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Abstract

Metamorphic Testing is a testing technique which mutates existing test cases in semantically

equivalent forms, by making use of metamorphic relations, while avoiding the oracle problem.

However, these required relations are not readily available for a given system under test. Defin-

ing effective metamorphic relations is difficult, and arguably the main obstacle towards adoption

of metamorphic testing in production-level software development. One example application is

testing graphics compilers, where the approximate and under-specified nature of the domain

makes it hard to apply more traditional techniques.

We propose an approach with a lower barrier of entry to applying metamorphic testing for

a software library. The user must still identify relations that hold over their particular library,

but can do so within a development-like environment. We apply methods from the domains

of metamorphic testing and fuzzing to produce complex test cases. We consider the user

interaction a bonus, as they can control what parts of the target codebase is tested, potentially

focusing on less-tested or critical sections of the codebase.

We implement our proposed approach in a tool, MF++, which synthesises C++ test cases for a

C++ library, defined by user-provided ingredients. We applied MF++ to 7 libraries in the domains

of satisfiability modulo theories and Presburger arithmetic,. Our evaluation of MF++ was able

to identify 21 bugs in these tools.

We additionally provide an automatic reducer for tests generated by MF++, named MF++R.

In addition to minimising tests exposing issues, MF++R can also be used to identify incorrect

user-provided relations. Additionally, we investigate the combined use of MF++ and MF++R in

order to augment code coverage of library test suites. We assess the utility of this application

by contributing 21 tests aimed at improving coverage across 3 libraries.
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1 Introduction

Modern software engineering practice has evolved very quickly—from when patches to software

would be sparsely deployed due to logistical difficulties, the advent of the internet made it

possible to easily make patches and software updates available to the user. Nowadays, patches

are deployed without users ever interacting with the respective software, in an automated

fashion, and multiple patches a week, or even a day, is not unheard of. This accelerated

software engineering system must be supported by solid systems that reduce the extent to which

malformed or malign software is deployed to users. This is even more important for software

such as compilers and software libraries: the former due to programs generally expecting the

compiler will produce correct code, in line with the written program, and the latter which forms

chains of dependencies across the software ecosystem, and a faulty link can affect vast swathes

of dependent software. Thus, with continuous software development, there must be continuous

testing to ensure correctness. Furthermore, as software evolves in size and logic, so must the

testing techniques evolve to be able to handle these complex systems—not only to ensure that

the software is free from functional bugs, but also free from correctness bugs : the software does

what is expected of it to do, as designed by the logic behind the code.

There are multiple readily available techniques at the hand of developers to test their software

for correctness: inline assertions, or unit tests being some examples. However, as the code-base

increases in size, and more developers are working together each on their own section, it is

seldom feasible for a developer to completely understand what the code itself does. As such,

more advanced testing techniques are required. One such technique is metamorphic testing,

which is more suited to checking semantics bugs in a given system under test. The idea is

simple: for a given implementation of some operation, if we can define some relation R over a

pair of inputs, and some expected relation S over the outputs of applying the operation over

the inputs, then checking whether S holds gives confidence that the implementation is correct.

These relations are generally defined by humans with knowledge of the respective domain

the system under test resides. The relation between the inputs and the outputs comprises a

metamorphic relation (or MR). For an intuitive example, we expect that adding 0 to some
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integer input would yield equal outputs if common mathematical operations are applied.

While metamorphic testing is an inherently strong technique, providing semantics testing

capabilities, employing it is by no means an easy endeavour. Finding MRs for a given system

under test is not an easy task, requiring expert knowledge of the specific system, or being able

to translate existing identities from compatible domains. The high upfront cost, and potential

lack of expected results (the quality of the testing is heavily dependent on the quality of the

MRs provided) might explain why metamorphic testing seems to not have seen adoption in

industry. In this work, we explore the suitability of metamorphic testing as a helpful technique

for finding semantics bugs across various computing domains, including satisfiability modulo

theories libraries, Presburger arithmetic, and graphics compilers. Furthermore, we provide an

infrastructure to make metamorphic testing more accessible to software developers, abstracting

away part of the work required to employ metamorphic testing, while ensuring that developers

keep control over what aspects of the respective system under test are exercised, in order to

ensure that the testing process is meaningful.

In addition to exploring the bug-finding capabilities of metamorphic testing, we explore

additional uses of test-case reduction methods in our work. By making use of the fact that

metamorphic testing comes with an in-built oracle which is able to internally evaluate the

correctness of a test, we can then attempt to employ test-case reduction to simplify a test with

respect to a specific property of interest. While usually test-case reduction is used to simplify

a failing test-case, removing parts of the given test which are not required in order to reach the

failure state, we can perform reduction with respect to some other property of interest. One

such example would be reducing with respect to covering some code of interest in the system

under test.

1.1 Contributions

We describe a practicality-focused variation of metamorphic testing, which we name metamor-

phic testing with high-level operations, removing some of the theoretical burden of formally

defining MRs (Chapter 3). With some user-provided ingredients which interface with the a

desired software library to be tested, we employ methods from the domain of metamorphic

testing and fuzzing to synthesise fresh test cases. The intuition behind the approach is finding

semantically equivalent, but syntactically distinct implementations provided by some software

library (more generally, finding various ways of reaching the same result in different ways, based

on what a software library provides). The core ingredient that the user must provide are equiv-
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1.1 Contributions

Figure 1.1: Abstract view of metamorphic test with high-level operations

alent implementations which implement observably equivalent functionality of some high-level

operation. To exemplify, suppose we have a library which implements file-system operations.

One possible functionality, or high-level operation, is moving files on the disk. The library can

of course provide a move function which provides this, but the same result can be observed if

we copy the source file to the destination, then remove the original copy.

Having multiple such high-level operations, each with a set of possible implementations, allow

us to create chains of MRs via composition of metamorphic relations [47] (which can be regarded

as a single, expressive MR), by having an abstract chain of high-level operations, which can

be instantiated to a concrete implementation. This is visualised in Figure 1.1. From an initial

input i, we create two chains of high-level operations, with each operation being concretized by

some randomly chosen implementation: the first operation concretized by f and f ′, the second

by g and g′, and the third and final operation by h and h′. As each implementation should

result in the same observable functionality, they are expected to be pair-wise equivalent, based

on that functionality (e.g., taking the above move example, this means we’d observe the original

file present at the destination, but not at the source).

We regard this approach as a novel example of metamorphic fuzzing. To support the appli-

cation of metamorphic testing with high-level operations, we propose a test synthesis infras-

tructure, where the user is tasked to provide details about the API of the library under test,

which is then used to randomly generate test cases to be practically executed. We propose

such an implementation, targeting C++ APIs of software libraries, with a tool called MF++. We

discuss how, while our evaluation is practically focused on our implementation, it is generally

applicable to any programming language and domain, and what requirements are required.

We present an in-depth case study, applying our technique and implementation to 7 mature

and widely-used libraries (Chapter 4). We provide details on how the user-provided ingredients,

named specifications, are written, and how MF++ was designed to ensure a familiar interface for

developers to write these specifications. To further help developers, we identify methods of

abstracting specifications for a domain of interest. By identifying common operations that

a library within a domain is expected to implement, we can write MRs with respect to an

19



1 Introduction

abstract implementation of these common operations. A specific API can then make use of

MF++ testing by linking the abstract operations with concrete API calls for their library. We

evaluate our technique on two fronts. Primarily, we focus on the ability of our tool to find

bugs in these libraries. This effort lead to finding 21 across 4 tested libraries, all of which have

been reported and subsequently fixed by the respective maintainers. Second, we investigate the

ability to cover additional code that the test suites of these libraries do not cover, as a measure

to safeguard against potential future bugs. Additionally, we focus on the usability of our tool,

considering an expert user employing it for their library, and the effort required to apply our

tool.

We discuss an implementation of an automatic custom test-case reducer for MF++ tests, named

MF++R (Chapter 5). For randomly generated test cases, test reduction is an important step,

in order to identify the core issue that triggers a fault in the underlying system under test.

In the case of MF++, the need for reduction is doubled as an approach to identifying incorrect

user-provided MRs. Our implementation performs reductions that maintain program validity,

and is able to remove large parts of unneeded code automatically. As an extension, we employ

the notion of cause reduction [34] to reduce test cases with respect to code coverage achieved

which is not provided by test suites of libraries under test. We use this approach to contribute

21 coverage enhancing tests to test suites of 3 open-source libraries.

We evaluate the effectiveness of a custom implementation of automatic test case reduction,

comparing the implementation time against the usefulness of general-purpose reduction tools

applied to highly specific domains. We further employ our custom reducer in to augment code

coverage achieved by existing testing suites of the libraries we test.

Finally, we present details of a separate project which applies metamorphic testing over the

domain of graphics shader compilers, which are a key component of modern graphics drivers

(Chapter 6). Our tool, GraphicsFuzz, demonstrated the possibility of mixing metamorphic

testing (albeit limited to functionality-preserving MRs) and fuzzing in order to effectively find

bugs. This project laid the groundwork for the MF++ project, and subsequent work around MF++.

We discuss a number of functional and security defects identified by applying GraphicsFuzz

to consumer products.

Each chapter includes relevant related work, but we provide some general background in Chap-

ter 2. We present ideas and future work in Chapter 7.

To further detail the contributions in this thesis, we aim to answer the following questions:

1. Is metamorphic testing with high-level operations effective at finding bugs?
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2. Can metamorphic testing with high-level operations be used to improve existing coverage

metrics?

3. Could metamorphic testing with high-level operations be applied to generic domains?

1.2 Publications

Aspects of this work have been included in the following publications:

• A submission to the International Conference on Software Testing, Verification and Vali-

dation (ICST) 2022 conference;

• A submission [43] to the Metamorphic Testing (MET) 2021 workshop, receiving the best

paper award;

• A submission [26] to the Object-Oriented Programming, Systems, Languages & Applica-

tions (OOPSLA) 2017 conference;

• A short paper submission [28] to the MET 2016 workshop.
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2 Background

In this section, we will provide some background details about the testing techniques which

were used as basis to develop the work presented in this thesis.

2.1 Oracle Problem

In software testing, an oracle represents a mechanism which, for a given test-case, is able to

determine whether that test-case is expected to fail or pass. The oracle problem [6] is a well

known and prevalent issue which testing techniques must face. The problem states that for

a given input to a system, there is no method of programmatically determining the correct

output. Generally, assessing whether an execution or output is correct is something done with

human knowledge, who can use their knowledge of the system. An automated testing method

must provide a way to either leverage this human knowledge and include it in tests for the

system, or to somehow derive it. Of course, as systems grow more complex, the existence of an

oracle becomes less certain, and perhaps even intractable or outright impossible [77].

Nevertheless, systems must be given a degree of confidence that they are correct, even without

checking for full functional correctness. We distinguish a number of such oracles, and emphasise

their potency:

Implicit oracles Oracles with very weak potency. These would include runtime checks provided

by the language in which a computer program is encoded, for example bounds check

present in Java. These checks are agnostic in relation to the semantics of the program,

and only offer some rudimentary protection again well known and common programming

issues. These checks can be augmented by the use of third party tools, such as Address

Sanitizer [70] or Valgrind [57], which perform different categories or checks, but increase

confidence that no underlying coding issues are present.

Annotation-based oracles Oracles with rather weak potency, but dependent on user thor-

oughness. These are assertions written by the programmer, that ensure the state of the

23



2 Background

program has certain properties at certain points in the code. They are likely a conse-

quence of the program implementation, but are generally constrained in their checks both

in terms of strength and scope, in relation to the entirety of the program.

Manual oracle Very strong oracle, but requiring an investment of both human knowledge and

time, making them impossible to scale. They represent an expectation of specific program

functionality, and are generally encoded as post-condition checks within individual test

cases: some input is provided to the whole or part of the system under test, then properties

over the outputs are checked against. These properties are determined manually, with

knowledge of the functionality of the SUT, as well as the domain in which it resides.

With human knowledge as the main driver behind providing oracles, automatically overcom-

ing the oracle problem is an issue of great importance. There are some methods which attempt

to either generate explicit oracles, or somehow work around the problem in specific ways. Some

examples:

Metamorphic Testing This technique is described in more detail in Section 2.2.

Differential Testing In this method, there is an assumption that multiple implementations

of the desired functionality exist. For example, there are multiple libraries available

for networking. When sending a file over a network, no matter what particular library

of choice we use to connect to the network, we expect the same file to arrive at the

destination. More generally, if there is some functionality provided by multiple different

implementations, we can cross-check that the expected result is identical no matter the

chosen implementation. We note that this technique requires a deterministic domain to

test against.

Tests with expected results This approach involves randomly generating test cases in such a

way that after generation, the outcome of the test case is already known. An example of

using this approach is, during generation, keeping a table of expected values for generated

variables, which allows the values to be checked at execution time if they match the

expected, generation time values [48, 55].

Historical oracles In the case of EvoSuite [31], the tool generates unit tests which assert

the state of the system after the application of some randomly generated operations.

By itself, this does not constitute an oracle, and requires manual inspection to ensure

the state is consistent with expectation of the tested system. However, applying the test
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suite generated by EvoSuite across different versions of the system under test can identify

inconsistencies where the state of the system has changed due to changes in the source

code of the system. Of course, the issue with this approach is that these changes might be

an expected consequence of the internal code changes, and not representative of critical

features of the underlying system, due to the random nature of EvoSuite.

2.2 Metamorphic Testing

Metamorphic Testing [19, 68] is a testing technique based on relations between inputs to an

SUT, and expected relations between outputs, while overcoming the oracle problem.

The classic example of a metamorphic relation is defined in terms of the sine function.

Supposing we have an implementation of sine we would like to check. Then, by definition of

sine in mathematics, it must be the case that for some input x, we have that sin(x) = sin(x+π).

Another example can be considered in the domain of graphs. Supposing we implement an

algorithm P to return the shortest path between two vertices (a, b) in an undirected graph G.

If we find that P (G, a, b) ̸= P (G, b, a), then our algorithm is clearly faulty.

Formally, an MR is defined as follows:

Suppose there are two inputs (x, y), two binary relations (R, S), and a system under

test defined as a function f . If (R, S) is a metamorphic relation and (x, y) ∈ R,

then (f(x), f(y)) ∈ S.

There are two observations to be made in the above example. The MR does not specify

anything about the correctness of the implementation in any way, but simply checks that

the property we are looking for holds. Therefore, an implementation of the graph algorithm

above which would always return a constant value, say 0, would not be marked as incorrect

by the above check in isolation. Of course, additional checks can give more confidence that

the implementation does something according to expectations, but this is better checked via a

suite of hand-written tests (which metamorphic testing should be used to augment, not replace).

For example, we might check that a ̸= b → P (G, a, b) > 0. This issue is due to the fact that

metamorphic testing is applied to implementations, rather than semantics.

Another observation is that the MR itself contains an oracle, defining whether the test is

expected to fail or pass. Using the MR P (G, a, b) = P (G, b, a), we can select any two vertices

in G and expect the MR to hold, as it is a tautology. Further, applying any changes to

G, such as adding additional points, or moving points, should not affect the validity of the
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MR. Additionally, we can use certain MRs to generate additional input. Taking the MR

sin(x) = sin(x + π) means that for any test case which contains an instance of sin(x), we can

generate a new test case by replacing such an instance with sin(x+π), and the expected output

would be maintained.

2.2.1 Generating Metamorphic Relations

As the core component of metamorphic testing, MRs are important both to get right and ensure

that meaningful checks are performed. This usually requires in-depth knowledge of both the

domain, and the SUT over which the MR is applied to. Previous work on metamorphic testing

is usually focused on few, high-quality MRs (as highlighted in Section 6.4 of the Metamorphic

Testing Survey [68]).

More generally, sources of inspiration for MRs can be derived from other domains, and

translated to the domain of the SUT. For instance, boolean identities can be translated to

the domain of arithmetic sets. An example is A ∧ ⊥ = ⊥ is equivalent to S ∩ ∅ = ∅. Other,

more specific MRs, could be translated across domains, or serve as inspiration. In addition,

there are proposed techniques to use existing MRs as basis for more complex MRs. One such

example is composition of MRs [47], which is akin to chaining compatible MRs together, thus

increasing the search space, therefore potency, of one MR application. Another source of

MRs is identifying redundancy in software [15]: by identifying two distinct parts of the source

code which can perform the same semantic action (e.g., as exemplified, a putAll function

called once versus a put function called multiple times), any divergence in observed execution

indicates a potential bug in one of the implementations. While not explicitly considered as

such, we believe this approach is an instance of metamorphic testing. With the recent advent

of machine learning, there are also techniques for attempting to automatically synthesise MRs

for respective SUTs [39].

When writing MRs, we might also be interested in whether certain MRs might be more useful

in finding bugs than others. One study [21] evaluates this over both black-box (no knowledge

of the specific SUT, but domain knowledge), and white-box testing (knowledge of both the

specific SUT and the domain). Their results indicate that, for black-box testing, what might

theoretically seem like a strong MR over, might not be as effective in practice than other MRs.

Furthermore, for white-box testing, attempting to generate “different” executions (in terms of

paths traversed, sequence of executed statements, etc.) via the MRs did indeed prove more

fruitful. A question for the latter result is how scalable this is: supposing we have a monolithic
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million-line SUT, how would we identify whether two executions are different enough. One

possible solution is using code coverage as a metric. The follow-up question is then, is this

information sufficient for a human to be able to come up with effective MRs?

Another approach is to somehow quantify the strength of MRs, and to use such metrics to

drive the definition of future MRs [14, 37]. Various statistical approaches are used to quantify

the bug-finding capabilities of MRs based on the difference with other MRs. More specifically,

supposing we have two MRs, and associated bug-finding metric. If we can define some relation

over the two MRs, such as difference in achieved code coverage, or frequency in exercising a

certain branch, then we can create a profile of how differences in the effect of an MR (in terms

of exercise parts of the SUT) can give rise to bug-finding capabilities. For future potential MRs,

we could then compare them with existing MRs, in order to estimate a potential bug-finding

capability.

2.2.2 Applying Metamorphic Testing

There are a number of techniques which we believe are instances of metamorphic testing, but

have not been explicitly noted as such.

Equivalence modulo inputs [44] is a compiler testing technique which first profiles test cases

over some input I to identify dead code (i.e., code not executed during runtime) for that input,

then alters these dead code sections in order to attempt to trigger compiler bugs. We argue

that this is an instance of metamorphic testing, by using the relation of equality over outputs,

and “identical live code sections” over inputs.

Another approach is semantic fusion [78]. This technique works in the domain of satisfi-

ability modulo theories (SMT) [8], and takes two equisatisfiable (i.e., eitehr both satisfiable

or unsatisfiable) SMT formulas as input. It then essentially fuses the two formulas together,

via various steps, such as concatenating the two formulas together, or creating fresh variables

defined based on existing variables in either formula. Due to the equisatisfiability of the original

formulas, an instance of a fused formula is expected to have the same satisfiability, while the

fusing process should maintain well-definedness. Thus, multiple fused formulas can be created,

and their satisfiabilities checked, with a mismatch indicating a potential bug in the solver itself.

We believe this to be an instance of metamorphic testing, as (a) it takes existing input and

modifies it in a way that a fresh input is produced, and (b) the expected result of the fresh

input is predetermined by construction. It uses the two inputs to produce a new test case,

with known satisfiability based on the two input tests, and intermingling control flow from the
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two inputs. This method can also be considered an instance of metamorphic testing, where the

satisfiability of the inputs affect the satisfiability of the test formula. Furthermore, there is a

relation to be defined between the new test case and the two input test formulas, in terms of

syntax.

The above two techniques are more practical applications of metamorphic testing. Tradi-

tionally, metamorphic testing is applied more theoretically. For instance, metamorphic testing

could be applied to programs with random outputs, by statistically modelling the output, based

on the input [36]. An implementation of this proposed approach is heavily dependent on the

specific use case, as the way the system is affected by random input would determine how

the MRs relating outputs are defined. Therefore, there can be no one particular, practical

implementation of this proposed method.

2.2.3 Metamorphic Testing and Differential Testing

Differential Testing [52] is a technique where, if there are multiple implementations of some

system available (e.g., multiple compilers for a given language), then we can take a valid

input, execute it over all available systems, and check results. Assuming the executions are

deterministic, not having a single, consistent result across all systems indicates a potential

bug. A different approach to differential testing is n-version programming [18], which involves

multiple systems being created for a specification, and ensuring all systems are consistent with

one another. The main difference with differential testing is that instead of finding these distinct

systems, they are instead created.

Metamorphic testing can be considered similar: it functions at a similar level of redundancy,

but instead testing redundancy within a given system, rather than across different ones.

That is where one of the main distinctions lie: while metamorphic testing can work within the

confines of a single implementation, by definition, differential testing involves the existence of

two equivalent systems (in practice, this could potentially be the same system with different

parameters, such as one compiler with different optimisation levels being expected to produce

functionally equivalent binaries), while in n-version programming, there is the additional cost

of building the systems as well.

For the purposes of software library testing, which this works focuses on, we believe meta-

morphic testing is more suitable, as it is unlikely to find two libraries in the same domain taking

identical inputs; a library usually has its own API it consumes. Thus, differential testing would

be difficult to apply, but not impossible — one could consider building a generic fuzzer, which
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produces input programs based on some API specification.

2.3 Fuzzing

Generating random tests in order to trigger crash bugs is known as fuzzing [54]. The concept

is fairly simple: software should be able to handle any input, including invalid or unexpected

input, and not crash, but gracefully terminate. Fuzzers can be generally applicable, and a

tool like american fuzzy lop (AFL) [81], which works by fuzzing random bit-sequences, simply

fuzzing domain agnostic input, looking for instances of program crashes. The more domain

knowledge we take into consideration, the more engineering work, but the more potentially

useful bugs are found. For instance, a compiler might be less interested in a crash involving a

sequence of non-UTF-8 characters, but might be interested if a string containing rarely used

characters causes the whole compiler to crash. There is a very fine balance to consider between

fuzzing meaningful tests, writing a very specific fuzzer that is not reusable, and targeting bugs

that matter.

For the consideration of what are bugs that matter, it mostly depends on the point of view

with which we inspect the system under test. For instance, from a security stand-point, crashes

can potentially be used as part of a complex attack vector, to exploit other security flaws and

perform some malicious acts on the underlying system. However, a more common perspective

is that of functionality, whether the system under test behaves in a manner consistent with

expectations. It is hard to define what these expectations are exclusively at the implementation

level. If some documentation is provided, we can potentially use that to indicate whether some

observable execution is correct, but this is hard to encode within a fuzzer.

Fuzzing as a testing technique is rather easy to apply. However, engineering the syntax and

perhaps some semantics (e.g., if we are testing a tool which includes statically sized containers,

we do not want to access the container outside its boundaries) of the underlying tools is not

trivial. This generally leads to having fuzzers which are extremely specialised for the particular

tool or domain they are applied to. Furthermore, as the original intent of the technique, fuzzed

tests generally do not come with a specific oracle: the oracle is whether the program crashes

or not. Nevertheless, fuzzed tests can trigger functional assertion failures within tested tools.

There is a wide variety of available fuzzers in the testing ecosystem [45]. Based on their

functionality, we can derive a number of categories for how a fuzzer performs [58, 1]:

Generation technique Fuzzers can either generate test cases from scratch, or use some given

input to mutate into fresh, generally more expressive, tests;
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Structure Whether the data generated by the fuzzer is aware of the expected input structure

of the system under test—fuzzers are either dumb (unstructured) or smart (structured);

System knowledge Based on how much knowledge of semantics of the system under test the

fuzzer is aware of in order to guide its fuzzing; from least knowledgeable, we distinguish

black-box fuzzing, grey-box fuzzing, and white-box fuzzing.

Generally, fuzzers can be defined using these three categories to express what kind of tests

they produce at the high level. Thus, we can define AFL [81] as a black-box, dumb, generator

fuzzer, while Orange4 [56] is a black-box, smart, mutating fuzzer. White-box fuzzer are more

involved and rarer, and they usually include some sort of feedback mechanism to guide the

fuzzing process. Examples would include concolic execution [32, 69] tools, such as SAGE [20].

2.3.1 Generation Methods

We distinguish two types of fuzzers: mutation-based fuzzers, and generation-based fuzzers.

Mutation-based fuzzers, such as libFuzzer [2], or afl [81], take some pre-existing tests as

input, which they then mutate in order to explore more of the SUT. The mutation is based on

algorithms implemented in the fuzzer, potentially based on structure of the SUT. For instance,

mutating an input C could involve editing an operator in an expression, which would require

being aware of what an expression is, and how to identify its components. Generation based

fuzzers, such as Csmith [80], or CLsmith [46], must be aware of the syntax (and, at some level,

semantics) of the underlying SUT. For instance, to fuzz a C program, in the case of Csmith, the

fuzzer must know the correct syntax to define a variable, or how to declare a function. Further,

it must know that if it uses a function, it must have a definition, or else it would generate an

invalid program, which would fail compilation. However, more subtle generation issues could

appear, based on how much of the underlying SUT we test. For instance, if we would like to

test arrays in C, then we need to consider array bounds, or using pointers as arrays. This makes

generation-based fuzzers more difficult to implement.

One final aspect to mention when fuzzing is the need to ensure whatever is being fuzzed is

well-defined with respect to the SUT. Generating an input which has undefined behaviour is

likely to indicate a potential bug has been triggered, when actually the presence of undefined

behaviour puts the execution in an invalid state. By interpolation, we can assume that all tests

generated by such a fuzzer can be considered invalid, due to the potential presence of undefined

behaviour.
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2.3.2 Main Caveats

When employing fuzzing, while it is an effective and simple technique to apply in theory, there

are a number of limitations the method suffers [10].

The first one is the oracle problem. Fuzzers are good at finding crash bugs, as such bugs

are obvious: we can determine whether a program crashes by simply executing it. And, if our

fuzzer is correctly implemented, then it should emit valid tests which are not expected to crash.

However, could fuzzing be used to find more subtle bugs? One approach is to combine fuzzing

with differential testing [80, 60].

One other aspect is when fuzzing is applied to a particular SUT, it has to be done by a

specific implementation. That implementation might have certain properties which might lead

to the SUT overfitting its implementation based on the types of test the fuzzer produces.

A third issue is bug slippage [22]: when a test is executed and a fault is observed, we do not

know whether that test might expose any additional faults, were execution to proceed beyond

the initial fault point. This phenomenon is important to keep in mind when reducing test cases:

a naive implementation that reduces a test “while it fails” would potentially reduce away the

original bug that was found, and uncover a second, hidden bug. This also indicates that fuzizng

should be a continuous process, as fixing prior bugs might allow new ones to be uncovered by

a fuzzer.

2.4 Automated Test-case Reduction

In the context of randomly generated test cases, automatic test case reduction is a valuable step.

Randomly generated test cases are generally large, in order to be more likely to trigger bugs.

Furthermore, due to their random nature, they are not expected to be readable by a human

being. However, once a bug is triggered, a human must identify the problematic behaviour in

the test case. Generally, it is only a small sequence within the test case which is required to

trigger the bug. While a human can manually try to extract this require code, it is generally

time consuming to do so.

Test case reduction can be performed in various ways [3], but there are two main ideas to

explore. The first approach is reducing at the level of source code. The most direct method

to this is performing string manipulation on the source code itself. The result of the initial,

failing test is first logged. Then, parts of the source code are removed. This can be done at

the level of instructions, function declarations, operations, but must be done in such a way to
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maintain the syntactic validity of the program. In addition, during this process, it must be

checked that the validity of the test is maintained. The most prominent issue to be taken care

of is undefined behaviour. For example, the declaration of a variable can be reduced, leading

to uninitialised memory being read. This approach is known as delta debugging [82].

An example of delta debugging is the C-Reduce [63] infrastructure. While it primarily targets

Csmith [80] test cases, it is generally applicable with appropriate infrastructure adaptations to

C-like languages. Generally, the tool works as described above, taking test cases as input

and applying reductions via sub-string deletion at the source code level. It also validates the

reductions by using third party tools to ensure the reduced test cases are well-defined and

free from undefined behaviour. C-Reduce uses the concept of interestingness tests [24], where a

user-provided code evaluates the reduced test case in order to determine whether it is interesting

or not. This could vary from a specific return code being observed, or a specific output being

emitted by the test.

2.4.1 Approaches to Reduction

While delta-debugging is quite widely used in order to reduce test cases, there are other ap-

proaches, which require some cooperation between a generator and a reducer, but are able to

more effectively perform reduction due to the additional available metadata.

One such example of source-level reduction applicable to random test generators is encoding

each random choice in the source code of the generated test case, alongside a pre-determined

“minimal” value for that random choice. To exemplify, suppose we would like to generate

the value true, but instead, we generate a boolean expression that is known to be true by

construction, let’s say 3 == f(3), where f is known to return a value equal to its parameter.

In the source code of the generated test, we could then generate GENERATED(3 == f(3), true),

where GENERATED is a macro taking two parameters, and returning one of them, based on some

flag. A reducer could identify such a pattern, and know that the whole instruction GENERATED(3

== f(3), true) can be minimized to the second argument, by construction. Such an approach

allows the reducer to already “know” where it can apply reductions, as well as the minimal

form the reduction can take. This method was used in GraphicsFuzz [26].

An alternative approach to reduction of randomly generated programs is to target the ran-

dom choices themselves. A randomly generated program could be abstracted as a sequence of

the choices made whenever randomness is invoked. Thus, if we log all random choices, then

replay the generation process, but instead of providing random values whenever the random
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generator is invoked, we provide previously recorded values, we can generate the same program

exactly. Modifying the sequence of random choices should also modify the resulting program,

and a “smaller” sequence of random choices could likely lead to a smaller program, or large ob-

servable reductions with little cost. This approach is implemented by Hypothesis [50], where

the random choices made during generation of a test case are encoded in a bit-stream, and

reductions are performed over this abstract bit-stream represenation of a program in order to

minimize tests [49].

2.4.2 Scope of Reduction

Normally, test case reduction is applied on inputs which trigger some fault on an SUT, par-

ticularly when the input has been generated as part of an automated testing infrastructure.

However, reduction could be used to target other specific properties of inputs. The idea of cause

reduction [34] suggests defining some measurable property (in the usual case, it is a binary “does

this program fail” check), and attempting to reduce the program while that property holds.

One such example is reducing with respect to coverage. Suppose we have a test which exercise

some specific part of code that was not covered by our existing test suite. We might want to

augment our test suite with a test to include that additional coverage, or even understand why

the existing tests were insufficient in triggering that coverage. Thus, our property of interest

would be whether a particular instruction is covered by the reduced variant. This process would

of course involve adding support to gather coverage during the reduction process, so slightly

more complicated than simply executing the test (which checks itself whether it fails or not).

Coverage is not the only property of interest we could be reducing towards. We could consider

performance, such as reducing necessary precision when representing floating point values [66],

or performance of symbolic execution tools [83]. Full test suite reduction can be performed [65],

such as finding duplicate tests functionality via dynamic inspection [53], or via machine learning

methods [79].

Finally, one interesting point to note is that a reducer tool could also potentially be used

as a fuzzer [62], in a metamorphic fuzzing fashion. The operations we would apply to our

input would be to remove code. The idea is that, even under invalid input, some program

should terminate gracefully, instead of crashing, or triggering an internal assertion. Of course,

the utility of such found issues are questionable, but it can nevertheless be a good, and cheap

source of further testing.
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2.5 Graphics Compilers

Related to Chapter 6, we present the mechanism behind graphics compilers for the Open

Graphics Library (OpenGL) 1 language.

OpenGL provides a cross-platform API for graphics processing, usually executed by a graph-

ics processing unit (GPU). While not providing an implementation of its own, it provides a

standard which describes in minute detail how an implementation is expected to behave, and a

related conformance test suite to evaluate whether a given implementation is sufficiently com-

patible with the standard. In order to make use of OpenGL, there are a number of components

that need to be specified. First, the host code represents code that is to run on the host CPU.

This generally involves moving any data required in the memory of the GPU, including the

code to be executed on the GPU, as well as calling the procedure to execute that code, and any

clean-up required. The other components are called shaders, with one shader being required

for each applicable pipeline stage 2. For example, the vertex shader defines the object in

space to be rendered, while the fragment shader defines how the rendered object is painted.

GPU vendors usually certify that their devices are OpenGL compliant, by subjecting their

devices to the conformance test suite. However, what is interesting from a compiler testing

point of view is that each GPU must then provide its own OpenGL compiler implementation.

This compiler is included in the software driver of the GPU. This potentially gives rise to a

large space of compilers, based on combinations of vendor, GPU device, driver version, and

OpenGL version.

Another consideration of OpenGL in the context of testing is that it heavily involves usage of

floating point values, which means inexact operations and potentially distinct rounding modes

across configurations, and that the OpenGL standard is fairly loose in multiple places, allowing

GPU vendors to make their own implementation-defined decision, while still conforming to

the standard. These properties mean that testing approaches like differential testing are not

directly applicable, as different configurations are not constrained to a single correct value.

Therefore, testing methods which apply within the same test system are preferable.

1https://www.opengl.org/, accessed 28th of October 2021
2https://opengl-notes.readthedocs.io/en/latest/topics/intro/opengl-pipeline.html, accessed
28th of October 2021
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3 Metamorphic Testing for C++

Software Libraries

While metamorphic testing is widely researched in the academic domain (as exemplified by the

number of scientific publications focusing on it [68]), there is not much evidence of it being

applied in industry. Based on our experience, we believe this to be due to the requirements to

applying metamorphic testing, namely well-specified relations between the inputs and expected

outputs. In the real world, where software is very rarely specified, defining expressive and

correct relations could pose too large an initial hurdle to overcome.

Thus, we present metamorphic testing with high-level operations, which makes defining rela-

tions more practical. Furthermore, we present an implementation of our approach in the MF++

tool, which targets C++ software libraries. In the rest of this chapter we will provide an overview

of metamorphic testing with high-level operations (Section 3.2), describe more details about

the features and generation process of the approach (Section 3.3), and finalise with technical

details about our implementation to provide a generic interface to C++ software libraries to

make use of our approach (Section 3.4).

3.1 Motivation

This project initially started with a simple requirement: try to apply metamorphic testing

to the integer set library [73] (isl). Due to the nature of the library, namely implementing

operations over sets, we believe metamorphic testing to be a suitable testing technique to apply

to the library. This is due to the numerical nature of the library, allowing us to apply multiple

mathematical identities, as well as the fact that certain features of the library are known to be

under-tested (primarily, the coalesce [74] operation). For the latter, automatically generating

input with metamorphic testing ensures that input is meaningful, as it can be derived from real-

world examples. Eventually, we started exploring options to provide a more generic framework

to apply metamorphic testing, which evolved into the current incarnation of MF++.
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As presented in Section 2.2, the core of applying metamorphic testing (MT) is comprised of

metamorphic relations (MRs). In the context of a simple operation, such as the exemplified sine

operation, it is fairly obvious what kind of MRs we can consider, further helped by knowledge

of the sine operation and related identities. We can go further, and say we could find MRs for

common Linux commands, such as word count (first split the file at some whitespace character,

apply word count over each partition, then sum the results). However, when talking about a

complex system, such as a compiler, defining these MRs becomes a herculean task. Taking

the entire program source code as input, how can we define a transformation to an equivalent

source code, and further, how could we even begin to relate the expected binary output?

One approach would be to partition the input: can we find localised transformations which

modify the program behaviour in some way, then extract, via some analysis, potential execu-

tion changes based on these transformations? Also, we probably prefer executing the program,

rather than performing binary inspection. The main issue is there are some practical obstacles

to performing traditional metamorphic testing to certain systems. Not to mention the need

for specific knowledge regarding the underlying system and potentially the domain it resides in

(which would be a large boon to producing MRs). Overall, for a programmer, both understand-

ing metamorphic testing, and being able to write expressive MRs poses a difficult undertaking,

with potentially high upfront cost.

3.2 Metamorphic Testing with High Level Operations

We remind the reader the main ingredient required to perform metamorphic testing of some

given system under test (SUT) are MRs — for two inputs related by some relation R, if we

can define some relation S over the outputs, then we can construct alternative inputs by using

R to transform existing input data. Applying the system over these inputs, then checking that

S holds over the newly produced output and the original, known output, provides a means of

testing the SUT. Generating the MRs, however, is not an easy task. The most common way

to derive them is to carefully inspect the formal specification, and using the knowledge of how

the respective system under test affects a given input, derive expected outputs, as well as the

second part of an MR, the expected relation between the obtained outputs.

Thus, we approached metamorphic testing with practicality in mind — how can we apply

the technique in a manner that might be potentially not as effective as creating bespoke MRs

for a given system under test, but generic and practical to allow for easy use of metamorphic

testing? Additionally, the effectiveness could be partly augmented by throughput: if we have
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a method of automatically generating tests that employ metamorphic testing, it means we can

continuously generate tests, with the potential of finding bugs and exercising the SUT.

We devised with what we refer to as metamorphic testing with high-level operations. The

core idea is that for a given SUT, we can define a set of high-level operations that the SUT

can be made to implement. Some of these operations might be due to the domain the SUT

operates in. Further, for each high-level operation, we define a set of distinct implementations,

called alternative implementations, which, given the same input, would emit the same result.

In layperson’s terms, this can be thought of as doing the same thing in different ways. Suppose

we would like to implement an algorithm computing the shortest path in an undirected graph.

We expect to get the same result whether we compute the path from node a to node b, or vice-

versa, or if we introduce a new node in the graph. Additionally, if we remove a node outright,

we expect to compute a path shorter than or equal in length to the original value; similarly,

an operation that might fuse a number of nodes (distinct from a and b) in some manner

(for example, placing a new node at coordinates equal to the average of the input nodes),

our algorithm should also return a value less than or equal to the original one. This could be

considered a removal high-level operation. In terms of traditional metamorphic testing, this can

be thought of as restricting the S relation to equivalence, and defining an implicit R by using

internal instructions. In our proposed approach, by setting S to always be equivalent, we can

simplify away one difficult aspect of defining MRs, essentially folding it into the declaration

of alternative implementations. The main advantage is then one of practical usability; an

expert of an SUT can more easily come up with some transformation of interest (which need

not be complex), then think of additional ways, within the scope of the library, of how the

transformation might be expressed in terms of other, existing SUT operations.

Even with this level of abstraction, generating MRs is still not entirely trivial. However,

existing code can be used to generate MRs. Unit or regression tests, which are rather common

place in industry projects, can provide a source of abstract high-level operations. Suppose the

developer of the aforementioned shortest-path algorithm already had a test suite which included

examples where nodes were removed, in order to check the output was updated appropriately

on whether the node was on the originally computed shortest path or not. These examples can

translate to alternative implementations of the removal operation described above. We note

that an operation does not necessarily need to be something common-place. Of course, existing

operations from the domain which the system under test implements are useful starting points

(e.g., for a system under test implementing real integers, arithmetic identities are good sources

of high-level operations). But more specific, SUT-level operations could be implemented. An
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A ∪ A A ∪ ∅
A ∩ A A ∩ U

A simplify(A)

(a) Example alternative implementations for
the identity high-level operation, using
known mathematical set identities

A ∪B

A ∩B
union demorgan(A,B)

(b) Example alternative implementations for
the union operation

Table 3.1: Example of alternative implementations for a set library

example is an SUT which provides a highly optimised implementation for commonly used

sequences of operations (akin to the floating point fused-multiply-add operation). Alternatively,

it might be the case that some sequence of internal operations (potentially present in the

regression test suite), not necessarily exposed to the end-user, might require further testing. We

can summarise this aspect of metamorphic testing with high-level operations as follows: effective

testing for a particular SUT is heavily specific to that SUT. Our approach provides a middle

ground between crafting a highly specific test suite, and the strengths of metamorphic testing.

This leads to an initial overhead, required to identify high-level operations and respective

alternative implementations, but can lead to automatic and specialised testing.

To better illustrate metamorphic testing with high-level operations, we provide a more com-

plete practical example. Suppose we have an implementation of a set arithmetic library. Further

suppose our library implements the following operations: union, intersection, complement,

union demorgan, and simplify. The first three operations correspond to the same operations

in mathematical set theory. The operation union demorgan is a specialised implementation of

the following identity derived from the DeMorgan laws: A∪B ≡ A ∩B. Finally, simplify is an

operation which optimises the internal representation of a set, without affecting the observable

contents of the set.

The first step involves identifying high-level operations of interest. Inspiration from the un-

derlying domain, in this case mathematical set theory, is a good place to start. Thus, we can

identify union, intersection, and complement as high-level operations, due to their correspon-

dence to operations in set arithmetic. For simplicity, we will refer to the implementations of

these operations by their corresponding mathematical symbols. Next, we observe that there

is a library-specific internal operation, namely simplify. The (informal) specification of this

operation says that the observable contents of the set should not change. We can therefore con-

sider the operation an identity operation. This will constitute the fourth high-level operation

for this exercise. We note that identity can always be considered a high-level operation in any

library.
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Figure 3.1: Workflow of metamorphic testing with high-level operations. The trapezoid shapes
represent user-provided input, while the double-sided rectangles represent transfor-
mations

Next, we must look at potential alternative implementations. Similar to above, we start by

using known set identities. Thus, for identity, as can be seen in Table 3.1a, we can directly

use known identities with the corresponding internal implementations. Note that we can also

consider the simplify operation as an instance of identity. To exemplify alternative imple-

mentations of union, consider Table 3.1b. Observe how there are two implementations, one

implementing the DeMorgan law for union explicitly, using library operations, and one using

the optimised union demorgan implementation. While obviously these two should be equiva-

lent, as we expect union demorgan to be based on the explicit DeMorgan law, it is important to

note that we are testing the actual implementations, and it is very possible for bugs to appear

at any point in the code. Thus, even obvious equivalences should be tested.

3.3 Approach Overview

In this section, we provide a more in-depth overview of metamorphic testing with high-level

operations. We describe the user-provided ingredients required to interface with the library

under test, and discuss ways in which we augment the metamorphic testing process beyond the

concept of applying MRs. Some of the design choices are referenced within the context of our

implementation focusing on C++ software libraries, MF++, but these should be considered as an

example of the underlying principles, which are generally applicable.

The overall workflow of the approach can be seen in Figure 3.1. A user-provided template

file is used as input, which links all the components together. This is augmented via fuzzing

(Section 3.3.2), by using the fuzzer specification to generate variables, which are used as input

to the metamorphic variant generation process. Finally, using the metamorphic specification,

we generate metamorphic variants, as well as user-defined checks over the generated variants,

to ensure that the variants are equivalent (Section 3.3.3).
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3.3.1 User-provided Input

In this section, we shall discuss what kind of information is required by our approach in order

to link with a specific SUT. This covers information required to perform fuzzing, generate

metamorphic variants, check whether the generated variants are as expected, and a template

to link all the components together.

Fuzzing Data

This specifies the types of the SUT that should be exercised, as well as functions which operate

over those types, and constructors for the types. We expect that a library has a variety of

internal API types, and some of them are core to the functionality of the SUT. For example,

in a set arithmetic library, there conceivably exists a type representing a set, and a variety of

functions representing operations over sets, and fuzzing API traces exercising these functions

should prove interesting.

We note that this information could potentially be automatically parsed from the source code

of the SUT. However, we consider that allowing the user to define the types and functions of

interest serves two main purposes:

• It allows for a sort of in-built semantics to be declared over what kind of operations are

visible to the fuzzer. There might be internal functions operating over types of interest

which might not make sense to combine. For example, a function might translate the

constraints of the function into the rational domain, while there exist functions which can

only consume integer-domain sets. Ensuring that these two do not mingle in a completely

random fashion ensures valid tests are generated.

• Targeted testing is possible by restricting what is visible to the fuzzer to desired sections

of the codebase. For instance, there might be some logging functions which are less

interesting when performing functional testing, or a newly-introduced feature might be

more desirable to test.

MR Data

This is equivalent to defining MRs in traditional metamorphic testing. In our approach, declar-

ing MRs involves two steps: identify a high-level operation that the SUT can conceivably

perform, and then provide different implementations which achieve the same observable result.

40



3.3 Approach Overview

We already saw some examples in Table 3.1. Test suites could potentially used for inspiration

to identifying core functionality, and derive high-level operations and implementations from.

In addition to the alternative implementations, we consider metamorphic checks as a part

of this data. These checks should ensure that, after variants have been generated, they are in

an equivalent state. Most simply, two variants could be checked for equality using the API of

the SUT. There could also be more specific tests. Going back to the arithmetic set example,

we could check that the cardinality of the result sets is equal, or that some arbitrary value

is either contained within both checked sets, or neither. These checks are the mechanism by

which functional SUT bugs are caught.

Test Template

This represents the “glue” that holds everything together, and includes any SUT-specific setup

or cleanup that might be required. For example, it might be the case that an SUT uses a

context object to refer to within all its variable declarations. It is expected that we do not

want to randomly create a variety of such contexts, but rather a single context for the entirety

of the test case. Therefore, the template might contain some code to ensure that a singular

context object is created. Subsequent operations should be able to identify this object as in

scope, and know that it can be safely used when required.

Additionally, it might be the case that additional operations are desired to be done over fuzzed

variables. There is potential of integrating code within this template which affects eventually

generated objects. We view this template as the generating starting point, presenting an

abstract view of what the eventual test case should look like, containing abstract operations

which are expanded into applications of fuzzing and metamorphic testing.

3.3.2 Fuzzing

The main motivation behind implementing fuzzing is to have a never-ending supply of inter-

esting input to apply metamorphic testing over. This ensures that there is no hard-limit on

the supply of inputs to define MRs over — if more are needed, they are simply fuzzed auto-

matically. Furthermore, it guarantees that inputs exist to build a test around; it might be the

case that certain libraries might have insufficient publicly available examples to use as inputs.

Finally, fuzzing might produce interesting inputs, triggering certain faulty edge states, which

might not be easily triggered in day to day use. While the practicality of such tests might be

questionable, from a testing point of view, it is at least useful to be made aware of the existence
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set

set int

(a) Example function types

Return Type Function Name Parameters

set universe []

set union [set, set]

set intersect [set, set]

set lt cond set [set int, set int]

set lte cond set [set int, set int]

set int convert [int]

set int neg [set int]

set int add [set int, set int]

(b) Example function signatures

Table 3.2: Example input data for MF++ fuzzer

of these faulty edge cases, as they might be more easily triggered as software is developed.

Our implementation of fuzzing in MF++ follows a type-oriented, bottom-up approach. First,

the fuzzer is initialised with a list of library-specific types to be used, as well as a list of function

signatures to be used during the fuzzing process. We particularly distinguish the need to provide

constructor functions for certain object types, which can be used to construct an object of the

respective type either without any dependencies, or with dependencies that are assumed to be

fulfilled. Further details on how this information is provided can be found in Section 3.3.1.

When the fuzzer is called, it is provided with the type of the object to be fuzzed. We

distinguish three possible choices on how to construct such an object:

Provide an existing object In this instance, if there is an existing object of the required type

in scope, the fuzzer might simply choose to return that object. This ensures that the

control flow is not simply a straight line, and has some complexities (currently, the fuzzer

does not produces any control flow cycles).

Invoke a non-constructor function Select a user-provided library function which returns an

object of the requested type, and build an appropriate invocation, further fuzzing the

necessary input.

Invoke a constructor function We know that constructor functions, by definition, can be used

at any point. Constructor functions are distinguished by the fact that they do not require

additional input be generated for them: either the required input is expected to be defined

and in scope, or there is no input (e.g., a constructor for an integer-like variable could

call the constructor with a randomly generated variable).

For an example, assume we have the data presented in Table 3.2, which shows some types of
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Figure 3.2: Example fuzzing process of a set in our example set library

interest from our set implementation library (Table 3.2a), as well as some function signatures

of interest (Table 3.2b). There are two types of interest, set representing a mathematical set,

and set int representing a mathematical integer. We also have a number of functions from

our library at our disposal during the fuzzing process. We distinguish some of them. Functions

universe and convert are able to generate library objects without any dependency. The

former simply creates a set on demand, while the latter requires an int as a parameter, which

is a primitive type that can be randomly generated on the fly. These two are instances of what

we consider constructor functions. Furthermore, we also distinguish the functions lt cond set

and lte cond set. Semantically, these functions will create a set with the constraint that the

provided parameters are less than (respectively, less than or equal) one another. Having a

variety of types available as parameters in the provided functions means the fuzzer is able to

exercise those types, increasing the testing space.

Now let’s suppose we would like to fuzz an object of type set. A high level overview of

a potential choice to produce such an object can be seen in Figure 3.2. The parallelogram
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represents the output object (an object of the set type), double-lined rectangles represent

function applications (as defined by the fuzzer specification), and trapeziums represent either

terminal inputs (such as the integers 2 and 6), or constructor functions (which will henceforth be

considered terminal inputs for brevity). We observe that the left half of the figure indicates how,

from two integer inputs, we use SUT functions to generate required set intermediate objects,

via lt set cond to be used further in the fuzzing process. Note how the figure represents

a directed acyclic graph, with all top nodes representing terminal inputs, and a sole bottom

node representing the expected output object. Further note how objects can be reused across

function calls: the output of lt set cond is used in both the sub-sequence union call, as well

as the parallel intersect call. While not presented in this diagram, it might be the case that

an object is chosen multiple times as a parameter to a fuzzed function invocation. The only

restriction placed by the fuzzer when choosing what concrete objects to substitute for parameter

requirements is that the types match.

One other potential idea to very finely control the fuzzing process is to add individual weights

for each function available to the fuzzer. This would ensure that more interesting functions can

be selected to be more likely produced, which is especially useful when there is a large choice

space for a given object type. While from an engineering point of view, this is not a difficult

task to implement, the more challenging issue is how to define these weights in a simple manner,

without overloading the initial required overhead of specifying the library information.

3.3.3 Metamorphic Variant Generation

This section will discuss how the metamorphic variants are generated, which is the core com-

ponent of MF++, as well as the focus of our application of metamorphic testing. We aim to

generate metamorphic variants with a large number of calls to the API of the SUT, in order to

more likely trigger bugs (as discussed in Section 3.3 of the Csmith paper [80]). At a high-level,

this step will create a number of objects of a specified type, which are expected to be seman-

tically equivalent by construction, and then perform pairwise checks between these variants.

Assuming MRs are correctly specified by the user, a check failing would indicate a potential

silent bug in the SUT (i.e., a bug which is not directly obvious, as opposed to a full crash or

assertion failure). Similar to the fuzzing process, this step requires some user-provided input,

in the form of the MRs to be used and the checks to be done between variants.

Following our approach of metamorphic testing with high-level operations, we categorise the

MRs provided by the user in the following way: (a) each MR is associated with one operation;
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(b) each operation contains at least one base MR, which doesn’t recursively call other operations

(and is, ideally, the simplest implementation for that operation); (c) and each operation is either

a first-class operation, or a second-class operation (discussed in Paragraph 3.4.1). In order to

apply our metamorphic testing with high-level operations idea, we first generate a sequence of

operations (which essentially implements composition of metamorphic relations [47], in order

to increase the number of SUT API calls), choosing randomly from among the existing, defined

operations. We go back to our running mathematical set library, where we decided upon four

operations: identity, union, intersection, and complement. We first set a length of our expected

sequence, let’s say three operations. This would yield a potential 43 = 64 permutations just for

the sequence of operations, as any of the operations can be chosen in any position (this is due

to the fact that all of these operations are first-class operations, as will be discussed later). At

just this point, we observe how rich the search space is: if we define n high-level operations,

and decide upon a sequence length of m, there are nm total possibilities (this makes generating

similar sequences mathematically unlikely). Let’s set our chosen sequence of operations as

union-identity-union. Let’s also set the number of expected metamorphic variants to three as

well. We also assume we have three input objects of type set at our disposal, i1 through i3.

During actual testing, the sequence length, and the number of variants to produce are provided

as parameters to MF++, and we derive them empirically, trying to balance larger (thus more

expressive) tests, with acceptable runtimes and timeout ratio.

With these ingredients, and the alternative, or concrete, implementations from Table 3.1,

we can produce concrete variants using the API of our set library. The process is identical

for each variant, and is visualized in Figure 3.3. We have three input variables to start with,

(i1, i2, i3). To generate one metamorphic variant, we select concrete implementations for each

high-level operation in the sequence (noted by the labels at the top of the figure). We start

with the first union operation. From the list of all MRs associated with union, we randomly

choose one. For instance, we choose the simple concrete implementation of directly applying

our library implementation of set union. Note that all concrete implementations of union take

two set objects as inputs, and return another set object. For this step, we shall use two

of the existing input variables as parameters to our choice of concrete operation, say i1 and

i2. That will conclude concretizing the first high-level operation for the first variant. For

the second operation, we must take into consideration that we have already performed some

computation via the first concretization step. Therefore, one of the inputs to the eventual

concrete implementation of the second (and subsequent operations) will have to be the current

value of the partially computed metamorphic variant (represented by variable v0 in the figure,

45



3 Metamorphic Testing for C++ Software Libraries

Figure 3.3: Example generation of three metamorphic variants with an operation sequence
length of three. Input variables are represented by (i1, i2, i3). The labels at the
top indicate the high-level operation in the sequence. Each rectangle represents
a concrete implementation for the respective variant of the high-level operation.
Variables (v0, v1, v2) represent the value returned by the previous concrete imple-
mentation in the sequence.

where zero indicates the index of the current metamorphic variant). This will always raise the

issue of limitations in the signatures of these MRs (discussed in more detail in Section 3.4.4). To

continue, we now must concretize an identity operation. Suppose we choose to concretize it via

just returning the given value (i.e., we don’t actually apply any operation). Finally, for the next

concretization step, of a union operation, we shall choose to again apply our implementation

of union. One parameter is set in stone, as it must be the existing value of our metamorphic

variant. For the other parameter, we can again refer to our input variables, and choose an

appropriate one from the given set of i1 to i3. Suppose we chose i3 this time. Furthermore,

we observe that we could choose to apply an identity operation to any of the parameters. By

definition, we don’t expect identity to change the semantic of the input, so it should be safe to

apply identity at our discretion. Other variants follow the same logic to be generated.

Now let us discuss some of the finer details of this generation process.

Input variables The metamorphic test generator is safe to assume that it will always have

the inputs that it needs. This is due to the fact that we constrain that parameters passed to an

MR be distinct, unlike what can happen during the fuzzing process. That is, when parameters

must be chosen to create a concrete MR invocation, we can imagine existing input variables

as a pool, and we simply pick up one input from the whole pool. Theoretically, there is not
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too much need for this particular requirement — we could have a single object of the correct

type fit into all required slots. However, practically, if we consider that we might want to use

operations such as subtract, it would be much more likely to render all computation trivial,

by simplifying to some literal value (although an argument could be made that such a literal

value might actually have some interesting internal properties, even if it appears trivial on

the outside). In MF++, we manually ensure that the number of inputs is equal to the highest

required number of inputs across all defined MRs, as we simply fuzz all the inputs.

Recursive MRs We briefly mentioned how it could be possible to insert an identity operation

anywhere, as it should not change the semantics of the given input. This is a specific instance of

what we call recursive MRs. More generally, we can replace any operation with a corresponding

high-level operation, provided one exists. As identity is equivalent to a no-op, it is the case that

it can be inserted anywhere. But, for example, if we consider the concrete implementation of

union consisting of A ∩B, we can see that there are applications of complement and intersect

operations. We could replace these direct applications of the operations with our alternative

implementations, which would potentially also, in turn, instantiate to MRs which call other

high-level operations, and so on. This not only allows us to create much more complex sequences

of operations, but also allows us to make use of second-class MRs.

Checks The checks are user-provided functions which are meant to check, in a pair-wise

fashion, that generated variants are equivalent. We use equivalence, as that can be highly

customisable based on the SUT itself, and potentially based on what kind of data is presented

for use by the fuzzer and metamorphic variant generation. An example of a fairly common

equivalence check, generally applicable to the majority of domains, is equality. However, a

potentially interesting specification for our set library might enforce that the cardinality of all

sets is a multiple of some number. Thus we could check variants respect that property after

generation. In regards to how the checks are performed, at the end of the metamorphic variant

generation process, we apply each check function in order between the currently produced

metamorphic variant and the first produced metamorphic variant. This will ensure that the

variables are fully generated and in scope. Furthermore, we assume the equivalence checks

are transitive, therefore checking all variants against the first variants should be equivalent to

checking across all variants.

A small note here on what “equivalence” might mean. We, as developers of the technique, do

not enforce anything regarding the meaning of equivalence. This should be implicitly integrated
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throughout the specification. Our approach is that the fuzzer and the metamorphic variant

generation should maintain some observable property of interest, and the check should ensure

that that particular property is maintained. As long as that particular property holds across

variants, then the variants can be considered equivalent. Thus, we leave this to the developer,

to decide which properties are of interest, and how to integrate this into the specification.

An operation named double, where implementations might double either the count or value of

elements, is perfectly reasonable, if the property we expect to be consistent across variants is

not related to the absolute count or value of elements contained within a set.

These are all components of our implementation of metamorphic testing with high-level

operations within MF++. The core idea refers to how we categorise MRs within operations,

which allows us to create syntactically distinct and semantically equivalent objects by choosing

different implementations for an operation. The randomness is further amplified by having a

sequence of operations (akin to composition of MRs [47]), having recursion within MRs, and

by introducing a fuzzing component for inputs.

3.4 Implementation Details

This section covers some more technical details of MF++, our implementation of metamorphic

testing with high-level operations for C++ software libraries. We also give an idea of how Clang1

is used, particularly heavy usage of the Clang AST, in order to parse user-provided input, and

generate explicit, valid test cases. We note that the ability to use the Clang AST is due to

targetting C++ software libraries, which is supported by the Clang tool. We note that the

possibility of using source code to the extent it is done in MF++ is possible due to the existence

of Clang, and a similar implementation in another language would have to either find an

appropriate parser, which exposes sufficient information, or provide a custom implementation

that does so.

3.4.1 Parsing User-provided Input

This section discusses how user-provided input is parsed specifically by MF++ to be used during

generation, as well as the expected structure of this input.

1https://clang.llvm.org/, accessed 27th of January 2022
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Library Specification

We have mentioned the notion of a library specification multiple times throughout. It is the

core component of the provided user data in MF++, and consists of multiple files in the current

incarnation of MF++. The specification is provided in native C++ code, made possible due

to the use of Clang libtooling to implement MF++. Over time, the specification underwent

multiple design choices, including being split up in multiple files in the latest iteration, for

compartmentalization. We shall discuss each component individually, while keeping in mind

that they are a part of the whole.

Fuzzer specification The first component we discuss is the information to be provided for the

fuzzing element of MF++. This includes functions available for use during the fuzzing process,

and internal types for the SUT.

MF++ allows for these to be defined at the level of the source code of the SUT, via attributes.

As an initial proof of concept, due to custom attributes requiring modifying the source of the

compiler used, to our knowledge, we have made use of the annotation attribute. This attribute

takes a string parameter, which is exposed in the Clang AST upon parsing, allowing MF++ to

identify the node for which the attribute was declared. Thus, we set a specific keyword in MF++,

namely expose, and we log nodes of interest annotated with __attribute__((annotate("expose

"))). Having access to the specific Clang AST node, we can log any information required by

the fuzzer, such as the signature of the function exposed (i.e., return type, parameter types,

parameter count), or the name of the type used. We note that this action is performed by the

libSpecReader action (Section 3.4.2).

For our purposes, we create a duplicate of the original header files of the library under test,

which we include in the template file. Passing the template file to our libtooling implementation

will also parse any included header files, allowing our attributes to be available in the Clang

AST. In order to fulfil dependencies, as the parsing process must be given a fully correct

C++ file, we make use of compile commands.json, as described in the Clang documentation,

pointing to a valid installation of the respective library under test2. It is probably good practice

to have a separate test header for MF++, however, we believe our choice of annotation should not

clash with any other tool. Furthermore, future updates might allow for a custom annotation

to be included in Clang, ensuring no clashes.

In addition to the source code annotation, we also parse exposed types defined within the

fuzz namespace, and functions defined within the fuzz::lib helper funcs namespace. The

2https://clang.llvm.org/docs/HowToSetupToolingForLLVM.html, accessed on 24th of August, 2021
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Listing 3.1: Example of some potential checks for set library

1 void is_equal(set s1 , set s2) {

2 assert(is_equal(s1 , s2));

3 }

4 void is_equal_count(set s1 , set s2) {

5 assert(count(s1) == count(s2));

6 }

former functionality is particularly useful to mask certain internal types (e.g., the user might

want to distinguish between sets with rational elements and sets with integer elements, but

there is only an internal set type available to present both), or to typedef more complex types

that might not be handled by MF++ due to not parsing those specific AST nodes (i.e., we have

not tested MF++ on variadic templates). The latter functionality can similarly allow users to

definer a coarser granularity on the functions allowed the be used by the fuzzer. For example,

we might want to check that the divisor of a division is non-zero, or that the exponent to a

power operation is positive, if we would like to ensure we keep all numerical values in the integer

domain.

Metamorphic specification This is the most important component of the tool, and where

most of the work to polish the eventually generated test cases should go into. The metamorphic

specification contains the definition of the high-level operations, both first- and second-order,

and the checks to be performed. The specifications make use of namespaces in order to distin-

guish these categories of functions, both for readability, and for internal use by MF++.

All this information is expected to be in a top-level namespace named metalib. Then, we

distinguish three further namespaces: checks, generators, and relations. These correspond

to the checks, the second-class MRs, and first-class MRs respectively. We now discuss each of

them in part, with examples given for our on-going set library example.

The checks namespace should be comprised of function definitions which embody correctness

checks over the metamorphic variants. There is no homogenised signature requirement over the

checks, but we expect there to be at least one parameter of the type of the metamorphic

variants, in order to allow the check to be performed over the respective metamorphic variant

it is generated for. Normally, we’d expect two such parameters, in order to perform a pair-wise

equivalence check, as per traditional metamorphic testing, but there is no reason to enforce

that requirement, in case that there might be some checks of interest to be performed over a

singular output. Any number of checks can be defined here, and they will all be emitted to the

test file in turn after each metamorphic variant has been completely generated.
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An example can be seen in Listing 3.1. We have defined two checks. The first check calls

the internal is equal function, which checks some internal notion of equality; it might be

that the two tests have the same elements, or they have the same constraints. Based on the

definition of the MRs and the fuzzer, we must know if it is appropriate to use this particular

is equal function here. This is an example of requiring knowledge of the library we are testing

in order to write effective and correct specifications. The second check tests whether the

cardinality of the two sets match. The MRs defined should emit equivalent sets, meaning that

the cardinality should be maintained, thus making this an effective check. We also note that

it might be the case that either is equal or count might be buggy. Thus, it might be useful

to have multiple, potentially redundant checks, in order to ensure such bugs get caught. Of

course these functions might be used both within MRs and the fuzzer, if they are appropriately

included in the specification.

The other two namespaces, namely relations and generators, are both comprised of fur-

ther sub-namespaces, each one representing the notion of a high-level operation. Functions

within each sub-namespace will each represent one alternative implementation of that partic-

ular operation, and each sub-namespace will have a homogenised signature (i.e., parameter

count and types, and return type) shared by all MRs declared within. The major distinction

between the two top-level namespaces are the imposed type restrictions. While there is no

type restriction over generators (or second-class operations), we enforce that relations (or

first-class operations) both have at least one parameter of the type of interest (namely the

same type as of the fuzzed input variables and of the metamorphic variants; further discussed

in Section 3.4.4), and that the return type is the same. The naming convention is an artefact

from a previous iteration of the tool, where generators would be 0-ary MRs used to create

objects with interesting properties (such as an empty set, or the universe set, in the domain of

mathematical sets).

An example of possible MRs for our set example can be seen in Listing 3.2. The first thing

to note is this placeholder function declared in each of the operation namespaces. This is the

way by which we make use of recursion in MF++. This is an expanding marker, which MF++ will

know to replace with a randomly selected implementation of the respective operation. Further

details about the recursion mechanism and implementation are available in Section 3.4.2. These

placeholder functions can then be used at any point where there is a call to an operation which

is abstracted as a high-level operation. For example, in the de morgan implementation of union

(line 12), we replace every instance of an operation with that of a high-level operation. There

are two benefits to this. First, the trace of using this particular implementation becomes more
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Listing 3.2: Example of MRs for the set library

1 namespace generators {

2 namespace empty {

3 set placeholder(set);

4 set base(set s) { return empty(); }

5 set empty_sub(set s) { return intersect(s, placeholder); }

6 };

7 }

8 namespace relations {

9 namespace union {

10 set placeholder(set , set);

11 set base(set s1 , set s2) { return union(s1 , s2); }

12 set de_morgan(set s1 , set s2) {

13 s1 = complement :: placeholder(s1);

14 s2 = complement :: placeholder(s2);

15 set s1_int_s2 = intersect :: placeholder(s1 , s2);

16 return complement :: placeholder(s1_int_s2);

17 }

18 }

19 }

complex, thus potentially exercising the SUT to a higher degree. Second, we could lift this

particular implementation of union to a generic set domain specification. We can then provide

base implementations of these high-level operations making use of functions from a variety of

libraries implementing set arithmetic. This allows us to reuse these metamorphic specifications

across libraries with somewhat minimal effort; in our current iteration of MF++, we split the

metamorphic specification into domain-related MRs, and library-related MRs — all the domain-

related MRs make exclusive use of high-level operations, while library-related MRs only provide

base implementations of high-level operations, and perhaps a handful of library-specific MRs.

A final restriction for each operation is that it must have a least a base implementation defined,

namely an implementation where there is no further recursion (e.g., lines 4 and 11). This is

in order to ensure there is a choice to be made if the particular operation was chosen to be

emitted at the maximum depth during the generation process.

Template File

In order to link all this together, the initial input to MF++ is comprised of a C++ file we consider a

template file. All the expansions and syntactic markers are added here, and it is this file which,

after MF++ actions are applied to it, becomes the eventual test case. Declaring the specifications

in header files and including those files inside the template file makes them available to the

Clang parser, which means the respective nodes will be contained within the produced Clang

AST to be used by MF++. This includes headers containing the metamorphic specification,

adapted SUT headers with exposed functions and types for fuzzing, and headers containing
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Figure 3.4: Internal pipeline of MF++ consisting of Clang Actions

any further fuzzer helper functions.

However, the purpose of the template file is beyond just simply being a vehicle for all this

information. It is also used to hold any SUT-specific setup that might be needed, and is beyond

what the fuzzer prepares. For example, it might be the case that a particular SUT might require

a state be initialised, or certain flags be set, or even some cleanup that might be needed at the

end of the test. These can be added to the template file; MF++ will not affect any code that is

not explicitly marked for its use via syntactic markers. Additionally, due to how the fuzzer is

built to make use of existing in-scope variables declared before the fuzzer call, it means specific

variables can be prepared for use. These might be singleton variables, that must be used to

create objects, and are vital for fuzzing, or they might be objects with very specific properties,

that we might want to set and not randomly create. For example, if our example set library

might have the notion of n-dimensional sets, and a space type object containing the number

of dimensions be required to initialise one, we might want to have a single instance of such a

space object, built with a fuzzed number of dimensions (via fuzz rand). Then, constructors

for such n-dimensional objects that require a space object as input will have our prepared

instance for use, ensuring all n-dimensional sets reside in the same space.

3.4.2 Using Clang Libtooling

The high-level pipeline of how MF++ operates can be seen in Figure 3.4. We distinguish seven

actions, each of them performing a specific action in order to transform the given “template”

(further described in Section 3.3.1) into an executable file calling the API of a library under

test, integrating fuzzing and metamorphic testing. We now delve into more details regarding

the purposes of these actions, and some implementation particularities, in order. We also dis-

tinguish transformative and non-transformative actions, where the former emits a transformed

version of its input, which then must be reparsed by the subsequent action.

In addition to the internal implementation of metamorphic testing with high-level operations,
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it is also important to consider the interface between the user and MF++. This includes how the

user is expected to present the required user-provided data, such as the MRs and the data to be

used by the fuzzer. This information definition already poses a rather high overhead, therefore

it is important to try to design this interface in a way that is familiar and straightforward

for future potential users. After a few iterations and brainstorming sessions, it was decided

that the most natural way of asking users to write the required information would be through

native C++ source code. As C++ is such a complex language, the only choice would be to

make use of existing parsing utilities contained within the LLVM suite, more specifically, the

Clang LibTooling library. This would provide access to the entire suite of utilities provide by

the LLVM project, particularly the parser and subsequent Clang AST, which should cover all

required use cases for our purpose.

Internally, we initialise a clang::tooling::ClangTool object, which defines the main entry

point of our tool. Then, we define a series of clang::ASTFrontendActions, with an associated

clang::ASTConsumer. Each invocation of an ASTFrontendAction will internally perform the

parsing process, and allow us to work at the level of the Clang AST, then delegate the actual

work process to the associated ASTConsumer, where the work is being done. Our consumers

are primarily implemented around Clang’s matcher3 and visitor4 objects. The reason for using

these objects is that they can identify parts of the AST of interest, which can then be used to

emit the code we require in our eventual test case. Therefore, what MF++ does via its various

actions and consumers is to read in Clang AST data, then emit an appropriately transformed

version of this data, according to the process described in Section 3.3.3. We note here that it is

important to make the distinction that the AST is not transformed, but rather that we use it

to read in the data of interest, which is then used to construct the source code of the eventual

test case via a clang::Rewriter object. The main reason for this is that the AST itself is

immutable. What this means is that as we perform a transformation that a future action might

depend on, we must emit the transformed program, then re-parse it from scratch.

libSpecReader and fuzzHelperLogger

These two actions are both non-transformative and serve to parse information contained within

the template file and to store it in memory for use by further actions. libSpecReader logs

information related to the API of the library under test. This means function signatures

and object types to be used by the fuzzer. The main vehicle by which this information is

3https://clang.llvm.org/docs/LibASTMatchers.html
4https://clang.llvm.org/docs/RAVFrontendAction.html
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presented is via an annotation attribute with a specific string which is hard-coded into MF++.

The full annotation is __attribute__((annotate("expose"))). A proper attribute could have

been implemented, but that would require modifying the Clang source code, and was deemed

unnecessary for the current requirements of the tool. A clash is unlikely in any case, even

if the annotation attribute allows for any user-provided string to be passed as a parameter.

The implementation involves matching AST nodes of specified types (such as CXXMethodDecl

or TypeAliasDecl) which implement types and functions of interest, and storing the required

information into memory.

Similarly, fuzzHelperLogger is used to find additional functions that might be provided by

the user in order to more coarsely control the fuzzing process. We call these fuzzing helper

functions. For example, the user might wish to ensure that all sets have the same number

of constraints, but the API of the SUT only provides a function which creates a set from an

arbitrary number of constraints. It would be possible to not expose the API constructor, but

to provide a helper constructor function which ensures the number of constraints is constant.

Similarly, it is possible to enforce constraints on certain operations (division is a specific ex-

ample) to avoid undefined or unsupported behaviour. Finally, multiple operations could be

implemented in a single helper function, but done so in a restricted manner, as some of the

operations might have unwanted side-effects when used more generally, but produce a known

result if used in a controlled fashion. The logging is again done via matching, ensuring that

these helper functions are placed in a specified namespace (in the current iteration, that being

fuzz::lib helper funcs). Subsequently, these functions will be used by the fuzzer in the way

the annotated library functions are used, with no distinction.

templateDuplicator

The first transformative action is used to prepare the eventual input variables. In the template

file, the user can provide a sequence of instructions which represent the process by which the

input variables are produced. However, we must ensure that there are sufficient input variables

available for when the metamorphic variants are generated. Thus, we chose to duplicate this

sequence of operations as many times as the specified number of input variables (which is a

runtime parameter passed to MF++ rather than something computed from the list of MRs; the

tool will complain if there are insufficient inputs at generation time, however). In order to

ensure correctness after duplication, we modify the names of all variables in a manner akin

to single static assignment [4, 64]. Each duplicated block of instructions has an index which
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is appended to each defined variable, and each instance of a read from that defined variable.

The process involves visiting all nodes within the sequence of instructions for specifying in-

puts, and identifying first clang::VarDecl nodes, which declare variables, then corresponding

clang::DeclRefExpr nodes, which reference other objects. If a DeclRefExpr, which references

a variable we have identified, was declared within the input specification sequence, then we log

it. Additionally, we log all the clang::Stmt within the specification sequence. Finally, we

use a Rewriter to write the sequence of statements in sequence, duplicated as many times as

required, but identify clang::SourceLocations at the end of variable declarations (VarDecls)

and respective uses (DeclRefExprs), and append the current duplication index. We also use

the Rewriter to remove to initial input specification sequence. Finally, we emit the rewritten

code to disk, to be parsed by the following action.

We note here how all input variables at this point might seem completely identical, as what

this pass does is duplicate code and ensure variables are distinguished across duplicate code

blocks. We note that the template file allows for special syntax to be called which will be

expanded into a fuzzed sequence of API instructions in the parseFuzzConstructs action.

While there is still a semblance of similarity, this is intentional, as we thought it would be good

to have some level of control over the properties of the input variables. Similar to fuzzing helper

functions, the user might ensure the input specification ensures a specific property is held by

the input variables, and then write the MRs assuming that property holds.

metaGenerator

The next transformative action has to do with generating metamorphic variants. First, we

note that as the prior action was also transformative, at this point we must reparse the code.

In this particular situation, the prior action duplicated the fuzzing specification to be used to

produce our concrete input variables to be used by the metamorphic tests. We must reuse

these variables, and it makes more sense to read them from the Clang AST (which comes

with additional information that might prove useful). This can lead to future extensions,

where input variables are identified based on certain properties (which means it might be not

necessary that variables marked as input variables are used exclusively). Currently, it is the

case that we identify input variables based on a reserved name. We must also note that the

reparsing step means that references to the prior AST produced in previous actions are now

invalid. This is why we must ensure that any information we would like to maintain between

transformative actions are kept in our own data structures.
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Going back to the metaGenerator action, it expands a known function call in the template file

into the metamorphic variants, as discussed at length in Section 3.3.3. The first step is actually

logging MRs defined by the user. We will distinguish three sorts of MR categories: (a) checks

comprises of the user provided checks to be conducted in pair-wise fashion over the metamor-

phic variants, (b) generators are equivalent to second-class MRs, and (c) relations represent

first-class MRs. We expect another level of indirection within generators and relations, rep-

resenting the particular high-level operation the MRs implement, but otherwise, each category

is comprised of a set of functions. We log all this information in memory, in a series of maps.

The first step in the actual generation process is to randomly produce the sequence of oper-

ations. This is done by selecting a permutation of all available relations operations, and this

will be the basis of expansion into the actual metamorphic test. We iterate over the sequence,

and select an appropriate implementation. The only limitation here has to do with the depth,

as we would like to avoid theoretical infinite recursion (remember that an MR implementation

could call a high-level operation, which will recurse into another implementation, and so on).

Thus, we distinguish base MRs, which will not contain additional recursion, and can be safely

emitted once the depth limit has been reached.

Once an implementation has been selected, we must emit it in our test file. This is done

by constructing the instruction string by string. There are two main considerations to be

made: how do we handle metamorphic variant declaration and updating, and how are the

implementations emitted (especially considering recursive implementations). The former issue

is handled rather easily, as either the implementations will return an object representing the

result of applying the operation, or the changes will be made in-place. This is based on the SUT

implementation itself, and the distinction at the level of MF++ is made based on whether the

operation declarations have return types or not. If they do, then we generate an appropriate

name for the metamorphic variant (predetermined within MF++), into which we will store the

result of calling the MR implementation. If we are processing the first operation in the sequence,

we additionally emit the type of the metamorphic variants before the name of the variable, in

order to declare it. We also distinguish metamorphic variant variables by an index.

For reference, an example code snippet is given in Listing 3.3, which implements the top-most

example given in Figure 3.3. Here, our base metamorphic variant name is simply r, and the 1

is used to distinguish if from other variants. Observe that the first operation in the sequence

(line 8), a union operation implemented as calling the base union implementation, also serves

as declaring our r 1 variable.

The other consideration has to do with how we emit calls the chosen implementations. Recall
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Listing 3.3: Example of one generated metamorphic variant

1 set union_1_0(t1 , t2) {

2 t1 = intersect_with_universe(t1);

3 base_union(t1, t2);

4 }

5
6 int main() {

7 [..]

8 set r_1 = base_union(i1 , i2);

9 r_1 = r_1;

10 r_1 = union_1_0(r_1 , i3);

11 is_equal(r_1 , r_0);

12 [..]

13 }

that the implementations are provided as functions by the user. For base implementations, with

no recursion, we can simply emit a call to the respective function (lines 3 and 8), and ensure the

header where the particular function is defined is included during the testing process. However,

when recursion is involved, it means that an operation call must be replaced with a call to

another chosen implementation, meaning that we can’t simply call the function definition. The

chosen solution is to transplant the entire function definition (lines 1 to 4), append indices to

ensure there are no name clashes, and update the body of the function appropriately, replacing

recursion call points (line 2). Then we can emit a call to this particular function implementation.

As we are working at the level of the Clang AST, this is not a particularly hard task theoretically.

We identify the clang::FunctionDecl representing the particular implementation of interest,

and obtain the corresponding clang::SourceRange, then copy that code over before the main

declaration in our test file. We also update the name of the function by inserting text to the

end of the appropriate clang::SourceLocation of the clang::FunctionDecl, and we can

construct the name of the function to be called. Finally, we can identify points of recursion

due to the design of the user-provided specification, as they will be implemented as calls to a

function named placeholder (more details are provided in Section 3.4.1). Similar to above, we

can identify the clang::DeclRefExpr node corresponding to the recursion point, and replace

it with the another similarly specialised function implementation. Regarding parameters to the

new function calls, they are passed as parameters to the placeholder call in case of recursive

calls, or are inserted by name in the case of implementing a sequence operation.

Finally, we can emit all required checks (line 11), with appropriate parameters (again, that

would be the current metamorphic variant, and a reference variant, usually variant with index

0). These function are emitted similarly to base implementations, as there is nothing inherently

unique between calls beyond the parameters.
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parseFuzzConstructs

At this point, we have almost everything put in position. One aspect we did not talk about yet

is how the fuzzer is called. Similarly to the aforementioned usage of a function call placeholder

to represent a recursion point within an MR, we have a function call to be expanded into the

result of a fuzzer invocation. These fuzzer calls can either be placed within MRs, or they can be

duplicated during the templateDuplicator action. The purpose of the parseFuzzConstructs

action is to first identify these fuzzer expansion points, to pass the required information to

the fuzzer to perform the fuzzing process, then replace each point with the respective output

from the fuzzer. Due to the design of our fuzzer implementation, this operation is rather self-

contained, and the only requirement to pass to the fuzzer itself is the user-defined data described

in Section 3.3.2, and the type to be produced. Another consequence of the fact that each

fuzzer call is completely disjoint from the rest is that there is no reuse of objects between fuzzer

invocations. However, we note that other objects in scope before the call to the fuzzer invocation

are available to be used during the fuzzing process. Internally, this is achieved by identifying

the node where the fuzzer expansion is present, identifying the top-level node containing this

expansion call (which would either be the main function for calling the fuzzer for input variables,

or the function representing a specialised MR implementation if the fuzzer is called as part of an

MR implementation), iterating over each clang::Stmt to identify clang::VarDecls available

to be used in the fuzzer (and additionally the clang::ParmVarDecls representing parameters

passed to the specialised MR implementation), then replacing the fuzzer expansion invocation

with the fuzzer output.

We note here that the fuzzer implementation itself is part of a previous iteration of MF++,

and has not yet been migrated to make use of Clang libtooling due to time constraints. A

custom interface has been engineered between the current MF++ implementation and the fuzzing

implementation of the prior iteration. This means that at any point we can just link the interface

to a libtooling implementation of our fuzzer, once one is available, with minimal to no changes

of the current code.

fuzzHelperFuncStitch

The fuzzHelperFuncStitch action is similar in nature to how recursive MRs are implemented,

but at the level of the fuzzer. We remind the reader that the user of the tool can provide their

own functions for fuzzing, beyond those available only in the SUT API. We call these functions

fuzzing helper function. In addition, we also allow the user to use the fuzzing capabilities built-in
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MF++ within the definition of these functions. As such, similar to recursive MR implementations,

each call to a fuzzer helper function must be distinct, as the body might be unique across calls

due to the fuzzer calls. Thus, we must create a unique instance for each fuzzer helper function

call. However, unlike the way we handled recursive MR calls, where we create a new separate

function definition for an implementation, then just call that function, here we transplant the

body of the function at the appropriate location.

For an example, let’s assume we have the following helper function declaration:

Listing 3.4: Example of a fuzzing helper function

1 set get_set_with_even_elems () {

2 set s = new_set ();

3 int count = fuzz::fuzz_rand <int >(0, 10);

4 for (int i = 0; i <= count * 2; ++i) {

5 s.append(rand()); }

6 return s;

7 }

The function calls the fuzzer (line 3) to get a random number between 0 and 10, inclusive. As

this function might be called multiple times, and each time we might want to fuzz a different

number, we create a separate body for each call, in order to have distinct fuzz rand calls

(the reason for this will be discussed in the next action description). Then, if we assume

that we have a line that says set r get set with even elems=, this will be expanded by the

fuzzHelperFuncStitch action to:

Listing 3.5: Possible expansion of a fuzzing helper function

1 set s_5 = new_set ();

2 int count_5 = fuzz::fuzz_rand <int >(0 ,10);

3 for (int i_5 = 0; i_5 <= count_5 * 2; ++i_5) {

4 s_5.append(rand()); }

5 set r = s_5;

We should note two things in the expansion. First, we must ensure there is no name clashing

happening, which means we must ensure variables local to the helper function are made unique.

This is done by, again, appending a global index to the variable names. Also note how the

return instruction in the original function declaration has now been changed to just write the

value to the variable to which the call was assigned to.
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parseFuzzerCalls

The final action is another expansion transformation. In Listing 3.4, we have made use of a

particular function call: fuzz::fuzz rand<int>(0,10). This represents a direct call to the

fuzzer, and should be replaced with the appropriate output at the source level. As the fuzzer has

internal capabilities of producing random values of select primitive types, it might be useful to

ensure that all randomness goes through the fuzzer. Currently, fuzzing certain primitive types

via fuzz rand, and fuzzing objects of known types via fuzz new (which is handled by the

parseFuzzConstructs action) are the only two methods of interacting with the fuzzer at the

template file level, but the infrastructure is there to implement more potential fuzzer calls. The

main reason behind preferring this approach than to calling the in-built C++ random utilities is

to have an exact idea at compilation time of what the program does, without needing to actual

run it (as all C++ random decisions are made at runtime).

3.4.3 Implementation Choices

This section contains some general information about design choices made regarding some as-

pects of implementing metamorphic testing with high-level operations. Some of these refer

directly to general aspects of the approach, which we have implemented for our specific imple-

mentation.

Ensuring Fuzzing Termination

There is always a random possibility that a fuzzer generates terminal objects, without the need

to recurse further. However, it might be the case that this leads to intractably large programs

to be generated. To ensure a reasonable generation for our tests, both in terms of generation

time and test-case size, we impose a depth-limit on the fuzzing process. Whenever the fuzzer

chooses to recursively produce a function invocation when it needs to generate an object, we

increment the depth by one. Once the maximum depth-limit has been reached, we impose

that the fuzzer use a terminal input (i.e., any object of the corresponding type in scope, or a

constructor function). This requires that for each API type exposed to the fuzzer, there is a

method of generating that type without further recursion. There is a small exception, in the

sense that we include the option of calling defined functions for which parameters already exist

in scope, either by declaration within the template file, or as a consequence of prior generation.
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Controlling MR Recursion

Similarly to our fuzzing implementation, this recursion could in theory be infinite, and the

main way we prevent that is by imposing a maximum depth that can be recursed towards, with

each concretization of an operation along the chain incrementing that depth. Once the depth is

reached, we enforce that a concretization without further recursion is chosen, similar to terminal

inputs int he case of the fuzzer. This adds another restriction upon the MR specification, that

each operation must have at least one concrete implementation which does not make use of

any recursion. We have another parameter by which we control the MR recursion, which we

name pruning. While not exactly true to its name, it involves adding an in-built weight to

non-recursive MRs as we advance in depth in the generation process, relative to the maximum

depth. We distinguish three types of pruning that MF++ supports:

none There is no artificial weighting done.

linear The chance of choosing a terminal input increases linearly, with the chance of choosing

a non-recursive MR concretization increasing by the same amount each step. In our

implementation, each time we choose the concretization, we draw a random number

between one and the maximum depth value. If that number is lower than the current

depth, then we choose a non-recursive MR concretization.

logarithm We choose a non-recursive MR concretization if log(depth + 1)/ log(max depth +

1) > rand(0, 1). This strategy skews the process by choosing to emit non-recursive

MR concretizations much earlier than the other strategies, and was implemented as a

more aggressive pruning choice, making longer sequences less likely than the previous two

options. This is useful for libraries for which the number of operations affect runtime in

a non-linear fashion.

The choice of a specific pruning algorithm, in our experience, is determined empirically. The

primary motivation was to add a bit more direct control (beyond random choice of concretiza-

tion) over MR recursion (as discussed in Section 3.4.2), in cases where libraries would present

many timeouts on generated test cases. We still wanted to generate some longer recursion

sequences, but not so many that we would generate tests that are likely to timeout. We note

that the choice of pruning strategy is another test generation parameter, similar to the sequence

length, or number of produce metamorphic variants.
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Second-class MRs

We mentioned that the primary property of second-class MRs is that they do not have the type

constraints placed upon first-class MRs due to the interaction between input variables, the

sequence of high-level operations, and the computation of metamorphic variants. More than

that, due to the fact that second-class MRs need not carry any information, they can be used to

create objects of interest from scratch. But the more interesting use-case is that we can focus on

declaring MRs for other types than the selected type of interest. For instance, in our running set

example, we could have a second-class operation be something like set int to set, which takes

as input a set int and returns a set. With this, we could then define operations that work

on set int objects, which, due to MR recursion, could also in turn create a rich subsequence

of operations as part of the sub-tree of a sequence-level operation. While there will be no

explicit mixing between two sub-trees of types contained within second-class operations, due to

the sub-trees across sequence-level operations being completely disjoint, we expect, implicitly,

that the use of these second-class operations is somehow encoded implicitly. Alternatively,

another use case could be to create objects with particular values of interest. In the domain of

mathematical sets, we can make use of universe and empty sets to define additional MRs (e.g.,

S = S ∩ U).

Random parameter choices

While we simplified the discussion of how other variants are generated in the practical example,

there is one consideration to be noted. The choice of parameters must be consistent across

variants. That is, when a parameter for the first variant is chosen to be concretized to a

specific input (e.g., the first operation in our example was concretized to an invocation which

took i1 and i2 as parameters), it must be the case that the corresponding operation across

all the other variants will take the same inputs as parameters (e.g., we can see in Figure 3.2

that all the i parameters for each operation are the same, and the v parameters are in the

same position, but have different indices — this is due to the fact that they correspond to the

currently computed value of the respective metamorphic variant). Due to this, and to simplify

the generation process, we further enforce that there is a common signature for an operation,

and that all MRs will respect that signature. This is to ensure that everything is in lockstep.

We have not encountered a situation where this limitation did not allow us to define an MR

of interest, and the simplification helps better debug the specifications, therefore it is useful to

have practically.
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Listing 3.6: Common header file to define MF++ syntax sugar

1 namespace fuzz

2 {

3 void start () {}

4 void end() {}

5
6 void mfr_fuzz_start(std:: string s) {};

7 void mfr_fuzz_end(std:: string s) {};

8
9 template <class T> T fuzz_new ();

10 template <typename T, typename U> T fuzz_rand(U min , U max);

11
12 void meta_test () {}

13 }

Syntax sugar

We mentioned that MF++ is able to parse certain syntax and expand it during the generation

process. In order to comply with the fact that the file to be parsed by Clang must be valid, we

define a generic header file which contains definitions of these syntactic markers, along with an

empty-body declaration. As the file is rather short, it is reproduced in its entirety in Listing 3.6.

We distinguish five types of syntactic markers, two of them coming in pairs, which we briefly

describe. The first pair of markers, start and end, are used to mark the start, and respectively,

end, of the block of code that represents input variable initialisation code, and should be

duplicated by templateDuplicator (Section 3.4.2). They should be written by the user as

part of the template file, and they will be deleted during the expansion process. The next

pair of markers, mfr fuzz start and mfr fuzz end, similarly distinguishes a block of code

which was generated due to a fuzzer call. All code within the two markers is fuzzed, and its

main purpose is to forward to information to the reducer (as part of the Fuzzing Reduction

opportunity detailed as part of Section 5.2). It is automatically generated by the fuzzer. The

next two markers, fuzz new and fuzz rand, are markers written by the user which should be

expanded into fuzzer calls at generation time. The former will produce an object of class T,

where T should be a valid type made known to the fuzzer, and the call will be replaced by a

sequence of instructions to generate a random object of type T (as described in Section 3.3.2).

The latter marker generates a single object of a primitive type, and the parameters are limits

of that type. For example, if type T is int, then the parameters would represent the lower and

upper ranges, inclusive, that the fuzzed value will be within. Finally, meta test represents

the expansion to the metamorphic tests, including all variants with their respective concretized

sequences, and the checks for them.
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3.4.4 Caveats and Limitations

In this section, we shall discuss some known limitations and caveats related to the current

implementation of MF++ and the design surrounding it. These have mostly become apparent

during our intensive usage of the tool, and have been discussed at fair length. Even with these

limitations, we still believe the tool is fit for purpose, and effective at producing tests that find

bugs and exercise the SUT.

Need for Manual Input

In order to use MF++, there is a fairly high initial overhead of understanding how to write

the specifications for the future SUT, finding MRs themselves for the SUT, and any potential

debugging that might need to be done over the specifications. Furthermore, at the point

where one might consider investing all this effort, there is no obvious gain: the effectiveness

of applying the tool to the respective SUT will only become apparent once tests have been

produced and pushed through (which is of course directly correlated to the quality of the

specifications provided). It might be more worth it for library developers to focus on writing

high-quality and highly specialised tests for their applications than to spend time preparing

these specifications for unknown gain.

To counter this point, we argue that, while there is no initial way to quantify the utility of

using MF++, it at least provides a practically infinite set of tests to be executed by the SUT,

making the initial overhead pale in comparison to practical gain. Additionally, since the quality

of the tests is directly proportional to the expressiveness of the specifications, small incremental

updates to the specification might trigger large gains in the efficacy of the tests. An exercise

in potential efficacy of MF++ is whether a specification can be produced to generate an existing

test case of interest, which can be a starting point into writing a strong specification.

Another argument against manual input is the potential of automating the written specifica-

tions. One point of discussion would be the current state of the art in MR generation techniques

using machine learning, which, to our knowledge, exist [39, 40], but the quality and utility of

found MRs is very volatile. There should be some oversight assessing the efficacy of these

automatically generated MRs. However, an automated method of gathering these MRs would

complement the specification writing aspect of MF++ nicely, but is orthogonal to the tool itself.

But the major point against automatically generated MRs is the general applicability. We

believe MF++ can be used for any library, as long as MRs exist to be discovered for that library.

But further than that, each library is unique, and the best way of using MF++ is leveraging that
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uniqueness to produce specialised MRs, highly specific to the particular SUT. And while of

course an automated technique might stumble upon such MRs, we believe the experience of

library developers will make them obvious quite quickly as they get used to the specifications

of MF++.

Top-level Single-type Focus

We note that there is a restriction placed on the signatures of functions concretizing the same

operation, and this is primarily exposed in the concretization of the sequence of operations. We

must feed the result of one MR application to the subsequent MR application in order to not

discard results of previous computations. What this means is that we must constrain all MRs

to have at least one parameter of a type of interest, as well as return an object of the same

type of interest. Further, due to how we use our input variables, it is the case that at least one

of these input variables must be of the type of interest (depending on how many parameters

of that type are required, as per the above not about input variables). This might seems like

a very strict limitation, affecting both the space in which we can fuzz (as we will heavily focus

on fuzzing objects of the type of interest), as well as the kinds of MRs we can write, since

one parameter and the return type are predefined. However, we almost entirely circumvent

this issue by distinguishing first-class and second-class MRs. In this system, we shall impose

these type limitations only on first-class MRs, while allowing second-class to be defined without

restrictions. This distinction is made more obvious by introducing recursive MRs in our MR

definition.

For the homogeneous type requirement across variants, we believe that this is alleviated

by the distinction between first-class and second-class operations. As second-class operations

have no restrictions, that means any sequence of calls can be produced, intermingling types,

at one level of depth. This would make it indistinguishable from having a top-level sequence

of operations that is composed of multiple types: a specification could present MRs in such

a way that one single operation could be theoretically expanded in multiple operations across

different types, due to recursion. A very simple example would be to just define a top-level

operation which takes a parameter of the homogeneous type, but then uses the parameter to

generate an object of another type of interest, via second-class operations, which are then used

to operate on the original object. More specifically, we could “unfold” all the recursion in the

chosen MRs to have a pseudo-sequence of high-level operations per variant.

The homogenised signature across operation implementations is not strictly required, as
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it can be the case that the signature will have a set of all required parameters, and only a

selection is used in one particular implementation. The return value should be consistent for

an operation, however. If there are equivalent types, then multiple operations could be defined

for these types, or alternative types could be implemented with second-class operations, and a

conversion operation be defined. The biggest reason for the homogenised signature is that it

makes it much easier to handle the placeholder function inside MF++.

Discussion on Sequences of High-level Operations

There are a number of questions that might arise in regards to our design of generating these

sequences of high-level operations, which lie at the foundation of our implementation of meta-

morphic testing. One direct question might be how can we assess whether this design is helpful

in finding bugs. Well, a naive answer is that it has been able to find bugs in practice (Sec-

tion 4.4.1). Other than that, it’s hard to perform a quantitative analysis on its overall bug-

finding ability. We aim to generate large sequences, in order to explore a larger space of the

underlying SUT, to more likely trigger bugs (discussed in Section 3.3 of the Csmith paper[80]).

One other aspect that makes it very difficult to quantify the effectiveness of the testing is the

presence of the user-provided ingredients. As they greatly affect the tests produced, it is im-

possible to know what a perfectly defined set of specifications would look like, in order to be

able to assess whether such a specification is guaranteed to find known bugs under our method.

For instance, if the specification does not cover certain parts of the SUT, it is impossible for it

to find any bugs in those uncovered regions.

Furthermore, we do not impose any restrictions in the way high-level operations and se-

quences interact with one another, including no set dependencies. The distinction between

first and second-class MRs is mostly for ease of defining the user-data, and ensuring that the

sequence of operations is as simple and dependency-free as possible. One can argue that the

true testing is done starting from one recursion level, where all provided MRs are free to be

generated. However, the final metamorphic variant should contain all effects of API calls along

the generation path. Therefore, a buggy API call should cascade towards a faulty metamorphic

variant, leading to a failing check.

One other question is whether it is the interaction between MRs, namely the sequence of

high-level operations, and recursion, which is the main cause of bugs, or a single MR being able

to expose a particular defect of some API calls. This is again part of the design of the user-

provided specification. We chose to keep our MRs simple, and allow the recursion to generate
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richer SUT calls. We did find bugs that required few SUT calls, which could have been part of a

single MR, but were separated in our design, and the random aspect of our approach eventually

generated the correct sequence. This could be an indicator to further refine the specifications,

by including such problematic sequences directly as first or second-class MRs, without relying

on randomness to generate them.

Implementation of fuzzHelperFuncStitch

This particular action was implemented during the translation of the previous iteration of MF++

into the current variation, using libtooling. As such, one particular design choice was included,

which was the fact that the test case was going to be a single straight-line main function, rather

than multiple functions with calls inserted where appropriate. This was due to the limitation

of how code was generated in the previous iteration of MF++. At that point, we were more

concerned with ensuring the code was logically sound, more so than with the design of the tool.

This was due to the translation process being a very laborious undertaking. Thinking back, it

would be better to not transpose the bodies of the helper functions, and just emit new function

declarations for each use, similar to the MR recursion process.

However, one main limitation still remains. Consider lines 3 to 4 of Listing 3.5, reproduced

here:

Listing 3.7: Limitation of helper fuzzer functions

1 for (int i_5 = 0; i_5 <= count_5 * 2; ++i_5) {

2 s_5.append(rand()); }

Note that there is a rand() call inside the for loop. That is because the fuzzer would replace

a call to itself with the produced outcome at the source code level, which means it will be there

at compile time. There is currently no implementation of having the fuzzer produce different

outcomes during runtime, as it would be required by having a fuzzer call within a loop. The

workaround is, as shown in the example, to use the in-built C++ randomness capabilities.

However, there is a reason we might want to have all random choices controlled through our

tool. That is that we might want to experience with different random generation engines, or

we might want to use the random generation log internally for some reason. There are tools

which can perform reduction at the level of random choices (such as Hypothesis [50]), meaning

we’d get a free implementation of a reduction approach for MF++. There are further arguments

to be made against this very fine control over randomness, such as if the seed in the test-case

is an outcome of our fuzzer, then reverting the fuzzing choices would affect the choices made
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by the native C++ random engine, or that such a fine level of control is unneeded, as reduction

can be performed in other ways, and as long as we ensure the test is reproducible, that should

be sufficient control of the random choices made.

3.5 Related Work

In this section, we shall provide some details of other testing techniques that we are aware of,

which are similar in nature to your proposed approach of metamorphic testing with high-level

operations, or tools similar with MF++, which fit the same category of synthesising useful test

cases for a SUT.

3.5.1 Property-based Testing

Property-based testing (PBT) is a testing technique that is similar in functionality to our

proposed approach of metamorphic testing with high-level operations. A definite definition of

PBT is difficult to come by5, but rather the technique is more defined in practical terms. The

first instance of property-based testing was QuickCheck [23], a tool to generate automatic test

cases in Haskell, and it seems to have been the original tool to spawn the field of property-based

testing. The main features of the tool focus around defining properties (which is akin to the

operations we define in our approach), and randomly generating inputs to check the properties

against, via generators (which can be thought of as similar to how we randomly choose imple-

mentations for our sequence of operations to create metamorphic variants). Another similarity

is how generators can be improve upon manually to increase the quality of the generated input,

similarly to how a better quality specification leads to better tests being generated by MF++.

While there are surface level similarities between PBT (or at least QuickCheck-like PBT),

we believe there are fundamental differences between the two approaches. First of all, fuzzing,

while a core component of MF++, is not necessary for our metamorphic testing with high-level

operations approach. For us, it was more convenient to have a never-ending supply of input

data at demand, and customisable for any SUT we desire, and while it is true that the fuzzing

component was able to find bugs, the core of the technique is still the equivalence check done

at the level of metamorphic variants. Although there are PBT tools, such as SmallCheck [67],

which perform exhaustive search over inputs, in favour of using random generation. This is

still means that the generation process is built within the technique itself, rather than it being

5https://hypothesis.works/articles/what-is-property-based-testing/, accessed 24th of August,
2021
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unconstrained.

We can perform comparison between the implementation of fuzzing withing MF++ and that

of QuickCheck, or the notion of using generators to guide the random generation. In our tool,

fuzzing is done by referring to the API of the SUT allowed by the user, which means that

an expert of the SUT can quickly understand what kind of objects the fuzzer would produce.

Conversely, defining a generator in a PBT tool would mean interacting with the API of the

tool as an interface to the API of the SUT. While this level of indirection might mean a PBT

generator could easily be reused for multiple SUTs, as the input would be library-agnostic, it

is opposite with our intent of having a very SUT-directed approach to testing.

To conclude, practically the two techniques can do similar things, and with sufficient work,

it might be possible to implement both the kind of tests that MF++ produces in a PBT tool, and

the PBT workflow in MF++ for a specific SUT. However, the methods by which they interact

with the SUTs are different, with MF++ allowing for a closer interaction with the source code of

the SUT, and PBT abstracting away the more technical details.

3.5.2 Automatic Test-case Generators

At the end of the day, MF++ is a tool which generates tests for a given SUT automatically,

while having a required initial manual effort cost in the form of defining the SUT specifications.

There already exist tools and techniques which can automatically synthesise tests, with little

to no manual effort required.

One such example is EvoSuite [5], a framework which is able to automatically synthesise

tests fulfilling a given coverage criterion, implementing search-based testing. It is automated in

the sense that there is an in-built algorithm, and a fitness criterion guiding the search space, and

only a test suite is required as input in order to make EvoSuite work. Of course, the criterion

can be adjusted as per the needs of the SUT. EvoSuite uses mutation algorithms in order to

alter the entire test suite closer towards the chosen criteria. Thus, it can produce tests which

complement the existing test suite of SUTs. However, these tests might also require manual

inspection, to ensure that they are valid; it might be the case that a test produced by EvoSuite

uses some undesired implementation of the SUT in order to achieve it’s coverage. One major

drawback of EvoSuite compared to our approach is that it does not have an in-built oracle;

indeed, the paper mentions that is beyond the scope of the work. Additionally, supposing an

existing test case is integrated in the test suite, it is not future-proof; future changes might

break assumptions made by an EvoSuite-produced test, which might be counter-productive as
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an SUT evolves. As MF++ is more suited to be used consistently alongside the SUT, it should

evolve along with it, and the core specification is unlikely to change.

3.6 Summary and Future Directions

In this chapter, we have presented our take on metamorphic testing, introducing metamorphic

testing with high-level operations. We have discussed the main theoretical points of the

approach, and have presented MF++, an implementation targeting C++ software libraries, built

around metamorphic testing with high-level operations, but also implementing other features

(such as fuzzing, and recursive MRs) in order to improve the testing process. The tool is aimed

at software developers, and while it requires a fairly high initial manual effort to start, it offers

access to a practically infinite supply of tests to exercise the SUT, with maintenance and further

improvements requiring little further effort.

Future Work There is still a lot of space to improve MF++. First, the development of the tool is

highly coupled with the types of libraries that we have tested, which almost exclusively reside

in more mathematical domains. Trying to push through libraries from additional domains

might expose certain limitations that we are not aware of in the implementation of MF++. This

would also include the Clang AST parsing, as we do not exhaustively handle all nodes types

in MF++. Additionally, even for the libraries that we are testing, we can always further improve

the specifications, in order to exercise parts of these libraries that are unavailable to MF++ with

the current iterations of the specifications.

There are also some orthogonal directions we can take our work in. For example, as we have

domain-specific specifications, which can be concretized into applications of a specific SUT,

we could potentially create a SUT-agnostic test for a given domain, and simply link the base

function calls against calls in various SUTs. This would open the door to differential testing,

allowing us to execute one test over a variety of SUTs, and to observe any inconsistencies that

might lead to potential bugs.

A natural follow-up for MF++ would be to find actual developers willing to put in the time to

integrate their SUTs with our tool. The interface between the human and MF++ has not been

thoroughly tested, and has been done on a best-effort basis. However, the tool is meant to be

used by these developers, making an evaluation of this interface a top priority for the future

usability of the tool.
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for C++ Software Libraries

In this chapter, we discuss in detail how we applied MF++ over a variety of libraries in the domains

of Presburger arithmetic and satisfiability modulo theories (SMT). While we discuss a total of

6 SUTs over which we have applied MF++, we will be more verbose when discussing how we

integrated Z3 and isl in our tool, as they were the first SUTs tested in their respective domains.

This includes discussing design choices in the specification of MF++, as well as observations and

particularities of the two APIs, and how these are handled in MF++. To evaluate MF++, we

discuss a number of bugs found during our application of the tool over the 6 SUTs, as well as

results of a preliminary experiment to evaluate the use of MF++ as the first part of a workflow

focused on enhancing test suite coverage.

4.1 Motivation

The most effective way of assessing the efficacy of the approach discussed in Chapter 3 is to

practically apply it to existing, real world software. Fortunately, there are numerous real-world

open-source projects available for this purpose. These libraries, with in-development versions

available on demand, provide a great source of potential test material for MF++, while also

providing us with feedback from the actual developers regarding the utility of the tests we

generate that mark potential inconsistencies in the SUTs.

In addition to gauging the bug-finding capabilities of MF++, we are also interested in evaluating

the simplicity of the interface between a potential SUT and MF++. As developers of MF++, we

are already greatly familiar with this interface, thus any shortcomings obvious to us would

be multiplied manyfold to a third-party developer. Having experience with a wide variety of

distinct libraries, and getting an idea of potential requirements and ease of specification writing

for these libraries is essential in order to polish the design of the specification writing, trying

to lower the burden of writing these as much as possible.

73



4 Case Studies of Metamorphic Testing for C++ Software Libraries

At the same time, writing effective specifications requires a level of expertise for the desired

libraries, due to the chosen design of MF++. Thus, we must strike a balance when choosing

suitable libraries for us to test, as we must understand the API and know how to use it

correctly, as well as be aware of any potential pitfalls present in the API that might be obvious

to an expert user. Thus, we firstly focused on libraries for which we had practical experience

working with, in order to minimise the need of learning the underlying SUT, then branch out

to similar, but completely new, libraries in the same domain as the initial test batch.

We note that the, while the chosen libraries in this chapter are mathematical libraries, this

is just a taste of what kind of MRs can be given to MF++. We can ask whether MRs for use

with MF++ can be derived for an arbitrary library in an arbitrary domain. The answer is that

this is SUT-specific: we first need to investigate a concrete SUT to be able to say whether it is

amenable to testing with MF++. An example would be, in the domain of filesystem operations,

applying move to some source and destination inputs would be equivalent to a copy from the

same source and destination, followed by a remove of the original source. However, if the

library were to not have a remove operation (say, for security purposes, users are provided with

a stripped library which does not allow for outright removal of files), then the previous MR

would not be possible in that instance. But similarly, we might have some obscure functionality

outside the scope of usual filesystem libraries, such as an encrypt/decrypt pair, which would

allow for a larger space to define MRs. To conclude, being able to define MRs in the scope of

MF++ is dependent on the SUT for which those MRs are to be used for testing.

4.2 SMT Solving Libraries

The implementation of MF++ was done in parallel with developing specifications for SUTs ap-

propriate for our needs. These SUTs were chosen due to a mix of our familiarity with them, as

well as suitability of applying metamorphic testing. The first set of such SUTs belong to the

domain of Satisfiability Modulo Theories [8] (SMT) solvers.

SMT solvers are generally used in one specific manner: a first-order logic formula is produced,

optionally containing a set of free variables, which encodes some question of interest, then the

formula is attempted to be solved, with reference to some underlying knowledge, known as

the theory. There are various ways of encoding a formula, but SMT-LIB2 [7] represents a

unified standard that defines a basis for implementing theories and logics. Due to the general

availability of SMT-LIB, and the fact that all our chosen libraries can be referenced to the

SMT-LIB standard, we expect some commonality between the APIs of these SUTs.
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We first describe how SMT solvers work at a high-level. SMT formulas are, as their name

implies, SAT formulas [35] with some additional domain knowledge, represented by the theory.

As the SAT problem is a known NP-complete problem, there is no guarantee that a solution can

be found for any arbitrary formula within a reasonable timeframe. Furthermore, the theories

supported by SMT solvers can be undecidable, for example when quantifiers or arbitrary

integer arithmetic is included. An example of a theory is the theory of Ints1, which defines

the Int sort, as well as operations including addition, multiplication, or comparison, similar

to arithmetic operations over mathematical integers. However, note that these theories might

have specific distinctions made. For instance, the theory of Ints defines mod and div according

to Boute’s Euclidian definition [11].

In addition to the overall theory, SMTLIB also distinguishes logics2, which further specify the

properties of the formula to be solved. There are a large number of such defined logics, allowing

for specific optimisations to be made within such a logic. For instance, the logic QF NIA

represents the quantifier-free non-linear Integer arithmetic logic, while QF LIA represents the

quantifier-free linear Integer arithmetic logic. These logics specify what kind of operations are

expected within the provided formulas to be solved. Therefore, a formula attempted to be

solved in a QF LIA logic should not expect any existential or universal quantifiers, nor should

it expect multiplication of free variables. Allowing for these assumptions means that the solver

could employ more specialised techniques to attempt and solve the given problem.

One major difference between the chosen tools is the kind of theories the tool implements.

For example, as we will see, Z3 [25] is more inclusive, having implementations for roughly

all SMT-LIB defined theories3. Conversely, Boolector [12] only supports the logics QF ABV,

QF AUFBV, QF BV and QF UFBV, from the BitVector theory.

We note that these SUTs have been approached by us in a grey-box fashion. We studied

the API, and used our domain knowledge, to have sufficient information regarding a reasonable

base type to target our testing, and what kind of operations would be generally used over that

type. We have tried to deepen our understanding of certain libraries, particularly Z3, in order

to evaluate how a more in-depth specification would affect the quality of the generated tests.

However, we most likely have not come close to what an expert in the library might write, nor

have we sought out to write specifications targeting critical areas of the code, or understand

specific peculiarities of respective libraries. Even with this, we were able to make good use of

1http://smtlib.cs.uiowa.edu/theories-Ints.shtml, accessed 30th of August 2021
2http://smtlib.cs.uiowa.edu/logics.shtml, accessed 30th of August 2021
3An exhaustive list of which can be found at http://smtlib.cs.uiowa.edu/theories.shtml, accessed 26th
August 2021
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the exposed APIs, and write tests effective at finding bugs in most of these libraries.

4.2.1 SMT Solver APIs

The exposed API of these SMT solvers have a few similar components. They offer types

representing a variable, with an associated sort if the respective solver supports multiple

theories, a formula, constructed via variables, support operations (again, as determined by

the logics and theories implemented), and there is a mechanism by which to solve a formula.

We shall briefly discuss particulars of these elements for each of the four SMT solvers we test.

Z3

Z3 [25] was the first SMT library chosen to apply MF++ to, mainly due to our familiarity with

working with it in prior projects, as well as being a well-regarded and long-standing project.

The main advantages of Z3 in the context of MF++ are that it implements a variety of theories,

has a rich and fairly complete C++ API, and has additional non-standard supported operations

in addition to those defined by SMT-LIB, which means we can express more interesting MRs

using Z3. As a project, Z3 is well known in the SMT community as one of the major available

solvers, and is well supported on GitHub. Considering its longevity, any bugs we would be able

to find in the logic of the solver would indicate that our approach is effective.

A formula in Z3 is expressed as a z3::expr. This includes everything, including variables,

free variables, constants, and entire formulas (comprised of various operators, variables, and

terminals). The API is meant to use z3::exprs, alongside a plethora of functions, which

internally perform the correct operation based on the sort of the given inputs. Therefore, at

the C++ API level, we need not worry whether we are working with integers or bit-vectors,

as everything is a z3::expr. However, using an unsupported operation (such as abs over a

bit-vector variable) will lead to an exception being triggered. The other interesting components

from the Z3 C++ API are a z3::context, which all z3::exprs must reference, and which holds

information about the formula, such as the logic used, and parameters set, and a z3::solver,

which is the main interface to calling the internal solver. Note that Z3 performs no computation

of interest before the solver itself is called, and it is mostly internally building the AST of the

formulas created.

In terms of MF++, abstracting sorts is slightly problematic. As the entire semantics of the

variables in the program is contained within the type of a variable, that means mixing sorts

would be impossible, as the tool cannot distinguish between an integer sort z3::expr and a

76



4.2 SMT Solving Libraries

boolean sort z3::expr. In order to overcome this issue, in a fashion similar to how helper fuzzer

functions are defined (Section 3.4.2), the user can use typedef to introduce their own types in

the specification. As such, for Z3, we define two additional types within the fuzz namespace:

bool term, which will represented boolean sort z3::exprs, and int term, for integer sort

z3::exprs. In the code itself, both are typedef’ed to the base z3::expr type. However, then

we can write the MRs and checks in the specification referring to these types, ensuring that the

correct variables are passed throughout the generation chain. Another benefit of this approach

is the fact that more complex types can be abstracted to simple specification-defined types.

Again, the tool only parses those Clang AST nodes which we are aware of, and does not do so

exhaustively. Furthermore, the Clang AST might be changed at any point, which would require

internal modifications to MF++. Thus, simplifying a potentially complex AST representation of

some type to a single typedef, both enhances the compatibility of MF++ with generic C++ code,

and leads to easier to read tests being generated.

While there is a fair amount of interacting with the Z3 C++ API during the fuzzing of

z3::exprs and the generation of metamorphic variants, the interesting functionality of Z3

is not exercised until we actually attempt to solve a formula. This is done via checks, and it is

arguably important to get these right, and to ensure they exercise a sufficient amount of the

underlying code. At the moment that the check is generated, what we expect to be available to

us is two metamorphic variants (a reference variant and the currently generated variant), which

are expected to be equivalent by construction. This, again, is due to the choice of operations,

and the fact that all implementations of an operation should yield the same result. It would be

fine to implement an operation which just maintains the satisfiability of a given input, without

maintaining any other notion of equivalence. The first check to be performed should thus ensure

this equality holds. Thus, for two given inputs, i1, i2, we can check equality by checking that

i1 ̸= i2 is not satisfiable. Note that, due to the incompleteness of SMT solvers, we do not

check for unsatisfiabilty, as another possible result is unknown, to indicate that the solver is

unable to come up with a conclusive result. In more detail, for all the free-variables contained

within both i1 and i2, there is no assignment for which i1 ̸= i2 holds. The possible values for

these free variables will be determined by the theory of the formulas.

We mentioned free variables as part of the expressions we generate. This is the main driver

allowing us to produce interesting formulas. However, the main issue with free variables is

that we must very carefully control their use in order to ensure the expected equality property

holds across metamorphic variants, and that we do not overload the solver by having too many

such free variables (while it is hard to define the expected performance of these solvers, as
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the underlying problem is often undecidable, depending on the chosen theory, simply adding

more free variables leads to an exponential increase in complexity). Thus, we do not allow the

fuzzer to generate these free variables on demand. In the template file, we define a number of

free variables, which are then made available to use as a terminal value to the fuzzing process.

Thus, every variant will use free variables drawn from this limited pool. Furthermore, there are

only two instances of fuzzer calls where these free variables might be used. First is during the

generation of input variables. This maintains consistency of use to free variables and the inputs

are used consistently for all variants. Second, we allow a second-class operation of fuzzing

random expressions. While this means that a variant that might contain this second-class

operation in its recursive generation tree could access free variables that are not in use by other

variants, potentially causing a divergence, we very carefully control where this fuzzing calls are

called from to ensure this does not happen. For example, we might desire a randomly generated

expression be created, which we then use to subtract from or divide by itself.

We might want to exercise additional features in the checks we implement. For instance, a

model is an assignment of all free variables within a formula which makes it satisfiable, and is a

basic feature of all SMT solvers (as, of course, a satisfiable formula must have a corresponding

model that achieves that satisfiability). The above check does not exercise any capabilities

related to models. Another check we implement (Listing 4.1) creates two formulas, i1 == 0

and i2 == 0 (we note that 0 is an arbitrarily chosen value, as the purpose of the check is to check

the model capabilities of the SUT), then checks the satisfiability of both. Due to the two input

formulas being equivalent, we expect the satisfiabilities of these equalities to match, and check

as such (lines 25 to 28). We note that the expected satisfiabilities are SAT, UNSAT, or UNKNOWN.

The latter is usually returned if the formula becomes too hard for the solver, and it decides

to give up. We treat this result as acceptable, to account for potentially using undecidable

theories in our tests (which we do, as will be discussed in Section 4.2.2). Furthermore, as the

set of free variables used within both formulas are the same, as discussed above, we know that

if one of the two formulas is satisfiable, then a model for it should also satisfy the other formula

(and vice-versa) (lines 29 to 33).

One small issue with this check is how Z3 produces a model for a formula. As mentioned

before, we provide a pool of free variables to be used by the formulas at any point in their

construction, and that a formula might use additional free variables, which will be either part

of dead code or simplified away to other known values. As such, semantically, all metamorphic

variants will make semantic use of the same subset of the larger given pool of free variables.

However, it seems that when evaluating a formula with an existing model, it must be the
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Listing 4.1: Metamorphic check exercising model features of Z3

1 void

2 check_exprs_are_zero(z3:: context& c, fuzz:: FreeVars& fvs ,

3 fuzz:: int_expr e1, fuzz:: int_expr e2)

4 z3:: solver solver(c);

5 solver.push();

6 solver.add(z3:: operator ==(e1 , 0));

7 z3:: check_result result_1 = solver.check();

8 assert(c.check_error () == Z3_OK);

9 z3:: model mdl_1(c);

10 if (result_1 == z3::sat)

11 {

12 mdl_1 = solver.get_model ();

13 for (fuzz:: int_expr e : fvs.vars)

14 {

15 z3:: func_decl cnst_decl = e.decl();

16 if (!mdl_1.has_interp(cnst_decl))

17 {

18 z3::expr zero_val = c.int_val (0);

19 mdl_1.add_const_interp(cnst_decl , zero_val);

20 }

21 }

22 }

23 solver.pop();

24 [..] // Get result_2 and mdl_2

25 if (result_1 == z3::sat)

26 {

27 assert(result_2 != z3:: unsat);

28 }

29 if (result_1 == z3::sat && result_2 == z3::sat)

30 {

31 assert(mdl_1.eval(z3:: operator ==(e2 , 0)).bool_value () == Z3_L_TRUE);

32 assert(mdl_2.eval(z3:: operator ==(e1 , 0)).bool_value () == Z3_L_TRUE);

33 }

34 assert(c.check_error () == Z3_OK);

35 }
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case that the model itself is complete (i.e., it contains assignment to all free variables used in

that formula). This means that we must “pad” our models to ensure that there is at least an

assignment for all potentially used free variables (lines 13 to 20). As the assignment does not

matter, just that it exists, we simply assign each free variable the value zero.

CVC4

Another well-known SMT solver, and with a development age comparable to Z3, CVC4 [9] also

has support for multiple theories and a few non-standard operations, providing a robust build

infrastructure and seemingly rich system and regression tests. As its features are comparable

to Z3, CVC4 was chosen as a pair library to test with Z3: we can validate that a potential bug

that we discover in one library is not present in the other, thus increasing our certainty that

it is a legitimate bug, and not that we are using the respective library in an undefined way.

We note that while initial testing involved CVC4, the project was later succeeded by CVC5. The

general principles are applicable to both versions of the tool, but in the interest of consistency,

we will be talking about CVC4 generally, unless it is to do exclusively with CVC5.

Similar to Z3’s z3::expr type, CVC4 provides a CVC4::Term type. The usages are similar: it

is a type holding an abstract SMT formula, but it does come with an inner sort handled appro-

priately in the API, and checked on function invocation. As opposed to Z3, which implements

a variety of operations over z3::exprs, CVC4 provides functions to create n-ary operations via

overloaded mkTerm functions, with varying numbers of input terms, from 0 to 3, and including

a vector of inputs. The choice of operation created by mkTerm is controlled by an enum pa-

rameter passed to it. In the context of MF++, this makes it rather hard to encode. As MF++

works primarily at the level of function invocations, this particular implementation detail would

require the fuzzer to be aware of one of the parameters passed to the function being generated.

The initial design of MF++ did not consider such a situation. However, this can be worked

around, by defining wrapper functions with predetermined enum values already in place. Thus,

supposing there are two CVC4::Term variables in scope, named t1 and t2, if we would like to

generate the addition of the two, we would normally call the function mkTerm(CVC4::PLUS,

t 1, t 2). Rather than somehow constrain the fuzzer to correctly emit CVC4::PLUS as the first

parameter, which would be akin to presenting some semantics to the fuzzing process, we can

define a function which takes two CVC4::Term parameters, and passes them on to a mkTerm call

with the first parameter set to CVC4::PLUS, returning the value of that function invocation. We

can similarly define wrapper functions for other operations of interest. This does mean more
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initial work to write these wrapper functions, and the inability to directly expose the library

data for the fuzzer in the library source code, but is arguably a more elegant solution than

mixing semantics and syntax in the fuzzer.

One other distinction to Z3 is that there is no direct mechanism by which to obtain and reuse

a model. We would be able to print a model out after executing a call to the solver, and then

parse the output appropriately, and emulate the existence of a model by enforcing values on

required variables. However, from an engineering perspective, this would prove time-consuming

for little gain, and could potentially be emulated by a test which has those values already set,

instead of allowing them to be unbound.

Yices2

Yices2 [29] is an SMT solver working over integers, reals, bitvectors, and booleans, and covering

a rather wide selection of related theories. It provides the option of using alternative solvers

than the built-in one in the backend, while supporting both its own input language, as well as

SMT-LIB2. Importantly, it provides a C API (compatible with C++ files by the nature of the

two languages), and is able to handle SMT QF NIA with further dependencies.

The major difference between Yices2 and the previous APIs is the fact that Yices2 only

provides a C API. Luckily, this is compatible straight out of the box with how MF++ interprets

specifications. We do still have to emit C++ files, as the fuzzing and metamorphic generation

functionality within MF++ is written in C++ format. However, this has no bearing on interacting

with the Yices2 C API itself.

In terms of internal functionality, the core SMT-LIB2 implementation is what we expect for

operations. One particular detail of Yices2 is that it seems to simplify the internal represen-

tation at every step it can, rather than when explicitly called, as in Z3 and CVC4. Coming at

the cost of up-front performance, this approach would circumvent both expensive simplification

calls over particularly complex expressions, as well as potential bugs arising from attempting

to internally handle such complex expressions in a solver call.

One infrastructure difficulty is the need to get additional dependencies in order to make use of

the non-linear capabilities of Yices2. What this means further is that tests that we generate are

not reproducible without these capabilities enabled, and would not be thus generally applicable

if we emit expressions that make use of non-linear algebra. This is more a tool consideration

than an issue with MF++, however, and of course we could ensure the specification does not

generate non-linear expressions.
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Boolector

The final SUT to discuss is Boolector [12]. Similar to Yices2, it provides a C API, and not a

C++ one. As noted, Boolector only provides support for certain bit-vector logics. Given this,

there are numerous bit-vector specific operations implemented in Boolector. However, the

overall approach does not change much compared to previous specifications, especially Yices2.

The APIs of the two SUTs are nearly identical, with a large overlap in both operations and

chosen API function names for those operations (with appropriate library name as an identifier

as the main method of distinguishing between API provenance). The similarity of the two APIs

is another positive point in favour of testing the utility and design of MF++ specifications, and the

slight SUT-specific differences further enabled the checking of SUT-specific MRs implemented

in our design of specifications.

4.2.2 Choosing Theories and Logics

Having included Z3 and CVC4 in our list of tested SMT solvers, this gives us full reign to

choose any theory we would like, as they both support a large variety of both theories and

corresponding logics. Starting by selecting a logic is important in the context of MF++, as it

shapes restrictions that might need to be placed on the fuzzer, and what kind of operations

should be exposed to it. Integer theory seemed to be a good candidate, as it would offer

us access to a variety of MRs by using known arithmetic identities, beyond those of Boolean

theory, and it would also be distinct enough from the domain of Presburger arithmetic. The

chain of SMTLIB2 logics defined over the Integer theory define, in order of complexity, QF IDL,

QF LIA, and QF NIA, as one possible branch of logics we can choose. We have not considered

QF IDL, due to our limited experience with Integer Difference Logic [41]. We thus chose to test

both QF NIA and QF LIA, due to their similarity at the API level, meaning in terms of that

operations they expose. In order to make our specifications compatible with QF LIA, we would

use the sledgehammer approach, and disable any exposed operation or MR that would make

use or lead to non-linear results.

After some practical experimentation with both theories, we observed that linear tests would

finish quite quickly. This led us to think that maybe these tests were too simple, and would

not exercise the solver sufficiently. In contrast, there would be a large number of execution

timeouts for non-linear tests, even when the limit would more than double (from a default of

120 second execution timeout to 300 seconds). With this data, we decided to pursue testing

the QF NIA logic, but attempt to rein in the execution time.
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In our first attempt, we attempted to limit the number of non-linear objects that would be

produced, by directly removing MRs from the specification. We were unable to find a good

balance between having interesting MRs which did add non-linear arithmetic, and an acceptable

timeout ration (at this stage, we would still observe a timeout rate of over 50% for generated

tests). The second idea was to try and impose a limit on the depth of the generated test cases.

This ended up becoming the pruning feature of the generator (discussed in Section 3.3.3). With

logarithmic pruning, we were able to produce tests which had some interesting sequences, but

removed enough of the rest of the test such that it would execute sufficiently quicker. We thus

settled on testing QF NIA as one of the main theories for SMT solvers.

When we added Boolector to our list of tested SMT solvers, we obviously needed to expand

the scope of the tested theories to include a bit-vector logic. A good starting point was QF BV,

the quantifier-free logic for bit-vectors, allowing us to make use of all bit-vector features within

SMTLIB, but restricting the use of quantifiers. Similar to our approach to choosing QF NIA,

this was a suitable decision to make, to assess the initial utility of MF++ for a new tool.

4.2.3 Unifying SMT Specification

After some practical experience with writing specifications for these four libraries, as well as

understanding their underlying APIs, we can observe a number of core similarities.

They have a common type for a formula A formula seems to be a basic construct for each

of the four libraries. Concretely, they are represented as z3::expr, CVC4::Term, term t

in Yices2, and BoolectorNode. Furthermore, all libraries internally contain the notion

of a sort, and each instance of a formula has such an internal categorisation, which is

concretized once operations are applied over these instances.

They implement the SMT-LIB2 standard By having a unified standard, this means we can

categorise the features of each solver, and there is a baseline of expected implemented

operations for a given theory (although it might be the case that a library can implement

supplemental operations). Another consequence is that libraries can consume SMT2

format input, allowing for crosschecking. We note that Yices2 and Boolector do offer

their own formats, which would require additional overhead of understanding it to query

internal status.

They have similar critical internal structure Beyond the similarities at the level of formula

implementation, there are a number of core constructs shared across all libraries. We
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Listing 4.2: Abstract specification example

1 namespace metalib {

2 namespace rels {

3 namespace neg {

4 int_term placeholder(context , int_term);

5 int_term neg_by_sub(context c, int_term t) {

6 return rels::sub:: placeholder(c, t, rels::add:placeholder(c, t, t)); }

7 }

8 namespace sub {

9 int_term placeholder(context , int_term , int_term);

10 int_term sub_by_add(context c, int_term t1, int_term t2) {

11 return rels::add:: placeholder(c, t1 , rels::neg:placeholder(c, t2)); }

12 } // namespace sub

13 } // namespace rels

14 } // namespace metalib

Listing 4.3: Abstract specification concretized for Z3

1 typedef int_term z3::expr;

2 typedef context z3:: context;

3 namespace metalib {

4 namespace rels {

5 namespace negation {

6 int_term base(context c, int_term t) {

7 return z3::operator -(t); }

8 }

9 namespace subtraction {

10 int_term base(context c, int_term t1, int_term t2) {

11 return z3::operator -(t1 , t2); }

12 } // namespace sub

13 } // namespace rels

14 } // namespace metalib

distinguish the notion of an overarching context object (z3::context, CVC4::Solver,

context t in Yices2, Btor in Boolector) to which all formulas are referenced. This

context can be used to interface with solving capabilities.

With these core elements, having selected a logic to test against (for example, QF NIA),

we can set high-level operations, which we know will be present, and write our MRs in the

MF++ specifications exclusively referencing these high-level operations. We must also define an

abstract “formula” type which we must write these MRs over. Then, we can link such an

abstract specification with a given SMT solver by providing base concrete implementations

of these high level operations which implement the API of the chosen SUT, as well as using

typedef to link the abstract formula type with the concrete type of the SUT.

Inspecting the theory of Ints4, there are a number of operations defined (e.g., negation,

subtraction, multiplication), which can serve as our high-level operations. These can be defined

4http://smtlib.cs.uiowa.edu/theories-Ints.shtml, accessed 12th of October 2021
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Operation Implementation

negative -s1

0 - s1

s1 - 2 * s1

modulo ite(s2 != 0, mod(s1, s2), s1)

ite(s2 != 0, abs(rem(s1, s2)), s1)

ite(s2 != 0, s1 - (s1 / s2 * s2), s1)

identity s1

s1 * 1

s1 / 1

ite(s1 == abs(s1), abs(s1), s1)

ite(fuzz_false(), fuzz_int(), s1)

Table 4.1: Selection of SMT MRs used in MF++ testing

in a separate, SMT specification header file, alongside any interesting concrete implementations

making use of all these high-level operations (Listing 4.2). Then, we can define a separate,

SUT-specific header file, which links the abstract specification with the concrete API of the

SUT (Listing 4.3). In the SUT-specific header file, we can also include any additional specific

operations or implementations to be used in the generation process.

This allows us to reuse domain specifications across any number of SUTs, as well as providing

a template for future additional SUTs that we might want to integrate with MF++. It also

provides a clear distinction between what is pure MF++ specification, and what is required to

interface with a new SUT, and provides an initial low-overhead method of quickly integrating

MF++ with a new SUT, provided a domain specification is readily available. Finally, if the

abstract specification itself is improved, then these changes should cascade to existing SUTs

with no further changes, if no extra operations were added to the specification.

4.2.4 Example MRs

We illustrate a selection of MRs used for SMT testing in Table 4.1. Terms (s1, s2) are inputs

to the MRs, available either via fuzzing or as an intermediate MR variant generation result.

Terms (0, 1) represent the literal values 0 and 1, which within the actual MR specifications mean

recursive calls to generator MRs for those values. We additionally note that any expression

can be wrapped around a call to an identity operation (omitted in these examples for space).

The remaining interesting constructs are ite, representing a ternary if-then-else function, and

the two fuzz false() and fuzz int() calls, which are high-level operations fuzzing a known-

to-be false boolean expression, or an integer respectively (via MF++’s syntax sugar mechanism,
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as described in Section 3.4.3).

The first examples, of the negative operation, showcase how arithmetic identities can be

used in the domain of QF NIA SMT solving. This operation takes an expression as input and

should return the negation of the expression as output. While the identities in this format do

not appear particularly expressive, we note that due to recursive MRs, they can be expanded

into very large sequences of API calls. Thus, even these simple MRs are enhance the testing

process, while being easy to write and understand.

The modulo operation, as its name implies, takes two inputs and returns the value of the

first input modulo the second input. We note the second implementation of this operation

includes the rem function. We found this function while perusing the Z3 documentation, and

noticed that its functionality is equivalent to mod, but with different sign semantics. We noted

this discrepancy can be avoided by wrapping the rem call in an abs call. We note that this

result was due to practical experimentation with different variations of attempting to find

equivalent uses of mod and rem. This was partly due to the fact that we were unable to find

any documentation as to the exact functionality of the two functions. Nevertheless, MF++ can

validate its own specifications, by quickly identifying failing test cases. Furthermore, if there is

suspicion of an MR being incorrect, then the specification can be minimised to include a very

limited set of MRs, including that MR, with generated test cases quickly exposing the potential

issue.

The third modulo implementation makes use of domain-specific knowledge due to the Ints

theory we are testing. As the division used in the Ints theory is integer division, as per Boute’s

definition [11], then s1/s2 yields an integer quotient. Multiplying the result by s2 again, and

subtracting from the original s1 should yield the remainder of dividing the two. The addition of

this MR proved fruitful in uncovering bugs, and perhaps more such MRs using specific domain

knowledge can be employed to further strengthen the testing process.

One other aspect of note is that we integrate semantics checks within the modulo implemen-

tations. As we can make use of direct API code, we use the inbuilt Z3 ite function to check if

the divisor is 0, as modulo 0 is an invalid operation. Thus, pre-conditions required by certain

operations can be directly included in the implementations of those functions, ensuring that no

undefined behaviour or invalid operation is generated.

The identity operation further showcases some more instances of common arithmetic iden-

tities applicable to the SMT domain, exemplifying that initial testing can be performed even

with simple MRs, which will be expanded appropriately. The final implementation shows how

fuzzed objects can be used within MRs themselves. In this instance, we ensure the if-then-else
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always follows the false branch, due to the condition being guaranteed false on generation,

meaning that we can potentially insert any expression in the then branch. In this case, we

fuzz another fresh expression, but it could be possible to include an operation which produces

API traces making use of undefined behaviour. As the code is guaranteed to not be executed

by construction, it might prove an interesting challenge to the in-built optimisation passes,

potentially triggering some other bugs.

4.3 Presburger Arithmetic Libraries

The second domain of choice is that of Presburger arithmetic [72]. Presburger arithmetic is a

first-order logic over natural numbers containing a limited set of operations (integer addition,

logical negation, logical implication, and equality). The main strength of the logic is to eliminate

free variables, which are known to be particularly difficult to solve.

For the purposes of MF++, we consider our chosen SUTs as set arithmetic libraries, where

the basic building block is a set object. Further, we will expect the usual operations over sets,

including union, intersection, and subtraction. We note that both SUTs contain more than

just set objects (isl for example has the notion of a map, or a union set), but we shall focus

exclusively on sets, as (a) we were advised by isl developers initially that sets are the basic

building block for the other types (we did not seek to find out if this was the case for Omega),

and (b) we expect that a specification focusing on another type would mostly mirror a set

specification, thus a deeper testing into sets might expose more bugs of interest

4.3.1 isl

As the first library that was used to build MF++ around, and with direct access to developers,

isl [73] was the one of the main driving pillars behind MF++ development. Similarly to Z3,

we dedicated considerable effort in testing isl. The library implements Presburger arithmetic,

and has a lot of very domain specific features, such as n dimensional sets, and being able to

compute the convex hull of such a set. As testing was done primarily in close coordination with

two isl developers, Tobias Grosser and Sven Verdoolaege, the aspects of isl that we focused

testing on were mainly chosen at their recommendation. One particular operation, namely

coalescing [74], was mentioned as being generally under-tested, and making a good candidate

on which to emphasise MF++ testing.

For isl, we were provided with a generated C++ interface, accessing useful internal C func-
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tions. We mainly use the C++ interface, even if it means that a function not exposed by the

interface cannot be visible to MF++, as it contains most core operations we require. Further, we

shall refer to types and functions in this C++ API.

We start our discussion with fuzzing input variables for the metamorphic variants. A set in

isl is represented by the type isl::set. Constructing a set in isl can be done in three main

ways:

• read the set in from a string;

• define some isl::points in an isl::space, and find the isl::set defined by these

points;

• manually create constraints via isl::pw aff (piece-wise affine expressions) inequalities

formed of isl::vals (values)

We initially started with the third approach, which we named isl cons, for isl constraint.

In order to generate a isl::set, we start from isl::val, representing integer values in an isl-

friendly format, combine them into isl::pw aff (formally, piecewise quasi-affine expressions,

defined in Notation 4.12 of the isl tutorial [76]), then further combine these isl::pw aff

expressions into sets. This approach has been lifted from the isl manual [75], which provides it

as an example on page 45. This approach allows us to exercise types isl::val and isl::pw aff

during fuzzing, in addition to our main focus on isl::set. We then augment these sets by

intersecting multiple multiple such sets together.

However, a main disadvantage of this approach is the fact that choosing to intersect sets

can quickly lead to the empty set being produced, if there are two non-overlapping subsets

generated at any point. And considering that there is no semantic restriction over generation

of isl::vals and isl::pw affs, this case is very likely to be triggered. Using union instead

of intersect poses a similar problem: we might generate constraints which, together, cover the

whole space, leading to constructing a universe set, as opposed to an empty set. Nevertheless,

even with this slightly flawed approach, we were able to discover a number of internal crashes

in isl.

The second approach we attempted to generating interesting inputs, named isl point is

the second option outlined above: randomly generate some isl::points in a given space (by

randomly generating isl::points, we mean setting their coordinates across all dimensions of

the space to some random value), converting such a point into a isl::set object, the uniting

these sets together. This approach does not suffer from the issue discussed in the isl cons
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generation method. By uniting subsets, we can never reduce a final set to the empty set.

Furthermore, generating a point that covers the entire space is impossible, as we do not allow

infinity as values that can be assigned to values of dimensions. This ensures we can create

well-defined, and likely disjoint sets as our inputs to our metamorphic variant generation.

In terms of functions available to apply during the generation process, we constrain them

carefully, to ensure we generate valid objects along the way to our final set generation. Thus,

we allow usual arithmetic operations over isl::val objects, we provide a wrapper function

which can set a specific, valid dimension of a isl::point to a randomly generated isl::val,

and we also allow the generation of intermediate isl::sets, over which we allow the use of

usual set arithmetic operations. There are some operations that would be interesting to allow

during the fuzzing process, but are unfeasible without further constraints. An example would

be isl::set::project out, which projects a set across the given dimensions, reducing the

number of dimensions of a set. The difficulty here is that sets must reside in the same space in

order to be used in further operations. There could be workarounds, such as lowering the set

residing in the larger space to the smaller-dimension space, or somehow emulating both sets

residing in the larger space, but this might have further implications on the fuzzing process,

and would affect our assumptions that input variables to the metamorphic variant generation

process are compatible out of the box. We can, however, explicitly insert such a project out

call across all variants, to exercise this feature of isl.

For the metamorphic variants, we provide MRs mainly inspired from first-order logic iden-

tities, translated to the domain of arithmetic sets. The most isl-specific MRs are identities

making use of isl::set::coalesce and isl::set::detect equalities functions. For the

equivalence checks, we use the in-built function isl::set::is equal to check for equality

across metamorphic variants.

4.3.2 Omega

The Omega [71] library was chosen as a second implementation of Presburger arithmetic, in order

to mirror isl and observe the efficacy of our Presburger arithmetic specifications. Initially

started as the Omega test, which would only manipulate constraints over integer variables, it

evolved into the current system for simplifying and verifying Presburger formulas. As such, it

implements similar operations and features as isl, theoretically allowing for cross-checking of

generated test cases across the two SUTs. We note that preliminary testing of Omega, which

identified issues affecting around 70% of our tests, and a lack of support for the library led us
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Operation Implementation

complement complement(s1)

subtract(universe(), s1)

intersect intersect(s1, s2)

intersect(s2, s1)

complement(union(complement(s1), complement(s2)))

union assoc union(s1, union(s2, s3))

union(union(s1, s2), s3)

Table 4.2: Selection of Presburger arithmetic MRs used in MF++ testing

to abandon in-depth testing of this library.

It provides the same constructs and features that we use for the isl cons specification. We

consider the core element of Omega the type Omega::Relation, which is similar to an isl::set.

The main difference between Omega and all other SUTs is that there are specific types for

specific operation applications. For example, if we would like to apply a logical and operation

over an existing Omega::Relation, we can use Omega::Relation::add and() to obtain an

object of type Omega::F And, representing a functional application of logical and over the input

relation. Similarly, adding equality via Omega::F And::add EQ() yields a Omega::EQ handle

object. Thus, in order to prototype our specification over Omega, we initially used a wrapper

function taking as input an integer value to create a hard-coded Omega::Relation with a

concrete application of logical and arithmetic operations. Further, there was also no direct

check for equality between Omega::Relations, from what we have observed. Thus, in order

to simulate an equality check between two Omega::Relation objects, we made use of the

function Must Be Subset(), which takes two input Omega::Relations, and returns a boolean

value, which we assume represents whether the first parameter is a subset of the second, from

inspecting the comments in the source code. It should follow that calling the Must Be Subset

function over two parameters both ways is equivalent to checking that the two parameters are

equal.

Other operations over Omega::Relations mirror those over isl::sets, and the MRs we

specify are first-order logic identities over booleans, translated to the domain of arithmetic

sets. This prototype was sufficient to evaluate both the ease with which we can specify a new

SUT in an existing domain, as well as Omega itself as a SUT (as discussed in Section 4.4.1).
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Library name inputs tests test-size test-depth prune-depth

Z3 2 5 4 2 logarithm
CVC4 2 2 5 3 noprune
Boolector 2 3 4 5 logarithm
Yices2 2 5 4 5 logarithm
isl 3 7 5 4 logarithm

Table 4.3: Chosen parameters during evaluation for SUTs tested with MF++

4.3.3 Example MRs

Some select MRs applied to the domain of Presburger arithmetic used in MF++ are shown

in Table 4.2. Similar to the SMT example (Section 4.2.4, (s1, s2, s3) represent inputs to the

MRs. The universe() function call is used to generate a set containing all elements of the

domain.

We observe a one-to-one mapping with known arithmetic identities in the MRs applied to

the Presburger arithmetic SUTs: union associativity is equivalent to associativity of addition,

and intersect MRs represent the properties of commutativity, as well as a slightly modified

instance of an application of a DeMorgan law. The second complement MR is rather more

domain specific: the complement of a set can be obtained by subtracting the set from a universe

set.

The main methods in which we found bugs in Presburger arithmetic SUTs were SUT-specific

instructions. For isl, these mainly focused on isl::set::coalesce() and isl::set::det-

ect equalities(), which take a set as input and perform internal operations to optimise the

internal representation of that set. These two represent SUT-specific instances of identity

operation implementations. For Omega, a function which triggered an unexpected error was the

Must Be Subset function, given two copies of the same Omega::Relation object. Clearly, we

expect a set to be a subset of itself.

4.4 Experimental Results

In this section, we discuss our findings during the evaluation process of MF++. We investigate

two aspects of the tests MF++ produces. First (Section 4.4.1), the capability of finding bugs, and

whether these are bugs that matter. Secondly, we investigate the potential of using MF++ as

a coverage-enhancing tool, and perform some pilot coverage experiments using tests produced

(Section 4.4.2).

There are a number of parameters that can be set to adjust the generation process of MF++.
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These are:

• inputs, the number of input variables to generate via fuzzing;

• tests, the number of metamorphic variants to generate;

• test-size, the size of the sequence of high-level operations across all metamorphic vari-

ants;

• test-depth, the recursion depth for one high-level operation in the sequence — once this

depth is reached, concretizations which contain other high-level operations are disallowed

from being generated;

• prune-depth, the algorithm to be used for pruning (Section 3.4.3)

These parameters have been determined for each library empirically, to balance the amount of

timeouts with the amount of fully executed tests, while aiming to generate larger tests. Thus,

the main goal of choosing parameters was to keep the timeout rate under a threshold. A more

exhaustive experiment, with more qualifiers, could be used to potentially find better parameter

values, but our main goal was to execute more tests over the SUTs themselves, than over the

generator. The chosen values for each library can be seen in Table 4.3.

4.4.1 Bug Finding

The main purpose of MF++ is to find bugs in the SUTs it targets. We define this process as a

sequence of actions: (a) a test executed triggers a failure, (b) the failure is investigated and

triaged into either false alarms or potential positives, (c) positive failures are manually reduced

to a simple example and re-evaluated, (d) and finally, positive reduced tests are submitted as

issues.

During this process, we highlight two important steps. First, triaging bugs is very important.

As MF++ lies with one foot in the domain of fuzz testing, we must ensure that the bugs we find

are both valid (i.e., not due to an incorrect specification), and of relative importance [22].

Initially, as generally the generated test cases would be too complex to manually go through

by hand, we must look at the cause of the failure, both in the SUT, and the trigger point

in the test case itself. For example, Z3 has operations which operate over objects of type

z3::expr, but check that the internal sort of these objects are valid (e.g., z3::expr::abs is

not applicable to z3::exprs of sort bv). This can be regarded as a specification issue, but it

does require internal and specific knowledge of Z3 itself; it is reasonable that another SMT
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Bug count Library Description Library Commit Report URL

1 Omega Internal assertion failure b601950aae5376cf234e05e43bea28c3891cedd8 https://echo12.cs.utah.edu/dhuth/chill-dev/issues/57

2 Omega Internal assertion failure n/a https://echo12.cs.utah.edu/dhuth/chill-dev/issues/58

3 Omega Internal segmentation fault n/a https://echo12.cs.utah.edu/dhuth/chill-dev/issues/59

4 isl Internal assertion failure db1090fb3bf1b7385c29ab829979a9afd939da33 https://groups.google.com/g/isl-development/c/11by6uHRNVA

5 isl Internal assertion failure 44534fc75cb4d67f6aa74ec201b0b0bbcfd7ae2a https://groups.google.com/g/isl-development/c/iO1QFBGfdcE

6 isl Internal assertion failure 38f1a592e80176863a68a2bf305f4dfd6e1999cb https://groups.google.com/g/isl-development/c/JFll6ZM6za4

7 isl Internal assertion failure dc9b84f72f24cf1817e7d4e0fbc146bd204a8f68 https://groups.google.com/g/isl-development/c/BxicmfMDNdw

8 isl Internal assertion failure 179e221bbd892f327cfb7ba3ed408ae695d604aa https://groups.google.com/g/isl-development/c/qMyF1QBHl90

9 isl Metamorphic check failure 179e221bbd892f327cfb7ba3ed408ae695d604aa https://groups.google.com/g/isl-development/c/BjxxUFI410c

10 isl Metamorphic check failure 8ef424541905b8ec5878538d9fc5b774c0c98cc7 https://groups.google.com/g/isl-development/c/gZ4fGOsGpCE

11 isl Metamorphic check failure 379be8a469f526c4970e47a826eb8c6736053634 https://groups.google.com/g/isl-development/c/qsQDKnfuRdg

12 isl Infrastructure bug n/a https://groups.google.com/g/isl-development/c/M24UHP9lfCI

13 isl Internal assertion failure n/a https://groups.google.com/g/isl-development/c/A7vN0dY-gE0

14 isl Metamorphic check failure n/a https://groups.google.com/g/isl-development/c/yT2BfQ0Wt4w

15 Z3 Metamorphic check failure 8566d88b992610060a6523f28272d3384a2f2471 https://github.com/Z3Prover/z3/issues/2096

16 Z3 Metamorphic check failure b4ba44ce9d39b784a07d9b6a878193af03946219 https://github.com/Z3Prover/z3/issues/2238

17 Z3 Metamorphic check failure d70b63c8acf816e57adce30242c0c8a81be515f0 https://github.com/Z3Prover/z3/issues/2604

18 Z3 Performance bug d0d06c288a76236ea6fb32b3858e7414e7d5f4c5 https://github.com/Z3Prover/z3/issues/4775

19 Z3 Asan error n/a https://github.com/Z3Prover/z3/issues/5435

20 Yices2 API bug 7e3815d5bbf80fd39155ca39bda9ac18af02465d https://github.com/SRI-CSL/yices2/issues/353

21 Yices2 Metamorphic check failure 12378df46b35fe6e1f5b370d2797e1f290887a7a https://github.com/SRI-CSL/yices2/issues/360

Table 4.4: List of all bugs found and reported during MF++ evaluation
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solver might implement an abs operation over bit-vectors. We note here that versions of the

SUT must also be taken into consideration—it might be the case that the bug has been fixed

in a more recent version than the one it has been observed in (and conversely, the bug might

have been recently introduced). Second, submitting a bug report is not always straightforward.

Some libraries might impose certain requirements on the bugs that one might want to report5.

Developers or maintainers of other libraries might be more difficult to track down. One such

example is Omega, which does offer a repository on GitHub6, seemingly abandoned. We were

able to contact recent maintainers after a suggestion of seeking out a colleague of the former

developers.

Throughout the implementation of MF++, we have found a total of 21 bugs across 4 of the

6 SUTs considered: 5 bugs in Z3, 2 in Yices2, 11 in isl, and 3 in Omega. All of these were

reported to their respective maintainers. All, except the 3 Omega bugs, were subsequently fixed.

In the following, we shall go into more detail about the process of reporting bugs for each of

the libraries, and discuss further details for a selection of more interesting bugs. A list of all

the bugs found is presented in Table 4.4.

Z3

We were able to find and report 5 bugs for Z3 by using MF++ alongside an SMT QF NIA spec-

ification, augmented with boolean expressions. We distinguish three kinds of tests. One bug

was identified due to compilation with AddressSanitizer (asan) [70]. One other bug we classify

as a decidability bug after initial triaging. Finally, the remainder of the bugs are metamorphic

bugs, exposing internal Z3 logic errors.

Metamorphic bugs We found three instances of tests where two expressions which should be

equivalent by construction were deemed not so by Z3. They are all rather simple to express,

but we must understand that the internal workings of Z3, and SMT solvers in general, are

very sensitive, and even seemingly obvious solutions actually require a fairly involved solving

process.

For a first example, consider the code snippets in Figure 4.1, representing Bug 15. We observe

that the code snippets are equivalent. The main difference lies in line 5. Variable x, due to

line 4, must have value -2. This means that the two expressions are expected to be semantically

equivalent. Furthermore, we can manually compute the value of y, that being 0. Thus, the

5https://github.com/cvc5/cvc5/wiki/Fuzzing-cvc5#general-guidelines, accessed 7th of October 2021
6https://github.com/davewathaverford/the-omega-project/, accessed 7th of October 2021
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1 (set -logic QF_LIA)

2 (declare -const x Int)

3 (declare -const y Int)

4 (assert (= x -2))

5 (assert (= y (- -2 (div ( * -2 x)

-2))))

6 (assert (not (= y 0)))

7 (check -sat)

1 (set -logic QF_LIA)

2 (declare -const x Int)

3 (declare -const y Int)

4 (assert (= x -2))

5 (assert (= y (- -2 (div ( * -2 -2)

-2))))

6 (assert (not (= y 0)))

7 (check -sat)

Figure 4.1: Example of Z3 internal solver bug

1 z3::expr r0 = z3::ite(z3:: operator !=(y, 0), z3::operator -(x, z3:: operator *(

z3:: operator /(x, y), y)), x);

2 z3::expr r1 = z3::ite(z3:: operator !=(y, 0), z3::abs(z3::rem(x, y)), x);

Figure 4.2: Example of Z3 metamorphic check failure

check (line 6) should fail, and we expect the solver to return unsat. In actuality, Z3 evaluates

the left snippet as sat. Investigating the commit7 required to fix the issue, it seems to have

been due to incorrectly propagating the constant value of a negative divisor variable; this gives

a clear example of the complicated inner workings of these tools. We also observe that the

bug was seemingly introduced during a previous fix, as per the commit message. Being able

to catch this issue with MF++ is also an indicator of its utility as a regression test tool. In this

particular case, we note that the bug was reproducible entirely in SMT2 format. Tests from

MF++ are initially in C++, but providing a test case with the buggy behaviour in SMT2 format

ensures that this is an internal solver bug, rather than an API issue somewhere up the chain.

The full bug report is available online 8.

A snippet of a second bug is shown in Figure 4.2, representing Bug 16. Given some input

expressions x and y, we define two expressions, r0 and r1, which we expect to be equivalent

by construction. They are both instances of a modulo operation. In the case of r0, we use the

fact that, as we are in the SMT QF NIA theory, division is actually integer division, meaning that

only the integer quotient is returned, and the remainder dismissed. Thus, x%y == x− x/y ∗ y

holds. For r1, the rem function, which, from testing, outputs the same absolute value as the

modulo, but with a distinct sign based on the operands. As such, applying the abs operation

over the output of a rem operation is expected to yield the same value as a modulo operation.

This identity is implemented as an MR in our Z3 specification, and required a fair bit of work

and investigation of the provided documentation to create. Checking that r0 ̸= r1 with specific

7https://github.com/Z3Prover/z3/commit/49a51a075776cd37126bf868cd92184e484752a7, accessed at
11th of October 2021

8https://github.com/Z3Prover/z3/issues/2096, accessed 11th of October 2021
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inputs9 yields, sat, while the expected return value is unsat, due to the expected equivalence

of the two expressions.

The final issue, Bug 17, involves two fuzzed expressions, x and y, creating two solver instances,

and checking the satisfiability of x ̸= y in one, and y ̸= x in the other. Of course, the devil

lies in the actual fuzzing process of the expressions. What we observed is one of the checks

yielding sat, while the other was found to be unsat. Furthermore, on a Z3 web interface10,

the result was unknown for both formulas. This is not particularly surprising, as we are in the

SMT QF NIA theory, which is undecidable. It is reasonable for the solver to not be able to solve

formulas gives. However, if the solver returns a particular result, as was the case in testing Z3

directly, then that value should be trusted. The issue was reported11 to the Z3 developers and

subsequently fixed.

Decidability bug We initially classified bug 1712 as a performance bug, but the actual fix

proved that this was more of an internal API bug. The reason for the initial classification

was due to the fact that for the formula (assert (<= 0 (^ 2 -1))) would yield unknown.

The formula is trivially satisfiable, due to constant propagation. However, as we are in the

theory of non-linear algebra, the theory itself is undecidable. SMT solvers usually employ

various tricks and heuristics in order to evaluate the satisfiability of a formula, but there is no

expectation that they should be able to solve any formula provided to them. In this instance,

our initial expectation was that perhaps the nature of our formula, in conjunction with the

lack of proper documentation for the implementation of the ^ operator (commonly indicating

exponentiation, but not a standard SMT operator), might not trigger the usual optimisations

made during solving. On inspection of the implemented fix13, it does seem the case that this

simple example was an indicator of something missing in the decision procedure chosen by Z3.

This example is a good indicator of the difficulty of handling fuzzed bugs, and their interaction

with the SUT. The test case seems simple and harmless enough, even under the consideration

that this is a grey-zone. However, Z3 is a mature project, and the fact that this issue never

surfaced leads to the question of whether it is useful for the solver to consider such instances as

bugs. The solution is simply beyond the capabilities of the solver, even if a human can easily

recognise it. At the same time, because a human can so easily recognise it, the solver might be

9https://github.com/Z3Prover/z3/issues/2238, accessed 11th of October 2021
10https://rise4fun.com/z3/, accessed 11th of October 2021
11https://github.com/Z3Prover/z3/issues/2604, accessed 11th of October 2021
12https://github.com/Z3Prover/z3/issues/4775, accessed 7th of October 2021
13https://github.com/Z3Prover/z3/commit/e2c1436cc8e17cbe93b18dc83d3af573dfea115e, accessed 7th

of October 2021
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reasonably expected to provide an answer. But if no one is asking similar questions, then why

should it?

Asan bug Bug 1914 proved difficult to uncover. It was not discovered during the initial MF++

process, but rather later on, during coverage-enhancing coverage experiments (Section 5.4.1).

We observed a test that would crash on one machine, after a rather lengthy execution, and

pass quickly on another machine. Further investigation uncovered the main difference was

the compiler used for the test itself: one machine was using g++, while the other was using

clang++. The problematic execution was only exposed with g++. Subsequently, due to such

symptoms being potential indicators of undefined behaviour, we recompiled both the test and

Z3 with clang++, with asan enabled in both instances. This yielded a heap-use-after-free

error. Upon communication with the maintainers of Z3, the root cause was identified as being

a reference count mismatch due to implementation of C++14 move semantics, and subsequently

fixed. We managed to find another test case which exposed an identical issue, stemming from

the same root cause, but in another part of the code15.

Yices2

The two bugs we found in Yices2 are at polar opposites in terms of complexity.

Bug 20, which we consider an API bug, showed an inconsistent result on a fairly small input.

The function yices bvxor3 takes three bit-vector sort term t inputs and returns a three-way

xor. With a bit-vector size of 1, we found that creating three distinct term t objects with

values 0b1, 0b1, and 0b0 respectively, then passing them to yices bvxor3 in that order, we

would see the result 0b1. The expected result, as confirmed by applying both yices bvxor2

and the generic yices bvxor functions is 0b0. Upon report, we were advised this was a typo

in the API, as yices bvxor3 would internally call the or function instead of xor. This bug

has potentially been hiding away for a fair bit of time, presumably not being covered due to

the potentially low use count of the specific 3-parameter xor implementation, when alternatives

exist. When exercised, the bug would presumably be quite quick to manifest, even with very

simple inputs. While in the end, we did manage to uncover a latent bug in the API, this

particular testing instance shows the benefit of a more systematic, API-directed approach to

generating tests with MF++.

Bug 21 on the other hand required a much more involved generation in order to expose an

14https://github.com/Z3Prover/z3/issues/5435, accessed 7th of October 2021
15https://github.com/Z3Prover/z3/issues/5493, accessed 1st of November 2021
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Listing 4.4: Formula required to trigger bug 18 in Yices2

1 (push 1)

2 (assert (= x (ite (= x23 0) (* x59 x59) (mod (* x59 x59) x23))))

3 (assert (= z (ite (or (< (* (* x59 x59) (* x59 x59)) 0) (< (* (- 1) (* x x))

0)) (* (- 1) x59) 6)))

4 (assert (= y (ite (= (* x x) 0) z (div z (* x x)))))

5 (assert (= (* (abs y) (ite (= (abs y) 0) 1 (div (abs y) (abs y)))) 0))

6 (check -sat)

7 (get -model)

8 (pop 1)

issue. Even after manual reduction, the formula itself looks quite hard to follow (Listing 4.4).

It is a complex, non-linear formula, with two unbound variables x23 and x59 which Yices2

computes as unsat. However, interestingly, if the push and pop commands are removed, the

formula is found to be sat, and a model is provided (setting x23 = -7 and x59 = -2). Of

course, manually setting the variables to the given model shows indeed that the formula is

expected to be satisfiable, and setting the whole formula within a push/pop context should not

affect that satisfiability. The issue seemed to have been with computation of greatest common

divisor, and did not require very much change to the codebase. Although it is particularly

interesting why wrapping the formula within a push/pop context makes the bug be triggered,

this is further evidence of how these solvers work internally, where small changes in how the

formula is presented, which do not affect the formula itself, can affect the decision process.

isl

We have found many bugs in isl, primarily due to direct communication with the developers,

including during the design process of the specifications. We shall discuss a selection of the

more interesting issues we have found during isl testing, with the full details for each of the

bugs being available at the corresponding report links.

The first discussion will focus on bugs 9, 10, and 11. All three bugs bugs were triggered

by the same observable cause, namely an unexpected set equality check failure. All the three

issues were flagged during the same experimental run, and we had assumed they might be

due to the same root cause. This proved partly true, as all three bugs were failing due to

improper coalescing, but seemingly, they were subsets of one another (meaning that potentially

having reported bug 11 would have fixed both 9 and 10). However, in the order that they were

reported, each report required further expansion of the prior fix. This slightly goes counter to

our intuition, where we expected one fix to either fix all the issues, or other issues requiring

a fix in an unrelated part of the SUT. It is hard to know when reporting bugs what the best
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approach is, especially with a grey-box approach as was our case with isl, where we did not

delve into the root causes of the failures we were seeing, but were sufficiently happy that the

test itself seems to do something reasonable, but failing. Nevertheless, the end result is all three

bugs managed to have been fixed, even if the whole process was less efficient.

Regarding the root causes of the bugs, they are to do with the coalesce [74] routine imple-

mented in isl, which can be considered a sort of internal simplification operation. A high level

explanation is that the routine looks at the shape of a set, and attempts to redefine it using

fewer constraints. For example, if there is a set comprised of two adjacent subsets with an

overlapping edge, coalescing might define the set as the union of the two subsets, which would

be more efficient than having to include constraints for the common edge. There are numerous

such heuristics implemented in the coalesce routine.

In regards to these particular issues, we managed to glean some additional information by

directly asking a developer of isl. In regards to bug 9:

Consider an integer set declared by the following two disjuncts (where x, y, z are

parameters):

0 ≤ x, y, z ≤ 100 ∧ 0 < z ≤ 2 + 2x+ 2y (4.1)

z = 0 ∧ x, y ≤ 100 ∧ y ≤ 9 + 11x ∧ x ≤ 9 + 11y (4.2)

The constraint z ≤ 2 + 2x + 2y is valid for integer points in the second disjunct,

but not for rational ones. Further, if we set z = 1, then the constraint becomes

redundant with respect to x, y ≤ 0. Since the constraint is not redundant for

the first disjunct entirely, it means it is redundant (with respect to x, y ≤ 0) on

the hyperplane z = 0. Thus we assume the constraint is valid for integer points.

(Tobias Grosser)

During the coalesce routine, we were advised that it is possible to include additional rational

points as the two sets are coalesced together. However, it is essential that the number of integer

points remains unchanged. Thus:

(Bug 9) not only increased the rational points after coalescing but incorrectly in-

cluded new integer points. While the first patch corrected our test case, it did so

by making the overall routine more powerful, while relying on the assumption that
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redundant constraints have been marked correctly. (Bug 10) then exposed the fact

that the polyhedron which did not exist before the coalescing routine was called,

but those which have been created earlier in the iterative coalescing process, were

not always scanned for newly redundant constraints.

While the second patch addressed this instance of incorrectly updated state, (Bug

11) showed that the coalescing routine still relied on inconsistent state. The final

solution implemented by the isl developers removed the earlier generalisation of

the coalesce routine. (Tobias Grosser)

Overall, it seems there was some back and forth between initial existing issues present,

test cases not fully exposing the underlying issues, and subsequent insufficient fixes from the

developers.

In a separate instance, Bug 14 involves applying numerous MRs, especially DeMorgan’s laws

instead of direct union and intersection, in order to trigger a faulty is equal check. We do

note the need to issue coalesce, as well as detect equalities calls at various points in the

generation trace of the metamorphic variables. The function detect equalities is another

simplification procedure, which finds and removes implicit equalities. Inspecting the follow-up

fix commit16, it seems the main cause of this bug was again in the coalesce routine, due to “the

disjunct with empty facet getting dropped entirely” (Sven Verdoolaege). The fix addresses this

issue, adds further checks to ensure the output is as expected, and includes a regression in the

test suite to check for this issue going forward.

Omega

Upon testing Omega, we noticed a high incidence rate of three issues, affecting roughly 70%

of our tests. First, there were overall many segmentation faults, which we did not investigate

further, but did make a note of, and reported the issue (Bug 1). The subsequent issues have to

do with the API of Omega. While we could not find any prose documentation for the library,

based on our experience with isl, and looking over the source code, we could infer what some

of the functions would do. A function named simplifyProblem seems to simplify the internal

representation of the expression being built. As such, we treated is as an identity function,

being able to be called at any point, over any expression we construct. In our experiments,

using this function would lead to an internal Omega assertion failure. This bug, noted as Bug

16https://groups.google.com/g/isl-development/c/lpoPbJOms5c/m/DOpmlOOAAQAJ, accessed 13th of Oc-
tober 2021
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2, is not particularly critical, as we could not emit this particular function call (although we

would be at its mercy if it were to be called internally at some point, and we are in the process

of finding bugs anyway, which we would like fixed).

Bug 3 presents the most problems. As per metamorphic testing, we must be able to compare

objects produced by the SUT. And the most simple way to do so is to check equality for

sets we know are equivalent by construction (something we similarly do in isl via its provided

set::is equal function). There does not seem to be such a function readily available in Omega.

Therefore, one avenue that seemed reasonable was to use the MustBeSubset function, as we

would expect that two sets, which are the subset of one another, are equal. Unfortunately,

we managed to synthesise tests where calling MustBeSubset on the same input function would

lead to false being produced. Without knowing more about the implementation details, we

do assume this should not be the case, and filed this as another issue.

We wanted to report these bugs, but the GitHub repository from which we obtained a copy

of the library seemed abandoned, and the email link on the project’s website17 was also out of

commission. One link that eventually was fruitful was the inclusion of Omega in the CHiLL [17]

project. Upon reaching out to the current CHiLL maintainers, we were advised that we can

file issue reports related to Omega to them, and were provided access to an internal GitLab

system where to make such reports. Unfortunately, this system is not publicly available, but

the related issues reported are present in Table 4.4. After a period of time, we were advised

that support for Omega would be dropped, meaning that no fixes for these issues would be

implemented. Due to the high incidence rate of the issues, we decided to not go ahead with

further Omega testing. Nevertheless, it was a useful exercise to cross-define a specification for

an existing domain (Presburger arithmetic) at an early stage of MF++ development.

4.4.2 Coverage

During the evaluation of functional tests over the five valid SUTs (disregarding Omega, due to

high rate of errors and lack of direct maintenance), we considered to further evaluate the utility

of MF++ by computing coverage achieved by our testing process versus the existing test suites

of the SUTs in question. Thus, we performed a preliminary evaluation to compare coverage

achieved by an execution of MF++ for a given amount of time, versus the coverage for each of

the tools in question.

Before that, we observe the approach of the five SUTs with respect to coverage. We note

17http://www.cs.umd.edu/projects/omega/, accessed 12th of October 2021
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that CVC5 and Yices2 provide coverage reports alongside their nightly continuous integration

builds. Furthermore, CVC5, Yices2, and Boolector include an option to compile with coverage-

gathering features in their build systems. On the opposite side of the spectrum, isl and Z3

do not integrate any sort of coverage checks, and coverage features must be manually enabled

in the build system. This can be done by modifying the appropriate environment variables

(CFLAGS, CXXFLAGS, LDFLAGS) to include the --coverage flag (with a note that this must be

done in the Makefile of isl at moment of writing).

Our experiment attempts to identify if MF++ can achieve any sort of additional coverage than

the standard test suite of each SUT in turn. Thus, for each SUT, we perform the following

sequence of operations:

1. Compile the SUT with coverage-gathering features enabled;

2. Execute the test suite and gather test suite coverage data;

3. Save the generated coverage data and wipe it from the build directory of the SUT;

4. Execute a MF++ run for a predetermined amount of time and gather achieved coverage;

5. Compute the delta between the two coverage logs thus obtained.

This experiment has been performed on a Docker 20.10.7 container, hosted on a Ubuntu

18.04.6 LTS host, with an Intel Core i7–6700 3.40 GHz CPU with 2×8GB DDR4 RAM. The

compiler used was g++ 9.3.0. To gather coverage, we used gcovr 4.2, while to compute dif-

ferential coverage, we used gfauto commit f796df52 from the GraphicsFuzz project18 [27] The

duration of the MF++ experiment was set at 20 hours for all SUTs, except for Boolector, where

we used a time of 6 hours. The specifications of the SUTs were the latest version at the time

of the experiment19. We used QF BV logic for Boolector and Yices2, and QF NIA for Z3 and

CVC5.

The results of the experiment can be seen in Table 4.5. For each library, “Total Lines”

indicates the number of lines in the library, as reported by gcovr, “Common” indicates the

number of lines covered by both the test suite and MF++, “Suite” indicates number of lines

covered exclusively by the SUT’s respective test suite (and not the MF++ run), and “MF++”

indicates lines covered during the MF++ run (and not by the test suite). Column “Commit” also

indicates the specific shorthand commit used over which the experiment was performed. We

18https://github.com/google/graphicsfuzz/tree/master/gfauto, accessed 18th of October 2021
19https://github.com/0152la/SpecASTSpecs/commit/0880d1d3ad18f9ae76b56e88fd9649c323b16f88, ac-

cessed 18th of October 2021
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Coverage (Lines (%))

SUT Commit Total lines Common Suite MF++

isl 8073e847 75 574 8476 (11%) 42 399 (56%) 89 (0.12%)
Z3 f60ed2ce9 407 707 79 266 (19%) 102 993 (25%) 2161 (0.53%)
Yices2 3e61b88f 126 203 13 139 (10%) 65 069 (51%) 394 (0.31%)
Boolector 0783aa84 53 284 9848 (18%) 24 259 (45%) 81 (0.15%)
CVC5 861dba0ca 179 801 20 034 (11%) 115 332 (64%) 17 (0.01%)

Table 4.5: Differential coverage between SUT test suite and a MF++ run.

note that there was a slight mismatch, of about 1%, in total lines covered computed by gcovr

between the two executions; this affects the number of common lines covered, but we believe

the approximation is sufficiently accurate.

We observe that there is a small overlap in coverage achieved between the test suite and MF++

across the SUTs. The test suites of all SUTs have a moderate amount of achieved exclusive

coverage, around the 50% mark, with Z3 notably lower, and CVC5 at the higher end (64% suite

exclusive coverage, with a total of 75% total coverage achieved by the test suite itself). On the

other hand, MF++ offers a rather modest relative exclusive coverage, under 1% across all SUTs.

In line with the test suite results, we observe the largest additional relative coverage achieved

over Z3, with just above half a percent, and the lowest over CVC5, with only 0.01%. This is

in-line with how coverage is treated in the two projects—Z3 does not include it in its testing

or building process, while CVC5 seems particularly interested in achieving higher coverage.

We note that the exclusive coverage achieved by MF++ over the provided test suites is minimal.

Even the total coverage achieved by MF++, comprising of the sum of the values in the “Common”

and “MF++” columns is rather on the lower side, hovering around ten to twenty percent. The

main reason for this is that this experiment is an addendum to our main purpose of seeking bugs.

The specifications we have prepared for these SUTs are not meant to maximize coverage, but

rather to focus functional testing on specific parts of a SUT. We believe the test suites are meant

to exercise wider sections of the SUTs, which explains their achieved coverage amount. Given

these circumstances, we believe even this rather minimal coverage is valuable to investigate,

considering the maturity and complexity of these libraries, and that this pilot experiment is

proof that further work on this aspect of our approach is worthwhile. In combination with

the automatic generation, and reduction of tests, a fully automatic infrastructure using our

approach could be implemented to help polish test suites of software libraries, by indicating

lines of code that could potentially be reached, but are not in the existing suites.

In addition, we also present the throughput of the above experiment in Table 4.6. For
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Throughput Timeshare (%)

Library (tests/hour) Generation Compilation Execution

isl 256.46 67.49 30.84 1.66
Z3 161.96 36.62 8.15 55.19
Yices2 711.14 43.87 20.72 35.37
Boolector 605.64 36.54 20.77 42.66
CVC5 88.99 16.22 4.75 78.98

Table 4.6: Throughput of randomized testing using MF++

each SUT, we present the throughput, in terms of tests per hour, and how much of the time

spent in total (namely, 6 hours for Boolector, and 20 hours for the other four SUTs) is split

between generating test cases, compiling them, then executing them. We note that these

numbers do not add up to 100%, likely due to system overhead. Overall, we observe a varied

throughput, ranging from 89 tests per hour, up to 711. This is likely due to the theories used

in the two edge cases: Yices2 was applied over a bit-vector theory, while CVC5 over an integer

theory. Internal implementation differences might also affect total throughput. Generation

does pose a rather substantial overhead, taking at most 67% of total experimental time in the

case of isl. Potential further optimisations could be made to shorten this. Compilation and

execution shares again are potentially heavily affected by the implementations themselves. It is

particularly interesting how, for isl, the experimentation time is heavily affected by generation,

and very little by execution. It does go in line with the expectation that the specifications we

wrote are mainly finding bugs via the fuzzing aspect, rather than the metamorphic testing,

which would explain the pattern we are seeing.

4.5 Related Work

There exist testing techniques specifically designed to work in the domain of SMT solvers.

Semantic Fusion [78] is one such technique, where two equisatisfiable SMT formulas are fused

together, to create a third formula of known satisfiability (due to the equisatisfiability of the

inputs). The technique concatenates the two inputs, defines relations over variable pairs from

distinct inputs, than randomly replaces instances of those variables using the aforementioned

relations. These relations, named fusion functions, are similar to our SUT specification. They

are defined by the authors of the technique based on the sort of the variables, while the choice

of applicable fusion functions, as well as which variable instances to be replaced, is randomised.

Another technique bespoke for the domain of SMT solvers is STORM [51]. This is an
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adaptation of mutation fuzzing [81, 16], a black-box fuzzing technique where some initial input

data is mutated according to some rules. While the simplest mutation fuzzers flip bits in the

input data, ones like STORM interpret this data, then mutate it via some domain knowledge.

In this instance, STORM uses sub-formulas from the input, along with operations defined over

the domain of SMT solvers, in order to mutate the input into a known-to-be-satisfiable test-

case. Thus, an execution of such a test which yields unsat is an instance of a bug. The parallels

with MF++ are, again, the use of defined domain knowledge, in this case the process of mutating

the input into a satisfiable output, and the operations available to apply over the identified

sub-formulas.

Coverage is a metric used alongside testing in various works in the literature. For example, it

is used to quantify how “good” generated tests are [13], or can be used as a feedback metric to

adapt the generation of automated tests. Maximising line coverage is generally a good indicator

of a reasonably solid test suite. However, a more advanced approach would be to identifying

path coverage, which aims to find distinct execution paths in the program. There is some work

attempting to maximise path coverage in SMT solvers [33], but this metric seems to be a fair

way off maturity, as we are not aware of any practical tools computing path coverage in a given

SUT, and it might be impractical due to the sheer scale of possible paths available. Nevertheless,

for core, critical components, having different tests that exercise different execution paths might

be a consideration.

4.6 Summary and Future Directions

In this chapter, we gave a brief presentation of all the libraries that have been tested with

MF++, as part of our evaluation campaign. We delve into how to write effective specifications,

and how we identified similarities to introduce abstract specifications. We present bugs that

our implementation has found, and delve into deeper explanation of a number of particularly

interesting bugs. These results present only a taste of the strength of MF++, due to time

limitations, and the quality of the written specifications, which could be improved upon with

better knowledge of the APIs.

Future Work The search space for SMT solvers is particularly large, and the work done here,

while showing results, is just breaking the ice. Beyond the multiple other logics that would be

available for us to use (each needing a separate, distinct specification), we could experiment with

the large variety of properties and flags available for each solver. Of particular interest might
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be the string and floating point theories, due to their rather sparse use, to our knowledge, in

real-world scenarios. There are also a huge amount of parameters that can be set for each solver

(Z3, for example, provides around 600 parameters, leading to numerous more combinations).

The only blocker here is time, compounded with the need to understand the intricacies of both

the new theories and parameters (as well as parameter combinations), and particularly the

validity of written specification for new theories, or certain combinations of parameter values.

Beyond that, our specifications currently have one main type focus, either a bit-vector or

integer sort type, supported by second-class MRs defined over boolean sort terms. There might

be scope to add some more internal types (such as arrays, or functions), or any other elements

that we might have missed as we were perusing the relevant documentation.

Due to the unified specifications, there could be scope to writing a DSL, which could be used

to write domain-specific specifications, which could then be linked to as many back-end SUTs

for that domain as desired. This could also be used to perform differential coverage—by using

the same base DSL and same generation parameters, MF++ would be able to generate a test

that should be expected to have the same observable execution across SUTs (assuming there

is no non-determinism in the particular domain tested; for example, a non-linear test could be

solvable by one SMT solver, but computed as unknown by another). In addition, this process

could be used in a performance testing manner, if one particular SUT shows vast performance

improvement over another for the same conceptual input test.

The domains of the tested SUTs are rather similar, and can be considered numerical libraries.

However, we expect our approach to work “out of the box” for any domain, minus potential

infrastructure aspects in some libraries that we have not considered, and cannot be handled by

our current infrastructure. However, that should mainly be a problem of engineering. Some of

the considered domains to extend MF++ testing to are graphics libraries (e.g., cairo 20), filesystem

libraries, and compression libraries.

20https://www.cairographics.org/, accessed 1st of November 2021
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MF++

Reducing automatically generated test cases is an important final step in the testing process,

ensuring that tests are high-quality, understandable, and clearly showcase the problematic input

required to trigger a buggy behaviour. While manual reduction is a potential approach, where a

human with some knowledge of the SUT can attempt to remove unneeded code, automatic test

case reduction greatly increases the throughput of inspecting failing tests, and removes much of

the routine simplifications that need to be done, while still maintaining the core of the test which

exposes a potential bug. Another aspect is the property of fuzzers to find duplicate bugs (i.e.,

multiple tests which trigger failures due to the same root cause). Automatic reduction helps a

human more quickly identify such instances of tests triggering the same buggy behaviour.

While generic automated test case methods exist, they do not (and of course, cannot) ensure

that the properties of interest in our generated tests are not reduced. This primarily includes

the metamorphic checks, which ensure that minimised test cases maintain an oracle. Further,

implementing a bespoke approach to reducing automatically generated test cases can be much

more efficient both from the point of view of time taken to reduce tests, as well as amount

of source code being reduced. During the development of MF++, we have kept in mind the

potential eventual need of reducing our tests, and ensured that generated tests have a systematic

structure, to make them more amenable to a custom reduction approach.

We evaluate the utility of our reducer by performing a campaign of enhancing test suites of

SUTs targeted during the functional testing process. By combining randomised metamorphic

testing with automated test-case reduction, we can say this approach represents a novel method

of coverage-guided test generation. Our initial coverage results (Section 4.4.2) shows that there

is some potential for finding additional coverage via MF++. In addition to providing additional

coverage, we note that, by construction, these tests come with an in-built oracle, further check-

ing correctness and exercising the SUT in a meaningful way. An automatic reduction process

will then be able to greatly reduce the manual effort required to put these tests into a human-
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friendly format, with a low amount of further polishing making them of high enough quality to

be included in test suites of mature libraries.

5.1 Motivation

When dealing with fuzz testing, or any sort of randomised testing, the core focus is maximising

the efficacy of generated tests, in terms of which parts of the SUTs the tests exercise and how

they do so. The presentation of the test does not matter at generation stage—the test will

usually be consumed automatically, alongside thousands of other tests, and only once a test

triggers some observable failure state is the test meant to be inspected further. As such, the

readability of each individual test is an afterthought compared to the utility.

However, at some point, human intervention is required to inspect automatically generated

tests, primarily to identify the cause within a test which triggers a failure state. We note that

this failure might either be due to an actual bug in the SUT, or a malformed test case (due to an

invalid MR, or a misuse of the SUT’s API, for instance). In the case of MF++ in particular and

the domains chosen to test (namely that of SMT solvers and Presburger arithmetic), there is no

immediate feedback when MF++ generates a semantically invalid or not well defined input. We

receive feedback from the SUT at the time when we explicitly query it, which will not indicate

that we perform some operations over formulas of incompatible sorts, or which formulas within

our API invocation map to those specific operands. Compounded by the fact that user-supplied

information lies at the core of MF++, via provided specifications, such errors are quite likely. A

reducer would thus hone in quickly on such instances where a specific MR is the sole cause of

a failing test case.

Finally, the tests we generate are large by construction, as larger test cases are more likely

to trigger bugs (discussed in Section 3.3 of the Csmith paper [80]). Generally, a bug will be

triggered by a few select sequences of operations from within that large block of code. While

removing the benign source code is mostly mechanic, it is quite laborious, and might even be

tricky at times to follow data flow, due to the fact that the tests are not generated for human

consumption. Thus, automatic reduction helps with removing the routine reduction required by

humans, which should lower the overall time required to spend on a test to make it presentable.
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5.2 Reducing MF++ tests

As mentioned, reduction was a feature that was desired to be implemented in the testing

pipeline for MF++ tests. While it was not a core feature that directly shaped the design choices

within MF++, certain decisions were take to ensure the design of MF++ was amenable to eventual

reduction. We kept an abstract view of a generated test case in mind (by mainly having

constructs allowing us to identify where expansions to the input template file have been inserted,

as discussed in Section 3.4.3).

Thus, we defined four reduction opportunities which can be applied to our generated tests,

by essentially identifying expanded code, and removing it entirely or in part. This approach

improves the performance of the reduction process by ensuring that only reducible code is

attempted to be removed by the reducer, and that if a reduction can be performed, it will leave

the test case in a well-defined format. On the other hand, it does mean that the test might

be able to be reduced further, but if we consider the user-provided template file as a ground

truth, we believe that the template should suffice as potentially the smallest potential version

that a given test case could be reduced to, which would be the case if there is an error within

the template file itself. We expect that the delta between the template file and a reduced test

case by MF++R to be sufficiently small to allow an expert in the SUT to identify where the fault

lies.

5.2.1 Opportunites for Reducing MF++ Tests

We shall now discuss each of the four reduction opportunities implemented in order. We dis-

tinguish three reduction opportunities at the level of metamorphic variants—Variant Elimi-

nation, Sequence Shortening, and Recursion Folding—with one applicable primarily to

the fuzzed input variables—Fuzzing Reduction. We further specify that the order in which

we shall discuss these recursion opportunities is important, as we shall start with opportunities

which have the most effect in terms of reduction, and will potentially subsume specific instances

of subsequent opportunities (i.e., a variant elimination is expected to remove multiple sequence

shortening and recursion folding opportunities, but not the other way around).

First, we provide an abstract overview of what a generated test case looks like, and where

each of the reduction opportunities apply. This diagram is presented in Figure 5.1. From the

template file provided by the user, we distinguish three main sections in the eventual generated

test case: the recursive functions generated as part of metamorphic variant generation, fuzzed

variables to be used as input for creating the metamorphic variants, and the metamorphic
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Figure 5.1: Abstract view of a MF++ generated test case
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variants themselves. We can further identify the following disjoint (i.e., there is no dataflow

between subsections within the same top-level section) subsections in our top-level splits:

• For the fuzzed input variables, we can identify sections of code which pertain to a specific

variable (e.g., Input 1);

• For the metamorphic variants section, we can identify code pertaining to a particular

variant (e.g., Variant 1); further, this code can be split into sections pertaining to one

concretization of a high-level operation (e.g., Operation 1 1), as discussed in Section 3.2;

• Finally, the recursive functions sections contains sections pertaining to a concretization of

one high-level operation of one specific variant; we can further identify an internal directed

acyclic graph, which computes a result to be used by one such concretization; an example

in our diagram is functions Base func 1 1 through Recursive func 1 4 computing a

value to be used by Operation 1 1.

We make a small note regarding the “User provided” sections. These are part of the template

file which might contain initialisation or cleanup code required to correctly call the underlying

API. The reducer does not touch upon these sections at all. Furthermore, the code visible

to the reducer is tied into syntax produced by the generator, as well as semantics built in the

reducer regarding how to correctly interpret and process the code.

We shall now discuss each reduction opportunity in turn, referencing this abstract view of

our generated test cases:

Variant Elimination This reduction pass refers to individual metamorphic variants, indicated

as Variant 1 through Variant n on our diagram. The tests we generate include multiple

such metamorphic variants, and we check in a pairwise fashion whether the expected

properties hold. Thus, it is highly likely that one of these pair-wise checks fails, and the

two metamorphic variants which are checked against one another expose a bug alongside

their generation trace. Thus, a reduction opportunity can involve removing an entire

variant, with respective checks.

Sequence Shortening One individual variants consists of a sequence of concretized high-level

operations. One reduction opportunity is removing high-level operations in the sequence

across all metamorphic variants. In our diagram, this would mean removing represented

Operation 1 n functions, and other corresponding operations across the other variants

(not illustrated). This reduction is possible due to the fact that our high-level opera-

tions are designed to work on one main API type (see Section 3.4.4), meaning that we
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can remove any operation within the sequence and still have a well-defined sequence of

operations, with valid inputs. Further, the reduction needs to be performed across all

metamorphic variants, in order to keep the values of the metamorphic variants in sync

(although it might be possible to distinguish between identity operations and modifying

operations to further polish the reduction process).

Recursion Folding When selecting a concretization for a high-level operation, called via the

aforementioned placeholder function (Paragraph 3.3.3) within an MR, the generator

can choose either between a base function, or a recursion function. We can reduce such a

decision to a choice of a base function. Again referring to our example, this would entail

reducing, for example, Recursive func 1 3 to a base function, which does not require

inputs provided to it. We note how this means that Base func 1 1 and Base func 1 2

would then become dead code—this shall be discussed in Section 5.2.3.

Fuzzing Reduction Simplifying fuzzed code has been done before, primarily via delta reduc-

tion [63]. For our reducer, we shall consider other options, in order to maintain the validity

of the fuzzed code sequences without needing to check this via compilation. One property

of the fuzzed code sequences in our tests is that they are directed acyclic graphs. Thus,

we can always remove later instructions within the fuzzed code block, which we know will

produce objects which will not be used later on, as each fuzzed code block is disjoint.

One other approach to reduction, which goes back to interfacing with user-provided data,

is to have the user provide a base value for a given exposed type the fuzzer is aware of.

The reducer can then attempt to change the values of objects of such types to this base

value. For instance, for a type implementing an arithmetic set, the base value could be

the empty set.

5.2.2 Reduction Toy Example

To better illustrate the reduction process, and available reduction opportunities, let’s consider

the example in Listing 5.1. The first step is attempting to perform variant elimination. We dis-

tinguish three metamorphic variables (line 25 to 35), named v1, v2, and v3. Variant elimination

means attempting to remove all instructions writing to a metamorphic variant. Opportunities

to apply variant elimination are variants v2 and v3; we ignore v1 as it is a metamorphic refer-

ence variable which we use to perform the metamorphic checks (lines 32 and 35). A successful

reduction of v2 would eliminate lines 29 to 32. Crucially, we note that we eliminate the check
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Listing 5.1: Example toy test potentially generated by MF++, to be reduced by MF++R

1 int add_comm_2_1(int e1 , int e2) { return e2 + e1; }

2
3 int neg_by_sub_2_4(int e1) { return 0 - e1; }

4 int iden_by_double_neg_2_3(int e1) { return neg_by_sub_2_4(-e1); }

5 int mul_comm_2_2(int e1 , int e2) { return iden_by_double_neg_2_3(e2) * e1; }

6
7 int add_by_sub_2_6(int e1 , int e2) { return e1 - (-e2); }

8 int mul_by_add_2_5(int e1 , int e2) {

9 int p = 0;

10 int sgn = e2 > 0 ? +1 : -1;

11 e2 = abs(e2);

12 while (e2 != 0) { p = add_by_sub(p, e1); e2 -= 1; }

13 return p * sgn;

14 }

15
16 void main() {

17 int f1 = 5;

18 int f2 = f1 * 2;

19 int f3 = f1 + f2;

20 int i1 = f3;

21
22 int f4 = 12;

23 int i2 = f4;

24
25 int v1 = i1 + i2;

26 v1 = v1 * i2;

27 v1 = v1 * i2;

28
29 int v2 = add_comm_2_1(i1 , i2);

30 v2 = mul_comm_2_2(v2 , i2);

31 v2 = mul_by_add_2_5(v2 , i2);

32 assert(v1 == v2);

33
34 int v3 = [..];

35 assert(v1 == v3);

36 }

performed at line 32. This is safe to do, as we have another check at line 35. However, to

ensure an oracle is preserved, we then do not attempt to eliminate v3. It might be possible to

eliminate v3 and include a better oracle, but we leave this to further manual reduction.

The next reduction type to attempt is sequence shortening. In this example, we observe there

is a sequence of three operations: addition, multiplication, and multiplication. This step

attempts to remove one of these operations across variants. Suppose we want to attempt to

reduce the first multiplication, the second operation in the sequence. Concretely, this means

lines 26 and 30. We note that this is feasible, as the metamorphic variants remain in-scope for

the third operation in the sequence. However, we do not attempt to remove the first operation

in the sequence, as that has the variable declaration built-in.

Following is recursion folding. If we follow the chain of recursion for the second operation for
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v2 (line 30), named mul comm 2 2, we notice it expands further, to iden by double neg 2 3,

which calls neg by sub 2 4. This chain of recursion provides two opportunities for reduction.

Attempting to reduce the identity implementation, we must choose MRs defined within the

spec which do not have further recursion. We expect such a potential implementation of

identity to take one parameter as input, and directly return it, without further calls. Thus,

the call iden by double neg 2 3 can be replaced with just e2.

Finally, fuzzing reduction is the last reduction step in our process. We identify two input

variables in the example program, i1 and i2. Let’s consider i1, which is fuzzed after a sequence

of 3 operations (lines 17 to 20). Suppose we provide a base reduction value for the int type

of 0. What the reducer does is attempt to assign all the int objects in the fuzzing sequence to

that base value. In our case, it would attempt to do so over variables f1 through f3.

5.2.3 Reduction and Dead Code

We now discuss the relation between generated code sections, and how they relate to the

reduction process. As the reader might have observed from the discussion above, code in

one subsection might have been generated to support code in another. For example, a con-

cretization of a high-level operation (Operation 1 1) exists only to be called as part of the

generation process of Variant 1. Subsequently, Base func 1 2 exists only because it is called

by Recursive func 1 3, which again is dependent on Operation 1 1 existing. Therefore, per-

forming a reduction somewhere along this chain of dependencies means there might be dead

code left in the reduced test case. For instance, in the example in Listing 5.1, eliminating v2

means the functions used to generate v2 (lines 1 to 14) become unreachable (i.e., dead code).

If variant elimination over v2 is successful, we would like to remove these lines, to ensure they

are not identified as future reduction opportunities, and to eliminate as much unneeded code

as possible.

We mentioned before that the order in which the reduction opportunities are presented is

important based on their effect on the test case. What we mean is that a reduction opportunity

with a higher effect can make reductions with a lesser affect non-applicable, and transform ini-

tially live code into dead code by the reductions they perform. The reason is that a high-effect

reduction will affect code with dependencies targeted by a lower-effect reduction. By remov-

ing the original dependency, the code targeted by the lower-effect one has no more meaning.

Further, by the directed nature of this dependency, it is impossible for a lesser-effect reduc-

tion to make a higher-effect reduction non-applicable (e.g., removing a recursive function call
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generated to concretize a high-level operation does not affect whether the whole metamorphic

variant can be removed or not). Thus, we can identify another property of our reduction

process: we can perform the reduction in order from highest-effect to lowest-effect, and the

reduction process should yield the minimal possible example producible. Furthermore, once

a reduction opportunity has been found to be successful (i.e., the property we are aiming to

reduce for is maintained after the reduction has been applied), we do not need to visit prior

high-effect reduction opportunities that have been attempted; their applicability should not

have changed.

5.3 MF++R

We have implemented our ideas in a separate tool, named MF++R, which takes as input a test

produced by MF++, and a script to determine whether intermediate tests between reduction

applications are valid or invalid with respect to the reduction process.

We decided early to have MF++R as a complete separate tool from MF++—while MF++R is

expected to work on test cases produced by MF++, it does so by working at the level of source

code, rather then the in-memory representation created during the generation process by MF++.

There are two main advantages of this approach. First, it keeps the two codebases separate, with

separate issues (i.e., a bug in one of the tools is clearly from that tool, and not from somewhere

along the fairly complex generation into reduction process). Second, we can modify the input

of MF++R on demand, without requiring to run MF++ to produce the in-memory representation.

This point did prove rather useful as we were using MF++R, and wanted to make manual changes

to the input files, while keeping the expected format correct. Of course, the main disadvantage

is that we do require to re-parse information from the source code, which might be readily

available in-memory during the final stages of MF++ generation. However, this point can be

balanced out by the fact that gathering this information again in MF++R allows us to organise

it in a manner more suited for reduction, than perhaps how MF++ organises data internally.

The MF++R tool is implemented using clang libtooling, similar to MF++. A simplified view

of its internal workflow can be seen in Figure 5.2. The input program is taken and we first

perform a validity check over it, to ensure the program correctly contains something of interest

to be reduced against. This is done via an interestingness test. Then, we parse the source

code via opportunitiesGatherer to identify all reduction opportunities. This means matching

concrete code to the representation seen in Figure 5.1, and organising it internally based on what

reduction type we can apply over that code. Next, we iterate over these identified reduction
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Figure 5.2: Internal workflow of MF++R

opportunities. One reductionStep comprises of one application of a reduction opportunity,

which generally means removing or replacing the respective code sequence in some fashion. The

reduced test case is then written to disk as temporary file, compiled, and the interestingness test

is then used again to validate our reduced test. If the program is valid (i.e., the interestingness

test finds that the property of interest, which might be an assertion failure for instance, holds),

represented by the green tick mark, then we proceed back in the reductionEngine loop,

starting with the opportunitiesGatherer again. If the reduced test is not interesting, then

we proceed to attempt another reductionStep. Once all reduction opportunities have been

exhausted, it means there is no more valid reduction to perform, at which point we emit the

reduced test case to disk and complete the reduction process.

Interestingness test The purpose of this test is to decide whether a given test case is valid,

with respect to some property of interest. This can range from various properties such as a

particular assert being triggered by the test, the output of the test containing some particular

substring of interest, a specific return code has been observed, or any other property that might

be deemed of interest. In addition, to simplify the implementation of MF++R, the interestingness

test is expected to also compile and execute the code, requiring primarily only the path to the
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reduced test case to check.

In MF++R, the interestingness test is provided in Python format, and called from within MF++R.

In addition to the path to the test case to validate, we also pass in a compilation script and a

CMake configuration file to help with compilation. This ensures that all requirements are met

for correctly executing against the desired SUT.

opportunitiesGatherer This step identifies the code over which our reductions can be per-

formed, and logs all required information to actually perform each such reduction. In order

to do this, there is some reference to information used to generate the given test cases. The

following information is recorded:

• For Variant Elimination, we log instructions which write to variables with a name known

to be generated by MF++ (by using the same specific formula used to generated these

names in MF++);

• For Sequence Shortening, we can use the indices of the above information to identify the

length of the sequence and which indices of the sequence to remove;

• For Recursion Folding, the process is slightly more involved. We first log all MRs declared

in the corresponding SUT specification (which is available to clang due to including the

header containing the declarations), distinguishing base MRs, namely those that do not

have further high-level operation calls. For each instruction which writes to a variant,

identified earlier, we traverse the corresponding function body, and identify function calls

which are MRs. Any such function must have been generated due to a recursion point in

the user-provided MR. We log each such function call, and the function within which it

was found;

• For Fuzzing Reduction, we emit two dummy functions with empty body definitions. Both

dummy functions take one string parameter, representing the name of the fuzzed variable,

and is mostly used to distinguish pairs of dummy functions. These are used as delimiters

of regions which fuzz objects. We log all instructions within the two regions, distinguished

by the variable which is fuzzed within the region.

We note that we must perform this step after a successful reduction, as the internal pointers

used to refer to clang objects are not valid across different file instances. As we must know

where in the source code each specific component lies to perform the reduction (as we do so

via clang’s Rewriter), these pointers must be refreshed.
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reductionStep Having gathered all the information above, we can now attempt to apply each

reduction opportunity in turn. For each reduction opportunity, we modify the text of the test

case appropriately, based on which type it is. We modify the code in memory using a Rewriter

object, then emit it to disk as a temporary file, ready to be validated.

As reduction opportunities themselves refer to distinct parts of the code within the same

reduction type, we can attempt to apply multiple reductions of the same type at once. Our

algorithm takes all available reduction opportunities for a given type, attempts to apply half

of them at once. If the reduction is not validated, then we attempt the other half. If that fails

again, we attempt a quarter, and so forth, until we attempt a single opportunity at once. Once

all opportunities of one type have been exhausted, we attempt opportunities of the next type

of lesser effect, and the cycle repeats.

If a validation succeeds, we mark the reduction as successful, and begin the process again

from the opportunitiesGatherer, using the newly reduced test case as input. If validation

fails, and all reduction types have been exhausted, we note the reduction complete, and output

the final, reduced test case.

5.4 Reduction with Respect to Coverage

With an automated test case reducer at our disposal, and having done a preliminary investiga-

tion of whether MF++ produced tests could be used to obtain additional coverage (Section 4.4.2),

we decided to investigate this approach further. The plan is to use MF++ to obtain what addi-

tional coverage could be reached by our infrastructure (an exploratory phase), manually inject a

fail state in the SUT to find instances of test cases which are able to reach the desired coverage

(a coverage test gathering phase), perform reduction with respect to this injected test case, and

obtain a small test case, exposing the new coverage, and including an oracle with a meaningful

check. By manually injecting a failure state, we can reuse our bug-finding infrastructure, by

pretending that a test case which triggers desired coverage is failing. While the injected fail

state is guaranteed to be reachable (as it was originally randomly covered by an exploratory

execution of MF++), there are two factors to consider whether the fail state can be reached again

during the coverage test gathering phase: (a) the chance of randomly generating another test

to reach the fail state is directly proportional to the amount of times the line of interest was

covered during the exploratory phase, and (b) it might be the case that manually injecting

multiple fail states might preclude certain fail states from being reachable, as execution would

require executing code which now has an injected fail state. However, in our experience, we were
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able to gather tests for all injected fail states, therefore we can assume coverage is reproducible

when using the same version of MF++, and the SUT.

There are a few observations to be made about this process. First, the additional achieved

coverage might be relatively small compared to the entire SUT codebase, which can easily span

a few hundred lines. We believe additional coverage might be of interest, if even to provide

an example of how it can be achieved, and to consider why the existing test suite does not

provide that coverage. And finding additional coverage in large SUTs is not easy; not only is

following the code hard, due to its size, identifying coverage of interest for a SUT does require

some knowledge or intuition about the internal functionality of that SUT. The second point,

introducing a failing state in the SUT, further requires knowledge of the implementation of the

specific SUT. For instance, we found that Z3 introduced its own set of assert-like functions,

which would override the usual assert functions offered by C. In Yices2 and isl, the stdbool

header was not used by default, so we decided to use assert(0) as a failure point, while for

CVC5, there is an Assert function. The potential explanation is that “assert” in these tools

might be expected to mean the SMT assert, rather than the code-level check we expect. Finally,

Boolector allows the usual assert(false) we prefer.

Finally, while the reduced test case is minimised, it generally can be manually reduced further.

The primary impediment to better MF++R reduction is that it works at the structure of the test

case, with some semantics derived from the provided spec. Further shrinking can be performed

by using specific SUT knowledge (which, in terms of automatic reduction, would include some

way of defining, interpreting, and applying SUT semantics during the reduction process). This

might involve replacing the existing oracle with something more specific to the reduced test

case, making the test case easier to read for a human. Of course, user-provided text in the

template file, which is not visible to the reducer, can likely also be manually reduced. Thus, a

manual reduction pass to further polish the automated test case is usually recommended.

5.4.1 Augmenting Library Test Suites

We wanted to put the above idea into practical application. We already had some preliminary

results of what kind of coverage we could expect MF++ to obtain for us across the five SUTs.

We went ahead and contacted the maintainers of four of the five SUTs to discuss potentially

including test cases exclusively for coverage in their existing test suites. We did not contact the

maintainers of Boolector, as we have been made aware that it would shortly be succeeded by

another tool, namely Bitwuzla [59]. We were advised that CVC5 does use coverage as a metric
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to guide the generation of their test suite (which might explain the particularly low additional

coverage achieved by MF++), and such tests might have to integrate carefully with their crafted

test suite. Compounded by the fact that the additional coverage was already low, we decided

to focus on the remaining SUTs instead.

The maintainers of Yices2 and Z3 were particularly keen on receiving tests focusing on

testing the API of their respective tools (which perfectly falls in line with the fact that MF++

uses the API of these SUTs to test them):

We are absolutely interested in integrating your tests in Yices2. [..] API tests

would be especially useful. [..] If you could focus on API and not convert [to]

SMT2 that would be more interesting to us. (Bruno Duterte (Yices2 developer))

Tests added to the examples/c++ directory [Author note: this is the folder where

Z3 API tests are located] could be very useful and welcome. (Nikolaj Bjorner (Z3

developer))

The developer of isl was also interested in tests which focus on coverage, in a more general

fashion. The first question was how these tests would be supported in each SUT. For Yices2,

the developers gracefully implemented a special category of API tests, where we could add our

own tests in, and would interface with their testing process. In the case of Z3, this endeavour

sparked a discussion about the used continuous integration environment, as well as the lack

of coverage information produced by Z3 itself (which would act as a good baseline to validate

additional coverage). The end result was that we have helped implement a infrastructure to

interface with C++ API tests1, and helped add a continuous integration pass which gathers

the coverage from the Z3 test suite2. isl proved to be a different type of challenge, and the

infrastructure integration will be discussed alongside details of the coverage augmentation test

integrated.

In the end, as a proof of concept, our work led to the addition of 21 new coverage tests: 10 tests

for Z3, 10 tests for Yices2, and one test for isl (due to isl’s primary interface being written

in C and MF++ producing C++ tests, we translated one test as a proof of concept). We attempted

to choose coverage in an interesting manner, focusing on internal routines in the solvers, and

leaving things like user-facing API functions to be organically covered (e.g., we would try to

avoid reducing with respect to coverage achieved in the definition of a multiplication function

in the C++ API). However, we did not very deeply investigate whether the selected coverage is

1https://github.com/Z3Prover/z3test/pull/27, accessed 21st of October 2021
2https://github.com/Z3Prover/z3/pull/5451, accessed 21st of October 2021
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of particular interest in the algorithm, as we do not have very deep knowledge of all algorithms

used internally in these tools. For a surface level presentation of what we focused our coverage

tests over:

• In Z3: non-linear arithmetic satisfiability, Poly DD package, emonics, non-linear arith-

metic basic and order lemmas, and polynomial handling

• In Yices2: model evaluation, term and rewrite handling, mcsat (Yices2’s non-linear

arithmetic solver) preprocessor, arithmetic operations using black-red trees, rational num-

ber handling, nra plugin, and uf plugin

• In isl: the coalesce routine.

We do not discuss more detail, as many of these features are specific to SMT solving, and

their explanations are beyond the scope of this work. These descriptions were extracted from

comments of file where coverage was achieved.

Integrating Coverage Tests in SUT Test Suites

We discuss in more depth the process of integrating our coverage tests in the test suites of the

three chosen SUTs, as well as some particularities and observations during this process.

As mentioned above, for Z3 and Yices2, we implemented the additional tests as a separate

category of tests in their respective test suites. Then, the test suites were amended to include

testing this additional category. Thus, adding a new test would involve simply moving the new

test file in the corresponding directory (C++ format for Z3, and C format for Yices2). With

this setup, adding new tests in the test suites of these two SUTs involved performing GitHub

pull requests.

During the process of adding coverage tests to Z3, a few events of note happened. First, when

submitting our first coverage test, during the validation process, we noted distinct executions

on two different systems. On one machine, the test would execute successfully within a second,

while on another, it would fail with an internal Z3 error within roughly 10 seconds. This

behaviour was suspect, but initial debugging found no cause for the discrepancy. We submitted

the test as a proof of concept, and the maintainers of Z3 mentioned that a memory leak was

exposed by our test3. Further investigation was able to correctly pinpoint the cause of the bug,

which was a heap-use-after-free as reported by asan. Further, the discrepancy was due to

the use of different compilers. When compiling with g++, the issue would not be manifested in

3https://github.com/Z3Prover/z3/pull/5442#issuecomment-889503465, accessed 24th of October 2021
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the execution, but clang++ would expose it. We did not further investigate why this discrepancy

happens internally, but this showed us that applying asan to our tests can be fruitful in finding

deeper bugs. A subsequent coverage test was able to uncover a second bug, due to the same

cause as the first, but coming from a different part of the code.

A second test of note was one that would compile and execute within a few seconds when Z3

was built in production mode, versus roughly 16 minutes with Z3 in debug mode. Production

mode was used to enhance the reduction process (as hitting a failure point would instantly

abort in production mode, versus waiting for user input in debug mode, before timing out),

but coverage gathering is done in debug mode. We believe this might be an instance of a

performance bug, due to the great difference between the two executions, with no change to

the input test case. When mentioning the discrepancy to the Z3 maintainers, we were advised

that this is normal, and we should just increase the timeout appropriately.

Further, as a consequence of implementing a coverage reporting system for Z3 (done in

addition to adding our class of coverage tests to the Z3 test process), the developers of Z3 were

able to identify parts of the code that had no entry points, and could be safely removed4.

Adding coverage tests for isl proved a challenge, and we decided we would only submit one

proof of concept test, then focus on the other SUTs. There were two main difficulties we faced

attempting to integrate our test in the isl test suite. First, while we were using a C++ layer

to isl, it was not an official one. For this particular proof of concept, we performed a manual

translation from our C++ API to the native C API of isl, but that was mainly feasible due

to the small size of the test required to trigger the coverage; we might not be so lucky with

further tests. Second, the isl test suite is self contained and very carefully crafted. In our

particular test, we were obtaining additional coverage due to the coalesce operation functioning

over some input with derived rational dimensions. While our example was fairly small, the same

coverage could be achieved by explicitly defining rational dimensions for the set, which we were

unaware of due to unfamiliarity with internal isl functionality. In the end, the developer of isl

integrated such a test, by expanding a list of input strings in the appropriate section of the test

script. This followed a rather long back and forth, of us trying to understand and integrate our

test. This whole process, while eventually successful, as the additional coverage was eventually

integrated in the test suite, was fairly time consuming. If we had a better understanding of isl

itself, or we could suggest additional coverage improvements to the developers, with a practical

example to trigger it, that might be better for adding coverage to isl via MF++.

4https://github.com/Z3Prover/z3/pull/5483#issuecomment-899914061, accessed 24th of October 2021
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Reduction Size (bytes)

Factor (%) Time (s) Attempts Before After

Min 10 13 8 2118 1899
Max 97 1110 789 358 044 10 438
Median 69 789 85 15 470 4521
Mean 61 257 151 39 783 4751

Table 5.1: Results of executing 18 reductions with MF++R

5.4.2 Evaluating MF++R

During the process of submitting these 21 coverage tests, we also practically evaluated MF++R.

As a general performance evaluation of MF++R, we look at the data in Table 5.1. This has

been generated by applying MF++R over 18 of our 21 total tests (we were unable to replicate the

exact infrastructure setup for MF++R and our SUTs for the remaining 3 tests). The reduction

factor represents the percent by which the test has been reduced in terms of bytes (i.e., a

factor of 10% means that the reduced test case comprises of 90% of the bytes of the input test

case), while the reduction attempts is the total number of attempted reductions (both failed

and successful). We observe a respectable reduction factor, around the 61% on average, with a

median of 69%. This shows our reductions are effective at removing the bulk of the code. As

we expect, the bug itself is concentrated in a few specific places, and the bulk of generated code

is removable. The reduction time is acceptable, with an average of 257 seconds, but seemingly

dominated by a few very quickly performed reductions. The median time of 789 seconds still

keeps the reduction in a rather reasonable frame, but potentially more representative overall.

However, considering the number of attempted reductions, and the fact that for each such

reduction we must write the test to disk, compile, then execute, the reduction time is fairly

reasonable — an average of under 2 seconds per reduction attempt.

Additionally, we also note that during our experience with applying MF++R over a number of

different tests across our three chosen SUTs, we observed that certain reduction types would be

more easily applicable to certain SUTs. For example, it seemed that fuzzing reduction was more

successfully applied to Z3 than to isl. This might be due, in part, to what the specifications for

each SUT provide to the fuzzer. It also might be due that certain base default values chosen for

specific types are better than others. However, we have not experimented with providing the

fuzzer choices to reduce for each API type. This is mainly due to the current design performing

an exhaustive reduction, and implementing choices would greatly increase the search space of

the reduction.
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Listing 5.2: Example of test case where the metamorphic check was reduced to a manually
crafted check

1 term_t power_term = yices_power(yices_square(x), 2);

2 yices_assert_formula(ctx , yices_arith_leq_atom(power_term , x));

3 assert(yices_check_context(ctx , NULL) == STATUS_SAT);

5.5 Caveats

In this section, we shall highlight some specific observations made during the application of

MF++R. These observations are more particularities that should be taken into consideration,

rather than issues that affect the applicability of our method.

5.5.1 Coverage Arising from Fuzzing

By design, the tests generated by MF++ come equipped with their individual inbuilt oracle,

namely the metamorphic checks applied across metamorphic variants, in order to ensure that

the tests execute correctly. However, when reducing with respect to additionally achieved

coverage, it might be the case that these checks are not necessary in order to attain this

additional coverage. Indeed, as we make use of fuzzing across the generated test cases, it

might be the case that we create an object with an interesting property, which triggers certain

procedures in the system under test. If the desired additional coverage happens to be contained

within such a procedure, the reducer can remove the built-in oracle, as it is not necessary.

While the main goal of our tests is to obtain additional coverage, we must also ensure that

the tests actually perform some meaningful check, in order to expose a potential fault in the

newly covered code. As such, we have augmented MF++R with an option to ensure that the

oracles are not removed. We can easily identify which instructions comprise the oracles, as

they are contained within the checks namespace of the metalib specification, and they are

part of the concrete sequence of each non-basic variant. We ensure that we specifically exclude

logging calls to functions within the checks namespace during the gathering process when the

--keep-checks option is passed to MF++R.

However, even with this consideration, the main goal is to augment the test suite with exam-

ples that are easily accessible to the developers of the respective libraries. As such, while the

test performs some meaningful action, this action is not necessary to contain the metamorphic

oracle check, especially when the test might be simple enough to understand what it is doing at

a glance. Consider Listing 5.2. This Yices2 example has been fully reduced (with additional

manual reduction) until two APIs calls were deemed sufficient in order to achieved the targeted
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coverage. In this particular situation, the usual check, requiring two metamorphic variables,

would be beyond the scope of what is required to ensure the coverage is achieved. Therefore,

we manually insert a hand-crafted check based on the contents of the test, to ensure the code

exercised by the test remains correct. In this case, we check that the result of raising a free

variable within the integer domain to the fourth power is greater than the value of the variable

itself, which should hold.

5.5.2 Validity of Coverage

Beyond the question of whether the coverage we deem interesting to target is indeed important

for someone with very deep knowledge of the internal algorithms and workings of our SUTs,

there is also a question of how correct we compute coverage practically (especially when there

is no baseline to compare against). This posed issues when attempting to generate tests for

Z3 in particular. Initially, Z3 did not provide any coverage report in its nightly continuous

integration builds. While computing what additional coverage is achieved by a test, we would

update to the latest available version of the tool to validate that coverage achieved is maintained

after reduction. At times, we would not find the coverage we would be looking for still being

present. Further, as we would gather coverage via MF++ multiple times, we would update the

tool in-between these runs to ensure that we would find the most up-to-date coverage possible.

We observed that coverage was very volatile in Z3. Combined with a high rate of daily updates

to the project, this meant that we could not be certain coverage within our tests would be

maintained even in the short term. In the end, we decided to fix a specific commit to compute

coverage against, and stop “chasing master”, due to this volatility. The decision was made

based on the argument that if those tests were achieving this additional coverage at some point

in time, they must be doing something interesting compared to the provided test suite, meaning

they are useful as regression tests.

One other aspect to briefly mention is the difficulty of using existing tools to gather C and C++

coverage (also briefly discussed in Section 4.4.2). While the tools we use are fairly mature, the

methods by which they work are rather opaque, and hard to ascertain whether they function

correctly, or in line with expectations. Of particular note is the rigid directory structure, with

files expected to be in certain places relative with one another, that might contradict how

certain SUTs implement their build systems.
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Figure 5.3: Example fuzzing process of a set in our example set library

5.5.3 Additional Potential Reduction Types

While our current four reduction passes are sufficient for removing large, unneeded parts of a

given test case, there still are some obvious directions to improve the reduction process. These

mainly stem from our experience of further manually reducing a test case, to make it more

presentable and suited to be integrated in a real-world test suite.

The fuzzing reduction is in a fairly incipient state. Our experience shows that its utility

greatly varies across tests and libraries. Furthermore, it seems to either be able to minimise

large swathes of the code, or none at all, making it not that balanced. There is also a discussion

to be had regarding performance, as fuzzing reductions are by far the most numerous reduction

opportunities, but the wall-time duration of our reducer is low enough for this to not prove too

much an issue at this stage. Nevertheless, it is worth keeping in mind, as the reduction process

might grow in the future.

The most obvious direction to take the fuzzing reduction is to explicitly build the directed
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acyclic graph (DAG) that we know each fuzzing sequence can be abstracted to, due to the way

the fuzzing process itself works. This could be considered a completely distinct step than the

current implementation of the fuzzing reduction, which only affects the data existing in the

nodes, but not the structure of this DAG. Let’s refer back to the example from Figure 3.2,

reproduced in Figure 5.3 . We expect an explicit DAG would look similar to this figure, which

is more or less a control-flow graph (CFG) of the specific sequence of code we are interested in,

with some nodes existing outside the sequence, but only to be read from. One first improvement

to be made is removing dead nodes. Suppose that our existing fuzzing reduction step would

simplify the add node to be the base representation of a set, the empty set. Then, if the input

node with value 6 is a node part of the code sequence, it can be safely removed. This does not

happen automatically, as it is rather trivial, albeit time-consuming to do manually, but also

straightforward once the analysis to produce the DAG has been implemented.

One other improvement is moving subtrees further up the graph. Consider the node union

in our example. It takes two set variables as input, both produced by two subtrees. We can

take any of these two subtrees and replace the union node with the respective base node of the

subtree (in this case, either lt set cond or intersect). The idea behind this reduction is that

any subtree within the tree can be used to replace any node further up, as long as the types

are compatible, and make potentially large parts of the initial source code be unreachable, and

thus candidates for deletion. Of course, this operation would be much more expensive than

our current reductions, as for each node, we must identify all subnodes with a compatible type,

and then attempt to replace them in turn. However, in absolute terms, the depth of a fuzzing

sequence is generally not more than 10 nodes, meaning even a high complexity should not mean

too high an increase in total wall-clock run-time.

Similar to the idea presented above, we can implement the same reduction opportunity at

the level of MR recursion. If we consider a concretization of a high-level operation as the base

of the tree, with edges linking to further concretizations requested in the body of the applied

MR, then we can select a compatible concretization from within the respective subtree and

move it up the tree, removing all intermediate recursive calls. We have noted instances where,

using our Recursion Folding reduction, we would observe a single chain of recursive calls,

with all the other high-level operation calls being reduced to base functions.

While this reduction is effective at potentially removing large parts of the recursive subtrees,

it does affect the semantics of the program. A restriction that can be placed upon this approach

is to ensure that the replaced base node and the chosen subtree node perform the same high-level

operation.
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5.5.4 Controlling Generation

Considering the reducer and the generator could be considered as one (it was an engineering

choice to have two separate tools), a question arises on whether we could influence the generation

process via feedback from the reducer. More specifically, suppose that we apply some statistical

analysis over a given set of generated tests which identify bugs in the SUT. Could we use any

of this information to guide the generation in a way to make it more likely to generate buggy

code?

We believe that the answer is no; it is important during test generation to explore as much

of the SUT space as possible. In this particular instance of employing feedback from already

generated tests known to expose bugs, we could consider finding additional tests which expose

the same issues useful — the root cause is unknown, and multiple ways of triggering the same

bug might be valuable during the bug fixing process. However, overall we want to exercise as

much of the SUT as possible, even during code paths that we know were correct previously, as

it is unknown how they would react to different inputs. Furthermore, by using feedback from

already found bugs, we would potentially hone our generator to just find more of the same

bugs, and miss other bugs which might exist.

This is slightly related to the issue of generating small tests versus large tests. Our approach

involves generating large tests, finding a bug, and reducing the test down to highlight the buggy

code. One could question why wouldn’t we start with a small test, and then keep on expanding

that test into a large test, which could potentially preclude the need for automatic reduction.

The answer is that such an approach has no well-defined termination: how do we know when

we have expanded a test sufficiently to have triggered likely bugs? Or how do we know that

a single additional expansion would not have been able to find a bug (supposing we expand

tests up until a given limit)? In the case where we create a big test, we execute it and either a

problem appears or not, and then the reduction process is applied as long as the bug persists

and there are reductions to be performed — there is an explicit start and end. Using feedback,

we similarly ask ourselves whether the bug we found were very rare, edge cases, or if there are

bugs to be found around the “space” of these bugs. This question can only be answered by

actually finding those bugs.
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5.6 Related Work

One of the more common techniques to reduced fuzzed tests with is delta debugging [82, 63].

The method involves removing substrings of the input test program at the source code level,

validating that the reduction maintains the well-definedness of the test case, and ensuring that

a faulty behaviour still manifests. The removal is done with syntax of the underlying language

in mind, such as attempting to remove full instructions, or lines within function bodies, and not

fully chaotic removal that might leave function declarations incomplete. The main difficulty

with delta debugging is ensuring the validity of the program is maintained. It might be the

case that a reduction can introduce undefined behaviour in the program, which happens to

manifest in the same way as the bug we are reducing against. This can be guarded against

by using static analysers (e.g., Frama-C [42]), or semantic interpreters (e.g., KCC [30]). The

approach of MF++R ensures that validity is maintained by removing code at the level of the

clang AST, rather than substrings of the program. However, this is supported by being aware

of the semantics of the input test program, as generated by MF++.

Our approach to reducing test cases with respect to a feature other than a specific bug is

an instance of cause reduction [34]. Although the process by which we perform the reduction

is by using failure points, similar to reducing against a fault in the program, the final result is

that the reduced program, once the manually injected fault point is removed, achieve additional

coverage, and the reduction process ensures that coverage is achieve along the reduction process.

Other properties that might be of interest to reduce against is the amount of stress a test induces

in the SUT, or perhaps some performance metrics.

Attempting to use reduction in order to improve coverage has been investigated before.

Chapter 5 of a GraphicsFuzz experience report [27] discusses a similar approach to the way

we generate tests for test suites of SUTs: differential coverage is computed between the target

coverage suite (in the case of GraphicsFuzz and an execution of GraphicsFuzz, the Vulkan

conformance test suite), failure points are manually injected in code that we wish to cover

(via assertion failures), the tester is ran again, and failing test cases are those reaching desired

coverage points, and marked for follow-up reduction. The main difference between the two

approaches is that MF++R produces tests with oracles already included, as a consequence of

them being generated by MF++. This provides users a starting point to either polish the existing

oracle, or to be used as is, knowing that the test performs some meaningful test to ensure its

correctness.
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5.7 Summary and Future Directions

In this chapter, we discussed our custom approach to automatically reducing tests generated

by MF++, which ensures intermediate reduction steps maintain the test case in a well-defined

form. We discussed how we implemented this approach in a clang libtooling tool, MF++R.

We discuss how our testing approach can be used to generate tests which achieve additional

coverage compared to the test suites of our SUTs, then discuss how we used MF++R to add a

total of 21 tests which achieve additional coverage to three SUTs. We pragmatically evaluate

certain properties of MF++R during this coverage enhancing process, as well as devise some

future improvements to the reduction process.

Future Work This whole process of generating tests, executing to find additional coverage,

adding coverage failure points, finding test cases exposing additional coverage, then reducing

could be scripted entirely. It would need some user-provided information, particularly the shape

of the coverage failure points, and perhaps some changes to the current manual infrastructure

we use, with gcovr and gfauto, but theoretically it should be a matter of just engineering.

Fully automating this process would mean that we can leave the infrastructure run overnight

and come back to a selection of potential coverage tests ready for manual evaluation.

As mentioned before (Section 5.5.3), there are additional reduction types that we have

thought of while practically using MF++R, as well as shortcomings we observed in the cur-

rently implemented reduction types. This gives rise to two further directions: (a) attempt

more reductions over other SUTs, and potentially observe further reduction types and more

ways to fix current shortcomings, and (b) improve our current reduction process based on

existing experience.

For computing coverage, we used the default line coverage metric provided by gcovr. How-

ever, other types of coverage criteria exist [84], including statement coverage (executing every

statement in the program), branch coverage (executing all branches of all conditional state-

ments of the program), or path coverage (executing every possible path along the program).

Some are more feasibly to apply than others, such as path coverage being intractable for large

software due to the number of possible paths. However, certain coverage metrics might be

more suitable to certain SUTs than others, something which we could explore when performing

reduction with respect to coverage.
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Compilers

This chapter presents our experience of applying metamorphic testing to Open Graphics Lan-

guage1 (OpenGL) compilers. The work described here presents the foundation of what even-

tually became the GraphicsFuzz [26] tool. While the tool evolved beyond what is presented

in this chapter, the core ideas and methods remain.

The work served as a precursor to the MF++ project, and validated the use of randomised

metamorphic testing as a potential technique to find bugs. The author of this thesis con-

tributed original ideas, and was part of the initial prototype showcasing the application of

randomised metamorphic testing for graphics compilers [28]. The ideas in this chapter provide

a fundamental basis upon which the work in the rest of this thesis was built.

The idea of including identity transformations (Paragraph 6.3) was proposed and imple-

mented by Alastair Donaldson, and is included as it was a main inspiration for subsequent for

on MF++. A severe bug (Section 6.4.4) was found, investigated, and reported by Paul Thomson;

the bug is included as an example of an important bug found via our metamorphic testing

work.

6.1 Motivation

The main motivation behind undertaking this project was the expressed need by industry

partners for methods of practically testing OpenGL drivers. This might be due to the advent

of devices with embedded graphics processing units (GPUs), greatly increasing the hardware

space where graphics and rendering are required to function correctly.

In addition to these requests, we had experience [46, 61] with testing Open Computing

Language2 (OpenCL), which is a similar API as OpenGL, but targets computing operations,

1https://www.opengl.org/, accessed 28th of October 2021
2https://www.khronos.org/opencl/, accessed 29th of October 2021
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rather than graphics processes. While the two APIs are similar, coming from the same source,

the test space is vastly different. Some major differences include some rather loose allowances

the OpenGL spec allows, as well as inherent lack of accuracy due to the use of floating point

numbers. Nevertheless, the domain of OpenGL comes with its own set of challenges, and we

were unaware of a generally available testing tool for OpenGL available at the time. Extending

our expertise with testing techniques to this new domain was a good personal motivator.

6.2 Testing Graphics Compilers

Setting out to test OpenGL, we must understand exactly what OpenGL is, and how it works

practically. OpenGL itself is an API, accompanied by a standard and a compliance test suite.

It is simply an idea, and the standard and API shape how an implementation of OpenGL should

behave, while the test suite contains examples to check whether the finer details expected of

an implementation hold. Therefore, there is no way of testing OpenGL itself.

However, a device, usually a GPU, that wishes to support OpenGL, must provide its own

implementation of the OpenGL stack, according to the standard. Therefore, we define “testing

OpenGL” as providing an infrastructure to test an implementation of OpenGL, while being

aware of the OpenGL API which the implementation should provide. In more concrete terms,

an industry vendor produces a piece of hardware which is expected to support OpenGL. In

addition to the hardware, they must provide corresponding software to interface with the op-

erating system (OS). Testing OpenGL for this particular piece of hardware involves testing

the associated software stack as well. More practically, for a GPU, the corresponding graphics

driver installed on the OS contains all the required software to execute OpenGL on the GPU.

Particularly, each driver also contains a compiler for OpenGL, presumably tuned for the hard-

ware available. Therefore, we distinguish an OpenGL configuration as a combination of (OS,

GPU device, GPU driver version). In the context of compiler testing, this provides a

large search space of expected independent OpenGL compilers. We mention compilers here as

we believe that to be the core component of executing OpenGL programs, and the one most

susceptible to bugs.

While we mention there are OpenGL compilers, we did not discuss what exactly is being

compiled. OpenGL renders an image by a series of successive operations over the data within

the GPU. This is known as the rendering pipeline3. Each individual component of the pipeline

takes the data from the previous action, performs its specialised transformation over it, and

3https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview, accessed 29th of October 2021
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passes it forward. This specialised transformation is primarily defined by the user, as a piece

of code called a shader. From the full OpenGL pipeline, we distinguish two processes:

• Vertex Processing, supported by a vertex shader, performs vertex-level transforma-

tions. At a high level, this means the geometry of the underlying object.

• Fragment Processing, supported by a fragment shader, defines what colour each pixel

should be attributed. This basically defines the final appearance of the object, describing

how it should be “painted”.

There are other, more specialised processes, but these two are sufficient for basic rendering, and

are what we focused on testing during this project. Primarily, it was the fragment shader that

was the main focus. There could be potential to test other pipeline processes as appropriate,

or enable/disable them at random.

With all this information, the basic ingredients required to perform graphics compiler testing

are:

• a target configuration, comprising of a specific GPU device, OS, and GPU driver;

• a host code program, which communicates with the GPU, sending and retrieving re-

quired data;

• a shader for each pipeline process we would like tested; for this work, this would be

vertex and fragment shader;

• a test to ensure that the image produced is correct.

The configuration is mainly dictated by available hardware, but there is work with ensuring

that driver updates indicate that a new configuration is test. The initial implementation of the

host code was done as a tool called get-image4. It made use of some third party libraries, (the

OpenGL Extension Wrangler Library5 (GLEW), and freeGLUT6 (an open-source alternative to

the OpenGL Utility Toolkit)) in order to abstract away the lower level details of using OpenGL.

The purpose of get-image is to consume a vertex and a fragment shader, and display an image

on the screen based on their execution on the GPU. We construct a simple vertex shader within

the get-image script.

The more interesting aspects are the fragment shader and the test to ensure the image is

correct. These are details which define the testing technique specifically employed by a testing

4https://github.com/mc-imperial/get-image, accessed 30th of October 2021
5http://glew.sourceforge.net/, accessed 30th of October 2021
6http://freeglut.sourceforge.net/, accessed 30th of October 2021
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tool, and are similar to issues of generating inputs (i.e, fragment shader), and testing whether

the output of the SUT (i.e., produced image) is within expectations.

We note that there are variations on OpenGL. The main variation can be considered the

desktop version of OpenGL, which is also the most feature complete. An additional version is

WebGL7, which provides browser-level native support to execute a subset OpenGL code. This

additional target requires its own specialised host code program, but beyond this additional

engineering work, and ensuring that the used shaders are limited to the appropriate WebGL

subset, the rest of the testing process remained similar. Finally, a third variant is OpenGL

ES8, which targets embedded and mobile systems, including gaming consoles, and mobile

phones. While there are differences in features supported by the three variations, our core

methodology is applicable across all of them, as long as we ensure that we generate tests within

the boundaries of the capabilities of each target.

6.3 Metamorphic Testing with GraphicsFuzz

This section will focus on testing details specific to GraphicsFuzz.

We first discuss the issue of testing OpenGL output. We remind the reader of two properties

of OpenGL: it makes heavy use of floating point numbers throughout the computation of what

will eventually be the final rendered image, and the standard is loose at points, allowing GPU

driver developers some leeway when providing their own implementations. This means that for

a given rendering process, defined by a vertex and fragment shader, there is no ground truth

image that can be computed. If the image is defined as a matrix of pixels with RGB values,

then the acceptable output of a rendering process would comprise of a range of values per pixel,

rather than a concrete number. This goes back to the oracle problem (Section 2.1)—we need a

method of identifying whether the image produced by a concrete execution is correct.

This is a reason why metamorphic testing is a suitable testing technique for this domain. We

cannot tell if an image produced by a set configuration is correct, but if there exists a reference

image, and we generate metamorphic variants of the fragment shader used to generate the

reference image such that the expected result is equivalent to the reference image, then we

can use some comparison algorithm to check that the images are similar enough. In order to

do this, we use the OpenCV compareHist function, with the Chi-Square method (suggested

to us by Thibaud Lutellier9), and impose that the difference is under an empirically-derived

7https://www.khronos.org/webgl/, accessed 30th of October 2021
8https://www.khronos.org/opengles/, accessed 2nd of November 2021
9https://ece.uwaterloo.ca/~tlutelli/, accessed 2nd of November 2021
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threshold for the specific tested configuration.

Having set the method of testing output images, the next step is finding interesting ways of

generating them. The first question is whether a source of real-world fragment shader examples

exists that we might use as reference for our eventual MRs. For this, we discovered, GLSL

sandbox10, which provides a rich offering of user-provided open-source fragment shaders. We

lifted a number of 20 shaders, ensuring appropriate usage licenses were contained, which would

serve as a repository for fragment shader sources.

Practically executing a selected fragment shader will then offer us a reference image to com-

pare against. The final step is generating equivalent fragment shaders via metamorphic testing,

to try and induce compiler bugs. There are two metamorphic transformations we implemented:

dead-code injection, and identity transformations.

Dead-code injection The main transformation implemented in GraphicsFuzz is similar to

the EMI [44] approach. However, instead of profiling code to find dead code (which is unlikely

to happen in the fragment shaders we extracted anyway), we explicitly insert segments of code

which we know will not be executed. This gives rise to two more challenges:

Ensuring injected dead-code is not optimised The compilers we are testing come with their

own optimisation passes, similar to normal compilers executing CPU code. Explicitly

injecting obvious dead code, such as an if statement with a false condition, or even

something easily reducible to false, is likely to be outright removed from the executed

code during optimisation. However, OpenGL allows the shader to read user-provided

memory at runtime. This would ensure no compile-time optimisation can be performed

in order to eliminate our injected dead code. The mechanism behind this is OpenGL

uniform variables, which are read-only variables set at shader execution time. In our

approach, they are set within the host code, after shader compilation.

Source of dead-code to inject Ideally, the injected dead-code should perform some sensible

operation, to attempt and trigger miscompilations due to interesting control flow. Of

course, fuzzing the injected code is reasonable, and might even be interesting if the fuzzed

dead-code would involve undefined behaviour. This might stress the assumptions made

by the compiler, due to the presence of potentially executable undefined behaviour. Nev-

ertheless, we focused on injecting reasonable dead-code, and the source of this dead-code

would be the other fragment shaders we lifted from GLSL sandbox, as they contain rea-

10https://glslsandbox.com/, accessed 30th of October 2021
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sonable OpenGL code. We select a fragment of source code from the donor shader, ensure

variable declarations are made appropriately (either by introducing new declarations from

the donated code segment, or by renaming variables within donated code to make use

of in-scope variables in the target shader), and obtain a fresh shader, which differs from

the original one via a number of known-to-be unexecutable code sections. This injection

should not affect the resulting image to an observable degree (again, the approximate

nature of OpenGL might introduce small, machine level differences, due to things such

as rounding).

Identity transformations Another method of producing equivalent shaders is via identity

transformations. This involves replacing an expression with an identity of itself. Examples for

integer expressions would include replacing an expression x with x+ 0, x ∗ 1, or c?x : f (where

c is a boolean expression evaluating to true, and f is an arbitrary, potentially fuzzed, integer

expression). These simple transformations were sufficient in triggering some wrong image bugs

11 12.

We note the similarities with identity high-level operations exemplified in Section 4.2.4.

While MF++ is able to use transformative MRs, we note that the domain of graphics compilers,

with the precision issues encoded within, forces us to limit ourselves to identity transformations.

6.4 Evaluation

We have attempted to apply GraphicsFuzz to a total of 17 configurations, presented in Ta-

ble 6.1. We distinguish three main types of configurations: testing OpenGL directly on a

desktop machine, testing WebGL through a browser, done on a mix of desktops and mobile

devices, and finally OpenGLES testing done on Android devices. We were able to identify at

least one bug in all of these configurations, showing that OpenGL testing is in an incipient

stage. These bugs also span a wide variety of vendors, which further emphasises that this is

not a limited problem, but an issue with the ecosystem that should be addressed. OpenGL is

becoming more prevalent nowadays with a plethora of consumer devices available. The sheer

scale means that these bugs are expected to appear. However, the way they manifest might be

particularly problematic.

In the following, we will showcase a number of severe bugs identified during GraphicsFuzz

11https://github.com/mc-imperial/shader-compiler-bugs/issues/22, accessed 2nd of November 2021
12https://github.com/mc-imperial/shader-compiler-bugs/issues/25, accessed 2nd of November 2021
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ID GPU OS / browser / device GPU Driver

Desktop OpenGL (OS)

1 AMD Radeon R9 Fury Windows 10 Crimson 16.9.2
2 AMD Radeon HD7700 Ubuntu 16.04.1 AMDGPU Pro 16.40 348864
3 Intel HD Graphics 520 Windows 10 20.19.15.4501
4 Intel HD Graphics 520 Windows 10 21.20.16.4542
5 NVidia GeForce GTX770 Windows 10 373.06
6 NVidia GeForce Titan Ubuntu 14.04.5 373.06

WebGL (browser / OS)

7 AMD Radeon R9 Fury Chrome 55 / Windows 10 Crimson 17.9.2
8 AMD Radeon HD7700 Chrome 54 / Ubuntu 16.04.1 AMDGPU Pro 16.40 348864
9 Apple PowerVR GT7600 Safari 602.1 / iOS 10.1.1 n/a
10 ARM Mali-T628 ChromeOS 54.0.2840.101 n/a
11 Intel HD Graphics 520 Chrome 55 / Windows 10 20.19.15.4501
12 NVidia GeForce GTX770 Chrome 55 / Windows 10 373.06
13 NVidia GeForce Titan Chrome 55 / Ubuntu 14.04.5 373.06

Android OpenGLES (device)

14 ARM Mali-T760 MP8 Samsung Galaxy S6 SM-G920F OpenGLES 3.1
15 PowerVR Rogue G6430 Asus Nexus Player TV000I OpenGLES 3.1
16 NVidia Tegra Shield TV P2571 OpenGLES 3.2
17 Qualcomm Adreno 320 HTC One MR PN071110 OpenGLES 3.0

Table 6.1: Configurations tested with GraphicsFuzz

testing. We note that while these chosen examples paint a dire image of the OpenGL and

WebGL ecosystem, these are the exception, and particular attention has been given to these

examples due to their severity. Other types of issues identified are rendering the wrong image,

or compiler crashes.

6.4.1 WebGL Blue-screen of Death

On configuration 1, we were able to induce a blue-screen of death by rendering a WebGL frame

within a browser13. The blue-screen of death (BSoD) is a severe error in Windows operating

systems, which indicates a non-recoverable OS-level error. The machine crashes, potentially

corrupting user data, and even the hardware. Therefore, being able to induce a BSoD by

rendering a webpage on a client machine, even if it requires a particular hardware configuration

of the client machine, is a severe security issue.

We used a hand-written WebGL client, implemented in JavaScript, to render a specific

fragment shader on a webpage. A client browser visiting the webpage with the corresponding

13https://github.com/mc-imperial/shader-compiler-bugs/issues/28, accessed 31st of October 2021
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configuration might observe one of the following behaviours:

• The OpenGL process crashes, with a browser message “Rats! WebGL hit a snag!”. The

user is able to continue using their machine, even refresh the webpage, with the OpenGL

process presumably restarting.

• The browser hangs, but the OS seems fairly stable. The browser can then be forcibly

terminated via the Windows Task Manager.

• A BSoD is triggered, with the error THREAD STUCK IN DEVICE DRIVER, and the machine

restarts.

The error message potentially points to a deadlock, or some concurrency issue. However, we

did not investigate the bug further, primarily due to the fact that we had no direct access to

the compiler contained within the device driver.

We were able to more consistently trigger the bug by using a client based on Almost Na-

tive Graphics Layer Engine14 (ANGLE), which is an abstraction layer between WebGL and

Direct3D, in order to improve OpenGL performance on Windows.

As the initial shader was fairly large, at 109KB, we attempted to reduce it to a minimal

example that would still trigger the BSoD. The process of doing this is, of course, made difficult

by the crash. At this point, we had an automated reducer implementation in a fairly initial

state for GraphicsFuzz tests. We were able to automate reducing the shader using the following

steps:

• on a separate machine, perform the reduction on the current version of the shader, and

place it in a commonly accessible network location;

• fetch the reduced shader on the target machine, and execute it. After execution, write

a file to the commonly accessible network location with some specific content indicating

success. This indicates an unsuccessful reduction to the reducer, which can then proceed

attempting other reductions, in a delta debugging [82] fashion.

• alternatively, if the machine crashes when executing the reduced shader, then it restarts.

We set it up such that a script is executed on start-up. The script writes the commonly

accessible file with content indicating a crash, prompting the reducer machine to update

the current version of the shader to the newly reduced variant

14https://chromium.googlesource.com/angle/angle/, accessed 31st of October 2021
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We essentially add an extra step between reduction phases, where the validity of the reduction

is determined by the contents of the file which is commonly accessible by both machines. An

update to this file acts as a signal by the target machine to the reducer machine. With this,

we were able to fully automate the reduction process (although we monitored it, in case the

machine would hang without a BSoD, or fail to execute the script proper on restart).

The issue was reported to AMD, and they confirmed it in their internal systems. However,

they were unable to confirm the issue was present in the reduced version we provided them,

only on the initial shader. This indicates that perhaps there were additional system properties

at play which caused the reduced version to trigger the BSoD. Nevertheless, such a severe bug

requires careful inspection. The issue was subsequently fixed in release 17.1.1 of the AMD

driver.

6.4.2 WebGL System Instability

On configuration 13, we were able to induce severe system instability by similarly rendering

a shader on a webpage15. Using the same setup as above, rendering a shader inserted in a

webpage accessible by any client, would show the following effects:

• a short, few second system freeze, with a message that the GPU driver cannot recover;

• a system freeze lasting between a few seconds, upwards to three minutes, after which the

user is forcibly logged out; after logging in again, there does not seem to be any further

system instability;

• the most common behaviour, a full system freeze, requiring a forced manual reboot.

Attempting to further inspect the issue, we observed that we were able to ssh into the

affected machine. This would indicate that the freeze is at the display level, potentially the X

server16, which is the low-level interface between the display and Linux. Due to us being able

to initiate a shell and perform commands on the shell, the system seems to be responsive, but

the display completely frozen. Upon inspecting the workload, we noted that one of the 16 cores

on the CPU was working at full capacity. Further, manually killing the browser process did

not redress the problem. The underlying issue might be similar to the BSoD discussed above,

but due to the difference in operating systems, the symptoms might be distinct.

15https://github.com/mc-imperial/shader-compiler-bugs/issues/46, accessed 31st of October 2021
16https://developer.toradex.com/knowledge-base/x-server-linux, accessed 31st of October 2021
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(a) Reference image (b) Variant image

Figure 6.1: Example of wrong image produced, after unreachable discard statement was in-
troduced

We reported the issue to NVidia, and upon checking the issue at a later time, with device

driver version 381.22, we observed a brief hang in the browser, without any further system

instability. This indicates that the core issue was potentially addressed, and that the shader

itself contains code that stresses the rendering process nonetheless. The issue was mentioned

in a common vulnerabilities and exposures bulletin release17, as CVE-2017-6259.

A similar issue18 was identified using the open-source Mesa19 OpenGLES implementation

on an Intel processor with integrated graphics on the Google Chrome browser. The main

differences are that the display freeze is not the most commonly observed behaviour, but rather

equal parts display freeze, browser freeze, and apparent browser recovery after a period of

freezing. However, attempting to render the shader multiple times can trigger the display

freeze consistently.

6.4.3 Wrong Image Examples

We were able to trigger a variety of wrong render issues across the tested configurations, with

rather minimal shader code changes.

On configuration 7, adding a discard statement (defined on page 120 in the OpenGL Shading

Language specification [38]) after a break statement produces a blank image20. The original

image can be seen in Figure 6.1a, while the variant image (Figure 6.1b) is a completely white

image (borders have been added for clarity). Based on the language specification, we do not

expect the discard instruction (which removes all data within the rendering buffers, thus

17https://nvidia.custhelp.com/app/answers/detail/a_id/4525/, accessed 2nd of November 2021
18https://github.com/mc-imperial/shader-compiler-bugs/issues/67, accessed 31st of October 2021
19https://mesa3d.org/, accessed 31st of October 2021
20https://github.com/mc-imperial/shader-compiler-bugs/issues/29, accessed 2nd of November 2021
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(a) Reference image (b) Variant image

Figure 6.2: Example of wrong image produced, after inserting a number of no-op statements

Listing 6.1: Code snippets introduced to trigger a wrong image render issue

1 for( int i = 0; i < 105; i ++)

2 for( int j = 0; j < 10; j ++) { }

3 [..]

4 if (injectionSwitch.x > injectionSwitch.y)

5 return;

6 [..]

7 if (injectionSwitch.x > injectionSwitch.y)

8 continue;

potentially explaining the blank image produced), to be reachable, as control flow should not

go beyond a break instruction. However, due to miscompilation, it seems the discard operation

has observable effect. This example indicates both the how easily some issues are triggered, as

well as the difficulty in having correct compilers.

Another example, on configuration 1, produced unexpected changes in the variant image by

inserting some instructions equivalent to no-op instructions21. There were a total of three code

snippets introduced in the fragment shader code, which are shown in Listing 6.1. We note that

injectionSwitch is a uniform (i.e., runtime) input 2-dimensional vector, and that the runtime

value of the variable is set to [0.0, 1.0]. Therefore, the conditions in the two if statements are

guaranteed to be false at runtime. Of course, the for loop similarly should have no effect on

execution. The original image can be seen in Figure 6.2a, and the variant image is Figure 6.2b.

There are some artifacts in the variant image which are not present in the original one. The

reason might be that these shaders compute animations, while we capture a static snapshot of

the render, and somehow the timing in the second image is affected by adding this additional

code. Nevertheless, this is a clear render bug, as even without code optimisation, the runtime

effect of the added code should be negligible.

21https://github.com/mc-imperial/shader-compiler-bugs/issues/10, accessed 2nd of November 2021
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(a) Reference image (b) Variant image

Figure 6.3: Example of false positive, believe to come from acceptable precision differences

Listing 6.2: Injected code leading to image differences within the boundaries of OpenGL stan-
dard acceptance

1 if((( injectionSwitch.x > injectionSwitch.y))) {

2 ray += vec3(1, 0, 0); }

The final example we present is an actual false positive, observed on configuration 622. While

the reference (Figure 6.3a) and variant (Figure 6.3b) are visually distinct, it is believed to be

a consequence of the shader making use of trigonometric functions. Particularly, the standard

says:

Built-in functions defined in the specification with an equation built from the above

operations inherit the above errors. These include, for example, the geometric func-

tions, the common functions, and many of the matrix functions. Built-in functions

not listed above and not defined as equations of the above have undefined precision.

These include, for example, the trigonometric functions and determinant. (Page 94,

OpenGL Shading Language version 4.40 [38])

While the injected code was minimal (Listing 6.2), and showed no indication of triggering

expected precision changes, the fact that the original shader included trigonometric functions

leads to undefined precision, and therefore the difference seen in our examples being within the

parameters set by the specification. This example illustrates how fragile OpenGL testing is,

and how much care must be taken to ensure that we very closely follow the standard to prevent

precision differences. While this is comparable to avoiding undefined behaviour in C testing,

the difficulty is unfamiliarity with the domain (i.e., background knowledge gives an intuition of

22https://github.com/mc-imperial/shader-compiler-bugs/issues/51, accessed 2nd of November 2021
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Figure 6.4: Data leaking from a browser tab accessing a banking webpage

why certain C code is undefined behaviour, such as accessing an array out of bounds, but not

why certain OpenGL function calls can cause imprecision, such as in this example).

6.4.4 Private Data Leak

The final example presented is an instance of an information leak. While the author of this

thesis was not involved in identifying the bug, this issue is mentioned due to being found with

the GraphicsFuzz infrastructure, and due to the severity of the issue. I thank Paul Thomson

for his work on producing a proof-of-concept exposing this issue.

The issue23 shows memory data leaking from a tab to another, potentially malicious, tab

rendering a WebGL image. The issue was discovered on configuration 14. Shown in Figure 6.4,

we see the result of attempting to render a WebGL shader in a tab, while a banking webpage

is opened in another. Some information from the banking page can clearly be discerned in the

rendered image, and a malicious actor could feasibly capture snapshots of this leaked data,

and save them somewhere under their control. This shader could be included in a malicious

webpage with a very small, potentially pixel-size viewport, such that the user is unaware of any

malicious acts happening. The bug was eventually fixed via a firmware update.

23https://github.com/mc-imperial/shader-compiler-bugs/issues/80, accessed 31st of October 2021
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6.5 Related work

To our knowledge, there is no similar testing technique applied to the domain of OpenGL

compilers. The main idea of injecting dead-code in fragment shaders in this work came from

the EMI [44] technique. The main distinction is that while EMI profiles code to identify dead-code

over some set input, and then performs modifications in that dead-code to generate equivalent

variants, GraphicsFuzz explicitly injects dead-code sequences in a compiler-obfuscated fashion,

to ensure that these injected sequences are not optimised away.

There are some practical tools to help with OpenGL development. Khronos, the maintainers

of OpenGL, provide a reference compiler24, which can potentially be used as a rudimentary dif-

ferential testing candidate, particularly for validating workflows and obviously incorrect shader

outputs. There also seems to be a third-party GLSL (the language used to write shader code)

validator25, but we have not assessed its efficacy. Nevertheless, such a validator would only

focus on syntax errors, rather than the functional errors GraphicsFuzz is able to detect.

6.6 Summary and Future Directions

In this chapter, we discuss the precursor to the MF++ project, namely GraphicsFuzz. We

discuss general challenges to testing OpenGL, and the suitability of metamorphic testing in

overcoming those challenged. We focus on the initial ideas paving the core testing methodology

of GraphicsFuzz, particularly the idea of injecting dead-code from donor shaders, to ensure the

metamorphic variant comprises of interesting control flow. We provide examples of a number

of interesting bugs, with potential security vulnerabilities, exposing the power of misusing

OpenGL, and the importance of functional testing for security.

Future Work Additional work has been done in the GraphicsFuzz project beyond the in-

volvement of the author of the thesis. This includes adding more identity transformations (such

as transforming a float f into (f + 0.0) or (f ∗ 1.0)), employing automatic test case reduction

methods for generated tests, and expanding the targets of testing beyond OpenGL and WebGL.

There is room to expand the scope of OpenGL testing. Currently, GraphicsFuzz focuses on

fragment shader bugs, but we are unaware if there are special routines implemented in compilers

for other pipeline processes. Expanding the shaders exercised by GraphicsFuzz is a potential

feature improvement, but would come with its own challenges of finding appropriate sources of

24https://www.khronos.org/opengles/sdk/tools/Reference-Compiler/, accessed 30th of October 2021
25https://github.com/felixpalmer/glsl-validator, accessed 30th of October 2021
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respective shaders.

The end-goal for this project would be full integration within the conformance test suite

of OpenGL. That would perhaps involve an infrastructure where there is a more consistent

generation process, to ensure a fair evaluation of all provided drivers.
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In this work, we present a new approach to using metamorphic testing, which we namemetamor-

phic testing with high-level operations. This approach implements some of the finer techniques

of applying metamorphic testing, while interfacing with the user to provide some minimal

examples of redundant operations. Lowering the required ingredients to applying metamor-

phic testing and framing then in a practical context will hopefully make the technique more

attractive to library developers.

7.1 Contributions

This work makes the following contributions

Chapter 3 provides an explanation of applying metamorphic testing with high-level operations,

presenting all the metamorphic testing features included (such as composition of meta-

morphic relations, and MR-level recursion). We describe what ingredients are required to

be provided by the user to interface with a new library, potentially leveraging knowledge

from adjacent domains. We describe a tool, MF++, providing an implementation of our

proposed method targeting C++ software libraries, which additionally incorporates ele-

ments of fuzzing, in order to automatically synthesise expressive test cases with in-built

oracles for finding bugs in SUTs.

Chapter 4 presents practically applying MF++ to 7 libraries in the domains of SMT and Pres-

burger arithmetic. We provide an overview of the challenges and design choices made as

testing with MF++ of these libraries proceeded, while also exposing the needed knowledge

to make effective use of MF++ for desired SUTs by implementing strong specifications. We

provide details about 21 found bugs, all of which were reported, confirmed, and fixed by

the respective maintainers.

Chapter 5 discusses the implementation of a custom-made automatic reduction approach for

MF++ tests. The benefit of the approach is that it ensures tests maintain well-definedness
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throughout the reduction process, while maintaining features of interest, such as the oracle

contained in the generated test case. Ensuring that the oracle is preserved means that

reduced tests perform a meaningful check, and could presumably be readily integrated

in a test suite. The additional benefits of implementing automatic test case reduction,

aside from minimising buggy tests, are: it allows users to quickly identify errors with their

written specifications, and it can be used to reduce with respect to other properties of

interest. Such a property is code line coverage. As an exercise in assessing the applicability

of this approach, we reached out to developers of three SUTs, and ended up integrating

21 tests in their respective test suites to improve coverage

Chapter 6 details the an initial approach to applying metamorphic testing in the domain of

graphics compilers, attempting to overcome the numerous challenges the field poses to

testing techniques. We devised a new strategy of injecting known-to-be-dead code, which

is not susceptible to compiler optimisations. Having a rich source of code examples al-

lowed us to inject real-world code with meaningful control flow. Metamorphic testing was

employed to derive a variety of mutants, which can be compared against the ground truth

produced by the original code. With our technique implemented in the GraphicsFuzz

tool, we were able to identify numerous bugs across 17 configurations, spanning all ma-

jor GPU vendors. These bugs include critical vulnerabilities, such as inducing machine

crashes, or personal data leaks.

In regards to the posed research questions from Section 1.1, the results can be are as follows:

1. Is metamorphic testing with high-level operations effective at finding bugs?

We were able to identify 21 bugs across 4 libraries. While we were familiar with the

libraries chosen to be tested, we would not consider ourselves experts, and thus believe

the approach can prove even stronger in the right hands.

2. Can metamorphic testing with high-level operations be used to improve ex-

isting coverage metrics?

While coverage attained in addition to the test suites of the tested libraries was minimal

in our evaluation (Section 4.4.2), it is the case that we were able to find some additional

coverage. We note that due to the nature of how user-provided specifications affect the

testing process, testing could be guided to focus particularly on finding additional coverage

(something we have not consciously attempted during evaluation).
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3. Could metamorphic testing with high-level operations be applied to generic

domains?

The domains evaluated in this work are SMT libraries, Presburger arithmetic libraries,

and graphics compilers. While all these domains are numerical in nature, the requirements

to applying metamorphic testing with high-level operations are not limited to numerical

domains (Section 3.2). To further strengthen this argument, we have worked on an initial

concept of applying this technique to the domain of graphics libraries, and all challenges

faced during this phase were in terms of engineering.

7.2 Limitations

There are a number of limitations and insufficiencies that we highlighted throughout this thesis.

Here, we emphasise the more important aspects that might require further work or investigation.

Single-type Focus during Generation In order to simplify both the engineering required and

the design of MF++, we limit the type of MRs for high-level operations to be identical. This

ensures that intermediate values across the sequence of high-level operations are compatible,

and the sequence can push data along the generation. We do include second-order high-level

operations, which can function over other API types, but they are constrained to be generated

within the recursion tree of a first-order high-level operation expansion.

This limitation conceivably reduces the search space of generated test cases, but it does

ensure data continuity in the metamorphic variant generation sequence. More investigation

needs to be done to evaluate how much additional bug-triggering potential this would allow, in

relation to difficulty of implementation, and coherent specification design (in terms of ensuring

that the user is prevented from providing a specification which might be ineffective due to how

MF++ works internally),

Diversity of SUT Domains The SUTs chosen to apply MF++ over cover two rather similar

domains: SMT and Presburger arithmetic. They are both numerical domains, and challenges

in one can be applicable to the other. Furthermore, the numerical nature of the domains

potentially makes finding MRs easier than other domains. However, the method of applying

metamorphic testing with high-level operations is a general concept, and can, in principle, be

applied to any domain and in any programming language. The best evidence for generality

should be practically applying MF++ over more domains. We have considered some other do-
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mains, such as graphics libraries, filesystem handling, or compression libraries, but have not

acted on familiarising ourselves with these domains. There is an initial implementation of the

cairo 1 graphics library.

7.3 Future Work

Potentially the most important next step for this project is to “let it loose in the wild”: we

could reach out to various library developers to present our technique and its requirements, and

gather feedback about its ease of use, observed effectiveness, and a number of other metrics.

The tool is in a mature enough stage, but development has been made with domain experts in

mind, which is something we have not evaluated throughout the development of this project.

In addition, there are a number of unexplored ideas that have arisen during the development

of this project that we have not acted upon due to time constraints.

First, we could apply a sort of differential testing approach, considering we test multiple

SUTs in the same domain. This is further made possible by abstract domain-level specifications

that we have devised. The core idea is that we have specifications for domains implementing

common expected features that SUTs within those domains should have. With this abstract

view, we could generate a domain-level test, which could then be linked to the an API of a

SUT of interest. Having multiple such interpretations allows us to essentially execute the same

program in different SUTs and compare results. We would expect a discrepancy to be caused

by a bug in one of the SUTs. This approach is slightly orthogonal to metamorphic testing,

but is applicable due to how we store SUT specifications for MF++, and could be seen as an

extension of our approach, similar to our coverage augmenting work with the reducer.

Another tangential direction is performance evaluation. The MRs that MF++ uses essentially

present alternative implementations of the same operation. While there might be some internal

optimisations, which would lead to similar, or even identical actual low-level operations, perfor-

mance discrepancies are likely. Supposing a profiler exists to evaluate the performance metric

of interest, we could use the MRs in MF++ specifications in two ways. First, for a given high-

level operation, we can evaluate which MR (or implementation) is best suited for the metric of

interest, and potentially investigate at a low level why the discrepancy exists, to be included

in other alternative implementations. Otherwise, we might do this across SUTs within the

same domains. Two similar implementations in different SUTs might express highly different

performance metrics, which might be due to some internal pathology in one of the SUTs.

1https://www.cairographics.org/, accessed 28th of October 2021
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