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Abstract 
In modern data analysis, nonparametric measures of discrepancies 
between random variables are particularly important. The subject is 
well-studied in the frequentist literature, while the development in the 
Bayesian setting is limited where applications are often restricted to 
univariate cases. Here, we propose a Bayesian kernel two-sample 
testing procedure based on modelling the difference between kernel 
mean embeddings in the reproducing kernel Hilbert space utilising the 
framework established by Flaxman et al. (2016). The use of kernel 
methods enables its application to random variables in generic 
domains beyond the multivariate Euclidean spaces. The proposed 
procedure results in a posterior inference scheme that allows an 
automatic selection of the kernel parameters relevant to the problem 
at hand. In a series of synthetic experiments and two real data 
experiments (i.e. testing network heterogeneity from high-dimensional 
data and six-membered monocyclic ring conformation comparison), 
we illustrate the advantages of our approach. 

Keywords: Hypothesis testing, kernel mean embeddings, Bayes factor 

1 Introduction 

Nonparametric two-sample testing is an important branch of hypothesis testing with 

a wide range of applications. For a paired two-sample testing problem, the data set 
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under consideration is 1 1
{ { } ,{ } }

n n

i i j j
x y

 


, where 

. . .

1
{ } ~

i i d
n

i i X
x P

  and 

. . .

1
{ } ~

i i d
n

j j Y
y P

 . We 

wish to evaluate the evidence for the competing hypotheses 

0 1 X Y
: v.s. H : P = P

X Y
H P P    (1) 

with the probability distributions PX and PY unknown. In this work, we will pursue a 

Bayesian perspective to this problem. In this perspective, hypotheses can be 

formulated as models and hypothesis testing can therefore be viewed as a form of 

model selection, i.e. to identify which model is strongly supported by the data 

(Jefferys and Berger, 1992). 

The classical Bayesian formulation of the two-sample testing problem is in terms of 

the Bayes factor (Jeffreys, 1935, 1961; Kass and Raftery, 1995). For any given data 

set  and two competing models/hypotheses H0 and H1, the Bayes factor is 

represented as the likelihood ratio of the samples given that they were generated 

from the same distribution (null hypothesis) to that they were generated from 

different distributions (alternative hypothesis): 

0

1

( | )
.

( | )

P H
B F

P H
  (2) 

The Bayes factor can be interpreted as the posterior odds on the null distribution 

when the prior probability on the null distribution is 

1

2  (Kass and Raftery, 1995). If 

the posterior probability of the model given the data is of interest, it can be easily 

written in terms of the Bayes factor: 

0
( | )

1

B F
P H

B F



 (3) 

1 0

1
( | ) 1 ( | ) .

1
P H P H

B F
  


 (4) 

When the prior probabilities on the models are not equal, the posterior probability of 

the null model can be written as: 
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0

1

0

( | )
( )

( )

B F
P H

P H
B F

P H





 (5) 

where 0
( )P H

 and 1
( )P H

 denote respectively the prior for models H0 and H1. 

Instead of considering the observations directly, we propose to work with the 

difference between the two distributions’ mean embeddings in the RKHS. In the 

kernel literature, this quantity is proportional to the witness function of the 

(frequentist) two-sample test statistic known as Maximum Mean Discrepancy 

(Gretton et al., 2012a, Definition 2). 

Inspired by the work of Flaxman et al. (2016) where the kernel mean embedding is 

modelled with a Gaussian process prior and a normal likelihood, we use a similar 

model for the difference between the kernel mean embeddings. Intuitively, to model 

the kernel mean embedding for X (or for Y) directly with a GP prior is not ideal as 

kernel mean embeddings for a non-negative kernel (like widely used Gaussian or 

Matérn kernels) are never negative, but the draws from any GP prior can be 

negative. Hence, it seems more suitable to place a prior directly on the difference 

between the mean embeddings – as we do in this contribution. A further advantage 

of modelling the difference directly is that we will no longer require the independence 

assumption between the random variables X and Y. Such assumption is common in 

two-sample testing literature both in the frequentist and the Bayesian setting. In 

particular, a frequentist two-sample test based on MMD requires such an 

assumption. The remainder of the paper is structured as follows. Section 2 

overviews existing approaches to Bayesian nonparametric two-sample testing. 

Section 3 recaps the formalism behind the main ingredient of our test, embeddings 

of distributions into RKHS. Section 4 introduces the testing methodology, defining 

the relevant quantities of interest and detailing their distributions under the two 

hypotheses, and finally giving a Metropolis Hasting within Gibbs type of approach for 

inferring the posterior distribution of hyperparameters θ and that of the model given 

the observed data. Section 5 studies the performance of the proposed method on 

various synthetic data experiments. Section 6 presents the results on two real data 

experiments where we test network heterogeneity from high dimensional data in the 
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first experiment and compare six-membered monocyclic ring conformation under two 

different conditions in the second experiment. 

2 Related Work 

Bayesian parametric hypothesis testing, i.e. when the probability distributions PX and 

PY are of known form, is well developed and we refer the readers to Bernardo and 

Smith (2000) for a clear description of the setting. 

Most Bayesian nonparametric approaches for hypothesis testing have been focusing 

on testing a parametric model versus a nonparametric one and a detailed summary 

has been provided by Holmes et al. (2015). Chen and Hanson (2014) and Holmes 

et al. (2015) concurrently proposed Bayesian nonparametric two-sample tests using 

Pólya tree priors for both the distributions of the pooled samples ,X Y
P

 under the null 

and for the individual distributions PX and PY under the alternative. The two 

approaches mainly differ in terms of the specific modelling choices in these priors – 

while Chen and Hanson (2014) used a truncated Pólya tree, Holmes et al. (2015) 

showed that the computation of the Bayes Factor could be done analytically with a 

non-truncated Pólya tree – and their centering distributions. Note that the method 

proposed by Holmes et al. (2015) is restricted to one-dimensional data whereas the 

method by Chen and Hanson (2014) is described in a multivariate setting. 

Borgwardt and Ghahramani (2009) also discuss a nonparametric test using Dirichlet 

process mixture models (DPMM) and exponential families. However, to the best of 

our knowledge, this test does not appear to lend itself to a practicable 

implementation, due to intractability of marginalizing the Dirichlet process. 

Utilising the Bayes factor as a model comparison tool, Stegle et al. (2010) used 

Gaussian processes (GP) to model the probability of the observed data under each 

model in the problem of testing whether a gene is differentially expressed. The 

values of the hyperparameters (i.e. the kernel hyperparameters and the variance of 

the noise distribution of the GP model) were set to those that maximise the log 

posterior distribution of the hyperparameters. While this approach is for detecting the 

genes that are differentially expressed, they proposed a mixture type of approach for 

detecting the intervals of the time series such that the effect is present. A binary 
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switch variable was introduced at every observation time point to determine the 

model that describes the expression level at that time point. Posterior inference of 

such variable is achieved through variational approximation. 

Bayesian nonparametric approaches have also been proposed for independence 

testing. In particular, Filippi and Holmes (2016) extended the work by Holmes 

et al. (2015) to perform independence testing using Pólya tree priors while Filippi 

et al. (2016) proposed to model the probability distributions using Dirichlet process 

mixture models (DPMM) with Gaussian distributions for pairwise dependency 

detection in large multivariate datasets. Though in theory the Bayes factor with 

DPMM on the unknown densities can be computed via the marginal likelihood, this 

requires integrating over infinite dimensional parameter space which results in an 

intractable form (Filippi et al., 2016). Hence the problem was reformulated using a 

mixture modelling approach proposed by Kamary et al. (2014) where hypotheses are 

the components of a mixture model and the posterior distribution of the mixing 

proportion is the outcome of the test. While in this paper we focus on the classical 

Bayes factor formalism, it is an interesting direction of future work to study its 

extensions to the muxture modelling framework. 

3 Kernel Mean Embeddings 

Before introducing the proposed model, we will first review the notion of a 

reproducing kernel Hilbert space (RKHS) and the corresponding reproducing kernel. 

This will enable us to introduce the key concept for our method – the kernel mean 

embedding. For more detailed treatment of the subject, we refer the readers to 

Berlinet and Thomas-Agnan (2004); Steinwart and 

Christmann (2008); Sriperumbudur (2010). 

Definition 3.1. [Steinwart and Christmann, 2008, Definition 4.18] Let  be any 

topological space on which Borel measures can be defined. Let  be a Hilbert 

space of real-valued functions defined on . A function :k    is called a 

reproducing kernel of  if: 

1. , ( · , )z k z   , 

2. 
, , , (·, ) ( ).z f f k z f z      

 (The Reproducing Property) 

Acc
ep

te
d 

M
an

us
cr

ipt



If  has a reproducing kernel, it is called a Reproducing Kernel Hilbert Space 

(RKHS). 

The element ( · , )k z   is known as the canonical feature of z. Reproducing kernels 

can be defined on graphs, text, images, strings, probability distributions as well as 

Euclidean domains (Shawe-Taylor and Cristianini, 2004). For Euclidean domain 
d

, 

the Gaussian RBF kernel 

2

2

1
( , ) ex p

2
k x y x y



 
   

 
 with lengthscale 0   is an 

example of a reproducing kernel. 

Probability distributions can be represented as elements of a RKHS and they are 

known as the kernel mean embeddings (Berlinet and Thomas-Agnan, 2004; Smola 

et al., 2007). This setting has been particularly useful in the (frequentist) 

nonparametric two-sample testing framework (Borgwardt et al., 2006; Gretton 

et al., 2012a) since discrepancies between two distributions can be written succinctly 

as the square Hilbert-Schmidt norm between their respective kernel mean 

embeddings. More formally, kernel mean embeddings can be defined as follows. 

Definition 3.2. Let k be a kernel on , and 
1
( )




 with 
1
( )

  denoting the set 

of Borel probability measures on . The kernel embedding of probability measure ν 

into the RKHS k  is 
( )

k k
  

 such that 

( ) ( ) , ( ) , .
k

k k
f z d z f f        (6) 

In other words, the kernel mean embedding can be written as 
( ) ( · , ) ( )

k
k z d z    , 

i.e. any probability measure is mapped to the corresponding expectation of the 

canonical feature map ( · , )k z  through the kernel mean embedding. When the kernel 

k is measureable on  and 
( ( , ) )k z z  

, the existence of the kernel mean 

embedding is guaranteed (Gretton et al., 2012a, Lemma 3). Further, Fukumizu 

et al. (2008) showed that when the corresponding kernels are characteristic, the 

mean embedding maps are injective and hence preserve all information of the 

probability measure. An example of a characteristic kernel is the Gaussian kernel on 

the entire domain of .
d
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4 Proposed Method 

Consider a paired data set 1
{ ( , )}

n

i i i
x y




 with 
,

i i
x y 

 for some generic domains 

. Further, let 

. . .

~

i i d

i X
x P

 and 

. . .

~

i i d

i Y
y P

 for some unknown distributions PX and PY. Let 

(·,·)k
  be a positive definite kernel parameterised by θ, with the corresponding 

reproducing kernel Hilbert space . 

We wish to evaluate the evidence for the competing hypotheses 

0 1 X Y
: v.s. H : P = P .

X Y
H P P   (7) 

In this work, we develop a Bayesian two-sample test based on the difference 

between the kernel mean embeddings. We consider the empirical estimate of such 

difference evaluated at a set of locations and propose a Bayesian inference scheme 

so that the relative evidence in favour of H0 and H1 is quantified. The proposed test is 

conditional on the choice of the family of kernels parameterised by θ. We focus on 

working with the Gaussian RBF kernel in this contribution, but other kernels are 

readily applicable to the framework developed here. To emphasize the dependence 

of the kernel function on the lengthscale parameter θ, we write 
(·,·)k

 . Denote the 

respective kernel mean embeddings for X and Y as 

( (· , )) (· , ) ( ) ,
X X X

k X k x P d x
 

     (8) 

( (· , )) (· , ) ( ) ,
Y Y Y

k Y k y P d y
 

     (9) 

with the empirical estimators and the corresponding estimates denoted by 

1 1

1 1
ˆ ˆ(· , ) an d (·, ) ,

n n

X i x i

i i

k X k x
n n

 
 

 

    (10) 

1 1

1 1
ˆ ˆ(· , ) an d (·, ) .

n n

Y i y i

i i

k Y k y
n n

 
 

 

    (11) 

We denote the witness function up to proportionality as X Y
   

, which is simply 

the difference between the kernel mean embeddings. Under the null hypothesis, the 

two distributions PX and PY are the same and with the use of characteristic kernels, 
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all information of the probability distribution is preserved through the kernel mean 

embeddings μX and μY. Hence, the null hypothesis is equivalent to 0   and the 

alternative is equivalent to 0  . 

Given a set of evaluation points 1
{ }

s

i i
z


 z

, we define the evaluation of δ at z as 

( ) ( ) ( )
i X i Y i

z z z     (12) 

( ( , )) ( ( , )), 1, ,
X i Y i

k z X k z Y i s
 

     (13) 

1
( ) ( ( ) , ... ( ))) .

s

s
z z   z   (14) 

Such evaluations ( ) z  will act as the quantity of interest of our proposed model, 

while the empirical estimate of ( ) z  on a given set of data 1
{ ( , )}

n

i i i
x y




 will be 

regarded as the observations. This will be made precise in the following sections. 

Ideally, half of the evaluation points 1
{ }

s

i i
z


z

 are sampled from PX, while the other 

half are sampled from PY. When direct sampling is not possible (e.g. when we have 

access to the distributions only through samples), the evaluation points are 

subsampled from the given data set. We define the s-dimensional witness vector Δ 

as the empirical estimate of ( ) z : 

1
ˆ ˆ{ ( ) ( )}

s

x j y j j
z z 


     (15) 

1 1 1

1 1
( , ) ( , )

s
n n

i j i j

i i j

k x z k y z
n n

 

  

 
  
 

   (16) 

1 1

1
( ( , ) ( , ) ) .

s
n

i j i j

i j

k x z k y z
n

 

 

 
  
 

  (17) 

and the corresponding random variable as 1
ˆ ˆ: { ( ) ( )} .

s

X Y X j Y j j
z z 


  

 

Following the classical Bayesian two-sample testing framework, we will quantify the 

evidence in favour of the two samples coming from the same distribution vs different 

distributions through Bayes factor: 

Acc
ep

te
d 

M
an

us
cr

ipt



0

1

( | , )

( | , )

P H
B F

P H










  (18) 

where 0
( | , )P H 

 and 1
( | , )P H 

 are the marginal likelihood of Δ under each 

hypothesis for a given kernel hyperparameter θ. 

In sections 4.1 and 4.2, we describe how to compute 0
( | , )P H 

 and 1
( | , )P H 

 for 

fixed kernel hyperparameter θ. Similarly to the Bayesian kernel embeddings 

approach of Flaxman et al. (2016), we propose to model δ with a Gaussian process 

(GP) prior under the alternative model. Assuming a Gaussian noise model, we derive 

the marginal likelihood of Δ for fixed kernel hyperparameter θ. Under the null 

hypothesis, the model simplifies significantly due to 0  , so we only need to pose a 

Gaussian noise model for |  . 

When the kernel hyperparameter is unknown, the framework of Flaxman 

et al. (2016) enables the derivation of the posterior distribution of the hyperparameter 

given the observations. This, however, requires heavy computation burden due to 

the need to compute the marginal likelihood of the dataset 1
{ ( , )} |

n

i i i
x y 

 . Hence, we 

propose an alternative formulation of the likelihood utilising the Kronecker product 

structure of our problem, as presented in the Supplementary Material. 

4.1 Alternative Model 

Under the alternative hypothesis, 
0

X Y
     . We propose to model the unknown 

quantity δ using a Gaussian Process (GP) prior. Draws from a naively defined prior 

(0 , (·,·))k
  would almost surely fall outside of the RKHS  that corresponds to 

(·,·)k
  (Wahba, 1990). Hence, Flaxman et al. (2016) proposed to define the GP prior 

as 

| ~ (0 , (., .))r


   (19) 

with the covariance operator 
(., .)r

  defined as 

( , ) : ( , ) ( , ) ( )r z z k z u k u z d u
  

    (20) 
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where ν is any finite measure on . Using results from Lukić and Beder (2001) and 

Theorem 4.27 of Steinwart and Christmann (2008), Flaxman et al. (2016) showed 

that such choice of 
r
  ensures that    with probability 1 by the nuclear 

dominance for 
k
  over 

r
  for any stationary kernel 

k
  and more generally 

( , ) ( )k x x d x


   . Intuitively, the new covariance operator 
r
  is a smoother version 

of 
k
  since it is the convolution of 

k
  with itself with respect to a finite measure ν 

(Flaxman et al., 2016). For our particular choice of 
k
  being a Gaussian RBF kernel 

on 
D

 , Flaxman et al. (2016) showed (in A.3) that the covariance function 
r
  of 

square exponential kernels 

1
1

( , ) ex p ( ) ( )
2

k x y x y x y
 

 
     

 
 (21) 

with ,
D

x y   and diagonal covariance 
(1 ) ( )

( , , )
D

I I


    
 can be written as 

1 / 2

/ 2 ( ) 1

1

1
( , ) ex p ( ) ( 2 ) ( ) .

2

D

D d

D

d

r x y x y I x y


  




   
     

  
  (22) 

When 
(1 ) ( )D

     , the above can be further simplified as 

/ 2 / 2
1

( , ) ex p ( ) ( ) .
4

D D
r x y x y x y


 


 
    

 
  (23) 

We will use this form of the covariance function in our experiments. 

Given the set of evaluation points 1
{ }

s

j j
z

 , the prior translates into a s-dimensional 

multivariate Gaussian distribution 

( ) | ~ (0 , )N R


 z   (24) 

with 
[ ] ( , )

i j i j
R r z z

 


. We link the empirical estimate Δ with the true differences δ 

evaluated at this set of evaluation points through a Gaussian likelihood of the model. 

This is an approximation of the true likelihood which hinges on the common “

Gaussianity in the feature space” assumption in the kernel method literature and is 

also utilised in Flaxman et al. (2016). We write it as 
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1

1
| , ~ ([ ( ) , . . . , ( ) ] , ) .

s
z z

n


      (25) 

We details two ways to estimate 


 empirically in the Supplementary Material. The 

constant 

1

n  is for notational convenience to be seen later. Integrating out the prior 

distribution of δ, we obtain the marginal likelihood 

1
| ~ (0 , ) .

s
R

n
 

    (26) 

When the kernel hyperparameter θ is unknown, we use the framework of Flaxman 

et al. (2016) to derive the posterior distribution of θ given the observation. This 

requires access to the marginal pseudolikelihood 1
( | { ( , )}

n

i i i
p x y

 . The term “

pseudolikelihood” is used since it relies on the evaluation of the empirical embedding 

at a finite set of inducing points and hence it is an approximation to the likelihood of 

the infinite dimensional empirical embedding (Flaxman et al., 2016). The derivation 

of the marginal pseudolikelihood is detailed in the Supplementary Material. 

Although the derivations presented in this work follow essentially the same steps as 

Flaxman et al. (2016), it is important to note that different from Flaxman et al. (2016), 

we model the difference between the empirical mean embeddings of the two 

distributions of interest rather than the embedding of a single distribution. This has 

several implications. As discussed in Flaxman et al. (2016), the marginal 

pseudolikelihood involves the computation of the inverse and the log determinant of 

an ns-dimensional matrix. A naive direct implementation would require a prohibitive 

computation of 
3 3

( ).n s  Since we consider the difference between the empirical 

mean embeddings, the efficient computation utilising eigendecompositions of the 

relevant matrices (Flaxman et al., 2016, A.4) cannot be applied directly. Fortunately, 

the special form of the corresponding ns × ns covariance matrix allows faster 

computation following Kronecker product algebra, the applications of matrix 

determinant lemma and Woodbury identity. This is detailed in the Supplementary 

Material. Utilising the proposed efficient computation, the log marginal 

pseudolikelihood can be written as 
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 

1

1

1 1

1

1 1
lo g ({ ( , )} | ) lo g d e t( ) ( 1) lo g d e t( )

2 2

1 1

2

1
lo g d e t( ( , ) ( , ) ) .

2

n

i i i

n

i i i i

i

p x y n R n

T r n R G G R G H G
n

J x y J x y

  

         

 






 



      

  
         

  

 

  (27) 

4.2 Null Model 

In the null model, calculations simplify, as we assume that δ = 0 holds. We propose 

to model the data directly with a Gaussian noise model, i.e. 

1
| ~ (0 , ) ,

n


   (28) 

where as before, we rewrite the covariance matrix as 

1

n




. In the Supplementary 

Material, we detail the derivation of the marginal pseudolikelihood in the null model 

and show that it can be written as 

1

1

1

lo g ({ , } | ) 0 .5 lo g (d e t( )) 0 .5T r ( ) lo gvo l( ( , )) ,

n

n

i i i i i

i

p x y n G G J x y
  








         (29) 

which avoids the prohibitive costs 
3 3

( )n s  of a naive evaluation. 

4.3 Posterior Inference 

When the kernel hyperparameter parameter θ is fixed, the computation of the 

posterior distribution 1
( | )P H

 is straightforward. However, a wrong choice of the 

kernel hyperparameter can hurt the performance of the proposed Bayesian test 

(examples of which are presented in the Supplementary Material). Therefore we 

treat the parameter θ in a Bayesian manner and assign a Gamma(2,2) prior (under 

both model). We propose to use a Metropolis Hasting within Gibbs type of approach 

for the joint posterior inference of 0 1
{ , }M H H

 and θ. In other words: We sample 

from ( , | )p M   by sampling from ( | , )p M  and ( | , )p M   iteratively. We can 

sample from ( | , ) ( | , ) ( )p M p M p    using No U-Turn Hamiltonian Monte Carlo 

(HMC) (Hoffman et al., 2014), since we know the marginal pseudolikelihood under 

H0 and H1 up to a constant (cp. section 4.1 and 4.2). To sample from ( | , )p M  , 
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recall the relationship between Bayes factor and the posterior distribution of the null 

and alternative model respectively 

1

0

1
( | , ) ,

1

( | , )
1

p H
B F

B F
p H

B F

















 

under the assumption that 0 1
( ) ( )P H P H

. We present the pseudocode of our 

posterior inference procedure in Algorithm 1. The time complexity of Algorithm 1 is 

given as 
3 2 2 2

( )( )m n s s n D s n s  
. 

We observe from our experiments, that increasing the number of HMC steps inside 

Gibbs n  improves the posterior convergence of the chain. The posterior marginal 

probability ( | )P   is approximated by the posterior MCMC samples 1
{ , , }

m
 

. 

Similarly, the posterior marginal probability 1
( | )P H

 can be estimated by the 

proportion of M = H1 in all the samples 0
{ , , } .

m
M M

 

Data: A paired sample 1
{ , }

n

i i i
x y




; The number of inducing points m; The number 

of simulations m ; The number of HMC steps n . 

Output: A sample 1
{ , }

m

i i i
M

  from the posterior distribution of ( , | )p M . 

1 Initialise θ0 = Median heuristic on the set 1 1
{ , ..., , , ..., }

n n
x x y y

; 

2 Compute 0

B F
  and let M0 = H0 with probability 0

1
(1 )B F






 and M0 = H1 otherwise; 

3 for 1i   to m  do 

4 Simulate a chain 1
{ , ... }

n
 

 from 1
( | , )

i
p M

  using NUTS in Stan (Carpenter 

et al., 2017); 

5 Set i n
 

; 

6 Compute i

B F
 ; 
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7 Let 0i
M H

 with probability 
1

(1 )
i

B F





 and 1i
M H

 otherwise. 

8 end 

Algorithm 1: Posterior inference of the kernel hyperparameter θ and the hypothesis 

0 1
{ , }M H H

. 

5 Synthetic Data Experiments 

In this section, we investigate the performance of the proposed posterior inference 

scheme for M and θ on synthetic data experiments. For each of the synthetic 

experiments, we generate 100 independent data sets of size n. We examine the 

distribution of the probability of the alternative hypothesis (i.e. 1
( | )p H

) while 

varying the number of observed data points n. The number of evaluation points is 

fixed at s = 40, with half sampled from the distribution of X and the other half 

sampled from the distribution of Y. 

For the posterior sampling, we run the algorithm for 2 0 0 0m  . The initial 500 

samples are discarded as burn-in and the thinning factor is 2. For every Gibbs 

sampling step, we take 9 steps in HMC which contains 3 warmup steps for step size 

adaption. Note, we have experimented with 1 HMC step for every step of Gibbs 

sampling, the convergence of the parameters M and θ is much slower in that case. 

On the other hand, increasing the number of HMC steps beyond 9 does not seem to 

improve the performance by a significant amount. We used 9 steps for a balance 

between computational complexity and performance. 

5.1 Simple 1 Dimensional Distributions 

5.1.1 Gaussian Distributions 

This section investigates if the proposed method is able to detect the change in 

mean or variance of simple 1-dimensional Gaussian distributions. We present the 

results of two cases in Figure 1 when 

. . .

~

i i d

X
X P

 and 

. . .

~

i i d

Y
Y P

 where 
(0 ,1)

X
P 

 and 

(0 , 9 )
Y

P 
 or 

(1,1).
Y

P 
 The null case and some other alternative cases are 

presented in the Supplementary Material for the interested reader. We observe that 
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for small sample sizes (50 or 100 samples) the posterior probability of H1 is close to 

zero. As the sample size increases, the posterior probability of H1 concentrates 

towards a value close to 1. This phenomena is observed for all the alternative 

models considered. 

Essentially, when the number of samples is small, there is not enough evidence to 

determine if the null hypothesis should be rejected. In such a case, the Bayes factor 

favours the simpler null hypothesis. This is to be expected since Bayesian modelling 

encompasses a natural Occam factor in the prior predictive (MacKay, 2003, Chapter 

28). We will see this reflected in all the synthetic experiments in this section. Note 

that for a Gaussian distribution, the difference in mean is easier to detect comparing 

to a difference in variance. This is reflected in the results presented here and in the 

Supplementary Material: we observe that the probability of the alternative hypothesis 

becomes very close to 1 at a much smaller sample size for the experiments with a 

difference in mean. 

We emphasize that, unlike the frequentist kernel two-sample test where a single 

value of the lengthscale parameter needs to be predetermined, the proposed 

Bayesian framework integrates over all possible θ values and alleviates the need for 

kernel lengthscale selection. However, some θ values are more informative in 

distinguishing the difference between the two distributions while others are less 

informative. As a specific example, we consider the case when 
(0 ,1)

X
P 

 and 

(0 , 9 )
Y

P 
 with 200 samples each. For this specific simulation, we obtain 

1
( | ) 0 .839P H 

. Figure 2 (Left) illustrates the change of the probability of 1
| ,H 

 

as a function of θ. Clearly, the region of θ from approximately 0.05 to 11 is most 

informative for distinguishing these two distributions. This is also reflected in the 

marginal distribution of 1
| H

 and 0
| H

 from Figure 2 (Right). Rather than selecting 

a single lengthscale parameter, the proposed method is able to highlight the range of 

informative lengthscales. As we will see, this is more useful in cases when multiple 

lengthscale parameters are of interest for a single testing problem. 

5.1.2 Laplace Distributions 
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We consider a scenario where the data are generated using the following 

distributions: 
(0 ,1)

X
P 

 and 
(0 ,1 .5 )

Y
P L ap la ce

 or 
(0 , 0 .4 )

Y
P L ap lace

 The results 

are presented in Figure 3 which aligns with our expectation. As the number of 

samples increases the test is becoming increasingly certain of the difference 

between the null and alternative model and hence 1
( | )P H

 concentrates at 1. Since 

the proposed method is not restricted to two-sample testing between independent 

random variables, we also consider the same experiment with correlated standard 

Gaussian and Laplace distributions generated through copula transformation with 

correlation set to 0.5. The correlated structure has helped the discovery of the 

difference between the distributions. Results are presented in Supplementary 

Material illustrating that the method works equally well in correlated random variable 

cases. 

5.2 Two by Two Blobs of 2-Dimensional Gaussian Distributions 

The performance of the frequentist kernel two-sample test using MMD depends 

heavily on the choice of kernel. When a Gaussian kernel is used, this boils down to 

choosing an appropriate lengthscale parameter. Often, median heuristic is used. 

However, Gretton et al. (2012b) showed that MMD with median heuristic failed to 

reject the null hypothesis when comparing samples from a grid of isotropic Gaussian 

v.s. a grid of non-isotropic Gaussian. The framework proposed by Flaxman 

et al. (2016) showed that, by choosing the lengthscale that optimise the Bayesian 

kernel learning marginal log likelihood (i.e. an empirical Bayes type of approach), 

MMD is able to correctly reject the null hypothesis at the desired significance level. 

Intuitively, the algorithm needs to look locally at each blob to detect the difference 

rather than at the lengthscale that covers all of the blobs which is given by the 

median distance between points. 

We repeat this experiment using the proposed Bayesian two-sample test with PX 

being a mixture of 2-dimensional isotropic Gaussian distributions and PY a mixture of 

2-dimensional Gaussian distributions centered at slightly shifted locations with 

rotated covariance matrix. Note, this is not the same dataset used in Flaxman 

et al. (2016) and Gretton et al. (2012b), we shift the dataset to have multiple relevant 

lengthscales. We center the blobs of the 2-dimensional Gaussian distributions of PX 
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at { (10,10 ) , (10, 30 ) ,  (30,10 ) , (30, 30 ) }  and shift such locations by ( 1, 1)   for PY. 

An equal number of observations is sampled from each of the blobs. The covariance 

matrix of PY follows the form given in the Supplementary Material, with 

{2 , 6 ,1 0 , 2 0} .  We present illustrations of the samples from these distributions in the 

Supplementary Material. 

Figure 4 shows that our approach is able to detect the difference between the 

distributions since the probability of the alternative hypothesis becomes more 

concentrated around 1 as the number of samples increases. Note, when 2 , the 

distribution of the probability of the alternative hypothesis is around 0.6. We expect 

this to increase to 1 as we increase the number of samples to around 300 samples 

per blob given the pattern observed. 

As an example, in Figure 5 (Left), we see that a wide range of lengthscales is 

informative for this two-sample testing problem when ϵ = 2. If we further observe the 

marginal distributions ( | 0 , )P M   and 1
( | , )P H

 in Figure 5 (Right), the method 

takes advantage of the large lengthscales to detect shift in location and the small 

lengthscales to detect the difference in covariance. But when the lengthscale is too 

small (approximately less than 0.5), the method regards the samples as identically 

distributed. 

5.3 Higher Dimensional Gaussian Distributions 

We have seen that the proposed method is able to utilise informative value of the 

lengthscale parameter and make correct decisions about the probability of the 

alternative hypothesis given large enough samples. In this section, we investigate 

the effect of dimensionality of the given sample on the proposed two-sample testing 

method. We use the Gaussian blobs experiment from the previous section and 

append simple (0 ,1)  to both X and Y (i.e. the difference in distribution exists only 

in the first two dimensions). In particular, we consider the cases when the total 

number of dimensions are {3, 4 , 5 , 6 , 7} . The results are presented in Figure 6. 

We observe that the test requires more samples to detect the difference between the 

two distributions as the number of dimension increases. The noise in the additional 
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dimensions has indeed made the problem harder for the given number of samples. 

But the proposed method still manages to discover the difference as the number of 

samples increases. For up to 8 dimensions, the method returns a posterior 

probability of H1 higher than 0.8 as soon as there are more than 200 samples per 

blob. This illustrates the robustness of our proposed method to the dimensionality of 

the problem. 

5.4 Comparison to other Bayesian nonparametric methods 

In this section we compare our test to other Bayesian nonparametric two-sample 

tests in the literature. In particular we compare our method to the two approaches of 

Chen and Hanson (2014) and Holmes et al. (2015) based on Pólya tree priors. We 

consider the following setting: 
~ (0 ,1)

i id

X
X P N

 versus 
~ ( ,1)

iid

Y
Y P N 

 with 

{0 ,1 .5 , 3}   and a sample size n = 200. 

As depicted in Figure 7, one can see that our method correctly returns a posterior 

probability of H1 close to 0 under H0 (μ = 0) and a posterior probability close to 1 

under H1, when 1 .5   and μ = 3. Similar behaviour is displayed for the method of 

Holmes et al. (2015). However, the test of Chen and Hanson (2014) appears to have 

posterior probabilities for H1 which are systematically biased upwards. The problem 

becomes aggravated with increasing dimension. In Figure 8 we simulate 

~ (0 , )

iid

X D
X P N I

 versus 
~ (0 , )

iid

Y D
Y P N I

 with {1, 3, 5}D   and a sample size of n = 

100 to see if Chen and Hanson (2014) can correctly identify H0 in higher dimensions. 

As shown in Figure 8 with increasing dimension, the posterior probability of H1 

becomes closer to one, which means that the test is unable to identify H0. However, 

our test correctly identifies H0 in all dimensions. Presumably to overcome the issue 

of biased posterior probabilities, Chen and Hanson (2014) do not use their Bayes 

factor in the classical Bayesian sense. Instead, they use it as a test statistic for a 

(frequentist) permutation test. The utility of power comparisons between Bayesian 

and frequentist paradigms is questionable so we do not pursue that direction here. 

We recall that the test of Holmes et al. (2015) can only handle one-dimensional data. 

We also note that Holmes et al. (2015) assume that the two underlying distributions 

are continuous and model them using Polya tree priors. In contrast, kernel-based 

Acc
ep

te
d 

M
an

us
cr

ipt



methods do not require continuity assumptions and can therefore be applied to 

general distributions. 

6 Real Data Experiments 

6.1 Network Heterogeneity From High-Dimensional Data 

In system biology and medicine, the dynamics of the data under analysis can often 

be described as a network of observed and unobserved variables, for example a 

protein signalling network in a cell (Städler and Mukherjee, 2019). One interesting 

problem in this area is to investigate if the signalling pathways (networks) 

reconstructed from two subtypes are statistically different. 

In this section, we follow the statistical setup given in Städler and 

Mukherjee (2017, 2019) and describes the networks by Gaussian graphical models 

(GGMs) which use an undirected graph (or network) to describe probabilistic 

relationships between p molecular variables. Assume that each sample Xi (and 

similarly for Yi) is sampled from a multivariate Gaussian distribution with zero mean 

and some concentration matrix Ω (i.e. the inverse of a covariance matrix). The 

concentration matrix defines the graph G via 

( , ) ( ) 0
j j

j j E G


      

for {1, , }j j p    and E(G) denotes the edge set of graph G. Network 

homogeneity problem presented in the previous paragraph can be formulated as a 

two-sample testing problem in statistics where we are interested in testing the null 

hypothesis 

0 1 2
:H G G  (30) 

In the first experiment, we use the code from Städler and Mukherjee (2019) to 

generate a pair of networks with 5 nodes that present 4 common edges and then 

obtain the corresponding correlation matrices to use as the covariance matrices for 

the multivariate Gaussian distribution. The results are presented in Figure 9. In the 

second experiment, we again use the code from Städler and Mukherjee (2019) to 

generate hub networks with 7 nodes that are divided into 3 hubs with 1 hub that is 
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different and use the obtained correlation matrices in the multivariate Gaussian 

distribution as with the first experiment. The results are presented in Figure 10. Both 

tests were able to recover the ground truth as the number of observed sample 

increases. 

6.2 Real Data: Six-Membered Monocyclic Ring Conformation Comparison 

In this section, we consider a real world application of our proposed method to detect 

if the conformation observed in crystal structures differ from its lowest energy 

conformation in gas phase. Qualitative descriptions are often given to show that the 

two are distributed differently due to the crystal packing effect. While no quantitative 

analysis has been provided in the chemistry literature, we aim to perform such 

analysis through the use of the proposed Bayesian two-sample test. 

We utilise the Cremer-Pople puckering parameters (Cremer and Pople, 1975) to 

describe the six-membered monocyclic ring conformation and compare their shapes 

under the two different conditions described above. This coordinate system first 

defines a unique mean plane for a general monocyclic puckered ring. Amplitudes 

and Phases coordinates are then used to describe the geometry of the puckering 

relative to the mean plane. For a six-membered monocyclic ring, there are three 

puckering degrees of freedom, which are described by a single amplitude-phase pair 

2 2
( , )q 

 and a single puckering coordinate q3. As we consider general six-membered 

rings, we can omit the phase parameters 2


 for simplicity and compare the degree of 

puckering (maximal out-of-plane deviation) under different conditions. The crystal 

structures of 1936 six-membered monocyclic rings are extracted from the 

Crystallography Open Database (COD) and the associated puckering parameters 

are calculated. Independently, we calculate the lowest energy conformations of a 

diverse set of 26405 molecules using a semi-empirical method GFN2 and record the 

puckering parameters. We consider 100 random samples of size 

{2 0 0 , 4 0 0 , 6 0 0 , 8 0 0}n   from each of the datasets and conduct our Bayesian two-

sample test 100 times while inferring the kernel bandwidth parameter θ. 

Figure 11 illustrates the results of our test. The proposed method is becoming more 

certain that the lowest energy conformation in gas phase of six-membered 
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monocyclic rings is distributed differently from its crystal structures as the number of 

samples increases. At 800 samples, the proposed method gives the probability of 

1
|H

 equals to 1 which aligns with expert opinions that the two are indeed 

distributed differently due to the crystal packing effect. In Figure 12, we provide the 

posterior histogram of 1
| ,H

 when 800 samples are observed. The frequency 

distribution is multi-model indicating that multiple lengthscale is of interest for this 

problem at hand. 

7 Conclusion 

In this work, we have proposed a Bayesian two-sample testing framework utilising 

the Bayes factor. Rather than directly considering the observations, we have 

proposed to consider the differences between the empirical kernel mean 

embeddings (KME) evaluated at a set of inducing points. Following the learning 

procedure of the empirical KME (Flaxman et al., 2016), we have derived the Bayes 

factors when the kernel hyperparameter is given as well as when it is treated in a 

fully Bayesian way and marginalised over. Further, we have obtained efficient 

computation methods for the marginal pseudolikelihood utilising the Kronecker 

structure of the covariance matrices. The posterior inference of the model label and 

the kernel hyperparameter is done by HMC within Gibbs. We have showed in a 

range of synthetic and real experiments that our proposed Bayesian test is able to 

simultaneously utilising multiple lengthscales and correctly uncover the ground truth 

given sufficient data. 

Following this work, there are several possible directions for future research. We 

have seen in Section 5 that larger sample sizes are required for more challenging 

problems. A random Fourier feature approximation of the above framework can be 

easily developed to enable the use of large sample size without having prohibitive 

runtime. In this case, explicit finite dimensional feature maps are available, the 

difference between the mean embeddings X Y
   

 can be written more explicitly 

as ( ( ) ) ( ( ) )X Y    . Assume a GP prior with an appropriate covariance matrix 

for δ, 
( ) ( )

i i
x y 

 can be modelled by a Gaussian distribution with mean 

( ( ) ) ( ( ) )X Y   and covariance estimated as presented in the Supplementary 

Material. While the rest of the inference procedure can follow similarly as presented 
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here, this large scale approximation requires careful specification of the covariance 

matrix for the GP model of δ to ensure that draws from such GP lie in the correct 

RKHS. 

Recently, Kamary et al. (2014) proposed a mixture modelling framework for 

Bayesian model selection. The authors argues that the mixture modelling framework 

provides a more thorough assessment of the strength of the support of one model 

against the other and allows the use of noninformative priors for model parameters 

when the two competing hypotheses share the same set of parameters which is 

prohibitive in the classical Bayesian two-sample testing approach like Bayes factor 

(DeGroot, 1973). The proposed Bayesian two-sample testing framework using 

Bayes factor can be equivalently formulated as a mixture model: 

1 1
| , ~ (0 , ) (1 ) (0 , ) .N N R

n n
  

          

The posterior distribution of the mixture proportion 0 1   indicates the model 

preferred. A joint inference of π and the kernel bandwidth parameter θ can be easily 

done through MCMC. It would be interesting to see if there is a difference in 

performance between the mixture approach and the Bayes factor approach 

proposed here. Lastly, the Bayesian testing framework developed here and the 

directions for future work can all be applied to independence testing. 

Code for the proposed method and experiments is available at: 

https://github.com/qinyizhang/BayesianKernelTesting 

Supplementary Material 

The supplementary material provides details on derivation, proofs and additional 

synthetic data experiments. 
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Fig. 1 1-dimensional Gaussian experiment: distribution (over 100 independent runs) 

of the probability of the alternative hypothesis 1
( | )p H

 for a different number of 

observations n. Here, 
(0 ,1)

X
P 

 and 
(0 , 9 )

Y
P 

 (Left) or 
(1,1)

Y
P 

 (Right). 
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Fig. 2 1-dimensional Gaussian experiment with for 
(0 ,1)

X
P 

 and 
(0 , 9 )

Y
P 

 and 

200 samples. Left: The plot illustrates 

1

1 B F



 as a function of θ. Right: The 

histogram of | ,M  for H1 and H0. 
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Fig. 3 1-dimensional Laplace experiment: distribution (over 100 independent runs) of 

the probability of the alternative hypothesis 1
( | )p H

 for a different number of 

observations n. Here, 
(0 ,1)

X
P 

 and 
(0 ,1 .5 )

Y
P L ap la ce

 (Left) or 

(0 , 0 .4 )
Y

P L ap lace
 (Right). 
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Fig. 4 2 by 2 blobs of bivariate Gaussian experiment: distribution (over 100 

independent runs) of the probability of the alternative hypothesis 1
( | )p H

 for a 

different number of observations n. The distribution of X is a mixture of four bivariate 

Gaussian distributions with equal probability centered at 

{ (10,10 ) , (10, 30 ) , (30,10 ) , (30, 30 ) }  and with ϵ = 1. The distribution of Y is also a 

mixture of four bivariate Gaussian distributions with equal probability centered 

around the same locations but also shifted by ( 1, 1) .   In this experiment, we 

consider the cases when {2 , 6 ,1 0 , 2 0} .  
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Fig. 5 2 by 2 blobs of bivariate Gaussian experiment under the alternative model ϵ = 

2 and 200 samples per blob. Left: the plot illustrates 

1

1 B F



 against the value of θ. 

Right: histogram of samples from the marginal distribution of | ,M  for H1 and H0. 
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Fig. 6 Higher dimensional experiment: distribution (over 100 independent runs) of 

the probability of the alternative hypothesis 1
( | )p H

 for a different number of 

observations n. For the first two dimensions, the data is generated as in Section 5.2 

with ϵ = 6. Standard Gaussian noises are appended as the remaining dimensions. 

Top left figure is copied from Figure 4 for the ease of performance comparison. 
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Fig. 7 Comparison of our approach (Left) to the methods proposed by Chen and 

Hanson (2014) (Middle) and Holmes et al. (2015) (Right): distribution (over 100 

independent runs) of the posterior probability 1
( | )p H

 in a one-dimensional setting 

where 
(0 ,1)

X
P N

 and 
( ,1)

Y
P N 

 for {0 ,1 .5 , 3}   with a sample size n = 200. 
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Fig. 8 Comparison of our approach (Left) to the methods proposed by Chen and 

Hanson (2014) (Right): distribution (over 100 independent runs) of the posterior 

probability 1
( | )p H

 in a multi-dimensional setting where 
(0 , )

X D
P N I

 and 

(0 , )
Y D

P N I
 for {0 ,1 .5 , 3}D   with a sample size n = 100. 
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Fig. 9 Random networks heterogeneity testing: distribution (over 100 independent 

runs) of the probability of 1
|H

 for a different number of samples. 
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Fig. 10 Hub network heterogeneity testing: distribution (over 100 independent runs) 

of the probability of 1
|H

 for a different number of samples. 
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Fig. 11 Six-membered monocyclic ring conformation comparison: distribution (over 

100 independent runs) of the probability of 1
|H

 for a different number of samples. 
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Fig. 12 Histogram of samples from the marginal distribution | 1,M   for the 

experiment on six-membered monocyclic ring conformation comparison with 800 

samples. 
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