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Abstract

There has been an increased interest in controlling complex systems using Model Predictive
Control (MPC). However, the use of resource-constrained computing platforms in these
systems has slowed the adoption of MPC. This thesis focuses on increasing the efficiency
of numerical methods for MPC in terms of resource usage and solution time, while also
simplifying the design process.

We first show how block Toeplitz operators can be used to link the linear MPC matrices to
the transfer function of the predicted system, resulting in horizon-independent bounds on
the condition number of the condensed Hessian and the upper iteration bound for the Fast
Gradient Method (FGM). We derive a horizon-independent preconditioner that produces up
to a 9x speedup for the FGM while reducing the preconditioner computation time by up to
50,000x compared to an existing preconditioner. We propose a new method for computing
the minimum number of fractional bits needed to ensure the FGM with fixed-point arithmetic
is stable, with an example showing decreases of up to 77% in resource usage and 50% in the
computational energy when using this method on a Field Programmable Gate Array.

Finally, we present a framework using the derivative-free Mesh Adaptive Direct Search method
to solve nonlinear MPC problems with non-differentiable features or quantized variables
without the need for complex or costly reformulations. We augment the system dynamics with
additional states to compute the Lagrange cost term and the violation of the path constraints
along the state trajectory, and then perform a structured search of the input space using
a single-shooting simulation of the system dynamics. We demonstrate this framework on a
robust Goddard rocket problem with a non-differentiable cost and a quantized thrust input,
where we achieve an altitude within 40 m of the target, while other methods are unable to
get closer than 180 m.
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Chapter 1

Introduction

1.1 Motivation

Model Predictive Control (MPC) is an optimal control method that aims to optimize
the closed-loop performance of a controlled system by solving an optimization problem
at each sampling instant to compute the next control input while explicitly handling the
system constraints (such as physical, regulatory, or safety constraints) in the controller
computation. MPC originated in the process control industry in the 1980s/90s as a method
of controlling power plants and the chemical reactions in petroleum refineries. The goal of
MPC is to maximize the production output while reducing the running costs and satisfying
the operational constraints. It is well-known that the point at which processes/plants
operate the most economically is at the intersection of the constraints placed on the
reactions/processes [146]. MPC is able to operate processes closer to their constraints than
other more conservative controllers (e.g. PID or LQR), meaning that MPC is able to operate
processes more economically than the other controllers.

During the early years of MPC, computing the solution to the optimization problem was
very slow due to the limited computational resources available and the complex optimization
algorithms used. The usage of MPC was therefore limited to the process control industries,
where there were slower systems with minutes to hours between the control inputs, giving
time for the optimization solver to run to completion before the next input was needed.
Additionally, the limitation in the available computational power and the need for faster
computation of the control input led to the use of the Constrained Linear Quadratic Regulator
(CLQR) formulation of MPC (i.e. the use of an LQR cost function with linear dynamics and
constraints) as an approximation for the full nonlinear economic MPC problem in many fields.
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Since then, there has been enormous progress in reducing the computational burden of
computing the MPC control law. A combination of increased computing power available
at a lower cost and the development of more efficient real-time optimization algorithms has
led to MPC achieving sampling times on the order of microseconds [83] and being applied to
systems such as power electronics/motors [92, 152, 171], diesel engines [64, 72], quad/multi-
rotors [129], and building environmental control [46]. This growth has sparked great interest
in using MPC in more places, with a large segment of future applications being resource-
constrained systems such as cyber-physical systems and internet of things devices [108].

1.1.1 Computation vs performance trade-off

The computer processors used in modern cyber-physical systems are routinely utilized for
more than just control, with additional tasks such as communication, coordination, user-
interface and data-collection becoming more widespread as designers adopt networked systems
and the internet of things. At the same time, computational resources are being further
constrained by the demand for low-power and low-cost designs. Guaranteeing the proper
operation of the control system on resource constrained processors in environments with
safety and operational constraints is important to guarantee the dependability of the cyber-
physical system [85]. MPC has been highlighted in [108] as a control algorithm aptly
suited to provide these operational guarantees at a functional level through the inclusion
of the operational/safety constraints directly in the controller computation. This means
that guaranteeing the dependable operation of the cyber-physical system now also requires
analyzing the MPC algorithm to determine guarantees on the controller performance given
the reduced computational resources present. To this end, the authors of [85] suggest that an
important question to answer is: what effect do the reduced computational resources have on
the system performance?

This thesis investigates the relation between the computational complexity and performance
for the CLQR MPC formulation in Part II, and examines not just the performance of the
system, but also that of the solver itself. In doing so, we seek to reverse the question and
instead urge designers to consider system performance alongside the computational resources
used by asking the question: what effect does the desired system performance have on the
computational resources required? The performance requirements are usually given as bounds
in a specification (e.g. “settling-time less than 1s” or “track this signal with less than 5%
error”) rather than an exact criterion, creating a space of possible controllers that can satisfy
the requirements. These controllers may then have different computational resource demands,
opening up the opportunity to trade off the computational performance of the controller with
the system performance.
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1.1.2 Derivative-free MPC solvers

With the rise of data-based control and the trend towards using full nonlinear economic MPC
instead of the CLQR formulation, more engineers are wanting to control systems described
by higher-fidelity models that capture nonlinearities more accurately or systems that only
have blackbox/data-based models. These systems may arise in areas such as robotics or
autonomous vehicles, or be the result of legal/regulatory restrictions that prevent the sharing
of the detailed models (e.g. only provide compiled simulation code and not the actual physics
equations to protect trade secrets). The blackbox nature of these systems may pose a challenge
for derivative-based methods (i.e. first and second-order methods), since these methods require
derivative information for the system dynamics, which may not be available or reliable.

To overcome this, Derivative-free Optimization (DFO) methods can also be used with MPC. In
DFO solvers, no knowledge of the derivatives of the cost or constraints is required, and instead
the solver searches the feasible set by computing the cost function at specific locations and uses
that information to compute new locations to search. To solve the Nonlinear MPC (NMPC)
problem using DFO methods, the solver will perform simulations of the dynamics using
candidate input trajectories and compute the cost of each trajectory to locate the trajectory
with the lowest cost. These solvers can lead to embarrassingly parallel implementations, since
all simulations in an iteration can be run in parallel.

Simulation-based solvers have been readily used in Finite Control Set (FCS) MPC algorithms
in power electronics to determine switching times for the low-level hardware [99]. The
derivative-free methods used to solve the FCS-MPC problem are inefficient for long time
horizons though, since they usually perform an exhaustive search of the possible future
input sequences, which leads to a combinatorial explosion in the search space size as the
horizon grows. Instead, there has been prior work that has suggested working around this
combinatorial explosion by randomly sampling a fixed number of points in the search space
[90], or using methods such as pattern search [53], the Nelder-Mead simplex algorithm [157],
Trust Region methods [42], or Particle Swarm Optimization [179].

In this thesis, we build on the pattern search method from [53] and use the Mesh Adaptive
Direct Search (MADS) algorithm introduced in [6] with a new NMPC formulation that is more
natural and easier to use for non-experts. The proposed NMPC formulation for derivative-free
optimization solvers provides an easy and intuitive way to handle the path constraints and
Lagrange cost term in the problem through augmenting the system dynamics to measure the
constraint violation and cost value over the horizon. The use of MADS for the DFO solver
makes the number of points evaluated around the current iterate grow linearly with the input
dimension, instead of combinatorially like other solvers.
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1.2 Contributions

In this thesis, we focus on making the numerical methods used for MPC simpler to use
and more resource efficient. This is done in two stages, with the first focusing on deriving
horizon-independent analysis and design methods for linear MPC, and the second focusing
on the derivation of a DFO method for solving NMPC problems.

For linear MPC, we present several novel results, including:

• horizon-independent bounds on the eigenvalues and condition number for condensed
linear MPC matrices that allow for the computation of a horizon-independent Upper
Iteration Bound (UIB) for the Fast Gradient Method (FGM),

• analysis of the Hessian condition number and UIB for the FGM as the system
performance is changed,

• an efficient horizon-independent preconditioner that is up to 50,000x faster to compute
than an SDP preconditioner and that can provide a speedup of up to 9x for the FGM,
and

• data-type sizing rules for the FGM in fixed-point arithmetic that reduce the hardware
usage and solution time by up to 77% and 25%, respectively, for when the FGM is
implemented on an FPGA.

Put together, these contributions allow for a control engineer to design and analyze parts
of a linear MPC controller using only the matrices in the cost function and state-space
description of the system, and without having to know the desired horizon length. Using
horizon-independent design techniques simplifies the design process for the control engineer,
allowing them to vary the horizon as a tuning parameter and not need to recompute if
the controller meets timing requirements or redo the possibly expensive computation of a
preconditioner or FPGA design.

It should be noted that the idea of the horizon-independent spectral bounds is not new, and
similar results for the primal condensed Hessian and prediction matrix were reported in [153]
and [54, Sect. 11]. The analysis in this thesis generalizes the results in those works by using
the numerically robust formulation for linear MPC and allowing an arbitrary positive-definite
state weighting matrix Q and a terminal weighting matrix P chosen as either Q or the solution
to the Discrete Algebraic Riccati Equation (DARE).

Next, we derived a new DFO formulation for the NMPC problem using the MADS algorithm
that provides several benefits, such as:

• the ability to handle nonsmooth or blackbox cost functions/dynamics/constraints,
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• easy handling of other variable types such as quantized/granular, periodic or categorical
variables,

• path constraint satisfaction across the entire horizon without a mesh refinement scheme,
and

• more accurate computation of the stage cost value across the entire horizon.

Put together, these benefits simplify the problem setup for the control designer and allow
for the implementation of controllers on more complex systems without the need for possibly
complex or lossy reformulations of the problem. This is especially important for the design
of robust controllers or controllers for systems with data-based models, where the natural
expression of the problem may be incompatible with existing solver architectures.

This formulation makes it extremely simple to handle quantized variables with no
modifications to the actual NMPC problem by simply informing MADS about the desired
quantization level. The MADS solver then handles all the quantization of the variables, and
as shown in the numerical example in Chapter 10, without a large increase in the solution
time of the problem.

1.3 Organization and detailed contributions

This thesis is separated into three parts, the first containing background material, and the
last two each focusing on numerical methods for linear and nonlinear MPC, respectively.

1.3.1 Background information

In the remainder of Part I, we present background information on both MPC and block
Toeplitz operator theory.

In Chapter 2, we present a brief background on MPC and the associated solvers. This
includes describing the various formulations of linear MPC, surveying the existing problem
formulations for solving NMPC using DFO solvers, providing a survey of existing works that
implement linear MPC on FPGAs, describing the Fast Gradient Method and Dual Gradient
Projection method for solving linear MPC problems, and finally, presenting the five example
systems we use for the numerical examples in Part II.

In Chapter 3 we provide an introduction to the theory behind block Toeplitz matrices,
operations on them, and their spectral properties. The chapter summarizes the relevant
mathematical research in the field into an accessible format that highlights the parts most
applicable to the analysis we perform in Part II.
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1.3.2 Block Toeplitz operators in linear MPC

In Part II we derive analysis techniques and design methods for the linear MPC problem
that are horizon-independent and utilize the ideas of block Toeplitz operator theory that we
presented in Chapter 3.

Chapter 4 contains the derivation of spectral properties for the prediction matrix and Hessian
in both the primal and dual condensed linear MPC problems. These properties are horizon-
independent, meaning the spectral bounds for the eigenvalues and condition number can be
found using a single computation, and be valid for the matrices across all horizon lengths.
We also present spectral properties for when the Hessian includes a state-input cross-term
weighting matrix S, which can occur when trying to make the MPC controller match an
existing controller [47, 160] or from discretizing the continuous-time LQR cost function [26].
Finally, we present some spectral properties for the dual condensed Hessian.

Chapter 5 examines how these spectral properties change when the cost function is changed
by scaling the cost matrices. We show that the extremal eigenvalues of the condensed primal
Hessian grow linearly when the cost matrices are scaled, and that if the cost matrices are all
scaled by the same factor, the condition number of the Hessian remains the same. We also
identify two regions in the bounds: one where the input weights affect the eigenvalues of the
Hessian the most, and the other where the singular values of the predicted system affect the
eigenvalues of the Hessian the most.

In Chapter 6 we derive a new preconditioner for the linear MPC problem that is able to speed
up convergence of the FGM by up to 9x. This preconditioner is horizon-independent and is
computed using only matrices with the number of states and inputs as their dimensions, but
requires the terminal state penalty matrix P to be either the solution to the discrete Lyapunov
equation for Schur-stable systems, or the DARE for unstable systems. We also show that the
proposed preconditioner provides performance equivalent to an existing SDP preconditioner
on several examples, while also providing a reduction in the computational effort required to
compute the preconditioner.

Finally, in Chapter 7 we present a framework for computing the data type required to have
stability of the FGM in fixed-point arithmetic. As part of this framework, we present a new
measure that we call the rounding stability margin, based on the pseudospectrum of the
Hessian in the Quadratic Program (QP) from linear MPC, to quantify how much round-off
error can be experienced by the Hessian of the QP before the FGM becomes unstable. We
then present two models for the round-off error introduced by moving the Hessian into a fixed-
point representation. The first is a generic model that can be applied to any MPC problem
formulated as a QP, but depends on the length of the prediction horizon. The second is a
structure-exploiting parametric model that requires the predicted system to be Schur-stable,
but provides a horizon-independent approximation of the round-off error. These round-off
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error models are then combined with the rounding stability margin to compute the number
of fractional bits required for algorithmic stability. We demonstrate that using the structure-
exploiting parametric model reduces the number of fractional bits needed by 30–45%, and
reduces the hardware usage and solution time by up to 77% and 25%, respectively, for an
FPGA implementation of the FGM.

1.3.3 Derivative-free optimization for NMPC

In Part III we present a framework for solving the NMPC problem using DFO methods,
specifically the MADS algorithm.

We begin by presenting an overview of the MADS algorithm in Chapter 8. This overview
combines the ideas from several works into a single statement of the algorithm, and provides
a discussion on the two techniques for implementing constraints in MADS and how MADS
can natively handle granular (e.g. quantized) variables.

We next present the proposed framework for solving the NMPC problem using MADS in
Chapter 9. Using MADS, the number of points evaluated around the current iterate grows
linearly with the input dimension, instead of combinatorially like other derivative-free solvers.
The NMPC formulation consists of a single-shooting simulation of the dynamics across the
time horizon. The path constraints and Lagrange cost term are handled by augmenting the
system dynamics with new states, so that the constraint violation and cost value are computed
at the same time as the dynamics simulation. We then conclude this chapter by discussing
the advantages and opportunities for future improvement of the proposed framework.

Finally, we apply the proposed DFO-NMPC framework to an example problem in Chapter 10.
The example presented is a robust Goddard rocket problem, where the objective is to reach
a target altitude while the system model has bounded uncertainty in some parameters. We
show that the DFO-NMPC framework using MADS provides advantages over other DFO
techniques, such as particle swarm optimization, which can become confused on problems
that have discretized/granular variables.

1.4 Mathematical notation

In this thesis, we use the following mathematical notation.

A′ and A∗ denote the transpose and conjugate-transpose of the matrix A, respectively. A⊗B

represents the Kronecker product of the matrix A with the matrix B. λ1 ≤ · · · ≤ λk are
the real eigenvalues of a Hermitian matrix A in sorted order, with the set of all eigenvalues
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denoted by λ(A) and the set of all singular values of A denoted by σ(A). The p-norm is
denoted by ∥·∥p, with ∥A∥2 the matrix spectral norm, and ∥A∥F the Frobenius norm. The
condition number of a matrix is κ(A) := ∥A∥2∥A−1∥2.

We use the notation from [185] to represent the transfer function matrix of the discrete-time
linear system G with state space matrices A, B, C, D and z ∈ C as

G(z) :=

⎡⎣ A B

C D

⎤⎦ .

L∞ is the space of matrix-valued essentially bounded functions (i.e. matrix-valued functions
that are measurable and have a finite Frobenius norm almost everywhere on their domain
[125, §2]). C̃2π is the space of continuous 2π-periodic functions inside L∞. The set T := {z ∈
C : |z| = 1} is the complex unit circle. For an infinite-dimensional block Toeplitz matrix T
with blocks of size m × n, PT (·) : T → Cm×n represents the matrix symbol of T and TN

represents the truncated version of T after N block diagonals (where N is a positive integer).
We provide more definitions relating to the spectrum of block Toeplitz matrices (e.g. λmin,
λmax, σmin, and σmax) in Definitions 3.4.1 and 3.4.2 in Section 3.4
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Chapter 2

Introduction to Model Predictive
Control†

2.1 The Model Predictive Control problem

Nonlinear Model Predictive Control (NMPC) is formulated using the Optimal Control
Problem (OCP)

min
x,u,tf

Φ(x(tf ), u(tf ), tf ) +
∫︂ tf

t0
L(x(t), u(t), t) dt (2.1a)

s.t. f(ẋ(t), x(t), u(t), t) = 0, ∀t ∈ [t0, tf ] (2.1b)

g(x(t), u(t), t) ≤ 0, ∀t ∈ [t0, tf ] (2.1c)

h(x(t0), u(t0), t0, x(tf ), u(tf ), tf ) = 0, (2.1d)

where x(·) ∈ Rn and u(·) ∈ Rm are the continuous-time state and input trajectories,
respectively. The cost function (2.1a) is composed of two terms: the Mayer cost Φ(·) : Rn ×
Rm×R→ R that captures the cost at the final time point tf , and the integral of the Lagrange
cost L(·) : Rn×Rm×R→ R that captures the cost along the horizon. The equality constraints
(2.1b) are the nonlinear continuous-time system dynamics f(·) : Rn × Rn × Rm × R → Rn,
while the constraints (2.1c) and (2.1d) are the path constraints g(·) : Rn×Rm×R→ Rl and
the boundary conditions h(·) : Rn × Rm × R× Rn × Rm × R→ Rj , respectively.

†Some of the material presented in this chapter has been published in the following work:
I. McInerney, G. A. Constantinides, and E. C. Kerrigan. A survey of the implementation of linear model
predictive control on FPGAs. In 6th IFAC Conference on Nonlinear Model Predictive Control, pages 381–387,
Madison, Wisconsin, US, 2018. IFAC. doi: 10.1016/j.ifacol.2018.11.063. ©2018 IFAC.
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In the OCP (2.1), the possible state trajectories x(·) and input trajectories u(·) are given
as functions of time, and so the optimization is done in what is known as an infinite-
dimensional function space, where any mathematical function can be used to represent x and
u. There are several ways to solve the infinite-dimensional OCP, with the most popular being
to find an approximate numerical solution by using a transcription method to convert the
infinite-dimensional OCP into a finite-dimensional optimization problem. There are several
transcription methods that can be used, including shooting methods [22], collocation methods
[93], and the integrated residual method [94].

NMPC can be implemented as either an open-loop or closed-loop controller. When used as
an open-loop controller, the OCP (2.1) is solved a single time offline before the system runs,
and then the control inputs of the system are generated online using the pre-computed input
trajectory u sampled whenever a new input is needed. The open-loop controller will move the
system to the objective assuming that the system always follows the exact state trajectory
predicted by the dynamics model. If there are any unmodeled disturbances on the system
that make the actual state trajectory different from the predicted trajectory, the open-loop
controller may no longer be able to control the system to the objective or ensure constraint
satisfaction.

Alternately, a closed-loop implementation of NMPC solves the OCP (2.1) every ∆t seconds
(for a controller running at a constant sampling rate). The current state x̂0 of the system is
measured or estimated before computing the new controller, and that measurement is then
used in the OCP by introducing a boundary condition x(t0) = x̂0. This boundary condition
ensures that the computed control trajectory is able to move the system to the objective even
in the presence of disturbances and perturbations. The control applied to the system at every
sample is then the value of the control trajectory u(t) at t = t0.

An important aspect of a closed-loop implementation is how the prediction and control
horizons change between the sampling instants. In the simplest case, called receding-horizon,
the horizon lengths remain constant between samples (so the next final time becomes tf +∆t)
and the state and input trajectories are shifted to make t0 + ∆t the new initial time before
being used as the initial condition for the next OCP. The receding-horizon method can be
used with regulation-type problems, where the controller does not have a specific end-time
and is instead running continuously.

Another method is decreasing-horizon control, where the final time tf remains constant across
all problems and t0 is increased by ∆t each sample, causing the overall horizon length to shrink.
This method is used mainly when the system is being moved between two setpoints in a fixed
amount of time, since it can guarantee that the system reaches the target point by the original
tf specified in the problem. An important consideration when implementing a decreasing-
horizon controller is what control to use once tf is reached and the horizon disappears —
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since the OCP will no longer provide any control inputs. This could be as simple as providing
u = 0 after tf if the system is guaranteed to be stable, but a more common approach would
be to use a simple regulating controller to regulate the system about the desired state (since
this controller would then reject any disturbances that may appear).

2.1.1 The Linear Quadratic Regulator problem

The most common type of MPC problem solved using embedded systems has been the
Constrained Linear Quadratic Regulator (CLQR) with a receding-horizon, since it is easily
formulated as a convex Quadratic Program (QP). For the CLQR, the input sequence is usually
assumed to be a piecewise-constant function, and the dynamics (2.1b) and constraints (2.1c)
are linearized and discretized accordingly. The cost function (2.1a) is chosen to be a quadratic
penalty on the deviation of the state and input trajectories from the origin.

For the discrete-time Linear Time-varying (LTV) CQLR, the OCP (2.1) is then transcribed
and simplified into the QP

min
x,u

1
2x′

N PxN + 1
2

N−1∑︂
k=0

[︄
xk

uk

]︄′ [︄
Qk Sk

S′
k Rk

]︄ [︄
xk

uk

]︄
(2.2a)

s.t. xk+1 = Akxk + Bkuk, k = 0, . . . , N − 1

x0 = x̂0

(2.2b)

Ex
k xk + Eu

k uk ≤ ck, k = 0, . . . , N − 1 (2.2c)

Ex
N xN ≤ cN (2.2d)

where N is the horizon length. This QP optimizes over the state and input trajectories x ∈ Rn

and u ∈ Rm, respectively, by discretizing the trajectories such that xk and uk are the value
of the state and input trajectories, respectively, at each sampling instant k.

The LTV CLQR problem (2.2) regulates a discrete-time LTV system to the origin by imposing
a quadratic penalty on any deviation of the states or inputs away from the origin, while
allowing the cost function and constraints to vary across the horizon. The cost function is
defined using the weight matrices Qk = Q′

k ∈ Rn×n, Rk = R′
k ∈ Rm×m for the system states

and inputs, respectively, the positive semi-definite matrix P = P ′ ∈ Rn×n for the system
states at the final time point, and Sk ∈ Rn×m for the state-input cross-term. By choosing

the weighting matrices such that the Rk are positive-definite and
[︄
Qk Sk

S′
k Rk

]︄
(or equivalently

Qk − SkR−1
k S′

k) is positive semi-definite, the resulting QP (2.2) is strictly convex.

The discrete-time system dynamics are incorporated by applying them as the linear equality
constraints (2.2b) at every sampling instant, where Ak ∈ Rn×n and Bk ∈ Rn×m are the state-
space matrices describing the linear discrete-time system at sampling instant k and x̂0 ∈ Rn
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is the current measured system state. The trajectory constraints are imposed as the linear
inequality constraints (2.2c) at every sampling instant, where Eu

k ∈ Rl×m and Ex
k ∈ Rl×n

are the constraint coefficient matrices, and the vector ck ∈ Rl is the vector of bounds for the
inequality constraints. The terminal state constraints are given by (2.2d), where Ex

N ∈ Rj×n

and cN ∈ Rj are the constraint’s coefficient matrix and vector of bounds, respectively.

Problem (2.2) can be further simplified for Linear Time-invariant (LTI) problems, forming
the LTI CLQR. In these problems, the linear system is LTI and the constraints and weight
matrices remain the same across the entire horizon. This means the matrices Ak, Bk, Qk,
Rk, Sk, Eu

k and Ex
k are no longer dependent on k and become A, B, Q, R, S, Eu and Ex,

respectively. We then represent the transfer function matrix for the discrete-time LTI system
in this problem as

G(z) :=

⎡⎣ A B

I 0

⎤⎦ .

Choosing the terminal weight matrix P in problem (2.2) can be crucial to the stability and
performance of the closed-loop controller. The simplest choice is to set P = Q, so that final
states are weighted the same as other states. This allows for the simple formation of the
problem matrices, but does not provide stability guarantees for the closed-loop problem.

Instead, a possible choice for P is to either choose it to be the solution to the Discrete
Algebraic Riccati Equation (DARE)

P = A′PA + Q−A′PB(B′PB + R)−1B′PA, (2.3)

or choose P to be the solution to the discrete Lyapunov equation

P = A′PA + Q, (2.4)

where Q and R are the cost matrices from Problem (2.2), and A and B are the system
matrices. Choosing P in these ways approximates the cost function value for the time after
the horizon ends, and allows for the derivation of closed-loop stability guarantees for the
controller [114].

Discretized continuous-time formulation

The CLQR formulation presented in (2.2) is built using a discrete-time system and a discrete-
time cost function, however many systems and objectives are specified in continuous-time. The
equivalent continuous-time formulation of the finite-horizon LTI problem is

min
x,u

1
2x′(T )P cx(T ) + 1

2

∫︂ T

0
x′(τ)Qcx(τ) + u′(τ)Rcu(τ) dτ (2.5a)
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s.t. ẋ(t) = Acx(t) + Bcu(t)

x(0) = x̂0

(2.5b)

Exx(t) + Euu(t) ≤ c, ∀t ∈ [0, T ) (2.5c)

Ex
N x(T ) ≤ cN , (2.5d)

where T is the horizon length, Ac and Bc are the continuous-time state space matrices for
the LTI dynamical system, and Qc, Rc and P c are the weight matrices.

To solve (2.5), the problem is discretized to convert it into the discrete-time LTI
formulation (2.2). There are several ways to do this, with the simplest being to

1. represent the input as a zero-order hold between sampling instants,
2. discretize the system using an exponential integrator with sampling time ∆t,
3. use the continuous-time cost matrices in the discrete-time problem (i.e. Q = ∆tQ

c,
R = ∆tR

c, and P = ∆tP
c), and

4. apply the constraints only at the sampling instants.

While this may be the simplest way of discretizing the problem, it will not ensure the resulting
discrete-time controller will be the same as the continuous-time controller.

In order to have the discrete-time controller achieve the same cost as the continuous-time
controller, the weighting matrices must be generated from the continuous-time problem
through the discretization procedure given in [26]. In this procedure, the discrete-time
matrices are given by

Φ(∆t) := eAc∆t , (2.6a)

Γ(∆t) :=
∫︂ ∆t

0
eAc(∆t−τ) dτBc, (2.6b)

Q :=
∫︂ ∆t

0
Φ∗(τ)QcΦ(τ) dτ, (2.6c)

S :=
∫︂ ∆t

0
Φ∗(τ)QcΓ(τ) dτ, (2.6d)

R := ∆tR
c +

∫︂ ∆τ

0
Γ∗(τ)QcΓ(τ) dτ. (2.6e)

with the sampling time ∆t.

Note that with this discretization of the cost function, while the continuous-time formulation
only has the state and input weight matrices Qc and Rc, the resulting discrete-time
formulation will also include a state-input cross term S matrix and may destroy the sparsity
of the weight matrices.
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2.2 Nonlinear MPC algorithms

There are many different algorithms for solving the nonlinear MPC optimization
problem (2.1), with those that have been implemented on FPGAs shown in the algorithm
taxonomy chart presented in Figure 2.1. Overall, these algorithms can be divided into four
distinct groups:

• interior-point methods,
• Sequential Quadratic Programming (SQP) methods,
• learning/approximation methods, and
• derivative-free methods.

Interior-point and SQP methods generally solve a discrete-time finite-dimensional
optimization problem transcribed from the continuous-time infinite-dimensional
optimization problem (2.1) using a method such as direct collocation [93] or multiple
shooting [22]. These methods require that the derivatives of the cost, dynamics and the
constraints either be known beforehand (i.e. analytically computable by hand or by using
automatic differentiation tools), or be found using online methods such as finite-difference
approximation. This means that implementing problems containing nonsmooth components
in the cost/dynamics/constraints or problems where the dynamics are a blackbox simulator
requires a relaxation technique to be used to find the derivatives.

In the learning/approximation methods, the objective is to learn the NMPC control law
using a neural network or other function approximator. This generally consists of an
offline phase where many closed-loop simulations are performed using a different NMPC
controller (e.g. an interior-point or SQP-based solver) to create a set of mappings from
the current state to the next control input that are then used to train/fit a neural
network/function approximation. At run-time, the controller is implemented using the trained
neural network/function approximator, allowing for faster computation of the control input.
This has some disadvantages though, namely that the learned/approximated controller no
longer has the constraint satisfaction guarantees of the original NMPC controller, and the
approximation could create non-optimal trajectories for parts of the state space that were not
simulated in the offline training phase (e.g. if the learned controller experiences non-nominal
trajectories or disturbances).

An alternative method is the use of Derivative-free Optimization (DFO) solvers to solve
the NMPC problem (2.1). DFO solvers operate by selecting points in the search space
of the optimization problem and then computing the cost at each point by evaluating the
cost function. The main differences between the various DFO solvers are how the points
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in the search space are selected and how the information about the cost function value and
constraints are integrated into the solver. The use of these solvers for the NMPC problem (2.1)
has several advantages, including

• solving the original continuous-time NMPC problem (2.1),
• handling nonsmooth cost functions/constraints/dynamics,
• handling blackbox/simulation-only dynamic models and objective functions, and
• embarrassingly-parallel algorithm architectures.

2.2.1 DFO formulations

In DFO, there are many different types of solvers that each have their own unique features
and abilities. Many of these solvers have been used to solve the NMPC problem in the past,
and here we present a brief summary of some notable implementations.

Nelder-Mead method

An early experiment done by [157] used the Nelder-Mead method to solve the NMPC
problem (2.1). In their formulation, the search space that the optimizer uses is a vector
of piecewise-constant control inputs to a discrete-time dynamical system. At each sampling
point, a single-shooting simulation of the discrete-time dynamics is performed (i.e. the
dynamics are simulated using a time-marching dynamics solver starting at t0 and going to
tf ). The constraints (2.1c) are enforced as penalty functions in the cost, with the constraint
violation only computed at the time points where the control inputs can change. They found
that the algorithm allowed for many different types of parallelizations, including during the
evaluation of the dynamics and by evaluating multiple sampling points at the same time.

Time-domain simulation method

Another method proposed by [89, 90] consists of performing a fixed number of time-domain
simulations on a discrete set of candidate input trajectories, and then choosing the input
trajectory that has the lowest cost. In this method, the candidate piecewise-constant input
trajectories are formed sample-by-sample by starting with a nominal input value for the first
sampling instant and perturbing it by some small amounts. Then for each of those trajectories,
the next input is generated by perturbing another nominal value by a small amount. In this
way, the final simulations result in an exponentially growing tree, where starting with just
2 inputs and 3 possible perturbations for each of those inputs with a control horizon length
of 2 leads to 81 total simulations. In this formulation, constraints are handled through
barrier terms in the cost function and are enforced only at the time points where the control
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inputs can change. After all the simulations are completed, the input trajectory with the
lowest computed cost value is chosen as the input sequence to be applied to the system.
While simple to implement and easy to parallelize, this formulation has the disadvantage
that as the desired horizon length and number of inputs/perturbations increase, the number
of trajectories simulated grows exponentially — making this method infeasible for long time
scales.

Trust-region methods

A slightly different method that combines ideas from derivative-free optimization and
sequential quadratic programming is the trust-region formulation proposed by [42]. In this
method, the algorithm begins by sampling the cost function at a set of points in the search
space of piecewise-constant input trajectories for the system. Then those samples are used
to fit a quadratic function to approximate the mapping between the trajectories and the
cost function, creating a quadratic surrogate model of the cost function. The quadratic
surrogate model is then used as the objective for an SQP solver to find the next likely
optimum point. Then, the optimum point from the SQP replaces one of the existing
points used to fit the quadratic surrogate function, and the process repeats with the new
set of points. This formulation passes the path constraints (2.1c) directly into the SQP
subproblems as constraints on the SQP problem, discretizing them to be only enforced at
the time points where the control inputs can change. While this formulation overcomes the
exponential-growth of other methods and allows for nonsmooth cost and dynamics, it comes
at a disadvantage because the path constraints are used directly in the SQP solver, and
therefore both derivatives of the path constraints and an SQP solver that can handle the
nonlinearities in the path constraints are needed.

Particle swarm methods

Another popular DFO method used for NMPC is Particle Swarm Optimization (PSO), which
is an optimization method inspired by how swarms of animals behave. In PSO, the candidate
trajectories are thought of as particles in a swarm, and they will move around the search
space based on their previous position and the positions of other particles with a lower cost
value. In each iteration, the particles compute a velocity using an update rule similar to

V k+1 = ωV k + c1r1
(︂
P k −Xk

)︂
+ c2r2

(︂
P k

g −Xk
)︂

,

Xk+1 = Xk + V k+1,
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where Xk and V k are the position and velocity, respectively, for the particle at iteration k, P k

is the position with the lowest cost value the particle has ever found, and P k
g is the position

with the lowest cost value found by the entire swarm so far. The trajectories of the particles
can then be modified using the cognitive and social parameters c1 and c2, respectively, with
r1 and r2 random numbers uniformly distributed in the range [0, 1].

The NMPC formulation for PSO proposed by [179] has the particles searching over piecewise-
constant input trajectories, and then computing the NMPC cost (2.1a) using a single-shooting
simulation of the dynamics. The path constraints (2.1c) are implemented using a penalty
term in the cost function that sums the constraint violations, enforcing them only at the time
points where the control inputs can change. While conceptually simple, the behavior of PSO
relies heavily on the constants c1 and c2 in the update rule, meaning they will need to be
optimized/chosen for each problem.

Evolutionary methods

A relatively recent method explored for NMPC using DFO in [74] is to use an evolutionary
optimization algorithm. Evolutionary optimization is modelled after the process of biological
evolution, with the algorithm seeking to mimic the natural evolutionary behaviors genes go
through when passed from parents to children. Evolutionary methods begin by selecting a
set of parent points in the search space, and then evaluating the cost function at those points.
Then one of two actions occurs to produce a new set of child points:

• mating/crossover - the parents with the lowest cost values are combined together,
randomly taking each individual variable from each one to form the new children
(i.e. mating 2 parents will form a new child with each parent contributing 50% of the
elements); or

• mutation - Gaussian noise is added to the children to encourage more exploration.

Once the new set of children is formed, the cost function is evaluated at each of them, and
then the children with the lowest cost values are used as the parents in the next iteration.

In the nonlinear evolutionary MPC proposed by [74], the evolutionary optimization algorithm
is used to solve the NMPC problem. The cost (2.1a) is computed using a single-shooting
simulation of the dynamics, and the path constraints are implemented by introducing penalty
parameters to the cost function or by saturating the inputs/states in the simulation model
for input-only or state-only constraints. In [74], the input space was parameterized as a
piecewise-linear function with fixed knot points at the start, middle, and end of the horizon.
The optimization solver then searched for the value of the input at those knot points.
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Pattern search methods

The final method we highlight is the set of pattern search methods for DFO. These methods
choose a set of poll points on a mesh surrounding the current iterate (usually in fixed
directions, such as along the axes), and then evaluate the cost function at each of them to
identify the ones with a lower cost value. The poll point with the lowest cost value becomes the
new iterate for the next iteration, and the algorithm repeats. In the NMPC framework using
pattern search proposed by [53], the input trajectory is assumed to be piecewise-constant and
the cost function performs a single-shooting simulation of the dynamics for the entire horizon.
Adding constraints to the problem is then done one of two ways:

• input constraints - implemented by limiting poll points to be only in the feasible set;
and

• state constraints - implemented as saturations in the dynamics simulation done in the
cost function.

2.3 Linear MPC formulations

There are two main MPC schemes used to solve the CLQR problem: implicit and explicit.
In implicit linear MPC, the CLQR QP (2.2) is solved using a QP solver at every sampling
instant — requiring a full QP solver to be implemented on the embedded device. This can be
expensive in terms of both resource usage and time required, making it impractical for some
systems that require very fast sampling times or that need to use very small processors.

Alternately, there is the explicit linear MPC scheme that was proposed in [20]. The basic
premise of this scheme is that the state space for the initial condition x̂0 can be broken into
polyhedral regions, and the solution of the QP (2.2) in each of those regions is then described
by an affine function of x̂0. This allows for the computation to be split into two parts: the
offline computation of all the polyhedral regions and the associated affine function parameters,
and the online computation of locating the appropriate affine function parameters in memory
and evaluating the affine function with x̂0. The major downside to this method though is that
the amount of memory needed to store the static gain matrices for all the polyhedral regions
grows rapidly with the size of the problem (both number of states and the horizon length),
making it impractical to use on embedded devices for problems with a large state-space or
long horizons.

2.3.1 Implicit MPC formulations

There are several different formulations of optimization problems proposed to solve the
implicit linear MPC problem.
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Sparse (uncondensed) form

The simplest formulation is known as the sparse (or uncondensed) formulation, and solves the
full QP (2.2). This formulation results in sparse and banded matrices where the number of
non-zero elements in them grows linearly with the horizon length. This can be advantageous
in several situations, including (i) the QP solver used can exploit matrix sparsity, (ii) there
are inequality constraints (2.2c) involving the state variables, or (iii) a long prediction horizon
is needed.

Condensed form

Another popular formulation is the condensed formulation, which removes the state
variables xk from the QP by rewriting them as a function of only the inputs uk. When the
terminal state constraint has Ex

N = Ex and cN = c, this results in the inequality constrained
QP

min
u

1
2u′Hu + x̂′

0J ′u (2.7a)

s.t. Gu ≤ Fx̂0 + g, (2.7b)

with u :=
[︂
u′

0 u′
1 . . . u′

N−1

]︂′
, the condensed Hessian H := Γ′Q̄Γ + S̄

′Γ + Γ′S̄ + R̄, and the
matrices J := Γ′Q̄Φ,

Φ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A

A2

A3

...

AN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Φ̃ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

A

A2

...

AN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Γ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B 0 0 0
AB B 0 0
A2B AB B 0

...
. . .

...

AN−1B AN−2B AN−3B · · · B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R̄ := IN ⊗R, S̄ :=
[︄
IN−1 ⊗ S 0

0 0n×m

]︄
, Q̄ :=

[︄
IN−1 ⊗Q 0

0 P

]︄
, Γ̃ :=

⎡⎣ 0n×Nm[︂
In(N−1) 0

]︂
Γ

⎤⎦ ,

G := Ē
xΓ̃ + Ē

u
, Ē

x := IN ⊗ Ex, Ē
u := IN ⊗ Eu,

F := −Ē
xΦ̃, g := 1N ⊗ c.

The condensed QP (2.7) has no equality constraints, and has a smaller number of variables
than the sparse form. However, the Hessian H is full in general, and the number of entries
in it grows quadratically with the horizon length and the number of inputs — making this
formulation more suited for problems with fewer inputs or shorter horizons.
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An important note about condensing the problem is that the structure of the constraint
matrix G will depend on the types of linear inequality constraints present. If there are only
inequality constraints on the inputs, then G will be block diagonal. Otherwise, if there are
inequality constraints on both the states and inputs, G will be full and lower triangular.

The condensed form can be further modified into the dual-condensed formulation by using
the following dual QP of (2.7)

y∗(x̂0) := argmin
y

1
2yT Hdy + (Jdx̂0 + g)T y (2.8a)

s.t. y ≥ 0 (2.8b)

where Hd := GH−1G′ is the dual-condensed Hessian, and Jd := GH−1Φ + F . Since there is
strong duality between (2.7) and (2.8), the control sequence can be recovered from a dual-
optimal solution y∗ through u∗ = −H−1(G′y∗(x̂0) + J ′x̂0).

In the dual-condensed form, the optimization variables, y, are the Lagrange multipliers for the
inequality constraints, leading to only non-negativity constraints on every variable. However,
the Hessian Hd is still a full matrix whose number of non-zero entries grows quadratically
with the horizon length, in general.

Variable condensing forms

The uncondensed and condensed formulations given above can be seen as two ends of a
condensing spectrum. Several methods for variable condensing have been proposed between
the two extremes to give the designer control over the amount of sparsity in the resulting
optimization problem.

One possible approach was proposed in [16], where instead of condensing the entire horizon
into a single full matrix, the horizon is broken into smaller segments that are then condensed
individually. An alternate approach was proposed in [80], where the open-loop dynamical
system (2.2b) is replaced with a closed-loop system with a deadbeat linear state-feedback
controller, creating a block banded structure in the resulting condensed Hessian.

2.3.2 Numerically robust MPC

When implementing a CLQR controller for unstable systems, the condensed formulation (2.7)
becomes numerically unstable as the horizon length increases. This is due to the fact that
unstable systems have |λmax(A)| > 1, and so taking repeated powers of A to form Γ will then
cause the condition number of H to grow monotonically with N .
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To overcome this, a modification to (2.7) was proposed in [154] where instead of using the
actual system A for computing the prediction matrix and optimal control, a prestabilized
system A−BK is used instead. This prestabilized system would guarantee that the prediction
matrix entries do not cause the condition number of H to be unbounded with the horizon
length, leading to better conditioning of the Hessian and the resulting optimization problem.

To formulate the prestabilized problem, a new system Gc is formed by introducing a state
feedback controller K and a new input vk ∈ Rm, to make the original input uk = −Kxk + vk

and giving the system

Gc(z) :=

⎡⎣ A−BK B

I 0

⎤⎦ , (2.9)

where the controller K ∈ Rm×n is chosen so that the closed-loop system Gc is Schur-stable
(i.e. |λmax(A − BK)| < 1). Note that because all eigenvalues of the system Gc need to be
inside the unit circle, this transformation requires the pair (A, B) of the original system G to
be stabilizable. There are several ways to compute a K for Gc, however we focus on when K

is chosen as the unconstrained infinite-horizon LQR controller computed using Q, R and S

from (2.2a).

The computations are then done using the input space v:=
[︂
v′

0 v′
1 · · · v′

N−1

]︂′
, turning the

condensed QP (2.7) into

v∗(x̂) := argmin
v

1
2v′Hcv + x̂′J ′

cv (2.10a)

s.t. Gcv ≤ Fcx̂ + g (2.10b)

with Ac := A−BK, Qc := Q + K ′RK, K̄ := IN ⊗−K,

Φc :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ac

A2
c

A3
c

...

AN
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Φ̃c :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

Ac

A2
c

...

AN−1
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Γc :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B 0 0 · · · 0
AcB B 0 0
A2

cB AcB B 0
...

. . .
...

AN−1
c B AN−2

c B AN−3
c B · · · B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.11)

Q̄c :=
[︄
IN−1 ⊗Qc 0

0 P

]︄
, Γ̃c :=

⎡⎣ 0n×Nm[︂
In(N−1) 0

]︂
Γc

⎤⎦ , Hc := Γ′
cQ̄cΓc + Γ′

cK̄
′
R̄ + R̄K̄Γc + R̄,

Jc := ((I+Γ′
cK̄

′)R̄K̄+Γ′
cQ̄c)Φc, Gc := (Ēx+Ē

u
K̄)Γ̃c+Ē

u
, Fc := −(Ēx+Ē

u
K̄)Φ̃c. (2.12)

The input applied to the original system is then u0 = −Kx̂0 + v∗
0(x̂0).
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2.4 Implementation of linear MPC

One of the key attributes that has led to the adoption of MPC as a viable control strategy in
many applications has been the ability to implement the controller in real time on systems
that require very fast sampling times. One key method of satisfying these real-time constraints
is to use an FPGA with custom digital logic to solve the QP efficiently as the computational
platform. In this thesis, we examine and analyze FPGA implementations of linear MPC in
Part II, so in this section we will present several key ideas and considerations utilized when
implementing QP solvers on an FPGA system.

2.4.1 Quadratic programming algorithms

There have been many types of optimization algorithms used to implement linear MPC on
FPGAs, as shown in the taxonomy chart in Figure 2.1. This taxonomy chart shows there is
a diverse ecosystem of solvers for nonlinear MPC, with each algorithm chosen for the specific
application being targetted. However, when solving linear MPC there are three main classes
of implicit QP algorithms: Interior-point Methods (IPMs), Active-set Methods (ASMs), and
First-order Methods. In this overview, we focus on the properties of these implicit QP solvers
for linear MPC.

Interior-point methods were some of the original methods applied to solve (2.2) in [103] and
subsequent works. In IPM, the optimal solution of (2.2) is found by solving the nonlinear
Karush-Kuhn-Tucker (KKT) system of equations using an iterative Newton’s method, with
each iteration in IPM consisting of three main steps:

1. update/linearize the KKT system,
2. solve the linear KKT system for a step direction, and then
3. update the current guess with the step direction.

The main computational burden is solving the linear system in Step 2. Experiments in [149]
showed that exploiting the structure of the matrices arising in the LTI problem leads to faster
and more scalable solvers.

The second type of algorithm that has been implemented on FPGA systems is the active-set
method. In ASM, the algorithm finds the optimal point by solving a sequence of equality-
constrained subproblems to locate the set of inequality constraints that are active at the
optimal point. In each iteration, the algorithm chooses one or more inequality constraints
to add/remove from the current active set being used based on whether the constraints were
violated in previous iterations. In ASM solvers, the main computational burden is then
solving a linear system representing the equality-constrained problem.
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Table 2.1: FPGA implementation details for selected linear MPC solvers (adapted from [116]).

Implementation QP1 Algorithm2 Number
Format3

Design
Entry

Clock
(MHz) Matrix4 QP Size5 Solver Time

Ling et al. [103] C IP/CHOL float32 Handel-C 20 BRAM 3/0/60 23.7 ms6

Ling et al. [104] C IP/CHOL float32 Handel-C 25 - 3/0/52 9.1 ms
Vouzis et al. [175] C Newton LNS Verilog 50 BRAM 2/0/4 688 µs

Basterretxea et al. [18] C IP/CHOL fixed AccelDSP 20 BRAM 3/0/6 120 µs
Wills et al. [177] C IP/CG float16.6 VHDL 70 - 12/0/24 <200 µs
Yang et al. [181] C ASM float32/fixed Verilog 100 BRAM 5/0/- 500 µs9

Chen et al. [37] C DASM float32 Verilog 150 - 3/0/12 468 µs
Wills et al. [178] C ASM float7 VHDL 70 BRAM 12/0/24 <30 µs
Peyrl et al. [142] C FGM fixed27.25 VHDL 120 - 15/0/30 0.49 µs
Jerez et al. [83] C FGM fixed VHDL 400/230 BRAM 40/0/807 0.53/0.91 µs

Rubagotti et al. [155] C DGP fixed32.16 Simulink 100 DiRAM 20/0/208 239 µs
Xu et al. [180] C ASM float32/fixed Verilog 100 BRAM 5/0/- 370 µs

Zhang et al. [183] C RNN - - - - 8/-/8 6.02 µs
Wang et al. [176] C ASM float32 C10 10 BRAM 40/-/807 1.85 ms
Wang et al. [176] C ASM binary16 C10 10 BRAM 40/-/807 1.28 ms
Wang et al. [176] C ASM fixed C10 10 BRAM 40/-/807 860 µs
Liu et al. [105] S IP/CHOL float32 VHDL 200 BRAM 300/-/600 4 ms

Hartley et al. [67] S IP/MINRES float32 VHDL 250 BRAM 377/-/408 <12 ms
Jerez et al. [83] S ADMM fixed VHDL 400/230 BRAM 216/-/1727 4.9/8.52 µs
Dang et al. [43] S ADMM fixed32.17 - - - 120/80/250 215 ms6

Shukla et al. [161] S AMA float32 C8 100 BRAM 384/-/- 900 µs6

Zhang et al. [184] S ADMM float32 VHDL 340 BRAM 204/-/3007 30.1 µs

- Indicates data that was not reported
1 C - Condensed formulation, S - Uncondensed (Sparse) formulation
2 ADMM - Alternating Direction Method of Multipliers, AMA - Alternating Minimization Algorithm, (D)ASM -
(Dual) Active Set Method, CG - Conjugate Gradient solver, CHOL - Cholesky solver, DGP - Dual Gradient projection,
(D)FGM - (Dual) Fast Gradient Method, IP - Interior-Point, MINRES - Minimum Residual solver, RNN - Recurrent
Neural Network
3 float32 - IEEE-754 single precision floating point, binary16 - IEEE-754 half precision floating point, LNS - Logarithmic
Number System [166]
4 BRAM - Block RAM, DiRAM - Distributed RAM
5 Decision Variables/Equality Constraints/Inequality Constraints
6 Fully sequential implementation
7 Estimated from available data
8 Using the Protoip tool by Suardi et al. [165]
9 This value was actually reported in [180], but was run using the architecture from [181]
10 Using Vivado HLS
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A comparison between IPM and ASM on FPGAs was carried out in [101], with the results
showing that for small problem sizes, ASM will take fewer iterations compared to the fixed
computational cost of IPM. However, it appears that experimentally the number of interior-
point iterations stays constant as the problem size grows, while the number of iterations
required for ASM tends to grow approximately linearly with the number of optimization
variables and constraints. This leads to the conclusion that for larger problems, IPM is
better to use than ASM.

More recently, many FPGA implementations have started to use first-order methods, such as
Nesterov’s Fast Gradient Method (FGM) or the Alternating Direction Method of Multipliers
(ADMM), instead of the second-order interior-point or active-set methods. These methods
utilize only first-order information (i.e. the gradient) in their computations, and generally
have three main steps

1. compute a search direction,
2. compute the step size and apply the search direction, and then
3. project onto the feasible set.

The main linear algebra operation in first-order methods is a matrix-vector multiplication
in Step 1 (as opposed to the linear system solve in IPM or ASM). However, the projection
operation in Step 3 can become computationally complex depending on the feasible set. For
both primal gradient methods with a constraint set (2.2c) of purely upper and lower bounds
and dual gradient methods, the projection operation is a simple variable saturation. However,
if Ex

k and Eu
k represent a more complex constraint set, the projection operation for a primal

gradient method may require the solution of its own QP through techniques such as a multi-
parametric QP as proposed in [121] (which will essentially perform the projection operation
using the same digital hardware as an explicit MPC solver).

2.4.2 Number representation

An important feature of FPGAs compared to CPUs is their support for non-standard data
types in the calculations. This allows the designer to create hardware using custom data types,
which can then reduce the amount of device area consumed by the individual computational
resources and allow for more parallelism [40].

In this subsection we will introduce fixed-point and floating-point number formats, and
then describe two types of numerical errors that are encountered: computational errors and
representation errors.



52 Introduction to Model Predictive Control

Storage format

There are two main storage formats for decimal numbers in digital systems: fixed-point and
floating-point.

Fixed-point numbers utilize the standard 2’s complement number representation (used for
normal integers) to represent both positive and negative numbers, but introduce an implied
binary point into the numbers. The format of the number is characterized by two values: the
number of integer bits and the number of fractional bits, with the sum of these two lengths
called the word length. For example, the number 14.375 would be 00001110.01100 in the
8.5 format (where there are 8 integer bits and 5 fractional bits). The binary point is an
abstraction created by the designer, with the hardware having no knowledge of where it is
actually located. This means 14.375 is actually stored in the fixed-point 8.5 format as if it
were the integer 460:

00001110⏞ ⏟⏟ ⏞
integer

01100⏞ ⏟⏟ ⏞
fraction

To actually perform the operations (e.g. addition, multiplication, etc.) on fixed-point numbers,
the standard integer arithmetic units are used. This allows for the computations to be mapped
to the Digital Signal Processing (DSP) units of the FPGA to accelerate them.

The number of bits in each section of a fixed-point number is fixed at design-time, forcing a
fixed range and precision on the numbers represented. Any values larger than the number
of integer bits will overflow, and have the information to the left of the integer portion lost.
Any values with fractional components smaller than the precision of the number will have
those parts rounded to the precision of the fixed-point number, with the difference between
the represented number and the actual number termed the round-off error. There are several
rounding modes possible, with the common rounding modes shown in Table 2.2 along with
the largest possible round-off error they could introduce.

An alternative representation for numbers is called floating-point, and is the commonly used
format when performing computations on desktop and server computers. This format is
characterized by three main parts: the sign bit, the mantissa, and the exponent. The number
is effectively stored in scientific notation, where the mantissa provides the fractional part
of the coefficient (there is normally an implied 1 before it) and the exponent provides the
location of the binary point. The original number can then be retrieved as follows

y = (−1)sign × 1.(mantissa)× 2exponent−bias

The most common field sizes for the numbers correspond to the IEEE-754 standard, and are
given in Table 2.3, but designers can also create custom formats by choosing other mantissa
and exponent sizes.
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Table 2.2: Rounding modes in fixed-point arithmetic data types and their maximum round-off
error. ©2019 IEEE

Rounding mode Maximum Round-off Error with f
fractional bits

Round to +∞ ϵf = 2−f

Round to 0 (truncation to 0) ϵf = 2−f for negative numbers
ϵf = −2−f for positive numbers

Round to −∞ (truncation) ϵf = −2−f

Round to ∞ ϵf = −2−f for negative numbers
ϵf = 2−f for positive numbers

Round towards the nearest
value (convergent rounding)

ϵf = ±2−(f+1)

Table 2.3: Size of the fields (in bits) and the exponent bias in IEEE-754 standard floating-point
formats.

Precision Total Mantissa Exponent Bias
Half 16 10 5 15

Single 32 23 8 127
Double 64 52 11 1023
Quad 128 112 15 16383

There are several important considerations when choosing between fixed-point and floating-
point representation for implementations, including

• the range of possible values that must be represented,
• the amount of precision needed, and
• the available hardware components.

In general, floating-point numbers have a larger dynamic range than a fixed-point number
using the same number of total bits (since floating-point numbers have an exponent term).
On the other hand, fixed-point numbers have a precision that is constant for all representable
numbers, while the precision available for floating-point numbers will vary depending on
the magnitude of the number being represented. Fixed-point is also favored on low-power
embedded systems, since many embedded microcontrollers or small FPGAs have no built-
in hardware for efficiently performing floating-point operations. However, most higher-end
CPUs include native hardware support for either the single or double precision format, and
some newer FPGAs now include specialized blocks for floating-point operations as well.

Computational errors

Computational errors can manifest themselves in three ways:
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Table 2.4: Works containing results on the stability under roundoff errors, variable bounds, and
computational complexity certification of selected algorithms.

Algorithm Stability under
Roundoff Errors

Bounds on Variables/
Data-Type Size Rules

Finite Termination/
Upper Iteration Bound

Fast Gradient
Method (FGM)

Jerez et al. [82] Jerez et al. [82] Richter et al. [151]

Alternating Direction Method
of Multipliers (ADMM)

Jerez et al. [83]
Jerez et al. [83]
Dang et al. [43] -1

Dual Gradient
Projection (DGP)

Patrinos et al. [140] Patrinos et al. [140] Patrinos et al. [140]

Accelerated Dual
Gradient-Projection (GPAD)

- - Patrinos and Bemporad
[138]

Proximal Newton Method Guiggiani et al. [56] Guiggiani et al. [56] Guiggiani et al. [56]
MINRES/Lanczos Greenbaum [55, §4] Jerez et al. [84] Greenbaum [55, §4]

- No results could be located
1 While much work has been done to prove convergence rates of splitting methods and ADMM, these results require
a number of assumptions that are not satisfied for MPC problems in general. Individual MPC problems may be able
to meet the assumptions though, in which case iteration bounds do exist.

• overflow, where the magnitude of the requested number is larger than the maximum
representable number;

• underflow, where the magnitude of the requested number is smaller than the smallest
representable number; and

• round-off, which are errors that occur because the number requires more fractional
places than available.

The generic optimization algorithms discussed in Section 2.4.1 were developed using either
infinite precision or the standard data types (e.g. IEEE-754 floating-point) for execution on
normal computers. When they are then implemented on embedded/FPGA systems, different
data types are chosen, which then introduce new errors in the computation that could degrade
the algorithm’s stability or convergence. For instance, changing from floating-point to fixed-
point introduces different round-off errors in the computations due to the differing dynamic-
range and precisions. To guarantee the algorithms work with the new data types, new proofs
of convergence and stability are needed. An overview of some of the relevant literature
containing these proofs for the common algorithms used with linear MPC can be found in
Table 2.4.

An additional concern, particularly for fixed-point implementations, is overflow errors. In
general, finding the largest possible value each vector in an algorithm could contain is difficult
due to the iterative nature of the computations. However, bounds do exist for some methods,
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such as the fast gradient method [82] and dual gradient projection [139]. These bounds can
then be used to size the integer and fractional components of fixed-point numbers in order to
guarantee no overflow errors occur inside the algorithms.

Other algorithms, such as IPM, do not have bounds for every variable in the computation.
Instead, bounds on variables in specific parts of the algorithm have been created. For instance,
when the Minimum Residual (MINRES) solver is used for Step 2 of the IPM, [79] presented
a scaling method that guarantees all vector elements in the MINRES solver will stay below
precomputed bounds, allowing for a fixed-point implementation of MINRES inside an IPM.

Representation errors

In addition to examining the effect of the data type on the convergence of the algorithm,
designers must be conscious of the effect the data type has on the optimization problem
itself. For instance, the choice of the representation could cause the optimization problem
to lose convexity or feasibility with respect to the original problem, or simply degrade the
resulting optimal solution to an unsatisfactory level.

For example, experiments in [106] show that the discretization is affected by the data type, and
that choosing the wrong combination of discretization method and data type can lead to severe
performance problems. Their experiments show that the usual discretization method (known
as the shift-form) performs very poorly when used inside an interior-point method with small
data types (e.g. 5-bit mantissa floating-point). They traced the source of this problem to the
merging of the state transition dynamics and the discrete integrator into a single value in
the resulting matrices. In this case, the integrator forces a 1 on the matrix diagonal, and if
the system has additional small-scale transition dynamics on the diagonal, they could become
truncated by the number representation due to the fewer decimal places available near 1 of the
low-precision floating-point numbers. To overcome this, they propose using the delta-domain
discretization method to represent the discrete-time system to effectively separate the state
integrator from the state transition computation. This then provides closed-loop control using
5-bit mantissa floating-point that is equivalent to the control using double precision (52-bit
mantissa) floating-point.

2.4.3 Parallelization opportunities

Opportunities for parallelization of computations can occur at two distinct levels: algorithmic
and computational. Algorithmic parallelizations are those inherent in the structure of the
algorithm, while computational level parallelizations exist at the level of the arithmetic
computations.
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Algorithmic level

We use the term algorithmic level parallelization to refer to the ability to parallelize the
overall algorithm steps inside a single iteration. The existence of these parallelizations is
highly dependent upon the structure of the problem, and of the algorithm itself.

In IPM implementations on FPGAs (such as [67, 81, 105]), the main computational
bottleneck is located inside Step 2 (the linear system solver), so attempting to parallelize
the computations in Steps 1 and 3 provided no noticeable performance increase. Therefore,
these implementations left Steps 1 and 3 with minimal parallelization and focused the research
and development effort on the computational level parallelization available inside Step 2.

More recent FPGA implementations have examined the parallelizations possible in first-order
methods, such as FGM or ADMM. Work in [83] demonstrates that, given an appropriate
projection operation, there is no data dependence between the optimization variables in
an iteration of these methods. This allows for the processing of each variable in parallel
by duplicating the computational component containing a Matrix-vector Multiplier (MVM),
projection block, and associated glue logic.

This parallelization is highly dependent upon the projection operator though, and the reported
architectures utilize box constraints on the variables to allow for this exploitation. The
introduction of more general affine constraints will introduce data dependencies in the
projection operation, and make the parallelization structure highly dependent upon the
structure of the constraint set. Additional work examined how to add soft constraints to
the MPC problem, with [83] finding that in order to maximize the parallelization in the
ADMM implementation there had to be one slack variable per soft constraint (e.g. a 1-norm
soft constraint formulation).

Computational level

Many of the parallelizations that have been exploited in the FPGA implementations have
been at the computational level rather than the algorithmic level. This level consists of the
low-level linear algebra routines that compose the algorithm, such as the linear system solvers,
matrix factorizations and matrix-vector multiplies.

An initial survey of parallelizing the linear system solvers was done in [107], where they
explored the implementation of the conjugate gradient method using deeply pipelined inner-
product units. Subsequent implementations in [67, 81] explored the implementation of the
MINRES solver to speed-up Step 2 inside the interior-point method by parallelizing and
pipelining the operations.
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Parallelization of the MVM was used in nearly every implementation, but there were two main
methods used: column-sweep and row-sweep. Column-sweep parallelism was implemented in
[155], and consisted of a multiply-accumulate (MAC) module for each row of the matrix. This
processes a column at a time, and will not produce a complete result until n clock cycles for
an m× n matrix.

Row-sweep parallelism was implemented in [81, 83, 177], and consists of multiple units that
compute the dot products between rows of the matrix and the vector. There is one multiplier
per vector element, followed by an adder tree to combine all the results. This adder tree can
have registers inserted between levels to reduce the critical path and allow for pipelining of
different operations. A fully pipelined implementation (registers between every level) of a
single MVM unit can produce the complete result in m + ⌈log2 n⌉ clock cycles.

2.4.4 Memory organization

The architecture of the memory system consists of two main components: locality and the
data storage pattern. Locality refers to how close the memory cells are to the computational
elements, while the data storage pattern is how the data/matrices are arranged inside the
memory cells.

Locality

There are three major memory regions that are available for FPGA implementations:
Distributed RAM (DiRAM), Block RAM (BRAM), and off-chip memory. In the linear MPC
implementations shown in Figure 2.1, none of them utilized off-chip memory, and all but one
utilized the BRAM to store the main coefficient matrix (the Hessian), and the DiRAM for
various computational products.

The remaining implementation, [155], stores the Hessian in DiRAM to have high locality with
the MVM elements. For the active-set implementation done in [178], they experimented with
placing the Hessian in the DiRAM and the BRAM. They reported results that show switching
from BRAM to DiRAM will almost double the resource usage of the FPGA.

Storage pattern

The storage pattern for the matrices and vectors that an implementation utilizes is driven by
both the choice of the linear MPC problem formulation and the computational architecture
used. When designing the storage pattern in relation to the computational architecture, the
primary objective is to present the data to the computational units with the smallest latency.
For instance, for the column-sweep MVM implementation in [155], the Hessian is broken into
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rows for storage at each MAC (each row in separate memory areas), allowing for each MAC
to be fed with a new coefficient simultaneously. Alternately, the work [81] places each column
of the Hessian in different BRAM units to efficiently feed the coefficients to the row-sweep
MVM unit.

The chosen linear MPC problem formulation plays a key role in the scaling of the storage
pattern as the problem size changes. For instance, in the FPGA implementations using
the condensed formulation with a full Hessian, the memory usage of the Hessian scales
quadratically with the horizon length.

Alternately, choosing the sparse formulation allows for the usage of the Compressed Diagonal
Storage (CDS) method to represent the Hessian. As detailed in [28], CDS exploits the banded
structure of an m×n matrix to only store the diagonals that contain values (those inside the
bandwidth r). This is accomplished by turning each diagonal of the original matrix into a
column of the CDS matrix, which then has dimensions m × r. The CDS matrix then grows
linearly with the horizon length. The CDS storage method was utilized in [81], where it
decreased memory usage by at least an order of magnitude.

Further structure in the sparse LTI MPC problem can be exploited to realize gains of over 75%
compared to the normal CDS implementation. Specifically, [81] shows that the CDS matrix
for the LTI case contains many identical rows (with mostly zeros and ones). By storing only
one copy of that row and then mapping the appropriate memory addresses to it when needed,
memory usage can be reduced. Additional savings can also be found by exploiting the block
structure of the matrix, so only one copy of a block is stored and then accessed through an
appropriately designed memory system.

2.4.5 Overall trends

The implementation of linear MPC on FPGAs has seen substantial improvement over the
past 15 years, with a diverse set of implementations that have pushed the computational
time to sub-microsecond ranges. By examining the implementation details of many different
solvers (provided in Table 2.1), several patterns emerge.

The first is that the recent speed-up in solver times has been accompanied by a switch to first-
order methods, such as FGM for the condensed problem and ADMM for the sparse problem.
This switch shows an order of magnitude reduction in the number of clock cycles required for
the computation, as can be seen in the comparison presented in Figure 2.2.

Another pattern that emerges is that, unlike many initial implementations that were based on
a high-level language, such as Simulink or Handel-C, the more performant implementations
have been coded directly in a low-level Register-Transfer Level (RTL) language, such as VHDL
or Verilog.
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Figure 2.2: Clock cycles required for the computations in FPGA implementations of linear MPC.
Per variable (inequality) values are the total clock cycles divided by the number of variables
(inequality constraints). ©2018 IFAC.

2.5 First-order optimization solvers for linear MPC

As mentioned in Section 2.4.5, the current trend in embedded implementations of linear MPC
seems to be heading towards first-order methods as the solvers of choice to meet strict timing
demands. Therefore, we focus on the analysis and implementation of first-order methods for
the CLQR problem in Part II, and briefly introduce in this section the two first-order methods
we will use in Part II.
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Algorithm 2.1 The Fast Gradient Method [83]
Input: x̂0 ▷ Current state measurement
Output: u(Imax) ▷ Optimal control sequence

Let: L, µ be the maximum and minimum eigenvalue of H, respectively.
Let: β :=

√
L−√

µ√
L+√

µ

Let: y(0) = 0

for i = 0 to Imax − 1 do
t(i) := (I − 1

LH)y(i) + 1
LJx̂0 ▷ Gradient update

u(i+1) := πK(t(i)) ▷ Projection
y(i+1) := (1 + β)t(i+1) − βt(i) ▷ Acceleration

end for

2.5.1 Fast Gradient Method

The main first-order method we examine in this work is the Fast Gradient Method (FGM),
which was originally proposed by Nesterov to solve constrained convex programs, and was
adapted in [151] to solve the condensed primal QP (2.7) with only input constraints. The
FGM uses an accelerated gradient descent method to find the minimum of the cost (2.7a)
while using a projection operator to satisfy the inequality constraints (2.7b). This algorithm
has proven popular in embedded implementations, with some of the fastest reported FPGA
implementations of linear MPC solvers utilizing it to solve the condensed problem.

The computational steps for the FGM can be seen in Algorithm 2.1, and consist of three main
parts: gradient computation and update, projection into the feasible set, and acceleration.
The two steps that can theoretically be the most computationally intensive are the gradient
computation and the projection operation. In all implementations, the gradient step consists
of a single matrix-vector multiplication of the previous accelerated iterate with the Hessian
(which is usually full), followed by a vector addition operation. The projection step on the
other hand can vary between implementations depending on the structure of the feasible set.
In the majority of embedded implementations, the FGM is used with problems that have
only upper and lower bounds, which then turns the projection step into a simple saturation
operation and makes the main computational bottleneck become the gradient computation.

The FGM also has two other properties that make it amenable to implementation on
embedded platforms

• a computable Upper Iteration Bound (UIB), and
• rules for sizing the fixed-point representation of all vectors while guaranteeing stability.
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Upper iteration bound

Having a UIB means that the algorithm is guaranteed to converge in a fixed number of
iterations, which provides two key benefits

• simple termination criteria (no residual computation), and
• constant algorithmic solve time no matter the initial state.

These benefits work together to allow for better implementations on FPGAs because it leads
to fewer computations and a fixed solver latency. The UIB for the FGM was derived in [151],
and is defined as

UIB := max {0, min {a, b}} , (2.13)

a :=

⎡⎢⎢⎢⎢
ln ϵ− ln ∆

ln
(︂
1−

√︂
1
κ

)︂
⎤⎥⎥⎥⎥, b :=

⎡⎢⎢⎢2

√︄
∆
ϵ
− 2,

⎤⎥⎥⎥,

where ϵ is the desired tolerance for the primal solution, κ is the condition number of the
Hessian H, and ∆ is a constant determined by the constraint set. Note that this bound is not
known to be tight, and it is unknown if there exists a problem instance for which it is tight.

The value of ∆ can be found by either solving one of the optimization problems given in
[151] or utilizing an upper-bound, while the value for ϵ should be chosen to ensure stability
properties of the system. A horizon-independent bound on ϵ and ∆ for warm-started FGM
was calculated in [151] as

ϵ ≤ µ

2
δ2

max

∥B∥2
, ∆ ≤ lim

N→∞
κϵ, (2.14)

where µ is the smallest eigenvalue of the Hessian H, and δmax is the largest acceptable error
in the system state due to the suboptimal input (i.e. ∥x+−x∗

+∥ ≤ δmax, where x+ is the next
state under the suboptimal input and x∗

+ is the next state under the optimal input).

Data-type sizing rules

The implementation of the FGM in fixed-point arithmetic was analyzed in [83], which
proposed several requirements and design guidelines to allow for a stable implementation.
The first important part was deriving [83, Prop. 1], which contains the maximum values
the vectors/values in the FGM can attain during all computations, allowing proper sizing of
the integer portion of the fixed-point data types. The second part was stating a necessary
condition to have stability of the FGM iteration using fixed-point arithmetic in the presence
of round-off errors, which is given in Requirement 2.5.1.

Requirement 2.5.1 ([83, §IV-D]). For the Fast Gradient Method to be stable in fixed-point
arithmetic, it is necessary (but not sufficient) for the fixed-point version of the Hessian H to
have all its eigenvalues in the open interval (0, 1).
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Algorithm 2.2 The Dual Gradient Projection Method [140]
Input: x̂0 ▷ Current state measurement
Output: y(Imax) ▷ Optimal Lagrange multipliers

Let: Ld := λmax(Hd)
Let: E := −H−1G′

Let: e := −H−1Φx̂0
Let: b := Fx̂0 + g
Let: y(0) = 0

for i = 0 to Imax − 1 do
z(i) := Ey(i) + e ▷ Compute current primal solution
g(i) := Gz(i) − b ▷ Compute the dual gradient
y(i+1) :=

[︂
y(i) + 1

Ld
g(i)
]︂

+
▷ Multiplier update and projection

end for

This requirement essentially means that the fixed-point Hessian must be Schur-stable, which
is a necessary step in ensuring the gradient vanishes over time and the FGM converges to a
solution.

2.5.2 Dual Gradient Projection

Another first-order algorithm to solve the condensed linear MPC problem (2.7) is the Dual
Gradient Projection (DGP) algorithm described in [140]. DGP is a non-accelerated gradient
method that operates in the dual space by computing the Lagrange multipliers for the
condensed dual problem (2.8). There are two main steps in the algorithm, which can be
seen in Algorithm 2.2. The first step is to compute the dual gradient using the current
primal solution and the associated constraint violations. The next step is to update the
Lagrange multipliers using that gradient, and then project the Lagrange multipliers onto the
non-negative orthant (which is a simple saturation operation). Since the projection can be
done using a saturation operation regardless of the constraint set (2.7b), the DGP is more
suitable for embedded applications with complex constraint sets than the FGM is.

Work has also been done to create fixed-point arithmetic design rules for the DGP, with [140]
presenting results on the required number of fractional and integer bits. Additional results in
[140] presented the following UIB for the DGP algorithm

UIB := LdD2α2

2(ϵg − 2Dϵξ)α− 2(ϵg + LV ϵ2
z) − 1, (2.15)

where Ld := λmax(Hd) and LV := λmax(H). ϵg is the largest permissible constraint
satisfaction error, ϵz is the desired tolerance of the dual solution, and ϵξ is the error in
the dual gradient computation. D is the Upper Dual Bound (UDB), which is defined as
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D := ∥d∥2 where di := max{y∗
i , 1} and y∗ is the optimal dual vector. D can be estimated by

solving one of several optimization problems given in [138] or [131], and α is a user-defined
parameter to tune the convergence rate that can be calculated using the formula in [140].

2.6 Example systems

To numerically examine the theoretical results in Part II of this thesis, we will use the following
five example linear systems.

Schur-stable system

The first two example systems have the dynamics given by the Schur-stable discrete-time
system with four states and two inputs given in [88] with the state update equation

xk+1 =

⎡⎢⎢⎢⎢⎢⎣
0.7 −0.1 0.0 0.0
0.2 −0.5 0.1 0.0
0.0 0.1 0.1 0.0
0.5 0.0 0.5 0.5

⎤⎥⎥⎥⎥⎥⎦xk +

⎡⎢⎢⎢⎢⎢⎣
0.0 0.1
0.1 1.0
0.1 0.0
0.0 0.0

⎤⎥⎥⎥⎥⎥⎦uk.

The input of the systems is constrained to be |uk| ≤ 0.5, with a prediction horizon of N = 10.
The first system has cost matrices

Q = diag(10, 20, 30, 40), R = diag(10, 20), (2.16)

and the second system has cost matrices

Q = diag(100, 200, 300, 400), R = diag(0.001, 0.002). (2.17)

Inverted pendulum

The next example system is a linearized inverted pendulum described by the continuous-time
dynamics

ẋ =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0
3g
2l −b 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦x +

⎡⎢⎢⎢⎢⎢⎣
0
3
2l

0
1

⎤⎥⎥⎥⎥⎥⎦u,
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m1 m2 m10

b1

k1
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k2

b10

k10

F1 F2 F10

Figure 2.3: Configuration of the mass-spring-damper example system.

with g = 9.8067, b = 1, and l = 0.21. The system was discretized using a zero-order hold with
a sampling time of 0.02 s, resulting in an unstable discrete-time system. The CLQR problem
used the cost matrices Q = diag(1000, 1, 100, 1), R = 10, a prediction horizon of N = 10, and
input constraints |u| ≤ 10.

Distillation column

The next example system is a binary distillation column with 11 states and 3 inputs from the
IFAC control benchmarks [44, Problem 90-01]. The system was discretized into a Schur-stable
discrete-time system using a zero-order hold with a sampling time of 1.0 s (as done by the
authors of the benchmark in [123]). The CLQR problem used a prediction horizon of N = 100
and the cost matrices

Q = diag(10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110),

R = diag(10, 20, 30),

and the inputs were constrained to be

|u1| ≤ 2.5, |u2| ≤ 2.5, |u3| ≤ 0.30.

Mass-spring-damper

The final example system is a mass-spring-damper system from [97] where 10 masses are
coupled together by a spring and a damper in parallel, with a force input on each mass. A
schematic of the system can be seen in Figure 2.3, where for each mass i, mi is the mass, bi

and ki are the damping constant and spring constant, respectively, and Fi is the force input.
The state vector x contains the displacement of each mass from its nominal position, and the
input vector u contains the force inputs. The continuous-time system is discretized using a
zero-order hold with a sampling time of Ts = 0.1 s. The continuous-time cost matrices are

Qc =
[︄
10 0
0 20

]︄
⊗ I10, Rc = diag(100, 200, ..., 900, 1000),
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which are then discretized as discussed in Section 2.1.1 in order to make the cost of the
discrete-time problem equivalent to the cost of the continuous-time problem. This leads to
dense Q and R matrices along with a cross-term matrix S in the discrete-time problem. The
inputs and states of the system are constrained to be |ui| ≤ 1 and |xi| ≤ 0.2 respectively.

2.7 Conclusions

In this chapter, we provided an overview of the linear and nonlinear MPC problems that
we will use in Parts II and III of this thesis, respectively. We also surveyed the existing
implementations of linear MPC on FPGAs, and provided an overview of the key areas that
designers focused on and the design choices they made. From this, we can see that the
current trend in embedded implementations is towards the use of first-order methods such as
the FGM, DGP or ADMM instead of second-order methods due to the smaller computational
footprint of each algorithm iteration and reliance on only simple operations like matrix-vector
multiplication.

A key advantage to using first-order methods like the FGM and DGP is that there exist
upper iteration bounds, although not necessarily tight, for the solver that can guarantee
the problem is solved to within a specified tolerance by that iteration. We will examine
these iteration bounds more in Part II, where we will derive the pieces needed to create a
horizon-independent bound in Chapter 4 and then examine how the bound changes when a
preconditioner is applied in Chapter 6.
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Chapter 3

An introduction to block Toeplitz
matrices

Block Toeplitz matrices are block matrices that repeat the blocks from either the first block
row or first block column down their respective diagonal, forming the matrix

TN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T0 T−1 T−2 T−3 · · · T−N+2 T−N+1

T1 T0 T−1 T−2 · · · T−N+3 T−N+2

T2 T1 T0 T−1 · · · T−N+4 T−N+3

T3 T2 T1 T0 · · · T−N+5 T−N+4
...

...
...

...
. . .

...
...

TN−2 TN−3 TN−4 TN−5 . . . T0 T−1

TN−1 TN−2 TN−3 TN−4 . . . T1 T0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.1)

where Tj is the block with n rows and m columns on the jth block diagonal of TN . Block
Toeplitz matrices can be viewed as truncations of an infinite block matrix (denoted by bold
face T) by continuing the pattern down the diagonals and introducing new blocks as needed
in the first block row/column. If the infinite block Toeplitz matrix stops after N blocks on
the block rows/columns, the resulting finite-dimensional matrix is called a truncated block
Toeplitz matrix with N blocks (denoted by TN ).
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The blocks Tj in (3.1) can be arbitrary matrices with no structure, or they can also possess
a Toeplitz/block Toeplitz structure. If the blocks are also Toeplitz/block Toeplitz matrices,
then the entire matrix T is known as a block Toeplitz-Toeplitz block (BTTB) matrix, and
many of the properties/operations discussed in this chapter can be applied at the block level
as well as to the full matrix.

Since a block Toeplitz matrix is fully defined by just the blocks in its first block row and block
column, it can alternately be expressed as the block vector

T⃗N =
[︂
T−N+1 T−N+2 · · · T−1 T0 T1 · · · TN−2 TN−1

]︂
.

This vector representation can be used to efficiently store the matrix, making the storage
used grow linearly with the number of block diagonals instead of quadratically.

Another type of matrix closely related to the block Toeplitz matrix is the block circulant
matrix, where the blocks in the first column are repeated down their respective diagonal, and
then looped to the upper diagonal when the lower diagonal ends. This gives the matrix

CN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C0 C−1 C−2 C−3 · · · C2−N C1−N

C1−N C0 C−1 C−2 · · · C3−N C2−N

C2−N C1−N C0 C−1 · · · C4−N C3−N

C3−N C2−N C1−N C0 · · · C5−N C4−N

...
...

...
...

. . .
...

...

C−2 C−3 C−4 C−5
. . . C0 C−1

C−1 C−2 C−3 C−4 · · · C1−N C0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.2)

where C−j is the n×m block in the first row of the jth column. Similar to the block Toeplitz
matrix, a block circulant matrix can be expressed in block vector form using only its first row
as

C⃗N =
[︂
C0 C−1 · · · C2−N C1−N

]︂
.

Block Toeplitz and block circulant matrices appear in many applications in science and
engineering, as we will show in Section 3.1. This chapter summarizes the relevant properties
of block Toeplitz matrices we will use in the analysis of the LTI MPC problem in Part II.

3.1 Examples of block Toeplitz matrices

Before diving into the properties of block Toeplitz matrices, we will introduce five applications
where block Toeplitz matrices can be found.
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3.1.1 Queueing theory

The first application we show for a block Toeplitz matrix is in queueing theory and Markov
chains. This example is based on [25], where there is a set of k ≥ 2 servers, each with an
infinite-length first-in, first-out queue, and each performing the same operation requiring the
same amount of time (so all servers will start and end their operations at the same time
points). The arrival of customers to the servers is modelled using a Poisson process with the
rate λ, and when a new customer arrives they join the shortest queue.

The queue is modeled as a Markov chain with the relation π = Pπ, where π is the invariant
probability vector, and P is the transition probability matrix with elements pi,j representing
the probability that the overall number of customers in the queue changes from i to j. The
P matrix then takes the form

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

k⏟ ⏞⏞ ⏟
a0 . . . a0 0 0 0
a1 . . . a1 a0 0 0
a2 . . . a2 a1 a0 0
a3 . . . a3 a2 a1 a0
...

...
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ai is the probability that i customers arrive at a single time (defined as ai = λi

i! e−λ).
By splitting the matrix into blocks of size k−1 by k−1, P can be viewed as the block matrix

P =

⎡⎢⎢⎢⎢⎢⎣
B1 A0 0 0 0
B2 A1 A0 0 0
B3 A2 A1 A0 0
...

...
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎦ . (3.3)

The matrices with the structure of (3.3) are called M/G/1-type matrices, and have block
Toeplitz structure everywhere except the first block column.

A common problem is to find the probability πj of having j customers waiting to be served
as the time goes to infinity. This can be done in various ways, but we briefly present the
method from [25]. Finding the probability π can be done by solving the nonlinear equation

G =
∞∑︂

i=0
GiAi, (3.4)
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x[n] z−1 z−1

W0 W1 W2

y[n]

Figure 3.1: Block diagram of a 2nd order MIMO causal FIR filter. z−1 is a unit delay, which
delays the signal for 1 time step.

for G and then using Ramaswami’s formula as described in [25]. One possible way to solve
(3.4) is to reformulate it into the system

[︂
G G2 G3 · · ·

]︂
⎡⎢⎢⎢⎢⎢⎣

I −A1 −A0 0 0
−A2 I −A1 A0 0
−A3 −A2 I −A1 A0

...
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎦ =
[︂
A0 0 0 . . .

]︂
, (3.5)

which then contains a block Toeplitz matrix. The system (3.5) can then be solved using
methods that exploit the block Toeplitz structure of the coefficient matrix, such as cyclic
reduction [24, 25].

3.1.2 Signal processing

A large application of block Toeplitz matrices is causal Multiple-Input Multiple-Output
(MIMO) Finite Impulse Response (FIR) filters. An order k MIMO causal FIR filter takes a
vector signal x and computes the filter response y[n] at time n using the x vectors from times
n through n−k. The structure of a 2nd order filter can be seen in Figure 3.1. The equation
for a generalized order k filter is

y[n] =
k∑︂

j=0
Wjx[n− j], (3.6)

where Wj are n×m matrices containing the coefficients for filter tap j.

The FIR filter equation (3.6) can be converted into a lower-triangular banded block Toeplitz
matrix that represents the filter’s response to the sequence of inputs

(x[0], x[1], x[2], . . . ) .
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A filter of order k will have k bands below the diagonal. For example, the response of an
order 2 filter can be computed using the matrix-vector product⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y[0]
y[1]
y[2]
y[3]
y[4]

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W0 0 0 0 0 · · ·
W1 W0 0 0 0
W2 W1 W0 0 0
0 W2 W1 W0 0
0 0 W2 W1 W0
...

. . .
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0]
x[1]
x[2]
x[3]
x[4]

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.7)

The block Toeplitz structure of the filter response matrix can then be exploited to perform
analysis and design of the FIR filters, such as computing the mean square error [60].

3.1.3 Information theory

We next show an example from information theory — the vector Wide Sense Stationary
(WSS) process. A vector random process X⃗(t) is a vector WSS process with n elements
if its mean and autocorrelation functions are time-invariant — i.e. the mean of X(t) is the
constant vector µ⃗ and the autocorrelation function, representing the correlation of the signal
to a delayed copy of itself, is only a function of the difference in time between the signals.

The auto-correlation matrix RXX and the auto-covariance matrix KXX for a sequence of
samples from X⃗(t) both are block Toeplitz structured with

RXX :=E(XX∗)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R0 R−1 R−2 R−3 · · ·
R1 R0 R−1 R−2

R2 R1 R0 R−1

R3 R2 R1 R0
...

. . .
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

KXX :=E((X − µ⃗)(X − µ⃗)∗)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

K0 K−1 K−2 K−3 · · ·
K1 K0 K−1 K−2

K2 K1 K0 K−1

K3 K2 K1 K0
...

. . .
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Rj and Kj are the n× n matrices given by

Rj = E(XtX
∗
t+j), Kj = E(XtX

∗
t+j)− µ⃗µ⃗∗.

The WSS process can be combined with the model of the FIR filter from Section 3.1.2 to
analyze properties of Gaussian communications channels such as their capacity [41, 62] or
differential entropy and Minimum Mean Square Error [58], and can be used to design codes
for communication over Gaussian channels [63, 182].
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3.1.4 Control theory

The uses of block Toeplitz matrices in control theory are closely related to the MIMO filter
from Section 3.1.2. A MIMO Linear Time-Invariant (LTI) system can be written as an infinite
impulse response (IIR) filter (where the sum in (3.6) goes to infinity instead of k), which can
be represented by a non-banded block Toeplitz matrix similar to (3.7). In the control case,
we begin with a discrete-time LTI dynamical system

x+ = Ax + Bu, (3.8)

where x and u are the states and control inputs for the system, respectively. The state for
system (3.8) at time n can be expressed as the sum of all the previous inputs experienced by
the system, forming the summation

x[n] =
n∑︂

j=0
AjBu[j].

This summation can then be transformed into the following block Toeplitz matrix representing
the state evolution of the system over time⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[1]
x[2]
x[3]
x[4]
x[5]

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B 0 0 0 0 · · ·
AB B 0 0 0
A2B AB B 0 0
A3B A2B AB B 0
A4B A3B A2B AB B

...
. . .

. . .
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u[0]
u[1]
u[2]
u[3]
u[4]

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.9)

The matrix in (3.9) has found many uses in control analysis and design for linear systems,
since it can be used as a prediction matrix to predict the system states given a specific input
trajectory. For example, it can be used to perform stability analysis [169], identify transfer
function zeros [158], and design optimal controllers [73]. Block Toeplitz matrices can also be
found in the models used to learn the dynamics of a system from just the response information,
such as the Autoregressive Moving-Average (ARMA) [58] and ARMA-Markov models [174].

3.1.5 2D boundary value problems

Another common application area for block Toeplitz matrices to appear in is 2D boundary
value problems. As an example, we examine the 2D Poisson equation

− d2

dx2 u(x, y)− d2

dy2 u(x, y) = f(x, y), (x, y) ∈ Ω = [0, 1]× [0, 1], (3.10)
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Figure 3.2: 5-point stencil for point (xj , yk) overlaid on the mesh for a 2D boundary value
problem.

with Dirichlet boundary conditions from [35]. To solve (3.10), we overlay an n×n rectangular
mesh with equispaced points h = 1

n apart onto Ω. Using this mesh, we compute the second
centered difference at (xj , yk) in each direction to give the derivative estimates

d2

dx2 u(xj , yk) ≈ uj+1,k − 2uj,k + uj−1,k

h2 ,
d2

dy2 u(xj , yk) ≈ uj,k+1 − 2uj,k + uj,k−1
h2 , (3.11)

with uj,k := u(xj , yk). Plugging the derivative estimates (3.11) into (3.10) and simplifying
then gives

− uj+1,k + uj,k+1 − 4uj,k + uj−1,k + uj,k−1
h2 = f(xj , yk), for j, k = 1, . . . , n− 1. (3.12)

This formulation is known as the 5-point stencil, and can be seen overlaid on top of the mesh
in Figure 3.2.

To solve the discretized boundary value problem, we form a linear system using the 5-point
stencil (3.12) and the boundary conditions

u0,k = un,k = uj,0 = un,0 = 0 for j, k = 0, . . . , n.

By defining the vector of unknowns as

ū :=
[︂
u1,1, . . . , u1,n, u2,1, . . . , un−2,n−1, un−1,1, . . . , un−1,n−1

]︂′
,
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the linear system for the 5-point stencil can be written as Aū = h2f̄ with

A :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B −I 0 0 . . .

−I B −I 0
0 −I B −I

0 0 −I B
...

. . .
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.13)

f̄ the vector of right-hand sides from (3.12), I the identity matrix, and

B :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0 0 . . .

−1 4 −1 0
0 −1 4 −1
0 0 −1 4
...

. . .
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
an (n− 1)× (n− 1) matrix. Note that A is a symmetric block tridiagonal and block Toeplitz
matrix, composed of the blocks B and I, which are Toeplitz as well — so A is a BTTB matrix.

3.2 Block Toeplitz matrices and their matrix symbols

Now that we have shown how block Toeplitz matrices appear in various applications, we move
on to discussing their properties.

We will be working in the sequence space l2, which is the Hilbert space of square summable
sequences — i.e. for a sequence of values {xn}n∈N, ∑︁n|xn|2 <∞ holds. We define the set of
complex numbers on the unit circle as

T := {z ∈ C : |z| = 1}.

The functions we use are in the Banach space L∞
2π — which is the space of matrix-valued

essentially bounded functions that are 2π-periodic (i.e. the domain of the functions is T), and
that have a finite Frobenius norm almost everywhere on that domain, i.e.

T (·) ∈ L∞
2π ⇔ inf{y ∈ R : ∥T (z)∥F < y for almost every z ∈ T} < +∞.

We also define a restricted space of functions called C̃2π, which is the space of continuous
functions inside L∞

2π. Note that while we restrict our discussion to functions in L∞
2π, many of

the properties presented in this chapter also hold for 2π-periodic matrix symbols in L2 or L1

with some technical changes.



3.2 Block Toeplitz matrices and their matrix symbols 75

The representation of the 2π-continuous functions we use in this thesis will take a complex
number on the unit circle as their argument (their domain is T), represented by z. An alternate
representation used in many works is to instead have the function take a real parameter θ

and operate over the interval θ ∈ (−π, π) (or alternately θ ∈ (0, 2π)), and have the term eiθ

instead of z.

One of the key ideas for block Toeplitz matrices is that matrices like (3.1) are finite dimensional
truncations of the infinite dimensional matrix T. This allows us to think of block Toeplitz
matrices as if they were a bounded linear operator on the sequence space l2.

3.2.1 The matrix symbol

To define the matrix symbol of a block Toeplitz matrix T, we first form the sequence {Tn}n∈Z

using the blocks of T. The matrix symbol T (·) (which we denote using calligraphic script)
for the block Toeplitz matrix T is then the function T ∈ L∞

2π that has the sequence {Tn}n∈Z

as its Fourier coefficients. This means that the blocks Tn can be computed from the matrix
symbol T (·) using

Tn = 1
2π

∫︂ 2π

0
T (eiθ)e−inθ dθ, ∀n ∈ Z. (3.14)

The block Toeplitz matrix T then has a bounded operator on l2 if and only if T and {Tn}n∈Z

are related by the Fourier transform (3.14).

The matrix symbol for the block Toeplitz matrix is also known as the generating symbol of
the matrix, since relation (3.14) can be used to construct the block Toeplitz matrix from
just the matrix symbol. To represent this relation, we introduce the Toeplitz matrix operator
T(T ) := T (which we denote using typewriter script) to provide a mapping from the matrix
symbol to its associated infinite-dimensional block Toeplitz matrix.

The matrix symbol can have a special meaning in some applications, and even represent
another physical property. For example, the matrix symbol of the autocorrelation matrix
RXX in Section 3.1.3 is the power spectral density function for the WSS process X(·), so it
will describe how the power in the random process is distributed over the frequency spectrum.

3.2.2 Forming the matrix symbol

Now that we have defined what the matrix symbol is, we show two ways to form the matrix
symbol given an existing block Toeplitz matrix. Other types of functions in L∞

2π can be matrix
symbols as well, but the two cases in this section usually are the easiest to identify the symbol
for, since it is in general hard to identify functions from their Fourier coefficients.
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Banded block Toeplitz matrices

In the case when the matrix T is banded (i.e. there is an N such that Tj = 0n×m for all
|j| > N), the matrix symbol can be formed as the trigonometric polynomial

T (z) =
N∑︂

j=−N

Tjzj , ∀z ∈ T, (3.15)

where the blocks of T are used as the coefficients.

Wiener class symbols

A function is in the Wiener class if and only if it is in C̃2π and its Fourier coefficients are
absolutely summable. Since the blocks of T are the Fourier coefficients of the matrix symbol,
for the symbol to be in the Wiener class, the sequence of blocks {Tn}n∈Z must be absolutely
summable. This condition can be expressed as

∞∑︂
i=−∞

|[Ti]r,s| <∞, 0 ≤ r ≤ n, 0 ≤ s ≤ m,

which means the summation over every element of the blocks Tn is finite for each element.

If the sequence of blocks {Tn}n∈Z is absolutely summable, then the matrix symbol for T can
be formed from the trigonometric polynomial using the blocks as the coefficients, i.e.

T (z) =
∞∑︂

j=−∞
Tjzj , ∀z ∈ T.

3.2.3 Circulant matrices

Like block Toeplitz matrices, we can also associate a continuous and 2π-periodic function with
a block circulant matrix as its matrix symbol. The relation between the truncated circulant
matrix CN with N blocks that are of size n×m and its matrix symbol C : T→ Cn×m is

CN := (VN ⊗ In)C̃(VN ⊗ Im)∗, (3.16)

with
C̃ := diag

(︃
C(0), C

(︂
e− 2π

N
i
)︂

, . . . , C
(︃

e− 2π(N−1)
N

i
)︃)︃
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a block diagonal matrix containing N equispaced samples of C(·) around the unit circle and
VN the unitary Fourier matrix with elements

[VN ]j,k := 1√
N

e− 2π(j−1)(k−1)
N

i, 1 ≤ j, k ≤ N.

Essentially, (3.16) uses the Fourier matrix to diagonalize the block circulant matrix. The
resulting diagonal matrix is then composed of the matrices created by sampling the matrix
symbol at N equally-spaced points on the unit circle.

3.3 Structure preserving operations

An important consideration when using structured matrices is how the structure changes as
operations are performed on the matrix. For a block Toeplitz matrix there is an additional
question: how does performing an operation on or between two block Toeplitz matrices affect
the matrix symbol?

For simple operations, the block Toeplitz structure is preserved, and the matrix symbol is
modified by performing the same operation on it. This can be seen in Lemma 3.3.1.

Lemma 3.3.1. Let F and G be block Toeplitz matrices with the matrix symbols F ,G ∈ C̃2π :
T→ Cm×n, respectively. Then

1. T(F∗) = (T(F))∗ (i.e. F∗ is block Toeplitz with the matrix symbol F∗),

2. T(αF + βG) = αT(F) + βT(G).

Proof. See [59, Lemma 4.2].

Another common operation that is performed between two or more matrices is matrix-matrix
multiplication. Unfortunately, the multiplication of two block Toeplitz matrices is not in
general block Toeplitz, as can be seen in Example 3.3.1.

Example 3.3.1. We can construct an example showing when the multiplication of two block
Toeplitz matrices does not result in a block Toeplitz matrix by using a block size of m = n = 1
as follows [︄

1 2
2 1

]︄ [︄
1 2
3 1

]︄
=
[︄
7 4
5 5

]︄
.
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There are some special cases when the product of block Toeplitz matrices will be block
Toeplitz as well. One such case is that of lower and upper triangular block Toeplitz matrices,
which each form a matrix subalgebra that is closed over matrix multiplication. This means
that multiplying two lower triangular block Toeplitz matrices together will result in a lower
triangular block Toeplitz matrix (and similarly for upper triangular block Toeplitz matrices).

Example 3.3.2. We start with two lower triangular block Toeplitz matrices with compatible
block sizes

F :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0 0 0 0
F1 F0 0 0
F2 F1 F0 0
F3 F2 F1 F0
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, G :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0 0 0 0
G1 G0 0 0
G2 G1 G0 0
G3 G2 G1 G0
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We then form the product

FG =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0 0 0 0
F1 F0 0 0
F2 F1 F0 0
F3 F2 F1 F0
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0 0 0 0
G1 G0 0 0
G2 G1 G0 0
G3 G2 G1 G0
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0G0 0 0 0
F1G0 + F0G1 F0G0 0 0

F2G0 + F1G1 + F0G2 F1G0 + F0G1 F0G0 0
F3G0 + F2G1 + F1G2 + F0G3 F2G0 + F1G1 + F0G2 F1G0 + F0G1 F0G0

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We can see from this that the structure of zeros in each row make the entries constant down
each diagonal, and hence a block Toeplitz matrix. In fact, the entries in diagonal k of the
product FG can be expressed as a finite summation of k + 1 terms of the form

[FG]k =
k∑︂

j=0
Fk−jGj . (3.17)

Example 3.3.2 shows that the truncated lower triangular block Toeplitz matrix keeps the
block Toeplitz structure during multiplication, but that does not answer the question of what
happens to the matrix symbol during that operation. To answer that we need Lemma 3.3.2.
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Lemma 3.3.2. Let F and G be lower triangular block Toeplitz matrices with matrix symbols
F ∈ C̃2π : T → Ck×m and G ∈ C̃2π : T → Cm×n in the Wiener class, respectively, that are
given by

F :=
∞∑︂

l=0
Flz

l, G :=
∞∑︂

h=0
Ghzh, ∀z ∈ T.

Then
T(FG) = T(F)T(G).

Proof. We begin by examining the Fourier transform of the product FG,

1
2π

∫︂ 2π

0
F(eθi)G(eθi)e−kθi dθ.

Plugging in the infinite series definition of F and G, we transform the integral into

1
2π

∫︂ 2π

0

(︄ ∞∑︂
l=0

Fle
lθi

)︄(︄ ∞∑︂
h=0

Ghehθi

)︄
e−kθi dθ

We then extract the summations from the integral and combine the complex exponentials,
giving

∞∑︂
l=0

Fl

(︄ ∞∑︂
h=0

Gh

(︃ 1
2π

∫︂ 2π

0
e(l+h)θie−kθi dθ

)︃)︄
. (3.18)

The integral term now can be viewed as generating the Fourier coefficients for the function
H(z) = zl+h, which has the Fourier coefficients defined by the indicator function δk for when
k = l + h,

Hk(α) = δk(α) =

⎧⎨⎩1 If k = α,

0 Otherwise,

which then makes (3.18) become

∞∑︂
l=0

Fl

(︄ ∞∑︂
h=0

Ghδk(l + h)
)︄

. (3.19)

We can now use the nature of the indicator function to transform the summation bounds.
First, we examine the outer summation over Fl and note that it is impossible for l to be
greater than k since the internal summation always uses positive h and l + h must sum to k

— making the upper bound for the outer summation become k. Next we look at the inner
summation over Gh and see that it will always generate a single term for every value of the
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outer summation (since only one value of h will make k = l + h true under these conditions),
and that term will be at k − l, transforming (3.19) into

k∑︂
l=0

FlGk−l. (3.20)

Finally, we note that the summation (3.20) generates the same terms as summation (3.17)
from Example 3.3.2, which describes the value of the blocks in the lower triangular block
Toeplitz matrix-matrix multiplication. Therefore, we have shown that the matrix symbol
formed by the product FG will generate the lower triangular block Toeplitz matrix given by
the product FG.

Example 3.3.2 and Lemma 3.3.2 showed that the product of the multiplication of two lower
triangular block Toeplitz matrices with blocks that are absolutely summable and matrix
symbols in the Wiener class will be block Toeplitz with its matrix symbol simply the product
of the two original symbols. Similar results to Example 3.3.2 and Lemma 3.3.2 can be derived
for upper triangular block Toeplitz matrices as well.

We now look more generally at what happens to the matrix symbol during matrix-matrix
multiplication of two block Toeplitz matrices. It turns out that the infinite-dimensional
matrix generated by the product of two matrix symbols of compatible dimensions is known
to be composed of two distinct terms:

1. the product of the infinite-dimensional block Toeplitz matrices generated by each
individual symbol, and

2. the product of the infinite-dimensional block Hankel matrices generated by each symbol,

which we describe formally in Lemma 3.3.3.

Lemma 3.3.3. Let F ∈ L∞
2π : T → Ck×m and G ∈ L∞

2π : T → Cm×n be the matrix symbols
for the infinite block Toeplitz matrices F and G, respectively. Then

T(FG) = T(F)T(G) + H(F)H̃(G),

where H(·) and H̃(·) are operators that generate block Hankel matrices as follows

H(F) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 F3 F4 · · ·
F2 F3 F4 · · · · · ·
F3 F4 · · · · · · · · ·
F4 · · · · · · · · · · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H̃(G) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

G−1 G−2 G−3 G−4 · · ·
G−2 G−3 G−4 · · · · · ·
G−3 G−4 · · · · · · · · ·
G−4 · · · · · · · · · · · ·

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Proof. Equation (6.2) in Section 6.1 of [29].

We can now apply Lemma 3.3.3 to different cases and make some observations about the
multiplication of infinite-dimensional block Toeplitz matrices. First, note that it presents an
alternative proof for Lemma 3.3.2, since if both F and G are lower triangular block Toeplitz
matrices, then the Hankel matrix H̃(G) will be 0, giving T(FG) = T(F)T(G). Second, we can
derive the following result for multiplication involving both an upper and lower triangular
matrix.

Corollary 3.3.1. Let F ∈ L∞
2π : T→ Ck×m, G ∈ L∞

2π : T→ Cm×n and H ∈ L∞
2π : T→ Cm×m

be the matrix symbols for the infinite block Toeplitz matrices F, G, and H, respectively. If F
is an upper triangular block Toeplitz matrix and G is a lower triangular block Toeplitz matrix,
then

T(FHG) = T(F)T(H)T(G).

The final operation we examine is the inverse of a block Toeplitz matrix. In this case, it
is known that for a Hermitian matrix the inverse will also be block Toeplitz, with the new
matrix symbol the inverse of the original matrix symbol (as described in Lemma 3.3.4).

Lemma 3.3.4. Let F be a Hermitian block Toeplitz matrix with the Hermitian matrix symbol
F ∈ C̃2π : T→ Cm×m. If 0 /∈ [inf F , supF ], then F−1 is block Toeplitz with the matrix symbol
(F(·))−1.

Proof. See [59, Theorem 6.4]

3.4 Spectral properties

One of the most used concepts in Toeplitz and block Toeplitz matrix theory is the relationship
of the eigenvalue/singular value spectrum between the truncated block Toeplitz matrix and
the matrix symbol. In this section, we will review some of the ideas and results in that
relationship.

To do this, we first need to define notation that describes the minimum and maximum of the
spectrum for both the matrix symbol T and the truncated/infinite matrix TN /T. We let
λ1 ≤ · · · ≤ λk be the eigenvalues of a matrix in sorted order, with the set of all eigenvalues
denoted by λ, and 0 ≤ σk ≤ · · · ≤ σ1 be the singular values of a matrix in sorted order, with
the set of all singular values denoted by σ. We are then able to define the extremal values of
the spectrum of the matrix symbol as follows.
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Definition 3.4.1. Let T (·) ∈ L∞
2π be a function that maps T→ Cm×n. With k = min{m, n},

the extreme singular values of T (·) are

σmin(T ) := ess sup{y ∈ R : σk(T (z)) > y for almost every z ∈ T},

σmax(T ) := ess inf{y ∈ R : σ1(T (z)) < y for almost every z ∈ T}.

If T (·) is a Hermitian matrix with k = m = n, then the extreme eigenvalues of T (·) are

λmin(T ) := ess sup{y ∈ R : λ1(T (z)) > y for almost every z ∈ T},

λmax(T ) := ess inf{y ∈ R : λk(T (z)) < y for almost every z ∈ T},

and the condition number of T (·) is

κ(T ) := λmax(T )
λmin(T ) .

Definition 3.4.1 roughly means that the extremes of the spectrum for the matrix symbol
are just the most extreme values found when computing the singular value/eigenvalue
decomposition of the matrix symbol at all points on the unit circle excluding sets of measure
zero.

For the infinite matrix T, we will define its extremal eigenvalues in terms of its truncation as
the size of the matrix grows towards infinity.

Definition 3.4.2. Let T be Hermitian and let TN ∈ Rk×k be its truncation after N blocks
with k eigenvalues. If the limits exist, we then define the extremal eigenvalues of T as

λmin(T) := lim
N→∞

λ1(TN ), λmax(T) := lim
N→∞

λk(TN ).

A direct consequence of Definition 3.4.2 is that the truncated matrices will have their spectrum
bounded by the spectrum of both the larger truncations and of the infinite matrix, as given
in Lemma 3.4.1.

Lemma 3.4.1. Let T be a Hermitian block Toeplitz matrix and let {TN}N∈N+ be the set of
its truncated matrices. Then

λmin(T) ≤ λmin(TN+1) ≤ λmin(TN ), λmax(TN ) ≤ λmax(TN+1) ≤ λmax(T) ∀N ∈ N+.

Proof. This follows from applying the Cauchy interlacing theorem for eigenvalues to the limit
sequence in Definition 3.4.2.

An additional consequence of Lemma 3.4.1 is that every truncation of a positive definite block
Toeplitz matrix will also be positive definite.
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3.4.1 Spectrum of a block circulant matrix

We now examine the relationship between the singular value and eigenvalue spectra of a block
circulant matrix and its matrix symbol. In the matrix symbol (3.16), we can see the start
of a Singular Value Decomposition (SVD). As a refresher, the SVD for the n × m matrix
A with rank r is A = UlΣUr where Ul ∈ Cn×n and Ur ∈ Cm×m are unitary matrices (i.e.
UrU∗

r = U∗
r Ur = I) containing the left and right singular vectors, respectively, and Σ ∈ Rn×m

is a rectangular matrix containing the r singular values of A on its main diagonal and zeros
in the other entries.

For a scalar circulant matrix (n = m = 1), the relation (3.16) is the SVD of the truncated
circulant matrix, with the singular vectors given by the Fourier matrix and the singular
values given by C̃. This means that the singular values for the scalar case can be computed
by sampling the matrix symbol at N equispaced points on the unit circle.

In the rectangular block case, the matrix symbol gives matrices in Cn×m, so (3.16) no longer
forms the SVD directly. Instead, we can replace C̃ with its SVD to create an SVD for
the original block circulant matrix using the singular values of the matrix symbol. This
means that we can exactly compute the spectrum of a truncated block circulant matrix
CN using the matrix symbol by computing the singular values of the matrix symbol at N

equispaced locations on the unit circle. Put formally, for the matrix symbol C that gives
matrices with rank r, the singular values for the truncated block circulant matrix CN are
given in Theorem 3.4.1.

Theorem 3.4.1. Let CN be a truncated block circulant matrix with N blocks of size n×m.
If C : T → Cn×m is the matrix symbol for CN and r is the maximal rank of the matrices in
the range of C(·), then the singular values of CN are

σ(CN ) =
N−1⋃︂
j=0

r⋃︂
k=0

σk(C(ωj)), ωj := e− 2πj
N

i. (3.21)

Proof. Recall from Section 3.2.3 that a block circulant matrix can be partially-diagonalized
using the Fourier matrix and samples from its matrix symbol into the form given in (3.16).
We then introduce the Singular Value Decomposition (SVD) of the matrix symbol

C(ω) := Ul(ω)Σ(ω)U∗
r (ω), (3.22)
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where Ul(ω) ∈ Cn×n and Ur(ω) ∈ Cm×m are unitary matrices containing the left and right
singular vectors, respectively, and Σ(ω) ∈ Rn×m is the rectangular matrix containing the r

singular values of C(ω). Substituting the SVD (3.22) into the matrix symbol (3.16) in place
of C̃, we get

CN = (VN ⊗ In) diag1≤j≤N (Ul(ωj)) diag1≤j≤N (Σ(ωj)) diag1≤j≤N (U∗
r (ωj))(VN ⊗ Im)∗, (3.23)

where ωj are the N equally-spaced samples on the unit circle

ωj := e− 2πj
N

i, 0 ≤ j ≤ N − 1.

Note that the products
(VN ⊗ In) diag1≤j≤N (Ul(ωj)) (3.24)

and
diag1≤j≤N (U∗

r (ωj))(VN ⊗ Im)∗ (3.25)

produce unitary matrices, since the product of two unitary matrices is unitary. This means
that we can interpret (3.23) as an SVD with the left singular vectors given by (3.24), the
right singular vectors given by (3.25), and the singular values given by

diag1≤j≤N (Σ(ωj)).

We can then see that the singular values of the circulant matrix CN are the singular values
of the N samples of the matrix symbol that are used to form it, giving (3.21).

3.4.2 Spectrum of a block Toeplitz matrix

Unlike a block circulant matrix, the eigenvalues and singular values of a block Toeplitz matrix
cannot in general be known exactly outside of some special cases, such as block-tridiagonal
matrices. Instead, most of the information available about the spectrum is in the form of
asymptotic bounds on the eigenvalues and singular values.

Singular values

We begin by examining the singular values of a rectangular block Toeplitz matrix. After
seeing that the eigenvalues of a circulant matrix can be related to the eigenvalues of its
matrix symbol, it is natural to ask how we can relate the spectrum of the block Toeplitz
matrices to the spectrum of their matrix symbols.
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In the case of singular values, we cannot use the matrix symbol to fully bound the spectrum of
the matrix in general because we cannot use the smallest singular value of the matrix symbol
as the lower bound, as we show in Example 3.4.1.

Example 3.4.1. We can construct an example where σmin(TN ) < σmin(T ) as follows. We
let n = m = 2 and define the function

T (z) =
[︄
z 0
0 z

]︄
, z ∈ T,

as the matrix symbol for the block Toeplitz matrix of size 2N × 2N with N blocks

TN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

02×2 I2×2 02×2

02×2 I2×2
. . .

02×2
. . . 02×2
. . . I2×2

02×2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

When we analyze the singular values of T , we can see that its singular values are a constant
value of

√
2 for all z ∈ T (so σmax(T ) = σmin(T ) =

√
2). Inspection of TN shows that TN has

rank 2N − 2, so it will have 2 singular values at 0. Therefore, σmin(TN ) < σmin(T ) for this
matrix, and we cannot use the matrix symbol as a lower bound for the singular values.

We can however use the matrix symbol to bound the largest singular value of the block
Toeplitz matrix, as shown in Lemma 3.4.2.

Lemma 3.4.2. If {Tn}n∈N+ is the set of truncated block Toeplitz matrices with the symbol
T ∈ L∞

2π, then
σmax(Tn) ≤ σmax(T ) ∀n ∈ N+.

Proof. See [168, Theorem 4.1].

Note that this bound also holds for the truncated matrices, so all sizes of the truncated matrix
will have their largest singular value bounded by the largest singular value of the associated
matrix symbol.
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Eigenvalues

For analyzing the eigenvalues of a block Toeplitz matrix, we focus on Hermitian matrices and
show that the eigenvalue spectrum of the block Toeplitz matrix (and its truncations) can be
bounded using the largest and smallest eigenvalues of the associated matrix symbol, as in
Lemma 3.4.3.

Lemma 3.4.3. Let T ∈ L∞
2π : T → Cn×n be Hermitian and the matrix symbol for the

Hermitian block Toeplitz matrix T with truncations {TN}N∈N+. Then,

λmin(T ) ≤ λmin(T) ≤ λmin(TN ) ≤ λmax(TN ) ≤ λmax(T) ≤ λmax(T ).

Proof. See [124, Section 2] and Lemma 3.4.1.

Corollary 3.4.1. Let T ∈ L∞
2π : T → Cn×n be Hermitian and the matrix symbol for the

Hermitian block Toeplitz matrix T. If 0 /∈ [λmin(T ), λmax(T )], then T and its truncations
{TN}N∈N+ are positive definite matrices.

3.4.3 Szegö’s limit theorem

Perhaps the most well known theoretical result in the study of the spectrum of Toeplitz/block
Toeplitz matrices is the Szegö limit theorem. This theorem was first developed in 1915
by Szegö in his work [167] for the non-block case, and then subsequently extended to the
block Toeplitz case by many authors, including [59, 125] for Hermitian matrices and [168] for
rectangular matrices. The Szegö limit theorem for Hermitian block Toeplitz matrices is given
in Theorem 3.4.2.

Theorem 3.4.2 (Szegö’s limit theorem for Hermitian block Toeplitz matrices [125]). Let
T ∈ L∞

2π be an n×n Hermitian function and the matrix symbol for the block Toeplitz matrix
TN with N blocks. Then

lim
N→∞

1
nN

nN∑︂
k=0

g(λk(TN )) = 1
2π

∫︂ 2π

0

1
n

n∑︂
k=0

g(λk(T (ω))) dω (3.26)

for all test functions g(·) continuous on the interval [λmin(T ), λmax(T )].

Proof. [125, Theorem 3.3]

Overall, the Szegö limit theorem as given in Theorem 3.4.2 is a beautiful piece of machinery
for analyzing block Toeplitz matrices. Essentially, the Szegö limit theorem says that as
the truncated block Toeplitz matrix approaches infinite size, the arithmetic mean of its
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eigenvalues (or the function g(·) of them) will approach the arithmetic mean of the eigenvalues
of the matrix symbol (or the function g(·) of them). Note that for the Hermitian case in
Theorem 3.4.2, when g(λ) := λ this is equivalent to saying that the scaled traces of the
truncated block Toeplitz matrix converge to the scaled integral over the trace of the matrix
symbol (since the trace is the sum of the eigenvalues) as the matrix size grows to infinity.

There are a few technicalities in Theorem 3.4.2 though, namely it only applies to Hermitian
block Toeplitz matrices and the function g(·) used on the eigenvalues must be continuous on
the interval [λmin(T ), λmax(T )]. This interval can be roughly thought of as spanning between
the smallest eigenvalue of T (·) and the largest eigenvalue of T (·) that exist anywhere on the
unit circle while ignoring outliers on a set of zero measure.

The Szegö limit theorem forms the basis for many other relations between the truncated
matrices and the matrix symbol through various choices of the function g(·), such as relating
the matrix determinant. These relations can then be exploited in various fields to determine
quantities in terms of the matrix symbol instead of the truncated matrix — such as computing
the Minimum Mean Square Error (MMSE) or geometric MMSE of a linear predictor in
information theory [57, 61].

3.5 Conclusions

In this chapter, we presented an overview of block Toeplitz matrices and some of their
associated properties in preparation for their extensive use in Part II. We examined when
operations involving block Toeplitz matrices will result in block Toeplitz matrices, showing
that the basic operations of addition/transpose will always produce one while matrix
multiplication only produces one in special cases. We then introduced the idea of the matrix
symbol of a block Toeplitz matrix, and showed how the extrema of the symbol’s spectrum can
be used as bounds on the extrema of the spectrum of the truncated block Toeplitz matrices.
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Part II

Toeplitz Operators in Linear MPC





Chapter 4

Spectral properties for the condensed
problem†

The spectrum and condition number of the condensed Hessian from (2.7) is an important
factor in the convergence and implementation of many first-order methods for solving the
CLQR problem. In this chapter, we derive some spectral properties (i.e. bounds on the
largest/smallest eigenvalue and the condition number) of the matrices used in the CLQR
problem, with a focus on the primal and dual condensed Hessians. These spectral properties
are horizon-independent and easily computable using the system transfer function and cost
matrices. The results in this chapter will provide a grounding for the analysis and design
methods we will present in Chapters 5, 6, and 7.

This chapter begins with the analysis of the prediction matrix Γc in Section 4.1. Those
results are then used in Section 4.2 to analyze the condensed Hessian and derive its spectral
properties. Next we examine the condensed constraint matrix in Section 4.3, and then examine
the dual condensed Hessian in Section 4.4.

†Some of the material presented in this chapter is contained in the following work:
I. McInerney, E. C. Kerrigan, and G. A. Constantinides. Horizon-independent preconditioner design for linear
predictive control. IEEE Transactions on Automatic Control, 2022. doi: 10.1109/TAC.2022.3145657. (in
press). ©2022 IEEE.
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4.1 System prediction matrix

We start by analyzing the prediction matrix Γc from the numerically robust CLQR
formulation (2.10) and note that its diagonals are constant blocks, which means that Γc

is a block Toeplitz matrix (and is actually the same one that is given in the control theory
example in Section 3.1.4). As we discussed in Chapter 3, finite-dimensional block Toeplitz
matrices with blocks of size m× n can be viewed as the truncation of an infinite-dimensional
block Toeplitz matrix by extending the block pattern, and these can then be related to a
matrix-valued function in L∞

2π, called the matrix symbol, that maps T→ Cm×n.

As discussed in Section 3.2.1, the blocks on the diagonals of the matrix give the spectral
coefficients of the matrix symbol. This means that one possible representation of the symbol
is as a Fourier series with the coefficients given by the matrix blocks. For the prediction
matrix Γ in the condensed CLQR formulation (2.7), the Fourier series that only uses the
blocks in the horizon is given by

N−1∑︂
i=0

AiBz−i, ∀z ∈ T.

As the horizon length increases, this series is only guaranteed to converge to a finite matrix
symbol when the system G with state-space matrices A and B is Schur-stable.

To form a convergent Fourier series no matter the system, we use the numerically robust
CLQR formulation from Section 2.3.2 to introduce a stabilizing linear state-feedback controller
uk = −Kxk + vk to the prediction. For systems where the pair (A, B) is stabilizable, the
prestabilizing controller leads to the prediction matrix Γc having a convergent Fourier series
and the finite matrix symbol given in Lemma 4.1.1.

Lemma 4.1.1. Let the pair (A, B) be stabilizable and K ∈ Rm×n be a linear state-feedback
control matrix used to form the prestabilized system (2.9). The prediction matrix Γc then has
the matrix symbol PΓc ∈ C̃2π with

PΓc(z) := z(zI − (A−BK))−1B = zGc(z), ∀z ∈ T,

where Gc(·) is the transfer function matrix for the discrete-time system Gc.

Proof. The matrix symbol for the block Toeplitz matrix Γc is derived using the infinite-
dimensional extension of Γc, called Γc. The blocks that make up Γc can be extrapolated from
(2.11) to

[Γc]i :=

⎧⎨⎩0 if i < 0,

(A−BK)iB if i ≥ 0,
(4.1)
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where i is the number of the block diagonal of the matrix, with i = 0 being the main diagonal
and positive i below the main diagonal. A possible way to form the matrix symbol of a block
Toeplitz matrix is to define it as the trigonometric polynomial with the blocks of the matrix
as coefficients [59, §4.3]. Doing that for Γc uses the blocks (4.1) as the coefficients to form
the trigonometric polynomial

∞∑︂
i=0

z−i(A−BK)iB. (4.2)

The constant B matrix can be factored from the summation, giving(︄ ∞∑︂
i=0

(A−BK)iz−i

)︄
B.

Since K was designed to make (A−BK) Schur-stable, the summation becomes a convergent
Neumann series that converges to z(zI − (A−BK))−1 [141, §3.4]. With the B matrix right-
multiplying the summation, the result is the transfer function matrix for the time-shifted
discrete-time system zGc(z), giving the matrix symbol in the lemma. Finally, note that the
coefficients in the sum (4.2) are absolutely summable, so PΓc is in the Wiener class, meaning
that PΓc ∈ L∞ and is continuous and 2π-periodic, leading to PΓc ∈ C̃2π.

It is tempting to only apply the stabilizing controller K after the horizon, like the CLQR
stability theory in [114] does, but this will cause Γc to have AiB in the upper-left N × N

block submatrix and (A − BK)iB in in the remaining part, breaking the block Toeplitz
structure.

At this point, there is no restriction on the type of linear state-feedback controller used to
prestabilize the system — any controller that results in a Schur-stable closed-loop system can
be used. A convenient choice for K is the infinite-horizon LQR controller designed using the
cost matrices in (2.2a) with P chosen to be the solution to the DARE (2.3) as described in
Section 2.1.1.

If the system G is Schur-stable to begin with, then there is no need for a pre-stabilizing
controller K and the matrices Γ and Γc can be the same. The matrix symbol for Γc can then
be simplified as shown in Corollary 4.1.1.

Corollary 4.1.1. If the system G is Schur-stable, then with K = 0 the prediction matrix Γ
has a convergent Fourier series, producing the matrix symbol PΓ ∈ C̃2π with

PΓ(z) := z(zI −A)−1B = zG(z), ∀z ∈ T,

where G(·) is the transfer function matrix for the system G.
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One of the useful properties of block Toeplitz matrices is the relation between the spectrum
of the matrix (and its finite-dimensional truncations) and the spectrum of its matrix symbol
that we discussed in Section 3.4. While we showed in Example 3.4.1 that it is hard to bound
the lower singular value of an arbitrary block Toeplitz matrix, we can actually find such a
bound for the prediction matrix. That means we can find a bound for all the singular values of
the prediction matrix, and also estimate their locations using the matrix symbol. Specifically,
we can say that the distribution of the spectrum of the matrix symbol evaluated on T is the
same as the distribution of the spectrum for Tn as n → ∞, and the spectrum of Tn will
always be contained in the spectrum of its symbol. This means that we can utilize PΓc to
find the distribution of the singular values of Γc and bound them.

Proposition 4.1.1. Let Gc be the prestabilized Schur-stable system predicted over a horizon
of length N , then the following are true:

(a) σmin(Gc) ≤ σ(Γc) ≤ ∥Gc∥H∞

(b) lim
N→∞

κ(ΓcN ) = κ(Gc)

(c) σ(ΓcN ) ≈ ⋃︁ω∈Ω σ(Gc(ejω))

with Ω :=
{︂

ω : ω = −π
2 + 2π

N i, i ∈ [0, 1, . . . , N − 1]
}︂

Proof. Γc is lower-triangular, so the matrix Γ∗
cΓc is also block Toeplitz with the matrix symbol

G∗
cGc ∈ C̃2π [59, Lemma 4.5] since z∗z = 1 for z ∈ T.

(a) We can directly upper bound the singular values of Γc and its truncations using its
matrix symbol as described in Lemma 3.4.2. Then note that the H∞ norm of a system
is its largest singular value, giving the upper bound.

To lower bound the singular values, we use the fact that the product Γ∗
cΓc is block

Toeplitz with its symbol in C̃2π (as mentioned at the start of the proof). This means
that we can bound the eigenvalues of Γ∗

cΓc using Lemma 3.4.3 and say

λmin(G∗
cGc) ≤ λmin(Γ∗

cΓc) ≤ λmax(Γ∗
cΓc) ≤ λmax(G∗

cGc). (4.3)

Since we only require the lower bound, we focus on that portion of (4.3) and apply the
knowledge that λ(Γ∗

cΓc) = σ(Γc)2 to find

σmin(Gc)2 ≤ σmin(Γc)2.

Since singular values are always positive, we can then take the square root of both sides
and get the final inequality

σmin(Gc) ≤ σmin(Γc).
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(b) Taking the limit of the condition number as N →∞ gives:

lim
N→∞

κ(ΓcN ) = lim
N→∞

σmax(ΓcN )
σmin(ΓcN ) = σmax(Gc)

σmin(Gc)
= κ(Gc).

(c) It is known that the singular values of the matrix Γc are related to the eigenvalues of
Γ∗

cΓc through σ(Γc)2 = λ(Γ∗
cΓc). From [125], the eigenvalues of Γ∗

cΓc can be estimated
as N →∞ by approximating the block Toeplitz matrix as a block circulant matrix with
the same matrix symbol, and then finding the eigenvalues of the block circulant matrix.
In this case, that means evaluating the eigenvalues of the matrix symbol G∗

cGc around
the unit circle, i.e.

λ(Γ∗
cΓc) ≈

⋃︂
ω∈Ω

λ(Gc(ejω)∗Gc(ejω)). (4.4)

Since the right-hand side of (4.4) evaluates to a matrix at every point ω, we can rewrite
(4.4) as

(σ(Γc))2 ≈
⋃︂

ω∈Ω
σ(Gc(ejω))2

.

Taking the square root of both sides gives the final result.

To understand Proposition 4.1.1, we can examine Figure 4.1 — which is a plot showing
the singular values of the prediction matrix for the first Schur-stable system in Section 2.6.
In this plot, we can see the upper and lower bounds of the singular values computed using
Proposition 4.1.1(a) shown as red lines. The actual singular values are shown as blue asterisks,
and it can be seen that they are contained between the two red lines, showing the upper and
lower bounds can contain the singular values. For the estimation of the singular values using
Proposition 4.1.1(c), we can see that the actual singular values (the blue asterisks) and the
estimated ones using Proposition 4.1.1(c) (the red squares) are distinctly separated for short
horizon lengths, but they slowly move towards each other as the horizon length is increased.

4.2 Primal Hessian

4.2.1 Matrix symbol

The Hessian of the MPC problem formulation in (2.10) can be split into four distinct parts

Hc := HQ + HP + HK + HR (4.5)
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Figure 4.1: Singular values of the prediction matrix for the first Schur-stable system compared
to the approximation from Proposition 4.1.1.
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where HQ, HR, HP and HK are the parts that contain the matrices Q, R, P , and the K

cross-terms, respectively. Slightly different analysis must be done depending on the choice
of P , and in this work we focus on the two cases when P = Q and P is the solution to the
DARE (2.3) for the infinite-dimensional unconstrained LQR.

P is the same as Q

Choosing P = Q for (2.2) allows the term HP to be consolidated into HQ, giving

Hc = Γ′
cQ̄cΓc + Γ′

cK̄
′
R̄ + R̄K̄Γc + R̄,

Q̄c = IN ⊗ (Q + K ′RK).

Analysis of the resulting infinite-dimensional Hessian Hc, reveals that Hc is also block Toeplitz
with the matrix symbol given in Lemma 4.2.1.

Lemma 4.2.1. Let P = Q and PΓc be the matrix symbol for Γc from Lemma 4.1.1. The
matrix Hc is then a block Toeplitz matrix with the matrix symbol PHc ∈ C̃2π, where

PHc(z) := P∗
Γc

(z)(Q + K ′RK)PΓc(z)− P∗
Γc

(z)K ′R−RKPΓc(z) + R, ∀z ∈ T.

Proof. Note that Hc is the sum of four matrices: Γ′
cQ̄cΓc, Γ′

cK̄
′R̄, R̄K̄Γc and R̄. Using

the assumption that P = Q, we can see that the new state weighting matrix Q̄c is block
diagonal with the same entry in each block, making Q̄c a block Toeplitz matrix with the
symbol PQ̄c

(z) := Q+K ′RK. Since Γc is a lower-triangular block matrix and Γ′
c is an upper-

triangular block matrix, the product Γ′
cQ̄Γc is block Toeplitz with matrix symbol P∗

Γc
PQ̄c
PΓc

according to Corollary 3.3.1.

R̄ and K̄ are both block diagonal with the same entry in every block, making R̄ and K̄
both block Toeplitz matrices with symbols PR̄(z) := R and PK̄(z) := −K, respectively. The
multiplications Γ′

cK̄
′R̄ and R̄K̄Γc are then block Toeplitz, since the product R̄K̄ produces

a block diagonal block Toeplitz matrix, which preserves the block Toeplitz structure of Γc

during the multiplication. The matrix symbols for Γ′
cK̄

′R̄ and R̄K̄Γc are then −P∗
Γc

(z)K ′R

and −RKPΓc(z), respectively. Block Toeplitz structure is preserved over the addition of two
or more block Toeplitz matrices, and the matrix symbol for the resulting sum is the sum of
the original matrix symbols (Lemma 3.3.1). This means that the matrix Hc is block Toeplitz
with the matrix symbol given in the lemma.

Note that the structure of the matrix HQ can be seen in (4.6), and that the truncation for
finite horizons is not perfectly block Toeplitz. The reasoning behind for equating the actual
HQ and the infinite-horizon HQ is that as the horizon grows, the discrepancy between HQ
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HQ :=

⎡⎢⎢⎢⎢⎢⎢⎣

∑︁N−1
i=0 B′(Ai

c)′QcA
i
cB

∑︁N−2
i=0 B′(Ai+1

c )′QcA
i
cB

∑︁N−3
i=0 B′(Ai+2

c )′QcA
i
cB · · · B′(AN−1

c )′QcB∑︁N−2
i=0 B′(Ai

c)′QcA
i+1
c B

∑︁N−2
i=0 B′(Ai

c)′QcA
i
cB

∑︁N−3
i=0 B′(Ai+1

c )′QcA
i
cB · · · B′(AN−2

c )′QcB∑︁N−3
i=0 B′(Ai

c)′QcA
i+2
c B

∑︁N−3
i=0 B′(Ai

c)′QcA
i+1
c B

∑︁N−3
i=0 B′(Ai

c)′QcA
i
cB · · · B′(AN−3

c )′QcB
...

...
...

. . .
...

B′QcA
N−1
c B B′QcA

N−2
c B B′QcA

N−3
c B · · · B′QcB

⎤⎥⎥⎥⎥⎥⎥⎦
(4.6)

HP :=

⎡⎢⎢⎢⎢⎢⎢⎣
B′(AN

c )′PAN
c B B′(AN

c )′PAN−1
c B B′(AN

c )′PAN−2
c B · · · B′(AN

c )′PAcB
B′(AN−1

c )′PAN
c B B′(AN−1

c )′PAN−1
c B B′(AN−1

c )′PAN−2
c B · · · B′(AN−1

c )′PAcB
B′(AN−2

c )′PAN
c B B′(AN−2

c )′PAN−1
c B B′(AN−2

c )′PAN−2
c B · · · B′(AN−2

c )′PAcB
...

...
...

. . .
...

B′A′
cPAN

c B B′A′
cPAN−1

c B B′A′
cPAN−2

c B · · · B′A′
cPAcB

⎤⎥⎥⎥⎥⎥⎥⎦
(4.7)

and the finite-dimensional truncation of HQ will shrink since the new components in the
summation will be very small. This means any discrepancy will be mostly limited to the final
rows/columns — making the upper left submatrices of the two nearly identical. How quickly
this happens in practice will depend on how quickly Ai decays to 0 as i→∞.

It is important to note that as shown in Section 3.3, the product of block Toeplitz matrices
is not guaranteed to be block Toeplitz except in certain special cases, while the addition of
multiple block Toeplitz matrices with compatible block sizes is always guaranteed to produce
a block Toeplitz result. In this case, the lower-triangular structure of Γc and the block
Toeplitz structure of Q̄c implies that the product Γ′

cQ̄Γc is one of the special cases where the
multiplication of the three block Toeplitz matrices of compatible block sizes is block Toeplitz.
Choosing an arbitrary P with P ̸= Q will cause Q̄c to no longer be block Toeplitz, so the
multiplication will not necessarily produce a block Toeplitz matrix and the Hessian may not
be block Toeplitz.

P is the solution to the DARE

Choosing P as the solution to the DARE (2.3) causes the original Q̄c from Section 2.3.2 to
not be block Toeplitz, since Q̄c will then have a different matrix in the lower-right corner than
the rest of the main diagonal. This means that the analysis for the product Γ′

cQ̄cΓc based on
the multiplication of structured block Toeplitz matrices used in the proof of Lemma 4.2.1 no
longer can be applied. However, the resulting Hc matrix is still block Toeplitz due to the fact
that P will represent the cost of the controller applied after the horizon ends. We can then
derive the matrix symbol for this case, which we show in Proposition 4.2.1 is the same as the
case when P = Q.
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Proposition 4.2.1. If P is the solution to the DARE (2.3) and K is the infinite-horizon
LQR controller for G, then Hc is block Toeplitz and has the same matrix symbol as the case
when P = Q given in Lemma 4.2.1.

Proof. Using the matrix splitting (4.5), the Hessian can be decomposed into three terms, with
HQ and HP given by (4.6) and (4.7), respectively, and the remaining term given by HK +HR.
We start by examining the first diagonal term of HQ + HP ,

N−1∑︂
i=0

B′(Ai
c)′QcA

i
cB + B′(AN

c )′PAN
c B. (4.8)

Since P is the solution to the DARE (2.3), P is also the solution to the Lyapunov equation

(A−BK)′P (A−BK) + Q + K ′RK = P (4.9)

when K is the infinite-horizon LQR controller. This means that P can also be expressed as

P =
∞∑︂

i=0
((A−BK)′)i(Q + K ′RK)(A−BK)i,

transforming (4.8) into

N−1∑︂
i=0

B′(Ai
c)′QcA

i
cB + B′(AN

c )′
(︄ ∞∑︂

i=0
(Ai

c)′QcA
i
c

)︄
AN

c B.

The (AN
c )′ and AN

c terms around the right summation can be consolidated into the summation,
offsetting its starting point to be i = N instead of 0. This means the right summation is
simply the continuation of the left summation to infinity, allowing the two to be consolidated
into ∞∑︂

i=0
B′(Ai

c)′QcA
i
cB. (4.10)

The same analysis can be performed on the other terms on the main diagonal, which only
differ by where the left summation ends and the right summation is offset to. Therefore, the
main diagonal of the matrix sum HQ + HP is composed of blocks with all the same terms.
A similar analysis can be done on all diagonals above and below the main diagonal, showing
that they are also composed of blocks with all the same terms down the diagonal.

Since all the diagonals are composed of the same blocks down their length, the matrix sum
HQ + HP is block Toeplitz, and the resulting finite-dimensional Hessian Hc is block Toeplitz
as well, since HK + HR is already known to be block Toeplitz from Lemma 4.2.1.



100 Spectral properties for the condensed problem

Now that we showed the actual Hessian is block Toeplitz, we can find the infinite-dimensional
matrix Hc it is a truncation of and the associated matrix symbol. To construct the matrix
symbol, we examine the elements in the matrix HQ+HP and how they relate to the case when
P = Q that we have already worked with. Note that when P = Q, the individual elements
of the matrix HQ have a summation that terminates at the horizon length. Since the matrix
symbol is based on the infinite-dimensional matrix, if the matrix HQ is extrapolated to a
horizon of infinity to form HQ, the summations in HQ will all terminate at infinity. Therefore,
the finite-dimensional sum HQ +HP will have the same blocks as the infinite-dimensional HQ

when P = Q, so the Hessians for the cases when P = Q and P is the solution to the DARE
will both have the same matrix symbol.

An interesting thing to note in this case is that the actual finite-dimensional truncation of
the Hessian is block Toeplitz — which is different from the case when P = Q. This is a
direct result of the fact that choosing P as the solution of the DARE is meant to capture the
remaining cost from the end of the horizon to infinity, which we can see represented in the
sums that comprise the components of the HP matrix (4.7).

Simplification when G is Schur-stable

When G is Schur-stable and the results in Corollary 4.1.1 are used to simplify the matrix
symbol of the prediction matrix, the results given in Lemma 4.2.1 and Proposition 4.2.1 can
be simplified as well.

Corollary 4.2.1. If the system G is Schur-stable, then with K = 0 and P = Q or P the
solution to the discrete Lyapunov equation (2.4), the Hessian H has the matrix symbol PH ∈
C̃2π with

PH(z) := P∗
Γ(z)QPΓ(z) + R, ∀z ∈ T.

where G(·) is the transfer function matrix for the system G.

Note that the matrix symbol in Corollary 4.2.1 has the same form as the matrix symbol in
Lemma 4.2.1, however the choice of the matrix P in the CLQR problem differs.

In order for Proposition 4.2.1 to reduce to Corollary 4.2.1 in the Schur-stable case with K = 0,
the terminal cost must be based on the solution to the discrete Lyapunov equation instead
of the DARE, since using the DARE solution with no pre-stabilizing controller will cause the
Lyapunov equation (4.9) used in the proof of Proposition 4.2.1 to be invalid.
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4.2.2 Spectral bounds

One useful property of block Toeplitz matrices is that the eigenvalue spectrum for any finite-
dimensional truncation of the infinite-dimensional block Toeplitz matrix is contained within
the extremal eigenvalues of its matrix symbol. This means that the minimum and maximum
eigenvalues of the matrix Hc can be bounded by analyzing the matrix symbol PHc , since Hc

is a finite-dimensional truncation of the infinite-dimensional matrix Hc to N blocks.

Theorem 4.2.1. Let Hc be the condensed Hessian with P the solution to the DARE (2.3)
for a prediction horizon of length N that is block Toeplitz with matrix symbol PHc given in
Lemma 4.2.1, then the following hold:

(a) λmin(PHc) ≤ λ(Hc) ≤ λmax(PHc)

(b) lim
N→∞

κ(Hc) = κ(PHc)

Proof.

(a) The spectrum of a finite-dimensional truncation of a block Toeplitz matrix with a symbol
in C̃2π is bounded by the extremes of the spectrum of its symbol (Lemma 3.4.3).

(b) Hc is a Hermitian matrix, which means that it is also normal [71, §4.1]. Since it is both
normal and positive semidefinite, the singular values are the same as the eigenvalues
[70, §3.1], resulting in the condition number becoming κ(Hc) = λn(Hc)

λ1(Hc) . Taking the limit
of both sides in conjunction with the spectral bounds from part (a) gives

lim
N→∞

κ(Hc) = κ(PHc).

Corollary 4.2.2. If the system G is Schur-stable, then with K = 0 and P the solution to the
discrete Lyapunov equation (2.4), the results in Theorem 4.2.1 can be applied to H using the
matrix symbol PH instead of PHc.

Essentially, Theorem 4.2.1 say that the spectrum for the condensed Hessian in these cases will
always be contained inside the interval defined by the maximum and minimum eigenvalues
of the matrix symbol in Lemma 4.2.1/Corollary 4.2.1. Additionally, as N →∞ the extremal
eigenvalues of the Hessian will converge asymptotically to the maximum and minimum
eigenvalues of its symbol. This can be seen in Figure 4.2, where we have plotted the extremal
eigenvalues of the Hessian matrix for the first Schur-stable system from Section 2.6 as the
horizon length increases.
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Figure 4.2: Spectral bounds for the condensed Hessian of the first Schur-stable example problem
with either P = Q or P the solution to the discrete Lyapunov equation.

We compare the eigenvalue spectrum of the Hessian with P = Q and with P the solution
to the discrete Lyapunov equation (since the system is Schur-stable) in Figure 4.3. In this
figure, we can see that both cases behave similarly, with the major difference being the exact
locations of the eigenvalues for shorter horizon lengths, suggesting that Theorem 4.2.1 may
still apply to the case when P = Q even though the truncated matrix is not block Toeplitz. As
the horizon length increases, the eigenvalues appear to become dense on the ranges, showing
that for long/infinite horizons the two matrices become the same.
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Figure 4.3: Eigenvalue spectrum for the condensed Hessian of the first Schur-stable example
problem with either P = Q or P the solution to the discrete Lyapunov equation.
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4.2.3 Inclusion of a state-input cross term

We now examine what happens when the state-input cross-term weighting matrix S is
included in problem (2.2), which can happen when the cost is discretized using the method
in Section 2.1.1. To do this, we introduce a new term, HS , to the splitting of the Hessian
from (4.5) to create the new splitting

HcS := HQ + HP + HK + HS + HR.

While the components HQ, HR, HK and HP are the same as in Section 4.2.1 and are block
Toeplitz, the additional HS term is not block Toeplitz, so the overall Hessian HcS will not be
block Toeplitz. This is due to the S̄ matrix in Section 2.3.1 containing a 0 matrix instead of
S in the lower-right corner, which when multiplied with Γ produces a row/column of zeros
on the bottom/right of the matrix HS .

To overcome the fact that HcS is not block Toeplitz, we will instead split HcS into two
components, a nominal matrix Hn and a correction matrix He, such that

HcS := Hn −He.

We let the nominal matrix be

Hn := HQ + HP + HK + HR + H̄S ,

where H̄S is HS with an additional S weighting term on the final state, giving

H̄S := (IN ⊗ S)′Γ + Γ′(IN ⊗ S).

Now H̄S is block Toeplitz with the matrix symbol

PH̄S
(z) := S′PΓc(z) + P∗

Γc
(z)S ∀z ∈ T.

This leads to Hn being block Toeplitz as well, with the matrix symbol PHn ∈ C̃2π given by

PHn(z) = PHc(z) + PH̄S
(z) ∀z ∈ T, (4.11)

with PΓc(·) and PHc(·) given by Lemmas 4.1.1 and 4.2.1, respectively.

We then correct for the additional weighting term introduced in Hn by subtracting a
Hermitian correction matrix He, where

He := S′
cΓ + Γ′Sc
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with

Sc :=
[︄
IN−1 ⊗ 0 0

0 S

]︄
.

To now understand how the correction term He affects the nominal matrix Hn, we first must
analyze the spectrum of He.

Lemma 4.2.2. Let Ac ∈ Rn×n, B ∈ Rn×m and Wc be the state transition matrix, input matrix
and the controllability Gramian, respectively, for the discrete-time system Gc. If S ̸= 0, then
rank(He) ≤ 2m, and for N →∞ the 2m non-zero eigenvalues of He are the 2m eigenvalues
of

U :=
[︄

B′S I

S′WcS S′B

]︄
.

Proof. He can be decomposed as the outer product vu′ with the matrices v, u ∈ RNm×2m

defined as

v :=
[︄
S′AN

c B S′AN−1
c B · · · S′AcB S′B

0 0 · · · 0 I

]︄′

,

u :=
[︄

0 0 · · · 0 I

S′AN
c B S′AN−1

c B · · · S′AcB S′B

]︄′

.

The rank of an outer product matrix can be no larger than the smallest rank of the component
matrices, and we know that rank(u) ≤ 2m and rank(v) ≤ 2m — making rank(He) ≤ 2m.
The non-zero eigenvalues of vu′ (and consequently He) are the same as the eigenvalues of u′v

[71, Example 1.3.23], with

U := u′v =
[︄

B′S I∑︁N
k=0 S′AkBB′(Ak)′S S′B

]︄
.

As N → ∞, the summation in the lower-left element of u′v converges to the controllability
Gramian of the system Gc [36, §6.6], which makes the lower-left corner of the matrix U become
S′WcS.

The results presented in Lemma 4.2.2 show that the correction matrix He has a finite and low
rank independent of prediction horizon. Additionally, the limit points for the eigenvalues of
He as N →∞ can be computed by finding the eigenvalues of the 2m× 2m matrix U , which
is independent of the horizon length. Knowledge of the eigenvalues of He then allows for the
eigenvalues of the Hessian matrix HcS to be bounded.
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Theorem 4.2.2. Let the system Gc be Schur-stable with the nominal part Hn of the Hessian
HcS having the matrix symbol from (4.11) and U from Lemma 4.2.2. Let γ := λmax(PHn),
β := λmin(PHn), η := λmax(U), ν := λmin(U). If S ̸= 0, then the spectrum of the
condensed Hessian HcS has the following properties:

(a) max{0, β − η} ≤ λ(HcS) ≤ γ − ν

(b) lim
N→∞

κ(HcS) ≤

⎧⎨⎩
γ−ν
β−η if β > η

∞ otherwise

Proof. Note that HcS = Hn − He can be viewed as the addition of the negation of He.
Negating a matrix will negate all the eigenvalues, and consequently reverse their order. Since
both Hn and He are Hermitian, the eigenvalues of HcS can be bounded by [21, Fact 5.12.2]

λmin(Hn)− λmax(He) ≤ λmin(HcS),

λmax(HcS) ≤ λmax(Hn)− λmin(He),

which gives the inequalities in part (a). No a priori bounds are provided for the value of η,
so it is possible that β − η < 0. However, it is given that the Hessian is positive definite, so
when β − η < 0 the lower bound is set to 0. The condition number in part (b) follows from
applying the bounds in part (a) to the definition of the condition number.

The results presented in Theorem 4.2.2 provide horizon-independent bounds for the extremal
eigenvalues of the primal Hessian with S present. The results in Theorem 4.2.1 can provide the
values for γ and β when P = Q and for when P is the solution to the discrete-time Lyapunov
equation. Horizon-independent values for η and ν can be computed using Lemma 4.2.2.

The results in Theorem 4.2.2 are conservative bounds on the spectrum. This can be seen in
Figure 4.4, where the bound on λmin is much lower than the actual computed eigenvalues. It
is possible for the bound on the condition number to go to infinity if λmax(He) ≥ λmin(Hn),
since then the lower bound on the eigenvalue will be 0 even though the actual Hessian HcS

remains positive definite.

An alternative method presented in [3] to handle a non-zero S matrix is to transform the
problem into one with the system given by (Ã, B̃) and weight matrices (Q̃, R̃, S̃) with

Ã := A−BR−1S′, B̃ = B,

Q̃ := Q− SR−1S′, R̃ = R, S̃ = 0.

Note that the Schur-stability assumption must now hold for the transformed system Ã, which
is not true in general.
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Figure 4.4: Spectral properties of the condensed primal Hessian for the mass-spring-damper
system. The lines represent the bounds, and the markers represent the values of the condensed
Hessian at that horizon.

4.3 Inequality constraint matrix

We now turn our focus to the constraints in (2.7) and show that the condensed constraint
matrix is block Toeplitz. To begin, we must examine the shifted prediction matrix Γ̃c that is
used in the numerically robust CLQR problem (2.10) to form the constraint matrix Gc. This
shifted prediction matrix is formed by performing a shift on the original prediction matrix to
move the contents of each diagonal onto a lower diagonal, which will keep the block Toeplitz
structure of the prediction matrix but change the matrix symbol. The new symbol associated
with Γ̃c is shown in Lemma 4.3.1.

Lemma 4.3.1. Let the pair (A, B) be stabilizable and K ∈ Rm×n be a linear state-feedback
control matrix used to form the prestabilized system (2.9). The shifted prediction matrix Γ̃c

then has the matrix symbol PΓ̃c
∈ C̃2π with

PΓ̃c
(z) := (zI − (A−BK))−1B = Gc(z), ∀z ∈ T,

where Gc(·) is the transfer function matrix for the discrete-time system Gc.
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Proof. We begin by expanding the multiplication

Γ̃c =

⎡⎣ 0n×Nm[︂
In(N−1) 0

]︂
Γc

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 0
B 0 0 0 0 0

AcB B 0 0 0 0
A2

cB AcB B 0 0 0
...

. . .
...

...

AN−3
c B AN−4

c B AN−5
c B AN−6

c B · · · 0 0
AN−2

c B AN−3
c B AN−4

c B AN−5
c B · · · B 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

From this, we can observe that the infinite-dimensional extension of Γ̃c (called Γ̃c) will have
the blocks [︂

Γ̃c

]︂
i

:=

⎧⎨⎩0 if i < 1,

(A−BK)i−1B if i ≥ 1,
(4.12)

where i is the number of the block diagonal of the matrix, with i = 0 being the main diagonal
and positive i below the main diagonal. Next, we use the trigonometric polynomial associated
with Γ̃c to form the matrix symbol PΓ̃c

. Using the blocks of the matrix given in (4.12) as the
coefficients, the trigonometric polynomial is

∞∑︂
i=1

z−i(A−BK)i−1B.

By introducing the auxiliary variable k = i−1, the starting point of the summation is shifted
to 0, giving

∞∑︂
k=0

z−k−1(A−BK)kB.

By factoring the constants z−1 and B from the summation, the summation becomes

z−1
(︄ ∞∑︂

k=0
z−k(A−BK)k

)︄
B, (4.13)

which is a Neumann series that converges to

z−1
(︂
z(zI − (A−BK))−1

)︂
B

when A−BK is Schur-stable. Canceling the leading z−1z term and noting that the remaining
(zI − (A − BK))−1B is the transfer function matrix of the discrete-time system Gc(z) then
shows the matrix symbol for Γ̃c is PΓ̃c

(z) = Gc(z). Finally, note that the coefficients in the
sum (4.13) are absolutely summable, so PΓ̃c

is in the Wiener class, meaning that PΓ̃c
∈ L∞

and is continuous and 2π-periodic, leading to PΓ̃c
∈ C̃2π.
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We can now analyze the constraint matrix Gc for the numerically robust CLQR problem and
show that Gc is a block Toeplitz matrix, with the matrix symbol given in Lemma 4.3.2.

Lemma 4.3.2. Let Gc be a Schur-stable system with controller K ∈ Rm×n and the shifted
prediction matrix Γ̃c. The condensed constraint matrix Gc is block Toeplitz with the matrix
symbol PGc ∈ C̃2π with

PGc(z) := (Ex − EuK)PΓ̃c
(z) + Eu ∀z ∈ T,

where PΓ̃c
(z) is the matrix symbol of Γ̃c given in Lemma 4.3.1.

Proof. We start with the fact that Gc = (Ēx + Ē
u
K̄)Γ̃c + Ē

u
. Using the definitions of Ē

x,
Ē

u and K̄ in Section 2.3.1, it is obvious they are block Toeplitz with symbols

PĒ
x(z) := Ex, PĒ

u(z) := Eu, PK̄(z) := −K ∀z ∈ T,

respectively. The product Ē
u
K̄ is then block Toeplitz since both Ē

u and K̄ are block diagonal,
with the matrix symbol of the product being EuK. Since block Toeplitz structure is preserved
over addition (Lemma 3.3.1), the sum (Ēx + Ē

u
K̄) will be block Toeplitz and block diagonal

(since both terms in the addition are both block Toeplitz and block diagonal). Then, since
the product (Ēx + Ē

u
K̄)Γ̃c is the multiplication of a block diagonal block Toeplitz matrix

with a block Toeplitz matrix, the resulting matrix will be block Toeplitz with the matrix
symbol (Ex − EuK)PΓ̃c

. Finally, since Ē
u is block Toeplitz, the final addition will result in

a block Toeplitz matrix with the matrix symbol PGc given in the lemma.

4.4 Dual Hessian

In this section, we derive some spectral properties of the dual condensed Hessian
Hd = GH−1

c G′ from (2.8) for two distinct cases:

1. Hc is arbitrary, and
2. Hc is block Toeplitz.

Hc is arbitrary

For problems where Hc is not block Toeplitz, the resulting dual condensed Hessian Hd will
also not be block Toeplitz. This means that Hd will not have a matrix symbol or spectral
bounds similar to those we found for Hc in Section 4.2.2. However, we can still place an upper
bound on the spectrum of Hd using matrix norm inequalities.



110 Spectral properties for the condensed problem

Proposition 4.4.1. Let Gc and Hc be the condensed constraint matrix and primal Hessian
for the CLQR problem (2.10), respectively. Then we can upper bound the largest eigenvalue
of the dual condensed Hessian from (2.8) as

∥Hd∥2 ≤
(σmax(Gc))2

λmin(Hc)
.

Proof. Combining the triangle inequality

∥Hd∥2 ≤ ∥Gc∥2∥H−1
c ∥2∥Gc∥2

with the fact that ∥H−1
c ∥2 = 1

λmin(Hc) gives the result in the lemma.

The result in Proposition 4.4.1 creates a loose upper bound for the spectrum of Hd using
the maximum singular value of the constraint matrix Gc and the minimum eigenvalue of the
primal condensed Hessian Hc. However, a non-zero lower bound for the spectrum of Hd does
not in general exist, since Hd can be rank-deficient depending on the constraint set Gc.

Proposition 4.4.2. Let Gc ∈ RNl×Nm be the condensed constraint matrix for a horizon of
length N , then rank(Hd) = rank(Gc).

Proof. Let Hc be the positive definite primal condensed Hessian from the CLQR
problem (2.10). Recall that Hd = GcH

−1
c G′

c. It is known from [21, Corollary 2.5.10] that for
matrix multiplication of two matrices A ∈ Rx×y and B ∈ Ry×z with ranks a and b,
respectively, the rank of the product AB is

a + b− y ≤ rank(AB) ≤ min{a, b}. (4.14)

We begin by examining the product M := GcH
−1
c , with M ∈ RN(j+l)×Nm. Since Hc is positive

definite, its inverse exists and is also full rank, meaning rank(H−1
c ) = Nm. Additionally,

rank(Gc) ≤ Nm since one dimension of Gc is fixed at Nm. This means that both sides
of (4.14) become rank(Gc), making rank(M) = rank(Gc). A similar process can be followed
for the product MG′

c, to get the final result.

Proposition 4.4.2 shows that the rank of Hd is determined by the constraint set. If there are
more constraints than inputs (i.e. l > m), then the dual Hessian will be rank deficient, and
therefore be positive semidefinite.
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Hc is Toeplitz

If the MPC problem (2.10) has a block Toeplitz Hessian (e.g. when P is chosen to be the
solution to the DARE), then the eigenvalue distribution of Hd can be estimated from the
eigenvalues of its matrix symbol. To do this, we first note that the dual condensed Hessian
has the same non-zero eigenvalues as the matrix Hd1 := H−1

c G′G.

Lemma 4.4.1. Let Hc and Gc be the condensed Hessian and constraint matrices from the
CLQR problem (2.10). The non-zero eigenvalues of the dual condensed Hessian Hd in (2.8)
are the same as the eigenvalues of Hd1 := H−1

c G′
cGc.

Proof. This result follows directly from the fact that Hd can be viewed as the outer product
uv′ of the matrices u := G and v := H−1

c G. The non-zero eigenvalues of the outer product
matrix uv′ are the same as the eigenvalues of v′u [71, Example 1.3.23]

If Hc is limited to being a block Toeplitz matrix, then the spectrum of Hd can be bounded
using a matrix symbol similar to the previous results for the primal condensed Hessian in
Section 4.2.2.

Theorem 4.4.1. Let the condensed primal Hessian Hc in (2.10) be block Toeplitz with the
matrix symbol PHc ∈ C̃2π, positive definite almost everywhere, then

λmax(Hd) ≤ λmax(PHd1) ≤ ∥PHd1∥H∞

where PHd1(z) := (PHc(z))−1PGc(z)∗PGc(z) with z ∈ T.

Proof. The product of the infinite block Toeplitz matrices G′
cGc is block Toeplitz based on

Lemma 3.3.3 and the fact that Gc is lower triangular. Results in [125, Theorem 4.3] state
that if p, f ∈ L∞

2π are the matrix symbols for the Toeplitz matrices P, F, respectively, then
the eigenvalues of P−1F lie inside [λmin(p−1f), λmax(p−1f)]. This result, combined with
Lemma 4.4.1 and λmax ≤ σmax, gives the upper bound.

Using the results in Theorem 4.4.1, the spectrum of Hd can be bounded using the matrix
symbol of Hc provided that Hc is block Toeplitz. Unfortunately, the computation of λmax

for the symbol PHd1 requires an exhaustive search over the unit circle to find the largest
eigenvalue since Hd1 is not symmetric. Instead, an upper bound on λmax can be found using
the H∞ norm of PHd1 , which is a faster operation. Figure 4.5 shows ∥PHd1∥H∞ and the
asymptotic properties of λmax for the first Schur-stable system in Section 2.6 with either only
input constraints, only state constraints, or both input and state constraints. Note that the
bound λmax(Hd) ≤ λmax(PHd1) in Theorem 4.4.1 is tight, so there is a horizon above which
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Figure 4.5: Maximum eigenvalue for the condensed dual Hessian of the first Schur-stable system.
The lines represent the bounds computed using the results in Section 4.4, and the markers
represent the values of the dual Hessian at that horizon.

equality occurs. Theorem 4.4.1 also provides better bounds than the 2-norm estimate from
[139], which estimates that λmax(PHd

) is less than 0.41, 1.65, and 2.06 for input, state and
both input and state constraints, respectively.

4.5 Conclusions

In this chapter, we presented horizon-independent spectral bounds for many of the matrices
contained in the CLQR problem, including the primal and dual condensed Hessians, the
condensed prediction matrix and the condensed constraint matrix. These bounds provide
several advantages in the implementation of first-order methods, including

• guaranteeing fixed-point hardware designs are compatible with any horizon length
desired (removing the need to re-synthesize the designs if the prediction horizon were
to be changed and allowing run-time variation of the horizon length e.g. for variable-
horizon controllers), and

• providing horizon-independent upper iteration bounds for numerical algorithms.

We note that similar results to the ones in Sections 4.1 and 4.2 were also reported in [153] and
[54, Sect. 11], but the analysis in this chapter differs in several ways. Specifically, the prior
work requires that the discrete-time LTI system G has no eigenvalues on the unit circle, and
that the system be transformed into a system with separable stable and unstable modes so
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that they may be handled separately. Instead, the analysis presented in this chapter examined
both the stable and unstable modes of G at the same time, and supports eigenvalues on the unit
circle by using the numerically robust formulation described in Section 2.3.2. Additionally,
the prior work assumes that Q = C ′C (where C is the output state-mapping matrix of the
system), whereas the analysis in this chapter allows for an arbitrary positive-definite Q and
a P matrix chosen as either Q or the solution to the DARE (2.3).

This chapter also highlighted the relationship between the transfer function and the spectrum
of the condensed Hessian by showing that the extrema of the condensed Hessian’s spectrum is
bounded by the extrema of the spectrum for a complex-valued matrix symbol formed using the
weighting matrices and the transfer function matrix of the predicted system. This relation
will be further extended in Chapter 6 to show that the preconditioned primal condensed
Hessian can also have its spectrum bounded in a similar manner.
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Chapter 5

Computational complexity and system
performance

In this chapter, we examine how changing the parameters in the CLQR cost function
(specifically scaling the weighting matrices) affects the extremal eigenvalues and condition
number of the condensed Hessian that we derived in Chapter 4 and the computational
complexity of the FGM and DGP algorithms. The trade-off between the performance of the
controller (which is dictated by the matrices in the cost function) and the computational
complexity required is an important item for designers to consider, since performance
requirements are usually given as bounds (e.g. “settling-time less than 1s” or “track this signal
with less than 5% error”) rather than an exact criterion, creating a space of possible controllers
that can satisfy the requirements. These controllers may have different computational
resource demands, opening up the opportunity to trade off the computation with the system
performance.

Note that in this chapter we present the results assuming the Hessian for the condensed
CLQR problem (2.7) with a Schur-stable system and P chosen as either Q or the solution of
the discrete Lyapunov equation (2.4) is used.

5.1 Preliminaries

The bounds on the eigenvalues and condition number we will develop in this section utilize the
matrix trace normalized against the matrix size. To allow for horizon-independent bounds,
we show that these trace normalizations can be computed in a horizon-independent manner
through Lemma 5.1.1.
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Lemma 5.1.1. Let H be the primal Hessian of size mN ×mN from Section 2.3.1 with P

the solution to the discrete Lyapunov equation (2.4) and S an arbitrary n ×m matrix. Let
the system G be Schur-stable with m inputs. Define the following two dynamical systems

GQ(z) :=

⎡⎣ A B

Q1/2 0

⎤⎦ ,

GQR(z) :=

⎡⎣ A BR1/2

Q1/2 0

⎤⎦ ,

and let Ik := 1
2π

∫︁ 2π
0 Fk(ejω) dω where

F1(z) := Tr (S′PΓ(z)) , F2(z) := Tr (RS′PΓ(z)) ,

F3(z) := Tr (S′PΓ(z)S′PΓ(z)) , F4(z) := Tr (S′PΓ(z)P∗
Γ(z)S) ,

F5(z) := Tr (P∗
Γ(z)QPΓ(z)S′PΓ(z)) , F6(z) := Tr (P∗

Γ(z)QPΓ(z)P∗
Γ(z)QPΓ(z)) .

Then the quantities

aN := Tr (H)
mN

, bN := Tr
(︁
H2)︁

mN
,

have limits as N →∞ of

al := lim
N→∞

aN = 1
m

(︂
∥GQ∥2H2 + 2I1 + ∥R1/2∥2F

)︂
,

bl := lim
N→∞

bN = 1
m

(︁
I6 + 4I5 + 4I2 + 2I3 + 2I4 + ∥R∥2F + 2∥GQR∥2H2

)︁
.

Proof. Since S is arbitrary, we use the matrix splitting (4.2.3) and substitute in the nominal
and correction matrices to form

H = HQ + HP + HR + Hn −He.

We begin by computing the limit

al := lim
N→∞

1
mN

Tr (H) . (5.1)

Note that according to Lemma 4.2.2, He has a finite rank independent of its size, so the
contribution of He to the trace of H will go to zero as the matrix size approaches infinity.
This removes the He term from the expansion of (5.1), giving

al = lim
N→∞

1
mN

Tr (HQ + HP + HR + Hn) , (5.2)
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which contains only the block Toeplitz components of H. Using Szegö’s limit theorem for
block Toeplitz matrices of size n × n (Theorem 3.4.2), the limit as n → ∞ of a function f

of the eigenvalues of a block Toeplitz matrix can be transformed into a definite integral of f

applied to the eigenvalues of the matrix symbol. Since the trace is the sum of the eigenvalues,
(5.2) becomes

al = 1
2mπ

∫︂ 2π

0
Tr
(︂
PHn(ejω)

)︂
dω,

where PHn is given by (4.11). Expanding this and using the additive property of the matrix
trace, we get

al = 1
2mπ

(︃∫︂ 2π

0
Tr
(︂
PΓ(ejω)∗QPΓ(ejω)

)︂
+ Tr (R) + 2 Tr

(︂
S′PΓ(ejω)

)︂
dω

)︃
.

Using the definition of the H2 norm and the Frobenius norm, al then becomes

al = 1
m

(︂
∥GQ∥2H2 + 2I1 + ∥R1/2∥2F

)︂
.

Computing bl can be done in a similar manner to al. Note that

rank(AB) ≤ min{rank(A), rank(B)},

meaning anything multiplied by He will have finite rank as the matrix size goes to infinity.
This means those terms will go to zero in the limit, leaving only the block Topelitz component
Hn

bl = lim
N→∞

1
mN

Tr
(︂
(Hn)2

)︂
. (5.3)

Applying the Szegö limit theorem to (5.3) then gives

bl = 1
2mπ

∫︂ 2π

0
Tr
(︂
(PHn(ejω))2

)︂
dω

Expanding the integrand, and simplifying using properties of the trace and the definition of
the H2 and Frobenius norms produces the final result.

Unlike the results in Section 4.2 where we had to separate the discussion of the condensed
primal Hessian into two parts, with and without a state-input cross-term matrix S, the result
given in Lemma 5.1.1 holds for both cases. This occurs because the normalized trace of a
finite rank matrix (such as He) goes to zero as its size goes to infinity, which leaves only the
Toeplitz component of the Hessian. Results similar to Lemma 5.1.1 could also be derived
for other values of P , provided that H can be decomposed into a Toeplitz component plus a
finite-rank correction term.
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To analyze the effect of scaling the weight matrices, we can utilize the linearity of the trace
to scale the various terms in Lemma 5.1.1, giving the following result.

Lemma 5.1.2. Let Q̂ := α1Q, R̂ := α2R and Ŝ := α3S be scaled versions of the weight
matrices. Then if the scaled matrices are substituted into the terms used in Lemma 5.1.1, the
terms scale as

Î1 := α3I1, Î2 := α2α3I2, Î3 := α2
3I3,

Î4 := α2
3I4, Î5 := α1α3I5, Î6 := α2

1I6,

∥GQ̂∥
2
H2

:= α1∥GQ∥2H2 , ∥R̂∥2F := α2
2∥R∥2F ,

∥GQ̂R̂∥
2
H2

:= α1α2∥GQR∥2H2 , ∥R̂1/2∥2F := α2∥R1/2∥2F .

Proof. These results follow from the linearity of the trace and the integral operator.

5.2 Extremal eigenvalues

In the complexity analysis of some algorithms such as the FGM and DGP, the extremal
eigenvalues of the Hessian (both dual and primal) appear as a factor. This means that in
order to understand how the computational complexity changes with the weight matrices, it
is important to understand how the weighting matrices affect the extremal eigenvalues.

5.2.1 Primal Hessian

We begin by deriving bounds on the extremal eigenvalues for the primal Hessian.

Lemma 5.2.1. Let H be the primal Hessian from (2.7). Then

0 < λmin(H) ≤ al ≤ λmax(H)

where al is defined in Lemma 5.1.1.

Proof. Bounds on the extremal eigenvalues were given in [164, Theorem 2.1] as

aN − sN pN ≤ λmin ≤ aN − sN/pN

aN − sN/pN ≤ λmax ≤ aN + sN pN

where sN :=
√︂

bN − a2
N and pN :=

√
mN − 1 with aN and bN given in Lemma 5.1.1. The

limit of these bounds as N →∞ gives a finite upper bound for λmin and a finite lower bound
for λmax, both equal to al. The upper bound on λmax is in general not finite, and the lower
bound for λmin is in general strictly greater-than 0 since H is positive definite.
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Equality can occur when a2
N = bN (i.e. Tr (H) = ∥H∥2F ), since that makes s = 0. Since H is

positive definite though, this can only occur when all eigenvalues of H are 1.

The bound in Lemma 5.2.1 essentially creates a dividing line between the extremal eigenvalues.
The effect of the weight matrix scaling on this dividing line can then be estimated, as done
in Theorem 5.2.1.

Theorem 5.2.1. Let Ĥ be the primal Hessian with the scaled weight matrices Q̂ := α1Q,
R̂ := α2R and Ŝ := α3S. Then, the bound on the extremal eigenvalues given in Lemma 5.2.1
grows linearly with α1, α2 and α3.

Proof. Combine the bounds in Lemma 5.2.1 with the scalings in Lemma 5.1.2.

From Theorem 5.2.1 it can be seen that the bounds on the extremal eigenvalues grow linearly
with the scaling of the weight matrices. This is demonstrated in Figures 5.1a and 5.1b for
the case when S = 0, leaving only α1 and α2. When only one matrix is being scaled, there
are two distinct regions in the bound: Q dominating and R dominating. Since this bound is
both an upper bound for λmin and a lower bound for λmax, the transition between the two
regions when α1 is being increased will occur earlier for λmax than λmin. The region where
R dominates when only Q is scaled is shown as a shaded region in Figures 5.1a and 5.1b.

5.2.2 Dual Hessian

For the dual Hessian, the largest eigenvalue can be bounded through the spectral norm as
was done in Proposition 4.4.1. This bound is affected by both the spectrum of the constraint
matrix G and the primal condensed Hessian H. When the weight matrices are scaled, only the
primal condensed Hessian is affected, which means only the λmin(H) term in the denominator
will change. Unfortunately, since the lower bound in Theorem 5.2.1 is zero, an upper bound
on ∥Hd∥2 cannot be computed directly.

We can instead use the upper bound for λmin given in Lemma 5.2.1 to examine how the
bound from Proposition 4.4.1 changes with weight scaling. It is known from Theorem 5.2.1
that there is a linear relation between the magnitude of the cost matrices and the upper
bound for λmin. This implies that there will be an inverse relation between the cost scaling
and λmax of the dual Hessian, since as either α1, α2 or α3 grow, the bound on λmax(H) grows
as well.
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Figure 5.1: Horizon-independent extremal eigenvalue and condition number bounds from
Lemma 5.2.1 and Theorem 5.3.1, respectively, for various scalings of Q and R matrices in the
first Schur-stable system from Section 2.6.

5.3 Condition number

We now focus our analysis on the primal Hessian H, since the condition number of the dual
Hessian Hd is in general unbounded due to Hd being only positive semidefinite and not positive
definite.
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5.3.1 Discrete-time weights

The results presented in Section 4.2 provide a means of calculating the condition number
estimates for a given set of weighting matrices, but provide little intuition into how scaling
the weighting matrices will affect the condition number. To examine the effect of scaling, we
utilize a lower bound for the condition number of the Hessian H.

Lemma 5.3.1. Let al and bl be defined in Lemma 5.1.1. The primal Hessian H has a lower
bound on the condition number given by

1 + 2

√︂
bl − a2

l

al
≤ κ(H)

Proof. We begin with the lower bound for the condition number of a matrix of dimension
mN presented in [164, Corollary 2.3]:

1 + 2sN

aN − sN√
mN−1

≤ κN (H) (5.4)

with sN :=
√︂

bN − a2
N , and aN and bN from Lemma 5.1.1.

To determine the asymptotic bound, we take the limit of (5.4) to find

lim
N→∞

1 + 2sN

aN − sN√
mN−1

= 1 + 2

√︂
bl − a2

l

al
.

The lower bound presented in Lemma 5.3.1 is horizon-independent, and holds for any choice
of S and either P = Q or P the solution to the discrete Lyapunov equation (2.4). This lower
bound represents the best possible condition number that can be obtained. Unfortunately,
knowledge of the worst possible condition number (i.e. an upper bound) cannot be obtained
in a horizon-independent manner since lower-bounds on the smallest eigenvalue of H go to 0
as the matrix size increases.

To more closely examine the effect of the matrix scaling, we examine the case when S = 0
and only Q and R are scaled. We assume that P is either Q or the solution to the discrete
Lyapunov equation (2.4). For this case, the lower bound from Lemma 5.3.1 becomes the
bound given in Theorem 5.3.1.
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Theorem 5.3.1. Let Ĥ be the Hessian with the scaled weight matrices Q̂ := α1Q, R̂ := α2R

and S = 0. Then given the dynamical systems GQ and GQR and the integrals in Lemma 5.1.1,
a lower bound for the condition number of Ĥ is

1 + 2

√︂
α2

1γ1 + 2α1α2γ2 + α2
2γ3

α1∥GQ∥2H2
+ α2∥R1/2∥2F

≤ κ(Ĥ),

with
γ1 := mI6 − ∥GQ∥4H2

, γ3 := m∥R∥2F − ∥R1/2∥4F ,

γ2 := m∥GQR∥2H2
− ∥GQ∥2H2

∥R1/2∥2F .

Proof. Starting with the lower bound from Lemma 5.3.1, we define vl := bl−a2
l (i.e. the term

under the square root in the numerator of the bound in Lemma 5.1.2). Substituting in the
norm scalings from Lemma 5.1.2 into al gives

al = α1∥GQ∥2H2 + α2∥R1/2∥2F ,

which is the final version of the denominator.

Substituting in the norm scalings from Lemma 5.1.2 into vl and expanding the square gives

vl = m
(︂
α2

1I6 + 2α1α2∥GQR∥2H2 + α2
2∥R∥2F

)︂
− α2

1∥GQ∥4H2 − α1α2∥GQ∥2H2∥R
1/2∥2F − α2

2∥R1/2∥4F

Grouping the terms by the α1 and α2 coefficients leads to

vl = α2
1

(︂
mI6 − ∥GQ∥4H2

)︂
+ α2

2

(︂
m∥R∥2F − ∥R1/2∥4F

)︂
+ 2α1α2

(︂
m∥GQR∥2H2 − ∥GQ∥2H2∥R

1/2∥2F
)︂

which gives the final version of the numerator.

A numerical example for the results in Theorem 5.3.1 is presented for the first Schur-stable
system from Section 2.6 in Figure 5.1c. Examining the behaviour of the bound, it can be
seen that there exist three distinct regions (shown through shading in Figure 5.1c): when
α1 ≪ α2, when α1 ≫ α2, and the transition region. The lower bounds for the regions when
α1 ≪ α2 and α1 ≫ α2 can be estimated through Corollary 5.3.1.

Corollary 5.3.1. The lower bound in Theorem 5.3.1 has asymptotic values

κ(Ĥ) ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + 2

√︂
mI6−∥GQ∥4

H2

∥GQ∥2
H2

if α1 ≫ α2

1 + 2
√

m∥R∥2
F −∥R1/2∥4

F

∥R1/2∥2
F

if α1 ≪ α2
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When α1 ≪ α2, the spectrum of R dominates the condition number. The transition region
is caused by the fact that λmax begins growing before λmin when α1 is scaled, causing their
ratio to change. Then when λmin also begins growing, the ratio becomes constant leading to
the region where α1 ≫ α2. In this region, the condition number is dominated by the singular
value distribution of the dynamical system with an output mapping through the weighting
matrix Q.

The bounds in these regions are related to the spread and mean of the spectrum of the
matrices/system. The quantity in the numerators of Corollary 5.3.1 can be viewed as an
upper bound on the spread of the spectrum (the largest distance between two eigenvalues)
[126], while the denominator can be viewed as the mean of the spectrum. We can use this
relation to see that for large ratios of R to Q, the condition number is dominated by the
spread of the spectrum of R over its average. Alternatively, for large Q to R ratios the bound
is dominated by the spread of the singular values of the physical system with an output
compensator of Q1/2 over the average of the singular values.

Another interesting phenomenon arises when both Q and R are scaled by the same amount.

Corollary 5.3.2. If the relative scaling of the two weight matrices is held constant at α1 = ηα2

for a constant η > 0, then the lower bound is constant with the value

1 + 2
√︁

η2γ1 + 2ηγ2 + γ3
η∥GQ∥2H2

+ ∥R1/2∥2F
≤ κ(Ĥ).

Essentially, if both Q and R are scaled equally (i.e. α1 = α2), then the condition number of
the Hessian does not change. This is also true when S ̸= 0 and is scaled equally with Q and
R (i.e. α1 = α2 = α3), so it is only when the matrices are scaled separately that the condition
number changes.

5.3.2 Discretization of continuous-time weight matrices

The results in Section 5.3 examine the effect of the scaling of the weights in the discrete-time
problem (2.7). Alternatively, the weighting matrices Q, R and S can be computed from the
continuous-time problem through the discretization given in (2.6).

When using this discretization method, scaling the weighting matrices in the continuous-time
problem by Qcˆ := α1Qc and Rĉ := α2Rc then leads to the following scalings for the resulting
discrete-time matrices Q, R, and S

Q̂ = α1Q, Ŝ = α1S, R̂ = α1R + (α2 − α1)τRc

Note that scaling α1 affects all three weighting matrices, but α2 only affects R̂.
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This scaling behaves very similarly to the scaling of the discrete-time matrices in Section 5.3.
When α1 = α2, all matrices are scaled equally and the results from Corollary 5.3.2 say that
the condition number will not change.

5.4 Computational complexity

Now we examine the change in computational complexity for the DGP and FGM algorithms
when applied to the CLQR problem with scaled weight matrices. We specifically focus on the
relative scaling case, which means that R is held constant and Q is scaled by α1 ∈ [10−4, 106].

5.4.1 Fast Gradient Method

When the upper bounds for ∆ and ϵ in (2.14) are used in the UIB for the Fast Gradient
Method, the UIB becomes dependent only on κ. Further simplification shows that a ≥ b > 0
for κ > 1, which leads to

UIB =
⌈︁
2
√

κ− 2
⌉︁
. (5.5)

The square-root dependence of (5.5) on κ means that the UIB will follow the same general
trend as the condition number. Corollary 5.3.1 can then be used to investigate when the
UIB for FGM will be small. For instance, Corollary 5.3.1 suggests that κ will be smaller if
α2 ≫ α1 (i.e. the inputs are more heavily weighted than the states). This will then lead to
a smaller iteration bound for the FGM when the inputs are more heavily weighted, which is
seen in Figure 5.2a on the first Schur-stable example from Section 2.6.

The performance of the CLQR controller using the FGM was examined by controlling the
Schur-stable system without the state constraints and with a chosen suboptimality level of
δmax = 0.001 and N = 20. The CLQR regulates the system starting from the initial condition
of x0 = [0.1, 0.1, 0.1, 0.1]′ to the origin. The performance was measured by taking the 2-norm
of the state and input trajectories. To compare the performance at each scaling factor, the
percent difference versus α1 = 10−4 was computed, and is shown in Figures 5.2b and 5.2c.

For this problem, the overall change in the 2-norm of the state trajectories across the
entire scaling range was less than 5%, while the input norm varied by approximately 200%.
Additionally, the number of iterations required varied by 188% across the scaling range. An
interesting feature of this is that the change in the norm of the input occurs at a different
scaling than the change in the UIB. These results show that if the performance of the system
states was the design criteria, an aggressive weighting will only produce a 5% decrease in the
norm of the state trajectories, but will produce a 188% increase in the number of iterations
required for the solver.
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Figure 5.2: Effect of scaling the weight matrix Q by α1 and holding R constant on the FGM
when solving the first Schur-stable system from Section 2.6 with no state constraints.

5.4.2 Dual Gradient Projection

The UIB for the DGP given in (2.15) depends on the largest eigenvalue of both the primal
and dual condensed Hessians, as well as the Upper Dual Bound (UDB) from Section 2.5.2.
All three of these quantities depend on the horizon length chosen; but while a horizon-
independent bound on the UDB is not known, the eigenvalues can be bounded using the
results in Section 4.4. Examining (2.15), λmax of the primal Hessian only affects the UIB
when a suboptimal solution to the dual problem is requested (i.e. ϵz ̸= 0), while λmax of the
dual Hessian has a linear effect and the UDB has a quadratic effect on the UIB.

The numerical examples presented in Figures 5.3 and 5.4 use N = 20 with ϵz = ϵξ = 0
(i.e. solve the dual exactly and with no computation error) while ϵg = 10−4 and ϵV = 10−2.
The UDB for the Schur-stable system is shown in Figure 5.3b and is calculated by solving the
Mixed Integer Linear Program (MILP) given in [131] using CPLEX with indicator constraints
to implement the binary variables. The UDB for the mass-spring-damper system was upper
bounded as D=20000 for all scaling factors by solving the same MILP, but terminating
computation early and using the best objective value as the upper bound. As shown in
Figure 5.3c, the tight bounds from Theorem 4.4.1 decrease the UIB by an order of magnitude
compared with the estimate of λmax given in [139].
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The UIB for the DGP is affected by both the UDB and the maximal eigenvalues as the
weight matrices are scaled. An interesting feature that appears when the exact UDB is used
with the Schur-stable system is the interplay between D and λmax(Hd); specifically the slight
peak in the UIB around α1 = 100 before it drops off again. The UDB though appears to
have an asymptotic structure at the two extremes for α1, while λmax(Hd) is decreasing as α1

increases. A tradeoff in the closed-loop performance and computational complexity is also
evident for the DGP, with the Schur-stable system showing a 200% increase in the UIB for a
200% decrease in the input norm and 5% increase in the state norm.

5.5 Conclusions

In this chapter, we explored the trade-offs between computational performance and the closed-
loop performance of a system. We approached this through the lens of how the weight matrix
selection (representing the desired system performance) affects the computational complexity
bounds for the Fast Gradient Method and Dual Gradient Projection method.

We showed that the complexity bounds for FGM and DGP demonstrate distinct regions
where the bound is influenced by the spectrum of the individual weighting matrices. With
one region being influenced primarily by the weights applied to the inputs (the R matrix), and
the other being influenced by the weights applied to the states (the Q matrix) and the singular
values of the predicted system. Additionally, we showed that the complexity bounds of FGM
and DGP behave differently when the cost function is scaled; the FGM bound increased as Q

dominated while the DGP bound decreased as Q dominated. This suggests that including the
algorithm as a design parameter that is optimized alongside the system performance could
benefit the overall system design.

We demonstrated that the trade-off between computational resources and control performance
is a worthwhile area to explore; with an example system showing that a 5% reduction in
the state 2-norm requires a 188% increase in the computational complexity of the control
algorithm.



5.5 Conclusions 127

10−6

10−3

100

λ
m

a
x
(H

d
)

Theorem 4.4.1
Actual
[139]

100

200

300

U
D

B

104

107

1010

U
IB Theorem 4.4.1

λmax from [139]

−200

0

200

%
D

iff
er

en
ce

Input
UIB

10
−

4

10
−

3

10
−

2

10
−

1

10 0

10 1

10 2

10 3

10 4

10 5

10 6

−20

0

20

α1

%
D

iff
er

en
ce State

Settling Time

(a)

(b)

(c)

(d)

(e)

Figure 5.3: Effect of scaling the weight matrix Q by α1 and holding R constant on the Dual
Gradient Projection method when solving the first Schur-stable system with no state constraints.
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on the Dual Gradient Projection method when solving the mass-spring-damper.



Chapter 6

Preconditioner design†

Decreasing the computational time of iterative optimization solvers is a key step in creating
real-time-capable MPC algorithms. For many first-order optimization methods, the number
of iterations required (and hence the time required to solve the problem) is directly related to
the conditioning of the problem — measured by the condition number of the Hessian. One
way to get a solution faster is then to improve the conditioning of the problem by reducing
the condition number of the Hessian using a step called preconditioning. The preconditioning
step can be thought of as transforming the variable space of the optimization problem from
the original space to a “better” space for the optimization method.

In this chapter, we examine the preconditioning step using the lens of block Toeplitz theory.
This includes extending the spectral analysis from Chapter 4 to include a symmetrically
preconditioned Hessian, and deriving a novel preconditioner using circulant matrices that is
faster and easier to compute.

6.1 Analysis of the preconditioned Hessian

For simplicity of discussion, we focus on the case when Hc is symmetrically preconditioned
to form

HL := L−1
N Hc(L−1

N )′, (6.1)
†Some of the material presented in this chapter is contained in the following work:

I. McInerney, E. C. Kerrigan, and G. A. Constantinides. Horizon-independent preconditioner design for linear
predictive control. IEEE Transactions on Automatic Control, 2022. doi: 10.1109/TAC.2022.3145657. (in
press). ©2022 IEEE.
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where LN := IN ⊗ L is a block diagonal preconditioner with blocks L ∈ Rm×m. To simplify
notation, we let L̄ := L−1 and L̄N := IN ⊗ L̄, making the preconditioner become

HL = L̄N HcL̄
′
N .

This case is most appropriate for first-order methods solving the CLQR problem, since
symmetric preconditioning guarantees that the structure of the feasible set is preserved over
the preconditioning operation and that the preconditioned Hessian is symmetric [151].

We can then show that the preconditioned Hessian HL is block Toeplitz and derive its matrix
symbol in Lemma 6.1.1.

Lemma 6.1.1. Let Hc be a Hermitian block Toeplitz matrix with blocks of size m ×m and
the matrix symbol PHc ∈ C̃2π : T→ Cm×m. If L̄N := IN ⊗ L̄ with L̄ ∈ Rm×m, then

HL = L̄N HcL̄
′
N

is block Toeplitz with the matrix symbol

PHL
(z) := L̄PHc(z)L̄′

, ∀z ∈ T. (6.2)

Proof. The matrix L̄N is a block diagonal block Toeplitz matrix, and can be viewed as the
truncation after N diagonals of the infinite block Toeplitz matrix L̄ with the matrix symbol
PL̄(z) := L̄, ∀z ∈ T.

We know from Corollary 3.3.1 that the result of the multiplication of the three matrices EGF
will be block Toeplitz if E is an upper triangular block Toeplitz matrix, G is a block Toeplitz
matrix, and F is a lower triangular block Toeplitz matrix. The product L̄HcL̄

′ is then a block
Toeplitz matrix due to Corollary 3.3.1 because Hc is known to be block Toeplitz and L̄ can be
viewed as an upper triangular block Toeplitz matrix. We also know from Corollary 3.3.1 that
the matrix symbol for the multiplication of the three matrices will just be the multiplication
of the three symbols, meaning we get

PHL
(z) := L̄PHc(z)L̄′

, ∀z ∈ T.

The final step is to verify the result of the multiplication of the truncated block Toeplitz
matrices Hc and L̄N is also block Toeplitz. Note that left-multiplying the block matrix Hc

with the block diagonal matrix L̄N to form L̄N Hc will just multiply each block in the ith
block column of Hc by the block on the diagonal of the ith block row of L̄N (similar to how
multiplication with a scalar diagonal matrix behaves). This means that since L̄N and Hc

are both block Toeplitz, every block in Hc would be multiplied by the same value, which
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will preserve the block Toeplitz structure of Hc. A similar argument can be made for the
right-multiplication of Hc by a block diagonal block Toeplitz matrix like L̄

′
N . This means

that the result L̄N HcL̄
′
N will be block Toeplitz.

Since we have shown that HL is block Toeplitz and derived its matrix symbol, the spectral
bounds in Section 4.2.2 can then be extended to the preconditioned matrix HL by simply
replacing PHc in Theorem 4.2.1(b) with PHL

given by (6.2). A similar substitution can also
be made when G is Schur-stable by using PH in (6.2) with Corollary 4.2.2, since Lemma 6.1.1
will hold for both.

Remark 6.1.1. This analysis requires LN to be block Toeplitz, which may not be the case for
many preconditioners unless such a constraint is added to their computation.

Remark 6.1.2. Results could also be derived for non-block diagonal preconditioners using
[125, Thm 4.3] with M−1Hc where M := LN L′

N , but we do not discuss this extension here.

6.2 Preconditioner design

There is a rich literature of preconditioners for Toeplitz and circulant matrices, with a focus
on designing the preconditioners independent of the size of the matrix ([34] and references
therein). These existing ideas can be applied to the block Toeplitz structure of the Hessian
in the CLQR problem to design preconditioners to use when solving the QP.

One of the first circulant preconditioners was proposed by Gilbert Strang in [163]. This
preconditioner was originally proposed for preconditioning iterative conjugate gradient
methods, and is formed by simply copying the central diagonals of the Toeplitz matrix into
the preconditioning matrix and wrapping them around to form a circulant matrix. Strang’s
preconditioner can be naturally extended to the block Toeplitz case by copying the individual
blocks into the preconditioning matrix and wrapping them around to form a block circulant
matrix.

In the case of the CLQR problem with a block diagonal preconditioning matrix, we can
explicitly compute the block on the diagonal of the preconditioning matrix without forming
the entire Hessian, as shown in Theorem 6.2.1.

Theorem 6.2.1. Let Hc be the Hessian from (2.10) formed by choosing either:

• K as the infinite-horizon LQR controller for G, with P the solution to the DARE (2.3),
or

• K = 0 with P the solution to the discrete-time Lyapunov equation (2.4) for a Schur-
stable G.
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The matrix Hc can then be symmetrically preconditioned as L−1
N Hc(L−1

N )′, with LN := IN ⊗L

and the blocks L given by the lower-triangular Cholesky decomposition of M with

M := B′PB −RKB −B′K ′R + R.

Proof. Based on the work in [163], a circulant preconditioning matrix W for the block Toeplitz
matrix V will have entries that are obtained by copying the central diagonals of V and
wrapping them around to form a circulant matrix since the main diagonal and its neighbors
are usually strongly dominant. For example, the matrix

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V0 V1 V2 V3 V4

V−1 V0 V1 V2 V3

V−2 V−1 V0 V1 V2

V−3 V−2 V−1 V0 V1

V−4 V−3 V−2 V−1 V0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

will have a block circulant preconditioning matrix

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V0 V1 V2 V−2 V−1

V−1 V0 V1 V2 V−2

V−2 V−1 V0 V1 V2

V2 V−2 V−1 V0 V1

V1 V2 V−2 V−1 V0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Since we want our preconditioner to be block diagonal, we only need to focus on computing
the appropriate diagonal block V0 for the CQLR problem with Hessian Hc.

For the Hessian Hc, the HQ+HP portion of the main diagonal block of the infinite dimensional
block Toeplitz matrix is given in (4.10), which when the HR and HK components are added
becomes ∞∑︂

i=0
B′(Ai

c)′QcA
i
cB −RKB −B′K ′R + R.

Since Ac is Schur-stable and K is the LQR controller, this infinite sum converges to the
solution of the DARE, making the diagonal block

V0 = B′PB −RKB −B′K ′R + R.

Since Strang’s preconditioner is designed as a left preconditioner (i.e. W −1V ) and we want
a symmetric preconditioner, we apply the lower-triangular Cholesky factorization to M ,
resulting in L.
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Remark 6.2.1. The preconditioning matrix L in Theorem 6.2.1 can also be formed by using
the matrix square-root of M instead of the Cholesky factorization, which could allow for L to
have the same structure as M if the square root operation is structure preserving (e.g. if G
is a circulant system, using the matrix square root can lead to L and HL being circulant as
well).

Note that the matrices M and L will have dimension m×m, and that the full preconditioning
matrix LN is formed by simply repeating L down the diagonal N times, so changing the
horizon length means simply adding or removing blocks of L from the diagonal of LN , meaning
no new computations are required when the horizon length is changed. Also, all the matrices
involved in computing M in Theorem 6.2.1 have dimensions on the order of m and n, and
have no relation to the horizon length. This is in contrast to SDP-based preconditioner design
techniques such as [151], which require the full Hessian to be placed inside the semidefinite
optimization problem.

Since LN is block Toeplitz, we can actually show that if G is single-input, the preconditioner
will not affect the condition number of the Hessian.

Proposition 6.2.1. If the system G is single-input (i.e. m = 1), then the block Toeplitz
preconditioner LN will not affect the condition number of Hc (i.e. κ(HL) = κ(Hc)).

Proof. A system with m = 1 will have L ∈ R, making the preconditioner matrix simply
LN = IN ⊗ L = LIN . For the symmetric preconditioning case, (6.1) becomes

HL =
(︃ 1

L
IN

)︃
Hc

(︃
IN

1
L

)︃
= 1

L2 Hc.

Using the fact that λi(αHc) = |α|λi(Hc), we can then find that

κ(HL) =
λmax

(︂
1

L2 Hc

)︂
λmin

(︂
1

L2 Hc

)︂ = |L
2|
|L2|

λmax(Hc)
λmin(Hc)

= κ(Hc).

6.3 Numerical experiments

In this section, we present numerical examples showing the effect of the proposed
preconditioner on the spectral properties of the condensed Hessian of the CLQR problem
for three of the example systems given in Section 2.6.
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6.3.1 Matrix conditioning

The first numerical results we present examine the Hessian conditioning for the example
systems. The preconditioners were implemented using Julia 1.6.1, and the COSMO solver
(version 0.8.1) [48] was used to compute the SDP preconditioner from [151]. It can be seen
in Figures 6.1a and 6.2a that the limits presented in Theorem 4.2.1(b), are attained as the
horizon length increases. Note though that the rate at which the condition number of the
finite-dimensional Hessian approaches the bound is system-dependent, with the first Schur-
stable example system converging within 0.01% of the bound by N = 40, while the inverted
pendulum system requires N = 225 to converge to within 0.01%.

As described in Section 6.1, the condition number bound of Theorem 4.2.1(b) can be used to
analyze the preconditioned Hessian, which is shown in Figures 6.1b and 6.2b. The bound was
computed for the proposed preconditioner by finding L using Theorem 6.2.1, then substituting
(6.2) into Theorem 4.2.1(b). Note that the bound computed using L from Theorem 6.2.1
does not hold for the SDP preconditioner from [151], since L will be different between the
two preconditioners. Additionally, the SDP preconditioner does not guarantee that LN will
be block Toeplitz, so Theorem 4.2.1 cannot be used to compute horizon-independent limits
when using the SDP preconditioner.

Comparing the proposed preconditioner against the existing SDP preconditioner shows that
they produce nearly identical condition numbers, as can be seen in Figures 6.1b and 6.2b and
Table 6.1. Proposition 6.2.1 can also be seen in Figure 6.2b, where the conditioning of the
Hessian is not affected by the preconditioners, since the inverted pendulum is a single-input
system.

As shown in Table 6.1, both the SDP preconditioner and our proposed preconditioner
decrease the condition number by 66% for the Schur-stable system (2.16) and the already
Schur-stable non-prestabilized distillation column, and decrease the condition number for
the ill-conditioned Schur-stable system (2.17) by 97%. Applying the preconditioner to the
prestabilized inverted pendulum system has no effect, leaving the condition number identical
to the original, as predicted by Proposition 6.2.1 since this system has only one input.

6.3.2 Performance of the Fast Gradient Method

To test the effect of the preconditioners on the actual performance of a first-order method
solving the CLQR problem, the Fast Gradient Method (FGM) was implemented in Julia using
the constant step-size scheme [83] and gradient map stopping criteria [150, Section 6.3.1]
with a desired error of 10−5. The inequality constraints were implemented through projection
operations, with the non-prestabilized problems being simple projections onto a box and the
prestabilized problems requiring a more complex projection algorithm. In these examples,
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Table 6.1: Condition number of the preconditioned condensed Hessian.

System Original SDP [151] Proposed (Thm 6.2.1)
κ(HL) % change κ(HL) % change

Schur-stable (2.16) 8.776 2.922 -66.7% 2.933 -66.6%
Ill-conditioned

Schur-stable (2.17) 254.66 7.415 -97.1% 7.500 -97.1%

Inverted pendulum
(non-prestabilized) 42.512 42.468 -0.1% (NC)1 (NC)1

Inverted pendulum
(LQR prestabilized) 1.889 1.884 -0.21% 1.889 0%

Distillation column
(non-prestabilized) 21.527 7.175 -66.67% 7.175 -66.67%

Distillation column
(LQR prestabilized) 3.004 1.017 -66.14% 1.025 -65.86%

1 Not computable (non-Schur-stable system)
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Figure 6.1: Condition number versus the horizon length of the condensed Hessian for the first
Schur-stable system.

the projections for the prestabilized problems were computed by solving the projection QP
directly; however, in an embedded application other techniques like an explicit QP [121] can
be used instead.
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Figure 6.2: Condition number versus the horizon length of the prestabilized condensed Hessian
for the inverted pendulum system.

We present two types of iteration results in Table 6.2: the actual iterations taken by the
FGM and the cold-start Upper Iteration Bound (UIB) given by [151]. The UIB will be the
worst-case number of iterations needed to achieve convergence regardless of the number of
active constraints in the solution or the initial solution vector in the solver, while the actual
iterations is the number taken on a single example QP for the given CLQR problem.

When applying the proposed preconditioner to the Hessian, we see a 2.1x actual speedup and
2.6x UIB speedup for the Schur-stable system (2.16), a 3.6x actual speedup and 2.25x UIB
speedup for the non-prestabilized distillation column, and a 4.5x actual speedup and 9.5x UIB
speedup for the ill-conditioned Schur-stable system (2.17). When the SDP preconditioner is
applied to the non-prestabilized inverted pendulum, it has no discernable effect on the actual
iterations required for the FGM to converge, requiring 51 iterations in both cases.

A large decrease in iterations is caused by applying a prestabilizing controller to the
unstable inverted pendulum though, which results in a 12.75x speedup compared to the non-
prestabilized system. Applying a prestabilizing controller to the distillation column produces
a speedup of 9.6x compared to the non-prestabilized system, a larger speedup than just
preconditioning the non-prestabilized system.
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Table 6.2: Iterations required for cold-start convergence of the preconditioned Fast Gradient Method to
ϵ=10−5.

System Original1 SDP [151] Proposed (Thm 6.2.1)
Iterations1 Speedup Iterations1 Speedup

Schur-stable (2.16) 42 / 19 16 / 9 2.62x / 2.11x 16 / 9 2.62x / 2.11x
Ill-conditioned

Schur-stable (2.17) 294 / 114 32 / 25 9.19x / 4.56x 31 / 25 9.48x / 4.56x

Inverted pendulum
(non-prestabilized) 143 / 51 129 / 51 1.10x / - (NC)2 (NC)2

Inverted pendulum
(LQR prestabilized) 18 / 3 17 / 3 1.05x / - 18 / 3 - / -

Distillation column
(non-prestabilized) 97 / 48 43 / 25 2.25x / 1.92x 43 / 25 2.25x / 1.92x

Distillation column
(LQR prestabilized) 22 / 5 3 / 3 7.33x / 1.66x 3 / 3 7.33x / 1.66x

1 Cold-start upper iteration bound from [151] / actual
2 Not computable (non-Schur-stable system)

Table 6.3: Time required for computing the preconditioners.

System SDP [151] (ms) Proposed (Thm. 6.2.1) (ms) Speedup
Schur-stable (2.16) 197.4 0.213 926.7x

Ill-conditioned
Schur-stable (2.17) 142.9 0.218 655.5x

Inverted pendulum
(non-prestabilized) 18.69 (NC)1 (NC)1

Inverted pendulum
(LQR prestabilized) 17.45 0.218 80.0x

Distillation column
(non-prestabilized) 151,746 2.543 59,672x

Distillation column
(LQR prestabilized) 81,929 2.545 32,192x

1 Not computable (non-Schur-stable system)

The proposed preconditioner is also faster to compute than the SDP preconditioner for the
example systems, with timing results for the computations on an Intel® Core™ i7-10710U at
1.10 GHz with 64 GB of RAM given in Table 6.3 showing a consistent speedup of at least an
order of magnitude or more in the computation times. For example, the non-prestabilized
distillation column example has a 59,672x speedup in the computation time between the
proposed preconditioner and the SDP preconditioner, with the SDP preconditioner requiring
151.74 seconds to compute and the proposed preconditioner requiring only 2.5 milliseconds.
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6.4 Conclusions

In this chapter, we presented a new preconditioner that is based on the block Toeplitz
structure of the Hessian for the condensed CLQR problem when using either a prestabilizing
LQR controller or a Schur-stable system with appropriate choice of the terminal weight matrix
P . We showed that this preconditioner provides performance comparable to an existing SDP
preconditioner on several numerical examples, leading to speedups of between 2.1x and 9.6x for
the FGM. The proposed preconditioner is also faster to compute than the SDP preconditioner,
especially for problems with a long-horizon, like the distillation column example, which showed
a decrease in computation time of over 50,000x compared to the SDP preconditioner.

We also showed that the numerical prestabilization controller K has a direct effect on the
spectrum of the condensed Hessian. This means that preconditioning could also be achieved
through a careful choice of K instead of applying a separate preconditioner (at the expense of
turning the constraint sets into more complex shapes). Future work could explore developing
preconditioners using this idea, such as one based on the idea of loop-shaping the system to
control the singular values of the predicted system and reduce the condition number of the
Hessian.

The derivation and examples in this chapter focused on preconditioning the primal QP for the
CLQR problem, however it is also common to use the dual form (2.8) with first-order methods
such as Dual Gradient Projection or the Dual Fast Gradient Method. The preconditioner
defined in Theorem 6.2.1 could be extended to handle the dual problem by using the diagonal
blocks of the dual condensed Hessian in the preconditoner instead, however more work is
needed to examine this. For instance, the theoretical bounds for the preconditioned condensed
Hessian in Section 6.1 would need to be updated, since the cases in which the dual condensed
Hessian possesses a block Toeplitz structure are different from those for the primal condensed
Hessian, so there may be more technicalities in the resulting analysis.



Chapter 7

Fixed-point round-off error analysis†

As discussed in Chapter 2, many embedded implementations of MPC that utilize the FGM
are done using fixed-point arithmetic to save on resources and reduce the computational
complexity. A key part of designing these implementations is ensuring the data types
used are able to guarantee the algorithmic stability of the FGM in fixed-point arithmetic.
Requirement 2.5.1, which says the eigenvalues of the fixed-point Hessian (which we denote
as Ĥ) must be inside the unit circle, is a start, but it still leaves the question: how do we
choose the fractional width to ensure this requirement is met? In this chapter, we answer that
question by deriving a rounding stability margin for the Hessian and then use that margin to
derive inequalities that can be used to compute the number of fractional bits needed.

7.1 Matrix pseudospectrum

In this analysis, we will utilize a property of a matrix called its pseudospectrum.

Definition 7.1.1 (Pseudospectrum [170, §2]). Let A ∈ Cn×n, p ∈ [1,∞], and ϵ > 0 be
arbitrary. The ϵ-pseudospectrum λϵ(A) of A is the set of λ̃ ∈ C given by:

1.
⃦⃦⃦
(λ̃I −A)−1

⃦⃦⃦
p

> 1
ϵ , (or λmin(λ̃−A) < ϵ if p = 2), or

2. λ̃ ∈ λ(A + E) for some E ∈ Cn×n with ∥E∥p < ϵ.

†Material presented in this chapter has been published in the following work:
I. McInerney, E. C. Kerrigan, and G. A. Constantinides. Modeling round-off error in the fast gradient method
for predictive control. In 58th IEEE Conference on Decision and Control (CDC), pages 4331–4336, Nice,
France, 2019. IEEE. doi: 10.1109/CDC40024.2019.9029910. ©2019 IEEE.
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Figure 7.1: The inverse of the resolvent of H when λ̃ is constrained to the real line. The ϵ-
pseudospectra of H are the level-sets taken at the value ϵ, and the eigenvalues of H are located
at the red asterisks. ©2019 IEEE

Note that statements 1 and 2 in Definition 7.1.1 are equivalent. Statement 1 presents the
pseudospectrum as being the subset of the complex plane where the norm of the resolvent
of A is greater than ϵ−1. Alternately, statement 2 presents the pseudospectrum as the subset
of the complex plane containing the eigenvalues of A when A is perturbed by a matrix E with
a given norm less than ϵ.

The pseudospectrum is a useful computational tool for describing the behavior of linear
operators, especially those that are nonnormal (i.e. AA′ ̸= A′A). In this work though we
focus on normal operators (i.e. AA′ = A′A) since H is normal, which means that the ϵ-
pseudospectrum can be interpreted as the set of real numbers that are within ϵ of an eigenvalue
of A when using the 2-norm in Definition 7.1.1. An example pseudospectrum is shown in
Figure 7.1, where the inverse-resolvent of the Hessian for the example system presented later
in Section 7.3 is plotted along with the eigenvalues of the Hessian with a horizon length of 50.
The ϵ-pseudospectra of H are then the level-sets taken at ϵ of the resolvent function, with the
figure showing that the level sets for ϵ < 10−10 contain the eigenvalues of H in this example.

7.2 Choosing the fractional precision

When the Fast Gradient Method is implemented using a fixed-point data format, care must
be taken to ensure that Requirement 2.5.1 is satisfied. The placement of the eigenvalues of
Ĥ is determined by both the number of integer bits i (through overflow), and also by the
number of fractional bits f (through loss of precision). We will focus only on the fractional
length and assume the integer length is chosen using [83, Prop. 1] to prevent overflow.
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Figure 7.2: Interval containing the spectrum of Ĥ with different rounding modes.

The effect of the fractional length on the spectrum of the fixed-point Hessian Ĥ for the
numerical example in Section 7.3 with a horizon of length 50 can be seen in Figures 7.2
and 7.3 for four of the rounding modes available in fixed-point arithmetic that are described
in Table 2.2. In this example, using round to zero/nearest gives a fixed-point Hessian that
is always Schur-stable but becomes indefinite (eigenvalues less than 0) for f < 6. If round
to ±∞ is used, it is both unstable and indefinite in low precision (as seen in the intervals in
Figure 7.2). This shows that the rounding choice makes a large impact on the error between
Ĥ and H, and must be factored into any analysis to determine the required bit length.

To analyze how the rounding affects the matrix, we model the round-off error as an additive
matrix disturbance to H using

Ĥ = H + E. (7.1)

The exact values contained in the elements of the round-off matrix E in (7.1) will depend on
the rounding mode chosen, but the magnitude of the values will always be less than the ϵf

given in Table 2.2.

To quantify the effect that the round-off error has on the spectrum of Ĥ, we introduce a
metric called the rounding stability margin.

Definition 7.2.1 (Rounding stability margin). Let Ĥ = H + E with ∥E∥2 = β and λ(H) ∈
(0, 1). The rounding stability margin η is the smallest value of β that causes the eigenvalues
of Ĥ to leave the interval (0, 1).
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Figure 7.3: Extremal values of λ(Ĥ) with N = 50. ©2019 IEEE

This margin represents the largest possible disturbance matrix that can be added to H before
causing Requirement 2.5.1 to be violated. The margin can be calculated for symmetric
matrices using the pseudospectrum of H as shown in Lemma 7.2.1.

Lemma 7.2.1. Let H = H ′ be a matrix with eigenvalues λ(H) ∈ (0, 1). The rounding
stability margin η of H is

η(H) = min
{︂
∥(−H)−1∥−1

2 , ∥(I −H)−1∥−1
2

}︂
.

Proof. We begin by noting that H is symmetric, meaning its spectrum is composed of only real
eigenvalues and that its ϵ-pseudospectrum will be an interval on the real line. By statement
2 of Definition 7.1.1, the eigenvalues of H perturbed by E with ∥E∥2 < ϵ will leave the
interval (0, 1) and destabilize H when either 0 or 1 is contained inside λϵ(A). The largest
allowable value of ϵ can then be computed using statement 1 of Definition 7.1.1 by evaluating
the resolvent of H at the points 0 and 1, and computing 1/ϵ at each point.
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The result in Lemma 7.2.1 holds for any symmetric matrix H, so it can be used to find the
rounding stability margin for the Hessian of the CLQR problem (2.7) with any system or
weight matrices.

7.2.1 Generic rounding model

We now present a framework for computing the necessary number of fractional bits for the
FGM under a generic round-off error model that encompasses all of the rounding methods
described in Table 2.2. The basis for this model is that every element in H will experience an
error of at most ±ϵf , so the worst-case perturbation matrix would then have entries of ±ϵf .

Definition 7.2.2 (Generic round-off error model). Let ϵf be the maximum round-off error
created when a value is converted into a fixed-point representation with f fractional bits.
Define Eg ∈ Rk×k to be the worst-case component-wise round-off error matrix with ±ϵf in
every entry, i.e.

Eg :=

⎡⎢⎢⎢⎣
±ϵf ±ϵf . . .

±ϵf ±ϵf . . .
...

...
. . .

⎤⎥⎥⎥⎦ . (7.2)

While we call Eg the worst-case perturbation matrix, just choosing the extremes of each
element in a matrix is not guaranteed to produce the worst-case perturbation of the eigenvalue
spectrum. In this case though, we do not need to be worried about finding the exact worst-
case perturbation matrices since we will be working with matrix norms, and the 1-norm and
∞-norm of Eg will always be greater than the norm of the actual worst-case perturbation
matrix.

Since each element of (7.2) is the same, modulo the sign, the matrix 1-norm and∞-norm can
be computed exactly and then be used to upper-bound the 2-norm of Eg.

Lemma 7.2.2. Let Eg ∈ Rk×k be the round-off error matrix from Definition 7.2.2 and let ϵf

be the maximum round-off error possible with the rounding method. It follows that

∥Eg∥2 ≤ ∥Eg∥∞ = |ϵf |k.

Proof. Recall that the matrix ∞-norm (or 1-norm) is the largest absolute row (or column)
sum of the matrix. Since the 1-norm and∞-norm take the absolute value of the entries before
summing them, the sign of the rounding error is irrelevant. Since H is symmetric, this gives
∥Eg∥1 = ∥Eg∥∞ = |ϵf |k. Then, note that ∥Eg∥2 ≤

√︂
∥Eg∥1∥Eg∥∞ [21, Fact 9.8.23], which

means that ∥Eg∥2 ≤ ∥Eg∥∞.
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To find the number of fractional bits needed to satisfy Requirement 2.5.1, we must find the
number of bits needed to make the perturbation matrix less than the rounding stability margin
(i.e. ∥Eg∥2 < η). This can be done in closed-form, as shown in Theorem 7.2.1.

Theorem 7.2.1. Let f ∈ N+ be the number of fractional bits in the fixed-point number
representation, and ϵf the maximum round-off error a number may experience through
rounding in that representation. If H has a rounding stability margin of η, then the number
of fractional bits sufficient to guarantee that λ(Ĥ) ∈ (0, 1) is

f =

⎧⎨⎩
⌈︁
− log2

(︁ η
mN

)︁⌉︁
− 1 if using round to nearest,⌈︁

− log2
(︁ η

mN

)︁⌉︁
otherwise.

Proof. Using statement 2 of Definition 7.1.1 and the concept of the rounding stability margin
introduced in Definition 7.2.1, we can say that we need ∥Eg∥2 ≤ η to guarantee that λ(Ĥ) ∈
(0, 1). Using Lemma 7.2.2 and the fact that H is of dimension mN ×mN , we can transform
that requirement into |ϵf |mN ≤ η. Turning the inequality into an equality and isolating ϵf

then gives |ϵf | = η
mN . Using the fact that |ϵf | ∈ {2−f , 2−(f+1)} depending on the rounding

mode, we can substitute for ϵf and simplify to find f .

The closed-form expressions for f given in Theorem 7.2.1 hold for any rounding mode, and any
system/weight matrix combination. Note that all rounding modes have the same fractional
length with the exception of round to nearest, where 1 fewer bit is required.

The value of f from Theorem 7.2.1 is dependent upon both the horizon length and the system
input dimension, and is monotonically increasing in both, as shown for the horizon length in
Figure 7.4. This increase in the bound is caused by the monotonic increase in ∥Eg∥∞ when
the number of fraction bits is held constant and the horizon length increases. This means
that in general the fraction length computed for a specific horizon can be used with a shorter
horizon (e.g. in a decreasing-horizon controller), but may not be sufficient for longer horizons.

The generic round-off error model in Definition 7.2.2 and the associated fractional widths from
Theorem 7.2.1 can be used irrespective of the stability of the system being controlled (e.g.
there is no assumption of Schur-stability needed). This means the results apply to both the
normal condensed formulation (2.7) and the numerically robust condensed formulation (2.10).

7.2.2 Parametric rounding model

The generic model in Section 7.2.1 is conservative for some rounding modes when applied
to the FGM with long horizons and Schur-stable systems, especially round to nearest and
round to zero (as seen in Figure 7.4 when the actual bits needed for these two modes remains
constant). To reduce the conservatism of the error estimation, we introduce a parametric
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Figure 7.4: The minimum number of fractional bits required for a given horizon length when
using the generic rounding model from Theorem 7.2.1. The background shows the log of the
bound for ∥Eg∥2 computed using Lemma 7.2.2. ©2019 IEEE

model for the round-off error experienced by H that incorporates knowledge of both the
decay of terms in H and its block Toeplitz structure. This model requires the predicted
system to be Schur-stable, and for the FGM to use either the round to nearest or round to
zero rounding mode.

Using the block Toeplitz structure of the condensed Hessian that we derived in Chapter 4,
we can compute a horizon-independent value for the rounding stability margin η, as shown
in Lemma 7.2.3.

Lemma 7.2.3. Let H be the block Toepltiz Hessian from (2.7) with eigenvalues λ(H) ∈ (0, 1),
G be Schur-stable, PH the matrix symbol of H, and P be the solution of the discrete Lyapunov
equation (2.4). Then the rounding stability margin η is

η(H) := min
{︃⃦⃦⃦

(−PH)−1
⃦⃦⃦−1

H∞
,
⃦⃦⃦
(Im − PH)−1

⃦⃦⃦−1

H∞

}︃
.

Proof. Since the resolvent in Definition 7.1.1 can be found using λmin(λ̃−H), we can use the
results from Chapter 4 to replace H in Lemma 7.2.1 with its matrix symbol PH .
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Figure 7.5: Value of ∥[H]i∥ as the diagonal number grows. ©2019 IEEE

Note that we require H to have its eigenvalues inside the interval (0, 1) for Lemma 7.2.3.
This is not a restrictive assumption though, because if they are not in that interval, then the
cost function (2.7a) can be multiplied by 1

1.1λmax(H) to get the eigenvalues inside the interval.
Doing this transformation will only change the value of the optimal cost and not change the
optimal vector u that is found.

We can further exploit the block Toeplitz structure of H by noting that the diagonal blocks,
[H]i for diagonal i ∈ Z, are given by

[H]i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B′(Ai)′PB if i > 0,

B′PB + R if i = 0,

B′PA|i|B if i < 0,

(7.3)

with [H]i = [H]′−i and P the solution of the discrete Lyapunov equation (2.4). We define
diagonals as positive (or negative) if they are in the upper-triangular (or lower-triangular)
region. If A corresponds to the state transition matrix of a Schur-stable system, then as the
diagonal number i approaches ±∞, the block [H]i tends to 0, as shown in Figure 7.5.

The idea behind the parametric model is to exploit this decay and switch from modeling
the worst-case round-off error to instead modeling the actual round-off error after a certain
diagonal number. We now present a formal definition for this model in Definition 7.2.3.

Definition 7.2.3 (Parametric round-off error model). Let Ti ∈ Rl×l be the block on the
ith diagonal of the block Toeplitz matrix T with the property that limi→∞∥Ti∥max = 0. Let
ϵf be the round-off error associated with the conversion to fixed-point representation using
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either round to nearest or round to zero, and k be the diagonal beyond which all blocks in the
fixed-point representation T̂ i are 0, i.e.

k := min
i

{︂
i ∈ N+ | ∥Tj∥max < ϵf ,∀|j| ≥ i, j ∈ Z

}︂
.

Define the parametric round-off error matrix as

Ep := EG + ET ,

where EG is a matrix of bandwidth k − 1 with Eg as its blocks, i.e.

[EG]i :=

⎧⎨⎩Eg if |i| < k,

0 otherwise,

and ET is composed of the diagonal components of T that are after diagonal k, i.e.

[ET ]i :=

⎧⎨⎩Ti if |i| ≥ k,

0 otherwise.

Note that in this model, the value of k is inclusive of the first diagonal block which becomes
0, and k = 0 is not possible, since this would imply that the entire matrix has been rounded
to 0.

The matrix ET in Definition 7.2.3 is block Toeplitz, so its spectrum can be bounded using the
same system-theoretic techniques used in Chapter 4. This then allows for the computation
of the round-off error for the Hessian of (2.7).

Theorem 7.2.2. Let ϵf be the maximum round-off error when using either round to zero or
round to nearest to convert H into fixed-point representation. Let η be the rounding stability
margin of H from Lemma 7.2.3, and k be from Definition 7.2.3. If the parametric rounding
model is used with a Schur-stable system G with P the solution to the discrete Lyapunov
equation (2.4), then the fraction bit lengths sufficient for Ĥ to satisfy Requirement 2.5.1 also
satisfies the inequality

|ϵf |m(2k − 1) + 2∥PH̄(k,·)∥H∞ < η,

where

PH̄(n, z) := zGP (z)−B′PPn(z)B ∀z ∈ T,

GP (z) :=

⎡⎣ A B

B′P 0

⎤⎦ ,
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Pn(z) :=
n−1∑︂
i=0

Aiz−i ∀z ∈ T.

Proof. To guarantee that Requirement 2.5.1 holds, we need to find when ∥Ep∥2 < η. First
apply the sub-additive property of the matrix norm to get the inequality

∥EG∥2 + ∥ET ∥2 < η. (7.4)

The matrix EG is banded, with non-zero blocks on diagonals {−(k − 1), . . . , 0, . . . , k − 1}.
This gives the bound

∥EG∥2 ≤ |ϵf |m(2k − 1), (7.5)

since there are 2k−1 diagonals containing blocks of Eg with dimension m×m.

Since ET is a Toeplitz matrix, we can construct the matrix symbol using the Fourier series
of the components of ET as

PH̄ =
∞∑︂

i=k

B′PAiBz−i +
∞∑︂

i=k

B′(Ai)′PBzi. (7.6)

Adding and subtracting the first k terms of the summations then allows (7.6) to simplify to

PH̄ = B′P
(︂
(I − z−1A)−1 − Pk(z)

)︂
B + B′

(︂
(I − zA′)−1 − Pk(z)∗

)︂
PB. (7.7)

The first term in (7.7) then can be simplifed further to

zGP (z)−B′PPn(z)B. (7.8)

Note that the two terms in (7.7) are the conjugate transpose of each other. This means that
when the H∞ norm of PH̄ is taken, it will simply be twice the H∞ norm of (7.8). We can then
use the H∞ norm of PH̄ as a size-independent upper bound for ∥ET ∥2, giving the inequality

∥ET ∥2 ≤ 2∥PH̄(k,·)∥H∞ . (7.9)

The inequalities (7.5) and (7.9) can then be substituted into the inequality (7.4) as upper
bounds for the terms ∥EG∥2 and ∥ET ∥2, respectively, producing the inequality contained in
the lemma.

To compute the fractional bit length from the inequality in Theorem 7.2.2, we do the following:

1. compute ∥Hi∥2 using (7.3) for various values of i, and then
2. iterate through each fraction length to determine if the inequality in Theorem 7.2.2

holds.
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Figure 7.6: The matrix norms from Theorem 7.2.2, with round to nearest (RN), and round to
zero (RZ). ©2019 IEEE

7.3 Numerical experiments

In this chapter, we use a slightly modified version of the Schur-stable example problem from
Section 2.6, with the cost matrices Q = diag(0.1, 0.2, 0.3, 0.4) and R = diag(0.01, 0.02).

The result of computing the fractional bit length using Theorem 7.2.2 can be seen in Figure 7.6
for the example problem. In this example, EG dominates ET , so the worst-case round-off error
from the non-zero banded component dominates the error caused by truncating the tail of
H. The minimum number of fractional bits needed to satisfy Requirement 2.5.1 can be read
from the intersection of ∥Ep∥2 with η in Figure 7.6. It is also of note that the horizon length
was not used in any of the calculations in Theorem 7.2.2, meaning the computed bit length
is valid for any horizon.

From Theorems 7.2.1 and 7.2.2, we can see a correlation between the problem data and the
required data type size. To examine this, we performed experiments where Q was scaled
by α and R was held constant, with the results reported in Figures 7.7 and 7.8. Note that
for α > 10 the eigenvalues of H leave the interval (0, 1), so we introduce a scaling factor
c = 1

1.1λmax(H) to scale the matrices H and J in (2.7a) to bring the eigenvalues of H into the
interval (0, 1) before performing the analysis.

It can be seen from Figure 7.7a that for small values of α, the number of fraction bits needed
is small, with the structure-exploitation in Theorem 7.2.2 producing a savings of nearly 40%
compared to the generic model from Theorem 7.2.1. Additionally, once α becomes large and
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Figure 7.7: The effect of scaling the cost function on the rounding margin and fixed-point
representation. Q was scaled by α while R was held constant with a horizon of N = 20. ©2019
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of FGM using round to zero and the fractional lengths from Theorem 7.2.2. ©2019 IEEE

the scale factor c is needed, the number of integer bits decreases. This decrease in integer
bits offsets the increase in fractional bits leaving the overall number of bits nearly the same
as the number needed for small α.

Reducing the fractional length to the minimum needed can lead to a large decrease in
the required resources, power requirements, and solution times for FPGA implementations
compared with simply choosing either floating-point or a larger fixed-point data type to get
stability. This can be seen in Table 7.1, where we present results for an FPGA implementation
of the FGM using ProtoIP [95] targeting the Xilinx Zynq 7020 with a clock speed of
100MHz. An implementation with f = 12 uses 77% fewer memory blocks, 33% fewer
Digital Signal Processing (DSP) computation blocks, and 25% less time when compared
with an implementation for f = 26. The implementation with f = 12 also uses 85% fewer
memory blocks and takes 45% less time when compared to a single-precision floating-point
implementation. This lower precision can lead to convergence to a suboptimal solution though,
with experiments showing that using the minimum data type can lead to as much as a 15%
increase in the cost and degraded closed-loop performance, as shown in Figure 7.8.

7.4 Conclusions

In this chapter, we developed two methods to size the data types in the FGM to ensure the
fixed-point Hessian has its eigenvalues in the unit circle. The first method provides a generic
way that is capable of working with an arbitrary Hessian, but only provides horizon-dependent
sizing rules. The second method was a structure-exploiting parametric model that requires
a Schur-stable predicted system, but exploits that stability and the block Toeplitz structure
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Table 7.1: Resource usage for FGM implemented using ProtoIP [95] on a Zynq 7020 at 100MHz
with N = 20, i = 5. ©2019 IEEE

Fractional
Length

Logic Resources Power
(mW)

Solve
Time (µs)LUT FF DSP BRAM

f=12 947 768 4 2 20 532.17
f=16 1,136 912 4 2 25 612.17
f=21 887 1,033 8 8 43 701.77
f=26 993 1,237 12 9 48 701.77

float321 2,161 1,545 5 14 51 982.17
1 Single-precision floating-point representation

of the condensed Hessian to accurately estimate the round-off error caused by cutting off
the matrix at horizon N . We then proposed the use of the parametric model for computing
horizon-independent sizing rules for the round to nearest and round to zero rounding modes.
The numerical examples showed that the sizing rules based on the parametric model can
reduce the number of fractional bits needed by 30–45%, and reduce the hardware usage and
solution time by up to 77% and 25%, respectively, for an implementation of the FGM on an
FPGA.

These sizing rules also come at a cost though, with the data types created using these rules
leading to a difference in the performance of the solver of up to 20% when compared to
standard double precision arithmetic. This shows that future work is needed to explore
the relationship between the data type size and the suboptimality/performance of the
optimization solution, and the resulting closed-loop performance of the system.

An additional area that needs further work is the creation of stability guarantees in the
presence of round-off errors for the optimization solver with the projection operation. The
current stability analysis in [83] ignores the projection operation when examining the stability
of the FGM. Future work could explore the application of robust control ideas, such as
passivity analysis and Integral Quadratic Constraints, to the analysis of iterative solvers that
can be modelled as dynamical systems. These analysis techniques could then provide stability
guarantees for the algorithms under fixed-point arithmetic with the projection operation.
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Chapter 8

Mesh Adaptive Direct Search
algorithm†

Derivative-free Optimization (DFO) methods such as the Mesh Adaptive Direct Search
(MADS) are a class of optimization solvers that only use information about the cost function
value at strategically sampled points to locate the optimal solution. This means DFO
solvers require no information about the derivatives or Hessian of the optimization problem
in the solver computations, allowing the use of DFO methods with problems that have
nonsmooth or blackbox functions. This makes DFO solvers popular in fields such as oil
and gas well planning [75, 130], optimizing production processes [11, 45, 51, 52], and the
tuning of algorithm parameters [5, 10, 13, 100], where the cost function is computed using
long/complex/blackbox simulations.

This chapter provides an introduction to the MADS algorithm, which is an extension of
the Generalized Pattern Search (GPS) derivative-free method, and was first proposed for
continuous real variables in [6]. Over the years, MADS has been extended to work with
other types of optimization variables (such as periodic [9], categorical [1], and granular and
integer/binary [15]), model-based techniques and surrogate functions [39], and multi-objective
optimization [14, 23].

†Material presented in this chapter has been published in the following work:
I. McInerney, L. Nita, Y. Nie, A. Oliveri, and E. C. Kerrigan. Towards a framework for nonlinear predictive
control using derivative-free optimization. In 7th IFAC Conference on Nonlinear Model Predictive Control,
Bratislava, Slovakia, 2021. IFAC. ©2021 the authors.
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The presentation of the MADS algorithm in this chapter combines the ideas from several
works into a single statement of the algorithm, and provides a discussion on two techniques
for implementing constraints in MADS. The notation used in this chapter has been slightly
modified from the original MADS papers to make it internally consistent and to allow for a
clearer description of the NMPC formulation we will introduce in Chapter 9.

8.1 The MADS algorithm

The optimization problem that is solved using MADS is

min
c
F(c)

s.t. (c, w) ∈ Ω := {c ∈ Rm, w ∈ Rj : ωi(c, w) ≤ 0,∀i ∈ K},

where F : Rm → R is an arbitrary function that computes the cost of the optimization
problem. The vector c ∈ Rm contains the optimization variables that form the search space
for the algorithm, and w ∈ Rj is a vector used to pass values from the blackbox computation
of F to the constraints. The constraint set Ω is defined by the functions ωi(·) spanning the
search space, and the variables from the cost function F , with K the set of indices for the
functions ωi(·) that define Ω.

Pattern search methods sample the search space in each iteration at a set of points called poll
points. The poll points are located on a mesh of size δk inside a frame of size ∆k around the
current iterate ck, as shown in Figure 8.1. The poll point with the lowest cost value is chosen
as the next iterate and the process repeats.

The overall MADS algorithm with the constraints implemented using the progressive barrier
method that will be introduced in Section 8.2.2 is given in Algorithm 8.1, and consists of
three main parts: (i) a search phase, (ii) a poll phase, and (iii) a mesh/frame adaptation
phase. In the search phase, a set of points Sk is generated, with no restriction on the method
used to generate the points. The cost function is evaluated at each point s ∈ Sk, and if any
have a lower cost value than the current iterate ck, the mesh and frame sizes are enlarged,
and the search phase is repeated. If no better point is found, the poll phase is started.

The poll phase begins by generating a set of polling directions Dk that form a positive spanning
set of the search space∗. The set Dk is then used to create the set Pk of m+1 or more poll
points centered at the current iterate ck and contained inside the frame. The cost function
is then evaluated at each poll point p ∈ Pk. MADS can perform these evaluations in parallel

∗A positive spanning set D of the set X is a set of n vectors d1, . . . , dn where the positive span of all the
vectors is X — i.e. X =

{︁∑︁n

i=1 kidi : ki ≥ 0 ∀i ∈ {1, . . . , n}
}︁

.
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Figure 8.1: The mesh (solid black lines spaced δk apart) and frame (region of size ∆k inside the
solid blue lines) for GPS and MADS after one successful iteration. ©2021 the authors of [119].

and in an opportunistic fashion, meaning it can evaluate multiple poll points at once and
end the current iteration immediately after finding a point with a cost value lower than the
current iterate.

The final step in the MADS algorithm is to adapt the mesh and frame based on the results
of the poll phase. If a lower cost value has been found, then the mesh and frame get enlarged
by the adjustment parameter τ to allow for a faster exploration of the search space. If no
lower cost value is found, then the mesh and frame sizes are shrunk by τ to concentrate the
search closer to the current iterate. MADS can be terminated once the mesh size reaches a
pre-determined threshold, meaning that there is no better point within that distance of the
current iterate.

The poll and mesh adaptation phases are the only two phases required in every iteration
of the MADS algorithm to get convergence. The search phase is optional; however, its use
can help MADS escape local minimums and speed up the convergence of the algorithm by
allowing for more varied exploration of the search space and the exploration of regions in
the search space further away from the current iterate faster than the frame can enlarge to
include those regions.
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Algorithm 8.1 The Mesh Adaptive Direct Search with progressive barrier constraints [8].
Let: ≺F and ≺H be as given in Definitions 8.2.1a and 8.2.1b, respectively
Require: ∆0 ∈ (0,∞) ▷ Initial frame size
Require: τ ∈ (0, 1) ▷ Mesh size adjustment parameter
Require: ϵstop ∈ [0,∞) ▷ Stopping tolerance
Require: c0

f and\or c0
i ▷ Initial mesh centers

k ← 0
1: while ∆k ≥ ϵstop do
2: Vk ← ∅ ▷ Set of improving poll points
3: δk ← min {∆k, (∆k)2} ▷ Compute mesh size

4: 1) Search Phase:
5: Generate the search points Sk

6: for all s ∈ Sk do
7: Compute F and H at s
8: if s ≺F ck

f then
9: ck+1

f ← s ▷ Dominating
10: goto line 35
11: else if s ≺H ck

i then
12: ck+1

i ← s, ηk+1 ← H(s) ▷ Dominating
13: goto line 35
14: end if
15: end for

16: 2) Poll Phase:
17: Generate a positive spanning set Dk

18: Pk ← {ck
f + δkd : d ∈ Dk} ∪ {ck

i + δkd : d ∈ Dk} ▷ Compute poll points
19: for all p ∈ Pk do
20: Compute F and H at p
21: if p ≺F ck

f then
22: ck+1

f ← p ▷ Dominating
23: goto line 35
24: else if p ≺H ck

i then
25: ck+1

i ← p, ηk+1 ← H(p) ▷ Dominating
26: goto line 35
27: else if H(p) < ηk then
28: Vk ← Vk ∪ {p} ▷ Improving
29: end if
30: end for

31: if Improving then
32: v ← argmax{H(v) : H(v) < ηk, v ∈ Vk}
33: ck+1

i ← v, ηk+1 ← H(v)
34: end if

35: 3) Mesh/Frame Update:
36: if Dominating then
37: ∆k+1 ← τ−1∆k ▷ Expand frame size
38: else if Improving then
39: ∆k+1 ← ∆k ▷ Frame does not change
40: else
41: ∆k+1 ← τ∆k ▷ Shrink frame size
42: end if

43: k ← k + 1
44: end while ▷ Variables that are not set retain the same value in the next iteration.
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8.2 Constraint handling

Constraints inside MADS can be handled in many ways, with two possible implementations
being

• directly constrain the poll points and either reject any that violate the constraints or
modify the poll points to satisfy the constraints, or

• compute a metric indicating the amount of constraint violation and use the amount of
violation to change how the algorithm searches.

8.2.1 Extremal barrier constraints

The general idea behind the extremal barrier constraint method is to redefine the cost function
to be an extremal barrier function that returns infinity when the constraints are violated and
returns the cost function value otherwise, or put formally

FΩ(c) :=

⎧⎨⎩F(c), ∀(c, w) ∈ Ω,

∞, ∀(c, w) /∈ Ω.
(8.1)

The barrier term (8.1) ensures that MADS optimizes over only the feasible points by forcing
all infeasible points to have infinite cost, and thus to be effectively ignored by the algorithm.

If the constraint functions ω only require the poll point for their computation (i.e. only
require c and not w), then the extremal barrier method lets MADS to assign an infinite
cost to infeasible points without evaluating the cost function at them, reducing the number
of function evaluations performed. If instead the constraint functions require both the poll
point c and variables w, the cost function must still be evaluated at the poll point and passed
through the barrier term (8.1) to determine the cost.

While easy to implement, the extremal barrier method has several drawbacks, including

• no information is provided to guide MADS from infeasible points to the feasible space,
and

• a feasible starting point is required.

8.2.2 Progressive barrier constraints

Alternately, a method known as the progressive barrier technique was proposed in [7] that
uses knowledge of the constraint violation to have both a feasible and infeasible iterate in the
algorithm. In each iteration, the search phase tries to find a point that is better than either
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the feasible or infeasible iterate through its exploration. In the poll phase, the np polling
directions are used to generate a set of np poll points around both iterates (giving up to 2np

total poll points to evaluate in each iteration). By tracking the best infeasible iterate, MADS
can overcome the drawbacks of the extremal barrier method at the expense of doubling the
required computations in each iteration.

We define the set Ψ ⊃ Ω as the relaxed constraint set, where some constraints are implemented
using a progressive barrier form and others use an extremal barrier form. The function
H : Rk+j → R is then used to compute the constraint violation, and is defined as

H(c, w) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if (c, w) ∈ Ω,∑︁

l∈KΨ
(max{ωl(c, w), 0})2 , if (c, w) ∈ Ψ \ Ω,

∞, otherwise,

where KΨ is the set of indices for the constraints ω(·) that use the progressive barrier form.

Inside MADS, the progressive barrier relies on the notion of a dominating point, which is a
point that is better than the others in a specific sense.

Definition 8.2.1a (Dominating Feasible Point). The feasible point p ∈ Ω dominates the
point y ∈ Ω, denoted p ≺F y, when F(p) < F(y).

Definition 8.2.1b (Dominating Infeasible Point). The infeasible point p ∈ Ψ \Ω dominates
the point y ∈ Ψ \ Ω, denoted p ≺H y, when F(p) ≤ F(y) and H(p, wp) ≤ H(y, wy) (with at
least one strict inequality).

Definition 8.2.1a means that for feasible points, a point is dominating when its cost value
is smaller than the other point, while for infeasible points Definition 8.2.1b means that the
dominating point has a cost value and a constraint violation that are not bigger than the
other point.

An iteration of the MADS algorithm is then one of three types: dominating, improving or
unsuccessful.

Definition 8.2.2a (Dominating Iteration). A dominating iteration of MADS is when a point
y ∈ Ω that dominates the feasible iterate ck

f or a point y ∈ Ψ \Ω that dominates the infeasible
iterate ck

i is found.

Definition 8.2.2b (Improving Iteration). An improving iteration of MADS is when a non-
dominating infeasible point y ∈ Ψ \ Ω with 0 < H(y) < η is found.

Definition 8.2.2c (Unsuccessful Iteration). An unsuccessful iteration of MADS is when
neither a dominating nor an improving iteration occurs.
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Essentially, a dominating iteration for a feasible point is when MADS finds a new feasible
point that has a lower cost value than the current feasible iterate. For an infeasible point,
a dominating iteration occurs when MADS finds an infeasible point that has either a lower
constraint violation with the same cost value or a lower cost value with the same constraint
violation as the current infeasible iterate. In both cases, the iterates are updated, and the
mesh is expanded to search in a larger region around the new iterates. In an improving
iteration, no points with a lower cost were found, but an infeasible point with a constraint
violation smaller than the penalty parameter η was found. In this case, the new point becomes
the next infeasible iterate, the mesh size remains unchanged, and η is set to the constraint
violation at the new infeasible iterate. All other iterations are considered unsuccessful, and
the mesh will be shrunken to search in a region closer to the iterates in the next iteration.

The penalty parameter η is nonincreasing with the iteration number, starting at ∞ and
decreasing to 0 as the algorithm runs. This means that at the beginning, MADS is prioritizing
the search for the lowest cost value by allowing large constraint violations, but over time
η decreases and forces the infeasible iterates to move towards the feasible space. The
penalty barrier constraint method behaves similarly to a filter method in other optimization
algorithms, such as SQP, but requires the penalty parameter to be only nonincreasing and
not strictly decreasing.

8.3 Meshing

In MADS, the frame and mesh are controlled by different parameters (∆k and δk,
respectively), with

δk = min{∆k, (∆k)2} (8.2)

normally used. The main difference between MADS and GPS is that in GPS δk = ∆k at all
times. By allowing the mesh to shrink faster than the frame size in MADS, more possible
polling points are created around the current iterate ck. For example, Figure 8.1a shows the
result of one iteration of MADS using update rule (8.2). In this case there are 24 possible
polling points for MADS to choose in Figure 8.1a, versus 8 for GPS in Figure 8.1b.

8.3.1 Granular variables

An advantage to using the MADS algorithm is the native support for discrete/granular
variables in the algorithm itself, which was first described in [15]. A granular variable (also
called controlled decimal variables) is one that has a predetermined minimum spacing between
the possible values. For instance, a variable that has granularity 0.01 will only take on values
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0.01 apart, making the legal values 1.01, 1.02, 1.03, etc. Granular variables are a more general
type, and can be used to represent integer variables (granularity of 1), and binary variables
(granularity of 1 with a lower bound of 0 and upper bound of 1).

Granular variables in MADS are represented internally using two values a ∈ {1, 2, 5} and
b ∈ Z. These two values are used to define the discrete set

G := {a× 10b : a ∈ {1, 2, 5}, b ∈ Z}.

Two operations are then defined to map a value from G to another value in G:

Increase(a× 10b) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2× 10b if a = 1,

5× 10b if a = 2,

1× 10b+1 if a = 5,

Decrease(a× 10b) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
5× 10b−1 if a = 1,

1× 10b if a = 2,

2× 10b if a = 5.

Granular variables have their mesh constrained to only take values from a slightly modified
version of the discrete set G. In order to handle different granularity levels for each variable,
a granularity parameter δmin

i for the ith variable is introduced. The poll parameter for the
variable i is then constrained to be in the set

∆k
i ∈ G(δmin

i ) := {a× 10b × δmin
i : a ∈ {1, 2, 5}, b ∈ Z}.

The update rules for the granular variables in the mesh/frame update phase are then modified
so that the unsuccessful iteration update in Line 41 of Algorithm 8.1 becomes

∆k+1
i = δmin

i ×max
{︄

1, Decrease
(︄

∆k
i

δmin
i

)︄}︄
, (8.3)

and the dominating iteration update rule in Line 37 of Algorithm 8.1 becomes

∆k+1
i = Increase

(︂
∆k

i

)︂
. (8.4)

The new unsuccessful update rule (8.3) will continue to shrink the mesh size for the granular
variable up until it reaches the minimum granularity — at which point it will stop and
maintain a constant mesh size. The new dominating update rule (8.4) will allow the mesh
size to continually grow to as large a size as possible, while ensuring the point lies on the
defined granular mesh.
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The mesh size parameter δi is then obtained using

δk
i = δmin

i ×max
{︂

1, 10bk
i −|bk

i −b0
i |
}︂

.

This mesh size parameter is then used in the creation of the polling set Pk to project the
polling direction di onto the granular set for variable i.

8.4 Convergence

The fact that the mesh size in MADS shrinks faster than the frame size means that, as the
algorithm converges, the closure of the cone containing all the generated polling directions will
be equal to Rm in the limit (i.e. D := ⋃︁∞

k=1 Dk = Rm), and the set of all polling directions D is
then said to be asymptotically dense. It was shown in [6] that this set of asymptotically dense
polling directions allows for the algorithm to converge to a Clarke stationary point with non-
negative Clarke derivatives (e.g. a local minimum for the nonsmooth function) when linear
constraints are placed on the search space. In contrast, GPS loses the theoretical convergence
guarantees when simple bound constraints are applied. Additionally, when a progressive
barrier approach is used for handling nonlinear constraints, it was shown in [7] that MADS
is still effective at finding the stationary point.

8.5 Conclusions

In this chapter, we presented an overview of the mesh adaptive direct search algorithm for
derivative-free optimization. This algorithm is an extension of the classic pattern search
method that decouples the mesh size from the frame size and allows for the mesh size to
decrease faster than the frame size. This in turn allows for the algorithm to produce search
directions surrounding the incumbent point that are dense on the unit sphere — guaranteeing
the convergence of MADS to a stationary point.

MADS also has explicit handling of inequality constraints in the algorithm formulation using
the progressive barrier method, instead of relying on the extremal barrier method or a penalty
barrier approach in the cost function. This allows for better handling of the constraints, and
the separation of feasible and infeasible iterates. Finally, MADS also provides support in
the underlying algorithm for multiple types of variables, such as granular/binary/integer,
categorical, and periodic variables.
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Chapter 9

DFO-NMPC problem formulation†

In this chapter, we present a novel problem formulation for solving the nonlinear MPC
problem (2.1) using the MADS algorithm. This formulation is able to enforce the constraints
across the entire time horizon instead of only at certain points, and uses the progressive
barrier method described in Section 8.2.2 to implement the constraints instead of a penalty
barrier method.

9.1 Proposed formulation

The core of the proposed problem formulation is based on the pattern search method in [53],
where the search space for MADS is the set of all input trajectories and a single shooting
simulation of the continuous-time dynamics (2.1b) is done to compute the cost. Instead of
the basic pattern search method, the proposed formulation will use the MADS algorithm,
increasing the number and diversity of the directions polled and improving the convergence
of the algorithm.

Each function evaluation in the proposed framework simulates the system over the time
horizon with the chosen input trajectory, and then computes the overall cost value and
constraint violation for that trajectory. To easily handle the path constraints and the Lagrange
term of the cost, an augmentation scheme is used to introduce new states to the system

†Some material presented in this chapter has been published in the following work:
I. McInerney, L. Nita, Y. Nie, A. Oliveri, and E. C. Kerrigan. Towards a framework for nonlinear predictive
control using derivative-free optimization. In 7th IFAC Conference on Nonlinear Model Predictive Control,
Bratislava, Slovakia, 2021. IFAC. ©2021 the authors.



166 DFO-NMPC problem formulation

dynamics to represent the Lagrange term and the violation of the path constraints. This
allows the path constraints to be enforced across the entire horizon instead of only at specific
points in the horizon.

9.1.1 Cost functional

The NMPC cost functional (2.1a) is composed of two distinct terms, the Mayer term
representing the contribution to the cost of the terminal states/inputs and the Lagrange
term representing the contribution to the cost of the full trajectory of the system. In the
proposed DFO-NMPC formulation, the cost functional (2.1a) is split into its two terms, and
the Lagrange term is handled by augmenting the system dynamics with a new state ℓ(t)
that represents the value of the Lagrange term at time t. This new state is governed by the
dynamics equation

ℓ̇(t) = L(x(t), u(t), t). (9.1)

This state is then computed alongside the trajectory of the system using the same dynamics
solver at the same time.

9.1.2 Path constraints

The path constraints (2.1c) are formulated as progressive barrier constraints, putting them
inside the set Ψ described in Section 8.2.2. An L1 measure of constraint violation is used for
each constraint, meaning the value reported as the violation experienced by constraint i is

vi =
∫︂ tf

t0
max{0, gi(x(t), u(t), t)} dt. (9.2)

To compute the integral (9.2), new states v(t) are added to the system dynamics to represent
the constraint violation over time. Those states are governed by the dynamics equation

v̇(t) = g+(x(t), u(t), t) (9.3)

where g+ is the vector function representing the element-wise computation of

max{0, gi(x(t), u(t), t)}.

The value of the violation states at the final time (i.e. v(tf )) is then used as the constraint
violation measure in a progressive barrier constraint.
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Algorithm 9.1 Function evaluation for the DFO formulation of the NMPC problem
Let: c be the point in the search space being evaluated

1: Construct the input trajectory u from c
2: Simulate the augmented dynamics (9.4) using an appropriate solver for the dynamics

equations ⎡⎢⎣0
0
0

⎤⎥⎦ =

⎡⎢⎣ f(ẋ(t), x(t), u(t), t)
L(x(t), u(t), t)− ℓ̇(t)

g+(x(t), u(t), t)− v̇(t)

⎤⎥⎦ (9.4)

3: Compute the violation of the boundary conditions

vb =
∑︂

i

ρbi
|hi(x(t0), u(t0), t0, x(tf ), u(tf ), tf )| (9.5)

4: Compute the overall constraint violation

H ← v2
b +

∑︂
i

ρi(vi(tf ))2 (9.6)

5: Compute the cost function value

F ← Φ(x(tf ), u(tf ), tf ) + ℓ(tf ) (9.7)

9.1.3 Overall problem formulation

An implementation of the formulation described in this section is given in Algorithm 9.1.
The first step is to construct the input trajectory described by the current poll point c. The
representation of the input trajectory will depend on the problem, but this formulation can
support many different representations, including

• piecewise-constant trajectories with the input values at each sample given by the
elements of the poll point,

• an interpolated polynomial with the interpolation points and coefficients given by the
elements of the poll point, or

• a feedback policy with the parameters of the policy given by the elements of the poll
point.

After constructing the input trajectory, the augmented dynamics (9.4) are simulated over the
horizon length using a suitable numerical solver for differential equations.

After the simulation completes, the violation of the boundary conditions is computed in (9.5)
followed by the total constraint violation in (9.6), which uses the value of the augmented states
v at the final time as the measure of the violation of the path constraints. This formulation
also includes weighting parameters ρ to allow the designer to set the priority/influence of each
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path and boundary constraint in the overall algorithm. Finally, the value of the NMPC cost
function (2.1a) for the selected poll point is computed in (9.7), which computes the Mayer
term and then adds the final value of the Lagrange state ℓ(tf ).

Note that this formulation can be used with derivative-free solvers other than MADS, provided
F and H inside the function given in Algorithm 9.1 are mapped to the appropriate variables
in the desired algorithm. The main advantage to using MADS with the proposed formulation
is that H is mapped to the special handling of the progressive barrier constraints, allowing
for the distinct feasible and infeasible algorithm iterates. If this formulation were to be used
with other algorithms (e.g. PSO, evolutionary methods, etc.), the value returned by H must
be incorporated in another way, such as through a penalty term in the cost.

9.2 Discussion and conclusions

The DFO-NMPC formulation that is proposed in this chapter has several advantages over
existing formulations, namely:

1. the ability to handle more variable types such as granular, periodic and categorical,
2. explicit handling of the constraints to produce a known-feasible solution,
3. constraint enforcement across the entire horizon, and
4. more accurate cost computation across the entire horizon.

Of these advantages, 1 and 2 are due to the choice of the MADS algorithm as the DFO solver,
while 3 and 4 are due to the proposed problem formulation.

9.2.1 Advantages of using MADS

The choice of the MADS algorithm allows the formulation to take advantage of the existing
extensions to the algorithm in the literature that handle different kinds of variables in the
solver, so the DFO-NMPC formulation no longer has to be modified directly to support those
variable types. For instance, if the system model requires granular input variables (e.g. if
the inputs are quantized), the proposed DFO-NMPC formulation can just use the MADS
technique discussed in Section 8.3.1 that implements granularity in the actual algorithm.
This is in contrast to other DFO methods such as PSO that need the search space to be the
real numbers, forcing the discretization into the actual simulation/cost function and making
the algorithm not aware of it.

An additional advantage of MADS over the other DFO methods is the ability to separate
feasible and infeasible iterates using the progressive barrier constraints. As discussed in
Section 2.2.1, nearly all existing NMPC formulations for DFO solvers rely on penalty
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barrier methods to implement the path constraints, which can complicate the solution of
the optimization problem because now the solution will depend on the penalty parameter.
For instance, the use of a fixed penalty will lead to simply trading off the constraint violation
against the cost and won’t ensure the constraints are fully enforced. To enforce the constraints,
other NMPC formulations for DFO solvers must then also implement an update rule for the
penalty parameter to ensure that the penalty parameter goes to infinity to force the constraint
violation to zero. Instead, MADS provides inherent separation of the feasible and infeasible
solutions, and also provides a built-in update rule to improve the infeasible solution as the
algorithm progresses.

9.2.2 Augmentation scheme

The dynamics augmentation scheme contained in the proposed formulation provides the final
two advantages. Using the augmentation scheme, the proposed formulation is able to actually
account for the Lagrange cost and constraint violation between sampling intervals. This allows
for not only a more accurate approximation of the continuous-time values, but also is more
portable to other input representations.

When used with the simulation-based solvers (like single shooting), the existing method of
enforcing the constraints at specific time points and integrating the Lagrange cost using
a Riemann sum is tied closely to the idea of a piecewise representation of the input
trajectory. If instead another representation is used, like an interpolating polynomial or
function coefficients, there will no longer be discrete time points along the horizon that provide
easy places to enforce the constraints or use as the points in the Riemann sum. Any usage
of the existing formulations would then require the creation of arbitrary time points along
the horizon at which to enforce the constraints, and a quadrature scheme to compute the
Lagrange cost term.

The proposed formulation will instead handle the Lagrange term and constraint enforcement
the same way for piecewise input trajectories and other types (like interpolating polynomials).
This simplifies the transcription of the problem and implementation of the solver.
Additionally, the proposed formulation will place the Lagrange cost and constraint
enforcement onto the same mesh as the dynamics, and make the mesh point locations be
determined by the dynamics solver instead of a post-processing mesh refinement scheme.

It should be noted that the idea of this augmentation is not actually novel in the world
of optimal control. For instance, the idea of augmenting the dynamics with the Lagrange
term is included in some optimal control courses, such as [32, Section 3.2.3]. Augmenting
the dynamics with constraints was originally proposed by [76], with further work and
experimentation in [172, Chapter 4] and [173]. Since then, however, solution methods such
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as multiple shooting and direct collocation have instead chosen to enforce the constraints at
the shooting nodes and collocation points, respectively, instead of augmenting the dynamics
to incorporate them.

While the augmentation scheme seems easy to use and aptly suited for DFO-NMPC,
this scheme can also introduce inefficiencies to the solver. By introducing the dynamics
equations (9.1) and (9.3), we have made the solvability and the stiffness of the augmented
dynamics equation (9.4) be dependent on the Lagrange term and the constraints as well as
the original dynamics equations. This means that when the cost or constraints vary over time
or are defined by stiff equations, they can cause the dynamics solver to struggle and possibly
require smaller step sizes, slowing down the simulation process. Additionally, simply enforcing
the constraint satisfaction using a single number at the final time does not provide the
underlying optimization solver with any information about the locations of the infeasibility,
or which inputs are causing it. Instead, [172, Section 4.3] provides some extensions to the
augmentation scheme that introduce additional constraints across the horizon. Adapting these
extensions to work with the proposed DFO-NMPC formulation, and adapting the MADS
algorithm to better incorporate the information from them, is an open area of research.



Chapter 10

DFO-NMPC for a robust Goddard
rocket problem†

In this chapter, we demonstrate how to apply the DFO-NMPC formulation from Chapter 9 to
an optimal control problem. We present results for several different variations of the problem,
including

• with/without path constraints,
• with penalty barrier terms/with the progressive barrier method for constraint handling,

and
• with/without granular control variables.

We also present a comparison between a MADS and a PSO implementation of the resulting
DFO-NMPC problem.

10.1 Example problem

The example problem used in this chapter is a modified version of the Goddard rocket problem
in [132].

†Some material presented in this chapter has been published in the following work:
I. McInerney, L. Nita, Y. Nie, A. Oliveri, and E. C. Kerrigan. Towards a framework for nonlinear predictive
control using derivative-free optimization. In 7th IFAC Conference on Nonlinear Model Predictive Control,
Bratislava, Slovakia, 2021. IFAC. ©2021 the authors.
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Table 10.1: Physical parameters for the rocket dynamics (10.1).

(a) Fixed parameters

Parameter α β ρ0 d g0 Tmax

Value 2.255× 10−5 4.256 1.225 kg⁄m3 17.5 cm 9.81 m⁄s2 1000

(b) Bounds on the uncertain parameters

Parameter CDl
CDu Ispl

Ispu

Value 0.4 0.5 1800.0 2200.0

10.1.1 System dynamics

The rocket is governed by the dynamics equation

ẋ(t) = f(x(t), T (t)) =

⎡⎢⎢⎢⎣
vv(t)

T (t)−0.5CDρ(h(t)) πd2
4 (vv(t)2)

m(t) − g(h(t))
−T (t)

Isp

⎤⎥⎥⎥⎦ , (10.1)

with the state vector
x(t) =

[︂
h(t) vv(t) m(t)

]︂′
composed of the altitude h(·) in meters, vertical velocity vv(·) in meters per second and mass
m(·) of the rocket in kilograms, respectively. d is the rocket diameter, g(h) := g0 is the
gravitational constant at altitude h, and

ρ(h) := ρ0 (1− αh)β

is the air density at altitude h, with all the parameter values given in Table 10.1a. The
parameters CD and Isp are the drag coefficient and specific impulse, respectively. The thrust
T (·) is specified as a function of time that takes values from the set T (t) ∈ [0, Tmax]. The
rocket has bounded uncertainty on the parameters CD and Isp, where CD ∈ [CDl

, CDu ] and
Isp ∈ [Ispl

, Ispu ] with the bounds on the uncertainty given in Table 10.1b.

It was shown in [132, Section 3.5] that the rocket system (10.1) with uncertain parameters CD

and Isp is a monotone system with respect to the thrust input and the uncertain parameters.
This means that if the uncertain parameters of the differential equation f are thought of as
inputs to the system (with the input vector given by u(t) :=

[︂
T (t) CD Isp

]︂′
), for two state

vectors x(1) and x(2) and two input vectors u(1) and u(2), the system dynamics satisfy the
property

f(x(1), u(1))− f(x(2), u(2)) ∈ X ∀x(1) − x(2) ∈ X , u(1) − u(2) ∈ U ,
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Figure 10.1: Robust tube for the robust Goddard rocket problem when the same input is applied
to the upper and lower bound trajectories.

with X := R≥0 × R≥0 × R≤0 and U := R≥0 × R≤0 × R≤0 for all time. Essentially, the
monotonicity property of the rocket system means that for two rockets with the exact same
fixed parameters, if rocket 1 has the same or smaller specific impulse and drag parameter
than rocket 2 and rocket 1 always has the same or more thrust applied than rocket 2 does,
then the altitude and velocity in the state trajectory x(1) of rocket 1 will always be the same
as or greater than the altitude and velocity in the state trajectory x(2) of rocket 2, and the
mass in x(1) will always be the same as or smaller than the mass in x(2) when the trajectories
start at the same point x(1)(t0) = x(2)(t0) or when x(1)(t0) has a larger altitude and velocity
and smaller mass than x(2)(t0).

The monotonicity of the rocket system, coupled with bounds on the uncertain parameters,
initial states and the inputs to the system, allows for the creation of a robust tube that all
system trajectories will lie inside, shown in Figure 10.1. For this rocket problem, the robust
tube is bounded by two realizations of the rocket system with the following properties

upper bound system fu(·) — system f(·) with parameters CDl
, Ispl

and final time tfu ,
lower bound system fl(·) — system f(·) with parameters CDu , Ispu and final time tfl

,

where tfl
≤ tfu . The state and input trajectories for the upper bound system are xu(·) and

uu(·), respectively, and the state and input trajectories for the lower bound system are xl(·)
and ul(·), respectively.

10.1.2 Optimal control problem

The objective of the optimal control problem is to determine the thrust profile of the rocket
such that the apogee of the rocket is at the target altitude of 10,000 feet (3,048 meters). The
input trajectory is defined as a piecewise constant function, with both the thrust settings Ti

and the switching times σi as optimization variables. The input trajectory has 5 phases, with
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the first phase forcing the thrust to be Tmax and the last phase forcing the thrust to be 0,
giving the piecewise-constant thrust function

T (t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tmax if 0 ≤ t < σ1,

T2 if σ1 ≤ t < σ2,

T3 if σ2 ≤ t < σ3,

T4 if σ3 ≤ t < σ4,

0.0 if σ4 ≤ t.

(10.2)

The uncertainty in the dynamics model is handled by implementing a robust optimal control
problem that exploits the monotone nature of the dynamics to only optimize two trajectories:
the upper bound system and the lower bound system. By applying the same thrust input
and the same initial state to the upper and lower bound systems, the monotonicity of the
rocket system guarantees that any trajectory of the system with parameters that fall into the
disturbance set will lie within the upper and lower bound systems (i.e. the robust tube).

This robust optimal control problem is expressed using a min-max formulation, where the
overall objective of the OCP is to minimize the largest of the differences between the apogee
of the two bound trajectories and the target altitude. The optimization uses the two bound
trajectories instead of optimizing the average trajectory (which is formed using the average
of the bounds for the uncertain parameters) because the average trajectory is not actually
the center of the robust tube. This can be seen in Figure 10.1, where the apogee of the
average trajectory is 3022.29 m and the center of the robust tube is at 3047.99 m. This means
that optimizing to make the apogee of the average trajectory be the target altitude would
introduce a bias in the optimal solution that would lead to some disturbance realizations
overshooting the target altitude by a larger amount than if the robust tube were used.

The rocket will only be controlled until its apogee is reached, making the comparison between
the attained altitude and target altitude occur at the final time points tfl

and tfu for the lower
and upper bound trajectories, respectively. The complete OCP for the robust rocket control
problem is then,

min
T,σ

max
xl,xu

{|hu(tfu)− 3048|, |3048− hl(tfl
)|} (10.3a)

s.t. ẋl(t) = fl(xl(t), T (t)), ẋu(t) = fu(xu(t), T (t)) (10.3b)

xl(0) = xu(0) =
[︂
0 0 33.5

]︂′
(10.3c)

vvl
(tfl

) = vvu(tfu) = 0 (10.3d)

vvl
(t) ≤ 150 ∀t ∈ [0, tfl

] (10.3e)

vvu(t) ≤ 150 ∀t ∈ [0, tfu ] (10.3f)
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ml(tfl
) ≥ 26, mu(tfu) ≥ 26 (10.3g)

0 ≤ σ1 ≤ σ2 ≤ σ3 ≤ σ4 ≤ min {tfl
, tfu} (10.3h)

Ti ∈ [0, Tmax] ∀i ∈ {2, 3, 4} (10.3i)

where T (·) is the thrust function defined in (10.2). Both the upper and lower bound
trajectories use the same thrust function, but each have their own final times given by tfu and
tfl

for the upper and lower bound trajectories, respectively. As an example path constraint,
the rocket’s velocity is constrained to be less than 150 m⁄s to represent a modeling limitation
where the bounds on the uncertainty for the drag coefficient are only known below 150 m⁄s.

Note that the objective function (10.3a) is non-differentiable, so this problem is well suited for
a DFO solver since using conventional gradient-based methods would only be possible after
a reformulation, which could increase the dimensions and complexity of the problem.

10.1.3 Transcription to DFO-NMPC

To convert the Goddard rocket problem from Section 10.1.2 into the DFO-NMPC framework
from Chapter 9, the OCP (10.3) was transcribed into a MADS optimization problem as
described in this section.

Search space

The first step in transcribing the rocket problem to a MADS optimization problem is to
define the search space for the MADS solver. Since the initial phase is forced to start at time
t = 0 and to have a thrust of Tmax, and the final phase is forced to have a thrust of 0%, the
thrust values for those phases will not be included in the search space, and instead will be
hard-coded in the simulation as T1 = Tmax, and T5 = 0.0.

Since the rocket problem is a free final time problem, an additional consideration is how
the final times tfl

and tfu should be represented in the optimization problem. In traditional
methods, such as direct collocation or multiple shooting with a derivative-based solver, the
final time would be added as a variable in the optimization solver by forcing a collocation
point/shooting node at the final time. This collocation point/shooting node would then
provide the mesh point where the final boundary conditions are enforced.

In this transcription method, the final times will not be included as variables in the
optimization search space, and will instead be determined by the dynamical simulation. The
OCP (10.3) includes a final state equality constraint (10.3d) on the velocity, which when
coupled with the choice of a specific input trajectory, will force there to be a single unique
final time for each simulation. This means that if the final time were to be included in the
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search space, the problem would end up being over-defined. The search space of the over-
defined optimization problem would then be composed of partially-disconnected feasible sets,
where the variables representing the final times will have a single feasible value they can take
that is dependent on all the other optimization variables.

Overall, this makes the search space for the MADS problem

c :=
[︂
c1 c2 c3 c4 c5 c6 c7

]︂′
=
[︂
σ1 T2 σ2 T3 σ3 T4 σ4

]︂′
.

Constraint handling

To enforce the path constraints in the OCP (10.3), the state augmentation scheme described
in Section 9.1.2 is used with the progressive barrier formulation of MADS.

The constraints enforcing the ordering of the switch times and the bounds on the thrust
are strictly input constraints and do not require any state information to be computed.
Therefore, there is no need to augment the dynamics with new states to compute their
violation, so they are included as normal progressive barrier constraints, with the ω functions
shown in (10.5a)–(10.5d) and (10.5e)–(10.5j) for the switch time constraints (10.3h) and thrust
constraints (10.3i), respectively.

The boundary constraints on the final mass (10.3g) and the path constraints on the vertical
velocity (10.3e) and (10.3f) depend on state information, and therefore information from
the dynamics simulation performed in the cost function is needed to compute the constraint
satisfaction. Since the velocity path constraints must be enforced across the entire horizon,
the augmentation scheme is used to introduce two new states gl and gu to track the constraint
violation of the velocity constraints for the lower and upper bound trajectories, respectively.
Those two states have the dynamics

ġl(t) = max{0, vvl
(t)− 150},

ġu(t) = max{0, vvu(t)− 150}.

The value of these states at the final times tfl
and tfu will be used as the constraint violation

in the progressive barrier constraints (10.5m) and (10.5n), so the values gu(tfu) and gl(tfl
)

are included in the w vector of simulation variables computed by the function F .

Since the mass constraint is a terminal inequality constraint, there is no need to augment
the dynamics to track the constraint violation over the entire horizon. Instead, only the
value of the mass states at the final times need to be included in the w vector for use in the
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progressive barrier constraints (10.5k) and (10.5l). Put together, the w vector computed by
the cost function F and then used when computing the progressive barrier constraints is

w :=
[︂
w1 w2 w3 w4

]︂′
=
[︂
gl(tfl

) gu(tfu) ml(tfl
) mu(tfu)

]︂′
. (10.4)

Overall, this leads to the following 14 progressive barrier constraint functions

ω1(c, w) = −c1, (10.5a)

ω2(c, w) = c1 − c3, (10.5b)

ω3(c, w) = c3 − c5, (10.5c)

ω4(c, w) = c5 − c7, (10.5d)

ω5(c, w) = −c2, (10.5e)

ω6(c, w) = c2 − Tmax, (10.5f)

ω7(c, w) = −c4, (10.5g)

ω8(c, w) = c4 − Tmax, (10.5h)

ω9(c, w) = −c6, (10.5i)

ω10(c, w) = c6 − Tmax, (10.5j)

ω11(c, w) = max{0, 26.0− w3}, (10.5k)

ω12(c, w) = max{0, 26.0− w4}, (10.5l)

ω13(c, w) = w1, (10.5m)

ω14(c, w) = w2, (10.5n)

with 10 requiring only information about the current poll point and the other 4 requiring
values computed during the dynamics simulation.

Cost function and dynamics simulation

The OCP cost function (10.3a) only contains a Mayer term to penalize the altitude difference
at the final time, and does not contain a Lagrange term. Since no Lagrange term is included,
there is no need to augment the dynamics with a cost integral state ℓ.

The function F that is used as the cost function for MADS is then composed of three steps

1. simulate the augmented dynamics for the lower and upper bound systems,
2. compute the value of the Mayer term, and then
3. form the vector w (10.4) of the simulation variables for the constraints.
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The value of the Mayer term is then returned to MADS as the cost value at the current poll
point, and the vector w is returned to MADS to be used in the evaluation of the progressive
barrier constraints (10.5) at the current poll point.

In the dynamics simulation, two dynamics solvers are used to compute the state trajectory of
both the upper and lower bound trajectories of the rocket. One solver will compute the state
trajectory and constraint violation of the lower bound system using the augmented dynamics[︄

ẋl(t)
ġl(t)

]︄
=
[︄

fl(xl(t), T (t))
max{0, vvl

(t)− 150}

]︄
, (10.6)

while the other will compute the state trajectory and constraint violation of the upper bound
system using the augmented dynamics[︄

ẋu(t)
ġu(t)

]︄
=
[︄

fu(xu(t), T (t))
max{0, vvu(t)− 150}

]︄
. (10.7)

These solvers will each terminate when their respective state vectors satisfy the boundary
condition (10.3d) (i.e. the rocket has a vertical velocity of 0).

10.2 Experimental configuration

The numerical results presented in this chapter were computed using Julia 1.6.1 on a computer
with an Intel® Core™ i7-10710U CPU at 1.10 GHz with 64 GB of RAM.

The augmented dynamics systems (10.6) and (10.7) were solved using the trapezoidal method
solver from version 6.19.0 of the DifferentialEquations.jl Julia package [147] with a minimum
time step size of 10× 10−10.

The PSO solver inside version 1.4.1 of the Optim.jl Julia package [127] was used to compute
all the numerical results for the particle swarm version of the DFO-NMPC framework. The
PSO solver was run using the default settings and the default stopping criteria.

The MADS solver inside the DirectSearch.jl∗ Julia package was used to compute all the
MADS numerical results. The MADS solver was run using the default settings of the unit
sphere polling method with an anisotropic mesh [15] with no search phase and with sequential
evaluation of the poll points (i.e. no parallelism). The mesh size convergence criteria was left
at its default setting of a minimum mesh size of 1.11 × 10−16, and the maximum number
of iterations and function evaluations were set to 10,000 and 50,000, respectively (instead of
their defaults of 1,000 and 5,000, respectively).

∗Available at https://github.com/ImperialCollegeLondon/DirectSearch.jl
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Note that in the following numerical experiments, the thrust levels for the phases in the input
trajectory are reported as being percentages of the maximum thrust Tmax.

10.3 Solution without velocity path constraints

The first set of numerical results is for the OCP (10.3) solved without the velocity path
constraints (10.3e) and (10.3f) being enforced, but with the remaining constraints enforced
using the progressive barrier method with barrier functions (10.5a)–(10.5l). The results for
this example can be seen in Figure 10.2, with a summary of the results and solver status in
Table 10.2.

Overall, MADS was able to solve the DFO-NMPC problem successfully in 54 iterations and
only evaluated the cost function using Algorithm 9.1 855 times (running 1710 dynamical
simulations). MADS was able to converge to a solution that had a cost of 229.52, and
terminated automatically once the mesh precision stopping criteria was satisfied. The MADS
solver ran for 1.69 s, with the majority of this time spent performing the cost function
computation and the dynamical simulations and only 0.0033 s spent in the internal MADS
computations.

As can be seen in the altitude plot in Figure 10.2a and the results in Table 10.2a, the upper
and lower bound trajectories produce a robust tube with the center exactly at the target
altitude of 3048 m. However, examining the velocity of the rocket in Figure 10.2b shows that
the thrust trajectory required to produce this robust tube will lead to the rocket attaining a
velocity of more than 150 m⁄s during the flight, with the profile for the amount of the cumulative
constraint violation above 150 m⁄s shown in Figure 10.2e.

The optimal thrust trajectory found can be seen in Figure 10.2d and Table 10.2b. In the
optimal trajectory, the first and last phases with the preset thrust values are visible, while
the middle phase has three distinct regions of differing length and thrust values.

10.4 Solution with velocity path constraints

The next set of numerical results show what happens when the path constraints (10.3e)
and (10.3f) on the velocity are included in the optimization problem one of two ways: either
through penalty barrier terms in the cost function or using the progressive barrier method.
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(a) Altitude profile

(b) Velocity profile

(c) Mass profile

(d) Input trajectory

(e) Cumulative violation of (10.3e) and (10.3f)

Figure 10.2: Open-loop solution to (10.3) with no velocity path constraints (switching times are
at the vertical dashed lines).
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Table 10.2: Results for MADS DFO-NMPC with no velocity path constraints.

(a) Results

hu(tfu) 3277.52 m
hl(tfl

) 2818.47 m
Tube center 3048.00 m
Feasible cost 229.52
Infeasible cost 1182.20
Solver iterations 54
Function evaluations 855
Termination method Mesh precision
Total solver runtime 1.69 s
Function eval. time 1.58 s
Internal MADS time 0.0033 s

(b) Thrust trajectory

Phase Start
(s)

Thrust
(%)

Finish
(s)

1 0.0 100.0 7.4957
2 7.4957 62.977 8.4795
3 8.4795 55.948 12.1525
4 12.1525 32.235 16.9956
5 (lower) 16.9956 0.000 29.3905
5 (upper) 16.9956 0.000 31.5019

10.4.1 Penalty barrier implementation

As a baseline comparison, the path constraints (10.3e) and (10.3f) were transcribed into the
DFO-NMPC problem by adding the penalty barrier term

ϕ = 100(gl(tfl
))2 + 100(gu(tfu))2

to the cost function (10.3a). The remaining constraints were implemented using the
progressive barrier method with the barrier functions (10.5a)–(10.5l).

The results for MADS solving the resulting DFO-NMPC problem with the penalty barrier
constraints can be seen in Figure 10.3, with the input trajectory values and solver results in
Table 10.3. MADS was able to solve this problem with a cost value of 226.59 (slightly lower
than the cost with no velocity path constraints), and in 58 iterations using 925 evaluations of
Algorithm 9.1 to compute the cost function. As can be seen in the altitude plot in Figure 10.3a
and the results in Table 10.3a, the penalty method is able to get the center of the robust tube
to within 0.01 m of the target altitude of 3048 m. The effectiveness of the penalty barrier
constraints can be seen in Figure 10.3b, where the velocity states for both the upper bound
and lower bound systems are always less than the 150 m⁄s limit, leading to zero cumulative
constraint violation in Figure 10.3e.
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(a) Altitude profile

(b) Velocity profile

(c) Mass profile

(d) Input trajectory

(e) Cumulative violation of (10.3e) and (10.3f)

Figure 10.3: Open-loop solution to (10.3) with velocity path constraints using penalty barriers
in the cost (switching times are at the vertical dashed lines).
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Table 10.3: Results for MADS DFO-NMPC with velocity path constraints using penalty barriers
in the cost.

(a) Results

hu(tfu) 3274.59 m
hl(tfl

) 2821.40 m
Tube center 3047.99 m
Feasible cost 226.59
Infeasible cost 2.172e8
Solver iterations 58
Function evaluations 925
Termination method Mesh precision
Total solver runtime 1.515 s
Function eval. time 1.427 s
Internal MADS time 0.0034 s

(b) Thrust trajectory

Phase Start
(s)

Thrust
(%)

Finish
(s)

1 0.0 100.0 6.9976
2 6.9976 34.003 10.7953
3 10.7953 26.051 14.4954
4 14.4954 43.994 20.9983
5 (lower) 20.9983 0.000 32.1613
5 (upper) 20.9983 0.000 34.1331

10.4.2 Progressive barrier implementation

The results of using the progressive barrier method to implement the velocity path
constraints (10.3e) and (10.3f) in the DFO-NMPC formulation of the rocket problem can
be seen in Figure 10.4 and the results and input trajectory can be seen in Table 10.4. All
other constraints were implemented using the progressive barrier method as well, meaning all
the barrier terms in (10.5) were used in the MADS optimization problem.

MADS was able to solve the DFO-NMPC problem with a cost of 223.80 (slightly lower
than the cost using the penalty barrier term), and in 72 iterations using 1149 evaluations of
Algorithm 9.1 to compute the cost function before satisfying the mesh precision termination
criteria. The altitude plot in Figure 10.4a and the results in Table 10.4a show that the
progressive barrier method was able to find a solution such that the upper and lower bound
systems form a tube with its center only 0.01 m away from the target altitude of 3048 m. The
progressive barrier term also ensured that the velocity path constraints were satisfied for the
optimal solution, as can be seen in Figure 10.4b where the velocity is always less than 150 m⁄s

at all times and in Figure 10.4e where there is no cumulative constraint violation.

While finding the optimal solution using the progressive barrier method required more
iterations of MADS than the penalty barrier approach, the penalty barrier method required
slightly more time to find the optimal solution, needing 1.515 s instead of the 1.455 s
the progressive barrier required. The progressive barrier method did slightly increase the
computational time needed for the internal MADS computations, with the internal MADS
computations taking 0.004 s instead of the 0.0034 s for the penalty barrier method.



184 DFO-NMPC for a robust Goddard rocket problem

(a) Altitude profile

(b) Velocity profile

(c) Mass profile

(d) Input trajectory

(e) Cumulative violation of (10.3e) and (10.3f)

Figure 10.4: Open-loop solution to (10.3) with velocity path constraints using the progressive
barrier method (switching times are at the vertical dashed lines).
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Table 10.4: Results for MADS DFO-NMPC with velocity path constraints using the progressive
barrier method.

(a) Results

hu(tfu) 3271.80 m
hl(tfl

) 2824.19 m
Tube center 3047.99 m
Feasible cost 223.80
Infeasible cost 3031.49
Solver iterations 72
Function evaluations 1149
Termination method Mesh precision
Total solver runtime 1.455 s
Function eval. time 1.353 s
Internal MADS time 0.004 s

(b) Thrust trajectory

Phase Start
(s)

Thrust
(%)

Finish
(s)

1 0.0 100.0 6.1901
2 6.1901 31.900 8.6174
3 8.6174 49.032 15.0201
4 15.0201 33.213 20.9136
5 (lower) 20.9136 0.000 31.8484
5 (upper) 20.9136 0.000 33.8382

10.4.3 Comparison against particle swarm optimization

To compare the proposed MADS DFO-NMPC implementation against an existing DFO
method, the OCP (10.3) was solved using a Particle Swarm Optimization (PSO) solver.
The transcription used to convert the OCP (10.3) into the optimization problem for the PSO
solver was similar to the one described in Section 10.1.3, with several key differences in the
handling of the constraints.

The Optim.jl [127] PSO solver used for the comparison can only natively handle bound
constraints on the optimization variables. Therefore, the constraints in the OCP (10.3) that
were originally implemented using the progressive barrier method in MADS had to be modified
to instead be a combination of bound constraints, extremal barrier constraints and penalty
barrier terms.

The upper/lower bounds on the thrust values from (10.5e)–(10.5j) were passed to the solver
as explicit bounds on the optimization variables representing the thrust levels. Explicit bound
constraints were also added to ensure all the switching times were in the interval [0, tmax],
with tmax = 40 s chosen as a suitable value based on the previous simulation results.

The constraints (10.5a)–(10.5d) that enforce the ordering of the switching times were
transformed into extremal barrier constraints in the cost function of the PSO problem,
causing the cost to return infinity if any of those constraints were violated. The velocity path
constraints (10.3e) and (10.3f) were enforced using the dynamics augmentation approach to
compute the overall constraint violation across the entire prediction horizon. The overall
violation of the velocity path constraints was then used inside the penalty barrier term

ϕ = 100(gl(tfl
))2+100(gu(tfu))2+100(max{0, 26.0−mu(tfu)})2+100(max{0, 26.0−ml(tfl

)})2,
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Table 10.5: Results for DFO-NMPC solved with PSO and with velocity path constraints.

(a) Results

hu(tfu) 3270.00 m
hl(tfl

) 2825.99 m
Tube center 3047.99 m
Feasible cost 222.0
Solver iterations 1000
Function evaluations 8007
Termination method Max iters
Total solver runtime 8.708 s

(b) Thrust trajectory

Phase Start
(s)

Thrust
(%)

Finish
(s)

1 0.0 100.0 0.0
2 0.0 99.697 5.1043
3 5.1043 60.324 9.8586
4 9.8586 40.578 19.8546
5 (lower) 19.8546 0.000 31.5245
5 (upper) 19.8546 0.000 33.5295

alongside two terms imposing the constraints (10.5k)–(10.5l) on the final mass of the rocket.

The solution found by the PSO solver can be seen in Figure 10.5, with the solver results and
the input trajectory in Table 10.5. The resulting thrust trajectory causes the rocket to follow
the altitude profile plotted in Figure 10.5a, with the upper and lower bound systems forming
a robust tube centered 0.01 m below the target altitude of 3048 m. A key difference between
the PSO solution and the solution from MADS with the progressive barrier method is in the
constraint satisfaction of the velocity path constraints. As shown in Figure 10.5e, the PSO
solution introduces a small amount of constraint violation in the velocity constraint for the
upper bound system while the progressive barrier method does not.

Another difference between the PSO implementation and the MADS implementation is in
the behavior of the solver when finding the solution. To mimic the approach a design
engineer might use, both of these solvers were run using near-default settings/values, with no
tuning of constants/parameters attempted. For MADS using the progressive barrier method,
Table 10.4a shows that these settings resulted in only 1149 function evaluations and MADS
terminating when the mesh size was below the stopping threshold. In comparison, the PSO
method shown in Table 10.5a used 8007 function evaluations and only terminated due to
reaching the maximum number of permitted iterations of the solver (1000 iterations in the
default settings). This meant that the PSO solver ran for 8.708 s while the MADS solver ran
for only 1.455 s.

10.5 Quantized input variables

The next example examines when the inputs to the rocket are quantized and forced to only
take certain values. As can be seen in the computed input trajectories for the previous
examples, the DFO-NMPC method will return thrust values and switching times that have
several decimal places of information. This is not always realizable in the real-world system
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(a) Altitude profile

(b) Velocity profile

(c) Mass profile

(d) Input trajectory

(e) Cumulative violation of (10.3e) and (10.3f)

Figure 10.5: Open-loop solution to (10.3) using PSO with velocity path constraints as penalty
barriers (switching times are at the vertical dashed lines).
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though, because control inputs will only be applied at certain intervals and physical actuators
have a fixed number of possible positions. This means there will be an inherent quantization
stage between when the control is computed using all the real numbers and when it is applied
to the actual system using only the allowed timings and positions.

For the rocket problem examined here, we will introduce quantization on both the time steps
and the thrust input. The time steps are limited to only 1 second increments, representing
a real-world system that either will only apply the controller every second or a limitation of
the actuator that means the actuator position can only be changed every second. The thrust
levels are limited to be in the set Ti ∈ {0%, 25%, 50%, 75%, 100%}, representing an actuator
that only has 5 possible positions. Using the terminology for granular variables that was
introduced in Section 8.3.1, this means δmin

T := 0.25 (since the thrust is represented as a value
between 0 and 1) and δmin

σ := 1.0.

10.5.1 Quantized version of continuous results

To understand the effect just the quantization of the input trajectory has on the trajectory of
the rocket, the input trajectory computed using the unquantized MADS with progressive
barrier constraints in Section 10.4.2 and given in Table 10.4b was passed through the
quantization functions

σ̂i = δmin
σ Round

(︃
σi

δmin
σ

)︃
, (10.8a)

T̂ i = δmin
T Round

(︄
Ti

δmin
T

)︄
, (10.8b)

to produce the quantized trajectory given in Table 10.6b. The quantization operation has
caused a percent decrease in the thrust applied in phases 2 and 4 by 21% and 24%, respectively,
causing the velocity profile in Figure 10.6b to be lower than the original profile in Figure 10.4b.

This reduction in velocity has then caused a reduction in the apogee altitude of each bound
system. The upper bound system now only attains 2875.28 m whereas before it attained
3271.80 m, so the robust tube will no longer contain the target altitude of 3048 m. A
corresponding decrease also occurred with the lower bound system, meaning the center of
the robust tube is now at 2690.10 m. This means the trajectory that would be implemented
will cause the rocket to undershoot the target altitude by over 300 m when it was originally
computed to have the center of the robust tube nearly perfectly at the target altitude.
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(a) Altitude profile

(b) Velocity profile

(c) Mass profile

(d) Input trajectory

(e) Cumulative violation of (10.3e) and (10.3f)

Figure 10.6: Open-loop solution to (10.3) using the quantized input trajectory in Table 10.6b
(switching times are at the vertical dashed lines).
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Table 10.6: Results using a quantized version of the input trajectory in Table 10.4b.

(a) Results

hu(tfu) 2875.28 m
hl(tfl

) 2504.93 m
Tube center 2690.10 m

(b) Thrust trajectory

Phase Start
(s)

Thrust
(%)

Finish
(s)

1 0.0 100.0 6.0
2 6.0 25.0 9.0
3 9.0 50.0 15.0
4 15.0 25.0 21.0
5 (lower) 21.0 0.0 30.36
5 (upper) 21.0 0.0 32.11

10.5.2 Using granular MADS

To handle the granularity of the switching times and thrust values that was introduced in
this section, the granular MADS solver described in Section 8.3.1 was used with the original
OCP (10.3) transcribed into a DFO-NMPC problem using the same transcription method as
described in Section 10.1.3. Exchanging the regular MADS solver with progressive barrier
constraints for the granular MADS solver with progressive barrier constraints was as simple
as specifying the granularities on all the input variables in the problem data and rerunning
the code — there were no modifications to the cost/constraint functions needed to make this
change.

The granular MADS solver results and the computed input trajectory can be seen in
Table 10.7, with the resulting system response shown Figure 10.7. Granular MADS was able
to find a solution using 67 iterations (5 fewer than the non-granular case) and only used 1071
evaluations of Algorithm 9.1 to compute the cost function (78 fewer than the non-granular
case) before converging to the solution. The cost of the optimal trajectory was 265.33, which
is only an 18.5% increase in the cost value.

The granular solution computed by MADS has the upper bound system reaching an altitude
of 3231.59 m, a 40 m decrease compared to the regular MADS solution. The lower bound
system also has a smaller apogee altitude of 2782.66 m, leading to the center of the robust
rube decreasing to 3007.13 m — a 40 m decrease from the non-granular problem. Compared
to the quantized input trajectory created in Section 10.5.1, the solution using the granular
MADS solver now has the target altitude in the computed tube, while the quantization of
the trajectory from regular MADS shown in Table 10.6b did not.
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(a) Altitude profile

(b) Velocity profile

(c) Mass profile

(d) Input trajectory

(e) Cumulative violation of (10.3e) and (10.3f)

Figure 10.7: Open-loop solution to (10.3) with quantized input variables using granular MADS
(switching times are at the vertical dashed lines).
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Table 10.7: Results with quantized inputs solved using granular MADS.

(a) Results

hu(tfu) 3231.59 m
hl(tfl

) 2782.66 m
Tube center 3007.13 m
Feasible cost 265.33
Infeasible cost 1310.85
Solver Iterations 67
Function evaluations 1071
Termination method Mesh precision
Total solver runtime 1.207 s
Function eval. time 1.091 s
Internal MADS time 0.025 s

(b) Thrust trajectory

Phase Start
(s)

Thrust
(%)

Finish
(s)

1 0.0 100.0 7.0
2 7.0 25.0 9.0
3 9.0 50.0 13.0
4 13.0 25.0 23.0
5 (lower) 23.0 0.0 31.79
5 (upper) 23.0 0.0 33.75

10.5.3 Using quantized PSO

As a comparison, PSO was also used to solve the OCP with quantized inputs using a slightly
modified form of the problem formulation described in Section 10.4.3. In this case, since there
was no built-in support in the PSO solver for handling the granular variables, an additional
step is needed at the beginning of the cost function to apply the quantization scheme given
in (10.8) to the vector of variables passed to the cost function by the PSO solver. This
quantized vector was then used in the computation of the constraints, dynamics simulation,
and final cost value.

Overall, this quantization scheme appears to lead to the PSO solver becoming somewhat
confused when searching for the optimal input trajectory, resulting in a solution with a cost
of 396.02. The solver output and system response can be seen in Table 10.8 and Figure 10.8,
respectively. The PSO solver terminated after 1000 iterations, the maximum number allowed,
and in the process performed 8007 evaluations of the objective function using Algorithm 9.1.
One point to notice about the input trajectory is that the solver decided to remove the first
two thrust phases (so phase 3 starts at time t = 0.0 s) and only allow for 2 intermediate thrust
levels in the solution.

The end result is that the upper bound system only attains the altitude of 3069.63 m at its
apogee — barely above the target altitude of 3048 m. In the process, the solver also introduced
a minor violation of the velocity path constraint, as can be seen in Figure 10.8e. The end
result is that the center of the robust tube is now at 2867.57 m, which is now 180 m below
the target altitude.
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(a) Altitude profile

(b) Velocity profile

(c) Mass profile

(d) Input trajectory

(e) Cumulative violation of (10.3e) and (10.3f)

Figure 10.8: Open-loop solution to (10.3) with quantized input variables solved using PSO
(switching times are at the vertical dashed lines).
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Table 10.8: Results with quantized inputs solved using PSO.

(a) Results

hu(tfu) 3069.63 m
hl(tfl

) 2665.51 m
Tube center 2867.57 m
Feasible cost 396.02
Solver iterations 1000
Function evaluations 8007
Termination method Max iters
Total solver runtime 13.195 s

(b) Thrust trajectory

Phase Start
(s)

Thrust
(%)

Finish
(s)

1 0.0 100.0 0.0
2 0.0 100.0 0.0
3 0.0 75.0 2.0
4 2.0 50.0 25.0
5 (lower) 25.0 0.0 36.87
5 (upper) 25.0 0.0 38.73

10.6 Overdetermined problem formulation

While describing the problem transcription in Section 10.1.3, we noted that the final times for
the upper and lower bound systems were actually dependent upon the switching times and
input trajectory, and so should not be included in the search space of the DFO solver. The
example in this section shows what happens if the final times are included in the DFO solver
search space, which could happen when simply using a transcription method based on the
ideas from direct collocation or multiple shooting, where the final times must be provided as
variables to the solver to ensure there is a collocation point/shooting node at the final times
to enforce the terminal constraints.

To include the final times in the MADS optimization problem, the problem transcription
described in Section 10.1.3 was modified to have the final times tfl

and tfu in the vector of
optimization variables used by MADS, giving

c =
[︂
c1 c2 c3 c4 c5 c6 c7 c8 c9

]︂′
=
[︂
σ1 T1 σ2 T2 σ3 T3 σ4 tfl

tfu

]︂′
.

The dynamics solver then simulates the dynamics for the lower bound and upper bound
systems until the time given by c8 and c9, respectively. Since the dynamics simulation no
longer terminates when the velocity state is zero, new constraints were added to enforce the
final velocity constraint (10.3d). The new constraints on the final velocity require the value
of the velocity states at the final time point to be included in the w vector passed to the
progressive barrier constraints, giving

w =
[︂
w1 w2 w3 w4 w5 w6

]︂′
=
[︂
gl(tfl

) gu(tfu) ml(tfl
) mu(tfu) vvl

(tfl
) vvu(tfu)

]︂′
.

Five new progressive barrier constraints were then added to the problem formulation, with

ω15(c, w) = c7 − c8,
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ω16(c, w) = c7 − c9,

constraining the final times to be greater than the last switching time,

ω17(c, w) = c8 − c9,

constraining the final time for the upper bound system to be larger than the final time for
the lower bound system, and

ω18(c, w) = |w5|,

ω19(c, w) = |w6|,

constraining the final velocity of the rocket to be zero.

The results from the formulation that included the final times in the optimization can be seen
in Table 10.9 and Figure 10.9. The first point to notice is that the MADS solver required
24.656 s to solve the problem, using 1334 iterations and 26531 evaluations of Algorithm 9.1
before terminating when the mesh size decreased to below the termination criteria. Compared
with the progressive barrier MADS in Section 10.4.2 that only required 1.455 s and 72
iterations, including the final times in the optimization variables made MADS use 1200 more
iterations, 25000 more function evaluations, and take 23 s of additional runtime.

The solution that MADS located has the lower bound system reaching an altitude of 1941.95 m
at apogee, and the upper bound system reaching an altitude of 2187.48 m at apogee. This
means the center of the robust tube is only at 2064.71 m, nearly 1000 m below the target
altitude of 3048 m.

Overall, this solution shows that MADS was unable to locate any other point in the search
space in its polling states that were better able to satisfy the boundary constraints and make
the rocket have an apogee near the target altitude. This is in contrast to the results shown
in Section 10.4.2, where not including the final times in the optimization vector and instead
handling the terminal velocity constraints in the simulation allowed MADS to find a solution
that placed the center of the robust tube within 0.01 m of the target altitude.

10.7 Conclusions

In this chapter, we demonstrated the DFO-NMPC formulation from Chapter 9 on a robust
version of the Goddard rocket optimal control problem. We presented results for several
different variations of both the DFO-NMPC problem and the transcription method described
in Section 10.1.3, including
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(a) Altitude profile

(b) Velocity profile

(c) Mass profile

(d) Input trajectory

(e) Cumulative violation of (10.3e) and (10.3f)

Figure 10.9: Open-loop solution to (10.3) including tfl
and tfu

in the MADS optimization
problem (switching times are at the vertical dashed lines).
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Table 10.9: Results for MADS DFO-NMPC with tfl
and tfu included in the optimization problem.

(a) Results

hu(tfu) 2187.48 m
hl(tfl

) 1941.95 m
Tube center 2064.71 m
Feasible cost 1106.05
Infeasible cost 1106.09
Solver iterations 1334
Function evaluations 26531
Termination method Mesh precision
Total solver runtime 24.656 s
Function eval. time 23.952 s
Internal MADS time 0.089 s

(b) Thrust trajectory

Phase Start
(s)

Thrust
(%)

Finish
(s)

1 0.0 100.0 4.7086
2 4.7086 56.592 9.5393
3 9.5393 42.330 12.8963
4 12.8963 41.258 14.0507
5 (lower) 14.0507 0.000 25.1896
5 (upper) 14.0507 0.000 26.6167

• no path constraints in the OCP,
• handling the path constraints using penalty barrier terms in the cost,
• handling the path constraints using the progressive barrier method,
• using granular MADS to handle the quantized system inputs, and
• including the final times in the search space.

Additionally, the MADS implementation was compared against a DFO-NMPC
implementation using PSO with penalty barrier/extremal barrier constraints.

These results show that the proposed DFO-NMPC formulation using MADS is able to solve
a robust version of the Goddard rocket problem, and that the progressive barrier method for
handling constraints in MADS can be applied to DFO-NMPC. The result of the DFO-NMPC
MADS solver was the same as the one found by the PSO solver, with the resulting robust tubes
having their centers within 0.01 m of the target altitude. The key difference between the two
solvers was the iterations/function evaluations required — with the MADS solver requiring
only 72 iterations (1149 function evaluations) to reach the mesh size termination threshold
and terminate with the optimal solution compared to the 1000 iterations (8007 function
evaluations) used by the PSO solver before reaching the maximum number of iterations
allowed.

The key observation in this example is that the proposed formulation using MADS is more
generalizable to other problem types than formulations using PSO, as shown in the example
where quantization is introduced on the input and time variables for the Goddard rocket
problem. To use the PSO framework with quantized inputs, the cost function needed to
be modified to include an additional step to actually perform the quantization of the input
variables before evaluating the constraints and cost, since the underlying PSO solver has
no method of handling quantized variables natively. This led to the PSO solver using 1000
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iterations (8007 function evaluations) to find a robust tube that barely included the target
altitude and had its center 180 m below the target altitude. The proposed DFO-NMPC
framework using MADS required no modifications to the cost function or constraints to
implement the input/time quantization, and only required informing the underlying MADS
algorithm about the quantization level for each variable. The solution the granular MADS
solver found then had the tube center 40 m below the target altitude and only required 67
iterations and 1071 function evaluations (7 more iterations than the non-granular MADS
solver) before reaching the mesh size termination criteria.

The numerical examples also show that the MADS solver is computationally lightweight,
with the majority of the runtime in the DFO-NMPC examples spent inside the cost function
evaluation/dynamics simulation instead of the MADS solver itself. Introducing granular
variables in the DFO-NMPC problem did increase the time required for the internal MADS
computations, going from 0.004 s for MADS using the progressive barrier method to 0.025 s
for MADS using both granular variables and the progressive barrier method. This increase in
the time required for the internal MADS computations had virtually no impact on the overall
runtime though, since the 0.025 s spent in the MADS solver for the quantized input example
is still orders of magnitude smaller than the total runtime of 1.207 s. This shows that granular
MADS can provide a computationally lightweight solver for problems with quantized/integer
variables, eliminating the need to use more complex and computationally expensive mixed
integer solvers based on techniques such as branch and bound or cutting planes.

The final observation that we can make about the DFO-NMPC framework is that the designer
should not approach the problem transcription for DFO methods the same as they would the
transcription for derivative-based methods such as direct collocation or multiple-shooting.
Using the problem transcription methods commonly associated with derivative-based methods
with a derivative-free solver instead can lead to problems that are overdetermined and that
can confuse the DFO solver. Instead, the designer should modify the transcription to suit the
different DFO-NMPC problem formulation and the new degrees of freedom in transcription
that are provided. For instance, the example rocket problem showed that for problems with
terminal constraints and a free end time, it may be better to not include the end time in
the optimization search space and instead use the dynamics simulation with a termination
condition based on the terminal constraints.
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Chapter 11

Conclusions and future work

In this thesis, we examined two aspects of numerical methods for MPC. First, we showed in
Part II how block Toeplitz operators appear in the condensed linear MPC problem and how
they can be used to analyze/design extensions for the optimization solvers for the condensed
linear MPC problem. Next, in Part III we developed a way to transcribe the nonlinear MPC
problem (2.1) into an optimization problem suitable for the Mesh Adaptive Direct Search
derivative-free optimization solver, and then demonstrated this transcription method on a
robust rocket control problem.

11.1 Toeplitz operators in linear MPC

Examining how Toeplitz operators appear in control theory is not a new field, with prior work
already identifying the relation between Toeplitz operators and both H∞ optimal control and
some parts of linear MPC. In this work, we extended the earlier results and showed that
block Toeplitz operators are related to many of the matrices in the condensed linear MPC
problem, and that many properties of these operators can be exploited to create bounds on
the condition number/eigenvalues for the matrices in linear MPC, design preconditioners, and
model the round-off error in embedded implementations.

Analysis and computational complexity

The largest amount of theoretical work in this thesis is contained in Chapter 4, which
examines how the block Toeplitz structure of the prediction matrix, primal condensed
Hessian, condensed constraint matrix, and the dual condensed Hessian in linear MPC can
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be exploited to form a relation between the spectrum of the individual matrices and the
singular value spectrum of the predicted system. This relation says that the extrema of
the eigenvalue/singular value spectrum of the matrix can be bounded by the spectrum of a
function containing the transfer function matrix of the predicted system, provided it is Schur
stable (which can be guaranteed by using the numerically robust CLQR formulation (2.10)).
These relations also hold for any size of the matrices, allowing for the computed bounds to
hold for any horizon length and for the computation of an upper bound on the condition
number of the primal condensed Hessian that will hold for any horizon length.

In Chapter 5, we then used the spectral bounds on the primal condensed Hessian to examine
how the computational complexity can change depending on the cost function of the linear
MPC problem. This examination was done in two parts: (i) deriving theory for how the
eigenvalues/condition number scales as the weight matrices are scaled, and (ii) examining how
that scaling affects the upper iteration bounds of the FGM and DGP algorithms. One of the
key observations that we made using these results is that the eigenvalue spectrum/condition
number of the condensed Hessian has two distinct components, and that when the cost
function is modified, one of these components will then dominate the other and have the
largest effect on the spectrum of the condensed Hessian. For example, when the Q matrix is
scaled to be larger than the R matrix, the spectrum of the condensed Hessian is then affected
by a combination of the Q matrix and the singular values of the predicted system and not the
R matrix. Alternately, if the R matrix is larger, the singular values of the predicted system
and the Q matrix will not have a large/noticeable effect on the condensed Hessian.

This leads to interesting behavior in the UIBs for the FGM and DGP, where we showed
there are two distinct regions for the bound that follow the regions from the spectrum of
the condensed Hessian. The computational requirements of the optimization solver can vary
drastically between the two regions — with an example system showing that it is possible to
tune a controller to have the same system performance, but with a 188% lower computational
cost, by choosing the right weighting matrices.

This shows that it is not only important to consider the desired system performance during
the controller design, but also that designers should consider the computational cost of the
resulting controller. By adding the computational complexity into the controller design
phase, it opens up the opportunity to trade-off computational performance with the system
performance, ensuring that the controller can not only be implemented in real-time, but also
that it can meet the low energy and resource usage requirements that newer cyber-physical
systems are imposing.
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Design methods

In the last two chapters of Part II, we transitioned from the analysis of the matrices and
solvers for the condensed linear MPC problem to instead focus on how the block Toeplitz
operators can be used to help design the implementation of the solvers themselves.

The first part of this was the new preconditioner proposed in Chapter 6. This preconditioner
uses the block Toeplitz structure of the condensed Hessian to design a block circulant
preconditioner that has performance comparable to an existing SDP-based preconditioner.
In the numerical examples, using this preconditioner gives a speedup of between 2.1x and
9.6x for the FGM — equivalent to the speedup of the SDP preconditioner. However, the
proposed preconditioner is able to also speedup the computation of the preconditioner itself,
showing between an 80x and 59,672x speedup in the preconditioner computation compared
to the existing SDP preconditioner for the example problems. The spectral analysis that
leads to the bounds on the condition number can also be applied to the preconditioned
Hessian, allowing for horizon-independent bounds for the eigenvalues/condition number of
the preconditioned Hessian to be computed.

The numerical examples for the preconditioner in Section 6.3 also highlight that the
numerically robust CLQR formulation (2.10) provides some preconditioning effect when
used — sometimes providing a speedup of up to 9.6x when only applying the prestabilizing
controller and no preconditioner. This observation, when coupled with the relation between
the predicted system and the spectrum of the Hessian explored in Chapter 4, points to
new opportunities for preconditioner design via the prestabilization controller. Meaning that
instead of designing preconditioners based on linear algebra techniques that are applied after
the controller is designed, the preconditioner would be designed as part of the controller
design process using control techniques, such as H∞ or loop shaping controllers for the
prestabilization.

The final area explored in this part was how the block Toeplitz structure of the condensed
Hessian can be used to guide the design of the implementation of the FGM on FPGAs. To
do this, two different models for the round-off error that the condensed Hessian experiences
when it is converted to fixed-point were derived, with one of those models exploiting the block
Toeplitz structure to bound the round-off error in a horizon-independent manner. These
models then allowed for the development of rules that will give the required size of the fixed-
point variables used in the FGM so that the conversion of the condensed Hessian into fixed-
point will satisfy the requirements for a stable FGM iteration. Using these sizing rules then
allows for guarantees on the stability of the algorithm using smaller data types, potentially
reducing the computing hardware needed by up to 75% and reducing the solution time by up
to 25%.
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Using these smaller data types in the optimization algorithms comes at a cost to the
performance of the closed loop system though, with an example system showing up to 15–20%
error in the closed-loop performance compared to the double precision implementation of the
algorithm. Future work should try to quantify the relation between this closed-loop error
and the data type of the implementation in order to better understand the effect the data
type choice has on the closed-loop performance. Additional work should also be conducted
to further prove the stability of the FGM with the projection operation, and other related
algorithms, under finite-precision arithmetic using fixed-point arithmetic. One possible avenue
to explore for this is to model the optimization solvers as dynamical systems and then use
robust control theory to analyze the stability and performance of the solvers in the presence
of round-off errors.

11.2 DFO-NMPC

The final part of this thesis presented a framework for implementing nonlinear MPC using
derivative-free optimization solvers. This framework was built on top of the Mesh Adaptive
Direct Search solver, but can also be modified to work with other DFO solvers such as PSO
and evolutionary methods. The novelty in the framework comes from four key parts:

• the ability to handle more variable types such as granular, periodic and categorical,
• explicit handling of the constraints to produce a known-feasible solution,
• constraint enforcement across the entire horizon, and
• more accurate cost computation across the entire horizon.

The first two parts come from the use of MADS as the base algorithm for the framework, since
it allows for the use of the progressive barrier constraint method and has native support for
other non-continuous variables directly in the solver. This advantage is shown in the robust
rocket control example in Chapter 10, where the proposed MADS framework with quantized
inputs was able to find an input trajectory that gave a robust tube with a center closer to
the target altitude than an equivalent PSO method.

The final two novel parts in the framework are not unique to MADS, and can even be
implemented on top of other derivative-free solvers. The introduction of the new states to
track the Lagrange cost term and the constraint violation along the horizon allows for the cost
and constraints to be more accurately computed across the entire horizon, and decouples their
computation/enforcement from the chosen input representation. This decoupling is important
for the generalizability of the framework, since other frameworks currently assume a piecewise-
constant input trajectory, and so they just enforce the constraints at the points where the
input trajectory changes and compute the cost using a Riemann sum using those same points.
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The proposed framework is able to handle other input representations, such as interpolated
polynomials or the fitting of function parameters, without the need to change/modify the
constraint enforcement or cost computation.

This framework is not fully completed though, and there are many open questions left to
answer. As a start, we have proposed a single-shooting solver for the dynamics simulation,
however this is known to be unsuitable for stiff or unstable systems, and is not routinely
used in the mainstream optimal control solvers. To extend this framework to a wider range
of systems (including ones that may be unstable), it is important to see if this framework
can be extended to use the ideas of multiple-shooting to split the simulation horizon and
handle the instability. Alternately, it could be interesting to explore integrating new machine
learning techniques to attempt to learn the stable manifold of the system and then constrain
the optimization solver to search only on that manifold.

Another key aspect that needs to be examined is the suitability of MADS and this framework
for the use as a closed-loop controller in real-time, instead of simply as an open-loop planning
controller. This opens up many new questions, including how to effectively warm start the
MADS algorithm, how to effectively perform the simulations under timing constraints, and
can MADS terminate early and provide a control scheme similar to the real-time iteration
used by many derivative-based NMPC solvers in use today.

A known limitation of the proposed framework is that the computational performance of the
MADS solver can become very poor when the optimization problem has a lot of optimization
variables. This performance degradation can limit the application of the proposed framework
to larger optimal control problems, such as those involving systems with many inputs or ones
where the input representation requires a large number of optimization variables. Several ideas
to modify MADS to perform better on larger problems have been proposed, such as using a
parallel space decomposition scheme to break the large problem into several subproblems [12]
or to mainly operate on a subset of the optimization variables that are identified as being
statistically significant [2]. Future work should try applying these existing modifications to the
proposed DFO-NMPC framework, and also examine if the MADS algorithm can be modified
to specifically handle any structure that appears in the DFO-NMPC optimization problem.

Finally, it is also important to continue applying this framework to different classes/types
of optimal control problems and systems. The example presented in Chapter 10 is a
fairly small example with only a nonsmooth cost function and without any complicated
dynamics or constraints. Applying the framework to more examples that have nonsmooth
dynamics (such as contact problems), complicated constraints (such as in path planning
problems), or problems with data-driven models should be done to explore and demonstrate
the generalizability of the framework, and potentially suggest new areas of improvement for
the framework.
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