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Individual-based models have become important tools in the global battle against infectious

diseases, yet model complexity can make calibration to biological and epidemiological data

challenging. We propose using a Bayesian optimization framework employing Gaussian

process or machine learning emulator functions to calibrate a complex malaria transmission

simulator. We demonstrate our approach by optimizing over a high-dimensional parameter

space with respect to a portfolio of multiple fitting objectives built from datasets capturing

the natural history of malaria transmission and disease progression. Our approach quickly

outperforms previous calibrations, yielding an improved final goodness of fit. Per-objective

parameter importance and sensitivity diagnostics provided by our approach offer epide-

miological insights and enhance trust in predictions through greater interpretability.
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Over the last century, mathematical modeling has become
an important tool to analyze and understand disease-
dynamics and intervention-dynamics for many infectious

diseases. Individual-based models (IBMs), where each person is
simulated as an autonomous agent, are now widely used. These
mathematical models capture heterogeneous characteristics and
behaviors of individuals, and are often stochastic in nature. This
bottom-up approach of simulating individuals and transmission
events enables detailed, robust, and realistic predictions on
population epidemic trajectories as well as the impact of inter-
ventions such as vaccines or new drugs1,2. Going beyond simpler
(compartmental) models to capture stochasticity and hetero-
geneity in populations, disease progression, and transmission,
IBMs can additionally account for contact networks, individual
care seeking behavior, immunity effects, or within-human
dynamics1–3. As such, well-developed IBMs provide opportu-
nities for experimentation under relatively naturalistic conditions
without expensive clinical or population studies. Prominent
recent examples of the use of IBMs include assessing the benefit
of travel restrictions during the Ebola outbreak 2014–20164 and
guiding the public health response to the Covid-19 pandemic in
multiple countries5. IBMs have also been applied to tuberculosis6,
influenza7, dengue8, and many other infectious diseases2. Within
the field of malaria, several IBMs have been developed over the
last 15 years and have been used to support understanding disease
and mosquito dynamics9–11, predict the public health impact or
carry out economic analyses of (new) interventions12–15; and
investigate drug resistance16. Many have had wide-reaching
impact, influencing WHO policy recommendations12,17–19 or
strategies of national malaria control programs20.

For model predictions to be meaningful, modelers need to
ensure their models accurately capture abstractions of the real
world. The potential complexity and realism of IBMs often come
at the cost of long simulation times and potentially large numbers
of input parameters, whose exact values are often unknown.
Parameters may be unknown because they represent derived
mathematical quantities that cannot be directly measured or
require elaborate, costly experiments (for example shape para-
meters in decay functions21), because the data required to derive
them in isolation is incomplete or accompanied by inherent
biases, or because they interact with other parameters.

Calibrating IBMs poses a complex high-dimensional optimi-
zation problem and thus algorithm-based calibration is required
to find a parameter set that ensures realistic model behavior,
capturing the biological and epidemiological relationships of
interest. Local optima may exist in the potentially highly irregular,
high-dimensional goodness-of-fit surface, making iterative, purely
sampling-based algorithms (e.g., Particle Swarm Optimization or
extensions of Newton–Raphson) inefficient and, in light of finite
runtimes and computational resources, unlikely to find global
optima. Additionally, the curse of dimensionality means the
number of evaluations of the model scales exponentially with the
number of dimensions22. As an example, for the model discussed
in this paper, a 23-dimensional parameter space at a sampling
resolution of one sample per 10 percentile cell in each dimension,
would yield 10number of dimensions= 1023 cells. This is larger than
number of stars in the observable Universe (of order 1022 23).
Furthermore, most calibrations are not towards one objective or
dataset. For multi-objective fitting, each parameter set requires
the evaluation of multiple outputs and thus multiple simulations
to ensure that all outcomes of interest are captured (in the model
discussed here epidemiological outcomes such as prevalence,
incidence, or mortality patterns).

In this study, we applied our approach to calibrate a well-
established and used IBM of malaria dynamics called Open-
Malaria. Malaria IBMs in particular are often highly complex

(e.g., containing multiple sub-modules and many parameters),
consider a two-host system influenced by seasonal dynamics,
and often account for multifaceted within-host dynamics.
OpenMalaria features within-host parasite dynamics, the
progression of clinical disease, development of immunity, indi-
vidual care seeking behavior, vector dynamics and pharmaceu-
tical and non-pharmaceutical antimalarial interventions at vector
and human level (https://github.com/SwissTPH/openmalaria/
wiki)3,21,24. Previously, the model was calibrated using an asyn-
chronous genetic algorithm (GA) to fit 23 parameters to 11
objectives representing different epidemiological outcomes,
including age-specific prevalence and incidence patterns, age-
specific mortality rates and hospitalization rates3,21,24 (see Sup-
plementary Notes 1 and 2 for details on the calibration objectives
and data). However, the sampling-based nature and sequential
function evaluations of GAs can be too slow for high-dimensional
problems in irregular spaces where only a limited number of
function evaluations are possible and valleys of neutral or lower
fitness may be difficult to cross25,26.

Other solutions to fit similarly detailed IBMs of malaria employ
a combination of directly extracting parameter values from the
literature where information is available, and fitting the remain-
der using multi-stage, modular Bayesian Markov Chain Monte
Carlo (MCMC)-based methods27–32. For these models, multiple
fitting objectives are often not addressed simultaneously. Rather,
to our knowledge, most other malaria IBMs are divided into
functional modules (such as the human transmissibility model,
within-host parasite dynamics model, and the mosquito or vector
model), which are assumed to be influenced by only a limited
number of parameters each. The modules are then fit indepen-
dently and in a sequential manner28–32. Modular approaches
reduce the dimensionality of the problem, allowing for the use of
relatively straightforward MCMC algorithms. However, these
approaches struggle with efficiency in high dimensions as their
Markovian nature requires many sequential function evaluations
(104–107 even for simple models), driving up computing time and
computational requirements33. Additionally, whilst allowing for
the generation of posterior probability distributions of the
parameters31, the modular nature makes sequential approaches
generally unable to account for interdependencies between
parameters assigned to different modules and how their co-
variation may affect disease dynamics.

Progress in recent years on numerical methods for supervised,
regularized learning of smooth functions from discrete training data
allows us to revisit calibration of detailed mathematical models
using Bayesian methods for global optimization34. Current state-of-
the art calibration approaches for stochastic simulators are often
based around Kennedy and O’Hagan’s (KOH) approach35, where a
posterior distribution for the calibration parameters is derived
through a two-layer Bayesian approach involving cascade of sur-
rogates (usually Gaussian processes, GPs)36. A first GP is used to
model the systematic deviation between the simulator and the real
process it represents, while a second GP is used to emulate the
simulator37. However, this approach is computationally intense
when scaling to high-dimensional input spaces and multi-objective
optimization. A fully Bayesian KOH approach is likely computa-
tionally heavy37 for the efficient calibration of detailed malaria
simulators like OpenMalaria. Single-layer Bayesian optimization
with GPs on the other hand have gained popularity as an efficient
approach to tackle expensive optimization problems, for example in
hyperparameter search problems in machine learning38,39.
Assuming that the parameter-solution space exhibits a modest
degree of regularity, a prior distribution is defined over a compu-
tationally expensive objective function by the means of a light-
weight probabilistic emulator such as a GP. The constructed
emulator is sequentially refined by adaptively sampling the next
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training points based on acquisition functions derived from the
posterior distribution. The trained emulator model is used to make
predictions over the objective functions from the input space with
minimum evaluation of the expensive true (simulator) function.
Purely sampling-based iterative approaches (like genetic algo-
rithms) are usually limited to drawing sparse random samples from
proposals located nearby existing samples in the parameter space.
In contrast, the use of predictive emulators permits exploration of
the entire parameter space at higher resolution. This increases the
chances of finding the true global optimum of the complex objective
function in question and avoiding local optima.

Here, we use a single-layer Bayesian optimization approach to
solve the multidimensional, multi-objective calibration of Open-
Malaria (Fig. 1). Employing this single-layer Bayesian approach
further allows for the direct comparison to previous calibration
attempts for OpenMalaria as the objective functions are retained.
We prove the strength and versatility of our approach by opti-
mizing OpenMalaria’s 23 input parameters using real-world data
on 11 epidemiological outcomes in parallel. To emulate the
solution space, we explore and compare two prior distributions,
namely a GP emulator and a superlearning algorithm in form of a
GP stacked generalization (GPSG) emulator. We first use a GP
emulator to emulate the solution space. Whilst GP emulators
provide flexibility whilst retaining relative simplicity39 and have
been used previously as priors in Bayesian optimization38, stacked
generalization algorithms have not. They provide a potentially
attractive alternative as they have been shown to outperform GPs
and other machine learning algorithms in capturing complex
spaces14,40. The stacked generalization algorithm40 builds on the
idea of creating ensemble predictions from multiple learning
algorithms (level 0 learners). The cross-validated predictions of
the level 0 learners are incorporated into a general learning sys-
tem (level 1 meta-learner). This allows for the combination of
memory-efficient and probabilistic algorithms in order to reduce
computational time, whilst retaining probabilistic elements
required for adaptive sampling. Here, we showcase the efficiency
and speed of the Bayesian optimization calibration scheme and
propose a modus operandi to parameterize computationally
intensive or complex mathematical models that harvests recent
computational developments and is scalable to high dimensions
in multi-objective calibration.

Results
Calibration workflow. The developed model calibration work-
flow approach is summarized in Fig. 1a. In brief, goodness of fit
scores were first derived for randomly generated, initial parameter
sets. The goodness of fit scores were defined as a weighted sum of
the loss functions for each of 11 fitting objectives. These span
various epidemiological measures capturing the complexity and
heterogeneity of the malaria transmission dynamics, including
the age–prevalence and age–incidence relationships, and are
informed by a multitude of observational studies (see the
“Methods” section and Supplementary Note 2). Next, GP and
GPSG emulators were trained on the obtained set of scores and
used to approximate the relationship between parameter sets and
goodness of fit for each objective. After initial investigation of
different machine learning algorithms, the GPSG was constructed
using a bilayer neural net, multivariate adaptive regression splines
and random forest as level 0 learners and a heteroscedastic GP as
level 1 learner (Fig. 1c, d, see the “Methods” section and sup-
plement). Using a lower confidence bound acquisition function
based on the emulators’ point and uncertainty predictions for
proposed new candidate parameter sets, the most promising sets
were chosen. These parameter sets were simulated and added to
the database of simulations for the next iteration of the algorithm.

At the next iteration, the emulators are re-trained on the new
simulation database and re-evaluated (Fig. 1b). This iterative
process of simulation, training and emulation was repeated until a
memory limit of 1024 GB was hit. Approximately 130,000 simu-
lations were completed up to this point.

Algorithm performance (by iteration and time) and con-
vergence. Both emulators adequately captured the input–output
relationship of the calculated loss-functions from the simulator,
with better accuracy when close to minimal values of the
weighted sum of the loss functions, F (Fig. 2a). This is sufficient
as the aim of both emulators within the Bayesian optimization
framework is to find minimal loss function values rather than an
overall optimal predictive performance for all outcome values.
Examples of truth vs. predicted estimates on a 10% holdout set
are provided in Fig. 2a (additional plots for all objectives can be
found in Supplementary Figs. 2–5). A satisfactory fit of the
simulator was previously defined by a loss function value of
F ¼ 73:221. The previous best model fit derived using the GA had
a weighted sum of the loss functions of F ¼ 63:721. Satisfactory fit
was achieved by our approach in the first iteration of the GPSG-
based Bayesian optimization algorithm (GPSG-BO), and after six
iterations for the GP-based algorithm (GP-BO) (Fig. 2b). The
current best fit was approximately retrieved after six iterations for
the GPSG-BO algorithm and after nine iterations for GP-BO, and
was improved by both algorithms after 10 iterations (returning
final values F ¼ 58:3 for GP-BO and 59.6 for GPSG-BO). This
shows that the Bayesian optimization approach with either of our
emulators very quickly achieves a better simulator fit than
obtained with a classical GA approach that was previously
employed to calibrate OpenMalaria. Of the two emulators, the GP
approach finds a parameter set associated with a better overall
accuracy and the GPSG reaches satisfactory values faster (both in
terms of iterations and time). A likely explanation for this is that
the GPSG-BO is unable to propagate its full predictive variance
into the acquisition function. Only uncertainty stemming from
the level 1 probabilistic learner (GP) is therefore captured in the
final prediction. This leads to underestimation of the full pre-
dictive variance, and a bias towards exploitation in the early
stages of the GPSG-BO algorithm (as illustrated by early narrow
sampling, see Supplementary Figs. 6 and 7).

Figure 2c shows examples of the posterior estimates returned
by the optimization algorithms in context of the log prior
distributions for the parameters with the greatest effects on F (see
also Fig. 3c). All algorithms return parameter values within the
same range and (apart from parameter 4), clearly distinct from
the prior mean. The fact that highly similar parameter values are
identified by multiple algorithms strengthens confidence in the
final parameter sets yielded by the algorithms.

Optimal goodness of fit. The best fit parameter sets yielded by
our approach are provided in Supplementary Table 2. Impor-
tantly, after ten iterations of the GPSG-BO algorithm (~7 days),
and 20 iterations for the GP-BO algorithm (~12 days), both
approaches yielded similar values of the 11 objective loss func-
tions, along with similar weighted total loss function values, and
qualitatively similar visual fits and predicted trends to the
data (Fig. 3a, b and Supplementary material). We found this to be
an unexpectedly fast result of the two algorithms. Details of
the algorithm’s best fits to the disease and epidemiological
data are shown in Supplementary Figs. 8–18. Overall, several
objectives had visual and reduced loss-function improvements,
for example to the objective on the multiplicity of infection
(Fig. 3a).
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Fig. 1 Overview of model calibration framework by Bayesian optimization, acquisition function, and Gaussian process and machine learning emulators.
a General framework. The input parameter space is initially sampled in a space-filling manner, generating the initial core parameter sets (initialization). For
each candidate set, simulations are performed with the model, mirroring the studies that yielded the calibration data. The deviation between simulation
results and data is assessed, yielding goodness of fit scores for each parameter set. An emulator (c or d) is trained to capture the relationship between
parameter sets and goodness of fit and used to generate out-of-sample predictions. Based on these, the most promising additional parameter sets are
chosen (adaptive sampling by means of an acquisition function), evaluated, and added to the training set of simulations. Training and adaptive sampling are
repeated until the emulator converges and a decision on the parameter set yielding the best fit is made. b Acquisition function. The acquisition function
(black line) is used to determine new parameter space locations, θ. θ is a vector of input parameters (23-dimensional for the model described here) to be
evaluated during adaptive sampling (blue dot for previously evaluated locations, orange dot for new locations to be evaluated in the current iteration). It
incorporates both predictive uncertainty (blue shading) of the emulator and proximity to the minimum. c Gaussian process (GP) emulator. A
heteroscedastic Gaussian process is used to generate predictions on the loss functions, f̂GPðθÞ, for each input parameter set θ. d Gaussian process stacked
generalization (GPSG) emulator. Three machine learning algorithms (level 0 learners: bilayer neural net, multivariate adaptive regression splines and
random forest) are used to generate predictions on the individual objective loss functions f̂NN; f̂M and f̂RF (collectively f̂ML) at locations θ. These
predictions are inputs to a heteroscedastic (level 1 learner) which is used to generate the stacked learner predictions f̂GPSG and derive predictions on the
overall goodness of fit F̂GPSG.
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Impact/parameter sensitivity analysis and external validation.
An additional benefit of using emulators is the ability to under-
stand the outcome’s dependence on and sensitivity to the input
parameters. To identify the most influential parameters for each
of the 11 fitting objectives, we used the GP emulator trained on all
available training simulation results from the optimization pro-
cess (R2= 0.53 [objective 7]−0.92 [objective 3]) to conduct a
global sensitivity analysis by variance decomposition (here via
Sobol analysis41). Figure 3c shows Sobol total effect indices
quantifying the importance of individual parameters and
describing each parameter’s contributions to the outcome var-
iance for each objective. Our results indicate that most objectives
are influenced by multiple parameters from different groups,
albeit to varying degrees, thus highlighting the importance of

simultaneous multi-objective fitting. Clusters of influential para-
meters can be observed for most objectives; for example, para-
meters associated with incidence of acute disease influence
clinical incidence and pyrogenic threshold objectives. Some
parameters have strong influence on multiple objectives, such as
parameter 4, the critical value of cumulative number of infections
and influences immunity acquisition; and parameter 10, a factor
required to determine the pyrogenic threshold, which we find to
be a key parameter determining infections progressing to clinical
illness.

Algorithm validation. To test if our algorithms can recover a
known solution, the final parameter sets for both approaches were
used to generate synthetic field data sets, and our approaches were

Fig. 2 Emulator performance including predictions, convergence, and prior parameter distributions and posterior estimates. a Example of emulator
predictions vs. true values on a 10% holdout set. Predictions are shown for the final iteration of each optimization (orange dots for predictions in iteration
30 for GP-BO and red dots for predictions in iteration 23 for GPSG-BO). Here, emulator performances are shown for objective 4 (the age-dependent
multiplicity of infection, f4) and the weighted sum of loss functions over 11 objectives (FðθÞ). Plots for all other objectives are provided in the supplement.
BO Bayesian optimization, GP Gaussian process emulator, GPSG Gaussian process stacked generalization emulator. b Convergence of the weighted sum of
loss functions over 11 objectives (FðθÞ) associated with the current best fit parameter set by time in seconds. Satisfactory fit of OpenMalaria refers to a
weighted sum of loss functions value of 73.221. The previous best fit for OpenMalaria was achieved by the genetic algorithm and had a loss function value
of 63.7. Our approach yields a fit F of 58.2 for GP-BO in iteration 21 within 1.02e6 s (~12 days) and 59.6 for GPSG-BO in iteration 10 within 6.00e5 s
(~7 days). GP-BO Gaussian process emulator Bayesian optimization, GPSG-BO Gaussian process stacked generalization emulator Bayesian optimization.
c Example log prior parameter distributions (shown by the gray areas) and posterior estimates (vertical lines). The most influential parameters on the
weighted sum of the loss functions are shown here in this figure (most influential parameters shown in Fig. 3c). All other plots can be found in the
supplement. The posterior estimates for GP-BO (orange line) and GPSG-BO (red line) are shown in relation to those previously derived through
optimization using a genetic algorithm (GA-O, dashed black line) for parameters θ4;9�11;13�15 (numbers in the panel labels).
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subsequently applied to recover the known parameter set. For the
GP, 13 of the 23 parameters were recovered (Supplementary
Fig. 19a). Those not recovered largely represented parameters to
which the weighted loss function was found to be insensitive
(Fig. 3c). Thus, rather than showing a shortcoming of the

calibration algorithm, this suggests a potential for dimensionality
reduction of the simulator and re-evaluation of its structure.

Comparison of key epidemiological relationships and implications
for predictions. The new parameterizations for OpenMalaria were

Fig. 3 Exemplar plot of calibration and data for objective four “Multiplicity of infection”, with exemplar epidemiological predictions of prevalence vs.
EIR for the final calibration, and sensitivity of fitting objectives to each parameter. a Multiplicity of infection by age. Comparison of simulator goodness
of fit for objective 4, the age-specific multiplicity of infection (number of genetically distinct parasite strains concurrently present in one host). Simulations
were carried out for the same random seed for all parameterizations and for a population size of N= 5000. b Simulated epidemiological relationship
between transmission intensity (entomological inoculation rate, EIR) and P. falciparum prevalence rate (PfPR2–10). Simulated epidemiological relationship
between the transmission intensity (EIR in number of infectious bites per person per year) and infection prevalence in individuals aged 2–10 years
(PfPR2–10) under the parameterizations achieved by the different optimization algorithms. Lines show the mean across 100 random seed simulations for a
simulated population size N= 10,000 and the shaded area shows the minimum to maximum range. c Parameter effects on the objective variance. Using
the GP emulator, a global sensitivity analysis (Sobol analysis) was conducted. The tile shading shows the total effect indices for all objective functions and
parameters grouped by function. SEN Senegal, TZN Tanzania.
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further explored to assess key epidemiological relationships, in an
approach similar multiple-model comparison in Penny et al.
201612. We examined incidence and prevalence of disease, as well
as incidence of mortality for multiple archetypical settings, con-
sidering a range of perennial and seasonal transmission intensity
and patterns. The results are presented in Fig. 3b and Supple-
mentary Figs. 20–30. The new parameterizations result in
increased predicted incidence of severe episodes and decreased
prevalence for all transmission intensities (thus also slightly
modifying the prevalence–incidence relationship). While we
found that the overall implications for the other simulated epi-
demiological relationship were small, the differences in predic-
tions for severe disease may carry implications for public health
decision-making and warrant further investigations. We conclude
that our new parameterizations do not fundamentally bring into
question previous research conducted using OpenMalaria, but we
do suggest re-evaluation of adverse downstream events such as
severe disease and mortality.

Discussion
Calibrating IBMs can be challenging as many techniques struggle
with high dimensionality, or become infeasible with long model
simulation times and multiple calibration objectives. However,
ensuring adequate model fit to key data is vital, as this impacts the
weighting, we should give model predictions in the public health
decision-making process. The Bayesian optimization approaches
presented here provide fast solutions to calibrating IBMs while
improving model accuracy, and by extension prediction accuracy.

Using a Bayesian optimization approach, we calibrated a
detailed simulator of malaria transmission and epidemiology
dynamics with 23 input parameters simultaneously to 11 epide-
miological outcomes, including age-incidence and age-prevalence
patterns. The use of a probabilistic emulator to predict goodness-
of-fit, rather than conducting sparse sampling, allows for cheap
evaluation of the simulator at many locations and increases our
confidence that the final parameter set represents a global opti-
mum. Our approach provides a fast calibration whilst also pro-
viding a better fit compared with the previous parameterization.
We are further able to define formal endpoints to assess cali-
bration alongside visual confirmation of goodness of fit21,28, such
as the emulator’s predictive variance approaching the observed
simulator variance. The emulator’s ability to quantify the input
stochasticity of the simulator also enables simulation at small
population sizes, contributing to fast overall computation times.

Despite the demonstrated strong performance of stacked gen-
eralization in other contexts such as geospatial mapping14,40,42–45,
we found that using a superlearning emulator for Bayesian opti-
mization was not superior to traditional GP-based methods. In
our context using GPSG sped up convergence of the algorithm,
but both approaches, GP and GPSG, led to equally good fits. Each
approach does, however, have different properties with context-
dependent benefits: The dimensionality reduction provided by
GPSG approaches may lead to computational savings depending
on the level 0 and level 1 learners. At the same time, only level 1
learner uncertainty is propagated into the final objective function
predictions, which affects the efficacy of adaptive sampling and
may lead to overly exploitative behavior, where sampling close to
the point estimate of the predicted optimum is overemphasized,
rather than exploring the entire parameter space (see Supple-
mentary Tables S2 and S3 on selected points). On the other hand,
exploration/exploitation trade-offs for traditional GP-BO algo-
rithms have long been examined and no regret solutions have been
developed46.

The methodology presented here constitutes a highly flexible
framework for individual based model calibration and aligns with

the recent literature on using emulation in combination with
stochastic computer simulation experiments of infectious
diseases47. Both algorithms can be applied to other para-
meterization and optimization problems in disease modeling and
also in other modeling fields, such as physical or mobility and
transport models. Furthermore, in the GPSG approach, addi-
tional or alternative level 0 can be easily incorporated. Possible
extensions to our approach include combination with methods to
adaptively reduce the input space for constrained optimization
problems48, or other emulators may be chosen depending on the
application. For example, homoscedastic GPs, which are faster
than the heteroscedastic approach presented here, may be suffi-
cient for many applications (but not for our IBM in which het-
eroscedastic was required due to the stochastic nature of the
model). Alternatively, the computational power required by
neural net algorithms scales only linearly (compared with a
nominal cubic scaling for GPs) with the sample size, and we
envisage wide applications for neural net-based Bayesian opti-
mization in high dimensions. In our example, the bilayer neural
net algorithm completed training and prediction within seconds
whilst maintaining very high predictive performance. Unfortu-
nately, estimating the uncertainty required for good acquisition
functions is difficult in neural networks, but solutions are being
developed39,49. These promising approaches should be explored
as they become more widely available in high-level programming
languages. With the increased availability of code libraries and
algorithms, Bayesian optimization with a range of emulators is
also becoming easier to implement.

The probabilistic, emulator-based calibration approach is
accompanied by many benefits, including relatively quick global
sensitivity analysis. As explored in this work, GP-based methods
are easily coupled with sensitivity analyses, which provide
detailed insights into a model’s structural dependencies and the
sensitivity of its goodness of fit to the input parameters. To the
best of our knowledge, no other individual-based model calibra-
tion study has addressed this. In the case of malaria models, we
have shown the interdependence of all OpenMalaria model
components and a relative lack of modularity. In particular,
within-host immunity-related parameters were shown to influ-
ence all fitting objectives, including downstream events such as
severe disease and mortality when an infection progresses to
clinical disease. Thus, calibrating within-host immunity in the
absence of key epidemiology and population outcomes can lead
to suboptimal calibration and ultimate failure of the model to
adequately capture disease biology and epidemiology.

We have employed a different approach to calibrating Open-
Malaria compared with previous methods but reach broadly
similar comparisons to the natural history of disease. We also
attainted a slightly improved but similar goodness of fit, the main
benefit being improved fitting times and the ability to measure
parameter importance. Given the high number of influential
parameters for each epidemiological objective in our parameter
importance investigations, and the overlap between
parameter–objective associations, we argue that, where possible,
multi-objective fitting should be preferred over purely sequential
approaches. Our approach confirms that using a parallel
approach to parameterization rather than a modular, sequential,
one captures the joint effects of all parameters and ensures that all
outcomes are simultaneously accounted for. To the best of our
knowledge, no model of malaria transmission of comparable
complexity and a comparable number of fitting objectives was
simultaneously calibrated to all its fitting objectives. Disregarding
the joint influence of all parameters on the simulated outcomes
may negatively impact the accuracy of model predictions, in
particular on policy-relevant outcomes of severe disease and
mortality.
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Despite providing relatively fast calibration towards a better
fitting parameter set, several limitations remain in our work. We
have not systematically tested that a global optimum has been
reached in our approach, but assume it is close to a global
minimum for the current loss-functions defined, as further
iterations did not yield changes, and both the GP and GPSG
achieved similar weighted loss function and parameter sets. We
aimed to improve the algorithm to calibrate detailed IBM, but we
did not incorporate new data, which will be important moving
forward as our parameter importance and validation analysis
highlights several key epidemiological outcomes on severe disease
and mortality are sensitive to results.

The key limitations of Bayesian optimization, particularly
when using a GP emulator, are the high computational require-
ments in terms of memory and parallel computing nodes due to
increasing runtimes and cubically scaling memory requirements
of GPs. For this reason, we opted to not employ fully Bayesian
KOH methods, which would double the number of GPs that
would need to be run. Yet, memory limits may be reached before
the predictive variance approached its limit. Furthermore, we
chose an acquisition function with high probability to be no
regret46, but this likely overemphasizes exploration in the early
stages of the algorithm considering the dimensionality of the
problem and finite runtime. We opted here for pure exploitation
every five iterations, but a more formal optimization of the
acquisition function should be explored. The GPSG approach
presented here can partially alleviate this challenge, depending on
the choice of learning algorithms, but the iterative nature and
need for many simulations remain. Memory-saving and time-
saving extensions are thus worth exploring, such as incorporating
graphics processing unit (GPU) computing or adaptively con-
straining the prior parameter space, dimensionality reduction, or
addressing alternative acquisition functions. Additionally, as with
all calibration methodologies, many choices are left to the user,
such as the size of the initial set of simulations, the number of
points added per iteration, or the number of replicates simulated
at each location. There is no general solution to this as the
optimal choices are highly dependent on the problem at hand,
and we did not aim to optimize these. Performance might be
optimized further through a formal analysis of all these variables,
however the methodology here is already fast, effective, and
highly generalizable to different types of simulation models and
associated optimization problems. Improving the loss-functions
or employing alternative Pareto front efficiency algorithms was
not the focus of our current study but would be a natural
extension of our work, as would be alternative approaches to the
weighting of objectives, which remains a subjective component of
multi-objective optimization problems50.

A model’s calibration to known input data forms the backbone
of its predictions. The workflow presented here provides great
advances in the calibration of detailed mathematical models of
infectious diseases such as IBMs. Provided sufficient calibration
data to determine goodness-of-fit, our approach is easily adap-
table to any agent-based model and could become the modus
operandi for multi-objective, high-dimensional calibration of
stochastic disease simulators.

Methods
Preparation of calibration data and simulation experiments. Disease trans-
mission models generally have two types of parameter inputs: core parameters,
inherent to the disease and determining how its natural history is captured, and
simulation options characterizing the specific setting and the interventions in place
(Fig. 1a). The simulation options specify the simulation context such as population
demographics, transmission intensity, seasonality patterns, and interventions, and
typically vary depending on the simulation experiment. In contrast, the core
parameters determine how its epidemiology and aetiopathogenesis are captured.
These include parameters for the description of immunity (e.g., decay of maternal

protection), or for defining clinical severe episodes (e.g., parasitemia threshold). To
inform the estimation of core parameters, epidemiological data on the natural
history of malaria were extracted from published literature and collated in previous
calibrations of OpenMalaria3,21,24, which were re-used in this calibration round
and detailed in the Supplementary material. These include demographic data such
as age-stratified numbers of host individuals which are used to derive a range of
epidemiological outcomes such as age-specific prevalence and incidence patterns,
mortality rates, and hospitalization rates.

Site-specific OpenMalaria simulations were prepared, representing the studies
that yielded these epidemiological data in terms of transmission intensity, seasonal
patterns, vector species, intervention history, case management, and diagnostics24.
The mirroring of field study characteristics in the simulation options ensured that
any deviation between simulation outputs and data could be attributed to the core
parameters. Age-stratified simulation outputs to match to the data include
numbers of host individuals, patent infections, and administered treatments. A
summary of the data is provided in the Supplementary Note 2.

General Bayesian optimization framework with emulators. In our proposed
Bayesian optimization framework (Fig. 1), we evaluated the deviation between
simulation outputs and the epidemiological data by training probabilistic emulator
functions that approximate the relationship between core parameter sets and
goodness of fit. To test the optimization approach in this study we considered the
original goodness of fit metrics for OpenMalaria detailed in ref. 21 and in Sup-
plementary Note 2, which uses either residual sum of squares (RSS) or negative log-
likelihood functions depending on the epidemiological data for each objective21,24.
The objective function to be optimized is a weighted sum of the individual
objectives’ loss functions.

We adopted a Bayesian optimization framework where a probabilistic emulator
function is constructed to make predictions over the loss functions for each
objective from the input space, with a minimum amount of evaluations of the
(computationally expensive) simulator.

We compared two emulation approaches. Firstly, a heteroskedastic GP
emulator and secondly a stacked generalization emulator40. For approach 1 (GP-
BO), we fitted a heteroskedastic GP with the input noise modeled as another GP51

with a Matérn 5/2 kernel to account for the high variability in the parameter space
(Fig. 1c)38,52. For approach 2 (GPSG-BO), we selected a two-layer neural
network53–55, multivariate adaptive regression splines56, and a random forest
algorithm57,58 as level 0 learners.

With each iteration of the algorithm, the training was extended using adaptive
sampling based on an acquisition function (lower confidence bound) that accounts
for uncertainty and predicted proximity to the optimum of proposed locations
(Fig. 1b). As the emulator performance improves (as assessed by its predictive
performance on the test set) we gain confidence in the currently predicted
optimum.

Malaria transmission and disease simulator. We applied our calibration
approach to OpenMalaria (https://github.com/SwissTPH/openmalaria), an open-
source modeling platform of malaria epidemiology and control. It features several
related individual-based stochastic models of P. falciparum malaria transmission
and control. Overall, the OpenMalaria IBM consists of a model of malaria in
humans linked to a model of malaria in mosquitoes and accounts for individual
level heterogeneity in humans (in exposure, immunity, and clinical progression) as
well as aspects of vector ecology (e.g., seasonality and the mosquito feeding cycle).
Stochasticity is featured by including between- and within-host stochastic variation
in parasite densities with downstream effects on immunity24. OpenMalaria further
includes aspects of the health system context (e.g., treatment seeking behavior and
standard of care)3,24 with additional probabilistic elements such as treatment
seeking probabilities or the option for stochastic results of diagnostic tests. An
ensemble of OpenMalaria model alternative variants is available defined by dif-
ferent assumptions about immunity decay, within-host dynamics, heterogeneity
of transmission, along with more detailed sub-models that track parasite genetics,
and pharmacokinetic and pharmacodynamics. The models allow for the simulation
of interventions, such as the distribution of insecticide-treated nets (ITNs), vac-
cines, or reactive case detection59,60, in comparatively realistic settings. Full details
of the model and the history of calibration can be found in the original
publications3,21,24 and are summarized in Supplementary Notes 1 and 2. In our
application, we use the term simulator to refer to the OpenMalaria base model
variant21.

Calibrating OpenMalaria: loss functions and general approach
Aim. Let f ðθÞ denote a vector of loss functions obtained by calculating the goodness
of fit between simulation outputs and the real data (full details of loss function can
be found in supplementary Note 2). In order to ensure a good fit of the model, we
aim to find the parameter set θ that achieves the minimum of the weighted sum of
11 loss functions (corresponding to the 10 fitting objectives) FðθÞ ¼ ∑11

i¼1wif iðθÞ,
where f iðθÞ is the value of objective function i at θ and wi is the weight assigned to
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objective function i:

argmin
θ

∑
11

i¼1
wif iðθÞ

� �
ð1Þ

The weights are kept consistent with previous rounds of calibration and chosen
such that different epidemiological quantities contributed approximately equally to
FðθÞ (see Supplementary Note 2).

Step 1: Initialization
Let D ¼ 23 denote the number of dimensions of the input parameter space Θ and
W ¼ 11 the number of objective functions f iðθÞ; i ¼ 1; ¼ ; 11. Prior distributions
consistent with previous fitting runs21 were placed on the input parameters. As each
parameter is measured in different units, we sampled from the D-dimensional unit cube
Θ and converted these to quantiles of the prior distributions21 (Supplementary Note 2
and Supplementary Fig. 6). Previous research suggests that in high-dimensional spaces
quasi-Monte Carlo (qMC) sampling outperforms random or Latin Hypercube designs
for most function types and leads to faster rates of convergence61,62. We therefore used
Sobol sequences to sample 1000 initial locations from Θ. The GP can account for input
stochasticity of the simulator. For each sample, we simulated 2 random seeds at a
population size of 10,000 individuals. Additionally, 100 simulations were run at the
centroid location of the unit cube to gain information on the simulator noise. Using small
noisy simulations with small populations speeds up the fitting as the noisy simulations
are less computational expensive than larger population runs. Replicates were used to
detect signals in noisy settings and estimate the pure simulation variance51. The 2000
unique locations were randomly split into a training set (90%) and a test set (10%). All
simulator realizations at the centroid were added to the training set.

Step 2: Emulation
Emulator trainingEach emulator type for each objective function was trained in parallel
to learn the relationships between the normalized input space Θ; and the log-transform
of the objective functions f ðθÞ. In each dimension dD, the mean μd and standard
deviation σd of the training set were recorded, d ¼ 1; ¼ ; 23.
Posterior predictionWe randomly sampled 500,000 test locations in Θ from a multi-
variate normal distribution with mean θopt and covariance matrix Σ, where θopt is the
location of the current best location and Σ is determined based on previously sampled
locations, and scaled each dimension to mean μd and standard deviation σd . The trained
emulators were used to make predictions ^FðθÞ of the objective functions FðθÞ at the test
locations. Mean estimates, standard deviations, and nugget terms were recorded. The full
predictive variance at each location θΘ corresponds to the sum of the standard deviation
and nugget terms. From this, we derived the weighted sum

F̂ θð Þ ¼ ∑11
i¼1wif i θð Þ; ð2Þ

using weights w consistent with previous fitting runs63 with greater weighting for further
downstream objectives. The predicted weighted loss function at location θ was denoted
F̂ðθÞ with a predicted mean μ̂F ðθÞ and variance σ̂F ðθÞ. Every 15 iterations, we increase the
test location sample size to 5 million to achieve denser predictions.

Step 3: Acquisition
We chose the lower confidence bound (LCB) acquisition function to guide the search of
the global minimum64. Lower acquisition corresponds to potentially low values of the
weighted objective function, either because of a low mean prediction value or large
uncertainty65. From the prediction set at iteration t, we sample without replacement 250
new locations

θ ¼ argminθfμ̂F θ;tð Þ � ffiffiffiffiffiffiffi
ντt

p
σ̂t θ; tð Þg ð3Þ

with the hyperparameter v= 1 and

τt ¼ 2 logðTD=2þ2
t π=3∂Þ; ð4Þ

where Tt is the number of previous unique realizations of the simulator at iteration t, and
δ ¼ 0:01 is a hyperparameter46. We choose this method as with high probability it is no
regret46,65. With increasing iterations, confidence bound-based methods naturally tran-
sition from mainly exploration to exploitation of the current estimated minimum. In
addition to this, we force exploitation every 10 iterations by setting Tt ¼ 0.

Step 4: Simulate
The simulator was evaluated at locations identified in step 3 and the realizations were
added to the training set. Steps 2–4 were run iteratively. The Euclidian distance between
locations of current best realizations was recorded.

Step 5: Convergence
Convergence was defined as no improvement in the best realization, argminF F.

Emulator definition. We compared two emulation approaches. Firstly, a hetero-
skedastic GP emulator and secondly a stacked generalization emulator40 using a

two-layer neural net, multivariate adaptive regression splines (MARS) and a ran-
dom forest as level 0 learners and a heteroskedastic GP as level 1 learner:

Heteroskedastic Gaussian Process (hetGP)66. We fitted a GP with the input noise
modeled as another GP51. After initial exploration of different kernels, we chose a
Matérn 5/2 kernel to account for the high variability in the parameter space. A
Matérn 3/2 correlation function was also tested performed equally. Each time the
model was built (for each objective at each iteration), its likelihood was compared
to that of a homoscedastic GP and the latter was chosen if its likelihood was higher.
This resulted in a highly flexible approach, choosing the best option for the
current task.

GP stacked generalization. Stacked generalization was first proposed by Wolpert
199240 and builds on the idea of creating ensemble predictions from multiple
learning algorithms (level 0 learners). In superlearning, the cross-validated pre-
dictions of the level 0 learners are fed into a level 1 meta-learner. We compared the
10-fold cross-validated predictive performance of twelve machine learning algo-
rithms on the test set. All algorithms were accessed through the mlr package in R
version 2.17.067. We compared two neural network algorithms (brnn54 for a two-
layer neural network and nnet for a single-hidden-layer neural network68), five
regression algorithms (cvglmnet69 for a generalized linear model with LASSO or
Elasticnet Regularization and 10-fold cross validated lambda, glmboost70 for a
boosted generalized linear model, glmnet69 for a regular GLM with Lasso or
Elasticnet regularization, mars for multivariate adaptive regression splines71, and
cubist for rule-and instance-based regression modeling72), three random forest
algorithms (randomForest58, randomForestSRC73, and ranger74), and a tree-like
node harvesting algorithm (nodeHarvest75). Extreme gradient boosting and sup-
port vector regression were also tested but excluded from the comparison due to its
long runtime. Their performance was compared with regards to runtimes, and
correlation coefficients between predictions on the test set and the true values.
Based on these, we selected the two-layer neural network (brnn)55, multivariate
adaptive regression spline (mars)71, and random forest (randomForest58) algo-
rithms. This ensemble of machine learning models constituted the level 0 learners
and was fitted to the initialization set. Out-of-sample predictions from a 10-fold
cross validation of each observation were used to fit the level 1 heteroskedastic GP.
As in approach 1, we opted for a Matérn 5/2 kernel and retained the option of
changing to a homoscedastic model where necessary.

Emulator performance. We ascertained that both emulators captured the input-
output relationship of the simulator by tracking the correlation between true values
f and predicted values f̂ on the holdout set of 10% of initial simulations with each
iteration (truth vs. predicted R2= 0.51–0.89 for GP vs. 0.37–0.77 for GPSG after
initialization, see Supplementary Table 1). Transition from exploration to exploi-
tation during adaptive sampling was tracked by recording the distribution of points
selected during adaptive sampling in each iteration (Supplementary Figs. 2 and 3).

Sensitivity analysis. A global sensitivity analysis was conducted on a hetero-
skedastic GP model with Matérn 5/2 kernel that was trained on all training
simulation outputs (n= 5400) from the fitting process. We used the Jansen method
of Monte Carlo estimation of Sobol’ sensitivity indices for variance
decomposition76,77 with 20,000 sample points and 1000 bootstrap replicates. Sobol’
indices were calculated for all loss functions f as well as for their weighted sum F
and in all dimensions. Whilst keeping the number of sample points to as low as
possible for computational reasons, we ascertained that first-order indices summed
to 1 and total effects >1. We further ensured that the overall results of the Sobol’
analysis were consistent with the results of other global sensitivity analyses, namely
the relative parameter importance derived from training a random forest (Sup-
plementary Fig. 32).

Synthetic data validation. Synthetic field data was generated by forward simu-
lation using the final parameter sets from each optimization process. The two
optimization algorithms were run anew using the respectively generated synthetic
data to calculate the goodness of fit statistics. The parameter sets retrieved by the
validation were compared against the parameterization yielded by the optimization
process.

Epidemiological outcome comparison. We conducted a small experiment to
compare key epidemiological outcomes from the new parameterizations with the
original model and that detail in a four malaria model comparison in Penny et al.
201612. We simulated malaria in archetypical transmission and seasonality settings
using the different parameterizations. The experiments were set up in a full-
factorial fashion, considering the simulation options described in Table 1. Mon-
itored outcomes were the incidence of uncomplicated, severe disease, hospitaliza-
tions, and indirect and direct malaria mortality over time and by age, prevalence
over time and by age, the prevalence–incidence relationship, and the
EIR–prevalence relationship. Simulations were conducted for a population of
10,000 individuals over 10 years.
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Software. Consistent with previous calibration work, we used OpenMalaria ver-
sion 35, an open-source simulator written in C++ and further detailed in full in
the supplement, as well as OpenMalaria wiki (https://github.com/SwissTPH/
openmalaria/wiki) or in the original publications3,21,24. Calibration was performed
using R 3.6.0. For the machine learning processes, all algorithms were accessed
through the mlr package version 2.17.067. The heteroskedastic GP utilized the
hetGP package under version 1.1.266. The sensitivity analysis was conducted using
the soboljansen function of the sensitivity package version 1.21.0 in R78. All
algorithms were adapted to the operating system (CentOS 7.5.1804) and compu-
tational resources available at the University of Basel Center for Scientific Com-
puting, SciCORE, which uses a Slurm queueing system. The full algorithm code is
available on GitHub and deposited in the zendo database under accession code
https://doi.org/10.5281/zenodo.5595100 and can be easily adapted to calibrate any
simulation model. The number of input parameters and objective functions are
flexible. Thus, to adapt the code to other simulators, code should be updated to run
the respective model simulator, and tailored to user’s operating system. Further
requirements to adapt the workflow are sufficient calibration data, and a per-
objective goodness-of-fit metric.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All calibration data are detailed in ref. 24. The data used for model fitting are available
on GitHub and deposited in the zendo database under accession code https://doi.org/
10.5281/zenodo.5595100. The data generated in this study and plotted in the main
manuscript or supplement are publicly available and have been deposited in the zendo
database under accession code https://doi.org/10.5281/zenodo.5552279.

Code availability
Code is publicly available on GitHub and deposited in the zendo database under
accession code https://doi.org/10.5281/zenodo.5595100.
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