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Meta-learning based Alternating Minimization
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Abstract—In this paper, we propose a novel solution for non-
convex problems of multiple variables, especially for those typ-
ically solved by an alternating minimization (AM) strategy that
splits the original optimization problem into a set of sub-problems
corresponding to each variable, and then iteratively optimizes
each sub-problem using a fixed updating rule. However, due to the
intrinsic non-convexity of the original optimization problem, the
optimization can be trapped into spurious local minimum even
when each sub-problem can be optimally solved at each iteration.
Meanwhile, learning-based approaches, such as deep unfolding
algorithms, have gained popularity for non-convex optimization;
however, they are highly limited by the availability of labelled
data and insufficient explainability. To tackle these issues, we
propose a meta-learning based alternating minimization (MLAM)
method, which aims to minimize a partial of the global losses
over iterations instead of carrying minimization on each sub-
problem, and it tends to learn an adaptive strategy to replace
the handcrafted counterpart resulting in advance on superior
performance. The proposed MLAM maintains the original algo-
rithmic principle, providing certain interpretability. We evaluate
the proposed method on two representative problems, namely,
bi-linear inverse problem: matrix completion, and non-linear
problem: Gaussian mixture models. The experimental results
validate the proposed approach outperforms AM-based methods.

Index Terms—Alternating Minimization, Meta-learning, Deep
Unfolding, Matrix Completion, Gaussian Mixture Model.

I. INTRODUCTION

ITERATIVE minimization is one of the most widely used
approaches in signal processing, machine learning and

computer science. Typically, when dealing with multiple vari-
ables, these methods follow an alternating minimization (AM)
based strategy that converts the original problem of multiple
variables into an iterative minimization of a sequence of sub-
problems corresponding to each variable while the rest of the
variables are held fixed. However, due to the non-convexity
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of the problem, the obtained solutions do not necessarily
converge to a global optimum, even when all the sub-problems
are solved optimally at each iteration, see [1] for examples.
The major issue underlying the failure of AM when facing
non-convexity is that a greedy and non-adaptive optimization
rule is carried out when solving each sub-problem throughout
the iterations. Therefore, it lacks sufficient adaptiveness and
effectiveness in terms of handling local optimums.

Recent advances in deep learning have highlighted its
success in obtaining promising results for non-convex opti-
mization problems [2]–[5]. However, generic deep learning
methods have limited generalization ability especially when
test data is significantly different from the training data. This
problem becomes more crucial in the ill-posed non-convex
optimization tasks. The weak explainability of deep neural
network behavior also questions its applicability in certain
scenarios.

Deep unfolding [6] as an alternative learning-based ap-
proach has achieved significant success and popularity in
solving various optimization problems. It improves model
explainability by mapping a model-based iterative algorithm
to a specific neural network architecture with learnable param-
eters. In this way, the mathematical principles of the original
algorithm are maintained, thus leading to better generalization
behavior [2], [7]–[12]. We note that most of the deep unfolding
algorithms are designed for solving linear inverse problems
and require supervised learning. There are also deep unfolding
algorithms for solving non-convex optimization problems.
Zhang et al. [9] propose to unfold alternating optimization
for blind image super-resolution, which is typically ill-posed
and non-convex. In [10], an unfolded WMMSE algorithm is
proposed to estimate the parameter of the gradient descent
step size for solving MISO beamforming problem, which is
highly non-linear and non-convex. We can see from [9], [10],
when solving non-convex problems, deep unfolding algorithms
either only retain the iterative framework and replace all
components by deep networks [9], or learn a minimum number
of parameters but result in less effective performance [10].
There exists a trade off between achieving better performance
with highly over-parameterized deep networks and retaining
model explainability and generalization ability with minimum
learnable parameters. This trade-off is also highly related to
the amount of required labelled data and the request of prior
knowledge. Therefore, it is essential to design a new approach
that enables us to carry learning-based neural network model
with interpretable optimization-inspired behavior in an unsu-
pervised learning way.

Meta-learning has witnessed increasing importance in terms
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of strong adaptation ability in solving new tasks [13]–[19]. Un-
like the standard supervised learning solutions, meta-learning
does not focus on solving a specific task at hand but aims
to learn domain-general knowledge in order to generate an
adaptive solution for a series of new tasks. Typically, a meta-
network collects domain-specific knowledge when solving
each specific task, and then extracts domain-general knowl-
edge across solving different tasks. Most of the popular meta-
learning algorithms, such as model-agnostic meta-learning
(MAML) [20], metric-based meta-learning [21] and learning-
to-learn [22], share a hierarchical optimization structure that
is composed of inner and outer procedures: the meta-network
performs as an optimizer to solve specific tasks at inner pro-
cedure and the parameters of meta-network are then updated
through the outer procedure. We note that the AM-based
iterative method can also be regarded as sharing this bi-level
optimization framework. However, the optimization strategy
in an AM-based algorithms is commonly frozen and the inner
optimization behavior is independent to the outer alternating
procedure. Therefore, we are inspired to propose a meta-
learning based alternating minimization (MLAM) algorithm
for solving non-convex problems, which will enable inner
optimization to be continuously updated with respect to the
mutual knowledge extracted over outer steps.

The proposed MLAM algorithm is composed of two-level
meta-learning, namely, the upper-level and ground-level meta
learning. The upper-level meta-learning learns on a set of
non-convex problems and aims to enhance the adaptability
towards new problems. In contrast, the ground-level meta-
learning learns on a sequence of sub-problems within each
non-convex problem from the upper-level; and therefore, aims
to find an adaptive and versatile algorithm for the sequential
sub-problems. The overview structure of the proposed MLAM
method is shown in Fig.1.

Specifically, the upper-level meta-learning learns to leverage
the optimization experiences on a series of problems, while the
learned algorithm in the ground-level meta-learning maintains
the original inner-and-outer iterative structure as well as the
algorithmic principles, but replaces the frozen and handcrafted
algorithmic rule by a dynamic and adaptive meta-learned rule.
In other words, it aims to learn an optimization strategy that is
able to provide a ”bird’s-eye view” of the mutual knowledge
extracted across outer loops for those sub-problems being
optimized in the inner loops. Therefore, the learned strategy
does not optimize each sub-problem locally and exhaustively
through minimization; instead, it optimizes them by incorpo-
rating the global loss information with superior adaptability.
Moreover, the proposed MLAM algorithm is able to solve
optimization problems in an unsupervised manner. As a result,
the proposed MLAM algorithm achieves better performance
in non-convex problems, while requiring less (and even no)
labelled data for training.

The main contributions of this paper are mainly three-fold:

• The core contribution is the proposed meta-learning
based alternating minimization (MLAM) approach for
non-convex optimization problems. In an unsupervised
manner, MLAM achieves a less-greedy and adaptive

optimization strategy to learn a non-monotonic algorithm
for solving non-convex optimization problems.

• The proposed MLAM takes a step further towards en-
hanced interpretability. The algorithmic principles of the
original model-based iterative algorithm is fully main-
tained without the need to replace iterative operations
with black-box deep neural networks.

• With extensive simulations, we have validated that the
proposed MLAM algorithm achieves promising perfor-
mances on the challenging problems of matrix comple-
tion and Gaussian mixture model (GMM). It is able
to effectively solve these extremely difficult non-convex
problems even when the traditional approaches fail.

The rest of this paper is organized as follows. Section II gives
the background and a brief review of previous approaches.
Section III introduces our proposed MLAM approach and
presents an LSTM-based MLAM method. Section IV illus-
trates two representative applications of our MLAM method.
Section V provides simulation results and Section VI con-
cludes the paper.

II. RELEVANT PRIOR WORK

In this section, we will first briefly introduce the general
problem formulation for multi-variable non-convex optimiza-
tions and the solution approaches. Then, we will demonstrate
our motivation of proposing MLAM and review the relevant
meta-learning approaches.

Non-convex optimization problems that involve more than
one variable are of great practical importance, but are often
difficult to be well accommodated. The underlying relationship
between variables can be linear (e.g., product, convolution)
or non-linear (e.g., logarithmic operation, exponential kernel).
For illustration convenience, we consider a general optimiza-
tion formulation over an intersection of two variables in the
matrix form, which can be expressed in the form of:

(Ŵ , X̂) = argmin
(W ,X)∈W×X

F (W ,X), (1)

where F :W×X → R is a non-convex function that describes
the mapping between the observations Y = F (W ,X) and
two variables W ∈ W and X ∈ X .

A. Model-based Solutions

The model-based iterative algorithms [23]–[31] typically
solve (1) by adopting an AM-based strategy. The basic idea
is to sequentially optimize a sub-problem corresponding to
each variable whilst keeping the other variable fixed. That is,
starting from an arbitrary initialization W0 ∈ W , the AM-
based algorithm sequentially solves two sub-problems at the
t-th iteration via:

Xt = arg min
X∈X

fWt−1
(X),

Wt = arg min
W∈W

fXt
(W ),

(2)

where fWt−1
(X) and fXt

(W ) are the functions correspond-
ing to X and W , respectively, while fixing the other one to
the value obtained in the previous iterations, i.e., fWt−1

(X) =
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f(Wt−1,X) and fXt
(W ) = f(W ,Xt). The solution of each

sub-problem in (2) could be attained by a gradient-descent
based iterative process,

Xi = Xi−1 + ϕ
(
{Xk}i−1

k=0,∇fWt−1
(Xi−1)

)
, (3)

where {Xk}i−1
k=0 represent the historical values of the param-

eters for i optimization steps, ∇fWt−1
(Xi−1) is the gradient

of objective function on Xi−1, and ϕ(·) defines the variable
updating rule of different algorithms. Algorithms such as
ISTA [7] and WMMSE [10] formulate a closed-form solution
when iteratively solving each sub-problem in (2), which is
essentially equal to a first order stationary point obtained by
gradient descent based methods as well.

Before proceeding further, we first introduce some concepts
that will be used throughout this paper. We define the overall
problem as the optimization problem with objective function
F (W ,X), which will be called the global loss function. We
refer to the optimization problems over each of the variables
as the sub-problem, and their objective functions fWt−1

(X)
and fXt

(W ) for t ≥ 1, as local loss functions. We define the
alternative iterations over the sub-problems as the outer-loop,
and the iterative iterations for solving each sub-problem as the
inner-loop.

The AM-based algorithm attempts to solve the overall
problem by sequentially minimizing the two sub-problems
fWt−1(X) and fXt(W ). However, the AM-based algorithm
does not necessarily converge to a global optimal solution.
This could be due to two main reasons: 1) AM-based methods
optimize over the local loss functions without fully utilizing
the information from the global loss function, and 2) AM-
based methods usually solve the local loss function greedily
using the first order information, which may not necessarily
lead to the best solution, that is, the global optima, in terms
of the global loss function.

Addressing these two issues of the AM is non-trivial. The
key difficult is that the variable optimized rules of the model-
based solutions are frozen during the iteration, with respect
to a certain update function, i.e., the ϕ in (3). Typically, ϕ is
designed for optimizing each sub-problem greedily, as a result,
is not expected to reach the global optimal solutions for the
overall problem.

B. Learning-based Solutions

Different from the model-based approaches, the recent
deep learning based methods typically require to train an
over-parameterized deep neural networks in an end-to-end
learning fashion with a large labelled dataset [7], [32]–[36].
During testing, the trained deep neural network is fed by
the observations and directly outputs the estimated variables.
The performance of these methods is highly bounded by the
training datasets; however, the ground-truth data are neither
sufficient nor even exist in realistic non-convex tasks, such as
the GMM problems. Another shortcoming that is common to
these learning-based methods is the weak explainability of the
end-to-end deep neural network behavior.

Different from the generic deep learning approaches,
deep unfolding algorithms try to combine model-based and

learning-based approaches. They have three major features: 1)
They map the iterative optimization algorithm into a specific
unfolded network architecture with trainable parameters; 2)
each layer in the deep unfolding network corresponds to one
iteration of the original iterative algorithm, while the number
of layers, especially the iterations, is frozen; 3)similar to the
other deep learning approaches, deep unfolding also requires
pair-wise labelled data for training.

Mathematically, deep unfolding approaches follow the iter-
ative framework as in equation (2), but replace the analytical
minimization algorithm (or specific operators such as soft-
thresholding or singular value thresholding) by neural net-
works in the form of:

Xt = LayerXt (Wt−1),

Wt = LayerWt (Xt),
(4)

where the number of iterations is fixed with t = T . Hence
the whole deep unfolded network is composed by T layers,
where each layer is composed of several operators that reflect
the mathematical behavior of the original iterative algorithm.

In [36], Zhang et al. propose a deep unfolded network for
image super-resolution in which the solver for one variable is
a generic deep network while the other one keeps consistent
with the model-based solver. In deep alternating network [9],
two networks, referring to an estimator and a restorer, work
as two solvers for the splitted sub-problems. Therefore, the
whole unfolding algorithm alternates between two network
operators. In a different way, the unfolded network in [10]
almost retains the original model-based iterative algorithm
to solve a non-linear problem, but takes a network-based
generator to learn the hyper-parameters for gradient descent
step size by unsupervised learning. However, its performance
does not surpass the counterpart model-based algorithm.

In summary, deep unfolding has made a step further towards
better explainability; however, these approaches still perform
as an end-to-end network behavior and mostly only enable
interpretable alternating structure while replacing the origi-
nal optimization-based algorithm with deep neural networks.
Consequently, its interpretability is limited when applied to ill-
posed non-convex problems, and it is based on a data-driven
optimization strategy. Besides, most deep unfolding algorithms
require a large number of labelled data for supervised learning.
Hence, the performance of learning-based approaches on solv-
ing ill-posed non-convex problems, especially those without
sufficient labelled data, is still limited.

III. META-LEARNING BASED ALTERNATING
MINIMIZATION (MLAM) APPROACH

In this section, we introduce the proposed meta-learning
based alternating minimization (MLMA) approach for solv-
ing optimization problems with multiple variables which are
highly non-convex and ill-posed. As aforementioned, towards
solving these problems, the existing model-based methods
typically struggle, while on the other hand the lack of sufficient
labelled training samples also restricts the performance of
learning-based methods. Therefore, the key idea of our MLAM
approach is to design a novel way that is not only capable
of benefitting from both the optimization-based algorithmic
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Fig. 1. The overall structure of MLAM algorithm. The parameters of the applied meta network are denoted by θ. The upper-level meta-learning is implemented
on a set of non-convex problems {Fn(X,W )}Nn=1 as shown in the upper row. θ is continuously updated across different problems. The ground-level meta-
learning is applied to solve each non-convex problem Fn(X,W ) through an alternative outer loop between two inner loops corresponding to two variables,
respectively, presented in the middle row. θ is dynamically updated with respect to the global loss F (X,W ). The inner loop is depicted in the bottom row,
where the variable is iteratively updated by the meta network. θ is frozen at inner loop iterations. The dashed lines denote gradient operator occurs and the
solid line represents information flow along the edge.

principle and the superior performances by learning, but also
surpass the AM-based strategy through meta-learning.

A. Overall Structure of the MLAM Approach

The proposed MLAM approach consists of two levels of
meta-learning. The upper-level meta-learning operates on a set
of overall problems and the ground-level meta-learning opti-
mizes the sequential sub-problems within an overall problem.
Both upper-level and ground-level operations contain a bi-level
optimization structure that is composed of outer and inner
procedures. The outer loop of the upper-level meta-learning
continuously updates the parameters of the MetaNet θ across
different overall problems, and each inner loop equals to one
ground-level meta-learning on solving an overall problem.
For both the ground-level and the upper-level meta-learning
processes, we denote note the inner loop index at superscripts
and the outer loops index at subscripts. We will then introduce
the details of MLAM in a bottom-up manner.

1) Upper-level Meta-learning: The upper-level meta-
learning is depicted in Fig. 1 (the boxes in blue). It aims to
extract a general knowledge of updating rules across different
overall problems.

Each overall problem is considered as a single task, and
the whole learning process is accommodated on a set of tasks
within the same dimension. Therefore, the learnt algorithm
is no longer designed for solving a single task, but a set of
tasks {Fi(W ,X)}Ni=1. Although the proposed MLAM model
follows the AM structure, it establishes a new bridge between
the upper-level and ground-level meta-learning by replacing
the frozen update functions with meta-networks. This allows
for variable updated at the inner loops being guided by global
loss information from the outer loops, thus achieving a global
scope optimization.

2) Ground-level Meta-learning: The general structure of
the ground-level meta-learning is shown in Fig. 1 (the boxes
in green and red). A ground-level meta-learning is performed
by solving a specific overall problem Fn(W ,X). This process
contains an alternating optimization process on a sequence of
sub-problems (boxes in green) which is named as the outer
loop, and each sub-problem is solved by an iterative gradient
descent based operation, which is defined as the inner loop
(boxes in red).

In the inner loop, the variable (e.g., X and W ) to be
optimized is updated based on the iterative gradient descent
process using a meta network and the parameter of the
MetaNet is frozen. Taking the optimization on fWt−1(X) as
an example, the i-th step update on the variable X at the inner
loop can be expressed in the following form:

X(i) = X(i−1) +MetaNet
(
∇fWt−1(X

(i−1))
)
, (5)

where MetaNet(·) is a neural network with learnable param-
eter θ, and performs as an optimizer for variable update.

MetaNet replaces the handcrafted update function ϕ(·) in (3)
as a learnable and adaptive update function. Its parameter θ is
frozen at the inner loop and will be updated at the outer loop
with respect to the global loss function. Specifically, different
from the traditional AM-based algorithms, MLAM establishes
an extra update cue for the parameters of MetaNet at the outer
loops, by minimizing the global loss F (X,W ). This enables
that the gradients of fW and fX on variables X and W and
the gradient of F (X,W ) on parameter θ are integrated into
one circulating system. In this way, the optimization behavior
on each sub-problem is no longer independent to the others, all
of which interact through the MetaNet. In Fig.1, the dashed
arrows at the outer loop of the ground-level meta-learning
indicate the back-propagation of global loss to update the



5

parameters θ based on gradient descent. Taking the t − th
iteration as an instance, the parameter update is expressed as

θt
n−1 = θt−1

n−1 + α · Φ(∇θt−1
n−1

F (X1,W1)), (6)

where α is the learning rate, and Φ(·) denotes the learning
algorithms for network update (e.g., the Adam method [37]).

Because the optimization landscapes for different sub-
problems can be significantly different, MetaNet tends to
extract a general knowledge on generating descent steps for
variable updates across different sub-problems. Consequently,
MetaNet learns to provide a superior and adaptive estimation
for a sequence of sub-problems through this meta-learning
process.

In Fig.1 the outer loop shows how the parameters at
each iteration are updated. We define the update interval as
the number of iterations for each parameter update, and in
Fig.1 the update interval is set to 1. Generally speaking: the
smaller the update interval the higher chances are updated,
and the larger the update interval the more experience could
be learned. The update interval of the parameters could be
tuned. We will show more details in Section III-B and V-A.
Remark 1. The implementation of the two levels of meta-
learning is indispensable. As the proposed MLAM learns in an
unsupervised way, the training process of ground-level meta-
learning could be also regarded as solving when training on
one problem. Therefore, MLAM can be directly applied to a
specific problem by only carrying on the ground-level meta-
learning [19]. In this paper, the proposed approach works with
both of the two levels of the meta-learning.

The meta-learning implemented on the proposed MLAM
approach mainly contributes to two aspects. (i) Recalling to the
upper-level meta-learning, the training strategy of the MetaNet
follows the meta-learning strategy, thus improving the adap-
tation of the learned parameters on solving different non-
convex optimization problems {Fi(W ,X)}Ni=1. Specifically,
the meta-learning behavior significantly enhance the capacity
of solving different tasks by leveraging the experience of solv-
ing a series of {Fi(W ,X)}Ni=1. (ii)The optimization perfor-
mance of solving each specific task is dramatically improved
by achieving a dynamic and adaptive gradient based updating
rule through the implemented ground-level meta-learning. The
solution strategy of solving each task Fi(W ,X) is meta-
learned over the alternating iterations. In this way, the solution
strategy is leveraged by the meta-learning behavior to allow the
sub-problems {fWt

(X), fWt
(X)}Tt=1 to be solved in a less

greedy but more effective way. Essentially, benefit of the meta-
learning, the MLAM is capacity of leveraging the experience
of solving a series of sub-problems {fWt(X), fWt(X)}Tt=1 to
learn a gradient based strategy that provides better convergence
on solving the current task F (W ,X).

B. MLAM with LSTM-based MetaNet

In this section, we introduce the implementation details of
using recurrent neural networks (RNNs) as the MetaNet in
the proposed MLAM algorithm. Specifically, the Long Short-
Term Memory (LSTM) network [38] is adopted as the variable
update function at the ground-level in the MLAM model.

The proposed LSTM-MLAM updates the parameters of the
MetaNet with respect to the accumulated global losses.

RNN has a sequentially processing chain structure to
achieve the capacity of “memory” on sequential data. LSTM
[38] is one of the most well-known RNNs and is able to
memorize and forget different sequential information. Memory
is the most important feature of LSTM (RNN). It stores the
status information of previous iterations and allows for the
information to flow along the entire chain process. In this way,
LSTM can integrate previous information with the current step
input. Mathematically, the output of LSTM at the i-th iteration
H(i) is determined by the current gradient ∇f(xi) and the
last cell state C(i) in the following forms:

H(i) = LSTM(∇f(xi),C
(i),θ(i)),

C(i+1) = zf ⊙C(i) + zi ⊙ C̃(i−1),
(7)

where LSTM(·, ·,θ) denotes the LSTM network with pa-
rameters θ, ⊙ denotes Hadamard Product, zf and zi are
the vectors of intermediate conditions inside LSTM, and
C̃(i−1) = ∇θ(i−1)L(i) is the candidate cell state, referring
to the gradient of current loss L(i) over the last parameters
θ(i−1) in our problem.

We adopt two LSTM networks LSTMX and LSTMW as
MetaNet to generate variable update functions, recalling ϕ(·)
in (3), for solving sub-problems corresponding to variables
X and W , respectively. We also denote θX and θW as the
parameters of LSTMX and LSTMW , and denote CX and
CW as their cell states. The inputs of the LSTM are the
gradient of local loss function and the sequential knowledge of
variables, represented by cell state C. Then the LSTM outputs
the variable update term that integrates step size and direction
together. Denoting the inner loop update steps i−1 and j−1 at
superscripts, and outer loops steps t−1 and t at subscripts for
each sub-problem, the variables are updated in the following
forms:

H
(i−1)
X = LSTMX

(
∇fWt−1

(X(i−1)), C
(i−1)
X , θX

)
,

X(i) = X(i−1) +H
(i−1)
X ,

(8)
and

H
(j−1)
W = LSTMW

(
∇fXt

(W (j−1)), C
(j−1)
W , θW

)
,

W (j) = W (j−1) +H
(j−1)
W .

(9)
As mentioned in Section III-A, at the inner loops, the

parameters θX and θW are frozen, and are used to generate
the update steps HX and HW for variables with frozen
iteration numbers; therefore, the update strategy is essentially
determined by the parameters θX and θW . At the outer
loops, we leverage the accumulated global losses to guide
the parameter update for better optimization strategy through
backpropagation. Let tout denote the update interval, the
accumulated global loss is given by

Ls
F =

1

tout

stout∑
ts=(s−1)tout+1

ωtsF (Wts ,Xts), (10)

where ωt ∈ R≥0 denotes the weight associated with each
outer step, and s = 1, 2, . . . , S, with S = T/tout being the



6

Fig. 2. The outer loop iterations on sub-problems are placed on the grey
plane. Each iteration contains two sub-problems (dashed blue rhombus), and
each sub-problem optimizes the corresponding variable at inner loop along
with an LSTM MetaNet. The global loss F (X,W ) is computed after
each iteration. For every tout number of iterations, the accumulated global
losses Ls

F (rhombus in red) is calculated and back-propagated to update the
parameters θX and θW based on gradient descent manners (referred by the
red dashed arrows).

maximum update number for LSTM networks, and T being
the maximum outer steps. For every tout outer loop iteration,
the accumulated global losses Ls

F is computed and is used to
update θX and θW as follows

θs+1
X = θs

X + αX ·Adam(θs
X ,∇θs

X
Ls
F ),

θs+1
W = θs

W + αW ·Adam(θs
W ,∇θs

W
Ls
F ),

(11)

where αX and αW denote the learning rates for the meta-
networks LSTMX and LSTMW , respectively. The parameters
of LSTMs are updated by the Adam method [37].

Remark 2. The formulation (10) can be extended to accom-
modate prior information as follows,

L
′
= Ls

F + ωw

∥∥∥Wts − W̃
∥∥∥2
F
+ ωx

∥∥∥Xts − X̃
∥∥∥2
F
, (12)

where ωw and ωx denote the weights of the prior knowledge,{
W̃

}
and

{
X̃

}
are the available paired training samples

from historical data.

Hence, θX and θW successfully build a connection between
the variable update functions and the global losses. At inner
loops, θX and θW convey an extra global loss information
from the outer loops for the update functions. The accumulated
global losses allow the LSTMs to be updated with respect to
the mutual knowledge of dealing with different sub-problems.
Therefore, in the ground-level meta-learning, the learnt algo-
rithm has better adaptability to the new sub-problem in the
sequence. The accumulated global losses based ground-level
meta-learning is depicted in Fig.2.

There are two merits of adopting Ls
F to update the pa-

rameters. First, the update with a small update interval, e.g.,
tout = 1, will lead to severe fluctuation. An appropriate
update interval with accumulated global losses is able to
effectively relieve the factor of the outliers in training process.
We shall present the related simulation results in Section V-A.
Second, the leveraged global losses can provide more mutual
knowledge than one global loss value. The parameters are

Algorithm 1: General Structure of MLAM algorithm
for solving one problem

1 Input: global loss function F (W ,X), local loss
functions fW (X) and fX(W ), random initialization
W0, number of outer loops T , and number of inner
loops I and J .

2 Output: Estimated variables WT , XT .
3 for t← 1, . . . T do
4 for i← 0, . . . I − 1 do
5 ∆X = LSTMX(∇fWt

(X(i)),C
(i)
X ,θs

X)
6 X(i+1) ←X(i) +∆X;
7 end
8 Xt ←X(i);
9 Update local loss function fXt

(W );
10 for j ← 0, . . . J − 1 do
11 ∆W = LSTMW (∇fXt(W

(j)),C
(j)
W ,θs

W )
12 W (j+1) ←W (j) +∆W ;
13 end
14 Wt ←W (j);
15 Update local loss function fWt(X);
16 Update global loss function F (Wt,Xt);
17 for s← 1, . . . t/tout do
18 Ls

F = 1
tout

∑stout

ts=(s−1)tout+1 ωtsF (Wts ,Xts)

19 θs+1
X = θs

X − αX∇θs
X
Ls
F

20 θs+1
W = θs

W − αW∇θs
W
Ls
F

21 end
22 end

updated with the objective to minimize a partial trajectory
of the global losses. Therefore, it allows the MetaNet to
learn a non-monotonic solution, where the global loss could
increase at the beginning iterations but quickly decrease to
better optimums on the global scope. We will discuss in details
with a practical example in Section IV-B.

At this stage, the proposed MLAM algorithm is summarized
in Algorithm 1. Specifically, the algorithm starts from a
random initialization W0 at the beginning of an outer loop.
At the t-th outer loop, it contains two inner loops for updating
X and W , respectively. Each inner loop starts from a random
initialization X(0) and W (0) and updates variables based on
equations (8) and (9) and then repeats for I and J times,
respectively. In this paper, we set I = J = tin in which tin
indicates the maximum iteration number at the inner loops.
The choices for tout and tin will be discussed in Section V-A.
In practice, it is reasonable to set different values for I and J
according to the demand of the objective in different problems.
At the end of each inner loop, the output of this inner loop
is regarded as Xt or Wt at the t-th outer loop, and is then
assigned to generate sub-problem fXt

and fWt
, respectively.

For every tout step at outer loops, the parameters θX and
θW are updated following equations (11). Finally, our MLAM
algorithm will stop when t reaches the maximum outer loop
number T .

Comparing to the deep unfolding algorithms, the fundamen-
tal differences of MLAM method are mainly three-fold: 1)
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replacing the variable update function within each iteration
by a meta-network instead of mapping the whole procedure
at each iteration by black-box based network operator, thus
the inner loop at each iteration is interpretable; 2) focusing
on learning a new strategy for the whole iterations instead of
following the basics of the original strategy with end-to-end
network behavior on trainable parameters, leading to a better
explainability on the optimization manner; and 3) is feasible
for unsupervised learning while the deep unfolding meth-
ods are mostly supervised learning. Therefore, the proposed
MLAM method highlights advances on the model explain-
ability and the improvements of combining the advantages of
learning-based and model-based approaches. We believe this is
a further step ahead that makes a higher level of learning than
the deep unfolding, where the learning objective is no longer
the trainable parameters but the whole optimization strategy.

In a summary, a hierarchical LSTM-based MLAM model is
proposed in this section. It contains two (or more for multiple
variables if needed) LSTM networks which perform optimiza-
tion at inner loops with frozen parameters; their parameters
are updated during outer loops with respect to minimizing
accumulated global losses. Therefore, the original structure of
algorithms well-established in the field is maintained while
the performance is improved by the meta-learned algorithmic
rule.

IV. APPLICATIONS IN TYPICAL PROBLEMS

In this section, we shall apply the proposed MLAM ap-
proach to a bi-linear inverse problem and a non-linear problem.
For those problems, the model-based methods perform less
effective and learning-based methods typically do not work
due to the lack of sufficient labelled data. Specifically, matrix
completion and Gaussian mixture model (GMM) problems are
analyzed in this paper as two representatives.

A. Bi-linear Inverse Problem: Matrix Completion

The bi-linear inverse problem is a typical optimization
problem whose variables are within an intersection of two sets.
Many non-convex optimization problems can be cast as bi-
linear inverse problems, including low-rank matrix recovery
[39]–[43], dictionary learning [44]–[46], and blind decon-
volution [47]–[49]. For example, in bind deconvolution and
in the matrix completion, F (·, ·) in (1) represents circular
convolution and matrix product, respectively.

Next we focus on the matrix completion [41]–[43], [50],
[51] as a representative bi-linear inverse problem to demon-
strate how to apply MLAM to solve this type of problems.
Matrix completion is a class of tasks that aims to recover
missing entries in a data matrix [50]–[52] and has been widely
applied in practice including recommending system [43] and
collaborative filtering [53]. Typically, it is formulated as a
low-rank matrix recovery problem in which the matrix to
be completed is assumed to be low-rank with given rank
information.

As for optimization, the low-rank matrix completion prob-
lem is usually formulated as the multiplication of two matri-
ces and then converted into two corresponding sub-problems

which are generally strongly convex [39], [40], [54]. Then,
gradient descent based methods, such as alternating least
square (ALS) [55] and stochastic gradient descent (SGD)
[56], are often applied on solving each sub-problem and can
achieve good performance under certain conditions. However,
satisfactory results are not universally guaranteed. On the
one hand, the performance depends on a set of factors,
including initialization strategies, the parameter setting of
gradient descent algorithms, the sparsity level of the low-rank
matrix, etc. On the other hand, the assumptions behind these
constraints are stringent, such as the feature bias on variables
for sparse subspace clustering mechanism [52], [57], which
are not common in practice.

Therefore, the bi-linear inverse problem is basically ill-
posed and thus has always been a challenging task. Conse-
quently, the performance of the traditional model-based meth-
ods is highly limited by the prior knowledge on models and
structural constraints. Meanwhile, the strong non-convexity
and constraints also limit the application of the deep learning
and unfolding techniques in this type of problems.

In this section, we further consider several more realistic and
therefore challenging scenarios, including high-rank matrix
completion, matrix completion without given rank knowledge,
and mixed rank matrix completion problems, where the exist-
ing model-based and even learning-based approaches fail.

The matrix completion problem is then formulated as [58],

min
U ,V

F (U ,V ) :=
1

2

∥∥PΩ(R−UV T )
∥∥2
F
+
λ

2
(∥U∥2F+∥V ∥

2
F ),

(13)
where the projection PΩ(·) preserves the observed elements
defined by Ω and replaces the missing entries with 0, and
λ is the weight parameter of the regularizers. The matrix
completion problem is typically formulated as a low-rank
matrix recovery problem, which parametarizes a low-rank
matrix R ∈ Rz×q as a multiplication of two matrices UV T

with U ∈ Rz×p, V ∈ Rq×p and p ≤ min(z, q).
Remark 3. When taking the matrix multiplication R = UV T ,
the parameter p is set to the rank of R, which is typically
known. If the rank is not provided, the problem will be much
more difficult and the existing methods would be unworkable.
In Section V-A, we will verify that the proposed MLAM still
works properly when p is unknown.

Here we define (13) as the overall problem, and F (U ,V ) as
the global loss function. It is obvious that the overall problem
is not convex in terms of U and V , but the sub-problems
are convex when fixing one variable and updating the other.
Therefore, we split (13) into two sub-problems in quadratic
form, fixing one variable in (13) and updating the other one,
referring to fU (V ) and fV (U). The ALS and SGD methods
can be applied by iteratively minimizing the two sub-problems.

Meanwhile, according to Algorithm 1, our MLAM method
can be directly applied to solve the problem (13) using two
LSTM networks LSTMU and LSTMV with parameters θU
and θV , to optimize matrices U and V , respectively. The
variable update equations are given by

U (i) = U (i−1) +H
(i−1)
U ,

V (j) = V (j−1) +H
(j−1)
V ,

(14)
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where HU and HV are the outputs of LSTMU and LSTMV ,
respectively. Two LSTM networks are updated for every tout
outer loop steps, via back-propagating accumulated global
losses Ls

F according to equation (10). In this way the up-
dating rule of the learned algorithm could be adjusted to find
gradient descent steps HU and HV for minimizing F (U ,V )
adaptively.

The advantages of our MLAM model for the matrix comple-
tion problem may be explained by the replacement of updating
step function ϕ by the neural networks. In the AM methods,
when a local optimum (U

′
,V

′
) is reached, the gradient of

the variables equals to zero, e.g.,
∂f

V
′ (U)

∂U |U=U ′ = 0. At
this stage, the update function, which is determined by the
gradients of variables, will be stuck at local optimum. While
in our MLAM model, our update functions are determined by
their parameters, θU and θV , which are further determined by
leveraging on partial global loss trajectories across the outer
loop steps. This major difference mainly brings two benefits
to our MLAM method. One advantage is that even at local
optimum points, our MLAM can still provide a certain step
update on variables. This can be understood that even when
one of the input

∂f
V

′ (U)

∂U |U=U ′ = 0, LSTMU still obtains
some non-zero outputs given a non-linear function of zero
input, cell state, and parameters. Another advantage is that
the leveraged global loss leads to a smooth optimization on a
global loss landscape, which allows the learned algorithm to
be essentially guided by the inductive bias from a smoother
transform of the global loss landscape. In Section V, besides
traditional low rank matrix completion problem, we further
evaluate MLAM in matrix completion problems in the case of
high rank, unknown rank and mixed rank ( a set of matrices
with different ranks, from low rank to full rank).

B. Non-linear Problem: Gaussian Mixture Model

Different from the bi-linear inverse problems, optimization
over the intersection of two variables that has a non-linear
mapping between variables and observed samples also plays
a significant role in statistical machine learning, including
Bayesian model [59], graphic model [60], [61], and finite
mixture model [62]. The sub-problem in non-linear problem
typically has no closed-form solution and the overall problem
possesses many local optimums. Therefore, it is difficult to
guarantee the convergence of the model-based approaches,
especially for the global optima, as well as intractable to obtain
labelled data for the existing learning based methods.

GMM [63]–[65] is one of the most important probabilistic
models in machine learning. GMM problem, consisting of a
set of Gaussian distributions in the form of weighted Gaussian
density components, is usually estimated by maximum log-
likelihood method [65]. The variables in GMM problem
possess a non-linear mapping to the observations. Many
methods have been proposed to solve the GMM problem,
i.e., maximising the likelihood of GMM problems, such as
conjugate gradients, quasi-Newton and Newton [66]. How-
ever, these methods typically perform inferior to the one
called expectation-maximization (EM) algorithm [62], [63].
One possible reason is due to the non-convexity and non-

linearity of the GMM problem that requires a sophisticated
step descent strategy to find a good stationary point. On the
other hand, EM algorithm omits the hyperparameter related
to the step size by converting the origin estimation problem
of maximising likelihood into a relaxed problem where a
lower bound is maximized monotonically and analytically.
Even though the EM algorithm has been widely applied in
the GMM problem, it also suffers from the aforementioned
non-convexity and non-linearity. When the non-convexity is
high (referring to some real-world scenarios: the number of
observation is not sufficient, dealing with high-dimensional
data [67] and large number of clusters), the convergence is not
guaranteed and the performance significantly degrades. Many
works attempt to replace EM algorithm through reformulating
GMM as adopting matrix manifold optimization [64], [68],
and also learning based method in high dimensions [67].

Detailed descriptions of GMM problems can be found in
[69]. Given a set of G i.i.d samples X = {xg}Gg=1, each
entry xg is a D-dimensional data vector. Then, a typical
optimization when using the GMM to model the samples is
to maximize the log-likelihood (MLL) [65], which is equiv-
alent to minimize the Kullback–Leibler divergence from the
empirical distribution. The parameters of the GMM can then
be optimized as follows,

max
{πk,µk,Σk}K

k=1

log p(X) =

G∑
g=1

log

K∑
k=1

πkN (xg|µk,Σk),

(15)
where

N (xg|µk,Σk) =
exp{− 1

2 (xg − µk)
TΣ−1

k (xg − µk)}
(2π)D/2|Σk|1/2

.

(16)
In (15), for the k-th Gaussian component, µk is the mean
vector and defines the cluster centre, covariance Σk denotes
the cluster scatter, πk represents mixing proportion with∑K

k=1 πk = 1, and |Σk| represents the determi>1t of Σk.
However, it is intractable to directly obtain a closed-form

solution that maximizes log p(X) in (15). The key difficulty
is that by differentiating log p(X) (summation of logarithmic
summation) and equalizing it to 0, each parameter is inter-
twined with each other. Gradient descent methods in an AM
manner can alternatively solve (15), but they typically perform
inferior to the EM algorithm [62], [63].

We should also point out that the EM algorithm still updates
the GMM parameters in an AM manner, i.e., iterating to
optimize over each parameter at which its gradient equals to 0
with the other parameters being frozen. Furthermore, the EM
algorithm, together with other first-order methods, has been
proved to converge to arbitrary bad local optimum almost
surely [70]. As we have discussed before, this AM strategy
can be improved by replacing the frozen updating rule that
searches optimum in a local landscape, by a less-greedy rule
that updates variables up to global scope knowledge on the
loss landscape of the global objective function.

Therefore, we propose to solve GMMs by adopting our
MLAM method, which directly applies a learning-based gradi-
ent descent algorithm to the original ML problem (15) without
any extra constraints. In this scenario, we consider the GMM
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Fig. 3. An illustration of converge trajectories achieved by the proposed
MLAM and EM methods in a simple GMM problem. In this GMM, the
samples were obtained by three Gaussian distributions of parameters {µ1 =
−3, µ2 = 3, µ3 = 0}, {σ1 = 1, σ2 = 10, σ3 = 5}, and {π1 = π2 =
π3 = 1

3
}. For the convenience of visualization, we here show the surface of

log-likelihood and converge trajectories with regard to µ1 and µ2, whereas
setting the other parameters to the ground-truth when optimizing GMMs; this
means the global optima exists at µ1 = −3 and µ2 = 3.

problem with covariance Σ being given; hence the MLL
estimation of GMM is presented in terms of negative log-
likelihood as follows

min
{πk,µk}K

k=1

Fne(π,µ) = −
G∑

g=1

log

K∑
k=1

πkN (xg|µk,Σk).

(17)
In this case, we treat the (17) as our overall problem, and

split it into two sub-problems fπ(µ) and fµ(π). Define vector
π ∈ RK and matrix µ ∈ RK×D, where K is the maximum
number of clusters and D is the dimensionality of samples.
In our MLAM framework, we build two MetaNets LSTMπ

and LSTMµ with parameters θπ and θµ to update π and µ
as follows

π(i) = π(i−1) +H
(i−1)
π ,

µ(j) = µ(j−1) +H
(j−1)
µ ,

(18)

where Hπ and Hµ are the outputs of the two LSTM neural
networks respectively.

Similar to applying MLAM in matrix completion, we start
from a random initialization µ0 and π0. During our MLAM
procedure given in Algorithm 1, πk and µk are updated based
on equation (18) for tin steps in inner loops respectively.
Meanwhile, we back-forward the accumulated global losses
with respect to the negative log-likelihood of GMM, referring
to Ls

F , for every tout steps on the outer loops. In this way,
the algorithm is updated based on the global scope knowledge
about the global losses across outer loop iterations.

Considering that the existing numerical gradient-based so-
lutions typically perform less effectively and accurately than
the EM algorithm [63], we focus on comparing our MLAM
method and the EM algorithm. EM algorithm converts maxi-
mization of the log-likelihood into maximization on its lower
bound; hence it has closed-form formulations to implement an
AM strategy on its maximization step for variable updating.
Nevertheless, our MLAM method directly optimizes the cost
function, i.e., the log-likelihood, and the variables are updated
constantly up to the global scope knowledge extracted by

LSTMs. In Fig.3 we show the convergence trajectory of
our MLAM and EM algorithm on the geometry of a GMM
problem with three clusters. As mentioned in Section III-B,
the proposed MLAM with accumulated global losses allows
the learnt algorithm converges in a non-monotonic way. It can
be seen that the EM algorithm (red arrows) quickly converges
to the local optimum and stops at it. In contrast, the MLAM
approach (orange arrows), first going to the local optimum yet,
is able to escape from the local optimum and converges to the
global optima. Specifically, when encountering local optimum,
the proposed MLAM first goes down on the geometry, and
then moves towards to the global optima, thus escaping from
the local optimum. This reveals that the learnt algorithm does
not request each step moving towards to the most ascending
direction, but the global losses on a partial trajectory should
be minimized, recalling the accumulated global losses mini-
mization Ls

F in equation (10). Therefore, the MLAM enjoys
significant freedom to learn a non-monotonic algorithm for
convergence in terms of the update strategy on Ls

F . We also
shall point out that this also results in the fluctuations on the
trajectory, which could increase the needed iterations when the
geometry is smooth and benign.

V. EXPERIMENTS

In this section, we will present simulation results on the
aforementioned matrix completion and GMM problems to val-
idate the effectiveness and efficiency of our MLAM method.

For the experimental settings, our MetaNets employ two-
layer LSTM networks with 500 hidden units in each layer.
Each network is trained by minimizing the accumulated loss
functions according to equation (10) via truncating backprop-
agation through time (BPTT) [71], which is a typical training
algorithm to update weights in RNNs including LSTMs. The
weights of LSTM are updated by Adam [37], and the learning
rate is set to 10−3. In all simulations, we set ωts = 1 for
simplicity. The parameters of LSTM networks are randomly
initialized and continuously updated through the whole train-
ing process. For evaluation, we fix the parameters of our
MLAM model and evaluate the performance on the testing
datasets.

A. Numerical Results on Matrix Completion

In this subsection, we consider learning to optimize syn-
thetic D-dimensional matrix completion problems. We take
D = 10 and D = 100 to evaluate algorithms for both small
and large scale cases. For each matrix completion problem,
the ground truth matrix R ∈ RD×D is randomly and syn-
thetically generated with rank p. Meanwhile, the observation
RS = PΩ(R) is generated by randomly setting a certain
percentage of entries in R to be zeros, and the non-zero
fraction of entries is the observation rate. Matrix completion
for R is then achieved by solving the low-rank matrix recovery
on RS in the form of equation (13) in Section IV-A. The two
factorized low-dimensional matrices U ∈ RD×p and V D×p

are then used to generate reconstruction of the ground truth
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matrix, denoted by R̂ = UV T . The evaluation criterion is
given by Relative Mean Square Error (RMSE) of

RMSE =
∥R− R̂∥F
∥R∥F

.

As aforementioned, the classical AM-based ALS [55] and
SGD [56] approaches, as well as the learning-based deep ma-
trix factorization (DMF) [5] and unfolding matrix factorization
(UMF) methods [11], have been adopted for comparisons. The
parameters of all compared methods are carefully adjusted to
present their best performances.

Different simulation scenarios on matrix completion are
evaluated comprehensively. The detailed simulation settings
include: i) each simulation contains a set of 200 matrix
completion problems, half of which are employed as training
samples for parameter update on LSTM, while the remaining
100 matrix completion problems are used to evaluate the
performance as testing samples; ii) we set T = 100 as total
alternating steps for each problem; iii) the averaged RMSE
over 100 testing samples is used for evaluation; iv) in all the
training and testing processes, the ground truth matrix R is
not given, and is only used to evaluate performance after the
optimizing processes.

1) Parameter setting: The numbers of variable update steps
on inner loops tin and update interval tout are the two most
important hyper-parameters. Different settings on tin and tout
are thus tested at first to provide a brief guidance on the
choices of tin and tout.

Empirically, there is a trade-off between performance and
efficiency. Here we set tin and tout to both vary from 1 to 20
with 20% observation rate, and there are therefore 20× 20 =
400 different parameter combinations to be evaluated for rank-
5 matrix completion problems. The performance of these 400
simulations are shown in Fig. 4. We can see that for all choices
of tout, the increase on tin leads to significant improvements
on performance when tin ≤ 10, however, further increasing
on tin witnesses little gain on performances. At the same
time, the variations of tout have less impact on RMSE results,
while larger choices (tout ≥ 10) bring improved stability
(there are less fluctuations when tin ≥ 10, and tout ≥ 10).
Fig. 4 indicates that a sufficient number of update steps
for inner and outer loops play a significant role in these
optimization processes. We can see that when either tin or
tout is small (less than 5), the optimization does not perform
well enough. A larger choice of tin, however, typically brings
higher computational cost. Thus in the rest of this paper, we
set tin = 10 and tout = 10 as the default parameter setting.

It is understandable that tin directly determines the number
of variable update steps within each inner loops. When tin is
small, the learned updating rule needs to optimize variables
in a few steps, however this could be intractable in general.
Meanwhile, the accumulated global losses depend on tout at
outer loops which indicates the length of the trajectory of
global losses at outer loops. Therefore, a large enough tout
could provide sufficient global losses trajectory for parameter
update. According to the two-levels meta-learning in our
MLAM model, sufficient update steps at inner and outer
loops can ensure that each level of meta-learning works well.

Fig. 4. Performance of the proposed MLAM method on rank-5 matrix
completion problem with different parameter combinations of tin and tout
which range from 1 to 20 with step size 1.

We infer that small tin may limit the ground-level meta-
learning corresponding to inner loops, making it unable to
extract effective sub-problems across knowledge with merely
few update steps, and small tout could cause that the upper-
level meta-learning corresponding to outer loops becomes less
stable due to the lack of updates on parameters.

2) Standard matrix completion: In this part, we will first
evaluate all methods on low-rank matrix completion tasks
and then apply them on high rank matrix completion tasks.
In these simulations the rank of the matrices is given. In
this subsection, the main goal is the proof of the concept of
the proposed MLAM. We evaluate four existing approaches,
including conventional model-based methods and the state-of-
the-art learning-based methods for comparison.

In Table I, average RMSE of the five evaluated methods
on four sets of 100-dimensional rank-5 matrix completion
problems have been reported. Different sets have different
observation rates, including 20%, 40%, 60% and 80%. From
Table I, it is clear that our MLAM algorithm significantly
outperforms all the existing methods, especially on high ob-
servation rate scenarios. It is also noticeable that when the
observation rate is 20%, both of the model-based methods
(ALS and SGD) and learning-based methods (DMF and UMF)
work not well, while our MLAM method achieves good
reconstruction with RMSE < 0.1.

In Fig.5, we present the RMSE variance of the five tested
methods on 100 trails of rank-5 matrix completion tasks with
20% observation rate. It can be observed that the MLAM
obtains the best performance while keep the variance rela-
tively small. It is noticeably that the ALS approach fluctu-
ates severely, while the SGD and DMF approaches present
relatively large variance comparing to the MLAM. Though
the UMF method gains robust results with small variance, the
accuracy is significantly lager than the MLAM.

From these simulation results, we can conclude that in
the classic low-rank matrix completion problem, our MLAM
method has shown better performances than the comparison
methods, especially when the observation rate is low.

We then consider more challenging matrix completion prob-
lems. Generally, the matrix completion problem is assumed
to be solved as a low-rank matrix completion problem. Here
we are aiming to solving high-rank or even full-rank matrix
completion problems without adding any further assumptions.
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Fig. 5. The RMSE variance of the evaluated methods on rank-5 matrix
completion tasks with 20% observation rate.

TABLE I
RMSE OF RANK-5 MATRIX COMPLETION WITH DIFFERENT OBSERVATION

RATES Θ.

Methods
Θ 0.2 0.4 0.6 0.8

MLAM 0.089 0.057 0.045 0.003
SGD 0.292 0.213 0.136 0.072
ALS 0.864 0.717 0.423 0.228
DMF 0.228 0.091 0.057 0.025
UMF 0.363 0.359 0.335 0.312

In this case, we test all the five approaches on six set
of 100-dimensional matrix completion problems with 20%
observation rate, whose ranks are ranged from 5 to 100.

The averaged RMSE results of matrix completion problems
with variant rank are listed in Table II. There is a clear trend
of decreasing performances of the comparison methods when
the rank of matrices increases. Noticeably, ALS method is
no longer workable when the rank is larger than 10. SGD,
DMF and UMF methods fail after the rank reaches 40. This
can be understood that these approaches are typically assumed
specific penalty terms recalling to the low-rank property. How-
ever, the proposed MLAM method shows different results: the
higher the rank, the smaller the RMSEs. We can conclude
that our algorithm is capable of solving the matrix completion
problem in high-rank, even full-rank scenarios, without any
extra constraints, while standard methods typically fail.

The execution time of the evaluated methods is compared
in Table IV. It can be seen that the proposed MLAM ap-
proach has larger time cost than the compared methods, but
the difference is within second-level. This is caused by the
alternatively utilizing network at each iteration. There is a
trade off between the time consuming and performance: the
higher the accuracy, the larger the time consumption. In this
paper, the main goal is the proof of the concept that the MLAM
approach could provide better performance on solving multi-
variable non-convex optimization problem.

3) Blind matrix completion: In this part, we consider more
challenging cases where the rank information is not known.
We consider these are blind matrix completion problems which
are typically intractable using previous methods. We first test
our MLAM method and standard methods in the case where
a set of matrices completion problems have the same but
unknown rank. Then we will further test our MLAM method
by more difficult case which has a set of matrices completion
problems with different unknown ranks.

In the first case, we test our MLAM method and two stan-

TABLE II
RMSE OF MATRIX COMPLETION WITH DIFFERENT RANKS.

Methods
Rank 5 10 20 40 80 100

MLAM 0.089 0.085 0.078 0.072 0.053 0.052
SGD 0.292 0.405 0.689 >1 >1 >1
ALS 0.864 0.942 >1 >1 >1 >1
DMF 0.228 0.263 0.392 0.643 >1 >1
UMF 0.363 0.376 0.417 0.582 >1 >1

TABLE III
RMSE OF RANK-10 MATRIX COMPLETION WITH VARIANT FACTORIZED

MATRIX DIMENSION p.

Methods
p 10 20 40 80 100

MLAM 0.09 0.12 0.19 0.30 0.36
SGD 0.31 0.78 >1 >1 >1
ALS 0.89 >1 >1 >1 >1
DMF 0.26 0.53 0.81 >1 >1
UMF 0.37 0.68 0.87 >1 >1

dard methods on a set of rank-10 matrix completion problems
with variant factorized matrix dimension p. In Table III we
report the results of applying different p for reconstructing a
rank-10 matrix through the five tested approaches. We can see
that the proposed MLAM method is more robust when there
is a mismatch between p and the true rank compared to the
other methods.

When we take a large gap such as p = 80 or p = 100 to
reconstruct a rank-10 matrix, the MLAM method still achieves
acceptable performances. Meanwhile, the rest of the tested
methods quickly degrade with the increase of the mismatch
between p and the rank values. The RMSEs of the existing
methods quickly arise to more than 100% when p ≥ 40.
In contrast, our MLAM method shows a good tolerance on
the increase of the difference between the real rank and p.
Thus, the MLAM method does not require an accurate rank
information to achieve a successful matrix completion.

Then, we test our MLAM method on matrix completion
problems with different ranks for the matrix R. This means
that in the training and testing sample sets, there are mixed
matrices with different ranks. Thus the learned algorithm
is required to adapt on matrix completion problems across
different ranks.

In Table V, RMSE results of three sets of matrix completion
problems are listed. For each set, 100 training samples and 100
testing samples are generated by setting their ground truth rank
uniformly distributed between 10 and 100 with stepsize 10. We
take three different choices of p for each set, and calculate the
mean RMSE on the samples of each rank respectively.

The proposed MLAM method in the three cases performs
generally well on samples with different ranks. The com-
parison of the three cases further reveals that our method
of choosing p = 10 achieves the best performance in all
samples, especially on low-rank scenarios where it provides
significantly better results than the others. For the other two
choices of p, our method also has comparable performances
on high-rank samples, and achieves sufficiently good accuracy
on the majority of the samples.

The major computational cost in each iteration of MLAM
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TABLE IV
TIME COMPLEXITY OF DIFFERENT METHODS.

Methods MLAM DMF UMF ALS SGD
Time(ms) 4618 3704 2243 1272 1518

Fig. 6. The performance of EM and MLAM over 50 testing samples.
Averaged non-negative log-likelihood of 50 trails through EM algorithm is
7.77, while the result through MLAM model is 7.56.

is from the network-based computation of the gradient update
term at inner loops. In this instance, due to the implementation
of the networks at each inner loop iteration, the computational
complexity of the MLAM approach is significantly regarded
to the number of the inner and outer loops.

In the future work, we will further improve the computa-
tional speed of the MLAM to reduce the time cost for better
practical applications.

In summary, we have been shown that our MLAM method is
capable of solving the matrix completion problem without any
prior information. Typically, these problems have underlying
complicated landscapes geometries. Therefore, it is hard for
standard gradient descent based methods to achieve satisfac-
tory results. The proposed MLAM model makes it possible to
find good solutions through learning an appropriate updating
rule that is dynamic and adaptive.

B. Numerical Results on Gaussian Mixture Model

In this section, we apply MLAM method to GMM problems.
Given the data set X = {xg}Gg=1 (G denotes the number of
observation samples), we optimize the mean cluster centre µk

and mixing proportion πk whilst keeping the covariance Σk

frozen, which is similar to the optimization of the k-means
problem. We consider one GMM problem as one sample in
the training and testing set. For solving each GMM problem,
we set the maximum alternating steps as 100, and record
the negative log-likelihood Fne trajectory according to (17).
Similar to the settings in the matrix completion simulation,
we also choose tin = 10 and tout = 10 for all the simulation
scenarios in the GMM problems.

EM algorithm has been adopted for comparison. The stop-
ping criterion for EM algorithm is |Fne(t − 1) − Fne(t)| <
10−4. EM algorithm and our MLAM method all start from
the same random initialization for µk and πk.

We first start from the 2-dimensional GMM problems,
whose data vector xg ∈ R2. Given four clusters (K = 4),
G = 500 data points in X = {xg}Gg=1, we show 50
tested results with random initialization in Fig 6. We only

(a) EM clustering result. (b) MLAM clustering result.

Fig. 7. Clustering results of one GMM problem with random initialization.

provide 500 data points here to increase the difficulty for
optimizing these GMM problems due to the limited number
of observations. From Fig 6, it can be seen that on these 50
tests, the MLAM method outperforms the EM algorithm in
most cases. The mean negative log-likelihood Fne of MLAM
method on these 50 samples is 7.52 while that of the EM
algorithm is 7.75. More specifically, we randomly select one
clustering result among these 50 trails which is shown in Fig.7,
which clearly shows that the MLAM method obtains much
better clustering results than the EM algorithm.

Furthermore, we conduct simulations on a flower-shaped
synthetic data (G = 10,000) with random initializations. Each
cluster in the flower-shaped data is composed by Gaussian-
distributed samples. This typically is a hard problem as
the anisotropic clusters lead to extensive local optimum. 10
randomly selected optimization can be found in Fig 8, in
which our algorithm consistently achieves nearly optimal
clustering but the results from EM are highly biased. Although
being illustrative in 2 dimensions, the data in Fig. 8 consists
of 8 anisotropic clusters, which might be the main reason
that the EM method converges to bad local optimum. As
has been proved in [70], when solving GMMs with more
than 2 clusters (K > 2), the EM method is highly likely
to converge to arbitrarily bad local optimum under random
initialization. More specifically, The EM method is a spe-
cial case of Beyasian variational inference, and provides a
tractable solver to maximize the lower bound of the log-
likelihood of GMM problems. More importantly, maximizing
the log-likelihood is equivalent of using the Kullback-Leibler
(KL) divergence in estimating two distributions [63]. Thus,
the performance of the EM method is basically limited to
the intrinsic nature of the KL divergence, which can output
infinitely large values with gradient vanishing issues when
two distributions are well-separated [70], [72]. In other words,
the EM method is highly sensitive to initialization and may
converge to bad local optimum from random initialization,
the phenomenon that has been studied in [68]. In contrast,
the proposed MLAM method consistently achieves the global
estimation, verifying the global optimization nature of our
method. Therefore, our MLAM method obtains significant im-
provements on accuracy, even for some challenging scenarios
such as insufficient observations and anisotropic clusters in
these illustrative evaluations.

We further evaluate our method in estimating high di-
mensional GMM problems. Several sets of high dimensional
synthetic data (G = 500, K = 4) are also randomly generated
for the evaluation, with dimensions 4, 8, 16, 32 and 64. The
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TABLE V
RMSES OF MIXED MATRIX COMPLETION WITH DIFFERENT CHOICE OF p.

p
Rank 10 20 30 40 50 60 70 80 90 100

10 0.120 0.081 0.065 0.055 0.049 0.046 0.043 0.042 0.042 0.039
50 0.250 0.130 0.095 0.075 0.067 0.055 0.052 0.048 0.046 0.045

100 0.450 0.210 0.140 0.100 0.081 0.068 0.061 0.056 0.052 0.048

Fig. 8. EM and MLAM performance on 10 flower-shaped data. Black and red dash lines denote EM and MLAM clustering results, respectively

TABLE VI
HIGH DIMENSIONAL GMM SIMULATION RESULTS.

Methods
Dimension 4 8 16 32 64

EM 6.52 12.64 23.83 47.10 96.88
MLAM 6.44 12.42 23.05 46.93 95.72

averaged negative log-likelihoods of 100 tests for each testing
dimension are reported in Table VI. It is clear that from Table
VI our MLAM method outperforms the EM algorithm on all
the high dimensional sample sets and the variation on dimen-
sions does not affect the performance of our method, while
this typically decreases the performance of EM algorithm in
general.

In this stage, it has been verified that our proposed method
is able to solve non-convex multi-variable problem with non-
linear relationships between variables and observation data.
Even without closed-from landscapes in these problems, our
MLAM method still successfully finds good solutions whilst
EM algorithm fails.

VI. CONCLUSION

We have proposed a meta-learning based alternating mini-
mization (MLAM) method for solving non-convex optimiza-
tion problems. The learned algorithm has been verified to
have a faster convergence speed and better performances than
existing alternating minimization (AM)-based methods. To
achieve that, our MLAM method has employed LSTM-based
meta-learners to build an interaction between variable updates
and the global loss. In this way, the variables are updated by
the LSTM networks with frozen parameters at inner loops,
which are then updated by minimizing accumulated global
losses at outer loops. This paper is just a proof of the concept
that a less greedy and learning-based solution for non-convex
problem could surpass both of the traditional model-based
and learning-based methods. More importantly, these concepts:
optimize each independent solution step in-exhaustively by
globally learning the optimization strategy, and integrate these

independent steps by the bi-level meta-learning optimization
model, spark a new direction of improving the optimization-
inspired solutions for advanced performance. It reveals that
applying neural network based behavior to assist the well-
established algorithmic principle, instead of replacing it by
black-box network behavior, could bring significant advances.

For the future work, we plan to apply the proposed MLAM
method to more challenging and practical non-convex prob-
lems, such as dictionary learning in compress sensing, blind
image super resolution, and MIMO beamforming. We would
also like to extend some theoretical analysis on our MLAM
model. Moreover, the MLAM can be directly apply to solve
non-convex problem online without pre-training. It is deserved
to discover the application of applying MLAM as an algorithm
without training for non-convex problems.
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