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ABSTRACT

High-throughput, cost-effective, and portable devices can enhance the performance of point-of-care tests. Such devices are able to acquire
images from samples at a high rate in combination with microfluidic chips in point-of-care applications. However, interpreting and analyz-
ing the large amount of acquired data is not only a labor-intensive and time-consuming process, but also prone to the bias of the user and
low accuracy. Integrating machine learning (ML) with the image acquisition capability of smartphones as well as increasing computing
power could address the need for high-throughput, accurate, and automatized detection, data processing, and quantification of results. Here,
ML-supported diagnostic technologies are presented. These technologies include quantification of colorimetric tests, classification of biologi-
cal samples (cells and sperms), soft sensors, assay type detection, and recognition of the fluid properties. Challenges regarding the imple-
mentation of ML methods, including the required number of data points, image acquisition prerequisites, and execution of data-limited
experiments are also discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0025462

I. MACHINE LEARNING AND IMPLEMENTATION
PREREQUISITES

A. Machine learning

Machine Learning (ML), as a subdivision of Artificial
Intelligence (AI), enables computers to learn using example data or
past experiences without being explicitly programmed. ML uses the
theory of statistics in building mathematical models defined up to
some parameters, and the learning process is executed by a com-
puter program to optimize the parameters of the model based on
classes of tasks and performance measures (Fig. 1).1–3 One way to
categorize ML algorithms is based on how they interact with the
example data or experience. Accordingly, ML algorithms can be
grouped by the learning style as supervised, unsupervised, and rein-
forcement learning. In supervised learning, the training data can be

defined as an input X and an output Y (with a known/desired label
or result), and the task is to learn the mapping from the input to
the output. Regression and classification problems are examples of
supervised learning problems. The training process continues until
the model achieves a desired level of accuracy on the training data.
Unsupervised learning does not employ labeled or supervised
output data. In this case, the aim is to find structures and regular-
ities in the input data. Clustering, segmentation, dimensionality
reduction, and association rule learning are examples of unsuper-
vised learning approaches. Figure 2 depicts the commonly used ML
architectures. Semi-supervised learning methods are also used
when the input data are a mixture of labeled and unlabeled exam-
ples. However, reinforcement learning algorithms do not require
labeled or unlabeled input/output pairs but focus on optimizing
an output policy—defined as a mapping from state actions that
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provides instructions in a given state with a sequence of states and
actions with (delayed) rewards.4,5 Although the supervised learning
method is an accurate, effective, and versatile approach, the main
drawback of this method is its reliance on prior knowledge—pre-
pared labeled data by a human to train the algorithm, which is sus-
ceptible to human bias and demands substantial time and effort for
preparation.6 In some cases, the needed training input data for
supervised ML methods can be obtained from the output of unsu-
pervised ML approaches.7

B. Deep learning strategies

DL is a subset of a broader family of ML methods based on
Artificial Neural Networks (ANNs). As such, learning can be
supervised, semi-supervised, or unsupervised. For supervised learn-
ing tasks, deep learning methods eliminate the need to design or
select good features that are domain-specific by translating the data
into compact intermediate representations similar to principal
components and derive layered structures that remove redundancy
in representation. While supervised DL models need a large
amount of labeled training data to enhance their accuracy, they
demonstrate superior performance as well as a significant practical
benefit with respect to conventional ML methods in several data-
driven applications such as image classification, segmentation,
object detection, and face recognition, revealing the power of
having access to more data. DL algorithms can be applied to unsu-
pervised learning tasks as well. This is an important benefit
because unlabeled data are more abundant than the labeled data.
Moreover, these algorithms derive insights directly from the data
itself by summarizing and grouping the data so that one can use
these insights to make data-driven decisions. Several unsupervised
DL models exist, such as Autoencoders, Deep Belief Nets, Hebbian
Learning, Generative Adversarial Networks (GANs), and
Self-organizing maps that do not rely on labeled training data to

make decisions and to determine the accuracy of the outcome.
Despite demanding considerable time for training in traditional
deep networks, either supervised or unsupervised, nowadays, DL
owes its breakthrough to available large data storages and fast
Graphics Processing Units (GPUs) with high computational
power.8 Open-source online libraries are available such as
TensorFlow, Caffe, Theano, Torch, and Deep Learning 4j (DL4j).
Although none of these libraries are optimal, features, plus points,
and drawbacks of each library, such as flexibility, speed, and inte-
grability, should be considered to choose the most appropriate
fitting library for the desired application.10,11

Common network architectures in DL include Multilayer
Perceptron (MLP), Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), autoencoders, and Generative
Adversarial Networks (GANs). Although the true capacity of DL
methods has not been revealed yet, each of them can address spe-
cific applications based on their architecture. For example, Deep
Neural Networks (DNNs) have the potential to analyze multi-
dimensional data and internal relationships among them, including
but not limited to the prediction of protein structures and regulat-
ing gene expression. Moreover, RNNs can be used for sequential
datasets where building blocks of data have a cyclic connection,
such as Long Short-Term Memory Units (LSTMs), perceptrons,
and Gated Recurrent Units (GRUs). Furthermore, CNNs are con-
sidered the optimal fitting method for analyzing spatial data.10,12

Artificial Intelligence (AI), Machine Learning (ML), and Deep
Learning (DL) are widely used terms in modern data-driven
research. Although these terms are closely related, it is critical to
distinguish their differences for better use of methods belonging to
each for a particular application. Hence, clarifying the differences
between these terms is worth mentioning. AI is the field of study to
build intelligent systems, programs, and machines that can crea-
tively solve problems. ML, a subset of AI, is the study of computer
models and algorithms (e.g., neural networks), used by machines,
to learn structures and patterns from observed data automatically
and then apply these learned patterns to make an inference on the
rest of the unseen data. In classical ML, generally, three compo-
nents are needed to learn patterns, namely, datasets, features, and
the algorithm. Therefore, selecting the appropriate features,
depending on the application, plays a pivotal role in the success of
the learning procedure, requiring domain expertise. DL, a subset of
ML, is in fact a technique for realizing ML. For example, artificial
neural networks (ANNs) are a type of DL algorithm that aims to
imitate the way our brains make decisions. More specifically, an
ANN is a web of layers, connections, and direction of data propa-
gation to learn arbitrary functional mappings using data, resem-
bling the functional structure of the human brain. ANNs can
perform complex tasks such as decision making, cognition, patterns
generating, and learning. In this regard, training aims to learn
certain parameters of the ANN on a given learning task, which
makes the feature selection process a part of the learning process.
From this aspect, DL is a subfield of ML that enables an enhanced
ability to find and amplify even the smallest patterns. DNNs were
built by adding more hidden layers to ANNs, enabling the perfor-
mance of more complex tasks by capturing nonlinear relationships.
It is important to note that these models can be trained for both
supervised and unsupervised learning tasks. Additionally, a

FIG. 1. A schematic of a fully connected neural network (NN) comprising input,
output, and hidden layers. In conventional ML algorithms, data are first repre-
sented in terms of specific features that will allow for dimensionality reduction.
However, based on the underlying mathematical model, current Deep Learning
(DL) models can be trained without necessarily hand-picking such features. In
NNs, as the number of hidden layers increases, the network becomes deeper.8

Shallow NNs (with a few numbers of hidden layers) have limited modeling capa-
bility that is suitable for simple and well-structured data. However, multilayer,
deep algorithms possess the required complexity for undertaking more real-life
tasks. Reproduced with permission from Riordon et al., Trends Biotechnol.
37(3), 310–324 (2019). Copyright 2018 Elsevier Ltd.
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combination of supervised and unsupervised ML methods for
training DNNs is reported.9,13–16

II. MACHINE LEARNING APPLICATIONS

In speech recognition, image processing, and complex control
tasks, DL has proved to have superior performance compared to tra-
ditional ML methods and human perception.17,18 Furthermore, bio-
medicine and biomedical engineering, as data-rich disciplines, suffer
from complex and often ill-understood data.19 Contemporary micro-
scopes, for instance, can provide up to 105 images per day, which is
challenging to be analyzed manually. ML methods can detect partic-
ular features, cluster, and classify images.20 Analysis of cellular assays
by ML methods has provided a unique opportunity for clinicians to
detect, monitor, and remedy genetic perturbations.21,22 The perfor-
mance of the ML methods is comparable to that of common image
processing methods in the case of intricate multidimensional analyses
such as distinguishing features.

A. Machine learning applications for assay
quantification and classification

Inaccurate measurement can occur in the manual interpreta-
tion of colorimetric test results. The integration of ML with current
methods not only can address the inaccuracy issue, but also can
amplify the test speed. Colorimetric assays have been analyzed
using ML. A machine learning-based mobile application was devel-
oped to quantify peroxide concentration using colorimetric test
strips with almost 90% accuracy.23 In another study, two different
CNN models were used for assay type detection and colorimetric
measurements: 8-layer deep AlexNet, consisting of a series network
and 42-layer deep Directed Acyclic Graph (DAG) network of
Inception v-3.24 Both methods had 100% accuracy in the training
set for assay type detection with less than 1000 data samples
needed for training of the algorithm, whereas the precision of col-
orimetric detection was low. Although the Inception method
required virtually 20 times more time for training compared to the
AlexNet, the former needed less memory and computational

FIG. 2. Most common ML algorithms. (a) ANNs are inspired by the NNs in the brain, structured in layers of interconnected nodes. The nodes in the red layer are the input
features, nodes in the orange layers are hidden layers, and the node in the blue layer is the distinct output. Although ANNs can model complex relationships between
input and output features, the interpretation of how an algorithm reaches the output from an input is still difficult. (b) Support vector machine (SVM) is a supervised ML
algorithm that uses the classification of data points by choosing the “separating hyperplane” that maximizes the distance from the two closest points on either side to
increase the generalizability to unseen data. (c) Decision trees use bifurcation of the feature space to make classifications or predictions based on numerous input features.
While regression trees are a result of continuous decision variables, the categorical decision variable produces classification trees. In order to solve the overfitting of a
single tree, random forests, as an ensemble learning method, takes the mean predictions of the individual trees or the mode of classes. (d) Naïve Bayes calculates the
most likely outcome (blue) as a product of the a priori chance (red) and the conditional probabilities given by the individual features, which is usually not definitely true but
generally is rapidly computed and provides viable prediction in practice. (e) A data point, with an unknown class, is compared to its K nearest neighbors by the K-nearest
neighbors in order to determine its class as the most common class of its neighbors. For K = 1, the algorithm assigns the class of a data point to the class of the single
closest neighbor. (f ) Fuzzy C-means, as an unsupervised learning algorithm, can cluster data points without having the desired output based on their input features.
Owing to the “fuzzy” aspect, these algorithms are flexible to classify a data point to each cluster to a certain degree relating to the possibility of fitting to that cluster.9

Reproduced with permission from Senders et al., World Neurosurg. 109, 476–486.e471 (2018). Copyright 2017 Elsevier Inc.
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power. More time, larger training dataset, and higher computa-
tional power were needed for more accurate results. Support Vector
Machines (SVMs), Linear Discriminant Analysis (LDA), and ANN
were used to achieve classification results for the detection of
alcohol concentration in saliva.25 LDA could aptly perform linear
classifications when dataset classes are sufficiently separated from
each other based on standard concentration values. SVM demands
more training time because of the crucial optimization step.
Notwithstanding the proposed optimizations, SVM’s classification
performance did not improve in comparison with LDA. Overall,
ANN integrated with LAB color space presented the optimal per-
formance. For spectral classification, Euclidean Distance (ED),
Spectral Angle Mapper (SAM), SVM, Logistic Regression (Logi),
and Multilayer Perceptron (MLP) models were employed for differ-
entiating between seborrheic dermatitis and psoriasis on the
scalp.26 SVM yielded higher accuracy and sensitivity over other
models. In another study, an ML method was used for a single-
molecule data analysis where CNN and SVM had 98.1% and
91.7% accuracy on test datasets, respectively.27 A CNN-based
model was developed with up to 19 layers to demonstrate the effect
of depth on the algorithm’s accuracy.28 Augmenting a convolu-
tional ConvNet depth enhances classification accuracy.

An ML method was implemented on a smartphone platform to
automatically identify pH values.29 Images of pH strips under different
orientation and illumination conditions (Fig. 3) and their colorimetric
values were used as the training set for the Least Squares-Support
Vector Machine (LS-SVM) classifier algorithms. LS-SVM had a 100%
accuracy on training set for all pH values. On the other hand, the
SVM method yielded an inferior detection performance compared to
LS-SVM, especially for 3, 6, 7, and 8 pH values.

In another study, different classifiers were employed to
analyze images to detect tuberculosis (TB).30 When 75% of the
dataset was used for training and 25% for evaluating, the Bagged
Tree classifier had the most optimal accuracy by 94.1% over other
methods such as the Fine K Nearest Neighbor (KNN), with 70.6%,
and the Cubic SVM, with 76.5%. However, when all the dataset
was used as the training data, the optimal accuracy results can be
changed as follows: the Bagged Trees 97.2%, the Fine KNN 94.4%,
and the Cubic SVM 88.7%.

A mobile phone-based colorimetric test was developed by
combining DL with a wax-printed paper-based multiplexed immu-
noassay to detect Lyme disease.31 Training the algorithm with 48
positive and 52 negative samples, 90% sensitivity, 95% area under
the curve, and 87% specificity was reported (Fig. 4).

B. Microfluidic devices and machine learning

Microfluidics can be used as a quick, low cost, and easy to use
technique for the determination of biomarkers in clinical
samples.32–42 With the assistance of ML, these devices become
more functional and accurate. ML-enabled microfluidic devices are
broadly used in measuring fluidic properties in microfluidic
devices,43 glucose assays,44 soft sensors,45 flow cytometry,46 and
cytopathology.47–49 NNs have been used to quantify physical prop-
erties in microfluidics. For example, the magnitude of the blend
droplets was estimated,50 in which an ML algorithm was developed
to predict emulsion stability in a microfluidic channel by learning

the shape descriptor of the emulsion.51 Briefly, microchannels were
fabricated using Polydimethylsiloxane (PDMS) and stereolithogra-
phy. By following the convolutional autoencoder architecture,52 an
ML model was designed. This algorithm has a low-dimensional

FIG. 4. Sequential steps of the devised method to detect Lyme disease using a
mobile phone to capture the image and employing a DL approach to analyze
the data to determine the test result.31 Reproduced with permission from Joung
et al., ACS Nano 14(1), 229–240 (2020). Copyright 2019 American Chemical
Society.

FIG. 3. Colorimetric measurements of assays. (a) Influence of different illumina-
tion (sunlight–fluorescence–halogen light) and orientation on the obtained image
of a strip with a pH of 12. (b) Different orientations proposed for pH strips to
increase the variety of learning dataset for the algorithm.29 Reproduced with
permission from Mutlu et al., Analyst 142(13), 2434–2441 (2017). Copyright
2017 Royal Society of Chemistry.
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(eight-dimensional) code to explain droplet patterns within a thick
coating and anticipate if the particle becomes unsteady or breaks
down from its exact shape.

A DNN was developed to calculate fluidic characteristics in a
microfluidic setup learning from the surge of droplets in a microflui-
dic channel.43 On-chip motion can be estimated using the Coriolis
method,53 which detects the mechanical fluctuations based on
thermal measurements and flow rates.54 A thermometer and heater
were used to evaluate the changes in liquid temperature. This
approach required a visually translucent window and an outer
camera as opposed to more complex methods described in other
studies. In the microfluidic model, silicon oil and water-Isopropyl
Alcohol (IPA) solutions were used as inputs (Fig. 5). Images of the
droplets produced at the crossing of the water-IPA solution were
recorded with a broad-field magnifier. Images of droplets for an IPA
at 5.5% water concentration for different flow rates are illustrated in
Fig. 5(c). An NN was equipped with 6000 droplet pictures (400 pic-
tures for every flow measurement), with flow velocity distributing
from 0.1 to 1.5 ml/h with increments of 0.1 ml/h, while the flow

velocity of silicon oil was maintained at 2 ml/h. 2900 new pictures
were evaluated on the trained network (100 pictures for every flow
rate distributing from 0.1 to 1.5 ml/h with increments of 0.05ml/h).
Figure 5(d) shows the results of DNN training for flow rate determi-
nation for all concentration values. The mean deviation of the antici-
pation was computed by taking the average value of the absolute
relative variance between the anticipated value and the actual value.
The average error for the trained model was 2.9% and 5.7% for new
flow rates. As the flow regime transited based on the flow velocity,
the DNN faced difficulty to anticipate new flow rates, with new flow
regimes, which were not included in the training dataset.

Another DNN was equipped with 3600 pictures from each of
the four-concentration distributing, from 4% to 7% with incre-
ments of 1%. The diagram in Fig. 5(e) contrasts the expected values
with the ground facts. The average errors for the trained samples
were 1.5% and 9.3% for new samples. Figure 5(e) shows that the
DNN correctly predicted the concentrations of 4.5% and 6.5% but
was unable to accurately predict the concentration of 5.5%. This
inaccuracy suggested that the shape changes from 5.0% to 6.0%

FIG. 5. DNN applied to a microfluidic system. (a) Diagram of the microfluidic conduit. (b) The two-stage structure of the creation of droplets in a microfluidic system carries
data on flow characteristics. Algorithms were utilized to retrieve the characteristics, while the actual method remains unchanged. (c) Photos of particle development at
various flow speeds of the dissipated stage. (d) Flow velocity evaluation; estimated outcomes were compared to the actual value for 5.5% water–IPA concentration. Red
dots indicate the flow velocity for which the system was trained, and the new flow velocities are shown in blue dots. (e) Comparison between anticipated concentration by
DNN and actual data.43 Hadikhani et al., Sci. Rep. 9(1), 1–7 (2019). Copyright 2019 Author(s), licensed under a Creative Commons Attribution 4.0 International (CC BY
4.0) License.
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were non-monotonic. This non-monotonic manner was the output
of a shift in the droplet flow shape between various conditions
caused by a change in the IPA concentration in the solution.

Soft sensors can benefit from being integrated with ML
methods. The soft sensor is a generic term for software, which pro-
cesses multiple measurements simultaneously. Soft sensors are used
to forecast response variables that are challenging to quantify. Soft
sensors have been formulated from carbon particles,55,56 silver nano-
wires,57,58 ambient-temperature molten metals,59,60 and ion
liquids.61,62 The two common disadvantages of soft sensors corre-
lated to conventional sensors are the hysteresis and deviation in
response, mostly shown by microfluidic soft sensors.60,63 Another
drawback is the placement of signal wires when there is limited
space compared to the number of sensors. A hierarchical recurrent
sensing network model, a type of RNNs, was developed to solve the
above issues in soft sensors. Two different pressure sensors, (a) a
straight channel with three distinct cross-sectional areas in three dif-
ferent parts and (b) a similar-sized channel with distinct curved
shapes (square, triangular, and circular), were manufactured with
one microchannel poured with liquid material (eutectic gallium–
indium or EGaIn).45 2070 training data and 375 test datasets were
prepared for each sensor by varying the pressure and pressing speed
in different locations. The test accuracy of these devices was mea-
sured in different places for different values of pressure. The overall
Normalized Root Means Squared Error (NRMSE) was 6.64%, and
localization accuracy was 81.87% for a straight channel. The NRMSE
of a similar-sized channel model was 5.81%, and the accuracy of
localization was 85.42% overall of the test cases. It was reported that
the implementation of RNN decreased the number of needed signal
wires in a soft sensor array and simplified the calibration process.

Another study investigated the potential of hierarchical feature
extraction methods for the automatic design of a sequence of
pillars to obtain user-defined fluid deformation in microfluidic
devices. The accuracy and needed time were compared for the
CNN, the pre-trained DNN, and the genetic algorithm (GA). The
proposed DNN was comprised of 1000 hidden units in 5 hidden
layers, while the CNN consisted of 2 convolutional layers, 2
pooling layers, and 1 fully connected layer with 500 hidden units.
150 000 samples were used to train the NNs, and 20 000 additional
samples were used for validation. Comparing the run time and the
pixel match rate (PMR) of the GA and deep learning methods,
although the PMR of GA had a higher performance than DL, the
runtime of GA can be 600 times more than the needed time
for DL.64

Regardless of the selected manufacturing method, a prevalent
problem of microfluidic devices, in the production stage, is the
inability of the fabrication approach to reproduce exactly the same
dimensions, resulting in the inconsistency of the flow rate and the
obtained results. The Deep Q-network (DQN) and model-free epi-
sodic controllers (MFEC), as two reinforcement learning methods,
are used to maintain stable flow conditions over an extended time
period, with minimum need for manual intervention, to ensure
consistent result acquisition. This was obtained by observing the
microfluidic chip by a camera and analyzing the data by image pro-
cessing. The performance of the DQN algorithm was comparable
to that of human testers after 37 h of training of the DQN with
more than 200 000 image frames. More training increased the

performance of DQN over the human tester. On the other hand,
MFEC reached its peak performance in 2 h of training with 11 000
image frames, which was considerably fast compared to DQN that
needed 24 h (130 000 image frames) to yield the analogous accu-
racy level. However, the maximum performance of MFC could not
surpass the performance of the human tester.65

C. Biomedical applications of machine learning

Biology has great potential to be integrated with ML
approaches to address unmet needs. Sorting sperms by ML, for
instance, is one of these applications.66 Assessing the morphology,
motility, and concentration of sperms in semen can provide impor-
tant information for fertility clinicians. Although the point of care
approaches for sperm motility and concentration measurements
are available, evaluation of sperm morphology in point of need has
not been developed to its potential due to the time-consuming
process.67 In vitro fertilization (IVF) is a commonly used method
that relies on the selection of sperms with suitable morphology.
Since sperms start to die after being out of the body for a while, the
selection process should be done as fast as possible. Utilizing differ-
ential interference contrast microscopy by clinicians, as one of the
promising selection methods, not only is a time-consuming
process, but also is prone to be affected by clinicians’ bias and inex-
perience. However, despite being laborious and bias-prone, manual
sperm morphology assessment by human clinicians is still the most
prevalent in-use methodology since other proposed alternative
approaches are expensive as well as inaccurate. ML approaches can
significantly amplify both accuracy and rapidness. A recent study
reported a 88.67% area under the accuracy recall curve and 90%
accuracy using the SVM classifier to select desired sperms automat-
ically.68 Since enough number of all existing types of sperms may
be unavailable, sperm head images were categorized by using trans-
fer learning on a Visual Geometry Group (VGG16) CNN.69 First,
the model was trained by the ImageNet database, a user-annotated
database comprising images of typical objects and animals.
Subsequently, sperm head images were used to train the classifier.
Overall, the accuracy of 94.1% and 62% was reported for the
Human Sperm Head Morphology dataset (HuSHeM) and
partial-agreement laboratory for Scientific Image Analysis
Gold-standard for Morphological Sperm Analysis (SCIAN) data-
sets, respectively, which outperformed conventional ML methods
such as Centered Hyperellipsoidal Support Vector Machine
(CE-SVM).67 A transfer learning method was applied on a deep
CNN in which 80% of 3820 sperm images were used to train the
algorithm, while the developed algorithm was validated by the
remaining portion of the dataset. The trained algorithm was able to
correctly identify 371 sperm images out of 415 images, yielding an
accuracy of 89% based on annotations obtained from clinicians.70

Another application of ML methods in the realm of biology is
in cell detection. Four major types of white blood cells were
detected using the Residual Network (ResNet) V1 50 DL algorithm
with 100% accuracy on training set.71 In another study, a weakly
supervised DL architecture outperformed VGG and Microtubule
(MT) networks for detecting and counting dead cells in microscopy
images.72 ML was employed for a single-molecule data analysis,
where CNN and SVM had 98.1% and 91.7% accuracy on test
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datasets, respectively.27 Detecting diseases and disorders is another
application of ML in biology. Random Forecast (RF) ML has been
utilized for the classification of the most common neurodevelop-
mental disorder Attention-deficit and Hyperactivity Disorder
(ADHD) with 82% accuracy, 75% sensitivity, and 86% specificity.73

91.6% accuracy was achieved in analyzing electronic medical data
for detecting children of severe hand, foot, and mouth disease
(HFMD) using ML.74 Furthermore, a method was developed for
cytopathological photo review, employing ML in microfluidic
devices.47 This study explored the validity of using DL algorithms
for cytopathological research by classifying three major unlabeled,
unstained cell lines of leukemia (MOLT, HL60, and K562). By
using restricted Boltzmann machines, a deep belief network75 was
developed, in which the scales were adjusted to discover a common
abstract depiction of the data framework without considering the
names. Moreover, a microfluidic cytometer was created based on
contact-imaging with ML for high-performance development by a
single frame.46 In this work, a high-performance single-frame
growing with in-line ML was developed for cell interact pictures. A
similar model of microfluidic cytometer-based touch imagery was
demonstrated for cell recognition and calculation. A serious chal-
lenge of diagnosing AIDS-related cancers [e.g., diffuse large B cell
lymphoma (DLBCL)] is the lack of comprehensive tests and classi-
fication, particularly in deprived regions. An automated, portable,
robust, and cost-effective digital cellular analysis test was developed,
in which a DNN processed the data to provide quantitative result
readouts, including cell size, malignant cell number, and differenti-
ation between high/low-grade subtypes. The device could be used
while connected to the internet or based on an installed Raspberry
Pi processor in remote areas. The proposed DNN was trained by
3447 training data and validated by 1732 samples. Using the pro-
posed DL technique, the needed time for computation reduced five

times compared to image reconstruction of the whole field of view.
The proposed device was reported to have 91% sensitivity, 100%
specificity, and 95% accuracy for diagnosing lymphoma.76

Employing ML approaches in paper-based devices has become
more ubiquitous recently. Paper is a useful medium for microflui-
dic assays as it is lightweight, low cost, compatible with biological
objects, easy to transport, and store. Other practical materials such
as yarn and fabric have also been employed in creating microfluidic
devices.77–83 Yarn and thread are promising resources for micro-
fluidic devices due to their biochemical properties. These devices
include a microfluidic paper/yarn-based analytical device (μTPAD)
and 3D Microfluidic Paper-based Analytical Devices (μPAD).44

These devices exhibited the viability of using fitting and classifica-
tion algorithms for an ANN to derive glucose concentration based
on dye data from four channels of Cyan Magenta Yellow Black
(CMYK). To train and test the ANN, mean 16-bit color values
were obtained in a device from all the four-color paths in the
CMYK chart. The data utilized to prepare the ANN were com-
prised of 160 data points for μPAD and 54 data points for μTPAD,
where two different methods (fitting and classification) were per-
formed. Figure 6(a) reflects the efficiency of ANNs applied to the
fitting problem. The classification accuracy of 91.2% and 94.4%
was reported for μPAD analysis sites and the μTPAD, respectively.

Computation holds great potential in diagnostics, where the
computational sensing methods will advance point-of-care (POC)
analysis. To evaluate the signs generated on paper-based substrates,
ML algorithms can be used in POC sensors. A paper-based
Vertical Flow test (VFA) was created using ML for cheap and rapid
high-sensitivity C-reactive protein (hsCRP) testing.84 First, a multi-
plexed VFA platform was developed using paper sheets piled inside
a 3D-printed frame, designed to sustain a uniform vertical
serum flow through a sensing membrane of 2D nitrocellulose (NC)

FIG. 6. ML in paper-based microfluidics. (a) Generated standardization lines from regression data utilizing the neural network fitting model. Every dot on the graph shows a
forecast anticipated by the model. The x axis marked as “Target” signifies the glucose concentration at the experiment site, while the y-line classified as “Output” implies the
glucose concentration prediction made by the model. (b) An error matrix classification model. This figure displays a 3 × 3 error matrix, where the rows indicate the three “output”
groups where the assessment site may be held by the ANN, and the columns signify the respective true or “Target” group of the assessment site. For instance, the “53” in the
second row and the second column matrix cell shows that 53 assessment sites affiliated to group 2, and they were properly classified as group 2 sites by the ANN classifier.
Also, the “5” in the first row and the second column cell in the matrix shows that three assessment sites affiliated to group 2 were misplaced as group 1 sites by the ANN classi-
fier.44 Reproduced with permission from Lee et al., Electrophoresis 39(12), 1443–1451 (2018). Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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[Fig. 7(a)]. The ultimate CRP quantification model was developed
using 209 training set and the best spot framework. Next, blind
evaluation utilizing the configured hsCRP VFA framework and
qualified model was performed with 57 test samples. The samples
were analyzed using the pixel information that had 28 spots and 5
conditions inside the computationally defined subset. The model
accomplished 100% accuracy on training set for classification by
adequately classifying 6 specimens as acute and the remaining 51
specimens as in the hsCRP range. A comparison of the VFA
quantification accuracy with the gold standard values is shown in
Figs. 7(c) and 7(d), demonstrating acceptable agreement in the term
of quantification precision. The R2 value of the system was 0.95, with
a linear best-fit line slope at 0.98 and intercepted at 0.074.

III. IMPLEMENTATION CHALLENGE

A. Required number of samples for the desired
accuracy

After training an algorithm, if the trained model could accu-
rately perform prediction on the training dataset as well as an

independent dataset, the training can be deemed complete.7

Measuring the accuracy of a learner algorithm plays a pivotal role
in designating a robust method. One of the common means to
attain this goal is to measure the ratio of erroneously classified
samples to the total number of samples.5 Other ratios such as
“standard false positive” and “false negative” rates can be applied to
define the meticulousness of an algorithm.85 However, in some
cases, a common problem with training and testing of the algo-
rithms happens when the training error is subtle, but conversely,
the test error is considerable.86 This indicates that the algorithm
fails to generalize the structure in independent data properly (over-
fitting). On the other end of the continuum, when an algorithm
fails to predict training data after learning, under-fitting occurs.7,87

These two problems are the major issues with the unsatisfactory
performance of algorithms. The underlying cause of overfitting is
the complexity of the model. This phenomenon occurs when the
number of adjustable parameters is proportionally more than the
number of training samples. In contrast, under-fitting stems from
the simplicity of the algorithm. In this regard, the former can be
addressed by augmenting the number of training samples or

FIG. 7. Application of ML methods in vertical flow assays. (a) The cross-sectional view of the VFA cassette. (b) The screening process for the point. Plotting the cost func-
tion throughout the sensing element generates a heat-map (left), and the ideal subgroup of points (right) is then chosen for the most appropriate quantification effectiveness
of the deep red indicator. (c) Blindly tested clinical specimens, where the left y axis indicates that the VFA predicted the concentration of CRP and the right y axis indicates
the confidence score for the specimens categorized as acute, and the x axis presents the ground truth concentration. The actual match (y = x) is represented by a dotted
line, and the linear fit is indicated by the red line. Reagent batch ID and fabrication batch ID are indicated by the marker color and patterns. (d) Blind testing results for
moderate and low CVD risk areas, where the dotted line indicates the clinical cutoffs.84 Ballard et al., NPJ Dig. Med. 3(1), 1–8 (2020). Copyright 2020 Author(s), licensed
under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
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moderating parameters, where the latter can be solved by increasing
the complexity of the model.88

Taking these problems into account, finding the minimum
number of required data to train a precise algorithm is of great
importance.89 However, there is no rule of thumb for determining
this number since it is highly dependent on the method, number of
classes, and quality of data.90 In general, the more the number of
features in data is, the more training data is needed.91 Besides, gen-
erative methods require fewer training samples in comparison with
discriminative models.92 To elucidate this approach, an experiment
was carried out on tumor cells.48 Figure 8 shows that increasing the
number of training samples improves the model performance by
decreasing the test error and amplifies the training error because
the algorithm fails to fit several data points. Hence, the sample
amount is a trade-off between the test error and the training error.
For instance, in this specific test, 850 training samples could be
enough since more samples cannot converge two curves any
further.

B. Dealing with data-limited cases

DL demands a substantial amount of data for superior accu-
racy. Clinical medicine, however, is resource-restricted since a
limited number of patients and clinical records are present in the
time and place of training.19 To address this, Electronic Health
Record (EHR) data can be a promising solution.93 EHR is a digital
record of patients’ health information, including personal statistics,
laboratory test results, medical history, Magnetic Resonance
Imaging (MRI), and Computerized Tomography (CT) scan images,
available for authorized users worldwide.94,95 Another effective
method of dealing with data-limited experiments is augmenting
available data. Rich data such as 3D images can be divided into
lower dimension images to train algorithms. For instance, training
a CNN by 2.5D data for CT scan image detection yields almost
analogous precision performance with 3D trained CNN.96

Furthermore, taking images of available data under different illumi-
nation conditions with various orientations can increase the train-
ing dataset [Fig. 3(b)].29 However, in some cases, neither dividing
into lower dimensions nor different illumination and orientation is
feasible. In such cases, transfer learning can assist experts to

overcome this problem. Transfer learning means training an algo-
rithm on a set of data and taking the advantage of the algorithm
on entirely different data.24 Transfer learning was applied in
human sperm classification with an accuracy of 94.1% for the
HuSHeM dataset.69 However, the accuracy of a CNN trained on a
limited number of labeled MRI can outperform a classifier trained
on a large dataset from a dissimilar domain.97

C. Image acquisition

The detection of color could be difficult since a diversity of
factors could affect the interpretation of data, including the illumi-
nation intensity and its direction, ambient lighting conditions, as
well as the employed camera’s features. Mercury and xenon lights,
which are widely in use, provide a varying lighting intensity based
on their lifetime and heating-up period. Nevertheless, contempo-
rary Light-emitting Diodes (LEDs) and Surface Mount Device
(SMDs) provide stable light intensity, applicable to ML
approaches.5 For early experiments conducted in colorimetric tests,
mostly, flatbed scanners were used to capture images from
samples.98 Although this approach can eradicate the problem with
varying illumination conditions and the constant distance between
the sample and camera,99 the major downsides with these scanners
not only were their inaccessibility, but they also might not be uti-
lized in experiments with liquid or wet samples.100 In contrast,
smartphone-based experiments have surmounted this problem by
providing portable cameras without the need for the direct contact
of the camera and the sample during the image taking process.
Another issue with wet or liquid samples is the reflection of light
from their surface, which can be misleading data for an algorithm
trained on dry samples for the same experiment, namely, pH detec-
tion.101 Furthermore, the shape and properties of the sample con-
tainer should not be neglected in experiments with liquid samples
since the shadow of edges and transparency of the container can
affect the color of the sample taken with smartphones.24

RAW images, by which specialists chiefly mean “unprocessed”
images, comprise original information outcomes from a camera’s
lens, in 10–14 bits of color information, before in-camera pro-
cesses,102 whereas Joint Photographic Experts Group (JPEG)
images are compressed, small size files with only 8 bits of color
depth.103 This compression triggers concern in experts regarding
the suitability of JPEG images in image processing.104 In spite of
this concern, using LS-SVM as an ML classifier, JPEG format had
an analogous performance with the RAW format for peroxide
content quantification.29

IV. FUTURE PROSPECTS

Further applications of ML are conceivable in a large scope
from Lab on a chip (LoC) to Structural Health Monitoring
(SHM),105 i.e., airplane, bridges, skyscraper health monitoring by
deciphering data from several sensors on them.106 Most of the
experiments employ ML and DL for post-experiment data analysis.
ML may not play a decisive role in the design and control of the
experiment. However, learning from previous experiments, AI can
determine the optimized proportion of reagents and samples in
microfluidic tests, as well as the best time for injecting them.8

Furthermore, DL algorithms can assess the design aspect of novel

FIG. 8. The deviation between the test and train error diminishes up to
N≈ 850. Thereafter, augmenting training samples would not decrease this dis-
crepancy considerably. Hence, the minimum required data for this experiment
are N≈ 850.48 Chen et al., Sci. Rep. 6, 21471 (2016). Copyright 2016
Author(s), licensed under a Creative Commons Attribution 4.0 International
(CC BY 4.0) License.
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proposed devices to determine the most efficient design by taking
into account experimental material, the required time for the fabri-
cation of each design, price, and efficacy of reactions.

Another field that can benefit from ML and DL is
organ-on-a-chip (OOC) systems. Artificial tissues could be mim-
icked in laboratories for a diversity of applications such as the
replacement of organs in the body, regulatory drug testing, and
experimental disease monitoring.107,108 Culturing, maintaining,
and monitoring on-chip tissues will generate a substantial
number of images and videos of living cells, tissues, organs in the
in vitro environment, and the effect of drugs on them.109 Such
big data need to be analyzed from spatial and histological aspects
to evaluate expected features of OOC systems. Hence, the design,
control, and self-regulation of OOC systems is a feasible future
prospect for DL.

Paper-based microfluidic tests, as a low cost and accessible
method, will be in use more ubiquitously in the future.110 By dis-
tributing these devices globally, collecting data, and analyzing
them using DL will bring an unprecedented opportunity to detect
symptoms of illnesses,111 malnourishment in certain societies or
regions, and predicting outbreaks of diseases. For instance, Zika
virus could be detected by a paper-based sensor.112 Overall, mon-
itoring the health status of a large portion of the world population
by POC devices and DL can facilitate control and overcome
pandemics.

Microorganisms affect planet earth and humanity with an
unneglectable role in climate change, oxygen supply, and carbon
cycles.113 Thus, monitoring their trends and the influence of global
warming on them require advanced environmental microfluidic
monitoring technologies for testing their concentration in soil and
oceans.114 The copious amount of information gathered by LoC
devices may require DL to collect, classify, quantify, and analyze
the data for later uses in making a decision regarding how to
control climate change.

V. DISCUSSIONS AND CONCLUSIONS

To choose the best method, the available data should be con-
sidered. If enough number of labeled input and output data is
available, then the supervised method can be the best choice.
Otherwise, if the number of annotated input data is more than
labeled output data, then semi-supervised methods can be chosen.
Finally, if output data are not labeled at all, the unsupervised
method should be considered. Since ML uses NNs that resemble
the human neural system, algorithms may learn more efficaciously
from a certain format of representing data compared to other
formats. Featurization, which is the process of converting raw
data into an appropriate input format, has recently attracted
attention.87 According to the algorithms’ ability to handle differ-
ent types of data, each of them has its own applications. For
instance, for cell biology applications, SVM can be intrigu-
ing.115,116 Moreover, linear discriminant analysis, generative
approaches in general, attracted more attention for classifying the
phenotypes of the actin cytoskeleton in Drosophila melanogaster
cells.117 The integration of existing DL algorithms allows the pro-
duction of more capable architectures. Combining CNNs and
RNNs, for example, has resulted in an algorithm that can be used

for captioning images, summarizing videos, and image-question
answering.10 Therefore, combinations that are capable of execut-
ing more complicated tasks should be developed.

Regarding biomedical applications, for instance, disease evolu-
tion and symptoms of the known diseases can vary from person to
person. Thus, even if an algorithm, trained by data from a
restricted database, has an acceptable performance currently, there
is no guarantee that it can adequately and reliably perform its task
under new circumstances. Moreover, the issue of limited available
samples can be solved in some colorimetric applications.
Nevertheless, some biomedical fields have a limited number of ill
people that are willing to participate in clinical research.90 Hence, a
global EHR platform can be created for gathering all available
samples globally.

The main challenge in ML is the “black-box” issue.90 ML
algorithms are comprised of numerous hidden layers. Although
these algorithms are developed by humans, the exact procedure of
analyzing input data and the underlying logical reason behind the
decision of ML inside these hidden layers are not fully under-
stood. In some applications, such as annotating images and voice
recognition, the user can instantly verify the outcome of the ML
algorithm to ensure the quality as well as the accuracy of the
result. However, the black-box issue brought about some predica-
ments in multi-dimensional applications. These applications inex-
tricably associate patients’ health in which the ML method is
supposed to determine the dosage of each constituting component
of the drug based on the symptoms of the patient as the input
data. Since it is not transparent how the ML algorithm reaches the
final arrangement of drug elements, it causes a dilemma for both
experts and patients: whether an expert should trust the suggested
drug as the end product and the patient would be willing to use
prescriptions of ML architectures.4 Different ML methods may
yield different results for the same input data, augmenting this
uncertainty.86,118
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