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Abstract 
The aim of this work is to derive precise formulas which describe how the properties of subwavelength 

devices are changed by the introduction of errors and imperfections. As a demonstrative example, we 

study a class of cochlea-inspired rainbow sensors. These are devices based on a graded array of 
subwavelength resonators which have been designed to mimic the frequency separation performed by the 
cochlea. We show that the device’s properties (including its role as a signal filtering device) are stable with 

respect to small imperfections in the positions and sizes of the resonators. Additionally, if the number of 
resonators is sufficiently large, then the device’s properties are stable under the removal of a resonator. 
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1 Introduction 

The cochlea is the key organ of mammalian hearing, which filters sounds according to frequency and then 

converts this information to neural signals. Across the biological world, including in humans, cochleae have 

remarkable abilities to filter sounds at a very high resolution, over a wide range of volumes and frequencies. 

This exceptional performance has given rise to a community of researchers seeking to design artificial 

structures which mimic the function of the cochlea [1, 3, 9, 24, 30, 34]. These devices are based on the 

phenomenon known as rainbow trapping, whereby frequencies are separated in graded resonant media. 

This has been observed in a range of settings including acoustics [35], optics [31] (where the term ‘rainbow 

trapping’ was coined), water waves [10] and plasmonics [21], among others. 

The motivation for designing cochlea-inspired sensors is twofold. Firstly, it is hoped that they can be 

used to design artificial hearing approaches, either through the realisation of physical devices [30, 22] or by 

informing computational algorithms [2, 28]. Additionally, it is hoped that modelling and building these 

devices will yield new insight into the function of the cochlea itself. The cochlea is a small organ that is buried 

inside an organism’s head, meaning that experiments on living samples is exceptionally difficult. This means 

that many of the characteristics which are unique to living specimens are still poorly understood. The nature 

of the amplification mechanism used by the cochlea is a prime example of this [19]. It is hoped that studying 

artificial cochlea-inspired devices, which can be both modelled and experimented on more easily, will yield 

new clues into the possible forms of this amplification [3, 30, 22]. 

Micro-structured media with strongly dispersive behaviour, such as the cochlea-like rainbow sensors 

considered here, are examples of acoustic metamaterials. Metamaterials are a diverse collection of materials 

that have extraordinary and ‘unnatural’ properties, such as negative refractive indices and the ability to 

support cloaking effects [14, 23]. One of the challenges in this field, however, is that errors 
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Figure 1: The receptor cells in a (a) normal and (b) damaged cochlea. The receptor cells are arranged as one row of inner 
hair cells (IHCs) and three rows of outer hair cells (OHCs). In a damaged cochlea, the stereocilia are severely deformed 
and, in many cases, missing completely. The images are scanning electron micrographs of rat cochleae, provided by 

Elizabeth M Keithley. 

and imperfections are inevitably introduced when devices are manufactured, which has the potential to 

significantly alter their function. For this reason, a large field has emerged studying topologically protected 

structures, whose properties experience greatly enhanced robustness thanks to the topological properties 

of the underlying periodic media [25, 17, 6]. While the theory of topopogical protection has deep 

implications for the design of rainbow sensors [12, 13], there is yet to be an established link with biological 

structures and we will study a conventional graded metamaterial in this work. 

The aim of this work is to derive formulas which describe how the properties of a cochlea-inspired 

rainbow sensor are affected by the introduction of errors and imperfections. This will give quantitative 

insight into the extent to which these devices are robust with respect to manufacturing errors. It may also 

yield insight into the cochlea itself, which has a remarkable ability to function effectively even when 

significantly damaged. As depicted in Figure 1, cochlear receptor cells are often significantly damaged in 

older organisms. However, it has been observed that humans can lose as much as 30–50% of their receptor 

cells without any perceptible loss of hearing function [11, 32]. This remarkable robustness is part of the 

motivation for this study: how do cochlea-inspired rainbow sensors behave under similar perturbations? 

We will study a passive device consisting of an array of material inclusions whose properties resemble 

those of air bubbles in water. These inclusions act as resonators, oscillating with so-called breathing modes, 

and exhibit resonance at subwavelength scales, often known as Minnaert resonance [29, 15, 7]. Devices have 

been built based on these principles by injecting bubbles into polymer gels [26, 27]. It was shown in [1] that 

by grading the size of the resonators, to give the geometry depicted in Figure 2, it is possible to replicate the 

spatial frequency separation of the cochlea. 

We will use boundary integral methods to analyse the scattering of the acoustic field by the 

cochleainspired rainbow sensor [8]. We will define the notion of subwavelength resonance as an asymptotic 

property, in terms of the material contrast, and perform an asymptotic analysis of the structure’s resonant 

modes. This first-principles approach yields an approximation in terms of the generalized capacitance 

matrix. We will recap this theory in Section 2 and refer the reader to [4] for a more thorough exposition. In 

Section 3, we study the effect of small perturbations to the size and position of the resonators. The derived 

formulas show that the rainbow sensor’s properties are stable with respect to these imperfections. Then, in 

Section 4, we examine more drastic perturbations, namely those caused by removing resonators from the 

array. This is inspired by the images in Figure 1, where in many places the receptor cell stereocilia have 

been completely destroyed. We will show that, provided that array is sufficiently large, the sensor’s 

properties are nonetheless stable. Finally, in Section 5, we study the equivalent signal transformation that 

is induced by the cochlea-inspired rainbow sensor and show that its properties are stable with respect to 

changes in the device. 

2 Mathematical preliminaries 

2.1 Problem setting 

Will will study a Helmholtz scattering problem to model the scattering of time-harmonic acoustic waves by 

the resonator array. The resonators are modelled as material inclusions D1,...,DN which are disjoint, bounded 

and have boundaries in C1,α for some 0 < α < 1. We denote the wave speeds inside the 
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Figure 2: A cochlea-inspired rainbow sensor. The gradient in the sizes of the resonators means the device separates 
different frequencies in space: higher frequencies will give a peak amplitude to the left of the array, while lower 

frequencies will give a maximal response further to the right. This mimics the action of the cochlea in filtering sound 
waves. 

resonators as v and in the background medium as v0. For an angular frequency ω we introduce the 

wavenumbers 

and. 

Additionally, we introduce the dimensionless contrast parameter 

 , (2.1) 

which is the ratio of the densities of the materials inside and outside the resonators. The scattering problem, 

due to the resonator array 

D = D1 ∪ ··· ∪ DN, (2.2) 

is then given by 

 = 0 in R3 \ D, 

in D, 

 for ∂D, (2.3) 

 , on ∂D, 

 us := u − uin satisfies the SRC, as |x| → ∞, 

where the SRC refers to the Sommerfeld radiation condition, which guarantees that the scattered waves 

radiate energy outwards to the far field [8]. 

Definition 2.1 (Resonance). We define a resonant frequency to be ω ∈ C such that there exists a nonzero 

solution u to (2.3) in the case that uin = 0. The solution u is the resonant mode associated to ω. 

In this work, we will characterise subwavelength resonance in terms of the limit of the contrast 

parameter δ being small. In particular, we assume that 

 1 while . (2.4) 

This approach allows us to fix the size and position of the resonators and study subwavelength resonant 

modes as those which exist at asymptotically low frequencies when δ is small. 

Definition 2.2 (Subwavelength resonance). We define a subwavelength resonant frequency to be a resonant 

frequency ω = ω(δ) that depends continuously on δ and satisfies 

 ω → 0 as δ → 0. 

This asymptotic approach has been shown to be effective at modelling devices based on the canonical 

example of air bubbles in water [7, 4], where the contrast parameter is approximately δ ≈ 10−3. Furthermore, 

this asymptotic definition of subwavelength resonance reveals that there is a fundamental difference 

between these resonant modes and those which are not subwavelength, and leads to the following existence 

result: 

Lemma 2.3. A system of N subwavelength resonators has N subwavelength resonant frequencies with positive 

real part. 

in 
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Figure 3: The 22 subwavelength resonant frequecies of a cochlea-inspired rainbow sensor composed of 22 
subwavelength resonators, plotted in the lower-right complex plane. 

Proof. This follows using Gohberg-Sigal theory to perturb the solutions that exist in the limiting case where 

δ = 0, ω = 0, see [4, 8] for details.  

The subwavelength resonant frequencies of a cochlea-inspired rainbow sensor composed of 22 

subwavelength resonators are shown in Figure 3. The multipole expansion method (see the appendices of 

[6] for details) is used to simulate an array of spherical resonators which is which 35mm long and has the 

material parameters of air bubbles in water. The real parts of the resonant frequencies span the range 

7.4kHz–33.8kHz (Figure 3 shows angular frequency). This range can be fine tuned to match the desired 

function (or to match the range of human hearing more closely) [3]. The negative imaginary parts describe 

the loss of energy to the far field. 

2.2 Boundary integral operators 

In order to model the scattering of waves by the array D we will use layer potentials to represent solutions. 

Definition 2.4 (Single layer potential). Given a bounded domain D ⊂ R3 and a wavenumber k ∈ C we define 

the Helmholtz single layer potential as 

, 

where the Green’s function G is given by 

. 

The value of the single layer potential is that we can use it to represent solutions to the Helmholtz 

scattering problem (2.3). In particular, there exist some densities ψ,φ ∈ L2(∂D) such that 

  (2.5) 

This representation means that the Helmholtz equations and the radiation condition from (2.3) are 

necessarily satisfied. It remains only to find densities ψ,φ ∈ L2(∂D) such that the two transmission 

conditions across the boundary ∂D are satisfied. See [8] more details on the use of layer potentials in 

modelling scattering problems. In this work, we will make use of some elementary properties. Since we 

define subwavelength resonance as an asymptotic property (Definition 2.2), we will make use of the 

asymptotic expansion 

 , as k → 0, (2.6) 

where SD,1[ϕ] = (4πi)−1 R∂D ϕdσ and convergence holds in the operator norm. In order to derive leadingorder 

approximations, we will make use of the fact that SD0 is invertible [8]: 

Lemma 2.5. SD0 is invertible as a map from L2(∂D) to H1(∂D). 
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2.3 The generalized capacitance matrix 

Studying the subwavelength resonant properties of the high-contrast structure as an asymptotic property 

in terms of 1 leads to a concise characterisation of the resonant states. In particular, we find that the 

leading-order properties of the resonant frequencies and associated eigenmodes are given in terms of the 

eigenstates of the generalized capacitance matrix, as introduced in [4]. This is a generalization of the notion 

of capacitance that is widely used in electrostatics to model the distributions of potential and charge in a 

system of conductors [16]. 

Definition 2.6 (Capacitance matrix). Given N ∈ N disjoint inclusions D1,...,DN ⊂ R3, the associated capacitance 

matrix C ∈ RN×N is defined as 

Z 

 Cij = − (SD0 )−1[χ∂Dj]dσ, i,j = 1,...,N, 
∂Di 

where χ∂Di is the characteristic function of the boundary ∂Di. 

In this work, we are interested in cochlea-like rainbow sensors that have resonators with increasing size. 

In general, in order to use capacitance coefficients to understand the resonant properties of an array of non-

identical resonators we need to re-scale the coefficients. The generalized capacitance matrix that we obtain 

is studied at length in [4]. With this approach, we can study arrays of resonators with different sizes, shapes 

and material parameters. In this work, we are assuming the resonators all have the same interior material 

parameters (given by the wave speed v and contrast parameter δ) so only need to weight according to the 

different sizes of the resonators. 

Definition 2.7 (Volume scaling matrix). Given N ∈ N disjoint inclusions D1,...,DN ⊂ R3 the volume scaling matrix 

V ∈ RN×N is the diagonal matrix given by 

 

where |Di| is the volume of Di. 

Definition 2.8 (Generalized capacitance matrix). Given N ∈ N disjoint inclusions D1,...,DN ⊂ R3 with identical 

interior material parameters, the associated (symmetric) generalized capacitance matrix C ∈ RN×N is defined 

as 

C = V CV. 

In previous works, the generalized capacitance is more often defined as the asymmetric matrix V 2C (see 

[4] and references therein). Here, we will want to use some of the many existing results about perturbations 

of eigenstates of symmetric matrices so opt for the symmetric version. Note that C = V CV is similar to V 2C. 

The value of of the generalized capacitance matrix is clear from the following results. 

Theorem 2.9. Consider a system of N subwavelength resonators in R3 and let {(λn,vn) : n = 1,...,N} be the 

eigenpairs of the (symmetric) generalized capacitance matrix C ∈ RN×N. As δ → 0, the subwavelength resonant 

frequencies satisfy the asymptotic formula 

 ωn = pδv2λn − iδτn + O(δ3/2), n = 1,...,N, 

where the second-order coefficients τn are given by 

 

with J being the N × N matrix of ones. 

Corollary 2.10. Let vn be the normalized eigenvector of C associated to the eigenvalue λn. Then the normalized 

resonant mode un associated to the resonant frequency ωn is given, as δ → 0, by 
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where SkD : R3 → CN is the vector-valued function given by 

S  

with ψi := (SD0 )−1[χ∂Di]. 

Remark 2.11. Since C is symmetric, V is diagonal and J is positive semi-definite, it holds that τn ≥ 0 for all n 

= 1,...,N. This corresponds to the loss of energy from the system. 

Remark 2.12. We will shortly want to study how the properties of the generalized capacitance matrix C 

vary when changes are made to the structure D. For this reason, we will often write C = C(D) to emphasise 

the dependence of the generalized capacitance matrix on the geometry of D. Similarly, we will write λi = λi(D) 

and τi = τi(D) for the quantities from Theorem 2.9. 

3 Imperfections in the device 

We will begin by deriving formulas to describe the effects of making small perturbations to the positions 

and sizes of the resonators, as depicted in Figure 4. Perturbations of this nature are important as they will 

be introduced when a device is manufactured. The results in this section give quantitative estimates on the 

extent to which the perturbations of the structure’s properties are stable with respect to small 

imperfections. 

3.1 Dilute approximations 

In order to simplify the analysis, and to allow us to work with explicit formulas, we will make an assumption 

that the resonators are small compared to the distance between them. In particular, we will assume that 

each resonator Di is given by  where Bi ⊂ R3 is some fixed domain, zi ∈ R3 is some fixed vector and 

0 1 is some small parameter. We will assume that each fixed domain Bi, for i = 1,...,N, is positioned so 

that it contains the origin and that the complete structure is given by 

 . (3.1) 

Under this assumption, the generalized capacitance matrix has an explicit leading-order asymptotic 

expression in terms of the dilute generalized capacitance matrix: 

Definition 3.1 (Dilute generalized capacitance matrix). Given  and a resonator array that is -
dilute in the sense of (3.1), the associated dilute generalized capacitance matrix  is defined as 

CapBiCapBj 

  
4π|zi−zj|√|Bi||Bj|, i 6= j, 

where we define the capacitance CapB of a set B ⊂ R3 as 

Z 

 CapBi := − (SB0 )−1[χ∂B]dσ. 
∂B 

Lemma 3.2. Consider a resonator array that is -dilute in the sense of (3.1). In the limit as , the asymptotic 

behaviour of the (symmetric) generalized capacitance matrix is given by 

  as . 

Proof. This was proved in [5] and is a modification of a result from [6].  

C  ij = 

 
 

Cap B i 
| B i | i , = j, 

−  
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Remark 3.3. It would also be possible to state an appropriate diluteness condition as a rescaling of the sizes 

of the resonators, by taking  in (3.1). This would give analogous results, as used in 

[6]. 

 

Figure 4: We study the effects of adding random perturbations to the (a) size and (b) position of the resonators in a 
cochlea-inspired rainbow sensor. The original structure is shown in dashed. 

3.2 Changes in size 

We first consider imperfections due to changes in the size of the resonators. In particular, suppose there 

exist some factors α1,...,αN such that the perturbed structure is given by 

  . (3.2) 

We will assume that the perturbations α1,...,αN are small in the sense that there exists some parameter α such 

that αi = O(α) as α → 0. 

Lemma 3.4. Suppose that a resonator array D is deformed to give D(α), as defined in (3.2), and that the size 

change parameters α1,...,αN satisfy αi = O(α) as α → 0 for all i = 1,...,N. Then, the dilute generalized capacitance 

matrix associated to D(α)is given by 

, 

where A(α) is a symmetric N × N-matrix whose Frobenius norm satisfies kAkF = O(α) as α → 0. Proof. Making 

the substitution Bi 7→ (1 + αi)Bi in Definition 3.1 gives 

BiCapBj 

For small α we can expand the denominators (while keeping  fixed) to give 

 

as α → 0.  

Theorem 3.5. Suppose that a resonator array -dilute in the sense of (3.1) and is deformed to give D(α), 

as defined in (3.2), for size change parameters α1,...,αN which satisfy αi = O(α) as α → 0 for all i = 1,...,N. Then, 

the resonant frequencies satisfy 

 . 

as . 

Proof. From Lemma 3.4 we have that ) where A is a symmetric N × N-matrix. 

Then, by the Wielandt-Hoffman theorem [18], it holds that the eigenvalues of ) and ), which we 

denote by ) and ), respectively, satisfy 

a ( ) 

) ( b 
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 . (3.3) 

 

 (a) (b) 

Figure 5: The effect of random errors and imperfections on the subwavelength resonant frequencies of a cochleainspired 

rainbow sensor. (a) Random errors are added to the sizes of the resonators. (b) Random errors are added to the 
positions of the resonators. In both cases the errors are Gaussian with mean zero and variance σ2. 

From this we can see that 0, since kAkF = O(α) as α → 0 by Lemma 3.4. 

By a similar argument, and using Lemma 3.2, we have that 

 ) and , as . (3.4) 

Finally, we use Theorem 2.9 to find the resonant frequencies: 

. 

Combining this with (3.3) and (3.4) gives the result.  

Remark 3.6. While the Wielandt-Hoffman theorem was used in (3.3), there are a range of results that 

could be invoked here. For example, if λmin and λmax are the smallest and largest eigenvalues of A then it 

holds that 

, 

for all n = 1,...,N. For a selection of results on perturbations of eigenvalues of symmetric metrices, see 

[18]. 

3.3 Changes in position 

Let’s now consider imperfections due to changes in the positions of the resonators. In particular, suppose 

there exist some vectors β1,...,βN 
∈ R3 such that the perturbed structure is given by 

 . (3.5) 

We will assume that the perturbations β1,...,βN are small in the sense that there exists some parameter β ∈ R 

such that kβik = O(β) as β → 0. We will proceed as in Section 3.2, by considering the dilute generalized 

capacitance matrix C. 

Lemma 3.7. Suppose that a resonator array D is deformed to give D(β), as defined in (3.5), and that the 

translation vectors β1,...,βN satisfy kβik = O(β) as β → 0 for all i = 1,...,N. Then, the dilute generalized capacitance 

matrix associated to D(β)is given by 
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, 

where B(β) is a symmetric N × N-matrix whose Frobenius norm satisfies kBkF = O(β) as β → 0. 

 

Figure 6: The error of the approximation for vn(D(γ)) derived in Lemma 3.9 is small for small perturbations γ. We 

repeatedly simulate randomly perturbed cochlea-inspired rainbow sensors and compare the exact value with the 
approximate value from Lemma 3.9. 

Proof. We will make the substitution zi 7→ zi + βi in Definition 3.1. The diagonal entries of C are unchanged. 

For the off-diagonal entries, we have that 

 ij 4π|zi + βi − zj 

− βj|p|Bi||Bj| 

For small β we can expand the denominator to give 

 

as β → 0. This gives us that 

 

as β → 0.  

Theorem 3.8. Suppose that a resonator array -dilute in the sense of (3.1) and is deformed to give D(β), as 

defined in (3.5), for translation vectors β1,...,βN which satisfy kβik = O(β) as β → 0 for all i = 1,...,N. Then the 

resonant frequencies satisfy 

. 

as . 

Proof. From Lemma 3.7 we have that ) where B is a symmetric N × N-matrix 

so we can proceed as in Theorem 3.5 to use the Wielandt-Hoffman theorem to bound by 

kBkF for each n = 1,...,N. Then, approximating under the assumption that δ and  are small gives the result.

  

3.4 Higher-order results 
√  

Recall the formula ωn = δv2λn − iδτn + ... from Theorem 2.9. The formula for τn involves the eigenvectors vn of 

the generalized capacitance matrix. Assuming the material parameters are real, the O(δ) term describes the 

imaginary part of the resonant frequency, so it is important to understand how it is affected by 

imperfections in the structure. 

C  ( D ( β ) )= −  
Cap B i Cap B j 

, i = j. 
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Lemma 3.9. Consider a resonator array D that is such that the associated (symmetric) generalized capacitance 

matrix C(D) has N distinct, simple eigenvalues. Suppose that a perturbation, governed by the parameter γ, is 

made to the structure to give D(γ) and that there is a symmetric matrix Γ(γ) which is such that 

C(D(γ)) = C(D) + Γ(γ), 

and kΓ(γ)k → 0 as γ → 0. Then, the perturbed eigenvectors can be approximated as 

N 

 v

  , 
k=1 k6=n 

provided that γ is sufficiently small. 

Proof. Since C(D) is a symmetric matrix, it has an orthonormal basis of eigenvectors {vn : n = 1,...,N} with 

associated eigenvalues σ(C(D)) = {λn : n = 1,...,N}, which are assumed to be distinct. Under this assumption, 

we have the decomposition 

 . (3.6) 

From this we can see that k(λI − C(D))−1k ≤ dist(λ,σ(C(D)))−1. If we add a perturbation matrix Γ(γ) which is 

such that kΓ(γ)k < dist(λ,σ(C(D))), then λI−C(D(γ)) = λI−C(D)−Γ(γ) is invertible. Further, in this case, we can 

use a Neumann series to see that 

 . (3.7) 

Substituting the decomposition (3.6) and taking only the first two terms from (3.7), we see that for a fixed λ 

∈ C \ σ(C) we have 

  (3.8) 

where the remainder terms are O(kΓ(γ)k2) as γ → 0. 

Suppose we have a collection of closed curves {ηn : n = 1,...,N} which do not intersect and are such that 

the interior of each curve ηn contains exactly one eigenvalue λn. We know that we may choose γ to be 

sufficiently small that the eigenvalues of C(D(γ)) remain within the interior of these same curves. Thus, the 

operator Pn : CN → CN, defined by 

  (3.9) 

is the projection onto the eigenspace associated to the perturbed eigenvalue λn(D(γ)). Using the expansion 

(3.8), we can calculate an approximation to the operator Pn, given by 

, 

where we are assume the remainder term to be small (this is a technical issue, due to the non-uniformity of 

the expansion (3.8) near to λ ∈ σ(C(D))). Applying this approximation for the operator Pn to the unperturbed 

eigenvector vn gives the result.  

Lemma 3.9 gives an approximate value for the eigenvectors of the generalized capacitance matrix when 

small perturbations have been made to an array of subwavelength resonators. It does not include estimates 

for the error, however we the accuracy of the formula has been verified by simulation. In Figure 6, we show 

the norm of the difference between the formula from Lemma 3.9 and the true eigenvector for many 
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randomly perturbed cochlea-inspired rainbow sensors. We see that the errors are small when the size of 

the perturbations γ is small. 

 

Figure 7: We study the effects of removing resonators from a cochlea-inspired rainbow sensor. (a) The rainbow sensor 
with a single resonator removed, denoted D(5). (b) The rainbow sensor with multiple resonators removed, denoted 
D(2,5,8,9). The original rainbow sensor, D = D1 ∪ ··· ∪ D11, is shown in dashed. 

4 Removing resonators from the device 

We will now consider a different class of perturbations of the rainbow sensors: the effect of removing a 

resonator from the array. This is shown in Figure 7. This is inspired by observations of the biological cochlea 

where in many places the receptor cells are so badly damaged that the stereocilia have been completely 

destroyed, as depicted in Figure 1. 

We introduce some notation to describe a system of resonators with one or more resonators removed. 

Given a resonator array D we write D(i) to denote the same array with the ith resonator removed. The 

resonators are labelled according to increasing volume (so, from left to right in the graded cochlea-inspired 

rainbow sensors depicted here, as in Figure 2). For the removal of multiple resonators we add additional 

subscripts. For example, in Figure 7(a) we show D(5) = D1 ∪···∪D4 ∪D6 ∪···∪D11 and in Figure 7(b) we show 

D(2,5,8,9), which has the 2nd, 5th, 8th and 9th resonators removed. 

The crucial result that underpins the analysis in this section is Cauchy’s Interlacing Theorem, which 

describes the relation between a Hermitian matrix’s eigenvalues and the eigenvalues of its principal 

submatrices. A principle submatrix is a matrix obtained by removing rows and columns (with the same 

indices) from a matrix. 

Theorem 4.1 (Cauchy’s Interlacing Theorem). Let A be an N × N Hermitian matrix with eigenvalues λ1 ≤ λ2 ≤ 

··· ≤ λN. Suppose that B is an (N − 1) × (N − 1) principal submatrix of A with eigenvalues µ1 ≤ µ2 ≤ ··· ≤ µN−1. 

Then, the eigenvalues are ordered such that λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ ··· ≤ λN−1 ≤ µN−1 ≤ λN. 

Proof. Various proof strategies exist, see [18] or [20], for example.  

Thanks to Cauchy’s Interlacing Theorem, we can quickly obtain a result for the eigenvalues of the 

generalized capacitance matrix. In order to state a result for the resonant frequencies of a resonator array, 

we will first introduce some asymptotic notation. 

Definition 4.2. For real-valued functions f and g, we will write that f(δ) & g(δ) as δ → 0 if 

 , as δ → 0, 

where we define the ratio to be 1 in the event that 0 = f ≥ g. 

Lemma 4.3. Let D be a resonator array and D(i) be the same array with the ith resonator removed. Then, if δ is 

sufficiently small, the resonant frequencies of the two structures interlace in the sense that 

 <(ωj(D)) . <(ωj(D(i))) . <(ωj+1(D)) for all j = 1,...,N − 1. 

Proof. Since C(D) is symmetric and real valued, we can use Cauchy’s Interlacing Theorem (Theorem 4.1) to 

see that λj(D) ≤ λj(D(i)) ≤ λj+1(D) for all j = 1,...,N − 1. 

Then, the result follows from the asymptotic formula in Theorem 2.9.  

( a ) 

) ( b 
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The subwavelength resonant frequencies of resonator arrays with an increasing number of removed 

resonators are shown in Figure 8. We see that the frequencies interlace those of the previous structure and 

remain distributed across the audible range. 

 

Figure 8: The subwavelength resonant frequencies of a cochlea-inspired rainbow sensor with resonators removed. Each 
subsequent array has additional resonators removed and its set of resonant frequencies interlaces the previous, at 

leading order, as predicted by Lemma 4.3. 

4.1 Stable removal from large devices 

In general, Lemma 4.3 is useful for understanding the effect of removing a resonator but does not give 

stability, in the sense of the perturbation being small. However, a cochlea-inspired rainbow sensor with a 

large number of resonators can be designed such that the resonant frequencies are bounded, even as their 

number becomes very large. In this case, many of the gaps between the real parts will be small and, 

subsequently, so will the perturbations caused by removing a resonator. There are a variety of ways to 

formulate this precisely, one version is given in the following theorem. 

Theorem 4.4. Suppose that a resonator array D is dilute with parameter  in the sense that 

, 

where B is a fixed bounded domain and  represents the position of each resonator. In this case, the leading-
order approximation of the generalized capacitance matrix is given by  (where C 

was defined in Definition 3.1). Further, there exists a constant c ∈ R, which does not depend on , such that 

if , then all the eigenvalues  are such that 

2|CapB| 

 0 < λj < . (4.1) 

|B| 

Proof. In this case, it is easy to check that the leading-order approximation of the generalized capacitance 

matrix is given by 

  (4.2) 

as 0. By the Gershgorin circle theorem we know that the eigenvalues {λj : j = 1,...,N} must be such that 

  (4.3) 

Now, we have that 

 
  , 

 6=j j i6=j 
i 
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which we can choose to be less than 1 by selecting  appropriately. In which case, we have that the 

eigenvalues {λj : j = 1,...,N} satisfy 

 

 

Figure 9: Large cochlea-inspired rainbow sensors can be designed such that the subwavelength resonant frequencies 

are bounded. Here, we simulate successively larger arrays, according to the dilute regime defined in Theorem 4.4. 

It is important to note that Theorem 4.4 merely shows that the real parts of the resonant frequencies 

will be bounded, as the number of resonators becomes large. It does not guarantee that they are evenly 

spaced or that the gaps between any particular adjacent resonant frequencies are small. For example, see 

Figure 9, where the subwavelength resonant frequencies for increasingly large arrays, dimensioned 

according to Theorem 4.4, are shown. We see that the frequencies become very dense in part of the range 

but remain sparser at higher frequencies. 

5 Implications for signal processing 
The aim of the cochlea-like rainbow sensor studied in this work is to replicate the ability of the cochlea to 

filter sounds. There is also a large community of researchers developing signal processing algorithms with 

the same aim: to replicate the abilities of the human auditory system. Since we have precise analytic 

methods to describe how the array scatters an incoming field, we can draw comparisons between the 

cochlea-inspired rainbow sensor studied here and biomimetic signal transforms. This is explored in detail 

in [2]. In particular, given a formula for the field that is scattered by the cochlea-inspired rainbow sensor, 

we can deduce the corresponding signal transform. In this section, we explore how this signal transform is 

affected by the introduction of errors and imperfections. 

5.1 A biomimetic signal transform 

We briefly recall from [2] how a biomimetic signal transform can be deduced from a cochlea-inspired 

rainbow sensor. In response to an incoming wave uin, the solution to the Helmtolz problem (2.3) is given, 

 
for x ∈ R3 \ D, as 

 , (5.1) 

as ω → 0, for constants qn which satisfy 

 , (5.2) 

as ω,δ → 0. Suppose that the incoming wave is a plane wave and can be written in terms of some 

real-valued function s as Z ∞ uin(x,ω) = s(x1/v − t)eiωt dt. (5.3) 

−∞ 
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Assuming that we are in an appropriate low-frequency regime, such that the remainder terms remain small, 

we can apply a Fourier transform to (5.1) to see that the scattered pressure field p(x,t) is given by 

N p(x,t) = X 

an[s](t)un(x) + ..., n=1 

where the remainder term is O(δ) and the coefficients are given by 

an[s](t) = (s ∗ h[ωn])(t), 

for kernels defined as 

n = 1,...,N, (5.4) 

, 

 n = 1,...,N, (5.5) 

for some real-valued constants cn. See [2] for details. Thus, the deduced signal transform is: given a signal s, 

compute the N time-varying outputs an[s], defined by (5.4). 

5.2 Stability to errors 

We wish to show that the signal transform s 7→ an[s] := s ∗ h[ωn] is robust with respect to errors and 

imperfections in the design of the underlying cochlea-inspired rainbow sensor. 

Theorem 5.1. Given two complex numbers ωold and ωnew with negative imaginary parts, it holds that 

, 

for all s ∈ L1(R). 

Proof. This is a standard argument for bounding convolutions: 

Z 

ks ∗ h[ωold] − s ∗ h[ωnew]kL∞(R) ≤ sup |s(x − y)|h[ωold](y) − h[ωnew](y)|dy x∈R R 

Z 

≤ kholdn − hnewn kL∞(R) sup

 |s(x − y)|dy x∈R R 

 = kholdn − hnewn kL∞(R)kskL1(R).  

Remark 5.2. If s is compactly supported, then we can reframe Theorem 5.1 in terms of k · kLp(R) for any 1 ≤ 

p ≤ ∞, using H¨older’s inequality. 

Corollary 5.3. Let c > 0 and suppose we have two complex numbers ωold and ωnew whose imaginary parts satisfy 

=(ωold),=(ωold) ≤ −c. Then, it holds that 

, 

for all s ∈ L1(R). 

Proof. We begin with the observation that 

, 

for t > 0. Then, we have that 
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, 

for t > 0, where we have used the fact that supt>0 supω<−c |teωt| = ce1 . Similarly, we have that 

. 

for t > 0, where we have used the fact that supt>0 supω<−c |teωt cos(at)| ≤ ce1 for any a ∈ R. Putting this together, 

we have that 

, 

 

from which we arrive at the result, using the inequality |a| + |b| ≤ p2(a2 + b2).  

 

Figure 10: The frequency supports of the filter kernels h[ωn] induced by a cochlea-inspired rainbow sensor. Each 

subsequent array has additional resonators removed and for each array we plot the Fourier transform of h[ωn], n = 

1,...,N, normalized in L2(R). 

While Theorem 5.1 is the standard stability result for convolutional signal processing algorithms, 

Corollary 5.3 is most revealing here. It shows that the outputs of the induced biomimetic signal transform 

(defined by (5.4) here) are stable with respect to changes in the resonant frequencies of the physical device. 

From Sections 3 and 4, we know that the resonant frequencies of the cochlea-inspired rainbow sensor are 

robust with respect to a variety of errors and imperfections (particularly in large resonator arrays), meaning 

that the biomimetic signal transform inherits this robustness. 

To test the robustness for small arrays with removed resonators, Figure 10 shows the frequency support 

of the filter array used in the biomimetic signal transform in the case of successively removed resonators 

(the same sequence of structures was simulated in Figure 8). In this small array (of 22 resonators, initially) 

we see that gaps emerge when multiple resonators are removed, corresponding to hearing loss at 

frequencies within these gaps. It is interesting to note that the gaps emerge at higher frequencies. This was 

observed in many simulations and is commensurate with the wider spacing of frequencies at the upper end 

of the audible range (see Figure 9, for example) and, interestingly, is consistent with the observation that 

human hearing loss initially occurs at high frequencies in most people [32]. 

6 Concluding remarks 

The formulas derived in this work show that a cochlea-inspired rainbow sensor is robust with respect to 

small perturbations in the position and size of the constituent resonators. The effect of removing resonators 

was also described; it was shown that the change in the subwavelength resonant frequencies is always 

bounded (via an interlacing theorem) and can be small in the case of sufficiently large arrays. The 

implication of this analysis for related signal transforms were also studied, and it was shown that stability 
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properties are inherited from the underlying resonant frequencies. The implications for the the 

corresponding biomimietic signal transform were also studied, and it was shown that this inherits the 

robustness of the device’s resonant frequencies. 

The analysis in this work (Section 4.1, in particular) suggests a possible mechanism through which a 

sufficiently large structure could be robust to (surprisingly) large perturbations. However, the extent to 

which this truly replicates the remarkable robustness of the cochlea is unclear. While the mechanisms which 

underpin the function of cochlea-inspired rainbow sensors (which are locally resonant graded 

metamaterials) and biological cochleae (which have a graded membrane with receptor cells on the surface) 

are quite different, there is scope for further insight to be traded between the two communities. For 

example, there has recently been new insight into the role of topological protection in rainbow sensors [13, 

12] and in signal processing devices [33]. 
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