼 +𝜔,∗

𝐷𝑖
∶ 𝐿2(𝜕𝐷) → 𝐿2(𝜕𝐷) is invertible for𝜔 ≠ 0 for both 𝑖 = 1, 2,

see, for instance, [8]. Here, ̂𝜔
𝐷
and ̂𝜔,∗

𝐷
are defined in (3.5).

From the low-frequency expansion (2.4) of 𝛼,𝜔
𝐷

we have

(𝛼,𝜔
𝐷

)−1
=
(𝛼,0

𝐷

)−1
+ 𝑂(𝜔2) (3.12)

in the operator norm. The operator (−1

2
𝐼 +𝜔,∗

𝐷𝑖
)−1 is known to be singular at 𝜔 = 0, see [8].

Explicitly, we have

(
−
1

2
𝐼 +𝜔,∗

𝐷𝑖

)−1
= −
⟨𝜒𝜕𝐷𝑖 , ⋅⟩
𝜔2|𝐷𝑖| 𝜓𝑖 + 𝑅𝑖(𝜔),

where 𝑅𝑖(𝜔) = 𝑂(1) as 𝜔 → 0. Since |𝐷1| = |𝐷2|, we have(
−
1

2
𝐼 + ̂𝜔,∗

𝐷

)−1
= −
⟨𝜒𝜕𝐷1 , ⋅⟩𝜓1 + ⟨𝜒𝜕𝐷2 , ⋅⟩𝜓2

𝜔2|𝐷1| + 𝑂(1), (3.13)
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with respect to the operator norm in(𝐿2(𝜕𝐷)), where we, as before, identify 𝐿2(𝜕𝐷) = 𝐿2(𝜕𝐷1) ×

𝐿2(𝜕𝐷2). Moreover, we know that 𝜔
𝐷𝑖
[𝜓𝑖] = 𝜒𝜕𝐷𝑖 + 𝑂(𝜔) and so

(𝛼,𝜔
𝐷

)−1̂𝜔
𝐷

(
−
1

2
𝐼 + ̂𝜔,∗

𝐷

)−1
= −
⟨𝜒𝜕𝐷1 , ⋅⟩𝜓𝛼1 + ⟨𝜒𝜕𝐷2 , ⋅⟩𝜓𝛼2

𝜔2|𝐷1| + 𝑂
(
1

𝜔

)
. (3.14)

Combining equations (3.11), (3.12), (3.13) and (3.14) proves (i). □

Proof of (ii). From (3.13), we have

(
−
1

2
𝐼 + ̂𝜔,∗

𝐷

)−1
𝑃𝛼 = −

⟨𝜒𝛼
1
, ⋅⟩𝑢1 + ⟨𝜒𝛼2 , ⋅⟩𝑢2

𝜔2|𝐷1| + 𝑂
(
1

𝜔

)
.

Similarly, we have

(𝛼,𝜔
𝐷

)−1̂𝜔
𝐷

(
−
1

2
𝐼 + ̂𝜔,∗

𝐷

)−1
𝑃𝛼 = −

⟨𝜒𝛼
1
, ⋅⟩𝑢𝛼

1
+ ⟨𝜒𝛼

2
, ⋅⟩𝑢𝛼

2

𝜔2|𝐷1| + 𝑂
(
1

𝜔

)
.

We then find that

𝐴1 =

⎛⎜⎜⎜⎝
𝐼

𝛿

𝜔2|𝐷1| (⟨𝜒𝛼1 , ⋅⟩𝑢1 + ⟨𝜒𝛼2 , ⋅⟩𝑢2)
0 𝐼 +

𝛿

𝜔2|𝐷1| (⟨𝜒𝛼1 , ⋅⟩𝑢𝛼1 + ⟨𝜒𝛼2 , ⋅⟩𝑢𝛼2 )
⎞⎟⎟⎟⎠ + 𝑂(𝜔).

Define

𝑃 =
𝛿

𝜔2|𝐷1| (⟨𝜒𝛼1 , ⋅⟩𝑢1 + ⟨𝜒𝛼2 , ⋅⟩𝑢2),
and

𝑃⟂𝛼 = 𝐼 +
𝛿

𝜔2|𝐷1| (⟨𝜒𝛼1 , ⋅⟩𝑢𝛼1 + ⟨𝜒𝛼2 , ⋅⟩𝑢𝛼2 ).
The leading order of 𝐴1 is invertible precisely when 𝑃⟂𝛼 is invertible. This occurs precisely when
𝑃⟂𝛼 𝑢

𝛼
𝑖
≠ 0 for 𝑖 = 1, 2, that is, when

𝜔 ≠
√

𝛿𝜆𝛼
𝑖|𝐷1| for 𝑖 = 1, 2.

Moreover, we have

𝐴−1
1 =

(
𝐼 −𝑃

(
𝑃⟂𝛼
)−1

0
(
𝑃⟂𝛼
)−1 ) + 𝑂(𝜔).

This shows (ii). □

The following result can be proved by using the same arguments as those in [13].
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Lemma 3.10. As 𝛿 → 0 and 𝜔 = 𝐶
√
𝛿 for 𝐶 ≠

√
𝜆𝛼
𝑗|𝐷1| , we have

(𝛼(𝜔, 𝛿))−1 = 𝐴−1
1 𝐴−1

0 (𝐼 + 𝑂(𝛿)),

where the error term is with respect to the operator norm in ((𝐿2(𝜕𝐷))2).
Based on this lemma, we can explicitly compute (𝛼(𝜔, 𝛿))−1. We have as 𝛿 → 0 with 𝜔 =

𝐶𝛿1∕2,

(𝛼(𝜔, 𝛿))
−1 = 𝐴−1

1
𝐴−1
0 (𝐼 + 𝑂(𝛿))

=

(
𝐼 −𝑃

(
𝑃⟂
𝛼

)−1
0

(
𝑃⟂
𝛼

)−1
)⎛⎜⎜⎜⎝

0 −
⟨𝜒𝜕𝐷1

, ⋅⟩𝜓1 + ⟨𝜒𝜕𝐷2
, ⋅⟩𝜓2

𝜔2|𝐷1| + 𝑂
(
1

𝜔

)
−
(𝛼,0

𝐷

)−1
+ 𝑂(𝜔2) −

⟨𝜒𝜕𝐷1
, ⋅⟩𝜓𝛼

1
+ ⟨𝜒𝜕𝐷2

, ⋅⟩𝜓𝛼
2

𝜔2|𝐷1| + 𝑂
(
1

𝜔

)⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
𝑃
(
𝑃⟂
𝛼

)−1(𝛼,0
𝐷

)−1
+ 𝑂(𝜔) −

⟨𝜒𝜕𝐷1
, ⋅⟩𝜓1 + ⟨𝜒𝜕𝐷2

, ⋅⟩𝜓2
𝜔2|𝐷1| + 𝑃

(
𝑃⟂
𝛼

)−1 ⟨𝜒𝜕𝐷1
, ⋅⟩𝜓𝛼

1
+ ⟨𝜒𝜕𝐷2

, ⋅⟩𝜓𝛼
2

𝜔2|𝐷1| + 𝑂
(
1

𝜔

)
−
(
𝑃⟂
𝛼

)−1(𝛼,0
𝐷

)−1
+ 𝑂(𝜔) −

(
𝑃⟂
𝛼

)−1 ⟨𝜒𝜕𝐷1
, ⋅⟩𝜓𝛼

1
+ ⟨𝜒𝜕𝐷2

, ⋅⟩𝜓𝛼
2

𝜔2|𝐷1| + 𝑂
(
1

𝜔

) ⎞⎟⎟⎟⎠ ,
where the error terms are now with respect to the operator norm in (𝐿2(𝜕𝐷)). We will simplify
the elements in the right column in the above expression, which is the part of (𝛼)−1 that is
relevant for the rest of the work. Define

(𝛼(𝜔, 𝛿))
−1 =

(
𝐴11 𝐴12

𝐴21 𝐴22

)
.

We can compute

(
𝑃⟂𝛼
)−1

𝜓𝛼1 = −
𝑒−i𝜃𝛼√

2

(
𝜔2

𝜔2 −
(
𝜔𝛼
1

)2
)
𝑢𝛼1 +

𝑒−i𝜃𝛼√
2

(
𝜔2

𝜔2 −
(
𝜔𝛼
2

)2
)
𝑢𝛼2 + 𝑂(𝜔),

(
𝑃⟂𝛼
)−1

𝜓𝛼2 =
1√
2

(
𝜔2

𝜔2 −
(
𝜔𝛼
1

)2
)
𝑢𝛼1 +

1√
2

(
𝜔2

𝜔2 −
(
𝜔𝛼
2

)2
)
𝑢𝛼2 + 𝑂(𝜔),

with respect to the 𝐿2(𝜕𝐷)-norm. Then we obtain

𝑃𝑢𝛼1 = −

(
𝜔𝛼
1

)2
𝜔2

𝑢1 + 𝑂(𝜔), 𝑃𝑢𝛼2 = −

(
𝜔𝛼
2

)2
𝜔2

𝑢2 + 𝑂(𝜔).

Consequently, we have

𝐴12 = −
⟨𝜒𝜕𝐷1 , ⋅⟩𝜓1 + ⟨𝜒𝜕𝐷2 , ⋅⟩𝜓2

𝜔2|𝐷1| + 𝑃
(
𝑃⟂𝛼
)−1 ⟨⋅, 𝜒𝜕𝐷1⟩𝜓𝛼1 + ⟨𝜒𝜕𝐷2 , ⋅⟩𝜓𝛼2

𝜔2|𝐷1| + 𝑂
(
1

𝜔

)
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= −
⟨𝜒𝜕𝐷1 , ⋅⟩𝜓1 + ⟨𝜒𝜕𝐷2 , ⋅⟩𝜓2

𝜔2|𝐷1| −
⟨𝜒𝛼

1
, ⋅⟩𝑢1

𝜔2|𝐷1|
( (

𝜔𝛼
1

)2
𝜔2 −

(
𝜔𝛼
1

)2
)
−
⟨𝜒𝛼

2
, ⋅⟩𝑢2

𝜔2|𝐷1|
( (

𝜔𝛼
2

)2
𝜔2 −

(
𝜔𝛼
2

)2
)

+ 𝑂
(
1

𝜔

)
, (3.15)

and

𝐴22 = −
(
𝑃⟂𝛼
)−1 ⟨𝜒𝜕𝐷1 , ⋅⟩𝜓𝛼1 + ⟨𝜒𝜕𝐷2 , ⋅⟩𝜓𝛼2

𝜔2|𝐷1| + 𝑂
(
1

𝜔

)
= −
⟨𝜒𝛼

1
, ⋅⟩𝑢𝛼

1

𝜔2|𝐷1|
(

𝜔2

𝜔2 −
(
𝜔𝛼
1

)2
)
−
⟨𝜒𝛼

2
, ⋅⟩𝑢𝛼

2

𝜔2|𝐷1|
(

𝜔2

𝜔2 −
(
𝜔𝛼
2

)2
)
+ 𝑂
(
1

𝜔

)
, (3.16)

with respect to the norm in (𝐿2(𝜕𝐷)). The singularity of𝛼 as 𝜔 → 𝜔𝛼
1
or 𝜔 → 𝜔𝛼

2
is, to leading

order, described by the operator 𝑃⟂𝛼 . Defining

Ψ𝛼
𝑗
=

(
𝑢𝑗
𝑢𝛼
𝑗

)
Φ𝛼
𝑗
=

(
−𝛿𝑢𝛼

𝑗

𝜒𝛼
𝑗

)
,

the above computations imply the following result.

Proposition 3.11. As 𝜔 → 𝜔𝛼
𝑗
, 𝑗 = 1, 2, we have

(𝛼(𝜔, 𝛿))
−1 = −

1

2𝜔𝛼
𝑗
|𝐷1|
⟨Φ𝛼

𝑗
, ⋅⟩Ψ𝛼

𝑗

𝜔 − 𝜔𝛼
𝑗

+𝛼
𝑗
(𝜔),

where𝛼
𝑗
(𝜔) is holomorphic for 𝜔 in a neighbourhood of 𝜔𝛼

𝑗
.

3.2 Dislocated system for small dislocation

In this section, we study the problem when a dislocation is introduced so that half of the array of
resonators is translated in the 𝑥1-direction. We will model the defect problem using the fictitious
source superposition method [7].

3.2.1 Fictitious sources for dislocated resonator with a small dislocation

Here, we briefly describe the method of fictitious sources for a single translated resonator, in the
asymptotic limit when the translation 𝑑 → 0. This will be developed for use on a dislocated array
in Section 3.2.2. Throughout this subsection, Ω denotes a bounded domain such that 𝜕Ω ∈ 1,𝑠,
Ω𝑑 ∶= Ω+ 𝑑𝐯 and 𝑈 is a neighbourhood of Ω∪Ω𝑑. Although this subsection is phrased for a
general domain Ω, we think of Ω as a pair of resonators in the dislocated array (Figure 4).
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F IGURE 4 A dislocated pair of resonators in the case of a small dislocation 𝑑. Legend: resonator with
fictitious sources, dislocated resonator

We define the maps

𝑝 ∶ 𝜕Ω → 𝜕Ω𝑑, 𝑥 ↦ 𝑥 + 𝑑𝐯, 𝑞 ∶ 𝐿2(𝜕Ω) → 𝐿2(𝜕Ω𝑑), 𝑞(𝜙)(𝑦) = 𝜙(𝑝−1(𝑦)). (3.17)

Since the gradient of the single-layer potential potential has a jump across 𝜕Ω, we introduce the
notation

∇𝜔
Ω
[𝜙]||± =

{
∇𝜔

Ω
[𝜙]||+ 𝜈𝑥 ⋅ 𝐯 ⩾ 0,

∇𝜔
Ω
[𝜙]||− 𝜈𝑥 ⋅ 𝐯 < 0,

where 𝜈𝑥 is the outward unit normal to 𝜕Ω at 𝑥. We remark that if 𝜈𝑥 ⋅ 𝐯 = 0 we have that [19]

𝐯 ⋅∇𝜔
Ω
[𝜙]||+(𝑥) = 𝐯 ⋅∇𝜔

Ω
||−[𝜙](𝑥). (3.18)

Lemma 3.12. Let 𝑥 ∈ 𝜕Ω and let 𝑝 be defined as in (3.17). For 𝜙 ∈ 𝐿2(𝜕Ω), and for 𝑑 small enough,
we have

𝜔
Ω
[𝜙](𝑝(𝑥)) = 𝜔

Ω
[𝜙](𝑥) + 𝑑𝐯 ⋅∇𝜔

Ω
[𝜙]||±(𝑥) + 𝑂(𝑑2).

This estimate is valid in 𝐿2(𝜕Ω) in the sense that there is a constant 𝐶, independent of 𝑑, such that‖‖‖𝜔
Ω
[𝜙]◦𝑝 −

(𝜔
Ω
[𝜙] + 𝑑𝐯 ⋅∇𝜔

Ω
[𝜙]||±)‖‖‖𝐿2(𝜕Ω) ⩽ 𝐶𝑑2

for 𝑑 small enough.

Proof. We let 𝑈− ⊂ 𝜕Ω be the set of points 𝑥 such that 𝑥 + 𝑑0𝐯 ∈ Ω for all 𝑑0 ⩽ 𝑑, and 𝑈+ be the
set of points 𝑥 such that 𝑥 + 𝑑0𝐯 ∉ Ω for all 𝑑0 ⩽ 𝑑. Moreover, we let 𝑉 = 𝜕Ω ⧵ (𝑈+ ∪ 𝑈−). Since
𝜕Ω ∈ 1 we have the following implications:

𝑥 ∈ 𝑈+ ⇒ 𝜈𝑥 ⋅ 𝐯 ⩾ 0, 𝑥 ∈ 𝑈− ⇒ 𝜈𝑥 ⋅ 𝐯 ⩽ 0.

In𝑈+ (and𝑈−), we have Taylor expansions in the 𝐿2-sense (see, for example, [66, Theorem 3.4.2]),
so that

‖‖‖𝜔
Ω
[𝜙]◦𝑝 −

(𝜔
Ω
[𝜙] + 𝑑𝐯 ⋅∇𝜔

Ω
[𝜙]||±)‖‖‖𝐿2(𝑈±)

⩽ 𝐶±𝑑
2 (3.19)
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for some constants 𝐶+ and 𝐶−. Moreover, we have that 𝜈𝑥 ⋅ 𝐯 = 𝑂(𝑑) uniformly for 𝑥 ∈ 𝑉. From
(3.18), we therefore have

𝐯 ⋅∇𝜔
Ω
[𝜙]||+(𝑥) = 𝐯 ⋅∇𝜔

Ω
[𝜙]||−(𝑥) + 𝑂(𝑑),

with respect to the norm in 𝐿2(𝑉). Therefore, for some constant 𝐶0,‖‖‖𝜔
Ω
[𝜙]◦𝑝 −

(𝜔
Ω
[𝜙] + 𝑑𝐯 ⋅∇𝜔

Ω
[𝜙]||±)‖‖‖𝐿2(𝑉) ⩽ 𝐶0𝑑

2,

which, together with (3.19) proves the claim. □

We now assumeΩ = Ω1 ∪ Ω2 for two connected domainsΩ𝑖, 𝑖 = 1, 2. To study the problem for
the dislocated resonator, we consider the problem when the resonatorΩ has its original position,
along with fictitious sources 𝑓, g on the boundary. Explicitly, we consider the problem

⎧⎪⎪⎨⎪⎪⎩
Δ𝑢 + 𝜔2𝑢 = 0 in 𝑈 ⧵ 𝜕Ω,

𝑢|+ − 𝑢|− = 𝑓 on 𝜕Ω,

𝛿
𝜕𝑢

𝜕𝜈

||||+ − 𝜕𝑢

𝜕𝜈

||||− = g on 𝜕Ω.

(3.20)

We assume we have a reference solution 𝑢 satisfying

⎧⎪⎪⎨⎪⎪⎩
Δ𝑢 + 𝜔2𝑢 = 0 in 𝑈 ⧵ 𝜕Ω𝑑,

𝑢|+ − 𝑢|− = 0 on 𝜕Ω𝑑,

𝛿
𝜕𝑢

𝜕𝜈

||||+ − 𝜕𝑢

𝜕𝜈

||||− = 0 on 𝜕Ω𝑑.

(3.21)

We want to determine the fictitious sources 𝑓, g such that

𝑢 = 𝑢 in 𝑈 ⧵ (Ω ∪ Ω𝑑), (3.22)

𝑢 = 𝑢 in Ω∩Ω𝑑. (3.23)

Inside 𝑈, the two solutions 𝑢 and 𝑢 can be, respectively, represented as

𝑢 =

⎧⎪⎨⎪⎩
̂𝜔
Ω𝑑
[𝜙𝑖,𝑑] in Ω𝑑,

𝜔
Ω𝑑
[𝜙𝑜,𝑑] + 𝐻 in 𝑈 ⧵ Ω𝑑,

(3.24)

and

𝑢 =

{̂𝜔
Ω
[𝜙𝑖] in Ω,

𝜔
Ω
[𝜙𝑜] + �̃� in 𝑈 ⧵ Ω,

(3.25)
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for some functions 𝐻 and �̃� satisfying Δ𝐻 + 𝜔2𝐻 = 0 and Δ�̃� + 𝜔2�̃� = 0 in 𝑈. 𝐻 and �̃� can be
thought of as background solutions, while the single layer potentials account for the local effect
of the resonators. From (3.22), it follows that𝐻 = �̃�. Using the jump relations and the boundary
conditions in (3.21) and (3.20), we find that

𝑑(𝜔, 𝛿)Φ𝑑 =

(
𝐻||𝜕Ω𝑑

𝛿𝜕𝜈𝐻
||𝜕Ω𝑑

)
, (𝜔, 𝛿)Φ =

(
𝐻||𝜕Ω

𝛿𝜕𝜈𝐻
||𝜕Ω
)
−

(
𝑓

g

)
, (3.26)

where

𝑑(𝜔, 𝛿) =

( ̂𝜔
Ω𝑑

−𝜔
Ω𝑑

−1

2
𝐼 + ̂𝜔,∗

Ω𝑑
−𝛿
(
1

2
𝐼 + (𝜔

Ω𝑑
)∗
)) , (𝜔, 𝛿) =

( ̂𝜔
Ω

−𝜔
Ω

−1

2
𝐼 + ̂𝜔,∗

Ω
−𝛿
(
1

2
𝐼 + (𝜔

Ω
)∗
)) ,

and

Φ𝑑 =

(
𝜙𝑖,𝑑

𝜙𝑜,𝑑

)
, Φ =

(
𝜙𝑖

𝜙𝑜

)
.

By equations (3.22) and (3.23), we have

̂𝜔
Ω𝑑
[𝜙𝑖,𝑑](𝑥) = ̂𝜔

Ω
[𝜙𝑖](𝑥), 𝑥 ∈ 𝜕Ω𝑑 ∩ Ω, (3.27)

̂𝜔
Ω𝑑
[𝜙𝑖,𝑑](𝑥) = ̂𝜔

Ω
[𝜙𝑖](𝑥), 𝑥 ∈ 𝜕Ω ∩ Ω𝑑. (3.28)

We decompose the boundaries of the resonators as 𝜕Ω𝑖
𝑑
= 𝜕Ω𝑑 ∩ Ω and 𝜕Ω𝑜

𝑑
= 𝜕Ω𝑑 ⧵ 𝜕Ω

𝑖
𝑑

and define 𝜕Ω𝑖 = 𝜕Ω𝑖
𝑑
− 𝑑𝐯 and 𝜕Ω𝑜 = 𝜕Ω𝑜

𝑑
− 𝑑𝐯. Because of translation invariance, we have

̂𝜔
Ω𝑑
[𝜙𝑖,𝑑](𝑥) = ̂𝜔

Ω
[𝑞−1(𝜙𝑖,𝑑)](𝑥), where 𝑥 = 𝑝(𝑥). Therefore, using Lemma 3.12, we obtain

⎧⎪⎨⎪⎩
̂𝜔
Ω

[
𝑞−1(𝜙𝑖,𝑑)

]
= ̂𝜔

Ω
[𝜙𝑖] + 𝑑𝐯 ⋅∇̂𝜔

Ω
[𝜙𝑖]||− + 𝑂(𝑑2) on 𝜕Ω𝑖,

̂𝜔
Ω

[
𝑞−1(𝜙𝑖,𝑑)

]
− 𝑑𝐯 ⋅∇̂𝜔

Ω

[
𝑞−1(𝜙𝑖,𝑑)

]||− = ̂𝜔
Ω

[
𝜙𝑖
]
+ 𝑂(𝑑2) on 𝜕Ω ∩ Ω𝑑,

where 𝑞 is defined in (3.17) and the error terms are with respect to corresponding 𝐿2-norm. This
transformation is depicted in Figure 5. The boundary 𝜕Ω is decomposed into disjoint parts 𝜕Ω𝑖

and 𝜕Ω𝑜, and (since 𝜕Ω is 1) the length of the ‘missing’ part of the boundary, 𝜕Ω𝑜 ⧵ (𝜕Ω ∩ Ω𝑑),
scales as 𝑂(𝑑). Moreover, on this part (3.28) holds to order 𝑂(𝑑). Using the Neumann series, we
can invert the second equation to obtain

𝑞−1(𝜙𝑖,𝑑) = 𝜙𝑖 + 𝑑
(̂𝜔

Ω

)−1
𝐯 ⋅∇̂𝜔

Ω
[𝜙𝑖]||− + 𝑂(𝑑2),

with respect to the 𝐿2(𝜕Ω)-norm. We define 𝑄 ∶ 𝐿2(𝜕Ω)2 → 𝐿2(𝜕Ω𝑑)
2 by

𝑄(𝑢, 𝑣) =

(
𝑞(𝑢)

𝑞(𝑣)

)
.
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F IGURE 5 In the fictitious sources approach, for the case of a small dislocation, we seek solutions that
match on the shaded region. In (3.27) and (3.28), equality is imposed on the region highlighted in the left image.
Using Lemma 3.12, this is mapped to a subset of 𝜕Ω. After this transformation, the length of the part of 𝜕Ω not
included will be 𝑂(𝑑), where 𝑑 is the size of the dislocation. Legend: original resonator, dislocated
resonator, region of enforced equality

F IGURE 6 The dislocated system is equivalent to the original array with the addition of so-called fictitious
sources 𝑓𝑚, g𝑚, on the boundary of 𝐷𝑚 for𝑚 ∈ ℕ. Legend: untouched resonator, resonator with
fictitious sources, dislocated resonator

By analogous computations for 𝜔
Ω
[𝜙𝑜,𝑑](𝑥) as those for ̂𝜔

Ω
[𝜙𝑖,𝑑](𝑥), we find that

𝑄−1Φ𝑑 = 1Φ, 1 = 𝐼 + 𝑑

((̂𝜔
Ω

)−1
𝐯 ⋅∇̂𝜔

Ω
||− 0

0
(𝜔

Ω

)−1
𝐯 ⋅∇𝜔

Ω
||+
)
+ 𝑂(𝑑2), (3.29)

where 1 ∶ 𝐿2(𝜕Ω)2 → 𝐿2(𝜕Ω)2. We denote the linear term in 𝑑 by  (1)
1
, so that 1 = 𝐼 + 𝑑 (1)

1
+

𝑂(𝑑2) with respect to the operator norm in (𝐿2(𝜕Ω)2) (Figure 6).
We nowuse Taylor series expansions to relate𝐻|𝜕Ω and𝐻|𝜕Ω𝑑

. If we let 𝜕

𝜕𝑇
∶= (𝐯 − (𝐯 ⋅ 𝜈)𝜈) ⋅∇

denote the tangential derivative in the direction specified by 𝐯, we have that

𝐻|𝜕Ω = 𝐻|𝜕Ω𝑑
− 𝑑𝐯 ⋅∇𝐻|𝜕Ω𝑑

+ 𝑂(𝑑2)

= 𝐻|𝜕Ω𝑑
− 𝑑

(
(𝐯 ⋅ 𝜈)

𝜕

𝜕𝜈
𝐻|𝜕Ω𝑑

+
𝜕

𝜕𝑇
𝐻|𝜕Ω𝑑

)
+ 𝑂(𝑑2),

where the error term is a continuous function of 𝑥 in the compact domain 𝜕Ω, and hence valid
uniformly in 𝑥. Moreover,

𝜕

𝜕𝜈
𝐻|𝜕Ω =

𝜕

𝜕𝜈
𝐻|𝜕Ω𝑑

− 𝑑

(
(𝐯 ⋅ 𝜈)

𝜕2

𝜕𝜈2
𝐻|𝜕Ω𝑑

+
𝜕2

𝜕𝑇𝜕𝜈
𝐻|𝜕Ω𝑑

)
+ 𝑂(𝑑2).

The Laplacian in local coordinates defined by the normal and tangential directions of 𝜕Ω𝑑 can be
written as

Δ =
𝜕2

𝜕𝜈2
+ 2𝜏(𝑥)

𝜕

𝜕𝜈
+ Δ𝜕Ω𝑑

,
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where 𝜏 denotes the mean curvature of 𝜕Ω𝑑 and Δ𝜕Ω𝑑
denotes the Laplace-Beltrami operator on

𝜕Ω𝑑. Since𝐻 satisfies the Helmholtz equation (Δ + 𝜔2)𝐻 = 0, we get

𝜕2

𝜕𝜈2
𝐻|𝜕Ω𝑑

= −
(
𝜔2 + Δ𝜕Ω𝑑

)
𝐻|𝜕Ω𝑑

− 2𝜏
𝜕

𝜕𝜈
𝐻|𝜕Ω𝑑

.

Hence, we have (
𝐻||𝜕Ω

𝛿𝜕𝜈𝐻
||𝜕Ω
)
= 2𝑄−1

(
𝐻||𝜕Ω𝑑

𝛿𝜕𝜈𝐻
||𝜕Ω𝑑

)
, (3.30)

where the operator 2 ∶ 𝐿2(𝜕Ω)2 → 𝐿2(𝜕Ω)2 is given by

2 = 𝐼 + 𝑑 (1)
2

+ 𝑂(𝑑2),  (1)
2

=

(
−𝜕𝑇 −(𝐯⋅𝜈)

𝛿
𝛿(𝐯 ⋅ 𝜈)

(
𝜔2 + Δ𝜕Ω

)
2𝜏 − 𝜕𝑇

)
,

with respect to the norm in(𝐿2(𝜕Ω)2). SinceΩ𝑑 andΩ only differ by a translation, we have that

𝑑 = 𝑄𝑄−1. (3.31)

Combining (3.26), (3.29), (3.30) and (3.31), we arrive at the following result.

Proposition 3.13. The layer densities 𝜙𝑖 and 𝜙𝑜 and the fictitious sources 𝑓 and g satisfy(
𝑓

g

)
= 𝐵(𝜔, 𝛿, 𝑑)

(
𝜙𝑖

𝜙𝑜

)
, 𝐵(𝜔, 𝛿, 𝑑) = 21 −.

3.2.2 Integral equation for the dislocated system

In this section, we use Proposition 3.13 to derive an integral equation for the dislocated system
when the dislocation size is small.
To study the dislocated problem (3.2), we consider the problem with periodic geometry, along

with fictitious sources 𝑓𝑚, g𝑚 placed on the boundary of 𝐷𝑚 = 𝐷𝑚
1
∪ 𝐷𝑚

2
. Explicitly, we consider

the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δ𝑢 + 𝜔2𝑢 = 0 in ℝ3 ⧵ 𝜕0,
𝑢|+ − 𝑢|− = 𝑓𝑚 on 𝜕𝐷𝑚,𝑚 ∈ ℕ,

𝛿
𝜕𝑢

𝜕𝜈

||||+ − 𝜕𝑢

𝜕𝜈

||||− = g𝑚 on 𝜕𝐷𝑚,𝑚 ∈ ℕ,

𝑢(𝑥1, 𝑥2, 𝑥3) satisfies the outgoing radiation condition as
√
𝑥2
2
+ 𝑥2

3
→ ∞.

(3.32)

Assumewe have a non-zero solution 𝑢 to (3.2). Inside𝑌𝑚 ∶= 𝑌 +𝑚𝑑𝐯, we can represent the solu-
tion as in (3.24) with the choices Ω = 𝐷𝑚 and 𝑈 = 𝑌𝑚. In this way, we define the layer densities
𝜙𝑖,𝑑 and 𝜙𝑜,𝑑. Since 1 is invertible for small enough 𝑑, we can define the layer densities 𝜙𝑖𝑚 and
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𝜙𝑜𝑚 as (
𝜙𝑖𝑚
𝜙𝑜𝑚

)
= (1)−1𝑄−1

(
𝜙𝑖,𝑑

𝜙𝑜,𝑑

)
.

We then set the fictitious sources as

(
𝑓𝑚
g𝑚

)
=

⎧⎪⎨⎪⎩
0, 𝑚 < 0,

𝐵𝑚

(
𝜙𝑖𝑚
𝜙𝑜𝑚

)
, 𝑚 ⩾ 0,

(3.33)

where 𝐵𝑚 is defined as in Proposition 3.13 with the choiceΩ = 𝐷𝑚. We then define the solution 𝑢
by (3.25) with �̃� = 𝐻, and because of (3.33) this coincides with 𝑢 in (𝑌𝑚 ⧵ (𝐷𝑚 ∪ (𝐷𝑚 + 𝑑𝐯))) ∪

(𝐷𝑚 ∩ (𝐷𝑚 + 𝑑𝐯)).
Conversely, if we have a non-zero solution 𝑢 to (3.32), represented as (3.25) in 𝑌𝑚 and with

sources satisfying (3.33), we can define 𝜙𝑖,𝑑 and 𝜙𝑜,𝑑 to get a non-zero solution 𝑢 to (3.2) coinciding
with 𝑢 in (𝑌𝑚 ⧵ (𝐷𝑚 ∪ (𝐷𝑚 + 𝑑𝐯))) ∪ (𝐷𝑚 ∩ (𝐷𝑚 + 𝑑𝐯)).
From the above arguments, it follows that the spectral problem (3.2) is equivalent to (3.32). So,

in the remainder of this subsection, we will only study the latter problem. For simplicity, since the
solutions coincide, we will omit the superscript ˜and simply write 𝑢 for 𝑢.
We define 𝑢𝛼 as the Floquet transform of 𝑢, that is,

𝑢𝛼 =
∑
𝑚∈ℤ

𝑢(𝑥 − 𝑚𝐿𝐯)𝑒i𝛼𝑚.

The transformed solution 𝑢𝛼 satisfies

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Δ𝑢𝛼 + 𝜔2𝑢𝛼 = 0 in 𝑌 ⧵ 𝜕𝐷,

𝑢𝛼|+ − 𝑢𝛼|− = 𝑓𝛼 on 𝜕𝐷,

𝛿
𝜕𝑢𝛼

𝜕𝜈

||||+ − 𝜕𝑢𝛼

𝜕𝜈

||||− = g𝛼 on 𝜕𝐷,

𝑒−i𝛼𝑥1𝑢𝛼(𝑥1, 𝑥2, 𝑥3) is periodic in 𝑥1,

𝑢𝛼(𝑥1, 𝑥2, 𝑥3) satisfies the 𝛼-quasiperiodic outgoing radiation condition

as
√
𝑥2
2
+ 𝑥2

3
→ ∞,

(3.34)

where

𝑓𝛼 =
∑
𝑚∈ℤ

𝑓𝑚𝑒
−i𝛼𝑚, g𝛼 =

∑
𝑚∈ℤ

g𝑚𝑒
−i𝛼𝑚. (3.35)

Fromnowon,we identify functions𝑢𝑚 ∈ 𝐿2(𝜕𝐷𝑚), for any𝑚, with𝑢0 ∈ 𝐿2(𝜕𝐷) by translating the
argument, that is, by 𝑢0(𝑥) = 𝑢𝑚(𝑥 + 𝑚𝐿𝐯). Observe that under this identification, all operators
𝐵𝑚,𝑚 ∈ ℕ coincide and will be denoted by 0.
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The solution 𝑢𝛼 can be represented using quasiperiodic layer potentials as

𝑢𝛼 =

{̂𝜔
𝐷
[𝜙𝛼,𝑖] in 𝐷,

𝛼,𝜔
𝐷

[𝜙𝛼,𝑜] in 𝑌 ⧵ 𝐷,

where the pair (𝜙𝛼,𝑖, 𝜙𝛼,𝑜) ∈ 𝐿2(𝜕𝐷)2 is the solution to

𝛼(𝜔, 𝛿)

(
𝜙𝛼,𝑖

𝜙𝛼,𝑜

)
=
⎛⎜⎜⎝

̂𝜔
𝐷

−𝛼,𝜔
𝐷

−
1

2
𝐼 + ̂𝜔,∗

𝐷
−𝛿
(
1

2
𝐼 +
(−𝛼,𝜔

𝐷

)∗)⎞⎟⎟⎠
(
𝜙𝛼,𝑖

𝜙𝛼,𝑜

)
=

(
−𝑓𝛼

−g𝛼

)
. (3.36)

Then the original solution 𝑢 can be recovered by the inverse Floquet transform

𝑢(𝑥) =
1

2𝜋 ∫𝑌∗ 𝑢
𝛼(𝑥) d𝛼.

Because of the quasiperiodicity of 𝑢𝛼, the solution 𝑢 inside the region 𝐷𝑚 satisfies

𝑢 = ̂𝜔
𝐷𝑚

[
1

2𝜋 ∫𝑌∗ 𝑒
i𝛼𝑚𝜙𝛼,𝑖 d𝛼

]
. (3.37)

Similarly, inside the region 𝑌𝑚 ⧵ 𝐷𝑚, we have

𝑢 =
1

2𝜋 ∫𝑌∗ 
𝛼,𝜔
𝐷

[𝜙𝛼,𝑜] d𝛼

= 𝜔
𝐷𝑚

[
1

2𝜋 ∫𝑌∗ 𝑒
i𝛼𝑚𝜙𝛼,𝑜 d𝛼

]
+

1

2𝜋 ∫𝑌∗
∑

𝑛∈ℤ,𝑛≠𝑚
𝜔
𝐷[𝜙

𝛼,𝑜]( ⋅ − 𝑛𝐿𝐯)𝑒i𝑛𝛼 d𝛼. (3.38)

The last term in the right-hand side of (3.38) satisfies the homogeneous Helmholtz equation (Δ +

𝜔2)𝑢 = 0 in 𝑌𝑚. Therefore, combining (3.37) and (3.38) together with (3.25), we can identify 𝜙𝑖 =
𝜙𝑖𝑚, 𝜙

𝑜 = 𝜙𝑜𝑚 and �̃� as follows:

𝜙𝑖𝑚 =
1

2𝜋 ∫𝑌∗ 𝑒
i𝛼𝑚𝜙𝛼,𝑖 d𝛼, 𝜙𝑜𝑚 =

1

2𝜋 ∫𝑌∗ 𝑒
i𝛼𝑚𝜙𝛼,𝑜 d𝛼, (3.39)

and

�̃� =
1

2𝜋 ∫𝑌∗
∑

𝑛∈ℤ,𝑛≠𝑚
𝜔
𝐷[𝜙

𝛼,𝑜]( ⋅ − 𝑛𝐿𝐯)𝑒i𝑛𝛼 d𝛼.

We define the operator 𝐼𝑚 ∶ 𝐿2(𝜕𝐷 × 𝑌∗) → 𝐿2(𝜕𝐷), by

𝐼𝑚[𝜑](𝑥) =
1

2𝜋 ∫𝑌∗ 𝜑(𝑥, 𝛼)𝑒
i𝛼𝑚 d𝛼.
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Since the operator𝛼 is invertible for 𝜔 in the band gap, we have from (3.36) that(
𝜙𝛼,𝑖

𝜙𝛼,𝑜

)
= 𝛼(𝜔, 𝛿)−1

(
−𝑓𝛼

−g𝛼

)
.

Combining this together with (3.39) and (3.35), we obtain the following result.

Proposition 3.14. For small enough 𝑑 > 0, the mid-gap frequencies of (3.2) are precisely the values
𝜔 such that there is a non-zero solution 𝜙𝛼,𝑖, 𝜙𝛼,𝑜 ∈ 𝐿2(𝜕𝐷 × 𝑌∗) to the equation

(
𝜙𝛼,𝑖

𝜙𝛼,𝑜

)
= −(𝛼(𝜔, 𝛿))

−1

(
∞∑
𝑚=0

𝑒−i𝑚𝛼0𝐼𝑚

)(
𝜙𝛼,𝑖

𝜙𝛼,𝑜

)
. (3.40)

It is clear that 0 = 𝑂(𝑑). As 𝑑 → 0, it follows from Proposition 3.11 that any subwavelength
resonant frequency 𝜔 = 𝜔(𝑑) satisfies 𝜔(𝑑) → 𝜔𝛼

𝑗
for some 𝜔𝛼

𝑗
. Denote

𝜔⋄
1 = max

𝛼∈𝑌∗
Re(𝜔𝛼1 ), 𝜔⋄

2 = min
𝛼∈𝑌∗

Re(𝜔𝛼2 ).

The following lemma follows from Theorem 3.6.

Lemma 3.15. The critical values 𝜔⋄
1
and 𝜔⋄

2
are attained at 𝛼⋄ = 𝜋∕𝐿. Further, for 𝛼 close to 𝛼⋄ we

have

𝜔𝛼1 = 𝜔⋄
1 − 𝑐1(𝛼 − 𝛼⋄)2 + 𝑂

(|𝛼 − 𝛼⋄|3), 𝜔𝛼2 = 𝜔⋄
2 − 𝑐2(𝛼 − 𝛼⋄)2 + 𝑂

(|𝛼 − 𝛼⋄|3),
for some constants 𝑐1, 𝑐2.

In what follows, we will consistently use the superscript ⋄ to denote corresponding quantity
evaluated at the critical point 𝛼⋄ = 𝜋∕𝐿.

Lemma 3.16. Assume that 𝐷1 and 𝐷2 are strictly convex. Then, in the dilute regime, we have the
following:

Case 𝑙0 < 1∕2 ∶ ⟨Φ⋄
1,0Ψ

⋄
1⟩ < 0 and ⟨Φ⋄

2,0Ψ
⋄
2⟩ > 0,

Case 𝑙0 > 1∕2 ∶ ⟨Φ⋄
1,0Ψ

⋄
1⟩ > 0 and ⟨Φ⋄

2,0Ψ
⋄
2⟩ < 0,

for small enough 𝜀, 𝛿 and 𝑑.

We refer to Section A.1 for the proof of Lemma 3.16. We will also need the following lemma.

Lemma 3.17. We have

Re

(
1

2𝜋

∞∑
𝑚=0

𝑒−i𝑚𝛼 ∫
2𝜋

0

𝑒i𝑚𝛼
′

1 + 𝑐2(𝛼′ − 𝜋)2
d𝛼′

)
=
1

2

(
1

1 + 𝑐2(𝛼 − 𝜋)2
+

1

𝜋𝑐
arctan(𝜋𝑐)

)
.
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Proof. Define 𝐼(𝛼) as

𝐼(𝛼) =
1

2𝜋

∞∑
𝑚=0

𝑒−i𝑚𝛼 ∫
2𝜋

0

𝑒i𝑚𝛼
′

1 + 𝑐2(𝛼′ − 𝜋)2
d𝛼′.

Completing the Fourier series, we have

𝐼(𝛼) + 𝐼(𝛼) −
1

2𝜋 ∫
2𝜋

0

1

1 + 𝑐2(𝛼′ − 𝜋)2
d𝛼′ =

1

1 + 𝑐2(𝛼 − 𝜋)2
.

Since 𝐼(𝛼) + 𝐼(𝛼) = 2Re(𝐼(𝛼)), and since

1

2𝜋 ∫
2𝜋

0

1

1 + 𝑐2(𝛼′ − 𝜋)2
d𝛼′ =

1

𝜋𝑐
arctan(𝜋𝑐),

the lemma follows. □

From Lemma 3.17, we find that

1

2𝜋

∞∑
𝑚=0

(−1)𝑚 ∫
2𝜋

0

𝑒i𝑚𝛼
′

1 + 𝑐2(𝛼′ − 𝜋)2
d𝛼′ =

1

2
+

1

2𝜋𝑐
arctan(𝜋𝑐). (3.41)

The next theorem, which is the main result of this section, describes how the mid-gap frequen-
cies emerge from the edges of the band gap. At this point, we observe that any mid-gap frequency
is necessarily real-valued. This can be seen from (3.34): a mid-gap frequency 𝜔 is a solution to
this equation for any 𝛼 ∈ 𝑌∗. At 𝛼 = 𝜋∕𝐿, and small enough 𝛿, this correspond to a self-adjoint
spectral problem, and it is clear that any subwavelength resonant frequency is real-valued.

Theorem3.18. Assume that𝐷1 and𝐷2 are strictly convex. For small enough𝑑 and 𝛿, and in the case
𝑙0 > 1∕2, there are two mid-gap frequencies 𝜔1(𝑑), 𝜔2(𝑑) such that 𝜔𝑗(𝑑) → 𝜔⋄

𝑗
, 𝑗 = 1, 2 as 𝑑 → 0.

In the case 𝑙0 < 1∕2, there are no mid-gap frequencies as 𝑑, 𝛿 → 0.

Proof. We seek solutions to (3.40) as 𝑑 → 0, corresponding to solutions 𝜔 in a small neighbour-
hood of 𝜔⋄

𝑗
for 𝑗 = 1 or 𝑗 = 2. By Proposition 3.11 and Lemma 3.15, (𝛼)−1 has a pole at 𝜔⋄. Recall

thatwe seek solutions𝜔 = 𝑂(
√
𝛿) as 𝛿 → 0. At 𝛿 = 0 and𝜔 = 0, the problem (3.2) decouples into a

Neumann problem on each resonator, with constant solution inside each resonator. Since ̂0
𝐷
[𝑢𝑗]

is constant inside 𝐷, we find that

𝜙𝛼,𝑖 = 𝑐1(𝛼)𝑢1 + 𝑐2(𝛼)𝑢2

for some coefficients 𝑐1(𝛼) and 𝑐2(𝛼). It follows that the root function is such that the singularity
of (𝛼)−1 does not vanish. Hence, from Proposition 3.11 and Lemma 3.15, we can find a non-zero
ℎ = ℎ(𝜔, 𝛿, 𝑑) such that the solution can be written, for 𝛼 close to 𝛼⋄, as(

𝜙𝛼,𝑖

𝜙𝛼,𝑜

)
=

Ψ⋄
𝑗

𝜔 − 𝜔⋄
𝑗
+ 𝑐𝑗|𝛼 − 𝛼⋄|2 ℎ(𝜔, 𝛿, 𝑑) + 𝐾1(𝜔, 𝛼, 𝛿, 𝑑),
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where 𝐾1(𝜔, 𝛼) is bounded uniformly in 𝑑 for (𝜔, 𝛼) in a neighbourhood of (𝜔⋄
𝑗
, 𝛼⋄). Applying

(3.41), we then find that

∞∑
𝑚=0

𝑒−i𝛼𝑚0𝐼𝑚

(
𝜙𝛼,𝑖

𝜙𝛼,𝑜

)
=

0Ψ
⋄
𝑗

2(𝜔 − 𝜔⋄
𝑗
)
ℎ(𝜔, 𝛿, 𝑑) + 𝐾2

for some 𝐾2 with norm of order 𝑂(𝑑) in a neighbourhood of (𝜔⋄
𝑗
, 𝛼⋄). We then have

−(𝛼(𝜔, 𝛿))
−1

∞∑
𝑚=0

𝑒i𝛼𝑚0𝐼𝑚

(
𝜙𝛼,𝑖

𝜙𝛼,𝑜

)
=

Ψ⋄
𝑗

𝜔 − 𝜔⋄
𝑗
+ 𝑐𝑗|𝛼 − 𝛼⋄|2 ⟨Φ⋄

𝑗
,0Ψ

⋄
𝑗
⟩

4𝜔⋄
𝑗
|𝐷1|(𝜔 − 𝜔⋄

𝑗
)
ℎ(𝜔, 𝛿, 𝑑) + 𝐾3.

Equation (3.40) then reads

⟨Φ⋄
𝑗
,0Ψ

⋄
𝑗
⟩

4𝜔⋄
𝑗
|𝐷1|(𝜔 − 𝜔⋄

𝑗
)
= 1 + 𝑂

⎛⎜⎜⎜⎝
𝑑√

𝜔 − 𝜔⋄
𝑗

⎞⎟⎟⎟⎠,
which has precisely one solution 𝜔 = 𝜔𝑗(𝑑), expanded as

𝜔𝑗(𝑑) = 𝜔⋄
𝑗 +
⟨Φ⋄

𝑗
,0Ψ

⋄
𝑗
⟩

4𝜔⋄
𝑗
|𝐷1| + 𝑂(𝑑3∕2).

From Lemma 3.16, it follows that 𝜔𝑗(𝑑) is inside the band gap precisely in the case 𝑙0 > 1∕2. □

Remark 3.19. It should be noted that the assumption of convexity made in this section is not an
intrinsic part of the fictitious sourcemethod. This assumption was only needed for the arguments
in the proof of Lemma 3.16. Indeed, the fictitious source method is repeatedly used in the rest of
this work without any assumption of convexity.

3.3 Integer unit length dislocation

In this section, we study the problem when the dislocation is an integer number of unit cell
lengths. This is equivalent to the case when an integer multiple of dimers are removed from the
original, periodic structure, thus creating a cavity. We will model this defect cavity problem using
the fictitious source superposition method [7].

3.3.1 Fictitious sources for a removed resonator

Here, we describe the method of fictitious sources when a single resonator is removed. Through-
out this subsection, Ω denotes a connected, bounded domain such that 𝜕Ω ∈ 1,𝑠 and 𝑈 denotes
a neighbourhood of Ω. Although the argument can be made for general Ω, we assume that Ω
consists of two connected componentsΩ = Ω1 ∪ Ω2.
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To study this problem,we consider the problemwhen the removed resonatorΩ is reintroduced,
along with fictitious dipole sources g on the boundary. We assume we have a reference solution 𝑢
satisfying

Δ𝑢 + 𝜔2𝑢 = 0 in 𝑈.

Let 𝑢 satisfy the fictitious source problem

⎧⎪⎪⎨⎪⎪⎩
Δ𝑢 + 𝜔2𝑢 = 0 in 𝑈 ⧵ 𝜕Ω,

𝑢|+ − 𝑢|− = 0 on 𝜕Ω,

𝛿
𝜕𝑢

𝜕𝜈

||||+ − 𝜕𝑢

𝜕𝜈

||||− = g on 𝜕Ω.

We want to determine the fictitious sources g such that 𝑢 = 𝑢 inside 𝑈. Any solution 𝑢 can be
represented as

𝑢 =

{̂𝜔
Ω
[𝜙𝑖] in Ω,

𝜔
Ω
[𝜙𝑜] + 𝐻 in 𝑈 ⧵ Ω,

(3.42)

for some𝐻 satisfying Δ𝐻 + 𝜔2𝐻 = 0 in 𝑈. Imposing 𝑢 = 𝑢 in 𝑈 is equivalent to

𝜙𝑖 =
(̂𝜔

Ω

)−1
[𝑢|𝜕Ω], 𝜙𝑜 = 0, 𝐻 = 𝑢.

Moreover, using the jump conditions, we find the following expression of g .

Proposition 3.20. The fictitious sources g and the layer density 𝜙𝑖 satisfy

g = 𝐵(𝜔, 𝛿)𝜙𝑖, 𝐵(𝜔, 𝛿) = (𝛿 − 1)
(
−
1

2
𝐼 + ̂𝜔,∗

Ω

)
.

Conversely, by the unique continuation property of theHelmholtz equation, if g satisfies Propo-
sition 3.20, then 𝑢 = 𝑢 in 𝑈.

3.3.2 Integral equation for the dislocated system

We now assume that 2𝑁 resonators are removed, so that 𝑢 satisfies (3.2) with

𝑑 = 0 ⧵
(
𝑁−1⋃
𝑚=0

𝐷𝑚

)
. (3.43)

Again, we model this using the fictitious source method as in (3.32), following the approach of
Section 3.2.2. We put 𝑓𝑚 = 0 for all𝑚. Moreover, g𝑚 will be defined as in Proposition 3.20 for all
the removed resonators (Figure 7).
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F IGURE 7 The dislocated system with dislocation equal to a multiple of the length of the unit cell (that is,
𝑑 = 𝑁𝐿) is equivalent to the original array with the addition of so-called fictitious sources 𝑓𝑚, g𝑚, on the
boundary of 𝐷𝑚 for𝑚 = 0,… ,𝑁 − 1. The case 𝑁 = 1 is depicted here. Legend: untouched resonator,
resonator with fictitious sources, dislocated resonator

Assume we have a non-zero solution 𝑢 to (3.2). Inside 𝑌𝑚,𝑚 = 0, 1, … ,𝑁 − 1, we can define
the layer density 𝜙𝑖𝑚 as

𝜙𝑖𝑚 =
(̂𝜔

Ω

)−1
[𝑢|𝜕𝐷𝑚].

We then set the fictitious sources as

g𝑚 = 𝐵𝐷𝜙
𝑖
𝑚, 0 < 𝑚 < 𝑁 − 1, (3.44)

and g𝑚 = 0 otherwise. Here, 𝐵𝐷 are the operators defined in Proposition 3.13 with the choiceΩ =

𝐷. Then, putting 𝜙𝑜 = 0 and𝐻 = 𝑢, we obtain a solution 𝑢 defined by (3.42), which coincides with
𝑢 on 𝑌𝑚 ⧵ 𝐷𝑚.
Conversely, if we have a non-zero solution 𝑢 to (3.32), represented as (3.42) in 𝑌𝑚 and with

sources satisfying (3.44), then we can define a non-zero solution 𝑢 = 𝑢 to (3.2) coinciding with 𝑢
on 𝑌𝑚 ⧵ 𝐷𝑚.
We introduce the extended operator on (𝐿2(𝜕𝐷))2,

𝐵 =

(
0 0

𝐵𝐷 0

)
.

For 𝛼 ∈ 𝑌∗, define 𝛼 ∶ (𝐿2(𝜕𝐷))2𝑁 → (𝐿2(𝜕𝐷))2 block-wise as

𝛼 =
(
𝐵 𝑒−i𝛼𝐵 ⋯ 𝑒−(𝑁−1)i𝛼𝐵

)
,

and define 𝐸𝛼 ∶ (𝐿2(𝜕𝐷))2 → (𝐿2(𝜕𝐷))2𝑁 block-wise as

𝐸𝛼 =

⎛⎜⎜⎜⎜⎜⎝

𝐼

𝑒i𝛼𝐼

𝑒2i𝛼𝐼

⋮
𝑒(𝑁−1)i𝛼𝐼

⎞⎟⎟⎟⎟⎟⎠
.

Next, we follow the approach of Section 3.2.2 to derive the integral equation for the dislocated
system. By taking the Fourier transform, we obtain (3.34) together with the relation (3.39) for 𝜙𝑖𝑚
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and 𝜙𝑜𝑚. Putting

Φ𝑁 =

⎛⎜⎜⎜⎜⎜⎝

𝜙𝑖
0

𝜙𝑜
0
⋮

𝜙𝑖
𝑁−1
𝜙𝑜
𝑁−1

⎞⎟⎟⎟⎟⎟⎠
,

we then obtain the following result.

Proposition 3.21. For 𝑑 as in (3.43), the mid-gap frequencies of (3.2) are precisely the values 𝜔
such that there is a non-zero solution Φ𝑁 ∈ (𝐿2(𝜕𝐷))2𝑁 to the equation

Φ𝑁 = −
1

2𝜋

(
∫𝑌∗ 𝐸

𝛼(𝛼(𝜔, 𝛿))
−1𝛼 d𝛼

)
Φ𝑁. (3.45)

In order to analyse (3.45), we will need the following lemma, which is an immediate conse-
quence of the structure of 𝐵.

Lemma 3.22. We have

(𝛼(𝜔, 𝛿))
−1𝐵 =

(
𝐴12𝐵𝐷 0

𝐴22𝐵𝐷 0

)
. (3.46)

As 𝛿 → 0 and 𝜔 = 𝑂(
√
𝛿), the operator 𝐴12 can be approximated by (3.15) and (3.16), respectively.

Due to the zero column in (3.46), it is clear that (3.45) reduces to an equation for 𝜙𝑖𝑚, … , 𝜙𝑖
𝑁−1

only. In fact, from (3.45), it follows that

Φ𝑖
𝑁 = −

1

2𝜋 ∫𝑌∗
⎛⎜⎜⎜⎜⎝

1 𝑒i𝛼 ⋯ 𝑒−(𝑁−1)i𝛼

𝑒i𝛼 1 ⋯ 𝑒−(𝑁−2)i𝛼

⋮ ⋮ ⋱ ⋮
𝑒(𝑁−1)i𝛼 𝑒(𝑁−2)i𝛼 ⋯ 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
𝐴12𝐵𝐷 0 ⋯ 0

0 𝐴12𝐵𝐷 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐴12𝐵𝐷

⎞⎟⎟⎟⎟⎠
Φ𝑖
𝑁 d𝛼,

(3.47)
where

Φ𝑖
𝑁 =

⎛⎜⎜⎜⎜⎝
𝜙𝑖
0
𝜙𝑖
1
⋮

𝜙𝑖
𝑁−1

⎞⎟⎟⎟⎟⎠
.

From Lemma 3.22, we obtain that, to leading order, 𝜙𝑖𝑚 is a linear combination of 𝜓1 and 𝜓2:

𝜙𝑖𝑚 = 𝑐𝑚𝜓1 + 𝑑𝑚𝜓2 + 𝑂(𝜔),
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with respect to the 𝐿2(𝜕𝐷)-norm. Define, for 𝑗 = 1, 2,

𝑡𝑚𝑖,𝑗 =
1

2𝜋 ∫𝑌∗ 𝑒
i𝑚𝛼
⟨
𝜒𝜕𝐷𝑖 , (𝐼 + 𝐴12𝐵𝐷)[𝜓𝑗]

⟩
d𝛼.

Then, taking inner products ⟨𝜒𝜕𝐷𝑖 , ⋅⟩ in equation (3.47), we find
1

2𝜋 ∫𝑌∗ 𝑒
i𝑚𝛼
⎛⎜⎜⎝
⟨
𝜒𝜕𝐷1 , 𝐼 + 𝐴12𝐵𝐷[𝜙

𝑖
𝑛]
⟩⟨

𝜒𝜕𝐷2 , 𝐼 + 𝐴12𝐵𝐷[𝜙
𝑖
𝑛]
⟩⎞⎟⎟⎠ d𝛼 = 𝑇𝑚

(
𝑐𝑛
𝑑𝑛

)
,

where 𝑇𝑚 denotes the 2 × 2matrix (𝑡𝑚
𝑖,𝑗
). We thus have

𝑁(𝜔)𝐶𝑁 = 0, (3.48)

where we have defined

𝑁(𝜔) =
⎛⎜⎜⎜⎜⎝
𝑇0 𝑇−1 ⋯ 𝑇−(𝑁−1)
𝑇1 𝑇0 ⋯ 𝑇−(𝑁−2)
⋮ ⋮ ⋱ ⋮

𝑇𝑁−1 𝑇𝑁−2 ⋯ 𝑇0

⎞⎟⎟⎟⎟⎠
, 𝐶𝑁 =

⎛⎜⎜⎜⎜⎜⎝

𝑐0
𝑑0
𝑐1
⋮

𝑑𝑁−1

⎞⎟⎟⎟⎟⎟⎠
.

Observe that 𝑁 is a block Toeplitz matrix generated by the symbol 𝜑,

𝜑 = 𝜑(𝛼) =

(
𝜑1,1 𝜑1,2
𝜑2,1 𝜑2,2

)
, 𝜑𝑖,𝑗 =

⟨
𝜒𝜕𝐷𝑖 , (𝐼 + 𝐴12𝐵𝐷)[𝜓𝑗]

⟩
, 𝑖, 𝑗 = 1, 2.

In the following lemma, we compute 𝜑.

Lemma 3.23. We have

𝜑(𝛼) = −
Cap𝐷1
2

(
𝜂1 + 𝜂2 −𝑒i𝜃𝛼 (𝜂1 − 𝜂2)

−𝑒−i𝜃𝛼 (𝜂1 − 𝜂2) 𝜂1 + 𝜂2

)
, det 𝜑(𝛼) =

(
Cap𝐷1

)2
𝜂1𝜂2,

where

𝜂𝑗 =

(
𝜔𝛼
𝑗

)2
𝜔2 −

(
𝜔𝛼
𝑗

)2 , 𝑗 = 1, 2.

Proof. As computed in [6], we have⟨
𝜒𝜕𝐷𝑗 ,

(
−
1

2
𝐼 +𝜔,∗

𝐷𝑗

)
𝜓𝑗

⟩
= −𝜔2|𝐷1| + 𝑂(𝜔3),

and therefore, ⟨
𝜒𝜕𝐷𝑖 , 𝐵𝐷𝜓𝑗

⟩
= 𝜔2|𝐷1|𝛿𝑖,𝑗 + 𝑂(𝜔3), 𝑖, 𝑗 = 1, 2.
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From this, using Lemma 3.22 and (3.15) we find that

𝐴12𝐵𝐷[𝜓1] =

(
−1 +

𝜂1 + 𝜂2
2

)
𝜓1 − 𝑒−i𝜃𝛼

𝜂1 − 𝜂2
2

𝜓2 + 𝑂(𝜔),

𝐴12𝐵𝐷[𝜓2] = −𝑒i𝜃𝛼
𝜂1 − 𝜂2

2
𝜓1 +

(
−1 +

𝜂1 + 𝜂2
2

)
𝜓2 + 𝑂(𝜔),

with respect to the 𝐿2(𝜕𝐷)-norm. The result now follows from the facts that ⟨𝜒𝜕𝐷𝑖 , 𝜓𝑗⟩ =
−Cap𝐷𝑖𝛿𝑖,𝑗 and Cap𝐷1 = Cap𝐷2 . □

Observe, in particular, that 𝜑 is a Hermitian matrix and, therefore, the Toeplitz matrices 𝑁 are
also Hermitian. We define the ‘exchange’ matrix 𝐽𝑚 ∈ ℝ2𝑚,𝑚 ∈ ℕ, as

𝐽𝑚 =

⎛⎜⎜⎜⎜⎝
0 ⋯ 0 1

0 ⋯ 1 0

⋮ ⋰ ⋮ ⋮
1 ⋯ 0 0

⎞⎟⎟⎟⎟⎠
.

The following lemma describes the centrosymmetry property of Hermitian Toeplitz matrices.

Lemma 3.24. We have

𝑇𝑚 = 𝐽1𝑇−𝑚𝐽1, 𝑁 = 𝐽𝑁𝑁𝐽𝑁.
Proof. We have 𝐽1𝜑𝐽1 = 𝜑 and therefore

𝑇𝑚 =
1

2𝜋 ∫𝑌∗ 𝑒
i𝑚𝛼𝜑(𝛼) d𝛼

=
1

2𝜋 ∫𝑌∗ 𝐽1𝑒
−i𝑚𝛼𝜑(𝛼)𝐽1 d𝛼

= 𝐽1𝑇−𝑚𝐽1.

The second equality of the statement follows from the first one togetherwith the Toeplitz structure
of 𝑁 . □

We will study the solutions to (3.48) in the two cases 𝑁 = 1 and 𝑁 → ∞. The following propo-
sition characterizes the solutions in the case 𝑁 = 1, corresponding to two removed resonators.

Proposition 3.25. If𝑁 = 1, equation (3.48) has a non-zero solution if and only if 𝜔 is a solution to
one of the two equations

1

2𝜋 ∫𝑌∗
(
𝜂1

(
1 ± 𝑒i𝜃𝛼

)
+ 𝜂2

(
1 ∓ 𝑒i𝜃𝛼

))
d𝛼 = 0. (3.49)
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If 𝑙0 < 1∕2, there are no solution to the equations (3.49), while if 𝑙0 > 1∕2, each equation has exactly
one solution.

Proof. In the case 𝑁 = 1, equation (3.48) reads

𝑇0

(
𝑐0
𝑑0

)
= 0,

which has a non-zero solution if and only if det 𝑇0 = 0. We have

det 𝑇0 =

(
Cap𝐷1

)2
4

(
(𝐼1)

2 − |𝐼2|2),
where

𝐼1 =
1

2𝜋 ∫𝑌∗ (𝜂1 + 𝜂2) d𝛼, 𝐼2 =
1

2𝜋 ∫𝑌∗ 𝑒
i𝜃𝛼 (𝜂1 − 𝜂2) d𝛼.

By time-reversal symmetry, we have 𝜔−𝛼
𝑗

= 𝜔𝛼
𝑗
, 𝑗 = 1, 2, which implies 𝐼2 ∈ ℝ. Hence det 𝑇0 = 0

is equivalent to

𝐼1 − 𝐼2 = 0, or 𝐼1 + 𝐼2 = 0.

The remaining part of the proof is given inAppendix B. It is shown that each of these equations has
a unique solution in the case 𝑙0 > 1∕2, while no solutions in the case 𝑙0 > 1∕2. □

Denote by  (𝜔) the infinite Toeplitz matrix corresponding to 𝑁(𝜔), that is,

 (𝜔) =
⎛⎜⎜⎜⎜⎝
𝑇0 𝑇−1 𝑇−2 ⋯
𝑇1 𝑇0 𝑇−1 ⋯
𝑇2 𝑇1 𝑇0 ⋯
⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎠
,

which defines a bounded operator on the space 𝑙2
2
of sequences of two-dimensional vectors. More

precisely, 𝑙2
2
consists of sequences {𝑥𝑛}∞𝑛=0 ∈ 𝑙2

2
of vectors 𝑥𝑛 ∈ ℝ2 such that

(
∞∑
𝑛=0

‖𝑥𝑛‖2)1∕2 < ∞,

where ‖ ⋅ ‖ denotes the Euclidean norm.
Proposition 3.26. Given 𝜔∞ inside the band gap such that  (𝜔∞) has eigenvalue 0, there are two
frequencies 𝜔1(𝑁), 𝜔2(𝑁) → 𝜔∞ as𝑁 → ∞, such that 𝑁 is not invertible at 𝜔1(𝑁), 𝜔2(𝑁).
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Proof. Let 𝑋 = {𝑥𝑛}
∞
𝑛=0

∈ 𝑙2
2
be an eigenvector with  (𝜔∞)𝑋 = 0 and let 𝑥 ∈ ℝ2𝑁 be a truncation

of 𝑋. Since  (𝜔∞)𝑋 = 0, we have

∞∑
𝑛=0

𝑇𝑘−𝑛𝑥𝑛 = 0 (3.50)

for all 𝑘 ∈ ℕ. Define 𝑧1, 𝑧2 ∈ ℝ4𝑁 ,

𝑧1 =

(
𝑥

𝐽𝑁𝑥

)
, 𝑧2 =

(
𝑥

−𝐽𝑁𝑥

)
.

Then, using Lemma 3.24, we have

2𝑁(𝜔∞)𝑧1 =
⎛⎜⎜⎜⎜⎝

⋮
𝑁−1∑
𝑛=0

𝑇𝑘−𝑛𝑥𝑛 +

𝑁−1∑
𝑛=0

𝑇𝑘−𝑁−𝑛𝐽𝑁𝑥𝑁−1−𝑛

⋮

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

⋮

𝑁−1∑
𝑛=0

𝑇𝑘−𝑛𝑥𝑛 + 𝐽𝑁

𝑁−1∑
𝑛=0

𝑇2𝑁−1−𝑘−𝑛𝑥𝑛

⋮

⎞⎟⎟⎟⎟⎟⎠
for 𝑘 = 0,… , 2𝑁 − 1.
In view of (3.50), given 𝜀 > 0 we can choose 𝑁 such that

‖2𝑁𝑧1‖ < 𝜀,

which implies that 0 is in the 𝜀-pseudospectrum of 2𝑁(𝜔∞) (see, for example, [61] for a thorough
discussion on the definition and properties of pseudospectra). Since 2𝑁(𝜔∞) is Hermitian, it fol-
lows that there is an eigenvalue 𝜇1 of 2𝑁(𝜔∞) with |𝜇1| < 𝜀. From this, it follows that there is a
value 𝜔1 such that 2𝑁(𝜔1) is not invertible, satisfying |𝜔1 − 𝜔∞| < 𝐾𝜀 for some 𝐾 independent
on 𝜀 [8].
In the same way, we can show that given 𝜀 > 0 we can choose 𝑁 such that

‖2𝑁𝑧2‖ < 𝜀,

and therefore there is a value 𝜔2 such that 2𝑁(𝜔2) is not invertible, satisfying |𝜔2 − 𝜔∞| < 𝐾𝜀 for
some 𝐾 independent on 𝜀.
The above argument shows that 𝜔𝑖(2𝑁) → 𝜔∞ as 𝑁 → ∞. The case of the sequence 𝜔𝑖(2𝑁 −

1), corresponding to odd indices, follows similarly by choosing the truncation 𝑥 ∈ ℝ2𝑁−1 and
constructing 𝑧1, 𝑧2 analogously. □

Remark 3.27. The values of the non-zero solutions 𝐶𝑁 to (3.48) correspond to the values attained
by the mid-gap modes inside the dislocation region. The two pseudomodes 𝑧1 and 𝑧2 can be
interpreted as approximations of the monopole and dipole modes, respectively, arising from the
hybridization of the two semi-infinite half-structures. As the dislocation increases, that is, as
𝑁 → ∞, the strength of the hybridization decreases and the frequencies corresponding to these
modes converge to the same value 𝜔∞.



ROBUST EDGE MODES IN DISLOCATED SYSTEMS OF SUBWAVELENGTH RESONATORS 37

Remark 3.28. The work in this section shows the intimate connection between localized edge
modes and the fact that Toeplitz matrices with sufficiently smooth symbols have eigenvectors
which are exponentially localized to the edges (that is, the first and last entries) of the vector [61].

3.4 Dislocation larger than resonator width

In this section, we assume that the size of the dislocation is larger than the width of one resonator.
In other words, this means that each dislocated resonator does not overlap with corresponding
original, undislocated, resonator.
We begin by stating some facts from [15] on the eigenfunctions of the Neumann–Poincaré oper-

ator 0,∗
Ω

for a domain Ω with 𝜕Ω ∈ 1,𝑠, 0 < 𝑠 < 1. Here, we additionally assume that Ω is con-
nected, which means that Ω can be thought of as a single resonator 𝐷𝑚

𝑗
in the dislocated array.

The operator0,∗
Ω

is known to be self-adjoint in the inner product ⟨⋅, ⋅⟩−1∕2 on𝐻−1∕2(𝜕Ω) defined
by

⟨𝑢, 𝑣⟩−1∕2 = −
⟨
𝑢,0

Ω
[𝑣]
⟩
−1∕2,1∕2

,

where ⟨⋅, ⋅⟩−1∕2,1∕2 denotes the duality pairing of𝐻−1∕2(𝜕Ω) and 𝐻1∕2(𝜕Ω). Then, by the spectral
theorem, the eigenfunctions 𝜓𝑗

Ω
, 𝑗 = 1, 2, 3, …, of0,∗

Ω
form a basis of𝐻−1∕2(𝜕Ω) that is orthonor-

mal with respect to ⟨⋅, ⋅⟩−1∕2, while the functions 0
Ω
[𝜓

𝑗

Ω
] form a basis of𝐻1∕2(𝜕Ω) that is orthog-

onal with respect to the inner product ⟨⋅, ⋅⟩1∕2 defined by
⟨𝑢, 𝑣⟩1∕2 = −

⟨(0
Ω

)−1
[𝑢], 𝑣

⟩
−1∕2,1∕2

.

The following addition theoremgives an expansion ofGreen’s function𝐺𝜔(𝑥, 𝑧), with the origin
shifted by 𝑧 ∉ 𝜕Ω, in terms of 𝜔

Ω
[𝜓

𝑗

Ω
](𝑥).

Proposition 3.29. For 𝑥 ∈ 𝜕Ω, 𝑧 ∉ 𝜕Ω and 𝜔 small enough, we have

𝐺𝜔(𝑥, 𝑧) = −

∞∑
𝑖=1

𝜔
Ω
[𝜉𝑖
Ω
](𝑧)𝜔

Ω
[𝜓𝑖

Ω
](𝑥),

where 𝜉𝑖
Ω
= (𝜔

Ω
)−10

Ω
[𝜓𝑖

Ω
].

Proof. The proof follows the same arguments as those in [15], where an analogous result was
proven for Laplace Green’s function 𝐺0. We include the proof for the sake of completeness.
Since 0

Ω
[𝜓𝑖

Ω
] is a basis of𝐻1∕2(𝜕Ω), and since 𝜔

Ω
∶ 𝐻−1∕2(𝜕Ω) → 𝐻1∕2(𝜕Ω) is invertible for 𝜔

small enough, we can expand 𝐺𝜔 for fixed 𝑧 as follows,

𝐺𝜔(⋅, 𝑧) =
∞∑
𝑖=1

𝑐𝑖(𝑧)𝜔
Ω
[𝜓𝑖

Ω
], (3.51)
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for some coefficients 𝑐𝑖 with

∞∑
𝑖=1

|𝑐𝑖(𝑧)|2 < ∞, 𝑧 ∉ 𝜕Ω.

Moreover, 𝜓𝑖 are orthonormal in𝐻−1∕2(𝜕Ω) equipped with ⟨⋅, ⋅⟩−1∕2. From (𝜔
Ω
)∗ = 𝜔

Ω
, we have

−
⟨
𝜉𝑖
Ω
,𝜔

Ω
[𝜓

𝑗

Ω
]
⟩
−1∕2,1∕2

= −

⟨(𝜔
Ω

)−10
Ω
[𝜓𝑖

Ω
],𝜔

Ω
[𝜓

𝑗

Ω
]

⟩
−1∕2,1∕2

= 𝛿𝑖,𝑗. (3.52)

Therefore, ⟨
𝜉𝑖
Ω
, 𝐺𝜔(⋅, 𝑧)

⟩
−1∕2,1∕2

= 𝜔
Ω
[𝜉𝑖
Ω
](𝑧). (3.53)

Combining (3.51) together with (3.52) and (3.53) shows the claim. □

We denote Ω𝑑 = Ω+ 𝑑𝐯. We then have the following proposition.

Proposition 3.30. AssumeΩ∩Ω𝑑 = ∅. Then, for 𝜙 ∈ 𝐻−1∕2(𝜕Ω𝑑), we have

𝜔
Ω𝑑
[𝜙](𝑥 − 𝑑𝐯) = 𝜔

Ω𝑑
[𝑉𝜙](𝑥), 𝑥 ∈ 𝜕Ω𝑑,

where 𝑉 ∶ 𝐻−1∕2(𝜕Ω𝑑) → 𝐻−1∕2(𝜕Ω𝑑) is given by

𝑉[𝜓
𝑗

Ω𝑑
] =

∞∑
𝑖=1

𝑉𝑖,𝑗𝜓
𝑖
Ω𝑑
, 𝑉𝑖,𝑗 = −∫𝜕Ω𝑑

𝜔
Ω𝑑
[𝜉𝑖
Ω𝑑
](𝑦 − 𝑑𝐯)𝜓

𝑗

Ω𝑑
(𝑦) d𝜎(𝑦), 𝑖, 𝑗 ⩾ 1.

Proof. Since

𝜔
Ω𝑑
[𝜙](𝑥 − 𝑑𝐯) = ∫𝜕Ω𝑑

𝐺𝜔(𝑥, 𝑦 + 𝑑𝐯)𝜙(𝑦) d𝜎(𝑦),

and since 𝑦 + 𝑑𝐯 ∉ 𝜕Ω𝑑, the proposition follows from Proposition 3.29. □

We will also need the following addition theorem for the normal derivative of the single-layer
potential. We let 𝜔

Ω
denote the double-layer potential (for details on this operator we refer, for

example, to [8]).

Proposition 3.31. AssumeΩ∩Ω𝑑 = ∅. Then, for 𝜙 ∈ 𝐻−1∕2(𝜕Ω𝑑), we have

𝜕𝜔
Ω𝑑

𝜕𝜈𝑥−𝑑𝐯
[𝜙](𝑥 − 𝑑𝐯) = 𝑊

𝜕𝜔
Ω𝑑

𝜕𝜈𝑥

||||+[𝜙](𝑥), 𝑥 ∈ 𝜕Ω𝑑,
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where𝑊 ∶ 𝐻−1∕2(𝜕Ω𝑑) → 𝐻−1∕2(𝜕Ω𝑑) is given by

𝑊
(
1

2
+𝜔,∗

Ω𝑑

)−1
[𝜓

𝑗

Ω𝑑
] =

∞∑
𝑖=1

𝑊𝑖,𝑗𝜓
𝑖
Ω𝑑
, 𝑊𝑖,𝑗 = ∫𝜕Ω𝑑

𝜔
Ω𝑑

0
Ω𝑑
[𝜓𝑖

Ω𝑑
](𝑦 + 𝑑𝐯)𝜓

𝑗

Ω𝑑
(𝑦) d𝜎(𝑦), 𝑖, 𝑗 ⩾ 1.

Here, 𝜕∕𝜕𝜈𝑥−𝑑𝐯 denotes the normal derivative with respect toΩ.

Proof. Analogously to the proof of Proposition 3.29, we can show that

𝜕𝐺𝜔

𝜕𝜈𝑥
(𝑥, 𝑦) =

∞∑
𝑖=1

𝜔
Ω
0
Ω
[𝜓𝑖

Ω
](𝑦)𝜓𝑖

Ω
(𝑥), 𝑥 ∈ 𝜕Ω, 𝑦 ∉ 𝜕Ω.

The result now follows by the same argument as the one in the proof of Proposition 3.30, using
the jump relation

𝜕𝜔
Ω𝑑

𝜕𝜈𝑥

||||+[𝜙] =
(
1

2
+𝜔,∗

Ω𝑑

)
[𝜙].

□

3.4.1 Fictitious sources for the non-overlapping resonators

Here we describe the method of fictitious sources when a single resonator Ω is dislocated by 𝑑
such that Ω∩Ω𝑑 = ∅, where Ω𝑑 = Ω+ 𝑑𝐯.
The arguments follow closely those of Section 3.2.1. Again, we consider the two problems (3.20)

and (3.21) corresponding, respectively, to the original geometry with sources and to the dislocated
geometry without sources. Representing the solutions as (3.24) and (3.25), we again arrive at the
equations given in (3.26). Next, we will use Proposition 3.30 to study these equations.
Let 𝑈0 be a neighbourhood of Ω not containing Ω𝑑. Imposing 𝑢 = 𝑢 in 𝑈0 ⧵ Ω, we find from

Proposition 3.30 that

Φ𝑑 = 1Φ, where 1 ∶=
(
𝑉−1 0

0 𝑉−1

)
𝑄.

As before, since Ω𝑑 and Ω only differ by a translation, we can easily see that

𝑑 = 𝑄𝑄−1.

In 𝑈0, we can represent𝐻 as

𝐻(𝑥) =

∞∑
𝑖=1

𝑐𝑖𝜔
Ω𝑑
(𝑥), 𝑥 ∈ 𝑈0,

for some constants 𝑐𝑖, 𝑖 = 1, 2, … This gives

(
𝐻||𝜕Ω

𝛿𝜕𝜈𝐻
||𝜕Ω
)
= 2

(
𝐻||𝜕Ω𝑑

𝛿𝜕𝜈𝐻
||𝜕Ω𝑑

)
, where 2 ∶= 𝑄

(
𝑉∗ 0

0 𝑊

)
.
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Here, 𝑉∗ ∶ 𝐻1∕2(𝜕Ω𝑑) → 𝐻1∕2(𝜕Ω𝑑) is defined by

𝑉∗
[𝜔

Ω𝑑
[𝜓

𝑗

Ω𝑑
]
]
=

∞∑
𝑖=1

𝑉𝑖,𝑗𝜔
Ω𝑑
[𝜓𝑖

Ω𝑑
].

Combining this together with (3.26) gives the following result.

Proposition 3.32. The layer densities 𝜙𝑖 and 𝜙𝑜 and the fictitious sources 𝑓 and g satisfy(
𝑓

g

)
= 𝐵(𝜔, 𝛿, 𝑑)

(
𝜙𝑖

𝜙𝑜

)
, 𝐵(𝜔, 𝛿, 𝑑) = 21 −.

3.4.2 Integral equation for dislocations larger than the resonator width

We define 𝑑0 as the width of one resonator in the 𝑥1-direction, that is,

𝑑0 = inf
{
𝑑 ∈ ℝ+ ∣ 𝐷1 ∩ 𝐷1 + 𝑑𝐯 = ∅

}
.

We define

𝑑 = ̂2̂̂1 − ̂,
where

̂ =

( ̂𝜔
𝐷

−̂𝜔
𝐷

−1

2
𝐼 + ̂𝜔,∗

𝐷
−𝛿
(
1

2
𝐼 + ̂𝜔,∗

𝐷

)) , ̂1 =
(
�̂�−1 0

0 �̂�−1

)
, ̂2 =

(
�̂�∗ 0

0 �̂�

)
,

with

�̂� =

(
𝑉1 0

0 𝑉2

)
, �̂�∗ =

(
𝑉∗
1

0

0 𝑉∗
2

)
, �̂� =

(
𝑊1 0

0 𝑊2

)
,

where 𝑉𝑗, 𝑉∗
𝑗
,𝑊𝑗 are defined as in Section 3.4.1 with Ω = 𝐷𝑗 , 𝑗 = 1, 2. Then 𝑑 describes the

fictitious sources for the dimer. Following the same arguments as those in Section 3.2.2, we obtain
the following result.

Proposition 3.33. For 𝑑 > 𝑑0, the mid-gap frequencies of (3.2) are precisely the values 𝜔 such that
there is a non-zero solution 𝜙𝛼,𝑖, 𝜙𝛼,𝑜 ∈ 𝐿2(𝜕𝐷 × 𝑌∗) to the equation

(
𝜙𝛼,𝑖

𝜙𝛼,𝑜

)
= −(𝛼(𝜔, 𝛿))

−1

(
∞∑
𝑚=0

𝑒−i𝑚𝛼𝑑𝐼𝑚

)(
𝜙𝛼,𝑖

𝜙𝛼,𝑜

)
. (3.54)

Our next goal is to show that as 𝑑 increases, anymid-gap frequency will remain inside the band
gap. We begin by stating the following lemma, which is the analogue of Lemma 3.16.



ROBUST EDGE MODES IN DISLOCATED SYSTEMS OF SUBWAVELENGTH RESONATORS 41

Lemma 3.34. Assume that the resonators are in the dilute regime specified by (3.6). Then, for 𝑑 ∈
(𝑑0,∞) and for small enough 𝜀 and 𝛿

|⟨Φ⋄
𝑗 ,𝑑Ψ

⋄
𝑗⟩| > 𝐾 > 0, 𝑗 = 1, 2,

for some constant 𝐾 independent of 𝑑.

The proof of this result is given in Section A.2. We are now ready to state and prove the main
result of this section. Recall that we denote the edges of the band gap by

𝜔⋄
1 = 𝜔

𝜋∕𝐿
1

, 𝜔⋄
2 = 𝜔

𝜋∕𝐿
2

.

We then have the following proposition.

Proposition 3.35. For 𝑑 > 𝑑0 and 𝛿 small enough, any mid-gap frequency 𝜔(𝑑) is bounded away
from the edges of the band gap, that is,

|𝜔(𝑑) − 𝜔⋄
𝑗 | > 𝑐, 𝑗 = 1, 2,

for all 𝑑 > 𝑑0 and for some positive constant 𝑐 independent of 𝑑.

Proof. We want to show that there are no solutions to (3.54) that approaches the edges of the
band gap. Assume the contrary, that is, that we have a solution 𝜔 → 𝜔⋄

𝑗
. Following the proof of

Theorem 3.18, we obtain

⟨Φ⋄
𝑗
,𝑑Ψ

⋄
𝑗
⟩

4𝜔⋄
𝑗
|𝐷1|(𝜔 − 𝜔⋄

𝑗
)
= 1 + 𝑜(1),

as 𝜔 → 𝜔⋄
𝑗
. But since |⟨Φ⋄

𝑗
,𝑑Ψ

⋄
𝑗
⟩| > 𝐾 > 0 for all 𝑑, this equation has no solution. □

3.5 Theorem onmid-gap frequencies

We now combine the results of the two previous sections, namely Propositions 3.25, 3.26 and 3.35,
into the following theorem.

Theorem 3.36. Assume that the resonators are in the dilute regime specified by (3.6) and that 𝑙0 >
1∕2. Then, for small enough 𝛿 and 𝜀, there exists some 𝑑0 = 𝑂(𝜀) such that there are two mid-gap
frequencies 𝜔1(𝑑) and 𝜔2(𝑑) for all 𝑑 ∈ [𝑑0,∞), both of which converge to the same value 𝜔∞ as
𝑑 → ∞.

Corollary 3.37. Assume that the resonators are in the dilute regime specified by (3.6) and that 𝑙0 >
1∕2. Then, for small enough 𝛿 and 𝜀, there is an interval  = [𝜔1(𝑑0), 𝜔2(𝑑0)] within the band gap
such that if 𝜔 ∈  ⧵ {𝜔∞}, then there exists some 𝑑 > 𝑑0 such that 𝜔 ∈ {𝜔1(𝑑), 𝜔2(𝑑)}.

Corollary 3.37 says that any frequency 𝜔 ∈  ⧵ {𝜔∞} is a mid-gap frequency of the structure for
some dislocation 𝑑. From Proposition 3.25, we have an explicit way to compute the interval  and,
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as we will see from the numerical computations, this interval contains the middle region of the
band gap. What we have shown is that we can choose a frequency in the middle of the band gap
and create a structure having this as a resonant frequency, thus corresponding to exponentially
localized edge modes that are stable under perturbations.
Proposition 3.26 and Theorem 3.18 hint to the physical origin of the two mid-gap frequencies.

For infinitely large dislocations, the system corresponds to two identical semi-infinite systems
which each support edge modes with frequency 𝜔∞. As these two semi-infinite systems approach
each other, they hybridize and 𝜔∞ splits into two frequencies, corresponding to monopole and
dipole modes.
Seen from the other direction, 𝑑 = 0 corresponds to the periodic structure, which is known to

have a band gap and nomid-gap frequencies. As 𝑑 increases from 0, twomid-gap frequencies will
emerge, one from each edge of the band gap.

Remark 3.38. The requirement that 𝑑 > 𝑑0 in Theorem 3.36 was used in Section 3.4. We assumed
that the dislocation was sufficiently large that the translated resonators do not overlap with the
originals. Since we are assuming that the structure is dilute and the size of each resonator is 𝑂(𝜀),
𝑑0 = 𝑂(𝜀). The non-overlapping assumption was made purely to simplify the analysis and not for
any physical reason. Based on this, we conjecture that Theorem 3.36 is true for all 𝑑 ∈ (0,∞),
which is in accordance with our numerical experiments. In this case, the interval  in Corol-
lary 3.37 would include all of the band gap.

4 FINITE ARRAYS OF RESONATORS

In this section, we will study the finite array of resonators which is a truncation of the system
studied in Section 3. We will see that this structure, which represents the physical manifestation
of our above analysis, shares the important properties of the infinite system. We will also conduct
a stability analysis of the structure.
Consider the structure 𝐷, consisting of𝑀 resonators, that is a truncation of the infinite, dislo-

cated array 𝑑 studied in Section 3. Let𝑀 = 4𝐾 + 2 for some 𝐾 ∈ ℤ+ and assume that 𝐷 is given
by

𝐷 = 𝐷−𝐾−1
2 ∪

(
−𝐾⋃

𝑚=−1

𝐷𝑚
1 ∪ 𝐷𝑚

2

)
∪

(
𝐾−1⋃
𝑚=0

(𝐷𝑚
1 ∪ 𝐷𝑚

2 ) + 𝑑𝐯

)
∪
(
𝐷𝐾
1 + 𝑑𝐯

)
, (4.1)

where 𝐷𝑚
1
, 𝐷𝑚

2
are as in Section 3, so that the symmetry assumptions (3.1) are satisfied and 𝐯

is, again, the unit vector along the 𝑥1-axis. Moreover, we assume 𝑙0 > 1∕2 (recall that 𝑙0 = 𝑙∕𝐿),
corresponding to the case where the array supports edge modes.
We model wave scattering by 𝐷 with the Helmholtz problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δ𝑢 + 𝜔2𝑢 = 0 in ℝ3 ⧵ 𝜕𝐷,

𝑢|+ − 𝑢|− = 0 on 𝜕𝐷,

𝛿
𝜕𝑢

𝜕𝜈

||||+ − 𝜕𝑢

𝜕𝜈

||||− = 0 on 𝜕𝐷,

|𝑥|( 𝜕

𝜕|𝑥| − i𝜔
)
𝑢 → 0 as |𝑥|→∞.
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The resonant frequencies and eigenmodes of this finite system of resonators can be expressed
in terms of the eigenpairs of the associated capacitancematrix. Let𝑉𝑗, 𝑗 = 1,… ,𝑀, be the solution
to

⎧⎪⎨⎪⎩
Δ𝑉𝑗 = 0 in ℝ3 ⧵ 𝐷,

𝑉𝑗 = 𝛿𝑖𝑗 on 𝜕𝐷𝑖, 𝑖 = 1, … ,𝑀,

𝑉𝑗(𝑥) = 𝑂
(

1|𝑥|
)

as |𝑥|→∞.

We then define the capacitance matrix 𝐶 = (𝐶𝑖,𝑗) as

𝐶𝑖,𝑗 ∶= −∫𝜕𝐷𝑖
𝜕𝑉𝑗

𝜕𝜈

||||+ d𝜎, 𝑖, 𝑗 = 1, … ,𝑀.

The following theorem, first proved in [11], shows that the eigenvalues of 𝐶 determine the res-
onant frequencies of the finite structure.

Theorem 4.1. The subwavelength resonant frequencies𝜔𝑗 = 𝜔𝑗(𝛿), 𝑗 = 1,… ,𝑀, of(𝜔, 𝛿) can be
approximated as

𝜔𝑗 =

√
𝛿𝜆𝑗|𝐷1| + 𝑂(𝛿),

where 𝜆𝑗, 𝑗 = 1,… ,𝑀, are the eigenvalues of the capacitancematrix𝐶 and |𝐷1| is the volume of each
individual resonator.

4.1 Behaviour for large dislocations

As the separation distance 𝑑 becomes large, the capacitance matrix converges to a block diagonal
form. This is because, for large𝑑, we have two systems of𝑀∕2 resonators, the interactions between
which diminish with increasing 𝑑. This is made precise by the following lemma.

Lemma 4.2. As the dislocation size 𝑑 → ∞, the capacitance matrix has the form

𝐶 =

(
𝐶 0

0 𝐶⋆

)
+ 𝑂(𝑑−1),

where 𝐶 is the capacitance matrix of the𝑀∕2-resonator system 𝐷1 ∪⋯ ∪ 𝐷𝑀∕2 and 𝐶⋆ is the rear-
ranged matrix given by

𝐶⋆𝑖,𝑗 ∶= 𝐶𝑀+1−𝑖,𝑀+1−𝑗.

Proof. We can use the jump conditions to show that the capacitance coefficients 𝐶𝑖,𝑗 are given by

𝐶𝑖,𝑗 = −∫𝜕𝐷𝑖 𝜓𝑗 d𝜎, 𝑖, 𝑗 = 1, … ,𝑀,
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where the functions 𝜓𝑗 are defined as

𝜓𝑗 = (0
𝐷)

−1[𝜒𝜕𝐷𝑗 ].

Wemake the identification 𝜕𝐷 = 𝜕𝐷1 ×⋯ × 𝜕𝐷𝑀 and use this towrite the single layer potential
0
𝐷
in a decomposed matrix form, as

0
𝐷 = 𝑆𝐼 + 𝑆𝐼𝐼, (4.2)

where 𝑆𝐼 and 𝑆𝐼𝐼 are linear operators defined block-wise as

[𝑆𝐼]𝑖𝑗 ∶=

{0
𝐷𝑖
|𝜕𝐷𝑗 , if 𝑖, 𝑗 ⩽ 𝑀∕2 or 𝑖, 𝑗 ⩾ 𝑀∕2 + 1,

0, otherwise,

[𝑆𝐼𝐼]𝑖𝑗 ∶=

{
0, if 𝑖, 𝑗 ⩽ 𝑀∕2 or 𝑖, 𝑗 ⩾ 𝑀∕2 + 1,

0
𝐷𝑖
|𝜕𝐷𝑗 , otherwise.

The decomposition (4.2) has been chosen so that 𝑆𝐼 contains precisely the parts of 0
𝐷
that are

unaffected by varying the parameter 𝑑. Conversely, based on the decay of Green’s function 𝐺0 we
can see that, if 𝑖 ⩽ 𝑀∕2 and 𝑗 ⩾ 𝑀∕2 + 1 or vice versa, it holds that

‖0
𝐷𝑗
|𝜕𝐷𝑖‖(𝐿2(𝜕𝐷𝑗),𝐻1(𝜕𝐷𝑖))

= 𝑂(𝑑−1),

as 𝑑 → ∞, hence

‖𝑆𝐼𝐼‖(𝐿2(𝜕𝐷),𝐻1(𝜕𝐷)) = 𝑂(𝑑−1).

Therefore, ‖𝑆−1
𝐼
𝑆𝐼𝐼‖ = 𝑂(𝑑−1) so we may use a Neumann series to see that

(0
𝐷)

−1[𝜒𝜕𝐷𝑗 ] = (𝑆𝐼 + 𝑆𝐼𝐼)
−1[𝜒𝜕𝐷𝑗 ]

= (𝐼 + 𝑆−1𝐼 𝑆𝐼𝐼)
−1𝑆−1𝐼 [𝜒𝜕𝐷𝑗 ]

= (𝐼 − 𝑆−1𝐼 𝑆𝐼𝐼)[𝜙𝑗] + 𝑂(𝑑−1),

where 𝜙𝑗 ∶= 𝑆−1
𝐼
[𝜒𝜕𝐷𝑗 ]. Therefore,

𝐶𝑖,𝑗 = −∫𝜕𝐷𝑖 (
0
𝐷)

−1[𝜒𝜕𝐷𝑗 ] d𝜎 = −∫𝜕𝐷𝑖 (𝐼 − 𝑆−1𝐼 𝑆𝐼𝐼)[𝜙𝑗] d𝜎 + 𝑂(𝑑−1).

Suppose that 𝑖 ⩽ 𝑀∕2 and 𝑗 ⩾ 𝑀∕2 + 1, or vice versa. Then since (𝑆𝐼)−1 is also block diagonal
we can see that 𝜙𝑗|𝜕𝐷𝑖 = 0 so ∫𝜕𝐷𝑖 𝜙𝑗 d𝜎 = 0. Thus, 𝐶𝑖,𝑗 = 𝑂(𝑑−1). Conversely, if 𝑖, 𝑗 ⩽ 𝑀∕2, then
(𝑆−1

𝐼
𝑆𝐼𝐼)[𝜙𝑗]|𝜕𝐷𝑖 = 0 so we find that

𝐶𝑖,𝑗 = −∫𝜕𝐷𝑖 𝜙𝑗 d𝜎 + 𝑂(𝑑−1)

= 𝐶𝑖,𝑗 + 𝑂(𝑑−1).

In the case that 𝑖, 𝑗 ⩾ 𝑀∕2 + 1 the result with 𝐶⋆ follows similarly. □
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F IGURE 8 An array of 14 spherical resonators formed by separating an array of 7 dimers in the centre by a
dislocation distance 𝑑 > 0

Remark 4.3. At its heart, Lemma 4.2 is a consequence of the decay of the Helmholtz Green’s
function in free space and not a particular property of the system studied here. The dislocation
of any general collection of (finitely many) resonators would yield a similar result (albeit without
such elegant notation for the two blocks, which is a consequence of the structure’s symmetry).

Remark 4.4. 𝐶⋆ corresponds to the capacitancematrix of the𝑀∕2-resonator system𝐷𝑀∕2+1 ∪⋯ ∪

𝐷𝑀 . This is the same system as that for which 𝐶 is the capacitance matrix, but with the resonators
labelled in the reverse order. That they have the same eigenvalues is easy to see from the fact that
𝐶⋆ = 𝐽𝐶𝐽, where 𝐽 is the exchange matrix (1 on the off-diagonal and 0 elsewhere). Thus, in the
limit as 𝑑 → ∞ the eigenvalues of 𝐶 converge pairwise to𝑀∕2 values.

The behaviour for large 𝑑 can be understood by examining the eigenmodes, examples of which
are given in Figure 9. The dislocation splits the structure into two ‘half structures’ which interact
with one another. This coupling leads to the creation of two resonant modes, with monopole- and
dipole-like characteristics (cf. [11]), which are the two edge modes.

4.2 Stability analysis

We consider the simplest example of a resonator array of the form (4.1), which has just six res-
onators arranged as three pairs. The geometry of this structure is parametrized by 𝑙 and 𝐿 (as in
Figure 8).Wewish to study how robust the system iswith respect to variations in these parameters.
We know from Lemma 4.2 that as 𝑑 → ∞ this system will behave like two separate three-

resonator systems. Even in the case of a three-resonator system, finding explicit representations
for the entries of the capacitancematrix (with a view to, for example, calculating its eigenvalues) is
a challenging problem. Consider the case of a dilute array of resonators: that is, a structure where
the distances between the resonators (𝑙 and 𝐿) aremuch larger than the size of each individual res-
onator. In this case, we can recall the following representation of the capacitance matrix, proved
in [4].

Lemma 4.5. Consider a dilute system of𝑀 identical subwavelength resonators with size of order 𝜀,
given by

𝐷 =

𝑀⋃
𝑗=1

(
𝜀𝐵 + 𝑧𝑗

)
,
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F IGURE 9 Left: The two edge modes for an array of 42 spherical resonators with unit radius. Here, we
simulate an array with parameters 𝐿 = 9, 𝑙 = 6, 𝑑 = 30 and 𝛿 = 1∕7000 and plot the real parts of the edge modes
along the line 𝑥2 = 0, 𝑥3 = 0. Below, we plot the 𝜔 = 0.0572mode in the plane 𝑥3 = 0, noting that the field has
rotational symmetry about the 𝑥1 axis. Right: For comparison, the edge mode of the corresponding ‘half system’ is
shown, which can be thought of as the 𝑑 = ∞ case

where 0 < 𝜀 ≪ 1, 𝐵 is a fixed domain of unit size and 𝑧𝑗 represents the translated position of each
resonator. In the limit as 𝜀 → 0, the capacitance matrix is given by

𝐶𝑖,𝑗 =

⎧⎪⎨⎪⎩
𝜀Cap𝐵 + 𝑂(𝜀3), if 𝑖 = 𝑗,

−
𝜀2(Cap𝐵)

2

4𝜋|𝑧𝑖 − 𝑧𝑗| + 𝑂(𝜀3), if 𝑖 ≠ 𝑗,
(4.3)

where Cap𝐵 ∶= − ∫𝜕𝐵(0
𝐵
)−1[𝜒𝐵] d𝜎.

In the case of a three-resonator system with |𝑧1 − 𝑧2| = 𝑙 and |𝑧1 − 𝑧3| = 𝐿, we can use the
expansion (4.3) to show that the eigenvalues of the capacitance matrix are given, as 𝜀 → 0, by

𝜆𝑘 = 𝜀Cap𝐵 + 𝜀2
(Cap𝐵)

2𝛾

2
√
3𝜋

cos

[
1

3

(
arccos

(
−3
√
3

𝑙𝐿(𝐿 − 𝑙)𝛾3

)
+ 2𝑘𝜋

)]
+ 𝑂(𝜀3), (4.4)

for 𝑘 = 1, 2, 3, where 𝛾 = 𝛾(𝑙, 𝐿) ∶=
√
𝑙−2 + 𝐿−2 + (𝐿 − 𝑙)−2. The convergence of the six res-

onant frequencies of the six-resonator system to these three values is demonstrated in
Figure 10(a).
We know, from Section 3.1, that the undislocated structure (𝑑 = 0) has a subwavelength band

gap if it is asymmetric, that is, 𝑙∕𝐿 ≠ 1∕2. In the case of a sufficiently asymmetric structure, we can
show that the middle eigenvalue is more stable with respect to changes in the parameter 𝑙, which
controls the relative positions of the two repeating resonators. This is achieved by Lemma 4.6,
which describes the extent to which the eigenvalues (4.4) are affected by variations in the param-
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F IGURE 10 Simulation of the resonant frequencies of different subwavelength resonator arrays as the
dislocation 𝑑 is increased

eters 𝑙 and 𝐿. In particular, it says that if 𝑙′ ∶= 𝐿 − 𝑙 is sufficiently small, then

||||𝜕𝜆2𝜕𝑙 ||||≪ ||||𝜕𝜆1𝜕𝑙 ||||, ||||𝜕𝜆2𝜕𝑙 ||||≪ ||||𝜕𝜆3𝜕𝑙 ||||,
and that the dependence of all three eigenvalues on 𝐿 is comparatively negligible.

Lemma 4.6. Let 𝑙′ ∶= 𝐿 − 𝑙. As 𝑙′ → 0+, it holds that

||||𝜕𝜆1𝜕𝑙 ||||→∞,
||||𝜕𝜆2𝜕𝑙 |||| = 𝑂(1),

||||𝜕𝜆3𝜕𝑙 ||||→∞.

Meanwhile, for 𝑘 = 1, 2, 3,

||||𝜕𝜆𝑘𝜕𝐿 |||| = 𝑂(𝑙′).

Proof. Define the functions

𝑐(𝑙′, 𝐿, 𝑘) ∶= cos

[
1

3

(
arccos

(
−3
√
3

𝑙′𝐿(𝐿 − 𝑙′)𝛾(𝑙′, 𝐿)3

)
+ 2𝑘𝜋

)]
, 0 < 𝑙′ < 𝐿, 𝑘 = 1, 2, 3,

and

𝑠(𝑙′, 𝐿, 𝑘) ∶= sin

[
1

3

(
arccos

(
−3
√
3

𝑙′𝐿(𝐿 − 𝑙′)𝛾(𝑙′, 𝐿)3

)
+ 2𝑘𝜋

)]
, 0 < 𝑙′ < 𝐿, 𝑘 = 1, 2, 3.

As 𝑙′ → 0+, it holds that

𝑐(𝑙′, 𝐿, 1) → −

√
3

2
, 𝑐(𝑙′, 𝐿, 2) → 0, 𝑐(𝑙′, 𝐿, 3) →

√
3

2
,

𝑠(𝑙′, 𝐿, 1) →
1

2
, 𝑠(𝑙′, 𝐿, 2) → −1, 𝑠(𝑙′, 𝐿, 3) →

1

2
.

(4.5)
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F IGURE 11 Analysis of the stability of the resonant frequencies of a system of six resonators. An array of six
resonators with dislocation size 𝑑 is repeatedly simulated after random imperfections, drawn from the
distribution (0, 𝜎2), are introduced to the resonator positions. An arrow indicates the position of minimum
variance

In addition to this, for fixed 𝐿 and 𝑘 we see that, as 𝑙′ → 0+,

𝜕𝜆𝑘
𝜕𝑙′

∼
𝜀2(Cap𝐵)

2

2
√
3𝜋

[
−

1

(𝑙′)2
𝑐(𝑙′, 𝐿, 𝑘) −

2
√
3

𝐿2
𝑠(𝑙′, 𝐿, 𝑘)

]
,

where the notation ∼ is used to mean that 𝑓 ∼ g if and only if lim𝑓∕g = 1. From this and (4.5),
we can see that, as 𝑙′ → 0+,

d𝜆1
d𝑙′

→ ∞,
d𝜆3
d𝑙′

→ −∞.

Conversely, using Taylor series expansions, we can see that, as 𝑙′ → 0+,

𝑐(𝑙′, 𝐿, 2) =

√
3

𝐿2
(𝑙′)2 + 𝑂

(
(𝑙′)3
)
,

hence as 𝑙′ → 0+ it holds that

𝜕𝜆2
𝜕𝑙′

→
𝜀2(Cap𝐵)

2

2𝜋𝐿2
.

Likewise, the result for d𝜆𝑘∕ d𝐿 follows from the fact that, as 𝑙′ → 0+,

d𝜆𝑘
d𝐿

∼
𝜀2(Cap𝐵)

2

2
√
3𝜋

[
−
2𝑙′

𝐿3
𝑐(𝑙′, 𝐿, 𝑘) −

2
√
3𝑙′

𝐿3
𝑠(𝑙′, 𝐿, 𝑘)

]
,

for 𝑘 = 1, 2, 3. □

The stability that is predicted by Lemma4.6 can be investigated numerically by repeatedly intro-
ducing random imperfections to the structure. In Figure 11, we show the resonant frequencies for
structures with random (Gaussian) perturbations added to the 𝑥1 coordinate of the resonators’
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positions. It can, firstly, be observed that the middle eigenvalues (which both converge to 𝜆2, as
defined in (4.4), as 𝑑 → ∞) are more stable, as expected. It is also interesting to observe how the
stability varies as a function of the dislocation 𝑑. The minimal variance of any resonant frequency
is observed for 𝜔4 when 𝑑 ≈ 8, as indicated by the arrow in Figure 11(b). At this point, 𝜔4 is in the
centre of the band gap so it is as far as possible from the other (unlocalized)modes, consistent with
the general principle, for example, [20, 46]. This demonstrates the value of being able to control
the position of mid-gap frequencies within the band gap.
In Figures 10, 11, simulations were performed on spherical resonators with radius 1 arranged

with distances 𝐿 = 9 and 𝑙 = 6 (as depicted in Figure 8) and material contrast 𝛿 = 1∕7000. The
multipole expansionmethod was used to find the subwavelength resonant frequencies associated
to (see the appendix of [4] for details).

5 CONCLUDING REMARKS

In this paper, we have studied a one-dimensional array of subwavelength resonators capable of
robustly manipulating waves on subwavelength scales and have proved that its properties can be
fine tuned by adjusting geometric parameters. This takes advantage of the principle that eigen-
modes corresponding to mid-gap frequencies that are far from the edges of that band gap will be
strongly localized in space and will be robust with respect to structural imperfections. Thus, the
goal was to design a structure that could be manipulated so as to place a mid-gap frequency at
any given point within the band gap. This was achieved by introducing a dislocation to an array
of subwavelength resonator pairs. We proved that themid-gap frequencies emerge from the edges
of the band gap and span an interval in the middle of the band gap.
Our study of the periodic structure was complemented by an analysis of the corresponding

finite array of resonators. Created by truncating the infinite array, this physically realizable struc-
ture shared the spectral behaviour of the infinite array. Further, a stability analysis confirmed the
value of being able to fine-tune the structure in order to optimise robustness.
In the setting of the Schrödinger operator, two-dimensional structures exhibiting edge modes

have been studied via the bulk-edge correspondence. It is well known that materials with non-
zero bulk index can be achieved, for example, by perturbing honeycomb-like materials exhibiting
Dirac cones [23, 27, 28]. Dirac cones have also been shown to exist in two-dimensional honey-
comb structures of subwavelength resonators [12], suggesting the potential for analogous results
in this setting.

APPENDIX A: PROOFS OF LEMMAS 3.16 AND 3.34

Here, we give proofs of Lemmas 3.16 and 3.34. Qualitatively, these results describe the strength of
the fictitious source interactions in the two cases studied in Sections 3.2 and 3.4, respectively.

A.1 Proof of Lemma 3.16

Wewill expand 𝜔
𝐷
and𝜔,∗

𝐷
in the dilute regime specified by (3.6). To keep the order of the norms

in 𝐿2(𝜕𝐷) and 𝐻1(𝜕𝐷) constant as 𝜀 → 0, we let  and, respectively, denote the spaces 𝐿2(𝜕𝐷)
and𝐻1(𝜕𝐷) along with the inner products

⟨⋅, ⋅⟩ =
1|𝜕𝐷| ⟨⋅, ⋅⟩𝐿2(𝜕𝐷), ⟨⋅, ⋅⟩ =

1|𝜕𝐷| ⟨⋅, ⋅⟩𝐻1(𝜕𝐷).
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Recall the matrix form of 𝜔
𝐷
:

𝜔
𝐷 =

( 𝜔
𝐷1

𝜔
𝐷2
||𝜕𝐷1𝜔

𝐷1
||𝜕𝐷2 𝜔

𝐷2

)
= ̂𝜔

𝐷 +

(
0 𝜔

𝐷2
||𝜕𝐷1𝜔

𝐷1
||𝜕𝐷2 0

)
.

We define the centres 𝑧1, 𝑧2 of the resonators in the dilute regime specified by (3.6):

𝑧1 = −
𝑙

2
𝐯, 𝑧2 =

𝑙

2
𝐯.

Then, as 𝜀 → 0, we have for 𝑖 ≠ 𝑗,

0
𝐷𝑗
||𝜕𝐷𝑖 [𝜙](𝑥) = ∫𝜕𝐷𝑗

(
𝐺0(𝑥, 𝑧𝑗) + (𝑦 − 𝑧𝑗) ⋅∇𝑦𝐺

0(𝑥, 𝑦0)
)
𝜙(𝑦) d𝜎(𝑦)

= −
𝜒𝜕𝐷𝑖 (𝑥)

4𝜋𝑙 ∫𝜕𝐷𝑗 𝜙(𝑦) d𝜎(𝑦) + 𝑂

(
𝜀 ∫𝜕𝐷𝑗 |𝜙(𝑦)| d𝜎(𝑦)

)
.

Here, 𝑦0 means a point on the line segment joining 𝑦 and 𝑧𝑗 . By the Cauchy–Schwarz inequality
we have ∫𝜕𝐷𝑗 𝜙 = 𝑂(𝜀2‖𝜙‖). Hence we have

0
𝐷 = ̂0

𝐷 −
1

4𝜋𝑙

(
0 ⟨𝜒𝜕𝐷2 , ⋅⟩𝜒𝜕𝐷1⟨𝜒𝜕𝐷1 , ⋅⟩𝜒𝜕𝐷2 0

)
+ 𝑂(𝜀3)

= ̂0
𝐷 +  (1)

𝐷
+ 𝑂(𝜀3), (A.1)

where ̂0
𝐷
= 𝑂(𝜀) and  (1)

𝐷
= 𝑂(𝜀2). Here, the error terms are with respect to the operator norm in

(,). In the same way, we can compute

0,∗
𝐷

= ̂0,∗
𝐷

+
𝐯 ⋅ 𝜈
4𝜋𝑙

(
0 −⟨𝜒𝜕𝐷2 , ⋅⟩⟨𝜒𝜕𝐷1 , ⋅⟩ 0

)
+ 𝑂(𝜀3)

= ̂0,∗
𝐷

+(1)
𝐷
+ 𝑂(𝜀3), (A.2)

with respect to the operator norm in(). Following the computations in the proof of Lemma 3.3
of [4], we have for 𝛼 ≠ 0

𝜓𝛼1 = 𝜓1 + 𝜀Cap𝐵
∑
𝑚≠0

𝑒i𝑚𝛼𝐿

4𝜋|𝑚|𝐿𝜓1 + 𝜀Cap𝐵
∑
𝑚∈ℤ

𝑒i𝑚𝛼𝐿

4𝜋|𝑙 − 𝑚𝐿|𝜓2 + 𝑂(𝜀),

𝜓𝛼2 = 𝜓2 + 𝜀Cap𝐵
∑
𝑚∈ℤ

𝑒i𝑚𝛼𝐿

4𝜋|𝑙 + 𝑚𝐿|𝜓1 + 𝜀Cap𝐵
∑
𝑚≠0

𝑒i𝑚𝛼𝐿

4𝜋|𝑚𝐿|𝜓2 + 𝑂(𝜀),
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where the error terms are with respect the norm in . In these equations, observe that ‖𝜓𝑖‖ =

𝑂(𝜀−1). At 𝛼 = 𝜋∕𝐿, 𝑢⋄
𝑗
and 𝑢𝑗 correspond to either monopole or dipole modes:

𝑢⋄𝑗 =
1√
2

(
±𝜓⋄

1 + 𝜓⋄
2

)
, 𝑢𝑗 =

1√
2
(±𝜓1 + 𝜓2).

The sign is positive, corresponding to a monopole mode, if 𝑙0 < 1∕2 and 𝑗 = 1 or 𝑙0 > 1∕2 and
𝑗 = 2, and negative if 𝑙0 < 1∕2 and 𝑗 = 2 or 𝑙0 > 1∕2 and 𝑗 = 1. Hence, from the expansions of 𝜓𝛼

1
and 𝜓𝛼

2
it follows that

𝑢⋄𝑗 = 𝑢𝑗 + 𝜀𝑢(1)
𝑗
𝑢𝑗 + 𝑂(𝜀), (A.3)

in , where

𝑢(1)
𝑗

=

⎧⎪⎪⎨⎪⎪⎩
Cap𝐵

(∑
𝑚∈ℤ

(−1)𝑚

4𝜋|𝑙 + 𝑚𝐿| − log(2)

4𝜋𝐿

)
𝑙0 < 1∕2, 𝑗 = 1 or 𝑙0 > 1∕2, 𝑗 = 2,

Cap𝐵

(
−
∑
𝑚∈ℤ

(−1)𝑚

4𝜋|𝑙 + 𝑚𝐿| − log(2)

4𝜋𝐿

)
𝑙0 < 1∕2, 𝑗 = 2 or 𝑙0 > 1∕2, 𝑗 = 1.

From [4], we have that{
𝑢(1)
𝑗

< 0, 𝑙0 < 1∕2, 𝑗 = 1 or 𝑙0 < 1∕2, 𝑗 = 2,

𝑢(1)
𝑗

> 0, 𝑙0 < 1∕2, 𝑗 = 2 or 𝑙0 > 1∕2, 𝑗 = 1.

We are now ready to compute 𝐵Ψ⋄
𝑗
. Recall that 𝐵 = 21 −. Since

𝑖 = 𝐼 + 𝑑 (1)
𝑖

+ 𝑂(𝑑2),

with respect to the operator norm in ((𝐿2(𝜕𝐷))2), we have
𝐵 = 𝑑

( (1)
2

 + (1)
1

)
+ 𝑂(𝑑2).

Moreover, we compute

 (1)
1

(
𝑢𝑗
𝑢⋄
𝑗

)
=
⎛⎜⎜⎝

𝐯 ⋅
(
∇̂𝜔

𝐷
||−[𝑢𝑗] − ∇𝜔

𝐷
||+[𝑢⋄𝑗 ])(

−1

2
+ ̂𝜔,∗

𝐷

)
[𝜉1] − 𝛿

(
1

2
+𝜔,∗

𝐷

)
[𝜉2]

⎞⎟⎟⎠ ,
where

𝜉1 =
(̂𝜔

𝐷

)−1
𝐯 ⋅∇̂𝜔

𝐷
||−[𝑢𝑗], 𝜉2 =

(𝜔
𝐷

)−1
𝐯 ⋅∇𝜔

𝐷
||+[𝑢⋄𝑗 ].
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Hence

⟨Φ⋄
𝑗 , (1)

1
Ψ⋄
𝑗⟩ = −𝛿

⟨
𝑢⋄𝑗 , 𝐯 ⋅

(
∇̂0

𝐷
||−[𝑢𝑗] − ∇0

𝐷
||+[𝑢⋄𝑗 ])⟩ + ⟨(−12 + ̂𝜔

𝐷

)
[𝜒⋄

𝑗 ], 𝜉1

⟩
−𝛿
⟨(

1

2
+0

𝐷

)
[𝜒⋄

𝑗 ], 𝜉2

⟩
= 𝛿
⟨
𝑢⋄𝑗 , 𝐯 ⋅∇0

𝐷
||+[𝑢⋄𝑗 ]⟩ + 𝜔2

⟨̂𝐷,2[𝜒
⋄
𝑗 ],
(̂0

𝐷

)−1
𝜕𝑇̂0

𝐷
||−[𝑢𝑗]⟩

−𝛿
⟨(0

𝐷

)−1
[𝜒⋄

𝑗 ], 𝐯 ⋅∇0
𝐷
||+[𝑢⋄𝑗 ]⟩ + 𝑂(𝜔3)

= 𝛿
⟨
𝑢⋄𝑗 , 𝐯 ⋅∇0

𝐷
||+[𝑢⋄𝑗 ]⟩ − 𝛿

⟨(0
𝐷

)−1
[𝜒⋄

𝑗 ], 𝐯 ⋅∇0
𝐷
||+[𝑢⋄𝑗 ]⟩ + 𝑂(𝜔3).

Using the expansions in the dilute regime, we have to leading order in 𝜀,

⟨Φ⋄
𝑗 , (1)

1
Ψ⋄
𝑗⟩ = 𝛿

⟨
𝑢𝑗, 𝐯 ⋅∇̂0

𝐷
||+[𝑢𝑗]⟩ − 𝛿

⟨(̂0
𝐷

)−1
[𝜒⋄

𝑗 ], 𝐯 ⋅∇̂0
𝐷
||+[𝑢𝑗]⟩ + 𝑂(𝜔3 + 𝜔2𝜀)

= 𝛿
⟨
𝑢𝑗, (𝐯 ⋅ 𝜈)𝑢𝑗

⟩
− 𝛿
⟨
𝑢𝑗, (𝐯 ⋅ 𝜈)𝑢𝑗

⟩
+ 𝑂(𝜔3 + 𝜔2𝜀)

= 𝑂(𝜔3 + 𝜔2𝜀).

Passing to higher orders in 𝜀 we have, after simplifications,

⟨Φ⋄
𝑗 , (1)

1
Ψ⋄
𝑗⟩ = 𝛿𝜀𝑢(1)

𝑗

⟨
𝑢𝑗, (𝐯 ⋅ 𝜈)𝑢𝑗

⟩
+ 𝛿
⟨(̂0

𝐷

)−1 (1)
𝐷
[𝑢𝑗], (𝐯 ⋅ 𝜈)𝑢𝑗

⟩
+ 𝑂(𝜔3 + 𝜔2𝜀2)

= 𝛿𝜀

(
𝑢(1)
𝑗

±
Cap𝐵
4𝜋𝑙

)⟨
𝑢𝑗, (𝐯 ⋅ 𝜈)𝑢𝑗

⟩
+ 𝑂(𝜔3 + 𝜔2𝜀2),

where ± is chosen as positive if 𝑢𝑗 is a monopole mode and negative if 𝑢𝑗 is a dipole mode. Due
to the reflection symmetry of 𝐷1 and 𝐷2, we have ⟨𝑢𝑗, (𝐯 ⋅ 𝜈)𝑢𝑗⟩ = 0, and hence

⟨Φ⋄
𝑗 , (1)

1
Ψ⋄
𝑗⟩ = 𝑂(𝜔3 + 𝜔2𝜀2).

Next, we compute ⟨Φ⋄
𝑗
, (1)

2
Ψ⋄

𝑗
⟩. Using (A.1)–(A.3), we can write

 = (0) +(1) + 𝑂(𝜀3), Ψ⋄
𝑗 = Ψ(0) + Ψ(1) + 𝑂(𝜀),

where the error terms are with respect to the norms in (2, ×) and 2, respectively. At
𝜔 = 𝜔⋄

𝑗
, we have(0)Ψ(0) = 𝑂(𝜔3), and hence

Ψ⋄
𝑗 = (1)Ψ(0) +(0)Ψ(1)

1
+ 𝑂(𝜔3).

We can see that

(1)Ψ(0) = −

(  (1)
𝐷
[𝑢𝑗]

𝛿(1)
𝐷
[𝑢𝑗]

)
, (0)Ψ(1) = −𝜀𝑢(1)

𝑗

( ̂𝜔
𝐷
[𝑢𝑗]

𝛿
(
1

2
+ ̂𝜔,∗

𝐷

)
[𝑢𝑗]

)
.
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Observe that  (1)
𝐷
[𝑢𝑗] and ̂𝜔

𝐷
[𝑢𝑗] are constant on 𝜕𝐷. Combining these results, we arrive at

⟨Φ⋄
𝑗 , (1)

2
Ψ⋄

𝑗⟩ = −𝛿
⟨
𝑢𝑗,(1)

𝐷
[𝑢𝑗]
⟩
− 𝛿
⟨
𝜒⋄
𝑗 , (2𝜏 − 𝜕𝑇)(1)

𝐷
[𝑢𝑗]
⟩
− 𝛿𝜀𝑢(1)

𝑗

⟨
𝜒⋄
𝑗 , (2𝜏 − 𝜕𝑇)𝑢𝑗

⟩
+ 𝑂(𝜔3 + 𝜀𝜔2)

= −𝛿𝜀𝑢(1)
𝑗

⟨
𝜒⋄
𝑗 , (2𝜏 − 𝜕𝑇)𝑢𝑗

⟩
+ 𝑂(𝜔3 + 𝜀𝜔2)

= −𝛿𝜀𝑢(1)
𝑗

⟨
𝜒⋄
𝑗 , 2𝜏𝑢𝑗

⟩
+ 𝑂(𝜔3 + 𝜀𝜔2).

Consequently, we obtain that

⟨Φ⋄
𝑗 ,0Ψ

⋄
𝑗⟩ = −𝛿𝜀𝑢(1)

𝑗

⟨
𝜒⋄
𝑗 , 2𝜏𝑢𝑗

⟩
+ 𝑂(𝜔3 + 𝜀𝜔2).

Observe that ⟨𝜒⋄
𝑗
, 𝑢𝑗⟩ < 0 and, in the case𝐷1 and𝐷2 are strictly convex, we have 𝜏(𝑥) > 𝜏0 > 0 for

all 𝑥 ∈ 𝐷, hence ⟨𝜒⋄
𝑗
, 2𝜏𝑢𝑗⟩ < 0. Combining this with the sign of 𝑢(1)

𝑗
, the result follows. □

A.2 Proof of Lemma 3.34

We begin by computing the expansion of �̂� in the dilute regime. Using 𝜓𝑗 as in the previous
sections, that is, 𝜓𝑗 = (̂0

𝐷
)−1[𝜒𝐷𝑗 ], we have

𝜓𝑗 =
√
𝜀Cap𝐵𝜓

1
𝐷𝑗
, 𝑗 = 1, 2.

Then

(
𝑉𝑗
)
𝑚,𝑛

= −∫𝜕𝐷𝑗 ∫𝜕𝐷𝑗 𝐺
𝜔(𝑥 − 𝑑𝐯, 𝑦)𝜉𝑚𝐷𝑗

(𝑦)𝜓𝑛𝐷𝑗
(𝑥) d𝜎(𝑥) d𝜎(𝑦)

= −∫𝜕𝐷𝑗 ∫𝜕𝐷𝑗 (𝐺
𝜔(𝑑𝐯, 0) + (𝑥 − 𝑦) ⋅∇𝑥𝐺

𝜔(𝑑𝐯, 0))𝜉𝑚𝐷𝑗
(𝑧)𝜓𝑛𝐷𝑗

(𝑦) d𝜎(𝑧) d𝜎(𝑦) + 𝑂(𝜀3)

= −
√
𝜀Cap𝐵𝐺

𝜔(𝑑𝐯, 0)𝛿𝑛,1 ∫𝜕𝐷𝑗 𝜉
𝑚
𝐷𝑗
d𝜎 + 𝑂(𝜀3)

=
𝜀Cap𝐵
4𝜋𝑑

𝛿𝑚,1𝛿𝑛,1 + 𝑂(𝜀3 + 𝜔𝜀), (A.4)

where we have used symmetry in the integration together the orthogonality relation

∫𝜕𝐷𝑗 𝜓
𝑚
𝐷𝑗
d𝜎 =

√
𝜀Cap𝐵𝛿𝑚,1.

Observe that at𝑚 = 1 we have0
𝐷𝑗
[𝜒𝐷𝑗 ] = 0 outside 𝐷𝑗 , and so(

𝑊𝑗

)
1,𝑛

= 𝑂(𝜔2) (A.5)
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for all 𝑛. Recall the expansion, from the proof of Lemma 3.16,

Ψ⋄
𝑗 = Ψ(0) + Ψ(1) + 𝑂(𝜀), Ψ(0) =

(
𝑢𝑗
𝑢𝑗

)
, Ψ(1) =

(
0

𝜀𝑢(1)
𝑗
𝑢𝑗

)
,

where, at 𝜔 = 𝜔⋄
𝑗
, ̂Ψ(0) = 𝑂(𝜔3). Also, recall that

Φ⋄
𝑗 =

(
−𝛿𝑢⋄

𝑗

𝜒⋄
𝑗

)
.

Then we can compute ⟨
Φ⋄
𝑗 , ̂2̂̂1Ψ(0)

⟩
= 𝑂(𝜔3).

Turning to higher orders of Ψ⋄
𝑗
, we have

⟨
Φ⋄
𝑗 ,
(̂2̂̂1 − ̂)Ψ(1)

⟩
= −𝛿𝜀𝑢(1)

𝑗

(⟨
𝜒⋄
𝑗 ,𝑊
(
1

2
+ ̂0,∗

𝐷

)
[𝑉−1𝑢𝑗]

⟩
−
⟨
𝜒⋄
𝑗 ,
(
1

2
+ ̂0,∗

𝐷

)
[𝑢𝑗]
⟩

+
⟨
𝑢⋄𝑗 , 𝑉

∗0
𝐷[𝑉

−1𝑢𝑗]
⟩
−
⟨
𝑢𝑗,0

𝐷[𝑢𝑗]
⟩)

+ 𝑂(𝜔3).

From (A.5), it holds that ⟨
𝜒⋄
𝑗 ,𝑊
(
1

2
+ ̂0,∗

𝐷

)
[𝑉−1𝑢𝑗]

⟩
= 𝑂(𝜔2).

Moreover, (A.4) yields ⟨
𝑢⋄𝑗 , 𝑉

∗0
𝐷[𝑉

−1𝑢𝑗]
⟩
−
⟨
𝑢𝑗,0

𝐷[𝑢𝑗]
⟩
= 𝑂(𝜀2 + 𝜔2).

Finally, since ⟨𝜒⋄
𝑗
, ( 1

2
+ ̂0,∗

𝐷
)[𝑢𝑗]⟩ = ⟨𝜒⋄

𝑗
, 𝑢𝑗⟩ = 𝜀Cap𝐵, we have⟨

Φ⋄
𝑗 ,𝑑Ψ

⋄
𝑗

⟩
= 𝛿𝜀2Cap𝐵𝑢

(1)
𝑗

+ 𝑂(𝜔3 + 𝜀3𝜔2).

Since the leading order is independent of 𝑑, the conclusion follows. □

APPENDIX B: PROOF OF PROPOSITION 3.25

We will restrict the analysis to the equation

1

2𝜋 ∫𝑌∗
(
𝜂1

(
1 − 𝑒i𝜃𝛼

)
+ 𝜂2

(
1 + 𝑒i𝜃𝛼

))
d𝛼 = 0, (B.1)

since the proof of the equation in (3.49) with the other sign is similar. Define

𝜆 =
𝜔2|𝐷1|
𝛿

, 𝜆𝛼1 = 𝐶𝛼11 − |𝐶𝛼12|, 𝜆𝛼2 = 𝐶𝛼11 + |𝐶𝛼12|.
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Then, as 𝛿 → 0,

1

2𝜋 ∫𝑌∗
(
𝜂1

(
1 − 𝑒i𝜃𝛼

)
+ 𝜂2

(
1 + 𝑒i𝜃𝛼

))
d𝛼 =

1

𝜋 ∫𝑌∗
𝜆
(
𝐶𝛼
11
+ Re(𝐶𝛼

12
)
)
− 𝜆𝛼

1
𝜆𝛼
2

(𝜆 − 𝜆𝛼
1
)(𝜆 − 𝜆𝛼

2
)

d𝛼 + 𝑂(𝛿1∕2),

(B.2)

where the imaginary part vanishes due to symmetry. Observe that for 𝜔 inside the band gap, we
have 𝜆 − 𝜆𝛼

1
> 0 and 𝜆 − 𝜆𝛼

2
< 0. Define

𝑓(𝛼) = 𝜆
(
𝐶𝛼11 + Re(𝐶𝛼12)

)
− 𝜆𝛼1 𝜆

𝛼
2 .

Wewill now study the two cases 𝑙0 < 1∕2 and 𝑙0 > 1∕2 separately.Wewill show that the right-hand
side of (B.1) is always positive in the first case, while in the second case it has a sign depending
on 𝜆. We will do so by splitting the integral into two parts, one with 𝛼 close to 0 and one with 𝛼
bounded away from 0, and show that the first part is negligible.

B.1 Case 𝑙0 < 1∕2

In the dilute regime, as 𝜀 → 0, it follows from Lemma 3.5 that the width of the band gap scales as
𝑂(𝜀2). Moreover, if 𝜔 is inside the band gap, then we are able to write that

𝜆 = 𝜀Cap𝐵 + 𝜀2(Cap𝐵)
2𝜆0 + 𝑂(𝜀3)

for some 𝜆0 ∈ ℝ. From the expansions of the capacitance coefficients in Lemma 3.5, and the fact
that 𝜆𝛼

1
(respectively, 𝜆𝛼

2
) attains its maximum (respectively, minimum) at 𝛼 = 𝜋∕𝐿, we have the

following bounds on 𝜆0:

−
1

4𝜋𝐿

∑
𝑚≠0

𝑒i𝛼𝑚𝐿|𝑚| −
1

4𝜋𝐿

∞∑
𝑚=−∞

𝑒i𝛼𝑚𝐿|𝑚 + 𝑙0| < 𝜆0 < −
1

4𝜋𝐿

∑
𝑚≠0

𝑒i𝛼𝑚𝐿|𝑚| +
1

4𝜋𝐿

∞∑
𝑚=−∞

𝑒i𝛼𝑚𝐿|𝑚 + 𝑙0| . (B.3)

We fix constants𝐶 > 0, 𝑝 ∈ ℕ. Then, for 𝛼 such that |𝛼| > 𝐶𝜀𝑝, 𝑓(𝛼) can be expanded in the dilute
regime as

𝑓(𝛼) = 𝜀3(Cap𝐵)
3

(
𝜆0 −

1

4𝜋𝑙
+

1

4𝜋𝐿

∑
𝑚≠0

cos(𝑚𝛼𝐿)|𝑚| −
1

4𝜋𝐿

∑
𝑚≠0

cos(𝑚𝛼𝐿)|𝑚 + 𝑙0|
)
+ 𝑜(𝜀3)

= 𝜀3(Cap𝐵)
3

(
𝜆0 −

1

4𝜋𝑙
+

1

4𝜋𝐿

∞∑
𝑚=1

cos(𝑚𝛼𝐿)

(
2

𝑚
−

1

𝑚 + 𝑙0
−

1

𝑚 − 𝑙0

))
+ 𝑜(𝜀3). (B.4)

Define g(𝛼) as

g(𝛼) =
∞∑
𝑚=1

𝑒i𝑚𝛼𝐿
(
2

𝑚
−

1

𝑚 + 𝑙0
−

1

𝑚 − 𝑙0

)
.
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We can rewrite g as

g(𝛼) = 𝑒i𝛼𝐿
∞∑
𝑚=0

𝑒i𝑚𝛼𝐿
(

2

𝑚 + 1
−

1

𝑚 + 1 + 𝑙0
−

1

𝑚 + 1 − 𝑙0

)
= 𝑒i𝛼𝐿

(
2Φ(𝑒i𝛼𝐿, 1, 1) − Φ(𝑒i𝛼𝐿, 1, 1 + 𝑙0) − Φ(𝑒i𝛼𝐿, 1, 1 − 𝑙0)

)
.

Here, Φ(𝑧, 𝑠, 𝑎) denotes Lerch’s transcendent function, defined by the power series

Φ(𝑧, 𝑠, 𝑎) =

∞∑
𝑚=0

𝑧𝑚

(𝑎 + 𝑚)𝑠
,

for 𝑧 ∈ ℂwhere this series converges, extended by analytic continuation elsewhere (for details on
this function we refer, for example, to [26]). For arguments in the regime Re(𝑠) > 0,Re(𝑎) > 0 and
𝑧 ∈ ℂ ⧵ [1,∞), this function admits an integral representation as

Φ(𝑧, 𝑠, 𝑎) =
1

Γ(𝑠) ∫
∞

0

𝑡𝑠−1𝑒−𝑎𝑡

1 − 𝑧𝑒−𝑡
d𝑡,

where Γ is the Gamma function. From this, we have a representation of g(𝛼), 𝛼 ≠ 0, as

g(𝛼) = ∫
∞

0

2𝑒−𝑡 − 𝑒−(1+𝑙0)𝑡 − 𝑒−(1−𝑙0)𝑡

1 − 𝑒i𝛼𝐿𝑒−𝑡
d𝑡

= ∫
∞

0

(cosh(𝑙0𝑡) − 1)
(
𝑒−𝑡 − cos(𝛼𝐿)

)
cosh(𝑡) − cos(𝛼𝐿)

d𝑡.

From (B.4), using the bounds on 𝜆0 from (B.3) and for 𝛼 such that |𝛼| > 𝐶𝜀𝑝, we have

𝑓(𝛼) <
𝜀3(Cap𝐵)

3

4𝜋𝐿

(
∞∑
𝑚=1

(cos(𝑚𝛼𝐿) − (−1)𝑚)

(
2

𝑚
−

1

𝑚 + 𝑙0
−

1

𝑚 − 𝑙0

))
+ 𝑜(𝜀3)

=
𝜀3(Cap𝐵)

3

4𝜋𝐿
(Re(g(𝛼)) − g(𝜋∕𝐿)) + 𝑜(𝜀3)

=
𝜀3(Cap𝐵)

3

4𝜋𝐿 ∫
∞

0
(cosh(𝑙0𝑡) − 1) sinh(𝑡)

(
1

cosh(𝑡) + 1
−

1

cosh(𝑡) − cos(𝛼𝐿)

)
+ 𝑜(𝜀3)

= 𝐴1(𝛼)𝜀
3 + 𝑜(𝜀3)

for some 𝐴1(𝛼) ⩽ 0 independent of 𝜀, with 𝐴1(𝛼) = 0 precisely when 𝛼 = 𝜋∕𝐿. It follows that

1

𝜋 ∫𝑌∗⧵[−𝐶𝜀𝑝,𝐶𝜀𝑝]
𝜆
(
𝐶𝛼
11
+ Re(𝐶𝛼

12
)
)
− 𝜆𝛼

1
𝜆𝛼
2

(𝜆 − 𝜆𝛼
1
)(𝜆 − 𝜆𝛼

2
)

d𝛼 =
𝐴2

𝜀
+ 𝑜(𝜀−1) (B.5)

for some constant 𝐴2 > 0. From the scaling property (3.7), we know that |𝑓(𝛼)| < 𝜀2𝐾1 for some
𝐾1 > 0 independent on 𝛼. The minimum of |(𝜆 − 𝜆𝛼

1
)(𝜆 − 𝜆𝛼

2
)| is attained at 𝜋∕𝐿 and, from
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Lemma 3.5, we have |(𝜆 − 𝜆𝛼
1
)(𝜆 − 𝜆𝛼

2
)| > 𝐾2𝜀

4. Therefore, we have

||||| 1𝜋 ∫[−𝐶𝜀𝑝,𝐶𝜀𝑝]
𝜆
(
𝐶𝛼
11
+ Re(𝐶𝛼

12
)
)
− 𝜆𝛼

1
𝜆𝛼
2

(𝜆 − 𝜆𝛼
1
)(𝜆 − 𝜆𝛼

2
)

d𝛼
||||| < 𝐴3𝜀

𝑝−2,

for some constant 𝐴3. Choosing 𝑝 > 2, and combining this with (B.5), we find that

1

𝜋 ∫𝑌∗
𝜆
(
𝐶𝛼
11
+ Re(𝐶𝛼

12
)
)
− 𝜆𝛼

1
𝜆𝛼
2

(𝜆 − 𝜆𝛼
1
)(𝜆 − 𝜆𝛼

2
)

d𝛼 > 0

for 𝜀 small enough. Therefore, when 𝑙0 < 1∕2, by (B.2) we find that, for 𝜆 sufficiently close to 𝜆𝜋∕𝐿
1

,
we have

1

2𝜋 ∫𝑌∗
(
𝜂1

(
1 − 𝑒i𝜃𝛼

)
+ 𝜂2

(
1 + 𝑒i𝜃𝛼

))
d𝛼 > 0,

when 𝜀 and 𝛿 are small enough.

B.2 Case 𝑙0 > 1∕2

We will show that (B.1) has a solution. We denote the left-hand side by

𝐼(𝜆) ∶=
1

2𝜋 ∫𝑌∗
(
𝜂1

(
1 − 𝑒i𝜃𝛼

)
+ 𝜂2

(
1 + 𝑒i𝜃𝛼

))
d𝛼.

From Lemma 3.5, we find that for 𝜀 small enough,𝐶𝜋∕𝐿
12

> 0 in the case 𝑙0 > 1∕2. Hence 𝑒i𝜃𝜋∕𝐿 = 1,
so 𝐼(𝜆) → −∞ as 𝜆 → 𝜆

𝜋∕𝐿
2

. Next, we will show that 𝐼(𝜆) is positive for 𝜆 sufficiently close to 𝜆𝜋∕𝐿
1

.
Since 𝐶𝜋∕𝐿

12
is positive, we now have the following bounds for 𝜆0:

−
1

4𝜋𝐿

∑
𝑚≠0

𝑒i𝛼𝑚𝐿|𝑚| +
1

4𝜋𝐿

∞∑
𝑚=−∞

𝑒i𝛼𝑚𝐿|𝑚 + 𝑙0| < 𝜆0 < −
1

4𝜋𝐿

∑
𝑚≠0

𝑒i𝛼𝑚𝐿|𝑚| −
1

4𝜋𝐿

∞∑
𝑚=−∞

𝑒i𝛼𝑚𝐿|𝑚 + 𝑙0| .
Fix some small 𝜅 > 0 and choose 𝜆0 as

𝜆0 = 𝜅 −
1

4𝜋𝐿

∑
𝑚≠0

𝑒i𝛼𝑚𝐿|𝑚| +
1

4𝜋𝐿

∞∑
𝑚=−∞

𝑒i𝛼𝑚𝐿|𝑚 + 𝑙0| .
Observe that 𝜅 → 0 corresponds to 𝜆 → 𝜆

𝜋∕𝐿
1

. Using (B.4) and following the same subsequent
steps, we find that

𝑓(𝛼) = 𝜀3(Cap𝐵)
3𝜅 + 𝐴1(𝛼)) + 𝑜(𝜀3).

Then, analogously to (B.5), we have

1

𝜋 ∫𝑌∗⧵[−𝐶𝜀𝑝,𝐶𝜀𝑝]
𝜆
(
𝐶𝛼
11
+ Re(𝐶𝛼

12
)
)
− 𝜆𝛼

1
𝜆𝛼
2

(𝜆 − 𝜆𝛼
1
)(𝜆 − 𝜆𝛼

2
)

d𝛼 =
𝐴2 + 𝐴4𝜅

𝜀
+ 𝑜(𝜀−1),
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where, again, 𝐴2 is a constant 𝐴2 > 0 and 𝐴4 is a constant 𝐴4 < 0. Thus, for 𝜅 small enough, we
have that 𝐴2 + 𝐴4𝜅 > 0, so we can proceed as in Section B.1 to show that

𝐼(𝜆) > 0,

for 𝜆 sufficiently close to 𝜆𝜋∕𝐿
1

and for small enough 𝜀 and 𝛿. This, combined with the fact that
𝐼(𝜆) < 0 for 𝜆 sufficiently close to 𝜆𝜋∕𝐿

2
, allows us to conclude that 𝐼(�̂�) = 0 for some 𝜆𝜋∕𝐿

1
< �̂� <

𝜆
𝜋∕𝐿
2

.
In order to show that this solution �̂� is unique, we show that 𝐼(𝜆) is strictly monotonic for

𝜆
𝜋∕𝐿
1

< 𝜆 < 𝜆
𝜋∕𝐿
2

. Differentiating (B.2) gives

𝐼′(𝜆) =
1

𝜋 ∫𝑌∗
(𝐶𝛼11+Re(𝐶

𝛼
12
))(𝜆−𝜆𝛼1 )(𝜆−𝜆

𝛼
2
)−(𝜆(𝐶𝛼11+Re(𝐶

𝛼
12
))−𝜆𝛼1 𝜆

𝛼
2 )(2𝜆−𝜆

𝛼
1
−𝜆𝛼

2 )
(𝜆−𝜆𝛼

1
)2(𝜆−𝜆𝛼

2
)2

d𝛼 + 𝑂(𝛿1∕2).

Then we have that(
𝐶𝛼11 + Re(𝐶𝛼12)

)
(𝜆 − 𝜆𝛼1 )(𝜆 − 𝜆𝛼2 ) −

(
𝜆
(
𝐶𝛼11 + Re(𝐶𝛼12)

)
− 𝜆𝛼1 𝜆

𝛼
2

)(
2𝜆 − 𝜆𝛼1 − 𝜆𝛼2

)
=
(
𝐶𝛼11 + Re(𝐶𝛼12)

)
(−𝜆2 + 𝜆𝛼1 𝜆

𝛼
2 ) + 𝜆𝛼1 𝜆

𝛼
2

(
2𝜆 − 𝜆𝛼1 − 𝜆𝛼2

)
⩽

⎧⎪⎨⎪⎩
𝜆𝛼
2

(
−𝜆2 + 𝜆𝛼

1
𝜆𝛼
2
+ 𝜆𝛼

1

(
2𝜆 − 𝜆𝛼

1
− 𝜆𝛼

2

))
, if 𝜆2 ⩽ 𝜆𝛼

1
− 𝜆𝛼

2
,

𝜆𝛼
1

(
−𝜆2 + 𝜆𝛼

1
𝜆𝛼
2
+ 𝜆𝛼

2

(
2𝜆 − 𝜆𝛼

1
− 𝜆𝛼

2

))
, if 𝜆2 > 𝜆𝛼

1
− 𝜆𝛼

2
,

=

⎧⎪⎨⎪⎩
−𝜆𝛼

2

(
𝜆 − 𝜆𝛼

1

)2
, if 𝜆2 ⩽ 𝜆𝛼

1
− 𝜆𝛼

2
,

−𝜆𝛼
1

(
𝜆 − 𝜆𝛼

2

)2
, if 𝜆2 > 𝜆𝛼

1
− 𝜆𝛼

2
.

(B.6)

Using the bounds (B.6), we have that if 𝜆𝜋∕𝐿
1

< 𝜆 < 𝜆
𝜋∕𝐿
2

then 𝐼′(𝜆) < 0, provided 𝛿 is sufficiently
small. Therefore, if 𝑙0 > 1∕2, then (B.1) has a unique solution, when 𝜀 and 𝛿 are small enough.
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