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Abstract—This paper proposes a technique to estimate the
equivalent reflected impedance on the transmit side of an in-
ductive power transfer (IPT) system, produced by an inductively
coupled load. This technique consists of analysing changes in
the drain voltage waveform of the switching devices to estimate
the reflected impedance, and hence not require feedback infor-
mation from the receive side or the coupling between the coils.
The correlation between the drain voltage waveform and the
reflected impedance is done by training a model with machine
learning techniques. The proposed impedance estimation method
is demonstrated using circuit simulations and is verified experi-
mentally, with an IPT transmitter driven by a load independent
Class EF inverter operating at 13.56 MHz. The IPT receiver
consists of an ac-load which allows changes in the residual
reactance. The model trained from experimental data is capable
of estimating the equivalent reflected impedance with an accuracy
(coefficient of determination) of 0.9899 for the real part and
0.9743 for the imaginary part.

I. INTRODUCTION

Inductive Power Transfer systems enable the possibility of
transmitting power without a physical connection, a feature
that is convenient and in cases necessary. [1] The possibilities
of IPT are very broad [2], [3], especially in the field of
transportation, where different approaches give solutions for
applications ranging from wireless charging for large electric
vehicles [4], to small drones [5]. The latter, is an example of
lightweight low-power (<150 W) IPT systems that operate at
MHz frequencies, and such range is the focus of the work
presented here.

The design of an IPT system that operates at MHz frequen-
cies often relies on soft-switching resonant converters at both
ends to achieve good end-to-end efficiency. The behaviour of
these converters depend on how the two ends of the system
are coupled. Often, the receiving side is modelled with a
voltage or current source representing the effect produced by
the alternating magnetic field on the receive coil; and similarly,
a reflected load models the effect produced by receive side on
the transmit side.

Employing this modelling principle, broadly described for
WPT in [6], allows defining a range of operation for both
the reflected load at the transmit side, and the voltage (or
current) source at the receive side. Defining this range of
operation allows the system to be optimised for variable
coupling and loading conditions [7]. An example of a multi-
MHz IPT system that is optimised for variable coupling and
load can be found in [5], where a drone without a battery was
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Fig. 1. Class EF inverter circuit topology driving an inductively coupled
reflected impedance (Zeq).

wirelessly powered at a broad range of coupling and loading
conditions by designing the resonant converters at both ends
of the system for those ranges. Knowledge of the reflected
impedance was key in that work to allow for spatial freedom
and variable power demand since the reflected impedance, not
always purely resistive, had to be confined to the range of
tolerance of the inverter.

The work presented here, as in or previous work done
to detect foreign objects [8], investigates changes on the
inductively coupled circuits by analysing the drain voltage
waveform of a transistor with machine learning techniques.

II. LOAD-INDEPENDENT CLASS EF INVERTER

The Class EF inverter, a single-switch resonant topology
shown in Fig. 1, allows for load-independent tuning by se-
lecting the values of the passive components following the
guidelines formulated in [9]. The solutions that are considered
load-independet, achieve zero-voltage-switching (ZVS) over
the entire restive load range, and in addition, when employed
on an IPT system, the amplitude of the transmit coil current
is load-independent and defined by Vdc.

The load-independent feature can be noticed in the drain
voltage waveforms in Fig. 2. For the cases of no-load and
maximum resistive load (+5 Ω), the turn-on voltage inherently
converges to zero, and therefore achieves ZVS. Reflected
reactances, however, detune the inverter and affect the load-
independent operation. As can be seen in Fig. 2, the shape of
the waveform changes depending on the type of load coupled.
Inductive, capacitive and resistive loads affect the waveforms
in different forms which are identifiable.
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Fig. 2. Inverter’s theoretical drain voltage waveform under various loading
conditions.

III. REFLECTED IMPEDANCE ESTIMATION

The drain voltage waveforms in Fig. 2 suggest the possibil-
ity of estimating the reflected impedance on an IPT transmitter
that uses the load-independent Class EF inverter. The drain
voltage is the signal chosen in this study not only because of
its clear load-dependence, but also because, first, ZVS (or non-
ZVS) operation can be identified; and second, the topology
has a capacitance between the drain and the source of the
transistor which absorbs the capacitance of the probe, making
it relatively easy to measure and not affect the tuning of the
system.

The proposed method consists of gathering the drain voltage
waveform signals with different and well characterised loads,
to then train a model that can recognise these loading condi-
tions using machine learning techniques. The performance of
the model are evaluated by using untrained data.

A. Data Acquisition and Augmentation
Before the training process, data were required to be pre-

pared and configured. In simulation, the result output setting
was used to select the sampling rate and data resolution. In
order to compare the simulation and the experimental results,
the sampling rate and resolution of the simulations were
configured to be the same as the Teledyne LeCroy HDO4034
oscilloscope, which is 2.5 GHz, and 12 bit respectively. A full
cycle of the drain voltage waveform was captured one hun-
dred times for each value of equivalent reflected impedance.
Additionally, random phase shifts and noise sources were
added to the simulated waveform signals. The purpose of this
data augmentation process is to ensure the robustness of the
estimation model.

B. Model Training and Evaluation
Two common machine learning algorithms were considered

to train the model, support vector machine (SVM) and convo-
lutional neural network (CNN). SVM, well described in [10],

TABLE I
SIMULATION AND EXPERIMENTAL COMPONENT VALUES

Parameter Value (simulation) Value (experiments)
Vdc 100V 100V

C1 279 pF 156 pF + COSS

C2 214 pF 176 pF

C3 143 pF 130 pF

L1 80 µH 80 µH
L2 231 nH 267 nH

Lp 1130 nH 1118 nH

Fig. 3. Photograph of the experimental setup.

is commonly used in classification applications and in regres-
sion models, e.g. stock market prediction [11], [12]. SVM can
be used to train a model to estimate the equivalent reflected
impedance of an IPT system, however the system we proposed
should be capable of achieving this regardless of the phase
of the drain waveform. Therefore, an SVM-based approach
would require data pre-processing before training. In order
to avoid the data pre-processing, CNN was selected to train
the estimation model, since it can achieve pattern recognition
without being affected by shifts in position [13], i.e. phase.
CNN has been used in various classification applications such
as medical signal processing [14] and face recognition [15].

The training data were divided into three subsets: 85 % of
the training data were used to train the CNN model, 10 % as
the validation data set during the training process, and the last
5 % as the final test to evaluate the performance of the trained
model. The network layers were configured manually based
on the performance of the model.

IV. VERIFICATION OF THE REFLECTED IMPEDANCE
ESTIMATION MODEL

A. Circuit Simulation

The proposed technique was first verified by simulating a
load-independent Class EF inverter operating under different
loading conditions. The parameters used are described in
Table. I.

The inverter was simulated with a reflected resistance rang-
ing from 0 to 10 Ω, and a reflected reactance from −5 to 5 Ω,
both with steps of 100 mΩ. The drain-voltage waveforms
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Fig. 4. Impedance estimation model results from a simulated and an experimental environment.

were recorded when the system reached steady-state for each
reflected load and then labelled accordingly. These data were
then used to train and verify the model. The reflected load
estimation result using the simulated drain voltage waveform
is shown in Fig. 4. The estimation accuracy (coefficient of
determination) is 0.9942 for the real part of the impedance,
and is 0.9905 for the imaginary part.

B. Experimental Verification

A similar approach was done on a real IPT setup capable of
powering a load of up to 150 W at 13.56 MHz. A photograph
of the experimental setup can be seen in Fig. 3 and the design
values of the inverter implemented can be found in Table I.
The coils and the inductively coupled load used to train the
model, are described in [16].

The reflected load on the transmit side was altered by chang-
ing coupling and the receive side capacitance that resonates
the coil. As can be seen in Fig. 3, this systems allows for a
precise separation and alignment, which was characterised in

[16]. Data were obtained for coil separations of 12-20 cm with
steps of 1 cm, and the tuning of the receive side was changed
as done in [16]. Four loads which reflect a negative reactance
and three which reflect a positive reactance were used at the
coil separations mentioned. The reflected reactance allowed
by this setup was rougly from −2 to 2 Ω, and the reflected
resistance from 0 to 8 Ω.

The load-estimation results are shown in Fig. 4. The estima-
tion accuracy (coefficient of determination) is 0.9899 for the
real part of the impedance, and is 0.9743 for the imaginary
part.

V. CONCLUSIONS

This paper presents a technique to estimate the equivalent
reflected impedance on the transmit side of an IPT system, by
using a CNN machine learning model which is trained using
solely data from the drain voltage waveform of a transistor.
A model was generated from circuit simulations and another
one was generated using and oscilloscope and a 150 W IPT



system that operates at 13 56 MHz. Both models were able to
estimate the reflected resistance and reactance on the transmit
side with an accuracy higher than r2 = 0.97.
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