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Abstract
Typical machine learning research in the imaging domain occurs in clearly defined envi-
ronments on clean datasets without considering realistic deployment scenarios. How-
ever, applied machine learning systems are exposed to unexpected distribution shifts
and still need to produce reliable predictions without relying on spurious correlations.
Similarly, such systems encounter ambiguous or unseen inputs and need to commu-
nicate their uncertainty. Often, AI systems support a human operator and should pro-
vide interpretable explanations of their decisions. This thesis argues for a probabilistic
and causal approach to machine learning that is robust to spurious correlations, im-
proves interpretability, and communicates uncertainty. First, we investigate the learning
abilities of neural networks that are constrained to extracting information from image
patches. We show that careful network design can prevent shortcut learning and that
restricting the receptive field can improve the interpretability of predictions. We tackle
uncertainty estimation by introducing a Bayesian deep learning method to approximate
the posterior distribution of the weights of a neural network using an implicit distribu-
tion. We verify that our method is capable of solving predictive tasks while providing
reliable uncertainty estimates. Moving on, we frame various medical prediction tasks
within the framework of outlier detection. We apply deep generative modelling to brain
MR and CT images as well as histopathology images and show that it is possible to
detect pathologies as outliers under a normative model of healthy samples. Next, we
propose deep structural causal models as a framework capable of capturing causal re-
lationships between imaging and non-imaging data. Our experiments provide evidence
that this framework is capable of all rungs of the causal hierarchy. Finally, with fur-
ther thoughts on applications of uncertainty estimation, robust causal estimation, and
fairness we conclude that the safe and reliable deployment of AI systems to real-world
scenarios requires the integration of probabilistic and causal reasoning.
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Chapter 1

Introduction

1.1 Motivation
Humankind has long been fascinated by the idea of developing intelligent automata – both to de-5

crease the burden of work on people as well as to better understand intelligence, following the
notion of “what you cannot create, you do not understand”. Some of the first ideas of artificially
intelligent objects can be found in Greek mythology, e.g. with the giant Talos. Talos was a bronze
giant built by the Greek god Hephaestus to protect the island of Crete from invaders. Additionally,
Hephaestus made other self-moving objects – some of which he used as servants (Mayor 2020).10

In the early middle ages, Ramon Llull created the foundation which inspired Gottfried Leibniz to
work on an “alphabet of human thought” (Fidora and Sierra 2011; Press 2020; Schmidhuber 2021).
The last century saw the formalisation and establishment of the field of artificial intelligence as its
own field of research (Haenlein and Kaplan 2019).

In recent years the main driver of progress in the field of artificial intelligence was the ever-growing15

research on deep learning (LeCun et al. 2015). The current interest in deep learning was initially
spurred by the significant win of AlexNet (Krizhevsky et al. 2012) in the ImageNet challenge (Deng
et al. 2009). From there neural networks have been trained to achieve superhuman performance
on a range of Atari games (Mnih et al. 2015), beat humans at the game of Go (Silver et al. 2016) or
Dota (OpenAI et al. 2019), or predict the structure of proteins (Tunyasuvunakool et al. 2021). While20

some of those advances seem rather playful, they tackle important problems in the field of artificial
intelligence and combine capabilities such as perception, complex reasoning and decision making.
Other advances, such as the work on protein folding, help to advance human knowledge outside
the field of artificial intelligence.
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1.1. Motivation Introduction

Image analysis is one of the application areas of artificial intelligence and machine learning that al-
ready sees a lot of commercial use cases based on newly developed methods, such as self-driving
cars or checkoutless shops like Amazon Go. A special application area is the field of medical image
analysis with the aim of detecting pathologies or otherwise supporting human clinicians (Esteva
et al. 2021). Research articles have proposed machine learning models with performances equiv- 5

alent to or even surpassing human experts in fields such as dermatology (Liu et al. 2020), breast
cancer screening (McKinney et al. 2020), or diabetic retinopathy (Gulshan et al. 2016). However, the
deployment of this research into clinical routine is lengthy and few systems are in active use.

Some of the issues of deploying deep learning models into the real world stem from the disparity
of the approaches to reasoning between humans and machine learning systems. Many of the 10

potential medical imaging applications are set out to provide decision support to human expert
operators. However, while humans are capable of expressing their reasoning in logical statements1

about the relation of the state of various objects or patterns as well as their corresponding certainty
of a found conclusion, many artificial systems are not. Thus, the often rudimentary output of an
AI system that e.g. simply predicts a scan to be ‘cancerous’ or ‘healthy’ without further specifying 15

why that might be the case hinders human-AI interactions, as it is hard for the operator to interpret
and trust. Human trust in the reliable working of such systems is also eroded by the presence of
adversarial examples as well as the habit of neural networks to learn shortcut predictors that might
be independent of the actual predictive task but confounded in the used training dataset.

Human-AI interaction would benefit from human-understandable explanations of why a machine 20

learning system makes a certain prediction. A wide range of approaches aim to improve the in-
terpretability of decisions made from visual inputs (Zhang and Zhu 2018). However, many of the
proposed solutions simply present parts of the image that influence the decision. They therefore
require significant understanding of the method from the human operator, as it can be hard for a
human to understand how a certain area in an image is related to the prediction made. 25

Furthermore, machine learning models are often seen as universal function approximators and
flexible on purpose. Instead, human decision making often relies on Occam’s razor principle which
prefers simpler solutions. In machine learning, this is often encouraged through various forms of
regularisation techniques that penalise functional complexity. However, this notion of complexity
is often hard to interpret in a humanly understandable way. An easier way to explain the complex- 30

ity of a machine learning model would be through hard limitations such as “This network has a
receptive field of 5 × 5cm and can only extract relations on that scale.” or “This network uses a
hard attention mechanism which only allows it to analyse data in a specific region of the input.”.
This form of explanation offers specific and easy to understand limits that allow for an operator
to judge whether this mechanism is adequate for the task at hand. Additionally, it is possible to 35

1One could argue that humans sometimes only rationalise their conclusions or decisions post-factum. As such, it is
not clear whether humans can actually logically express their reasoning or rather come up with a plausible explanation.
However, this question probably could fill a PhD thesis on its own and is left for the reader to ponder over.
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1.2. Research Aims and Thesis Outline Introduction

use domain knowledge to design networks with task-specific limitations that guide the learning
process, making it harder for the model to pick up on unwanted spurious correlations.

Lastly, trust and safety largely rely on the notion of uncertainty. Perception in the real-world is
ambiguous and noisy. Objects might be occluded or not fully visible and therefore leave their full
nature to our imagination. Measurement devices always produce noisy measurements due to phys-5

ical limitations and imperfections of sensors. Knowledge in itself can be in the process of being
learned and therefore deductions might be uncertain. As such it is important for a machine learn-
ing system to express its certainty of a prediction to allow for human interpretation and potential
deferral to a more experienced fallback system – human or not.

1.2 Research Aims and Thesis Outline10

Following the above motivations, this thesis aims to explore research that allows for better human-
AI interactions through three complementary goals:

1. To train neural networks that ignore spurious correlations: Neural networks often learn
shortcuts to solve predictive tasks. Those shortcuts are features that are only correlated with
the quantity of interest in the specific training set and therefore do not generalise to unseen15

data. Can we build neural networks that ignore spurious correlations? Can hard constraints
on the flexibility of the learned functions eliminate shortcuts?

2. To teach machines to know when they do not know: Focusing on the specific scenario in
which a model is uncertain due to limited amounts of training data, the estimation of the
parameters of the model is constrained to only approximate the true parameters and benefits20

from probabilistic treatment. Whenever a model can reliably tell whether it is uncertain, it is
possible to use this as a cue to defer to a human expert or flag abnormalities.

3. To enable neural networks to leverage causal relations: Causal reasoning offers tools for
explaining decisions through causal factors as well as the imagination of counterfactual ex-
amples. Imagining counterfactuals requires the learning or prior specification of the assumed25

causal relationships. Similarly, neural networks that use prior knowledge to inspire its archi-
tecture can learn the true function more easily.

The thesis explores different angles at addressing these goals and is structured as follows. Each
chapter is prefaced with a box stating which publication(s) the chapter is based on.

Chapter 2 describes background knowledge necessary to frame the contributions of this thesis.30

It introduces basic concepts in probabilistic modelling and Bayesian inference. Later it illustrates
the evolution of deep learning for imaging applications as well as some core differences between
medical and natural image analysis. Finally, it presents deep learning techniques applicable to
modelling the generative process of high-dimensional data.
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1.2. Research Aims and Thesis Outline Introduction

Chapter 3 aims to build neural networks that ignore spurious correlations (Goal 1) by studying the
effect of constraining convolutional neural networks to small receptive fields – only allowing the
network to model the relations within patches of the original image. The first part of the chapter
is based upon (Pawlowski et al. 2019) and explores how different design choices influence the
capabilities of a neural network to extract information from larger images in which all the relevant 5

information is contained within small patches. This is an unusual scenario for natural images but
regularly occurs in medical imaging, e.g. histopathology. The second part of that chapter, based
on (Pawlowski and Glocker 2019), aims to answer the question of whether patches from brain
magnetic resonance imaging contain enough information to reliably predict global information,
such as a subject’s age or biological sex. 10

• Pawlowski, N., Bhooshan, S., Ballas, N., Ciompi, F., Glocker, B., and Drozdzal, M. (2019). “Nee-
dles in Haystacks: On Classifying Tiny Objects in Large Images”. In: arXiv preprint arXiv:1908.06037
– (Pawlowski et al. 2019)

• Pawlowski, N. and Glocker, B. (2019). “Is Texture Predictive for Age and Sex in Brain MRI?”.
In: Medical Imaging with Deep Learning Abstract track – (Pawlowski and Glocker 2019) 15

Chapter 4 introduces a novel technique, Bayes by Hypernet, for capturing the model uncertainty
of neural networks – and teaching machines to know when they do not know (Goal 2). Bayes by
Hypernet, published in (Pawlowski et al. 2017a), uses hypernetworks (Ha et al. 2017) to build an
implicit variational approximation to the posterior of the weight distribution of a neural network.
The implicit variational distribution enables highly complex distributions to be modelled. Bayes 20

by Hypernet achieves competitive predictive performances while allowing for reliable uncertainty
estimates.

• Pawlowski, N., Brock, A., Lee, M. C., Rajchl, M., and Glocker, B. (2017a). “Implicit Weight Un-
certainty in Neural Networks”. In: NeurIPS Workshop on Bayesian Deep Learning – (Pawlowski
et al. 2017a) 25

Chapter 5 expands on the notion of “knowing when one does not know” (Goal 2) and explores the
use of deep generative modelling to detect whether a sample belongs to the seen training distribu-
tion or not. This task of outlier detection can be medically relevant as it can flag unusual regions or
samples as items of interest and therefore guide a clinicians attention. The chapter starts with con-
sidering the detection of lesions caused by traumatic brain injuries from brain computed tomogra- 30

phy images using variational autoencoders (Kingma and Welling 2014), as published in (Pawlowski
et al. 2018). We show with experiments that in certain conditions it is possible to flag tumours as
abnormal regions within the scan. Next, the chapter studies the application of the same technique
to the detection of lesions on brain magnet resonance images, published in (Chen et al. 2018b).
This application suffers from domain shift caused by differences in MR scanners and scanning 35

protocols between healthy and unhealthy subjects. Lastly, the chapter applies normalising flows
to the detection of cancerous tissue on histopathology images. The experiments, published in
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1.3. Publications and Research Context Introduction

(Pawlowski and Glocker 2021), suggest that cancerous tissue can be detected using normalising
flows as density estimators but require careful choice of the outlier detection metric.

• Pawlowski, N. et al. (2018). “Unsupervised Lesion Detection in Brain CT using Bayesian Con-
volutional Autoencoders”. In: Medical Imaging with Deep Learning Abstract track – (Pawlowski
et al. 2018)5

• Chen, X.∗, Pawlowski, N.∗, Rajchl, M., Glocker, B., and Konukoglu, E. (2018b). “Deep gener-
ative models in the real-world: An open challenge from medical imaging”. In: arXiv preprint
arXiv:1806.05452 – (Chen et al. 2018b)

• Pawlowski, N. and Glocker, B. (2021). “Abnormality Detection in Histopathology via Density
Estimation with Normalising Flows”. In: Medical Imaging with Deep Learning Short Paper Track10

– (Pawlowski and Glocker 2021)

Chapter 6 seeks to imbue neural networks with causal knowledge (Goal 3) and uses recent ad-
vances in deep generative modelling to build deep structural causal models (DSCMs) capable of
modelling imaging and non-imaging data (Pawlowski et al. 2020). Our deep structural causal model
framework allows for tractable counterfactual inference with high-dimensional data. Extensive ex-15

periments on synthetic toy datasets verify that DSCMs fulfil all three rungs of Pearl’s causal hi-
erarchy (association, intervention, and imagination) (Pearl 2019). Another case study shows that
the framework is capable of modelling real-world data. We model brain MR images together with
non-imaging information (age, sex, brain volume, and ventricle volume). The results show that the
trained model is able to generate realistic high-fidelity counterfactual medical images that preserve20

details relevant to subject identity.

• Pawlowski, N.∗, Castro, D. C.∗, and Glocker, B. (2020). “Deep Structural Causal Models for
Tractable Counterfactual Inference”. In: Advances in Neural Information Processing Systems
– (Pawlowski et al. 2020)

Chapter 7 summarises the main contributions of this thesis and frames them in the context of the25

original research goals. It concludes with some open questions as well as known limitations of the
presented work and offers directions for future research questions.

1.3 Publications and Research Context
Throughout my PhD, I was lucky enough to be able to collaborate with a wide range of groups
and individuals from within Imperial as well as outside. Some of these collaborations were closely30

aligned with the goals of this thesis while others offered the opportunity to learn and explore novel
areas of machine learning research. Various collaborations with Xiaoran Chen, a PhD student at
ETH Zürich, explored the use of variational autoencoders for brain lesion detection (Chen et al.
2019b, 2021, 2018b). An internship at Google Health allowed me to work on safety aspects of der-
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1.3. Publications and Research Context Introduction

matology classifiers and the question of whether “a dermatology classifier knows what it doesn’t
know?” (Roy et al. 2021). Monteiro et al. (2020) introduced the use of low-rank multivariate Gaus-
sian distributions for the modelling of spatially correlated uncertainty in segmentation networks.
The development of the deep learning toolkit for medical image analysis (DLTK) (Pawlowski et al.
2017c) led to various collaborations using the reference implementations of the toolkit. One exam- 5

ple collaboration is the winning entry to the 2017 BraTS challenge (Kamnitsas et al. 2017b) included
in a longer overview paper (Bakas et al. 2017). A complete list of papers from collaborations not
included in this thesis is given below:

• Chen, X., Pawlowski, N., Glocker, B., and Konukoglu, E. (2021). “Normative ascent with local
gaussians for unsupervised lesion detection”. In: Medical Image Analysis – (Chen et al. 2021) 10

• Roy, A. G. et al. (2021). “Does Your Dermatology Classifier Know What It Doesn’t Know? De-
tecting the Long-Tail of Unseen Conditions”. In: arXiv preprint arXiv:2104.03829 – (Roy et al.
2021)

• Monteiro, M., Folgoc, L. L., Castro, D. C. de, Pawlowski, N., Marques, B., Kamnitsas, K., Wilk,
M. van der, and Glocker, B. (2020). “Stochastic Segmentation Networks: Modelling Spatially 15

Correlated Aleatoric Uncertainty”. In: Advances in Neural Information Processing – (Monteiro
et al. 2020)

• Charakorn, R., Thawornwattana, Y., Itthipuripat, S., Pawlowski, N., Manoonpong, P., and Dilok-
thanakul, N. (2020). “An explicit local and global representation disentanglement framework
with applications in deep clustering and unsupervised object detection”. In: arXiv preprint 20

arXiv:2001.08957 – (Charakorn et al. 2020)

• Chen, X., Pawlowski, N., Glocker, B., and Konukoglu, E. (2019b). “Unsupervised Lesion Detec-
tion with Locally Gaussian Approximation”. In: International Workshop on Machine Learning in
Medical Imaging – (Chen et al. 2019b)

• Dilokthanakul, N., Kaplanis, C., Pawlowski, N., and Shanahan, M. (2019). “Feature Control as 25

Intrinsic Motivation for Hierarchical Reinforcement Learning”. In: IEEE Transactions on Neural
Networks and Learning Systems – (Dilokthanakul et al. 2019)

• Antoniou, A., Pawlowski, N., Turner, J., Owers, J., Mellor, J., and Crowley, E. J. (2019). “Meta-
meta-learning for Neural Architecture Search through arXiv Descent”. In: Proceedings of the
2019 ACH Special Interest Group on Harry Queue Bovik (SIGBOVIK). Association for Computa- 30

tional Heresy – (Antoniou et al. 2019)

• Lee, M. C., Petersen, K., Pawlowski, N., Glocker, B., and Schaap, M. (2019). “TETRIS: Template
Transformer Networks for Image Segmentation with Shape Priors”. In: IEEE Transactions on
Medical Imaging – (Lee et al. 2019)

• Lee, M. C., Petersen, K., Pawlowski, N., Glocker, B., and Schaap, M. (2019). “Template Trans- 35
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1.3. Publications and Research Context Introduction

former Networks for Image Segmentation”. In: Medical Imaging with Deep Learning Abstract
track – (Lee et al. 2019)

• Meng, Q., Pawlowski, N., Rueckert, D., and Kainz, B. (2019). “Representation Disentanglement
for Multi-task Learning with application to Fetal Ultrasound”. In: arXiv preprint arXiv:1908.07885
– (Meng et al. 2019)5

• Bakas, S. et al. (2018). “Identifying the best machine learning algorithms for brain tumor seg-
mentation, progression assessment, and overall survival prediction in the BRATS challenge”.
In: arXiv preprint arXiv:1811.02629 – (Bakas et al. 2018)

• Rajchl, M., Pawlowski, N., Rueckert, D., Matthews, P. M., and Glocker, B. (2018). “NeuroNet:
Fast and Robust Reproduction of Multiple Brain Image Segmentation Pipelines”. In: Medical10

Imaging with Deep Learning – (Rajchl et al. 2018)

• Valindria, V. V., Pawlowski, N., Rajchl, M., Lavdas, I., Aboagye, E. O., Rockall, A. G., Rueckert,
D., and Glocker, B. (2018). “Multi-Modal Learning from Unpaired Images: Application to Multi-
Organ Segmentation in CT and MRI”. in: IEEE Winter Conference on Applications of Computer
Vision (WACV) – (Valindria et al. 2018)15

• Bocklisch, T., Faulker, J., Pawlowski, N., and Nichol, A. (2017). “Rasa: Open source language
understanding and dialogue management”. In: arXiv preprint arXiv:1712.05181 – (Bocklisch et
al. 2017)

• Goldsborough, P., Pawlowski, N., Caicedo, J. C., Singh, S., and Carpenter, A. E. (2017). “Cyto-
GAN: Generative Modeling of Cell Images”. In: NIPS Workshop on Machine Learning for Com-20

putational Biology – (Goldsborough et al. 2017)

• Pawlowski, N., Jaques, M., and Glocker, B. (2017b). “Efficient variational Bayesian neural net-
work ensembles for outlier detection”. In: ICLR Workshop Track – (Pawlowski et al. 2017b)
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Chapter 2

Background
This chapter provides a short introduction to a few core topics that will reoccur throughout this
thesis. The chapter begins by introducing some basic concepts of probabilistic modelling1, in- 5

cluding Bayesian inference and variational approaches. It then explores the use of deep learning
techniques for imaging applications, in particular with a focus on medical images. Lastly, we touch
upon the use of neural networks to build various types of deep generative models.

2.1 Probabilistic Modelling
Most of modern deep learning aims to model probabilities of observations of one or multiple vari- 10

ables. In the field of imaging applications this could be the probability of an image being observed
as well as the conditional probability of an image presenting a specific property. The framework
for all those applications can be explained with relatively simple scenarios.

Similar to modelling the probability of an image could be the modelling of the probability of another
event occurring, e.g. the outcome of a coin toss or the height of a person from the overall popula- 15

tion. To model this unconditional probability we usually chose a class of probability distributions
that we believe to describe the observed data. In the case of modelling a coin toss this could be a
Bernoulli distribution, while we might model the height of people as a Gaussian distribution.

Given a set of observations X = x1, . . . , xn corresponding to the outcomes of the coin tosses,
we would optimise the likelihood of the assumed Bernoulli distribution that models the probability 20

1While this chapter introduces some concepts of probabilistic modelling, it still relies on a basic understanding of
probabilities. We refer to a comprehensive introduction such as (Bishop 2006).
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2.1. Probabilistic Modelling Background

of the outcome of a single coin toss:

p(x) = πx(1− π)(1−x) , (2.1)

where π is the probability of the coin toss coming out heads. To estimate the parameter π we can
apply maximum likelihood estimation (MLE) which aims to find π such that the likelihood of all
observations is maximised:

arg max
π

n∏
i=1

p(xi) . (2.2)

This is equivalent to maximising the log-likelihood, which often is easier to handle because the5

product turns into a summation:

arg max
π

n∑
i=1

log p(xi) =
n∑
i=1

xi log π + (1− xi) log 1− π . (2.3)

By optimising the log-likelihood one can recover the well known equation that π is the expectation
of the observed values Exi∼X [xi]:

d

dπ

n∑
i=1

log p(xi) =
d

dπ

n∑
i=1

xi log π + (1− xi) log 1− π , (2.4)

=

n∑
i=1

xi

π
+

n∑
i=1

1− xi

1− π
, (2.5)

π =
1

n

n∑
i=1

xi . (2.6)

Modelling coin tosses is relatively straight forward. However, many practical applications of statis-
tical modelling are slightly more complicated and study the relationship between multiple variables.10

As such, questions about what is visible in an image deal with conditional probabilities of the type
p(y |x), where y is the visible property and x is the image. One simple way of modelling those
conditional probabilities is the use of linear regression, where we chose to model y as the linear
combination of the input variables x = (x1, . . . , xD)T or transformations of them, φ(x), as well
as some zero-centred Gaussian noise ε ∼ N (0, σ2):15

y(x, θ) = θ0 +
M−1∑
j=1

θjφj(x) + ε, ε ∼ N (0, σ2) , (2.7)
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2.1. Probabilistic Modelling Background

where θ are the M learned parameters. We note that in this formulation the regression is linear
only with respect to the parameters θ but not the inputs x. For ease of notation we define a dummy
function φ0(x) = 1, so that we can write:

y(x,w) =
M−1∑
j=0

θjφj(x) = θTφ(x) + ε, ε ∼ N (0, σ2) , (2.8)

where θ = (θ0, . . . , θM−1)
T and φ = (φ0, . . . , φM−1)

T . The choice of φ depends on the problem
at hand and many machine learning applications naturally apply some forms of preprocessing or 5

feature extraction to the original variables x. A simple example could be polynomial regression
in which φj(x) = xj . Linear regression can also be estimated using the maximum likelihood
principle. The Gaussian noise model provides a Gaussian likelihood for the observations:

p(y |x, θ) = N (y; θTφ(x), σ2) , (2.9)

which can be optimised for θ and yields the solution

arg max
θ
p(Y |X, θ) =

(
φT (X)φ(X)

)−1
φT (X)Y . (2.10)

2.1.1 Bayesian Inference 10

So far we have considered the modelling of the probabilities of observed variables. However, how
do we chose the exact model to use? Which functionsφ should be included? How many parameters
should the model have? Those questions cannot simply be answered by optimising the likelihood of
the observed data as it could lead to overly complex models and overfitting. One potential solution
to this problem is the use of held-out tuning data. However, this might be costly to acquire. Instead 15

we treat our model in a Bayesian way in which we consider the distribution over the parameter θ
as well.

First, we need to capture our assumptions about the parameters θ in a prior distribution p(θ).
For simplicity, we choose a Gaussian prior which also is the corresponding conjugate prior to our
previously used likelihood p(y |x, θ): 20

p(θ) = N (θ;µ0,Σ0) , (2.11)

where µ0 is the prior mean and Σ0 is the corresponding prior covariance of the parameters.

We are interested in finding the posterior distribution p(θ |D) over the parameters θ given the ob-
served dataD = (x(1), y(1)), . . . , (x(N), y(N)). Following Bayes’ rule:

p(θ |D) =
p(D|θ)p(θ)

p(D)
= p(Y |X, θ)p(θ)/Z , (2.12)
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2.1. Probabilistic Modelling Background

we can express the posterior p(θ |D) in terms of the likelihood p(Y |X, θ), a prior p(θ) and a
normalising constant Z . Because both those distributions are Gaussian we can analytically find
the solution as:

p(θ |D) = N (θ;µN ,ΣN) , (2.13)

with

µN = ΣN(Σ−10 µ0 +
1

σ2
φTY ) (2.14)

Σ−1N = Σ−10 +
1

σ2
φTφ . (2.15)

One special case is the maximum a posteriori (MAP) solution, which in the case of Gaussian dis-
tributions coincides with the mean θMAP = µN . To use the posterior weight distribution p(θ |D)5

to make predictions for a new datapoint x′ we marginalise over the parameters:

p(y |X) =

∫
p(y |x′, θ)p(θ |D)dθ , (2.16)

which again can be solved by the manipulation of Gaussian distributions for which we refer to
(Bishop 2006).

2.1.2 Variational Inference
The previous subsection derived the solution to the posterior parameter distribution with conjugate10

distributions. However, let us consider the case of Bayesian Logistic regression. Instead of working
with a Gaussian likelihood for p(y |x, θ), we are now using a Bernoulli likelihood to model binary
outcomes. For this model there is no convenient conjugate prior to the posterior distribution of
the model’s parameters that we can use. Therefore we cannot easily find the posterior parameter
distribution analytically. Instead we can simplify the problem by approximating the true posterior15

distribution with a simpler distribution. One potential method is called variational inference or
variational Bayes.

Suppose we observe some data D = (x(1), y(1)), . . . , (x(N), y(N)) that we want to model with
some likelihood p(y |x, θ), a prior on the parameters p(θ), and a simpler approximate distribution
qϕ(θ) with some variational parameters ϕ. We can then derive a bound on the likelihood of the20

observed data as follows:
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2.2. Deep Learning for Imaging Background

log p(y |x) = log

∫
p(y |x, θ)p(θ |D)dθ (2.17)

= log

∫
qϕ(θ)

qϕ(θ)
p(y |x, θ)p(θ |D)dθ (2.18)

= log

∫
qϕ(θ)

p(θ |D)

qϕ(θ)
p(y |x, θ)dθ (2.19)

≥
∫
qϕ(θ) log

[
p(θ |D)

qϕ(θ)
p(y |x, θ)

]
dθ (2.20)

≥ Eqϕ(θ)[p(y |x, θ)]−KL(qϕ(θ)‖p(θ |D)) , (2.21)

whereEqϕ(θ)[p(y |x, θ)] is the expected likelihood of the observed data under the approximate pos-
terior and KL(qϕ(θ)‖p(θ |D)) is the Kullback-Leibler divergence between the approximate poste-
rior qϕ(θ) and the true posterior p(θ |D). The step between Eq. (2.19) and Eq. (2.20) applied the
Jensen inequality (Jensen 1906). The predictive distribution can be approximated using Monte-
Carlo sampling: 5

p(y′ |x′) = Eqϕ(θ)[p(y′ |x′, θ)] ≈
1

K

K∑
i=1

p(y′ |x′, θ(i)) ; θ(i) ∼ qϕ(θ) . (2.22)

We will find applications of variational inference throughout this thesis: applied to the estimation of
the weights of neural networks in Chapter 4 and when used in the form of variationel autoencoders
(see Section 2.3.2) in Chapter 5 and Chapter 6.

2.2 Deep Learning for Imaging
Predictions from images can be modelled similarly to the regression examples in the previous 10

chapter. However, the spatial structure of images, represented as grids of pixels or voxels, as
well as their high dimensionality2 mean that simple linear models only achieve mediocre modelling
performances. Instead, progress has been achieved by applying convolutional neural networks
(CNNs) and most recently self-attention based architectures to imaging related tasks.

The curation of clean and easily accessible datasets facilitated the progress in developing these 15

methods. The development of digit recognition systems on the MNIST dataset (LeCun et al. 1998a)
in the 1990s led to one of the first popular CNNs (LeCun et al. 1998b) and the MNIST dataset is
still used today as a testbed for early ideas. A submission to the ImageNet competition (Deng et
al. 2009) marked a breakthrough for CNN-based approaches with AlexNet (Krizhevsky et al. 2012)
which saw increasingly complicated network architectures developed year on year (He et al. 2016a; 20

2Images often contain thousand to millions of pixels.
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2.2. Deep Learning for Imaging Background

Huang et al. 2017b; Simonyan and Zisserman 2015). Most recently, self-attention, with its ability to
model long-range relations, has been adapted from its use in natural language processing (Vaswani
et al. 2017) to imaging problems (Dosovitskiy et al. 2020) and its popularity is growing.

Throughout this thesis various common imaging datasets are used. Specifically, Chapters 3, 4
and 6 use the MNIST (LeCun et al. 1998a) dataset and Chapter 4 uses the CIFAR-10 (Krizhevsky5

2009) dataset. MNIST contains images of handwritten digits with an approximately uniform distri-
bution over all 10 digits. It consists of 60.000 training images and 10.000 test images. CIFAR-10
consists of 50.000 training and 10.000 test images, totalling 6.000 images across 10 different
classes. Other less common datasets are described in the experimental sections of the following
chapters.10

2.2.1 Medical Images
A lot of regular computer vision research works on problems relating to natural images from clean
and well defined datasets. However, the field of medical image analysis covers a wide range of
imaging modalities from two dimensional images such as ultrasound or histopathology to multi-
modal and temporal magnetic resonance image (MRI) sequences. Each of those modalities comes15

with its own intricacies and often requires expert knowledge to be correctly handled. Additionally,
medical imaging datasets often only contain a limited amount of images due to privacy constraints,
acquisition, or labelling costs. Naive handling of medical imaging datasets often leads to subopti-
mal results and many tools have been developed to deal with those special requirements – most
noteworthy in the space of deep learning are NiftyNet (Gibson et al. 2018) and DLTK (Pawlowski20

et al. 2017c) that might have been the first general purpose software packages designed to ease
the application of deep learning algorithms to medical images. Arguably, those packages built the
foundation for later developments such as MONAI (MONAI Consortium 2020) or torchIO (Pérez-
Garcı́a et al. 2021). These packages deal with various common problems:

Size of images: Some image modalities such as computed tomography (CT) can produce very25

detailed images of biological structures of resolutions below 1mm3 that lead to volumes with more
than 512 · 512 · 128 = 33, 554, 432 voxels. Training state-of-the-art deep learning algorithms
on those volumes has memory requirements that go beyond many recent hardware accelerators,
mostly GPUs. Instead, one common approach is to break the task down into subtasks that can be
solved on sub-volumes (“patches”). Image segmentation and object detection are tasks that lend30

themselves particularly well to this approach, because ground truth labels are available on a local
(i.e. pixel) level rather than only a global (i.e. image) level. The splitting of an image with only global
labels into subtasks would introduce label noise as there is no information as to which part of the
image causes the label.
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2.3. Deep Generative Modelling for Imaging Background

Class imbalances: Given the acquisition and labelling costs of medical images, datasets are
often of small size. This also often leads to fewer samples for some pathologies – especially if
they are rare. Similarly, some anatomical or pathological structures are by nature smaller than
others. Both those properties can lead to class-imbalances. A naive but still useful solution to
this problem is to show rare or small structures more often than they naturally occur to balance 5

the class probabilities. This approach works well in conjunction with the patch-based training to
handle the large size of the images.

Imaging coordinates: Medical images are acquired in a way to help clinicians diagnose and treat
a patient’s medical condition. As such the positioning and orientation of the images can hugely vary
due to other conditions that might prevent the standard procedure to not harm a patient further. 10

Additionally, different scanners or scanning protocols can lead to different resolutions – that might
also vary across spatial dimensions. Common preprocessing steps include mapping the original
images into a common space. Different resolutions (or voxel spacings) are often resampled into
images with common isotropic spacing using classic methods such as bilinear sampling. The field
of image registration deals with the problem of ensuring common orientation. Here, an image of 15

the dataset or a set of reference images for the shown anatomical structure (a so-called atlas)
is used as a reference, e.g. brain images are commonly registered to the MNI atlas (Fonov et al.
2011). The other images are then deformed to increase the similarity between the deformed and
the reference image. The deformations are often constrained to be affine or rigid.

Image contrast: Different image modalities exhibit different contrasts that highlight different 20

structures or properties depending on the underlying imaging physics. While the voxel intensities
of some modalities do not have interpretable units associated with them, others such as quantita-
tive MR or CT can be directly interpreted. CT intensities are usually measured in Hounsfield units
that correspond to the radiodensity of the measured volume. As such, one can deduct possible
substances or tissue types from the measured radiodensity. On the other hand, non-quantitative 25

MRI might require sophisticated intensity normalisation routines.

The following chapters of this thesis will make use of various of these common preprocessing
approaches when dealing with medical images. Specifically, we handle histopathology images in
Section 3.1 and Section 5.3, brain CT images in Section 5.2, brain MRI in Section 3.2, Section 5.1
and Chapter 6. 30

2.3 Deep Generative Modelling for Imaging
In Section 2.1 we touched upon the unconditional modelling of a data distribution when we consid-
ered the coin toss example. The resulting Bernoulli distribution can be thought of as a generative
model of the data: we can sample from it to simulate throwing a coin and will obtain a comparable
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2.3. Deep Generative Modelling for Imaging Background

result. Now we want to apply similar techniques to building generative models of images. Simple
approaches such as modelling small images as multivariate Gaussian distributions are capable of
achieving baseline results. However, those approaches quickly reach their limits with increasing
image sizes, multiple channels (e.g. colours), and the fact that they might not capture multiple
modes of the image space. Advances in deep learning have not only led to progress in predictive5

modelling (see Section 2.2) but also improved generative models of high-dimensional data.

2.3.1 Normalising Flows
One of the most direct approaches of modelling a target distribution is through the use of invertible
transformations on random variables and the application of the change of variable formula for
probability densities:10

p(x) = p(z)|z=g−1(x) · |det∇g−1(x)| = p(z)

|det∇g(z)|

∣∣∣∣
z=g−1(x)

, (2.23)

where z ∈ Z ⊆ RD is a local latent variable to x ∈ X ⊆ RD , p(z) is the probability density of z,
and we assume g : Z → X to be a diffeomorphic transformation from z to x.

In machine learning, g is a parametrised function and the base density p(z) is often assumed to be
a simple and easy to evaluate distribution. This allows the fitting of the parameters of g to maximise
the likelihood of observations of x that are mapped back into the space of the base distribution15

p(z) via the inverse transformation g−1. This type of model that maps a complex distributions to
a base distribution is called a normalising flow.

However, the calculation of the Jacobian determinant det∇g is generally computationally costly
as it scales cubically in the data dimensionalityD, which makes it unsuitable for high-dimensional
data. To overcome this limitation, it is possible to design transformations g in a way that allow20

for more computationally efficient calculation of the determinant due to specific structures of
the Jacobian ∇g, e.g. diagonal, triangular or block matrices offer easier computation of deter-
minants.

Restricting the form of the Jacobian also restricts the flexibility of the functions g can model.
Rather than relying on a single transformation to map from x to z we can stack multiple learnable25

transformations g1, . . . , gL as compositions of diffeomorphisms are also diffeomorphic. Anal-
ogously to neural networks, this allows for construction of more complex transformations from
simple components with tractable Jacobian determinant:

x = g(z) = (gL ◦ . . . g1)(z) (2.24)

Figure 2.1 exemplifies the likelihood of a bivariate normal transformed by the application of multiple
planar flows (Rezende and Mohamed 2015). The left-most graphic shows the likelihood of bivariate30
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2.3. Deep Generative Modelling for Imaging Background

Figure 2.1: Visualisation of the likelihood of a bivariate Normal distribution (left) being transformed
by the repeated application of planar flows (Rezende and Mohamed 2015). A single flow only
slightly changes the shape of the base distribution, whereas the stacking of multiple flows changes
the normal distribution to a bimodal distribution (right).

Normal base distribution, while the other pictures show the result of applying a planar flow to
the previous distribution – by stacking multiple flows one can transform the unimodal Normal
distribution into a more complex bimodal distribution in the graphics on the right.

There exists an ever growing amount of literature proposing novel functional forms as elementary
transformations. We refer to a recent review on normalising flows (Papamakarios et al. 2019) for 5

more details. In this thesis, we apply normalising flows to the task of outlier detection in Section 5.3
and causal generative modelling in Chapter 6.

2.3.2 Variational Autoencoders
Compared to normalising flows, variational autoencoders (VAEs) (Kingma and Welling 2014; Rezende
et al. 2014) allow for less restrictive forms of models and therefore lose the ability to directly cal- 10

culate the likelihood of observations x. VAEs assume a latent variable model in which a sample x
of our distribution of interest is generated by first sampling a value z from some prior distribution
p(z) over the local latent variable and then sampling from the conditional distribution p(x|z). To
allow learning of this model, we assume both the prior p(z) and the conditional likelihood p(x |z)

to be differentiable and of parametric form pθ∗(z) and pθ∗(x|z) where θ∗ are the true but unknown 15

parameters.

As seen previously in Section 2.1.2, those type of models only have analytical solutions in few spe-
cial cases. Instead, VAEs approximate the true data generating process by adapting the variational
Bayes algorithm. The algorithm optimises the variational lower bound

log pθ(x) ≥ Eqϕ(z|x)[log pθ(x |z)]−KL(qϕ(z |x)‖ pθ(z)) , (2.25)

where qϕ(z |x) is an amortised variational approximation. Optimisation of this lower bound using 20

the usual naive Monte Carlo estimate of the gradient:

∇ϕEqϕ(z)[f(z)] = Eqϕ(z)[f(z)∇ log qϕ(z)] , (2.26)

is known to be of high variance (Paisley et al. 2012) and can therefore cause issues during optimi-
sation. Instead, it is possible to reparametrise the random variable z ∼ qϕ(z |x) using a diffeomor-
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2.3. Deep Generative Modelling for Imaging Background

phic transformation3 gϕ(ε, x) and some auxiliary noise variable ε ∼ p(ε). We can now replace z
by gϕ(ε, x) and approximate expectations over distributions of qϕ(z |x) as expectations over p(ε):

Eqϕ(z)[f(z)] = Ep(ε)[f(gϕ(ε, x))] ≈ 1

L

L∑
l=1

f
(
gϕ(ε(l), x)

)
; ε(l) ∼ p(ε) , (2.27)

which also allows for simple calculation of gradients with respect to ϕ. This reparameterisation is
often referred to as the reparameterisation trick. In practice, the prior p(z) and variational poste-5

rior q(z |x) are often chosen to be independent Normal distributions. Then, g becomes an affine
transformation of a unit Normal p(ε) = N (0, 1). We apply VAEs in Chapter 5 to detect outliers in
medical images and in Chapter 6 to build causal generative models.

3This uses the same principle as normalising flows.
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Chapter 3

Extracting Information from Small Image
Regions

This chapter is based on the following publications:

(a) Pawlowski, N., Bhooshan, S., Ballas, N., Ciompi, F., Glocker, B., and Drozdzal, M. (2019).
“Needles in Haystacks: On Classifying Tiny Objects in Large Images”. In: arXiv preprint
arXiv:1908.06037 – (Pawlowski et al. 2019)

(b) Pawlowski, N. and Glocker, B. (2019). “Is Texture Predictive for Age and Sex in Brain MRI?”.
In: Medical Imaging with Deep Learning Abstract track – (Pawlowski and Glocker 2019)

The work on the paper (Pawlowski et al. 2019) was conducted during a research internship at
Facebook AI Research.

The code for all experiments is available at https://github.com/facebookresearch/
Needles-in-Haystacks and https://github.com/pawni/MedicalBagNet.

Image analysis has largely advanced due to the application of deep learning techniques to a wide 5

range of problems, from image classification to object detection and image captioning. Many of
these works focus on natural images with clearly visible objects that are classified, detected or
described. However, specialised application domains such as medical imaging (see Section 2.2.1)
harbour different properties of the objects or structures of interest. In one extreme, the task of
interest might require the analysis of multiple instances of similar, potentially tiny, regions within 10

given images (a field known as multiple instance learning), whereas in other extremes, the task
requires the analysis of large regions or the relation between the parts of such a region. An example
for such a task is the grading of whole-slide histopathology images. The grading describes the
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3.1. Classifying small regions in big images Patches

severity of the cancer that might be present on the images and is dependent on the total amount
of individual cancerous cells.

This chapter investigates the capability of convolutional neural networks to extract information
from small parts of images. The first part of the chapter tackles the problem of classifying big
images where only small regions are informative about the overall class label1. This section sys-5

tematically investigates how different choices in the design of the neural network architecture and
its training impact the learning capabilities in this special scenario. The study is conducted on a
synthetic dataset based on MNIST (LeCun et al. 1998a) that allows for very controlled image prop-
erties as well as a medical dataset that is derived from the real-world CAMELYON (Bejnordi et al.
2017) dataset containing histopathology images. We find that the naive application of CNNs fails10

in the extreme setting where we want to classify tiny objects in large images due to the low signal
to noise ratio. Furthermore, we propose some countermeasures to this behaviour but do not offer
a complete solution in the case, when there is no localisation information available. One of these
countermeasures builds on restricting the receptive field of the neural network to ensure that the
network focuses on relevant features rather than spurious ones.15

The second part of this chapter studies how the restriction of the receptive field of a network
impacts the performance and interpretability of a simple medical imaging task: predicting the age
and biological sex from three dimensional brain MRI scans from the CamCAN dataset (Taylor et
al. 2017). This approach allows us to ask questions like ”Is texture information in brain MRI scans
predictive for the age and sex?” as well as ”Do localised predictions due to restricted receptive fields20

improve the interpretability of neural network predictions?”. We find that even the texture of small
patches of MRI scans contain information about the age and biological sex of subjects. However,
the localised predictions turn out to be hard to interpret and do not immediately improve human
understanding.

3.1 Classifying small regions in big images25

Convolutional Neural Networks (CNNs) are the current state-of-the-art approach for image clas-
sification (He et al. 2016a; Huang et al. 2017b; Krizhevsky et al. 2012; Simonyan and Zisserman
2015). The goal of image classification is to assign an image-level label to an image. Typically,
it is assumed that an object (or concept) that correlates with the label is clearly visible and oc-
cupies a significant portion of the image (Deng et al. 2009; Krizhevsky 2009; LeCun et al. 1998a).30

Yet, in a variety of real-life applications, such as medical image or hyperspectral image analysis,
only a small portion of the input correlates with the label, resulting in low signal-to-noise ratio. We
define this input image signal-to-noise ratio as Object to Image (O2I) ratio. The O2I ratio range
for three real-life datasets is depicted in Figure 3.1. As can be seen, there exists a distribution

1Specifically, we study the extreme scenario where objects occupy less than 1% of the area of an image.
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MiniMIASCAMELYON17

ImageNet

ImageNet MiniMIAS CAMELYON17

Figure 3.1: Range of Object to Image (O2I) ratios [%] for two medical imaging datasets (CAME-
LYON17 (Ehteshami Bejnordi et al. 2017) and MiniMIAS (Suckling 1994)) as well as one standard
computer vision classification dataset (ImageNet (Deng et al. 2009)). The ratio is defined as
O2I =

Aobject
Aimage

, where Aobject and Aimage denote the area of the object and the image, respec-
tively. Together with O2I range, we display examples of images jointly with the object area Aobject
(in red).

shift between standard classification benchmarks and domain specific datasets. For instance,
in the ImageNet dataset (Deng et al. 2009) objects fill at least 1% of the entire image, while in
histopathology slices (Ehteshami Bejnordi et al. 2017) cancer cells can occupy as little as 10−6%

of the whole image.

Recent works have studied CNNs under different noise scenarios, either by performing random 5

input-to-label experiments (Arpit et al. 2017; Zhang et al. 2017) or by directly working with noisy
annotations (Han et al. 2018; Jiang et al. 2018; Mahajan et al. 2018). While, it has been shown that
large amounts of label-corruption noise hinders the CNNs generalization (Arpit et al. 2017; Zhang
et al. 2017), it has been further demonstrated that CNNs can mitigate this label-corruption noise
by increasing the size of training data (Mahajan et al. 2018), tuning the optimizer hyperparame- 10

ters (Jastrzkebski et al. 2017) or weighting input training samples (Han et al. 2018; Jiang et al.
2018). However, all these works focus on input-to-label corruption and do not consider the case of
noiseless input-to-label assignments with low and very low O2I ratios.

In this paper, we build a novel testbed allowing us to specifically study the performance of CNNs
when applied to tiny object classification and to investigate the interplay between input signal-to- 15

noise ratio and model generalization. We create two synthetic datasets inspired by the children’s
puzzle book Where’s Wally? (Handford 1987). The first dataset is derived from MNIST digits and
allows us to produce a relatively large number of datapoints with explicit control of the O2I ratio.
The second dataset is extracted from histopathology imaging (Ehteshami Bejnordi et al. 2017)
where we crop images around lesions and obtain a small number of datapoints with an approximate 20

control of the O2I ratio. To the best of our knowledge these datasets are the first ones designed to

Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 38Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 38Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 38



3.1. Classifying small regions in big images Patches

explicitly stress-test the behaviour of the CNNs in the low input image signal-to-noise ratio.

We develop a classification framework, based on CNNs, and analyze the effects of different factors
affecting the model optimization and generalization. Throughout an empirical evaluation, we make
the following observations:

– In our experimental setup, models can be trained in low O2I regime without using any pixel-5

level annotations and generalize if we leverage enough training data. However, the amount of
training data required for the model to generalize scales rapidly with the inverse of the O2I ratio.
When considering datasets with fixed size, we observe an O2I ratio limit in which all tested
scenarios fail to exceed random performance.

– We empirically observe that higher capacity models show better generalization. We hypothe-10

size that high capacity models learn to ignore the input noise structure and, as result, achieve
satisfactory generalization.

– We confirm the importance of model inductive bias — in particular, the model’s receptive field
size. Our results suggest that different pooling operations exhibit similar performance, for
larger O2I ratios; however, for very small O2I ratios, the type of pooling operation affects the15

optimization ease, with max-pooling leading to fastest convergence.

3.1.1 Datasets: Is there a Wally in an image?
To study the optimization and generalization properties of CNNs, we build two datasets: one de-
rived from the MNIST (LeCun et al. 1998a) dataset and another one produced by cropping large
resolution images from the CAMELYON dataset (Ehteshami Bejnordi et al. 2017). Each dataset al-20

lows to evaluate the behaviour of a CNN-based binary classifier when altering different data-related
factors of variation such as dataset size, object size, image resolution and class balance. In this
subsection, we describe the data generation process.

3.1.1.1 Digits: needle MNIST (nMNIST)

Inspired by the cluttered MNIST dataset (Ba et al. 2015), we introduce a scaled up, large resolution25

cluttered MNIST dataset, suitable for binary image classification. In this dataset, images are ob-
tained by randomly placing a varying number of MNIST digits on a large resolution image canvas.
We keep the original 28× 28 pixels digit resolution and control the O2I ratio by increasing the res-
olution of the canvas. Alternatively, we could fix canvas image resolution and downscale MNIST
digits; however, downscaling might reduce the object quality. As result, we obtain the following30

O2I ratios {19.1, 4.8, 1.2, 0.3, and 0.075}% that correspond to the following canvas resolutions
64×64, 128×128, 256×256, 512×512, and 1024×1024 pixels, respectively. As the object of in-
terest, we select the digit 3. All positive images contain exactly one instance of the digit 3 randomly
placed within the image canvas, while negative instances do not contain any instance. We also in-
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(a) O2I ratio =
19.1%

(b) O2I ratio = 4.7% (c) O2I ratio = 1.2% (d) O2I ratio = 0.3% (e) O2I ratio =
0.075%

(f) O2I ratio = 19.1% (g) O2I ratio = 4.7% (h) O2I ratio = 1.2% (i) O2I ratio = 0.3% (j) O2I ratio =
0.075%

Figure 3.2: Example images from our MNIST dataset with different O2I ratios. Top row images
represent positive examples — digit 3 is present (marked with red rectangle), while bottom row
depicts negative images. Note that for visualization purposes all images have been rescaled to the
same resolution.

clude distractors (clutter digits): any MNIST digit image sampled with replacement from a set of la-
bels {0, 1, 2, 4, 5, 6, 7, 8, 9}. We maintain approximately constant clutter density over different O2I
ratios. Thus, the following O2I ratios {19.1, 4.8, 1.2, 0.3, and 0.075}% correspond to 2, 5, 25, 100,

and 400 clutter objects, respectively. For each value of O2I ratio, we obtain 11276, 1972, 4040 of
training, validation and test images. We obtain those numbers by using the original MNIST data, we 5

use every digit 3 only once to generate positive images and we balance the dataset with negative
images. We present both positive and negative samples for different O2I ratios in Fig. 3.2.

3.1.1.2 Histopathology: needle CAMELYON (nCAMELYON)

The CAMELYON (Ehteshami Bejnordi et al. 2017) dataset contains gigapixel histopathology im-
ages with pixel-level lesion annotations from 5 different acquisition sites. The needle CAMELYON 10

(nCAMELYON) is designed as a derived binary classification task: Are there breast cancer metas-
tases in the image or not?. We rely on the pixel-level annotations within CAMELYON to extract sam-
ples for nCAMELYON with controlled O2I ratios. We use downsampling level 3 from the original
whole slide image using the MultiResolution Image interface released with the original CAMELYON
dataset. Namely, we generate datasets for O2I ratios in the range of (100 − 50)%, (50 − 10)%, 15

(10 − 1)%, and (1 − 0.1)%, and we crop different image resolutions with the size of 128 ×
128, 256 × 256, and 512 × 512 pixels. This results in training sets of about 20 − 235 unique
lesions per dataset configuration (see Table 3.1 and Table 3.2 for a detailed list of dataset sizes).
More precisely, for positive examples, we identify contiguous regions within the annotations, and
take 50 random crops around each contiguous region ensuring that the full contiguous region is 20
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(a) O2IR ∈ [50 −
100]%

(b) O2IR ∈ [10 −
50]%

(c) O2IR ∈ [1 −
10]%

(d) O2IR ∈ [0.1 −
1]%

(e) Negative Exam-
ple

(f) O2IR ∈ [50 −
100]%

(g) O2IR ∈ [10 −
50]%

(h) O2IR ∈ [1 −
10]%

(i) O2IR ∈ [0.1 −
1]%

(j) Negative Exam-
ple

(k) O2IR ∈ [50 −
100]%

(l) O2IR ∈ [10 −
50]%

(m) O2IR ∈ [1 −
10]%

(n) O2IR ∈ [0.1 −
1]%

(o) Negative Exam-
ple

Figure 3.3: Example images from our CAMELYON dataset for different crop sizes and O2I ratios.
We show crops with size 128× 128, 256× 256, and 512× 512 in the top, middle, and bottom row,
respectively. The green outlines show the cancerous regions. Note that for visualization purposes
all images have been rescaled to same resolution.

inside the crop, and total number of lesion pixels inside the crop are in the desired O2I ratio. The
negative crops are taken from healthy images randomly filtering for images that are mostly back-
ground using a heuristic that the average green pixel value in the crop is below 200. Since the
CAMELYON dataset contains images acquired by 5 different centers, we split training, validation
and test sets center-wise to avoid any contamination of data across the three sets. All crops com-5

ing from center 3 are part of the validation set, and all crops coming from center 4 are part of the
test set. We ensure the class balance by sampling an equal amount of positive and negative crops.
Once the crops were extracted, no pixel-wise information is used during training. Figure 3.3 shows
examples of images from nCAMELYON dataset, Table 3.1 presents number of unique lesions in
each dataset, and Table 3.2 depicts number of dataset images stratified for image resolution and10

O2I ratios. Because center 3 does not contain lesions of suitable size for crops of with resolution
128× 128 and O2I ratio (50− 100)%, we do not include those training runs in our analysis.
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Table 3.1: Number of unique lesions extracted for each set of the nCAMELYON data for different
O2I ratios and crop sizes.

Crop Size 128 256 512

O2I ratio Train Val Test Train Val Test Train Val Test

(50 - 100)% 20 0 8 27 2 13 23 5 13
(10 - 50)% 84 12 16 101 16 15 68 15 17
(1 - 10)% 176 17 18 227 17 18 235 21 15
(0.1 - 1)% 33 5 5 93 16 9 173 20 11

Table 3.2: Number of crops extracted for each set of the nCAMELYON data for different O2I ratios
and crop sizes. Note that the dataset is balanced (e. g. 50% are positive images and 50% are
negative). Moreover, for positive images we have relatively small number of unique cancer regions
as noted in Table 3.1.

Crop Size 128 256 512

O2I ratio Train Val Test Train Val Test Train Val Test

(50 - 100)% 1000 0 400 1350 100 650 1150 250 650
(10 - 50)% 4200 600 800 5050 800 750 3400 750 850
(1 - 10)% 8686 850 900 11270 850 900 11750 1050 750
(0.1 - 1)% 1488 247 207 4255 800 450 8312 965 550
negative 19608 6000 6100 19595 6000 6100 19574 6000 6100

3.1.2 Models
Our classification pipelines follow the BagNet (Brendel and Bethge 2019) backbone, which allows
us to explicitly control for the network receptive field size. Figure 3.4 shows a schematic of our
approach. As can be seen, the pipelines are built of three components: (1) topological embed-
ding extractor in which we can control for embedding receptive field, (2) global pooling operation 5

that converts the topological embedding into a global embedding, and (3) a binary classifier that
receives the global embedding and outputs binary classification probabilities. By varying the em-
bedding extractor and the pooling operation, we test a set of 48 different architectures.

3.1.2.1 Topological embedding extractor

The extractor takes as input an image I of size [wimg × himg × cimg] and outputs a topological 10

embeddingEt of shape [wenc×henc×cenc], wherew., h., and c. represent width, height and number
of channels. Due to the relatively large image sizes, we train the pipeline with small batch sizes
and, thus, we replace BagNet-used BatchNorm operation (Ioffe and Szegedy 2015) with Instance
Normalization (Ulyanov et al. 2016). In our experiments, we test 12 different extractor architectures
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Figure 3.4: Pipeline. Our pipeline is built of three components: (1) a CNN extracting topological
embedding, (2) a global pooling operation and (3) a binary classifier. See text for details.

obtained by adapting embedding extractor receptive field and capacity.

Specifically, we adapt the BagNet architecture proposed in (Brendel and Bethge 2019). An overview
of the architectures for the tested three receptive field sizes is shown in Table 3.3. We depict the
layers of residual blocks in brackets and perform downsampling using convolutions with stride
2 within the first residual block. Note that the architectures for different receptive fields differ5

in the number of 3 × 3 convolutions. The rightmost column shows a regular ResNet-50 model.
The receptive field is decreased by replacing 3 × 3 convolutions with 1 × 1 convolutions. We
increase the number of convolution filters by a factor of 2.5 if the receptive field is reduced to
account for the loss of the trainable parameters. Moreover, when testing different network capac-
ities we evenly scale the number of convolutional filters by multiplying with a constant factor of10

s ∈ {1/4, 1/2, 1, 2}.

3.1.2.2 Global pooling operation

The global pooling operation takes a topological embedding Et of shape [wenc × henc × cenc] as
an input and outputs a global image embedding EI of shape [1 × 1 × cenc]. In our experiments,
we are testing four different global pooling functions: max-pooling, mean-pooling, logsumexp and
soft attention. The max pooling operation simply returns the maximum value per each channel in
the topological embedding. This operation can be formally defined as: EI = maxw maxhE

t
[w,h].

Note, that we use subscript notation to denote dimensions of the embedding. The max pooling
operation has a spacing effect on gradient backpropagation, during the backward pass through
the model all information will be propagated through the embedding position that corresponds
to the maximal value. In order to improve gradient backpropagation, one could apply logsumexp
pooling, a soft approximation to max pooling. This pooling operation is defined as:

EI = log
wenc∑
w=1

henc∑
h=1

expEt
[w,h]. (3.1)

Alternatively, one could use an average pooling operation that computes the mean value for each
channel in the topological embedding. This pooling operation can be formally defined as fol-
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lows:

EI =
1

wenc

1

henc

wenc∑
w=1

henc∑
h=1

Et
[w,h]. (3.2)

Finally, the attention based pooling includes an additional weighting tensor a of dimension (wenc×
henc× cenc) that rescales each topological embedding before averaging them. This operation can
be formally defined as:

EI =
wenc∑
w=1

henc∑
h=1

a[w,h] · Et
[w,h] (3.3)

s.t.

wenc∑
w=1

henc∑
h=1

a[w,h] = 1 (3.4)

In our experiments, following Ilse et al. (2018), we parametrize the soft-attention mechanisms as
a[w,h] = softmax(f(Espat))[w,h], where f(·) is modelled by two fully connected layers with tanh-
activation and 128 hidden units.

3.1.3 Experimental results
In this subsection, we experimentally test how the CNNs’ optimization and generalization scale 5

with low and very low O2I ratios. First, we provide details about our experimental setup and then
we design experiments to provide empirical evidence to the following questions: (1) Image-level
annotations: Is it possible to train classification systems that generalize well in low and very low
O2I scenarios? (2) O2I limit vs. dataset size: Is there an O2I ratio limit below which the CNNs
will experience generalization difficulties? Does this O2I limit depend on the dataset size? (3) 10

O2I limit vs. model capacity: Do higher capacity models generalize better? (4) Inductive bias
- receptive field: Is adjusting receptive field size to match (or exceed) the expected object size
beneficial? (5) Global pooling operations: Does the choice of global pooling operation affect model
generalization? Finally, we inquire about the optimization ease of the models trained on data with
very low O2I ratios. 15

3.1.3.1 Experimental Setup

We adapted the published code from (Brendel and Bethge 2019) for the topological embedding
extractor and trained the model with a cross entropy loss. In all our experiments, we used RMSProp
(Tieleman and Hinton 2012) with a learning rate of η = 5 · 10−5 and decayed the learning rate
multiplying it by 0.1 at 80, 120 and 160 epochs 2. All models were trained with cross entropy loss 20

for a maximum of 200 epochs. We used an effective batch size of 32. If the batch did not fit
2Before committing to a single optimization scheme, we evaluated a variety of optimizers (Adam, RMSprop and

SGD with momentum), learning rates (η ∈ {1, 2, 3, 5, 7, 10} · 10−5), and 3 learning rate schedules.
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(a) O2I ratio performance. (b) nMNIST

Figure 3.5: a) Image-level annotations: Test set accuracy vs. O2I ratio for best models chosen
on the validation set. See text for more details. b) Testing the O2I limit: Test set performance as
a function of training dataset size for the nMNIST dataset.

into memory we used smaller batches with gradient accumulation. To ensure robustness of our
conclusions, we run every experiment with six different random seeds and report the mean and
standard deviation. Throughout the training we monitored validation accuracy, and reported test
set results for the model that achieved best validation set performance. Unless stated otherwise,
the capacity of the ResNet-50 network is about 2.3 · 107 parameters.5

3.1.3.2 Image-level annotations

For this experiment, we vary the O2I ratio on nMNIST and nCAMELYON to test its influence on the
generalization of the network. Figure 3.5a depicts the results for the best configuration accord-
ing to the validation performance: we use max-pooling and receptive field sizes of 33 × 33 and
9× 9 pixels for the nMNIST and nCAMELYON datasets, respectively. For the nMNIST dataset, the10

plot represents the mean over 6 random seeds together with the standard deviation; while for the
nCAMELYON dataset we report an average over both the 6 seeds and the crop sizes. We find that
the tested CNNs achieve reasonable test set accuracies for the O2I ratios larger than 0.3% for the
nMNIST datset and the O2I ratios above 1% for the histopathology dataset. For both datasets,
smaller O2I ratios lead to poor or even random test set accuracies.15

3.1.3.3 O2I limit vs. dataset size

We test the influence of the training set size on model generalization for the nMNIST data, to under-
stand the CNNs’ generalization problems for very small O2I ratios. We tested six different dataset
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(a) nMNIST (b) nMNIST

Figure 3.6: Testing the O2I limit: (a) mean validation set accuracy heatmap for max pooling
operation, and (b) minimum required training set size to achieve the noted validation accuracy. We
test training set sizes∈ {1400, 2819, 5638, 7500, 11276, 22552} and report the minimum amount
of training examples that achieve a specific validation performance pooling over different network
capacities.

sizes (1400, 2819, 5638, 7500, 11276, 22552) 3. Figure 3.5b depicts the results for max-pooling
and a receptive field of 33 × 33 pixels. We observe that larger datasets yield better generaliza-
tion and this increment is more pronounced for small O2I ratios. For further insights, we plot a
heatmap representing the mean validation set results 4 for all considered 02Is and training set sizes
(Fig. 3.6a) as well as the minimum number of training examples to achieve a validation accuracy 5

of 70% and 85% (Fig. 3.6b). We observe that in order to achieve good classification generalization
the required training set size rapidly increases with the decrease of the O2I ratio.

3.1.3.4 O2I limit vs. capacity

In this experiment, we train networks with different capacities — by uniformly scaling the initial
number of filters in convolutional kernels by [1

4
, 1
2
, 1, and 2]. We chose the maximum scaling factor 10

so that the largest resolution images still fit in the available GPU memory. For images with O2I ratio
of 0.07, the available GPU memory prevents testing networks with higher capacity. We show the
CNNs test set performances as a function of the O2I ratio and the network capacity in Fig. 3.7a
and Fig. 3.7b for the nMNIST (with 11k training points) and nCAMELYON data, respectively. On
nMNIST, we observe a clear trend, where the model test set performance increases with capacity 15

and this boost is larger for smaller O2Is. We hypothesize, that this generalization improvement
is due to the model ability to learn-to-ignore the input data noise; with smaller O2I there is more
noise to ignore and, thus, higher network capacity is required to solve the task. However, for the
nCAMELYON dataset, this trend is not so pronounced and we attribute this to the limited dataset
size (more precisely to the small number of unique lesions). These results suggest that collecting 20

a very large histopathology dataset might enable training of CNN models using only image level
annotations.

3We allow to reuse each digit 3 for larger training sets and select a subset for smaller training sets.
4More precisely, we plot the mean of all pipeline configurations that surpassed 70% training accuracy.
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(a) nMNIST (b) nCAMELYON

Figure 3.7: Testing the O2I limit: Subfigure (a) depicts the test set performance as a function of
training dataset size for the nMNIST dataset, while subfigure (b) shows the test set performance
as a function of model capacity for the nMNIST dataset and the nCAMELYON dataset, respectively.

(a) nMNIST (b) nCAMELYON

Figure 3.8: Inductive bias: for (a) the nMNIST dataset and (b) the nCAMELYON dataset. We report
only runs that fit the training data. Otherwise we report random accuracy and depict it with a texture
on the bars.

3.1.3.5 Inductive bias - receptive field

We report the test accuracy as a function of the O2I ratio and the receptive field size for nMINIST
in Fig. 3.8a and for nCAMELYON in Fig. 3.8b. Both plots depict results for the global max pooling
operation. For nMNIST, we observe that a receptive field that is bigger than the area occupied by one
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(a) nMNIST (b) nCAMELYON

Figure 3.9: Global pooling operations: for (a) the nMNIST dataset and (b) the nCAMELYON datset.
We report only runs that fit the training data. Otherwise we report random accuracy and depict it
with a texture on the bars.

single digit leads to best performances; for example, receptive fields of 33×33 and 177×177 pixels
clearly outperform the smallest tested receptive field of 9×9 pixels. However, for the nCAMELYON
dataset we observe that the smallest receptive field actually performs best. This suggests that
most of the class-relevant information is contained in the texture and that higher receptive fields
pick up more spurious correlations, because the capacity of the networks is constant. 5

3.1.3.6 Global pooling operations

In this experiment, we compare the performance of four different pooling approaches. We present
the relation between test accuracy and pooling function for different O2I ratios with a receptive
field of 33 × 33 pixels for nMNIST in Fig. 3.9a and 9 × 9 pixels for nCAMELYON in Fig. 3.9b.
On the one hand, for the nMNIST dataset, we observe that for the relatively large O2I ratios, all 10

pooling operations reach similar performance; however, for smaller O2Is we see that max-pooling
is the best choice. We hypothesize that the global max pooling operation is best suited to remove
nMNIST-type of structured input noise. On the other hand, when using the histopathology dataset,
for the smallest O2I mean and soft attention poolings reach best performances; however, these
outcomes might be affected by the relatively small nCAMELYON dataset used for training. 15
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Figure 3.10: Impact of the training set balance on model accuracy for different pooling operations
and receptive field sizes.

3.1.3.7 Class-imbalanced classification

In many medical imaging datasets, it is common to be faced with class-imbalanced datasets.
Therefore, in this experiment, we use our nMNIST dataset and test CNNs generalization under
moderate and severe class imbalanced scenario. We alter the training set class balance by alter-
ing the proportion of positive images in the training dataset and use the following balance values5

0.01, 0.1, 0.25, 0.5, 0.75, 0.9 and 0.99, where a value of 0.01 means almost no positive exam-
ples and 0.99 indicates very low number of negative images available at training time. Moreover,
we ensure that the dataset size is constant (≈ 11k) and only the class-balance is modified. We
run the experiments using the O2I ratio of 1.2%, three receptive field sizes (9 × 9, 33 × 33 and
177×177 pixels) and four pooling operations (mean, max, logsumexp and soft attention). For each10

balance value, we train 6 models using 6 random seeds and we oversample the underrepresented
class. The results are depicted in Fig. 3.10. We observe that the model performance drops as the
the training data becomes more unbalanced and that max pooling and logsumexp seem to be the
most robust to the class imbalance.

3.1.3.8 Increase of model capacity for small dataset sizes.15

We also tested the effect of model capacity increase while having access only to a small dataset
(3k class-balanced images) and contrast it with a larger dataset of≈ 11k training images. We run
this experiment on the nMNIST dataset using a network with 2.3 ·107 parameters using global max
pooling operation and there different receptive field sizes: 9 × 9, 33 × 33 and 177 × 177 pixels.
The results are depicted in Fig. 3.11. It can be seen that the model’s capacity increase does not20

lead to better generalization, for small size datasets of≈ 3k.

3.1.3.9 Optimization

In our large scale nMNIST experiments (when using ≈ 11k datapoints), we observed that some
configurations have problems fitting the training data 5. In some runs, after significant efforts put

5We did not observe optimization problems for small dataset sizes of the nMNIST nor for nCAMELYON.
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Figure 3.11: Impact of the network capacity on the generalization performance dependent on the
training set size for nMNIST at O2I ratio = 1.2%. The improvement based on the increased network
capacity shrinks with smaller training set.

into CNNs hyperparamenter selection, the training accuracy was close to random. To investigate
this issue further, we followed the setup of randomized experiments from (Arpit et al. 2017; Zhang
et al. 2017) and we substituted the nMNIST datapoints with samples from an isotropic Gaussian
distribution. On the one hand, we observed that all the tested setups of our pipeline were able to
memorize the Gaussian samples, while, on the other hand, most setups were failing to memorize 5

the same-size, nMNIST datataset for small and very small O2I ratios. We argue that the nMNIST
structured noise and its compositionality may be a “harder” type of noise for the CNNs than Gaus-
sian isotropic noise. To provide further experimental evidence, we depict average time-to-fit the
training data (in epochs) in Fig. 3.12a as well as number of successful optimizations in Fig. 3.12b
for different O2I ratios and pooling methods. Here, we define an optimization to be successful if 10

it the training set accuracy surpassed 99%.. We observe that the optimization gets progressively
harder with decreasing O2I ratio (with max pooling being the most robust). Moreover, we note that
the results are consistent across different random seeds, where all runs either succeed or fail to
converge.

3.1.3.10 Weakly supervised object detection: nMNIST 15

We test the object localization capabilities of the trained classification models by examining their
saliency maps. Figure 3.13 shows examples of the nMNIST dataset with the object bounding box
in blue and the magnitude of the saliency in red. We rescale the saliency to [0, 1] for better con-
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(a) nMNIST (b) nMNIST

Figure 3.12: nMNIST optimization: (a) number of training epochs needed to fit the 11k training
data and (b) the number of successful runs. The textured bars indicate that the model did not fit
the training data for all random seeds.

trast. However, this prevents the comparison of absolute saliency values across different images.
In samples containing an object of interest, the models correctly assign high saliency to the re-
gions surrounding the relevant object. On negative examples, the network assigns homogenous
importance to all objects.

We localise an object of interest as the location with maximum saliency. We follow (Oquab et5

al. 2015) to quantitatively examine the object detection performance using the saliency maps of
the models. We plot the corresponding average precision in Fig. 3.14. We find that the detection
performance deteriorates for smaller O2I ratios regardless of the method. This is aligned with the
classification accuracy. For small O2I ratios, max-pooling achieves the best detection scores. On
larger O2I ratios, logsumexp achieves the best scores.10

3.1.3.11 Weakly supervised object detection: nCAMELYON

We qualitatively show object detection on nCAMELYON in Figs. 3.15 to 3.18, for True Positives, True
Negatives, False Positives and False Negatives. We observe weak correlation between segmen-
tation maps and saliency maps, signifying that the classifier was able to focus on the object of
interest instead of looking at superficial signals in the data.15
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(a) y = 1, ŷ = 1 (b) y = 0, ŷ = 1 (c) y = 1, ŷ = 0 (d) y = 0, ŷ = 0

(e) y = 1, ŷ = 1 (f) y = 0, ŷ = 1 (g) y = 1, ŷ = 0 (h) y = 0, ŷ = 0

(i) y = 1, ŷ = 1 (j) y = 0, ŷ = 1 (k) y = 1, ŷ = 0 (l) y = 0, ŷ = 0

(m) y = 1, ŷ = 1 (n) y = 0, ŷ = 1 (o) y = 1, ŷ = 0 (p) y = 0, ŷ = 0

Figure 3.13: Example images from the nMNIST validation set and their corresponding saliency
maps in red. We generate the saliency maps by calculating the absolute of the gradients with
respect to the input image using max-pooling, a receptive field of 33, and ResNet-50 capacity.
From top to bottom, we show random examples for O2I ratios of {19.14, 4.79, 1.20, 0.30}%. We
annotate the object of interest with a blue outline. The captions show the true label y and the
prediction ŷ.

3.1.4 Related Work

3.1.4.1 Tiny Object Classification

Reasoning about tiny objects is of high interest in many computer vision areas, such as medical
imaging (Aresta et al. 2018; Ehteshami Bejnordi et al. 2017; Setio et al. 2017; Suckling 1994; Sudre
et al. 2018) and remote sensing (Pang et al. 2019; Xia et al. 2018). To overcome the low signal- 5

Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 52Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 52Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 52



3.1. Classifying small regions in big images Patches

(a) (b)

Figure 3.14: Average precision for detecting the object of interest using the saliency maps for
nMNIST. We adapt (Oquab et al. 2015) and localize an object by the maximum magnitude of the
saliency. We use the magnitude of the saliency as the confidence of the detection. We count
wrongly localised objects both as false positive and false negative. For images without object of
interest, the we increase the false positive count only. We plot results for max-pooling, a receptive
field of 33, a training set with 11276 examples and ResNet-50 capacity. (a) shows the dependence
of the AP on the pooling method usingRF = 33×33, (b) shows the dependence on the receptive
field using max-pooling.

to-noise ratio, most approaches rely on manual dataset “curation” and collect additional pixel-level
annotations such as landmark positions (Borovec et al. 2018), bounding boxes (Resta et al. 2011;
Wei et al. 2019) or segmentation maps (Ehteshami Bejnordi et al. 2017). This additional annotation
allows to transform the original needle-in-a-haystack problem into a less noisy but imbalanced
classification problem (Bándi et al. 2019; Lee and Paeng 2018; Wei et al. 2019). However, collecting5

pixel level annotations has a significant cost and might require expert knowledge, and as such, is
a bottleneck in the data collection process.

Other approaches leverage the fact that task-relevant information is often not uniformly distributed
across input data, e.g. by using attention mechanisms to process very high-dimensional inputs (Alma-
hairi et al. 2016; Ba et al. 2015; Katharopoulos and Fleuret 2019; Mnih et al. 2014). However, those10

approaches are mainly motivated from a computational perspective trying to reduce the computa-
tional footprint at inference time.

Some recent research has also studied attention based approaches both in the context of multi-
instance learning (Ilse et al. 2018) and histopathology image classification (Tomita et al. 2018).
However, neither of the works report the exact O2I ratio used in the experiments.15
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Figure 3.15: Example True Positive Images of nCAMELYON validation sets and their corresponding
segmentation maps with saliencies overlaid.

Figure 3.16: Example True Negative Image of nCAMELYON validation sets and corresponding
saliency map.

3.1.4.2 Generalization of CNNs

In this subsection, we briefly highlight the dimensions of optimization and generalization of CNN
that are handy in low O2I classification scenarios.
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Figure 3.17: Example False Negative Image of nCAMELYON validation sets and corresponding
segmentation map with saliency overlaid.

Figure 3.18: Example False Positive Image of nCAMELYON validation sets and corresponding
saliency map.

Model capacity. For fixed training accuracy, over-parametrized CNNs tend to generalize better (No-
vak et al. 2018). In addition, when properly regularized and given a fixed size dataset, higher ca-
pacity models tend to provide better performance (He et al. 2016b; Huang et al. 2017b). However,
finding proper regularization is not trivial (Goodfellow et al. 2016).

Dataset size. CNN performance improves logarithmically with dataset size (Sun et al. 2017). More-5

over, in order to fully exploit the data benefit, the model capacity should scale jointly with the dataset
size (Mahajan et al. 2018; Sun et al. 2017).

Model inductive biases. Inductive biases limit the space of possible solutions that a neural net-
work can learn (Goodfellow et al. 2016). Incorporating these biases is an effective way to include
data (or domain) specific knowledge in the model. Perhaps the most successful inductive bias10

is the use of convolutions in CNNs (LeCun and Bengio 1998). Different CNN architectures (e. g.
altering network connectivity) also lead to improved model performance (He et al. 2016b; Huang
et al. 2017b). Additionally, it has been shown on the ImageNet dataset that CNN accuracy scales
logarithmically with the size of the receptive field (Brendel and Bethge 2019).
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3.1.5 Discussion and Conclusions
Although low input image signal-to-noise scenarios have been extensively studied in the field of
signal processing (e.g. in tasks such as image reconstruction), less attention has been devoted
to low signal-to-noise classification scenarios. Thus, in this paper we identified an unexplored ma-
chine learning problem, namely image classification in low and very low signal-to-noise ratios. In 5

order to study such scenarios, we built two datasets that allowed us to perform controlled experi-
ments by manipulating the input image signal-to-noise ratio and highlighted that CNNs struggle to
show good generalization for low and very low signal-to-noise ratios even for a relatively elemen-
tary MNIST-based dataset. Finally, we ran a series of controlled experiments6 that explore both a
variety of CNNs’ architectural choices and the importance of training data scale for the low and 10

very low signal-to-noise classification. One of our main observation was that properly designed
CNNs can be trained in low O2I regime without using any pixel-level annotations and generalize if we
leverage enough training data; however, the amount of training data required for the model to gen-
eralize scales rapidly with the inverse of the O2I ratio. Thus, with our paper (and the code release)
we invite the community to work on data-efficient solutions to low and very low signal-to-noise 15

classification.

Our experimental study exhibits limitations: First, due to the lack of large scale datasets that al-
low for explicit control of the input signal-to-noise ratios, we were forced to use the synthetically
built nMNIST dataset for most of our analysis. As a real life dataset, we used crops from the
histopathology CAMELYON dataset; however, due to relatively a small number of unique lesions 20

we were unable to scale the histopathology experiments to the extent as the nMNIST experiments,
and, as result, some conclusions might be affected by the limited dataset size. Other large scale
computer vision datasets like MS COCO (Lin et al. 2014) exhibit correlations of the object of inter-
est with the image background. For MS COCO, the smallest O2I ratios are for the object category
“sports ball” which on average occupies between 0.3% and 0.4% of an image and its presence 25

tends to be correlated with the image background (e. g. presence of sports fields and players).
However, future research could examine a setup in which negative images contain objects of the
categories “person” and “baseball bat” and positive images also contain “sports ball”. Second, all
the tested models improve the generalization with larger dataset sizes; however, scaling datasets
such as CAMELYON to tens of thousands of samples might be prohibitively expensive. Instead, 30

further research should be devoted to developing computationally-scalable, data-efficient induc-
tive biases that can handle very low signal-to-noise ratios with limited dataset sizes. Future work,
could explore the knowledge of the low O2I ratio and therefore sparse signal as an inductive bias.
Finally, we studied low signal-to-noise scenarios only for binary classification scenarios; further
investigation should be devoted to multi-class problems. We hope that this study will stimulate the 35

research in image classification for low signal-to-noise input scenarios which are highly relevant
for biomedical imaging applications.

6We ran more than 750 experiments each with 6 different seeds.
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Table 3.3: Schematic of the architecture of the different topological embedding encoders used in
this paper. The operations and their corresponding parameters of the residual blocks are denoted
in brackets. The first block within each section performs downsampling using convolutions with
stride 2. We use InstanceNorm instead of BatchNorm and test different pooling methods after the
topological embeddings.
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3.2 Extracting information from patches in brain
scans

We explore whether texture information is sufficient for certain tasks in medical image analysis.
For this, we generalise BagNets to arbitrary regression tasks and 3D images and examine the per-
formance of different receptive fields. We apply BagNets to age regression and sex classification 5

tasks on T1-weighted brain MRI to examine the dependency of modern deep learning architectures
on local texture in these medical imaging tasks. We find that the bag-of-local-features approach
yields comparable results to larger receptive fields.

3.2.1 Method
BagNets (Brendel and Bethge 2019) are adaptations of the ResNet-50 architecture (He et al. 2016a), 10

that restrict the receptive field by replacing 3×3 convolutional kernels with 1×1 kernels. A regular
ResNet-50 has a receptive field of 177 pixels, whereas BagNets explore receptive fields of 9, 17
and 33 pixels. The use of small receptive fields enforces locality in the extracted features. After
extracting local features a global spatial average builds the bag-of-local-features and enforces the
invariance to spatial relations. The bag of features is then processed by a linear layer to provide 15

the final prediction. Because of the linearity of the average operation and the final linear layer, it
is possible to exchange the order of those operations, which enables the extraction of localised
prediction maps.

3.2.2 Experiments & Results
We test the BagNets on the public Cambridge Centre for Ageing and Neuroscience (CamCAN) 20

dataset (Taylor et al. 2017). The dataset contains T1- and T2-weighted brain MRI of 652 healthy
subjects within an age range of 18 to 87. The subjects are approximately uniformly distributed
across age and sex. The standard-deviation of the age across all subjects is 18.6 years. We only
use the T1-weighted scans for our experiments and randomly split the scans into training, validation
and test sets with 456, 65 and 131 subjects each. All scans have an isotropic resolution of 1 mm. We 25

use skull-stripped, bias-fiel corrected images and extract random crops of shape [128×160×160]

during training. We whiten the images with statistics extracted from within the brain mask.

We use the architecture from (Brendel and Bethge 2019) but replace 2D with 3D convolutions and
half the number of feature maps. We train the network with batch size 1 and accumulate gradients
over 16 batches. To alleviate the effects of small batches we use instance normalization (Ulyanov et 30

al. 2016) instead of batch normalization (Ioffe and Szegedy 2015). We use a cross-entropy loss for
the sex classification and MSE loss for the age regression. We use the Adam optimizer (Kingma
and Ba 2015) with a learning rate of η = 0.001, ε = 10−5 and employ an L2-regularization of
λ = 0.0001. We train the network for 500 epochs and decay the learning rate by a factor of 10

Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 58Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 58Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 58



3.2. Extracting information from patches in brain scans Patches

every 100 epochs. We use the checkpoint with the best validation performance for evaluation on
the test data.

Table 3.4 shows the mean absolute error (MAE) and accuracy for the age and sex prediction for
different receptive fields. We achieve a MAE between 3.86 − 5.53 years for age and an accuracy
between 80.9 − 84.0% for sex. Age regression has a stronger dependency on the receptive field5

than the sex classification. However, we find that the larger receptive field exhibits better training
performance and might be prone to overfitting.

Table 3.4: Results for the age regression and sex classification task for different receptive fields.
We report the mean absolute error for age and classification accuracy for sex. We find that small
receptive fields yield comparable results on those tasks.

Receptive Field Age Sex

(9mm)3 5.53 83.2%

(17mm)3 5.32 84.0%

(33mm)3 4.98 84.0%

(177mm)3 3.86 80.9%

We examine the local predictions on two examples from the test set in Fig. 3.19 for age regression
and Fig. 3.20 for sex classification. The sex classification predicts 0 for male and 1 for female.
The first row shows a 20 year old male subject, the second row shows an 80 year old female. The10

columns respectively show the middle slice of the T1-weighted MRI and the local predictions with
receptive fields 9, 17, 33 and 177. Similarly to (Brendel and Bethge 2019), we find that small receptive
fields lead to more localised predictions, whereas larger receptive fields show more spread out
predictions. Interestingly, the age regression exhibits very high variance predictions, where only
few very high values contribute to the mean prediction of the volume. Generally, we find that the15

local predictions we get from our model do not seem as interpretable as in (Brendel and Bethge
2019).
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Figure 3.19: Localised age prediction on a 20 year old male subject (first row) and 80 year old
female subject (second row). The columns show the middle slice of the T1-weighted MRI and the
localised predictions for receptive fields 9, 17, 33 and 177.

Figure 3.20: Localised sex classification on a 20 year old male subject (first row) and 80 year old
female subject (second row). The different columns show the middle slice of the T1-weighted MRI
and the localised predictions for receptive fields 9, 17, 33 and 177. The network predicts male as 0
and female as 1.

3.2.3 Discussion & Conclusion
We have generalised the concept of BagNets (Brendel and Bethge 2019) to the setting of 3D images
and general regression tasks. We have shown that a BagNet with a receptive field of (9mm)3 yields
surprisingly accurate predictions of age and sex from T1-weight MRI scans. However, we find that
localised predictions of age and sex do not yield easily interpretable insights into the workings of 5

the neural network which will be subject of future work. Further, we believe that more accurate
localised predictions could lead to advanced clinical insights similar to (Becker et al. 2018; Cole
et al. 2019).
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Chapter 4

Quantifying the Uncertainty of Deep
Learning Models

This chapter is based on the following publication:

(a) Pawlowski, N., Brock, A., Lee, M. C., Rajchl, M., and Glocker, B. (2017a). “Implicit Weight
Uncertainty in Neural Networks”. In: NeurIPS Workshop on Bayesian Deep Learning –
(Pawlowski et al. 2017a)

Code is available at https://github.com/pawni/BayesByHypernet.

While deep learning methods achieve state-of-the-art predictive performances across various do-5

mains, there is no conclusive approach of enabling AI-augmented human decision making. In
human-human interactions decisions are often made by form of discussion or argumentation that
include the mutual explanation of how an opinion was formed and which factors contributed to
the decision as well as sharing insights about potential gaps in the individual’s knowledge. The
previous chapter explored constraints to the neural network architecture as a way to offer crude10

explanations based on the ability to only produce localised predictions and combining them in sim-
ple ways. However, this leaves the question of how to equip neural networks with the capability
of saying “I don’t know” which is necessary to convey knowledge about the lack of knowledge. AI
models that know their limits and convey their certainty could lead to more trust in their predictions
and the output of a prediction’s certainty might even be necessary in safety-critical scenarios such15

as medical imaging.

Estimating the uncertainty of predictions of deep learning models is an active area of research
and calibrated prediction probabilities are critical for the safe and trustworthy deployment of deep
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learning systems to real world applications. One particular approach to enable reliable predictions
has been to rely on Bayesian methods to account for model uncertainty due to finite data by mod-
elling the full distributions of neural network weights rather than only using point estimates. This
approach either uses complex sampling techniques (Welling and Teh 2011) that are very computa-
tionally expensive or relies on approximations that use variational Bayes (see Section 2.1.2). Most 5

variational approaches only build very crude approximations to the true posterior distribution due
to the choice of variational distribution (Blundell et al. 2015) and therefore limit the reliability and
accuracy of the resulting deep learning methods.

This chapter proposes the usage of a more complex variational distribution that makes use of
recent advances in deep learning and approximate Bayesian computation: inspired by work on 10

hypernetworks (Brock et al. 2018; Ha et al. 2017) we use generative adversarial networks (GANs
(Goodfellow et al. 2014)) to implicitly model the posterior distribution of the weights of neural net-
works. We show with our experiments that this approach allows for highly complex posterior distri-
butions that yield competitive predictive performance while providing insights into what the neural
network does not know. 15

4.1 Introduction
Neural networks achieve state of the art results on a wide variety of tasks (LeCun et al. 2015), with
applications spanning image recognition (Hu et al. 2018), machine translation (Lample et al. 2018)
and reinforcement learning (Silver et al. 2017). Such success is often mitigated by the need for
vast troves of data, and a tendency towards poorly calibrated and overconfident predictions (Guo 20

et al. 2017). However, real-world decision making processes that aim to leverage neural networks
(e.g. medical applications, self-driving cars, etc.) are frequently faced with a dearth of data and
the need for reliable uncertainty estimates, as overconfidence in the wrong situation could prove
dangerous (Amodei et al. 2016).

To address the issue of overconfident predictions, recent works proposed approaches based on 25

calibration methods (Guo et al. 2017), frequentist interpretations of ensembles (Lakshminarayanan
et al. 2017; Osband et al. 2016), and approximate Bayesian inference (MacKay 1992; Welling and
Teh 2011). Of those approaches, Bayesian deep learning (BDL) offers a particularly principled ap-
proach to enable uncertainty estimates within the existing deep learning framework by aiming to
marginalise the model parameters. 30

The current research in BDL is primarily divided into variational methods (Blundell et al. 2015; Gal
and Ghahramani 2015; Louizos and Welling 2017) and Monte Carlo methods (Chen et al. 2014; Lu et
al. 2017; Welling and Teh 2011). We conducted a toy experiment (Fig. 4.1) that illustrates the issue of
low predictive uncertainty in unseen regions for regular deep learning methods (e.g. MAP estimate
and ensembles) as well as the more reliable uncertainty of Bayesian approximations. 35
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Figure 4.1: Toy experiment inspired by Hernández-Lobato and Adams (2015): Real function
(dashed line) with sampled data points (black dots). Hamiltonian Monte Carlo (HMC) is seen as
the ’gold standard’ in finding the true distribution. The proposed Bayes by Hypernet finds a good
trade-off between data fit and predictive uncertainty. MC-Dropout (Gal and Ghahramani 2015), deep
ensembles (Lakshminarayanan et al. 2017) and MAP produce a good fit but underestimate the pre-
dictive uncertainty. Multiplicative Normalizing Flows (MNF) (Louizos and Welling 2017) and Bayes
by Backprop (BbB) (Blundell et al. 2015) show a high predictive uncertainty but underfit the data.

Applying approximate Bayesian inference with neural networks was first studied by MacKay (1992)
and Neal (1995). Both remain relevant today with the Laplace approximation (MacKay 1992) being
one of the easiest to use Bayesian approximations to date and Hamiltonian Monte Carlo (Neal
1995) being one of the most widely employed Monte-Carlo methods. However, both methods scale
poorly to current neural network architectures due to the computational burden induced by the high5

dimensionality of the weight space.

4.1.1 Related Work
More recent methods improve the scalability of approximate inference methods and the complex-
ity of the approximations, introducing sampling-based methods like SGLD (Welling and Teh 2011)
or other minibatch-based sampling methods (Ma et al. 2015). Graves (2011) proposed a simple,10

but biased method to perform variational inference with a fully factorized posterior distribution.
This work was extended by Blundell et al. (2015) using the reparametrisation trick from Kingma
and Welling (2014) and scale-mixture priors to build a Gaussian variational approximation to the
true posterior. An Expectation Propagation (Minka 2001) based approach using a fully factorized
posterior approximation was proposed by Hernández-Lobato and Adams (2015). Dropout-based15

(Srivastava et al. 2014) approximate inference methods have been proposed employing Gaussian
Dropout (Blum et al. 2015) and Bernoulli Dropout (Gal and Ghahramani 2015). Further, Louizos and
Welling (2016) introduced structured posterior approximations, using matrix Gaussians rather than
fully-factorized Gaussians as in (Blundell et al. 2015).

Several studies (Krueger et al. 2017; Louizos and Welling 2017) proposed to employ normalis-20

ing flows to further increase the flexibility of the variational approximation1. However, both ap-
proaches only employ the high-fidelity approximations as multiplicative factors on otherwise fac-
torised Gaussians (Louizos and Welling 2017) or single delta peaks (Krueger et al. 2017). Only

1Krueger et al. (2017) use the term hypernetwork to refer to normalising flows rather than the more general concept
of weight generating networks from (Ha et al. 2017).
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recently, implicit models have been studied under the framework of variational inference (Huszár
2017; Mescheder et al. 2017; Tran et al. 2017), but only Shi et al. (2018) have used them to model
weight uncertainty by parametrising weight matrices as outer product of two vectors.

In contrast to Bayesian inference methods, frequentist approaches have recently been proposed. A
bootstrap-based approach was proposed by Osband et al. (2016), whereas Lakshminarayanan et al. 5

(2017) use ensembles of deep networks to calculate predictive uncertainties based on the sample
difference due to different initialisation and noise in the stochastic gradients. Even though deep
ensembles are straightforward to train, their main disadvantages are that the computational cost
scales linearly with the amount of networks in the ensemble and that their uncertainty estimation
solely relies on noise during training rather than estimating the full posterior distribution of the 10

weights of the neural network.

4.1.2 Contributions
We introduce the concept of hypernetworks (Ha et al. 2017) into the framework of implicit varia-
tional inference (Huszár 2017; Mescheder et al. 2017; Shi et al. 2018; Tran et al. 2017). Our method,
Bayes by Hypernet (BbH) reinterprets hypernetworks (Ha et al. 2017) as implicit distributions similar 15

to generators in generative adversarial networks (Goodfellow et al. 2014) and use them to approxi-
mate the posterior distribution of the weights of a neural network. Hypernetworks are able to model
a wide range of distributions and can therefore provide rich variational approximations. Further-
more, the hypernetworks are inherently able to learn complex correlations between the weights as
they generate samples of multiple weights at the same time. BbH avoids hand-crafted strategies 20

of building variational approximations and instead exploits the inherent capabilities of learned ap-
proximations to model rich, varied distributions. We show that compared to other Bayesian meth-
ods, BbH achieves competitive performance: BbH demonstrates comparable predictive accuracy
without compromising predictive uncertainty, while being the least vulnerable against adversarial
attacks. We note that concurrent works (Henning et al. 2018; Ratzlaff and Li 2019; Ukai et al. 2018) 25

propose similar methods that employ hypernetworks to model implicit distributions of neural net-
work weights. However, none of the mentioned approaches deals with the direct approximation of
the KL divergence between the posterior weight distribution and the prior weight distribution.

4.2 Bayes by Hypernet
Given a datasetD with data points (x1, y1), . . . , (xn, yn) variational inference for Bayesian neural
networks aims to approximate the posterior distribution p(w | D) of the weights w of a neural
network. Given this distribution we can estimate the posterior prediction ŷ of a new data point x̂
as p(ŷ | x̂,D) = Ew∼p(w|D)[p(ŷ | x̂,w)]. Because exact Bayesian inference is usually intractable
in neural networks we find a variational approximation q(w | θ) with parameters θ that minimises
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the evidence lower bound (ELBO):

θ∗ = arg min
θ
KL(q(w | θ)‖ p(w | D))

= arg min
θ
KL(q(w | θ)‖ p(w))− Ew∼q(w|θ)[log p(D | w)]

= arg min
θ

Ew∼q(w|θ)
[
log

q(w | θ)
p(w)

− log p(D | w)

]
(4.1)

Recent works improved upon the Laplace approximation (MacKay 1992) by using the reparametri-
sation trick (Kingma and Welling 2014) or stochastic backpropagation (Rezende et al. 2014). One of
the first works to combine the reparametrisation trick with variational inference for Bayesian neural
networks used fully factorised Gaussians (Blundell et al. 2015) to model the approximative distri-
bution. This allows for straightforward optimisation but can only model unimodal distributions in5

the high dimensional weight space of neural networks.

4.2.1 Complex variational approximations
Various works have since proposed different extensions to allow for richer approximations such as
mixture of delta peaks (Gal and Ghahramani 2015) or Matrix Gaussians (Louizos and Welling 2016).
Nevertheless, those approximations are far from optimal as the true posterior will likely be more10

complex than delta peaks or correlated Gaussians (Louizos and Welling 2016). Recently, normal-
ising flows have been proposed to allow for more complex approximative distributions (Krueger
et al. 2017; Louizos and Welling 2017). Normalising flows use bijective functions with learnable
parameters and simple Jacobians to transform samples from simple densities into more complex
distributions. By stacking multiple of those similar to the layers of neural networks it is possi-15

ble to resemble highly complex distributions (Rezende and Mohamed 2015). However, both Mul-
tiplicative Normalising Flows (MNF) and Bayesian Hypernetworks (Krueger et al. 2017) only use
normalising flows as multiplicative factors of variation and model the majority of the weights with
factorised Gaussians (Louizos and Welling 2017) or regular point estimates (Krueger et al. 2017).
This parametrisation limits the relations between weights that are able to be modelled while the20

parametrisation of Louizos and Welling (2017) requires an auxiliary inference network.

4.2.2 Hypernetworks as implicit distributions
Implicit distributions are distributions that may have intractable probability densities but allow for
easy sampling. They enable simple calculation of approximate expectations and their correspond-
ing gradients (Huszár 2017). Probably the most well-known group of deep implicit distributions25

are generative adversarial networks (Goodfellow et al. 2014) that can transform a sample from a
simple noise distribution into high-fidelity images.

Using an implicit distribution to model the weights of a neural network requires a generator that
is able to capture inherent complexity of neural network weights. Hypernetworks (Ha et al. 2017)
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Figure 4.2: Illustration of the components of Bayes by Hypernet: The hypernetworkG takes a sam-
ple z ∼ p(z) and converts it into a sample of the weightsw of the main network. The hypernetwork
in Fig. 4.2a generates samples of the weights of the second layer of the main network. The main
network takes a data sample x and generates an output y using the weight samples generated by
the hypernetworks.

are shown to be able to generate weights of networks like ResNets or RNNs while still achieving
competitive state-of-the-art performances. Let G be a hypernetwork with parameters θ. Further,
let z be an input vector to the hypernetwork G that contains information about the weight w to
generate. Then weights w of the main network are generated as w = G(z | θ).

When z is a sample from a simple auxiliary random variable the hypernetwork resembles a gener- 5

ator within the GAN framework. Rather than generating high-fidelity image samples, our generator
predicts samples of the weight distribution of the main network. An illustration of the combination
of hypernetwork and main network is shown in Fig. 4.2. The graphs shown resemble distributions
the auxiliary variable z or the weight samples w could be drawn from.

In the original work (Ha et al. 2017), hypernetworks were introduced as means of weight sharing 10

and therefore network compression. Here, we do not focus on compression, but use arbitrary
neural networks as hypernetworks. This is different from the terminology presented in (Krueger
et al. 2017) where stacked normalising flows are called hypernetworks.

4.2.3 Estimating the Evidence Lower Bound
Because implicit distributions do not have tractable probability densities, the prior matching term 15

KL(q(w | θ)||p(w)) of the ELBO becomes intractable. Previous works (Huszár 2017; Mescheder
et al. 2017; Tran et al. 2017) describe how to perform variational inference with implicit distributions.
The proposed approaches closely follow the structure of adversarial training, where a generator
w = G(z | θ) models the variational distribution q(w | θ) and a discriminator D estimates the
log density ratio from Eq. (4.1). Here, z is an auxiliary noise variable z ∼ p(z) which may also 20

contain additional conditioning information.

Specifically, we follow the notion of prior-contrastive adversarial variational inference as formulated
by Huszár (2017) and estimate the density ratio in Equation 4.1 using logistic regression. This
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enables a two-step update procedure with

L(D | G) = Ew∼G(z|θ) logD(w) + Ew∼p(w) log(1−D(w)) (4.2)

L(G | D) = Ez log
D(G(z | θ))

1−D(G(z | θ))
− Ez log p(D | G(z | θ)) (4.3)

where Equation 4.2 and Equation 4.3 are being used to update the discriminator and the generator,
respectively2. In theory, the discriminator only gives exact gradients when it has converged to an
optimal solution, but GAN training shows us that non-converged discriminators can still provide
useful gradients.

However, it is not straightforward to employ adversarial training in high-dimensional spaces such
as neural network weights which can accrue to hundreds of thousands or millions of parameters3.
This number of input dimensions raises computational issues as it spans huge weight matrices
when dense layers are employed. We therefore propose to treat all weights independently and es-
timate the density ratio by a single discriminator. We compare this approximation to the analytical
form of Bayes by Backprop (BbB) (Blundell et al. 2015) and find that the single discriminator is not
capable of estimating the density ratios correctly. Instead we find that estimating the density ratio
using a kernel method (Pérez-Cruz 2008) yields results that are close to those of the analytical
method. Specifically, we use the formulation from Jiang (2018), approximating the KL divergence
KL(q(w | θ)||p(w)) as

KL(q(w | θ)||p(w)) =
d

n

n∑
i=1

log
minj ||wiq − wjp||

minj 6=i ||wiq − w
j
q||

+ log
m

n− 1
, (4.4)

where d is the dimensionality of the samplesw, n is the number of approximate samples,m is the5

number of prior samples, and wq and wp are samples from the approximate posterior and prior
respectively. This resembles a ratio of the nearest neighbour distance between samples from the
variational and the prior distribution and the nearest neighbour distances between samples of from
the variational distribution.

4.3 Experiments10

We aim to assess the predictive accuracy of our method, and also its ability to estimate the predic-
tive uncertainty. We closely follow established benchmarks (Louizos and Welling 2017) by compar-
ing the performance of BbH on the MNIST digit classification task and an adaptation on CIFAR10
classification. Additionally to accuracy, we test the capability of the entropy of the softmax outputs

2See Variational Inference and Density Ratios section on https://www.inference.vc/
variational-inference-with-implicit-probabilistic-models-part-1-2/

3The LeNet that we use in a later experimental section already has more than 400,000 weights. In comparison,
most image datasets used in deep learning do not have more than 196,608 (256× 256× 3) dimensions.
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to detect outliers and evaluate the method’s robustness against adversarial examples. Methods
are compared in their predictive uncertainty on test set (in-dataset examples) and on similar, yet
unseen data (out-of-dataset examples). An optimal method would predict low entropy and correct
predictions for the in-dataset examples and high entropy for out-of-dataset examples. The high
entropy predictions on unseen data can be important in real-life decision processes as they can 5

be used to trigger a request for human support. Similarly, by testing the robustness against ad-
versarial attacks, we expect to see the degradation of accuracy and a simultaneous increase in
predictive uncertainty. In contrast to previous works (Lakshminarayanan et al. 2017; Louizos and
Welling 2017), we do not rely on (cumulative) density plots of the entropy, but rather calculate the
area under the receiver operation characteristic (AUROC) to provide a quantitative measure of the 10

ability to detect when the model does not know the correct prediction.

We generate the weights of each layer using a unique hypernetwork. This allows for enough ca-
pacity to fit complex weight distribution. Each hypernetwork is implemented as a 3-layer fully-
connected network with [64, 256, 512] units, as we did not find a general improvement by adding
more layers or units. Further, we employ a standard normal prior for all methods (excluding ensem- 15

bles) and treat all weights as independent. The experiments are implemented in Tensorflow (Abadi
et al. 2016) and optimisation is performed with Adam (Kingma and Ba 2015). We follow the code
from (Louizos and Welling 2017) and use a learning rate of η = 0.001 for all methods apart from
BbH. For BbH we use η = 0.0001. We compare our method to MC-Dropout (Gal and Ghahramani
2015) (dropout rate π = 0.5), Bayes by Backprop (BbB) (Blundell et al. 2015), deep ensembles (Lak- 20

shminarayanan et al. 2017), multiplicative normalizing flows (MNF) (Louizos and Welling 2017), and
maximum a posteriori (MAP) training. We do not compare to Bayesian Hypernetworks (Krueger et
al. 2017), because they are very similar to MNF. We train the deep ensembles without predictive un-
certainty as we found it to sometimes result in numerically unstable training. MNF and BbH anneal
the KL term during training which follows the original MNF implementation. All methods use 100 25

posterior samples to estimate the predictive distribution and we use 5 samples to estimate the KL
from Eq. (4.4).

4.3.1 MNIST Digit Classification
We reproduce the setup from (Louizos and Welling 2017), employing a LeNet for MNIST classifica-
tion and notMNIST as outlier dataset. Additionally to the comparison with other methods, we use 30

MNIST to test the newly introduced hyperparameters of Bayes by Hypernet: The shape of the auxil-
iary variable z as input to the hypernetwork, and whether or not to use the same sample z ∼ p(z)

across different weights that are generated at the same time. Lastly, we use the recently proposed
MorphoMNIST dataset (Castro et al. 2019) to generate data with a controlled difference to the
original dataset and test the outlier detection on that. 35

Approximating the KL divergence: We run Bayes by Backprop to compare the results of approx-
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Table 4.1: Comparing Adversarial Variational Bayes (AVB) and a kernel-based estimation of the KL
divergence: AVB produces not only worse accuracies but also the most overconfident results. The
kernel estimates achieve results close to the analytical solution.

Error [%] AUROC [%]

Analytical 0.72 99.2

AVB 0.97 85.6

Kernel Estimate 0.88 98.7

Table 4.2: Comparison of different auxiliary noise configurations: A higher degree of noise in-
creases the predictive uncertainty (lower outlier AUC) but does not demonstrate a trend in the
corresponding accuracy.

Error [%] AUROC [%]

Shared, d = 1 1.11 97.2

Independent, d = 1 1.41 92.2

Shared, d = 8 0.90 98.6

Independent, d = 8 0.81 98.7

Shared, d = 64 1.71 97.2

Independent, d = 64 1.45 96.8

imating the KL divergence using an adversarial approach or kernel-based approach with the ana-
lytical solution. We use the same settings for BbB and train the discriminator for 100 steps before
starting training of the main network and then train it for 5 steps for every step we train the main
network. The results are shown in Table 4.1. We find that the kernel estimation achieves results
closest to the analytical ones. Adversarial Variational Bayes (AVB), however, provides the worst ac-5

curacy and most overconfident predictions. The multi-step training procedure of AVB also causes
the longest runtime.

Auxiliary Noise: The hypernetworks take an auxiliary noise variable z as an input and transform
it into a sample of the weight distribution. In all experiments, we draw samples from unit-variate
Gaussians as z. However, the dimensionality d of z can influence the capacity of the hypernetwork.10

Further, hypernetworks can be coupled by drawing the same sample z for each weight or can be
decoupled by drawing a different sample for each weight. The former enables the hypernetworks
to learn more complicated relations across different parts of the weights, whereas the latter leads
to higher variability across the generated weights. Table 4.2 shows the results of different noise
configurations. We find that a too low or too high dimensionality of z deteriorates both the ac-15

curacy and outlier detection. Coupling the weights of multiple layers by sharing z leads to more
accurate outlier detection. This could be explained by the capability of modelling more complex
relations between the weights. The independent noise requires the different layers to be resilient
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Figure 4.3: Example images of the morphologically altered MNIST digits. A higher radius of the
swelling leads to a bigger deformation.

Figure 4.4: Performance of compared methods on MorphoMNIST with swelling: The solid line
depicts the accuracy and the dashed line the predictive entropy relative to the maximum entropy
as a function of the swelling.

to different noise values and therefore acts as a regulariser. However, the exact relation between
the dimensionality of the noise and the performance metrics remains to be explored by further
experimentation.

Classification and outlier detection performance: We decide to use BbH with z ∈ R8 and cou-
pled weights for the following experiments. We compare the performance of BbH with several 5

established variational Bayesian deep learning techniques and frequentist approaches. The re-
sults are shown in Table 4.3. All methods achieve comparable accuracy, with MC-Dropout and
deep ensembles being the best. However, BbH exhibits a good trade-off between predictive accu-
racy and predictive uncertainty. Its outlier detection performance is only outperformed by Bayes
by Backprop and deep ensembles. 10

We use MorphoMNIST (see example images in Fig. 4.3) to better understand the outlier detection
capabilities of each methods. We generate outlier images with controlled morphological defor-
mations. By increasing the strength of the deformation we expect the methods to drop a little in
accuracy but acknowledge the difference in data by increasing the predictive entropy. We use the
swelling deformation with a strength of 3 and increasing radii within [3, 11]. We plot the accu- 15

racy and entropy relative to the maximum entropy in Fig. 4.4. We see that all methods perform
as expected. The loss in accuracy is comparable across all methods, with BbH having the highest
decrease. However, Bbh exhibits an increase in predictive entropy that is significantly higher than
the other methods.
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Figure 4.5: Performance of compared methods exposed to adversarial attacks on the MNIST
dataset: The solid line depicts the accuracy and the dashed line the predictive entropy relative
to the maximum entropy as a function of the adversarial perturbation.

Robustness against adversarial attacks: We employ the fast sign method (Goodfellow et al.
2015) on the first 1000 samples of the MNIST test set. In this experiment we compare to deep
ensembles without adversarial training for a fair comparison. For variational methods, we generate
the adversarial samples as an average of 100 posterior samples to account for the variation during
predictions. We plot the accuracy and entropy relative to the maximum entropy in Fig. 4.5. BbH5

performs the best with the slowest decrease in performance coupled with the highest predictive
uncertainty. The other methods exhibit varying degrees of decay and predictive uncertainty with
BbB having the steepest decay but also a high entropy.

4.3.2 Scalability To Deep Architectures
To test the scalability of BbH, we run experiments using a ResNet-32 (He et al. 2016a) on the same10

CIFAR5 task as in (Louizos and Welling 2017). We train on the first five classes of CIFAR10 and use
the remaining as outlier dataset. The results in Table 4.3 show that deep ensembles achieve the
best accuracy and outlier detection performance, but are also the most compute intensive. BbH
achieves a good accuracy that is only outperformed by the non-Bayesian methods, whereas its
outlier detection performance is only subpar to ensembles and MNF.15

Performing the same adversarial robustness experiment as with MNIST (see Fig. 4.6), we find that
BbH is the most robust against adversarial attacks. However, the entropy seems relatively constant
for all methods and MC-Dropout and BbB exhibits higher predictive entropies than BbH.
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Table 4.3: Results on classification task on CIFAR5 (first 5 CIFAR10 classes) and MNIST datasets:
Error [%] shows the classification error on the test set. The AUROC is the area under the receiver
operation characteristic detecting outliers given the entropy of the softmax output on the corre-
sponding data set (higher is better). Compared methods: maximum a posteriori training (MAP),
deep ensembles (Lakshminarayanan et al. 2017) (Ensembles), Bayes by Backprop (Blundell et al.
2015) (BbB), MC-Dropout (Gal and Ghahramani 2015) (Dropout), Multiplicative Normalizing Flows
(Louizos and Welling 2017) (MNF) and Bayes by Hypernet (BbH).

CIFAR5 MNIST
Error [%] AUROC [%] Error [%] AUROC [%]

MAP 12.36 71.4 0.70 98.5

Ensemble 10.06 73.9 0.42 98.9

BbB 14.12 70.8 0.88 99.5

Dropout 16.76 69.3 0.42 97.9

MNF 13.36 72.6 0.84 98.4

BbH (Ours) 12.90 72.0 0.90 98.6

4.3.3 Examining The Posterior Distributions
We examine the posterior distributions fitted to the the toy task from Fig. 4.1 and the correspond-
ing covariance matrices in Fig. 4.7. This allows us to compare the variational approximations of
BbH and MNF to samples drawn by using HMC. We find that HMC fits very Gaussian-like distribu-
tions, whereas MNF and BbH fit more complex, multi-modal distributions. We argue that HMC is 5

underfitting the data and mostly resembling the prior. We find that HMC finds much more complex
distributions when more data points are given. We find that even though normalising flows are
capable of modelling highly complex distributions, the variational posterior still closely resembles
a Gaussian. We attribute this to the multiplicative nature of MNF with the underlying Gaussian
distributions. Weight distributions of all methods are shown in Appendix A.1. 10

MNF and BbH find relatively simple distributions that resemble skewed Gaussians for the MNIST
and CIFAR tasks (see Appendix A.2 and Appendix A.3). This might be caused by the higher dimen-
sionality of the space, where the variational inference methods only fit one mode. Nevertheless,
both methods still model covariances between the weights. However, MNF exhibits limitations on
which covariances it can model because of its multiplicative nature. 15
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Figure 4.6: Performance of the methods exposed to adversarial attacks in the CIFAR5 domain: The
solid line shows the accuracy and the dashed line the predictive entropy relative to the maximum
entropy as a function of the adversarial perturbation.

(a) MNF

(b) HMC

(c) BbH

Figure 4.7: Illustration of the posterior distributions approximated by MNF Louizos and Welling
(2017) (a), HMC (b), and BbH (c) for the 2-layer network used for the toy regression task in Fig. 4.1.
BbH and MNF generate complex, multi-modal approximations whereas HMC’s resemble simple
Gaussian-like distributions.
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4.4 Discussion & Conclusion
BbH interprets hypernetworks (Ha et al. 2017) as an implicit distribution, which we employ as ap-
proximate distributions within variational inference. In our experiments, we demonstrate that BbH
yields strong predictive performance with competitive uncertainties. BbH finds a good trade-off
between accuracy and predictive uncertainty on MNIST and CIFAR and is the most robust method 5

against adversarial examples. Compared to other Bayesian methods BbH yields comparable or
better accuracy and comparable uncertainties.

This work is the first to report an extensive comparison on Bayesian methods for ResNet archi-
tectures. It demonstrates competitive accuracy and predictive uncertainty of BbH paired with the
best robustness against adversarial attacks. BbH qualitatively produces more complex approxi- 10

mate posterior distributions (Fig. 4.7) compared to MNF, even though MNF should enable similarly
complex distributions. This translates to the complex correlations of the weights that are modelled
by BbH. However, both those methods approximate the posterior to be more complex than HMC
which lends itself to a deeper investigation into the ’true’ shape of posterior distributions of the
weights of neural networks. 15

Interestingly, we find that our baseline implementations perform better on MNIST than reported in
(Louizos and Welling 2017). This suggests that many of those methods require more careful hy-
perparameter tuning to offer reliable comparisons. Furthermore, even though BbH clearly models
more complicated posterior distributions than MNF or BbB, it does not always yield the highest pre-
dictive uncertainties. This raises questions whether richer variational approximations always lead 20

to better results and should be further investigated. Related results have been shown by Rainforth
et al. (2018) who explore tighter variational bounds on the autoencoder setting, or Farquhar et al.
(2020) who explore a trade-off between depth of the main neural network and the complexity of
the variational posterior.

Furthermore, we notice that all methods exhibit almost constant entropy values for the adversarial 25

example task on CIFAR5, which questions the reliability of this dataset. Previous works have ei-
ther used CIFAR5 as in-dataset examples and the other 5 classes as outliers (Louizos and Welling
2017) or CIFAR10 as in-dataset examples and SVHN as outliers (Lakshminarayanan et al. 2017).
We believe that both settings are not perfect as SVHN seems obviously different from CIFAR10,
whereas the classes within CIFAR10 share a lot of similarities that make the task to distinguish 30

them harder. We argue that a carefully curated dataset might be needed to explicitly test different
’degrees’ of differences between in-distribution and out-of-distribution samples. As an example for
that we show that a controlled degree of distribution-shift using MorphoMNIST (Castro et al. 2019)
enables better interpretable experiments (see Section 4.3.1).

Our reported experiments only use a single architecture to build an implicit distribution using hyper- 35

networks. Even though we run some initial experiments with different settings we quickly settled
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on the layer-wise generation of the weights. We argue that a wider investigation into different
architectures could yield further performance gains and insights, such as (Ratzlaff and Li 2019).
However, the size of weight matrices in modern neural networks restricts the design choices due
to limited GPU memory.

Future directions: We believe this work opens a variety of directions for future work: The parametri-5

sation of the weights of the main network could be extended to find more efficient and richer forms.
This might extend to dynamic hypernetworks, which generate weights conditioned on the input to
the main network. BbH enables the use of highly complex priors as it is merely required to sample
from them (e.g. task-specific priors instead of Gaussian priors, which are subject to known limi-
tations (Neal 1995), can be examined). This idea can be extended to transfer learning, where not10

only the weights, but also previously trained posterior distributions can be transferred and used as
a new prior. It would also be interesting to combine BbH with neural architecture search methods
like SMASH (Brock et al. 2018) to build Bayesian approximations of the posterior over the architec-
tures.

Conclusions: In this chapter, we proposed and extensively evaluated Bayes by Hypernet, a new15

approach for obtaining uncertainty estimates with neural networks. The appropriation of hypernet-
works to generate weight distributions allows for modelling arbitrary complex distributions and the
proposed method naturally integrates with modern deep learning, addressing the need for certainty
measures in real-world applications.
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Chapter 5

Deep Generative Models for Outlier
Detection

This chapter is based on the following publications:

(a) Pawlowski, N. et al. (2018). “Unsupervised Lesion Detection in Brain CT using Bayesian
Convolutional Autoencoders”. In: Medical Imaging with Deep Learning Abstract track –
(Pawlowski et al. 2018)

(b) Chen, X.∗, Pawlowski, N.∗, Rajchl, M., Glocker, B., and Konukoglu, E. (2018b). “Deep gener-
ative models in the real-world: An open challenge from medical imaging”. In: arXiv preprint
arXiv:1806.05452 – (Chen et al. 2018b)

(c) Pawlowski, N. and Glocker, B. (2021). “Abnormality Detection in Histopathology via Den-
sity Estimation with Normalising Flows”. In: Medical Imaging with Deep Learning Short
Paper Track – (Pawlowski and Glocker 2021)

The work for (b) was completed with shared first-authorship with equal contribution from Nick
Pawlowski and Xiaoran Chen. Both authors contributed to all aspects of the work with main
responsibilities as follows: N.P. led the implementation of the Bayesian models as well as the
probabilistic formalisation of the problem; X.C. had main responsibilities on the experimen-
tation with the regular deep learning models as well as the visualisation of the results. Both
ideated the approach independently in (Pawlowski et al. 2018) and (Chen and Konukoglu 2018)
and had equal responsibility in conceptualisation, and writing of the manuscript.

The previous chapter tackled the idea of “knowing what one does not know” and introduced a 5

Bayesian deep learning method (Bayes by Hypernet) to equip neural networks with the ability to
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provide uncertainty estimates for the prediction they are making. This approach relied on the avail-
ability of labels to perform a task which allows for saying “I don’t know the answer”. However, there
can be different reasons for lack of an answer: it could be that the sample is ambiguous, a lack of
examples during training can lead to conservative estimates, or, the sample could be completely
different from anything that was observed during training. This last scenario is a special one, as it5

does not require a predictive task to tell whether something is different to previous observations
and depending on the exact setting can be called abnormality detection, outlier detection, novelty
detection, or out-of-distribution detection.

In a very rough approximation, the task of diagnosing an illness is very similar to identifying an im-
age or a part of an image to be unusual – e.g.in a generally healthy population one will mostly ob-10

serve healthy brain scans and very few unhealthy ones. If one knows what the variations in healthy
brains looks like, one is capable of flagging abnormal areas and can direct an expert to investigate
further. This is especially powerful in the scenario of rare or heterogeneous diseases where there
is too little data to train a supervised model but it is possible to refer suspicious cases.

This chapter frames different medical imaging tasks as outlier detection problems and studies the15

use of generative models to differentiating healthy from unhealthy cases. The first two sections
tackle the detection of lesions on 3D brain scans using variational autoencoders (VAEs; see Sec-
tion 2.3.2). The first section aims to detect lesions in brain MR scans using VAES. Due to their
nature, MR images suffer from inconsistent appearances between different imaging sites, proto-
cols, and scanners. The approach of using deep generative models for detecting outliers in brain20

MRI is limited due to the domain shift between the datasets for healthy and unhealthy samples.
We find that relatively simple non-deep learning methods achieve the best performance on this
task. The second section applies the same methodology as the first and shows that VAEs can find
lesions in brain CT scans. However, VAEs are often outperformed by very simple baseline methods
due to the consistent intensity profile of CT scans. The last section investigates the classification25

of histopathology patches into healthy or unhealthy tissue based on normalising flows (see Sec-
tion 2.3.1). Again, we find that the naive application of deep learning models yields subpar results.
However, this can be addressed by the use of more complicated measures to detect whether a
sample is abnormal or not.

5.1 Detecting Outliers in MR images30

Learning high-dimensional data distributions from finite number of examples and being able to
generate new samples from such distributions is a challenging task. Developments in deep learn-
ing based techniques and unsupervised learning in the last five years set a new standard for this
problem, especially for imaging data. Generative adversarial networks (GANs) (Goodfellow et al.
2014), variational auto-encoders (Kingma and Welling 2014; Rezende et al. 2014) and variants of35

these models (Arjovsky et al. 2017; Karras et al. 2018; Makhzani et al. 2015; Radford et al. 2015)
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demonstrate that it is possible to train networks that can approximate distributions of images well
enough to sample realistic looking sharp images. Such models have already been successfully
applied in various vision tasks, such as generating data samples (Karras et al. 2018), domain adap-
tation (Chen et al. 2018c; Tzeng et al. 2017) and image in-painting (Yeh et al. 2017).

Unsupervised learning and generative modeling have numerous clinically relevant applications in 5

medical image computing. One particular application, unsupervised abnormality detection, is sci-
entifically interesting and technically challenging. The task is simple to state: given an image ac-
quired from a patient, detect the regions in the image that should not be there in the ‘normal’ case,
if any. This is one of the routine tasks of a radiologist that they need to perform for every image
they assess and a critical first step in diagnosis. For complicated cases, years of experience are 10

necessary to distinguish normal from abnormal. However, for a large set of problems, such as
brain tumours, even non-experts can perform the task after seeing a handful of ‘normal’ looking
images. Despite the simplicity of its description and the clear separation of abnormal from normal
tissue appearance, unsupervised abnormality detection remains as a huge challenge for machine
learning. 15

Deep learning based generative modeling approaches provide new opportunities for developing au-
tomatic algorithms for unsupervised abnormality detection. In this work, we empirically investigate
feasibility of such approaches using relatively large, publicly available datasets. We use magnetic
resonance images (MRI) of the brain acquired from healthy individuals at different age groups to
train different auto-encoder based generative models to learn the distribution of ‘normal’ brain MRI. 20

Then we apply the trained models on two other datasets of brain MRI bearing tumours and stroke le-
sions to detect the abnormal lesions in an unsupervised manner. Detection performance is a good
quality indicator that assesses how well the models learn the distribution of ‘normal’ images. We
describe the datasets and present empirical evaluation comparing different deep learning based
models as well as non-deep learning methods, which have been used in the medical image com- 25

puting community. The evaluation provides a benchmark showing the state-of-research for this
difficult problem, indicating that unsupervised detection of abnormalities remains an open chal-
lenge and demands further research.

5.1.1 Related work
Related work on deep generative models: Literature on generative modeling with neural networks 30

date back to MacKay’s work (MacKay 1995). More recent, generative adversarial networks (GANs)
(Goodfellow et al. 2014) and variational autoencoders (VAEs) (Kingma and Welling 2014; Rezende
et al. 2014) have shown the feasibility of generative modeling with deep models. Further modifi-
cations suggested in (Arjovsky et al. 2017; Gulrajani et al. 2017; Radford et al. 2015) improved the
performance and stability of GAN training, and achieve realistic data generation such as (Karras 35

et al. 2018). Alternatively, VAEs mostly rely on a reconstruction loss that is known to lead to blurry
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reconstructions (Larsen et al. 2016). In contrast to GANs, VAE-based works mainly focus on the
latent variable model (Gregor et al. 2015; Yan et al. 2016) and how to disentangle the latent vari-
ables (Chen et al. 2018a). Many publications propose methods to improve the expressibility of this
model (Burda et al. 2015; Kingma et al. 2016; Rezende and Mohamed 2015).

Lesion detection and segmentation: Detection of brain lesions is a critical step to diagnose dis-5

eases such as cranial trauma, abscesses and cancer. Traditionally, radiologists manually detect
and segment lesions slice by slice. However, the large resolution of the 3D images and high level of
required expertise have made it a time-consuming and expensive task to accomplish. Studies such
as (Prastawa et al. 2004), (Ayachi and Amor 2009), and (Zikic et al. 2012) have suggested super-
vised methods for automatic detection of brain lesions. Due to the importance of the application,10

the medical image computing community has been hosting public challenges specifically for le-
sion detection, the Multi-modal Brain tumour Image Segmentation (BRATS) and Ischemic Stroke
Lesion Segmentation (ISLES). A benchmark (Bauer et al. 2012) was released to evaluate and com-
pare existing models. With the introduction of fully convolutional neural networks (FCNs) (Long
et al. 2015), DeepMedic (Kamnitsas et al. 2017a) and U-Nets (Ronneberger et al. 2015), the field15

has since then been dominated by deep learning approaches achieving the highest accuracy on
most if not all imaging challenges.

Supervised methods however, are specific to certain lesions and need to be trained with respec-
tive example data. Furthermore, their application on previously unseen lesions is not straightfor-
ward.20

On unsupervised lesion detection: Unsupervised detection of abnormalities has been an impor-
tant topic in medical image computing. Non-deep learning based methods have been proposed
over the last two decades that use mixture modeling and expectation maximization (Van Leemput
et al. 2001), atlas-registration (Prastawa et al. 2004) and probabilistic models that utilize image
registration (Tomas-Fernandez and Warfield 2015; Zeng et al. 2016).25

Deep-learning based models have also been recently applied to abnormality detection following
related developments in computer vision (An and Cho 2015; Chalapathy et al. 2017). Schlegl et al.
used GANs to detect abnormalities in (Schlegl et al. 2017). Their method was based on determin-
ing the best latent space representation of a given image with an abnormality and then computing
the difference between reconstruction from this representation and the image. The underlying30

idea was that GANs trained on healthy images should not be able to reconstruct abnormal lesions.
Based on related ideas, more recent work explored the use of autoencoder-based models and de-
tected abnormal regions through high reconstruction errors (Baur et al. 2018; Chen and Konukoglu
2018; Pawlowski et al. 2018; Sato et al. 2018).
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5.1.2 Methodology
We approach the lesion detection problem in a way similar to one-class classification, where firstly
we model the pixel-wise probability using healthy brain MRI images, then detect lesion regions as
pixels with low probability according to the model learned on healthy data. Assume we have a
dataset of healthy images {X1

H , . . . , X
N
H } where each image is a set of pixels Xn

H ∈ Rd×d = 5

{x(n,1)H , . . . , x
(n,M)
H }. Given this dataset, we aim to estimate the distribution of healthy data pH

to evaluate the probability of an unseen image and its pixels pH(x{m}). Now, suppose we have
another test image XA ∈ Rd×d with both abnormal RA and healthy regions RH . Because pH
only models the distribution of healthy image, the probability of the pixels in abnormal regions
pH(x

(p∈RA)
A ) are expected to be low, whereas pixels in healthy regions will have high probability 10

pH(x
(p∈RH)
A ).

A naive approach could be to model pH as a location dependent function with a Gaussian per pixel
pH(x̂) = pH(x̂ | i, j) = N (x̂ | µ(i,j), σ

2
(i,j)), where i and j denote the location of the pixel in the

image and (µ(i,j), σ(i,j)) are the parameters of the Gaussian corresponding the pixel (i, j).

A more advanced approach would be to model pixel intensities at each location with a Gaussian 15

Mixture Model (GMM) where the probability pH(x̂) of an unseen pixel is modeled as pH(x̂) =
K∑
i=1

Φj
iN (x̂ | µi, σ2

i ) with the number of mixture components K , the mixture weights {Φj
i} that

depends on location j, and the parameters of each mixture component (µi, σi). Given an image,
the parameters of this model can be estimated using the Expectation-Maximization algorithm and
an atlas image. Furthermore, abnormality detection can be performed by adding an additional 20

component whose Φj
op(x̂|o) = λ is a constant for all pixels and intensities similar to what is

proposed in (Van Leemput et al. 2001).

Autoencoder-based models consist of two deterministic mappings, the encoder fenc and the de-
coder fdec. An input x̂ goes through fenc to be encoded into a lower dimensional latent variable
z, and then goes through fdec to be decoded back into an reconstruction X̂ ′ = AE(X̂) that is 25

based on the latent encoding z. The functions fenc and fdec are then optimized to minimize the
reconstruction loss L(X̂, X̂ ′). We chose to employ the frequently used L2 loss as reconstruc-
tion loss L(X̂, X̂ ′) = ||X̂ − X̂ ′||2. Due to the lower dimensionality of z, Autoencoder-based
methods are forced to learn a compression of the data that is related to learning a lower manifold
representation. 30

We argue that because the autoencoder relies on this lower dimensional representation it is not
capable of reconstructing variations in the data that it has not seen during training. Therefore the
reconstruction loss L(X̂, X̂ ′) can be interpreted as an unnormalized probability of a sample be-
longing to the data distributionPH(X̂) = L(X̂, AE(X̂))/Z whereZ is an unknown normalization
constant. 35

Various adaptations of the basic autoencoder have been suggested. Denoising autoencoders
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(DAEs) follow the same concept as regular autoencoders but aim to reconstruct clean images
X̂ from corrupted images X̂ + ε. By trying to remove noise from the images, a DAE distinguishes
noise from structure in X̂ , thus better capturing the information in them. However, AE and DAE are
not generative models as they do not approximate pH and merely serve as dimensionality reduction
methods. variational AEs (VAEs) and adversarial AEs (AAEs) integrate stochastic inference into the5

AE framework and enable to approximately model pH via variational inference. The deterministic
mappings fenc and fdec in regular AEs, become probabilistic mappings and model the inference
network q(z | X) and generative process p(X | z) respectively. The distribution is learned in
such a way that,

pH(XH) =

∫
p(XH | zH)p(zH)dz, (5.1)

where p(zH) describes a prior on the latent encoding that constrains zH to lie in a structured latent10

space. The structured latent space is imposed on Q(z | X) by minimizing a Kullback-Leibler (KL)
divergence KL[q(z|X)‖p(z)]. The overall model is optimised by maximizing the evidence lower
bound (ELBO) (Doersch 2016; Kingma and Welling 2014),

log pH(XH) ≥ Ez∼q(zH |XH)[log p(XH | zH)]−KL[q(zH | XH)‖p(z)] (5.2)

Several studies found VAEs to generate blurry reconstructions (Bousquet et al. 2017; Larsen et
al. 2016). We seek alternatives to mitigate the blurriness, as good quality reconstructions are15

potentially a prerequisite for satisfactory detection outcomes. Bousquet et al. (2017) suggests
that AAEs resolve the blurriness by improving the encoder using adversarial learning to match
q(z) = EXH [q(z|XH)] and p(z) by optimizing a GAN loss,

min
G

max
D

Ez∼p(z)[logD(z)] + Ez∼Q(z)[log(1−D(z))] (5.3)

where the generator G corresponds to the encoder in AAE. To stabilize GAN training, we modify
the loss of the original AAE to use the recently proposed Wasserstein distance from WGANs with20

gradient penalty (WGAN-GP) (Gulrajani et al. 2017).

Another approach to achieve sharper images with AE-based methods is to improve how the image
is compared to its reconstruction. In the work of α-GAN, the model matches Q(z) and P (z) in
the same way as AAE and adds one more discriminator Drec to distinguish betweenXH andX ′H .
Again, the addition of Drec introduces an adversarial loss that can be written in a similar form as25

Eq. (5.3). Here, the decoder acts as the generator in the GAN formulation. The optimization is
more complicated due to the modifications above. To train the model, we follow the optimization
provided in (Rosca et al. 2017).

Lastly, we employ variational inference to approximate the posterior distributions over the model
parameters with factorized Gaussians (Blundell et al. 2015). This allows us to not only marginalize30
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the latent encoding but also the model parameters when estimating the reconstruction loss of a
new image. This might enable more robust reconstructions as it is less reliant on specific model
parameters, as shown by (Pawlowski et al. 2018).

5.1.3 Experiments
To give a comprehensive overview of the current state of unsupervised lesion detection, we also 5

include baselines like GMMs and mean image difference. Furthermore, we provide a supervised
segmentation baseline using an U-Net (Ronneberger et al. 2015).

5.1.3.1 Data

Cam-CAN1(Taylor et al. 2017) We use The Cambridge Centre for Ageing and Neuroscience (Cam-
CAN) dataset for training which contains T1- and T2-weighted brain MRI of 652 subjects from 10

a uniform age range from 18–87. All subjects are confirmed healthy after radiological assess-
ment.

BraTS-T2w2(Bakas et al. 2017; Menze et al. 2015) We utilize the T2-weighted images of 285 pa-
tients from the Brain tumour Segmentation Challenge (BraTS). The images show high-grade (210)
and low-grade (75) glioblastomas which are visible as brighter regions in the images. 15

ATLAS-T1w3(Liew et al. 2018) We also make use of the Anatomical Tracings of Lesions After Stroke
(ATLAS) dataset containing T1-weighted images of 220 stroke patients. Lesions are visible as
darker regions in the images and identified using location information as appearance is similar to
normal structures.

5.1.3.2 Preprocessing 20

Throughout this paper, we consider each volume to be a set of 2D slices and apply all methods
to 2D slices rather than full volumes. To reduce the variability across subjects and datasets, each
scan is normalized as follows: First, empty slices with no brain are removed, and then, the images
are cropped within the maximal boundary computed across the dataset to ensure the same image
size, lastly, the images are normalized across all remaining slices to have zero-mean and unit- 25

variance within the brain masks obtained from a skull-stripping process. The models are trained
with datasets of two different sizes, 128× 128 and 256× 256. Resizing is implemented using the
scipy.misc.imresize with nearest interpolation.

1http://www.cam-can.org/
2https://www.med.upenn.edu/sbia/brats2018.html
3http://fcon 1000.projects.nitrc.org/indi/retro/atlas.html
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Figure 5.1: Thumbnails of example images from the different datasets. From left to the right,
columns 1 and 2 show the CamCAN dataset with the top two rows being T1-weighted images
and bottom two rows being T2-weighted images; columns 3 and 4 present examples from the
outlier datasets with the top two rows being images from ATLAS-T1w dataset and bottom two
rows being images from BraTS-T2w dataset; columns 5 and 6 are ground truth segmentations for
the corresponding images in columns 3 and 4.

5.1.3.3 Evaluation

For all difference methods we calculate the difference of a new image X̂ and its reconstruction
X̂ ′ as the absolute error X̂dif = |X̂ − X̂ ′| instead of the squared error. Note, that this does not
change the outcome of the predictions as the ordering of the errors does not change. Then, we rely
on thresholding to find abnormal regions. We evaluate X̂dif using the ground truth annotations5

of lesions. Let the ground truth be Y . We use the following metrics for detection performance
evaluation of the trained models,

1. Area Under the Receiver Operation Characteristics curve (AUC). The AUC is calculated as
the area under ROC curve due its insensitivity to label imbalance that occurs in our dataset.
In particular, we compute the true positive rate (TPR) TPR = TP

TP+FN
and false positive rate10

(FPR) FPR = FP
FP+TN

.

2. Maximal Dice Score (mDSC). The dice score is commonly used to report segmentation re-
sults. To calculate the dice score in our case, it is required to set a threshold t for X̂dif that
predicts lesions as Ŷ = X̂dif > t. While it can be formed into a new question, we use a
range of thresholds and calculate a dice score using X̂dif and Y for each threshold. As we15

do not further explore thresholding, we assume there is an optimal threshold that achieves
the maximal dice score (mDSC) on the model. As such, we chose the threshold using brute
force optimisation to find the maximal achievable average dice score of a model on the used
test set. This is purely for evaluation purposes and also measures the separability of the dis-
tributions of the reconstruction error of healthy and abnormal tissue. This method of finding20
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Figure 5.2: Difference maps obtained on BraTS-T2w dataset (left) and ATLAS-
T1w (right). For each dataset, the leftmost column shows the original image (top)
and ground truth segmentation (bottom). Columns 2-4 show difference maps
obtained with autoencoder models as follows, top row: AE, DAE, VAE-128, middle
row: VAE-BBB-128, VAE-256, AAE-128, bottom row: AAE-256, α-GAN-128, α-GAN-
256. See the main text for further explanations.

a threshold is not applicable in practice and we explicitly leave the question of finding suitable
thresholds to future work.

5.1.4 Results
We demonstrate our results by firstly presenting the difference maps as in Fig. 5.2 for visual in-
spection of the models and then providing quantitative results using the metric mentioned in Sec- 5

tion 5.1.2 for detailed comparison. We denote the various methods according to their abbreviations,
indicate the image size as−128 or−256, and use “BBB” to refer to the use of Bayes by Backprop
(Blundell et al. 2015) to approximate the posterior distribution over the parameters. Here, we show
difference maps to represent the reconstruction error Xdif . Due to a known domain gap, models
are trained respectively for the two available modalities, T1-weighted and T2-weighted on healthy 10

brain images in CamCAN datasets. Trained models are later tested on its corresponding modality
on BraTS-T2w and ATLAS-T1w. Thus in this work, we consider two independent detection tasks, 1)
detection of tumours on BraTS-T2w, 2) detection of lesions on ATLAS-T1w. All models are trained
until convergence.To calculate the metric of mDSC, we iterate the conventional dice score calcula-
tion through an arbitrary range of possible thresholds on the reconstruction error with t ∈ [0.0, 6.0] 15

with 1001 intervals. As GMM models output normalised probability maps with values between 0.0

and 1.0, the range is changed to t ∈ [0.0, 1.0] with 400 intervals. Note that, mDSC is more of a
numerical approximation of the maximal dice score through brute force search. The approximation
gets better with more intervals whereas optimization may be needed to efficiently approximate the
optimal value. 20

For the convolution version of VAE and AAE, latent variables are obtained from the previous con-
volutional layer instead of a dense layer to avoid possible loss of spatial information. Following
the theory of variational autoencoders, we still assume each latent variable is independent and
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compute the KL divergence between q(zH |XH) andN (0, 1).

As autoencoder-based methods usually have difficulties reconstructing large images, such as im-
ages of size 256px×256px, we reduce the challenge by training our models also on downsampled
datasets. The downsampled datasets are obtained for both, training and test datasets, by resizing
the original images to the size of 128px × 128px as described in Section 5.1.3.1. However, ex-5

perimental results achieved by training and testing on downsampled datasets are not significantly
better, but rather similar to the results on the original datasets. Although downsampling has little
advantage in terms of outlier detection performance, it has a larger impact on training as it requires
shorter runtimes and less GPU memory compared to the original datasets.

As the tumour shows relatively high intensity on T2-weighted images, the resulting intensity dif-10

ferences between the healthy and abnormal images can be more obvious than the intensity differ-
ences of lesions viewed in T1-weighted images. Additionally, the size of tumour in the BraTS dataset
is often larger than that of the lesions in the ATLAS dataset. This property may, to some extent,
facilitate the tumour detection in the BraTS-T2w setup. When comparing the difference maps ob-
tained on BraTS-T2w and ATLAS-T1w, we can confirm this statement. Figure 5.2 shows that the15

tumour can often be fully or partially highlighted by the autoencoding methods while the detection
appears worse on ATLAS-T1w, indicating a worse detection outcome on BraTS-T2w.

Table 5.1 shows the quantitative results in terms of AUC and mDSC for all methods on the BraTS-
T2w and ATLAS-T1w datasets. Additionally, Section 5.1.4 shows the ROC curves corresponding to
the results presented in Table 5.1. Our baseline methods appear to achieve strong performances.20

GMM produces the highest AUC on both datasets, although its mDSC on BraTS-T2w appears to
expose some limitations. The superior performance of the GMM model might be cause by the fact
that it is not entirely unsupervised as the number of components are predefined based on anatom-
ical knowledge. The tested U-Net, as a widely used supervised method, achieves the highest dice
score on both datasets. The various autoencoder-based models show similar performances on the25

BraTS-T2w dataset, and similarly achieve comparable performances on the ATLAS-T1w dataset.
The results are consistent with the difference maps as shown in Fig. 5.2. The detection of tumours
on the BraTS-T2w dataset indicates that autoencoder-based models are capable of detecting the
large-size abnormalities, although the separation, as measured in mDSC, can be further improved.
In contrast, the results on the ATLAS-T1w dataset imply difficulties of detection lesions for unsuper-30

vised and supervised methods. In terms of autoencoder-based models, although none of them has
a significant advantage over the rest on both tasks – adversarial autoencoders (AAE), variational
autoencoders (VAE) and the fully Bayesian VAE (VAE-BBB) are the most effective ones achieving
higher performance metrics than the others.
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Table 5.1: Summary of the different evaluation metrics, AUC and mDSC, for the various tested
methods. Specifically, we train the denoising autoencoder (DAE) with Gaussian noise N (µ =
0, σ = 0.5). Methods with “-128” and “-256” refer to variational autoencoders trained on datasets
with images of size 128px× 128px and 256px× 256px, respectively. We test the GMM baseline
owith two parameter settings, λout=0.01 and λout=0.001. The dimensionality of the latent variables
is shown as tensors for convolutions autoencoder models.

Latent BraTS-T2w ATLAS-T1w
variables (whole tumour)

Models z AUC mDSC AUC mDSC

mean - 0.65 0.20 0.46 0.02
AE 256 0.63 0.41 0.49 0.03
DAE (σ=0.5) 256 0.59 0.29 0.41 0.06
VAE-128 (2,2,64) 0.69 0.42 0.64 0.08
VAE-BBB-128 (2,2,64) 0.69 0.40 0.67 0.05
VAE-256 (4,4,64) 0.67 0.40 0.66 0.08
AAE-128 (2,2,64) 0.70 0.41 0.63 0.06
AAE-256 (4,4,64) 0.67 0.38 0.60 0.04
α-GAN-128 128 0.66 0.35 0.60 0.05
α-GAN-256 256 0.67 0.37 0.60 0.04

GMM (λout=0.01) - 0.80 0.22 0.78 0.17
GMM (λout=0.001) - 0.79 0.21 0.77 0.17
U-Net (supervised) - - 0.80 - 0.50

5.1.4.1 BraTS-T2w

Comparing the various fully unsupervised methods, the convolutional VAE and the VAE-BBB trained
on the downsampled 128px× 128px images yield the highest value, in terms of AUC score. Inter-
estingly, the convolutional VAE outperforms the VAE-BBB on mDSC marginally by 2%, achieving the
highest score in this metric. The second highest mDSC is achieved by the convolutional AAE trained 5

on the downsampled dataset with a value of 0.41, which is 1% lower than the convolution VAE. The
denoising autoencoder has significantly inferior performance compared to the other autoencoder
models. Although theα-GAN theoretically produces realistic and sharp images, the models trained
on downsampled and original datasets do not yield advantages in this detection task: the α-GAN
models have similar – but slightly lower – AUC scores than the best performing models, while its 10

maximum dice score performance is in the mid-range compared to the other methods.

5.1.4.2 ATLAS-T1w

The autoencoder-based models achieved worse performance on the ATLAS-T1w dataset than on
the BraTS-T2w dataset. Although the AUC metric does not significantly decrease, the maximum
dice score reveals the weak performance of these models when detecting lesions in T1-weighted 15
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Figure 5.3: ROC curves corresponding to reported AUC in Table 5.1. The plot on
the left shows ROC curves for models trained on the BraTS-T2w dataset, while
the left plot shows ROC curves for models models trained on the ATLAS-T1w
dataset. Black dashed lines mark the performance corresponding to random clas-
sification. Effective models should yield curves above this dashed line. Note that
GMM(0.01) and GMM(0.001) have almost indistinguishable performance on the
BraTS-T2w dataset which causes their curves to overlap.

images. None of the models achieved comparable results to the performances obtained on the
detection task on T2-weighted images. Every model achieves mDSC scores of below 0.1, indicating
that the lesions cannot sufficiently be distinguished from the normal structures by any threshold
we have applied to Xdif . In comparison, the dice score of the supervised U-Net and that of the
GMM are significantly higher than that of the autoencoder based methods. In spite of this large5

performance gap, supervised segmentation with U-Net achieves a dice score of only 0.50, which
is relatively low for supervised segmentation. Given the results on the ALTAS-T1w dataset, we
conclude that the unsupervised detection of lesions on the ATLAS-T1w dataset remains a difficult
task, where even supervised segmentation has difficulties.

5.1.5 Discussion10

In this work, we provided an overview of the current state of unsupervised outlier detection on
brain MR image, which are fairly standard in medical image analysis. We evaluated autoencoder-
based unsupervised models in terms of the area under the receiver operation characteristics (AUC)
and maximum achievable dice score (mDSC) to describe their strength on this new application. Our
results indicate that convolutional VAEs, Bayesian VAEs and AAEs have great potential to be further15

studied and developed to gain higher detection accuracy. We also identify that detection of lesions
or tumours on T2-weighted datasets may be an easier first step to explore, while detection tasks on
T1-weighted datasets remain more challenging. Moreover, it is easily noticed that the performance
achieved by current available autoencoding models is worse than popular supervised methods,
such as U-Nets. We suggest some possible directions to bring improvements.20
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Improvement in reconstruction quality: As the detection is based on absolute reconstruction error,
it is straight-forward that higher accuracy can be achieved if the model is able to obtain sharp and
accurate reconstructions. One of many approaches to achieve this is by combining VAEs and GANs
to produce sharp images as several works have suggested (Larsen et al. 2016).

Estimation of pixel-wise probability: In our approach, the pixel-wise probability is approximated 5

by calculating the reconstruction error. As shown in the difference maps, the models manage
to reconstruct an image with abnormalities as a healthy-looking image, which is in line with our
expectations. Although the reconstructions appears to be healthy-looking, taking absolute intensity
differences might be too constrained, because it ignores structural differences. Assume there
exists a pixelXa

A which is abnormal and the pixelXh
A which is a high-intensity normal pixel. Even if 10

X ′aA is reconstructed into a normal pixel, it can occur thatXa
A−X ′aA ≤ Xh

A−X ′hA . This behaviour
largely lowers the performance even if the reconstruction is of good quality, when such cases are
prevalent in the dataset. This is to say, that proper pixel-wise probability estimation with structural
awareness can be helpful to improve performance.

Thresholding: Another question lies in selection of a threshold. In this work, we leave the selection 15

of thresholds open and instead evaluate the models within a range of potential thresholds. One
may argue that Dice scores can be calculated using a statistically chosen threshold, such as using
the 90% percentile of the reconstruction errors as a threshold. Thresholding according to a given
percentile can be valid, whereas the percentile may not be optimal for the data. The use of a proper
and adaptive threshold can also help to distinguish outliers from normal structure. 20

5.2 Detecting Outliers in CT images
Deep learning is arguably now one of the most widely used machine learning methods for medical
imaging (Litjens et al. 2017). A common task is the segmentation of lesions and other pathologies.
However, most methods are based on supervised learning, which means they require large amounts
of carefully annotated training data. Our work here focuses on unsupervised lesion detection that 25

resembles pixel-wise outlier detection related to (An and Cho 2015; Carrera et al. 2015; Schlegl et al.
2017; Van Leemput et al. 2001). Most of those methods build on generative models that capture
the normal distribution and detect outliers by checking their likelihood.

We introduce the use of Bayesian autoencoders to model the data distribution and interpret the
reconstruction error as a measure of abnormality. Applying this method to CT mid-axial slices we 30

show that our approach achieves superior performance to various baselines.

5.2.1 Using Autoencoders to find Anomalous Regions
We are interested in building an autoencoder AE for healthy data points x ∈ Dhealthy so that the
probability of the data point given the autoencoder reconstructionN (x|AE(x), 1) is maximised.
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Figure 5.4: Examples of mid-axial slices of the data used. The healthy data is used for learning a
normative model to detect lesions in ICH and TBI.

Rather than only learning point estimates of the weightsw of the autoencoder we use dropout (Sri-
vastava et al. 2014) and an uninformative prior to model the weight uncertainty of the autoencoder
with MC-Dropout (Gal and Ghahramani 2015). This allows us to build a Bayesian autoencoder and
we estimate AE(x) as the Monte-Carlo (MC) estimate:

AE(x) =

∫
AE(x|θ)p(θ|D)dθ ≈ 1

N

N∑
i=1

AE(x|θi) , θi ∼ p(θ|D). (5.4)

In general, autoencoders learn to compress the data and thus find a lower dimensional manifold
that the training data lies on. An optimal autoencoder would therefore have a zero reconstruction
error δrec(x) = |x − AE(x)| = 0 for any x ∈ Dtraining. For data samples different from the
training manifold x′ 6∈ Dtraining we argue that the autoencoder generates a reconstruction that
projects the data towards the manifold, because the lower-dimensional latent space forms a bot-5

tleneck that prevents the autoencoder from learning an identity mapping. Therefore, we interpret
δrec(x) as a distance to the found manifold that is related to the probability of the new sample be-
ing part of the same manifold p(x′ ∈ D|D) ∝ δrec(x

′). Here, p(x′ ∈ D|D) describes the inverse
of the probability of x′ being an outlier. We use this estimate p(x′ 6∈ D|D) ∝ |x−AE(x)| to find
localised outliers by thresholding.10

5.2.2 Experiments & Results
As a proof of concept, we test our Bayesian autoencoder on mid-axial slices of registered CT
images. The 3D images are registered with an affine transformation to a CT atlas in canonical
MNI space. We use 102 healthy cases to train the autoencoder and 107 cases with intracranial
haemorrhages (ICH) and 98 cases with traumatic brain injuries (TBI) to test. We only evaluate15

the performance of outlier detection within a brain mask that was derived from the atlas used for
pre-registration. We set the pixel intensities outside of that mask to −20, clip the intensities to
the HU range of [−20, 300] and rescale to [−1, 1]. Examples of the raw mid-axial slices before
masking are shown in Fig. 5.4. The blood lesions are clearly visible as bright spots in the images,
whereas oedema are not trivial to identify due to the low contrast differences compared to normal20

tissue.

We train convolutional autoencoders based on the implementation in DLTK (Pawlowski et al. 2017c)
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Figure 5.5: Comparison of the difference maps generated by the different methods. Brighter spots
correspond to a higher difference.

(a) ICH (b) TBI

Figure 5.6: ROC curves for the segmentation of blood using thresholding of difference maps.

using Adam (Kingma and Ba 2015).We compare our approach to regular autoencoders, variational
autoencoders (Kingma and Welling 2014) and denoising autoencoders as well as simple baselines
such as the difference to the mean training image and the difference to the CT atlas. Further,
we trained a Gaussian mixture model (GMM) on the intensities within the brain mask and used the
fitted model to score the probability of unseen pixel values within the brain mask. For the denoising, 5

variational and Bayesian autoencoders we use 100 MC estimates. Here, the denoising autoencoder
requires a MC estimate as we also apply additional noise during testing.

Figure 5.5 shows an overview of the difference maps generated by the different methods for an
example from ICH (first row) and TBI (second row). All methods have issues with imperfect skull
stripping as the intensity differences are quite high. The GMM provides the least noisy difference 10

maps, however fails to capture some lesion regions. The atlas and mean image based differ-
ences achieve good performances, but have difficulties dealing with structural information. The
autoencoder-based methods should be able to capture the structural information better. However,
the regular and denoising autoencoder exhibit noisy reconstruction errors. The dropout and varia-
tional autoencoder smooth this noise as they combine multiple samples from the weights or latent 15

code.

We show receiver operation characteristics (ROC) as well as their area under the ROC curve (AUC)
for quantitative results in Figure 5.6. Those curves show the true and false positive rates across all
pixels given the values from the concatenated masked difference maps. The MC-Dropout-based
Bayesian autoencoder achieves the best performance on the task of detecting blood in the masked 20

CT mid-axial slice.
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5.2.3 Discussion & Conclusion
We show that autoencoders are able to perform outlier detection because they fit a lower dimen-
sional manifold for data compression and project unseen data onto this manifold. Therefore, out-
liers will be lost and are visible as reconstruction error. The Bayesian variant of this approach
enables the autoencoder to smooth out uncertainties in the weight space and outperforms the5

baselines.

GANs (Goodfellow et al. 2014) are shown to be able to perform similar tasks (Schlegl et al. 2017)
but have training instabilities. Because of this, we were not able to train a GAN with sufficient
fidelity to the data at hand. Future work should evaluate the method on full 3D volumes and use
improved approximations for Bayesian deep learning (Louizos and Welling 2017; Pawlowski et al.10

2017a). Lastly, better tuned GAN training should be used for another baseline that might fit the
manifold better.

5.3 DetectingOutliers onHistopathology Images
According to the World Health Organization, cancer is one of the leading causes of mortality world-
wide. The diagnosis of cancer relies on the examination of tissue samples by expert pathologists15

which is a difficult and time-consuming task (World Health Organization 2018). Recent advances
in machine learning promise to decrease the time necessary to obtain an accurate diagnosis (Ko-
mura and Ishikawa 2018). Current state-of-the-art methods in machine learning for histopathology
employ deep learning which requires large annotated datasets for model training. Further, most
methods rely on pixel-wise annotations of the whole-slide images (WSI) and work with patches ex-20

tracted from the WSI (Bejnordi et al. 2017). Methods that work with image-level labels only have to
overcome challenges which arise from large image size, as well as the low ratio of objects of inter-
est (cancerous cells) to background in those images (Katharopoulos and Fleuret 2019; Pawlowski
et al. 2019). We aim to reframe this task as an out-of-distribution (OOD) detection task that detects
pathologies as outliers under a statistical model of healthy data (Chen et al. 2018b). We show that25

recent deep learning-based density estimation methods achieve competitive performance to fully
supervised methods.

5.3.1 Background & Method
Recent work on normalising flows (Dinh et al. 2017; Papamakarios et al. 2017) allows for density
estimation on high dimensional image data. Normalising flows model a complex probability density
p(x) using a bijective transformation f of a base distribution π(u) as x = f(u) | u ∼ π(u). The
base distribution π can be chosen at will, allowing for the choice of simple distributions such as
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the Gaussian distribution. Because f(·) is invertible, the density p(x) can be calculated as

pφ(x) = π
(
f−1φ (x)

)∣∣∣∣∣det
∂f−1φ
∂x

∣∣∣∣∣ , (5.5)

using the change of variable formula. Maximum likelihood estimation can then be used to learn
the parametrised transformation fφ(·), where φ represents the parameters of the transforma-
tion.

However, it has been shown that the estimated likelihood is not guaranteed to be a reliable estimate
for detecting OOD samples (Kirichenko et al. 2020; Le Lan and Dinh 2020; Nalisnick et al. 2019b) 5

and various other OOD scoring metrics have been proposed (Choi et al. 2018; Nalisnick et al. 2019a;
Ren et al. 2019). However, these methods either require to train multiple density estimation models
(Choi et al. 2018; Ren et al. 2019) or can only handle batch-wise OOD detection (Nalisnick et al.
2019a). Instead we propose to cut down compute requirements during training by interpreting
different points along the training trajectory as different models, similar to (Huang et al. 2017a; 10

Maddox et al. 2019; Pawlowski et al. 2017b).

Given multiple density estimators pφ1 , . . . , pφn , we consider the following OOD scores:

• The log-likelihood: log pφi

• The expected log-likelihood: Ei[log pφi ]

• The Watanabe-Akaike Information Criterion (WAIC) (Choi et al. 2018): 15

Ei[log pφi(x)]− Vari[log pφi(x)]

• A variation on the typicality test from (Nalisnick et al. 2019a):
|Ei[− log pφi(x)− Ex′∼Xtrain [− log pφi(x

′)]]|

• The variance of the log-likelihood Vari[log pφi ]

Note that, different to the other scores, we expect the variance of inliers to be higher than that 20

of outliers as we expect training of the models to mainly impact the behaviour for inlier samples,
whereas the likelihood of outlier samples will mainly depend on the inductive biases of the model
(Kirichenko et al. 2020).

5.3.2 Experiments & Discussion
We use the PatchCamelyon (PCam) dataset (Veeling et al. 2018) to test our concept of using nor- 25

malising flows for OOD detection on histopathology images. PCam consists of 327, 680 patches
extracted from the CAMELYON16 dataset (Bejnordi et al. 2017). Each 96×96 px patch is labelled
as positive or negative to indicate whether its center 32×32 px patch contains cancerous cells
or not. We use the original train, validation, and test splits. We train our density estimator on all
negative examples from the training set. We then calculate the area under the ROC curve (AUROC) 30
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to estimate the separability and classification performance of positive and negative patches. We
train Residual Flows (Chen et al. 2019a) using the original code4 as a density estimator on the
32×32 px centre patches for 60 epochs and use the checkpoints at epochs 52-60 as the differ-
ent density estimators. We compare our proposed method to a statistical baseline as well as a
fully supervised learning method. The statistical baseline estimates the probability of an inlier as5

p(x) = N (x[:, 1] | µ1, σ1)N (x[:, 2] | µ2, σ2)N (x[:, 3] | µ3, σ3), where x[:, i] denotes the ith
colour channel of the patch x and µi, σi the corresponding empirical mean and variance.

Table 5.2: Comparison of AUROCs for the task of correctly classifying patches from the PCam test
set. The single log-likelihood result is computed using the last model checkpoint. Typ. refers to
our variation on the typicality test introduced by (Nalisnick et al. 2019a). GDensenet refers to the
official supervised PatchCAM baseline (Veeling et al. 2018).

Method log pφ Ei[log pφi ] Vari[log pφi ] WAIC Typ. Gaussian GDensenet

AUROC [%] 53.4 81.6 92.4 25.3 61.8 31.8 96.3

Table 5.2 summarizes the results on the PCam dataset. Consistent with previous work we find that
density estimation alone is not a reliable OOD detection metric, as seen with the performance of the
Gaussian estimator and the regular log-likelihood. However, more sophisticated OOD scoring met-10

rics achieve superior performance. Specifically, using the variance of the log-likelihood achieves
an AUROC of 92.4%, being competitive compared to fully supervised methods such as GDensenet.
We investigate the distribution of the different outlier detection metrics on the test set5 of healthy
and unhealthy PatchCamelyon images in Fig. 5.7. We also include the distribution of images from
the CIFAR10 dataset to study the behaviour of the models on far-OOD detection. The plots con-15

firm that the regular likelihood is unable to separate healthy and unhealthy images. More complex
outlier metrics can improve the separation of the different datasets. However, only the variance
metric clearly separates all datasets from each other. We hypothesise that CIFAR-10 samples are
assigned similar likelihoods as the training samples due to inductive biases of the used density
estimation methods as found in Kirichenko et al. (2020). Summarising, we have shown that there20

is evidence that deep OOD detection methods are capable of identifying cancerous histopathol-
ogy images without the need of annotated cancerous training data. We argue that deep density
estimation with normalising flows should be further explored as it may have a significant impact
on the throughput of pathological analysis avoiding the need for costly pixel-level annotations of
cancerous cells.25

The current work is limited as it lacks thorough tuning of the Residual Flow and relies on the Patch-
Camelyon dataset which is derived from WSI that all contain regions with lesions. Future evalu-
ations will therefore look into training on crops from the CAMELYON17 dataset and examine the

4See https://github.com/rtqichen/residual-flows for the original code.
5We show the same plots for the validation set in Fig. B.7.
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performance of methods on whole-slide histopathology images to showcase their real-world ap-
plicability. Furthermore, it currently is not clear whether the suggested OOD scoring metric of the
likelihood variance during training generalises to other problem domains or is specific to this par-
ticular dataset. Initial experiments on synthetic data as well as more common computer vision
datasets 6 suggest that this point requires more investigation as the computer vision experiments 5

showed little separation using this metric. Nevertheless, we believe that observing the model be-
haviour over the course of training warrants future research into new ways of constructing OOD
metrics. Lastly, we believe that future studies should examine further the low positive data regime
for supervised and semi-supervised methods as they could provide better value per annotation
time than fully unsupervised ones. 10

6We used CIFAR-10 as inlier and SVHN as OOD data.
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(a) Using the regular log likelihood, log p(x), for
OOD detection.
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(b) Using the expected log likelihood, E[log p(x)],
for OOD detection.
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(c) Using the variance of log likelihood,
Var[log p(x)], for OOD detection.
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(d) Using the WAIC, E[log p(x)] − Var[log p(x)],
for OOD detection.
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Figure 5.7: Comparison of the distribution of the different outlier metrics on the test set of healthy
and unhealthy PatchCamelyon images as well as on CIFAR10. Note that the likelihood-only metrics
do not separate the different dataset. More complicated outlier metrics are capable of showing
some separation. However, only the variance metric fully separates all three datasets.
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Chapter 6

Modelling Causal Relationships with Deep
Learning

This chapter is based on the following publication:

(a) Pawlowski, N.∗, Castro, D. C.∗, and Glocker, B. (2020). “Deep Structural Causal Models
for Tractable Counterfactual Inference”. In: Advances in Neural Information Processing
Systems – (Pawlowski et al. 2020)

This work was completed with shared first-authorship with equal contribution from Nick
Pawlowski and Daniel C. Castro. Both authors contributed to all aspects of the work with
main responsibilities as follows: N.P. led the implementation of specific models, data gen-
eration and processing, and experimentation; D.C.C. had main responsibilities on the frame-
work design, analysis, and background research. Both took equal responsibility on ideation,
conceptualisation, framework implementation, and writing of the manuscript. N.P. worked on
Section 6.2.5 and Section 6.6 independently after the original work was published (Pawlowski
et al. 2020).

The code for all experiments and interactive demonstrations are available at https://github.
com/biomedia-mira/deepscm and some extensions can be found at https://github.com/
pawni/deepscm/tree/correlation.

The previous chapters have focussed on modelling the density of observed samples (Chapter 5) 5

or the correlations between various random variables – the probability of an image belonging to
a certain class, either as a measure of the certainty of its predictions based on the probability of
the model (the weights) given the training dataset (Chapter 4), or simply for its class prediction
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6.1. Introduction Causality

given the patches of the image (Chapter 3). This chapter aims to move beyond the modelling of
(conditional) probabilities and studies the concept of causality at all of its levels, including ques-
tions of counterfactual nature like: What would this brain image look like if the subject had a bigger
brain?1

The ability to answer counterfactual questions requires assumptions about the causal structure of5

the modelled variables as well as their mechanistic relationships. Here, we propose a framework
that uses deep learning components to allow the training of deep structural causal models (deep
SCMs or DSCMs). Specifically, deep SCMs use normalising flows and variational inference to al-
low for tractable inference of exogenous variables – the first out of three steps in the process of
calculating counterfactuals in the SCM framework. We verify the capabilities of this framework on10

three case studies. In the first case study, we use a synthetic dataset with known causal structure
based on Morpho-MNIST (Castro et al. 2019) and show that our model can perform all three rungs
of Pearl’s ladder of causation (Pearl 2019) by investigating the observational, interventional and
counterfactual distributions. The second case study models a more complex dataset of brain MR
images and various covariates. We use this example to show how the framework can be used to15

gain insights in real world datasets once a causal structure is assumed. Lastly, we use another
synthetic Morpho-MNIST dataset to assess the limits of the deep SCM framework. Our set of ex-
periments illustrates that our framework is capable of answering complicated causal queries in
various application domains.

6.1 Introduction20

Many questions in everyday life as well as in scientific inquiry are causal in nature: “How would
the climate have changed if we’d had less emissions in the ’80s?”, “How fast could I run if I hadn’t
been smoking?”, or “Will my headache be gone if I take that pill?”. None of those questions can be
answered with statistical tools alone, but require methods from causality to analyse interactions
with our environment (interventions) and hypothetical alternate worlds (counterfactuals), going be-25

yond joint, marginal, and conditional probabilities (Peters et al. 2017). Even though these are natural
lines of reasoning, their mathematical formalisation under a unified theory is relatively recent (Pearl
2009).

In some statistics-based research fields, such as econometrics or epidemiology, the use of causal
inference methods has been established for some time (Greenland et al. 1999; Wold 1954). How-30

ever, causal approaches have been introduced into deep learning (DL) only very recently (Schölkopf
2019). For example, research has studied the use of causality for disentanglement (Parascandolo
et al. 2018; Yang et al. 2020), causal discovery (Bengio et al. 2020; Goudet et al. 2018), and for
deriving causality-inspired explanations (Martinez and Marca 2019; Singla et al. 2020) or data aug-

1Alternatively an interesting counterfactual question this year could be “Who would have won the European Football
Championship in 2021 if it would not have been delayed due to COVID-19?”.

Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 97Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 97Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 97



6.2. Deep Structural Causal Models Causality

mentations (Kaushik et al. 2020). Causal DL models could be capable of learning relationships
from complex high-dimensional data and of providing answers to interventional and counterfactual
questions, although current work on deep counterfactuals is limited by modelling only direct cause-
effect relationships (Singla et al. 2020) or instrumental-variable scenarios (Hartford et al. 2017), or
by not providing a full recipe for tractable counterfactual inference (Kocaoglu et al. 2018). 5

The integration of causality into DL research promises to enable novel scientific advances as well
as to tackle known shortcomings of DL methods: DL is known to be susceptible to learning spuri-
ous correlations and amplifying biases (e.g. Zhao et al. 2017), and to be exceptionally vulnerable to
changes in the input distribution (Szegedy et al. 2014). By explicitly modelling causal relationships
and acknowledging the difference between causation and correlation, causality becomes a natural 10

field of study for improving the transparency, fairness, and robustness of DL-based systems (Kus-
ner et al. 2017; Subbaswamy et al. 2019). Further, the tractable inference of deep counterfactuals
enables novel research avenues that aim to study causal reasoning on a per-instance rather than
population level, which could lead to advances in personalised medicine as well as in decision-
support systems, more generally. 15

In this context, our work studies the use of DL-based causal mechanisms and establishes effective
ways of performing counterfactual inference with fully specified causal models with no unobserved
confounding. Our main contributions are: 1) a unified framework for structural causal models using
modular deep mechanisms; 2) an efficient approach to estimating counterfactuals by inferring ex-
ogenous noise via variational inference or normalising flows; 3) case studies exemplifying how to 20

apply deep structural causal models and perform counterfactual inference. The paper is organised
as follows: we first review structural causal models and discuss how to leverage deep mechanisms
and enable tractable counterfactual inference. Second, we compare our work to recent progress
in deep causal learning in light of Pearl’s ladder of causation (Pearl 2019). Finally, we apply deep
structural causal models to synthetic experiments as well as to modelling brain MRI scans, demon- 25

strating the practical utility of our framework in answering counterfactual questions.

6.2 Deep Structural Causal Models
We consider the problem of modelling a collection of K random variables x = (x1, . . . , xK). By
considering causal relationships between them, we aim to build a model that not only is capable
of generating convincing novel samples, but also satisfies all three rungs of the causation lad- 30

der (Pearl 2019). The first level, association, describes reasoning about passively observed data.
This level deals with correlations in the data and questions of the type “What are the odds that
I observe. . . ?”, which relates purely to marginal, joint, and conditional probabilities. Intervention
concerns interactions with the environment. It requires knowledge beyond just observations, as
it relies on structural assumptions about the underlying data-generating process. Characteristic 35

questions ask about the effects of certain actions: “What happens if I do. . . ?”. Lastly, counterfac-

Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 98Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 98Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 98



6.2. Deep Structural Causal Models Causality

tuals deal with retrospective hypothetical scenarios. Counterfactual queries leverage functional
models of the generative processes to imagine alternative outcomes for individual data points, an-
swering “What if I had done A instead of B?”. Arguably, such questions are at the heart of scientific
reasoning (and beyond), yet are less well-studied in the field of machine learning. The three levels
of causation can be operationalised by employing structural causal models (SCMs)2, recapitulated5

in the next section.

6.2.1 Background on structural causal models
A structural causal model G := (S, P (ε)) consists of a collection S = (f1, . . . , fK) of structural
assignments xk := fk(εk;pak) (called mechanisms), where pak is the set of parents of xk (its
direct causes), and a joint distribution P (ε) =

∏K
k=1 P (εk) over mutually independent exogenous10

noise variables (i.e. unaccounted sources of variation). As assignments are assumed acyclic, re-
lationships can be represented by a directed acyclic graph (DAG) with edges pointing from causes
to effects, called the causal graph induced by G. Every SCM G entails a unique joint observa-
tional distribution PG(x), satisfying the causal Markov assumption: each variable is independent
of its non-effects given its direct causes. It therefore factorises as PG(x) =

∏K
k=1 PG(xk |pak),15

where each conditional distribution PG(xk |pak) is determined by the corresponding mechanism
and noise distribution (Peters et al. 2017).

Crucially, unlike conventional Bayesian networks, the conditional factors above are imbued with a
causal interpretation. This enables G to be used to predict the effects of interventions, defined as
substituting one or multiple of its structural assignments, written as ‘do( · · · )’. In particular, a con-20

stant reassignment of the form do(xk := a) is called an atomic intervention, which disconnects
xk from all its parents and represents a direct manipulation disregarding its natural causes.

While the observational distribution relates to statistical associations and interventions can predict
causal effects, SCMs further enable reasoning about counterfactuals. In contrast to interventions,
which operate at the population level—providing aggregate statistics about the effects of actions25

(i.e. noise sampled from the prior, P (ε))—a counterfactual is a query at the unit level, where the
structural assignments (‘mechanisms’) are changed but the exogenous noise is identical to that of
the observed datum (P (ε |x)) (Pearl 2009; Peters et al. 2017).

These are hypothetical retrospective interventions (cf. potential outcome), given an observed out-
come: ‘What would xi have been if xj were different, given that we observed x?’. This type of30

question effectively offers explanations of the data, since we can analyse the changes resulting
from manipulating each variable. Counterfactual queries can be mathematically formulated as a
three-step procedure (Pearl 2009, Ch. 7):

1. Abduction: Predict the ‘state of the world’ (the exogenous noise, ε) that is compatible with
the observations, x, i.e. infer PG(ε |x).35

2SCMs are also known as (nonlinear) structural equation models or functional causal models.
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6.2. Deep Structural Causal Models Causality
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Figure 6.1: Classes of deep causal mechanisms considered in this work. Bi-directional arrows in-
dicate invertible transformations, optionally conditioned on other inputs (edges ending in black cir-
cles). Black and white arrowheads refer resp. to the generative and abductive directions, while dot-
ted arrows depict an amortised variational approximation. Here, fk is the forward model, ek is an
encoder that amortises abduction in non-invertible mechanisms, gk is a ‘high-level’ non-invertible
branch (e.g. a probabilistic decoder), and hk is a ‘low-level’ invertible mapping (e.g. reparametrisa-
tion).

2. Action: Perform an intervention (e.g. do(xk := x̃k)) corresponding to the desired manipula-
tion, resulting in a modified SCM G̃ = Gx;do(x̃k) = (S̃, PG(ε|x)) (Peters et al. 2017, Sec. 6.4).

3. Prediction: Compute the quantity of interest based on the distribution entailed by the coun-
terfactual SCM, PG̃(x).

With these operations in mind, the next section explores a few options for building flexible, expres- 5

sive, and counterfactual-capable functional mechanisms for highly structured data.

6.2.2 Deep mechanisms
In statistical literature (e.g. epidemiology, econometrics, sociology), SCMs are typically employed
with simple linear mechanisms (or generalised linear models, involving an output non-linearity). An-
alysts attach great importance to the regression weights, as under certain conditions these may be 10

readily interpreted as estimates of the causal effects between variables. While this approach gen-
erally works well for scalar variables and can be useful for decision-making, it is not flexible enough
to model higher-dimensional data such as images. Solutions to this limitation have been proposed
by introducing deep-learning techniques into causal inference (Goudet et al. 2018; Kocaoglu et al.
2018). 15

We call an SCM that uses deep-learning components to model the structural assignments a deep
structural causal model (DSCM). In DSCMs, the inference of counterfactual queries becomes more
complex due to the potentially intractable abduction step (inferring the posterior noise distribution,
as defined above). To overcome this, we propose to use recent advances in normalising flows and
variational inference to model mechanisms for composable DSCMs that enable tractable coun- 20

terfactual inference. While here we focus on continuous data, DSCMs also fully support discrete
variables without the need for relaxations (see Section 6.2.4). We consider three types of mecha-
nisms that differ mainly in their invertibility, illustrated in Fig. 6.1.
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6.2. Deep Structural Causal Models Causality

Invertible, explicit: Normalising flows model complex probability distributions using transfor-
mations from simpler base distributions with same dimensionality (Tabak and Turner 2013). For
an observed variable x, diffeomorphic transformation f , and base variable ε ∼ P (ε) such that
x = f(ε), the output density p(x) can be computed as p(x) = p(ε)|det∇f(ε)|−1, evaluated
at ε = f−1(x) (Papamakarios et al. 2019; Rezende and Mohamed 2015). For judicious choices5

of f , the Jacobian∇f may take special forms with efficiently computable determinant, providing
a flexible and tractable probabilistic model whose parameters can be trained via exact maximum
likelihood. Furthermore, flows can be made as expressive as needed by composing sequences
of simple transformations. For more information on flow-based models, refer to the comprehen-
sive survey by (Papamakarios et al. 2019). Note that this class of models also subsumes the10

typical location-scale and inverse cumulative distribution function transformations used in the
reparametrisation trick (Kingma and Welling 2014; Rezende et al. 2014), as well as the Gumbel
trick for discrete variable relaxations (Jang et al. 2017; Maddison et al. 2017).

Although normalising flows were originally proposed for unconditional distributions, they have been
extended to conditional densities (Trippe and Turner 2017), including in high dimensions (Lu and15

Huang 2020; Winkler et al. 2019), by parametrising the transformation as x = f(ε;paX), as-
sumed invertible in the first argument. In particular, conditional flows can be adopted in DSCMs to
represent invertible, explicit-likelihood mechanisms (Fig. 6.1a):

xi := fi(εi;pai), p(xi |pai) = p(εi) · |det∇εifi(εi;pai)|−1
∣∣
εi=f

−1
i (xi;pai)

. (6.1)

Amortised, explicit: Such invertible architectures typically come with heavy computational re-
quirements when modelling high-dimensional observations, because all intermediate operations20

act in the space of the data. Instead, it is possible to use arbitrary functional forms for the struc-
tural assignments, at the cost of losing invertibility and tractable likelihoods p(xk |pak). Here, we
propose to separate the assignment fk into a ‘low-level’, invertible component hk and a ‘high-level’,
non-invertible part gk—with a corresponding noise decomposition εk = (uk, zk)—such that

xk := fk(εk;pak) = hk(uk; gk(zk;pak),pak), P (εk) = P (uk)P (zk) . (6.2)

In such a decomposition, the invertible transformation hk can be made shallower, while the up-25

stream non-invertible gk maps from a lower-dimensional space and is expected to capture more
of the high-level structure of the data. Indeed, a common implementation of this type of model
for images would involve a probabilistic decoder, where gk may be a convolutional neural network,
predicting the parameters of a simple location-scale transformation performed by hk (Kingma and
Welling 2014).30

As the conditional likelihood p(xk |pak) in this class of models is no longer tractable because zk
cannot be marginalised out, it may alternatively be trained with amortised variational inference.
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6.2. Deep Structural Causal Models Causality

Specifically, we can introduce a variational distributionQ(zk |xk,pak) to formulate a lower bound
on the true marginal conditional log-likelihood, which will be maximised instead:

log p(xk |pak) ≥ EQ(zk|xk,pak)[log p(xk |zk,pak)]−DKL[Q(zk |xk,pak)‖P (zk)] . (6.3)

The argument of the expectation in this lower bound can be calculated similarly to Eq. (6.1):

p(xk |zk,pak) = p(uk) · |det∇ukhk(uk; gk(zk,pak),pak)|−1
∣∣
uk=h

−1
k (xk;gk(zk,pak),pak)

. (6.4)

The approximate posterior distribution Q(zk |xk,pak) can for example be realised by an encoder
function, ek(xk;pak), that outputs the parameters of a simple distribution over zk (Fig. 6.1b), as 5

in the auto-encoding variational Bayes (AEVB) framework (Kingma and Welling 2014).

Amortised, implicit: While the models above rely on (approximate) maximum-likelihood as train-
ing objective, it is admissible to train a non-invertible mechanism as a conditional implicit-likelihood
model (Fig. 6.1c), optimising an adversarial objective (Donahue et al. 2017; Dumoulin et al. 2017;
Mirza and Osindero 2014). Specifically, a deterministic encoder ej would strive to fool a discrimi- 10

nator function attempting to tell apart tuples of encoded real data (xj, ej(xj;paj),paj) and gen-
erated samples (fj(εj;paj), εj,paj). This class of mechanism is proposed here for complete-
ness, without empirical evaluation. However, following initial dissemination of our work, (Dash and
Sharma 2020) reproduced our Morpho-MNIST experiments (Section 6.4) and demonstrated these
amortised implicit-likelihood mechanisms can achieve comparable performance. 15

6.2.3 Deep counterfactual inference
Now equipped with effective deep models for representing mechanisms in DSCMs, we discuss the
inference procedure allowing us to compute answers to counterfactual questions.

Abduction: As presented in Section 6.2.1, the first step in computing counterfactuals is abduc-
tion, i.e. to predict the exogenous noise, ε, based on the available evidence, x. Because each noise 20

variable is assumed to affect only the respective observed variable, (εk)
K
k=1 are conditionally in-

dependent given x, therefore this posterior distribution factorises as PG(ε|x) =
∏K

k=1 PG(εk |
xk,pak). In other words, it suffices to infer the noise independently for each mechanism, given
the observed values of the variable and of its parents3.

For invertible mechanisms, the noise variable can be obtained deterministically and exactly by just 25

inverting the mechanism: εi = f−1i (xi;pai). Similarly, implicit-likelihood mechanisms can be
approximately inverted by using the trained encoder function: εj ≈ ej(xj;paj).

3Note that here we assume full observability, i.e. no variables are missing when predicting counterfactuals. We
discuss challenges of handling partial evidence in Section 6.7.
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6.2. Deep Structural Causal Models Causality

Some care must be taken in the case of amortised, explicit-likelihood mechanisms, as the ‘high-
level’ noise zk and ‘low-level’ noise uk are not independent given xk. Recalling that this mechanism
is trained along with a conditional probabilistic encoder, Q(zk |ek(xk;pak)), the noise posterior
can be approximated as follows, where δw( · ) denotes the Dirac delta distribution centred at w:

5

PG(εk |xk,pak) = PG(zk |xk,pak)PG(uk |zk, xk,pak)

≈ Q(zk |ek(xk;pak)) δh−1
k (xk;gk(zk;pak),pak)

(uk) .
(6.5)

Action: The causal graph is then modified according to the desired hypothetical intervention(s),
as in the general case (Section 6.2.1). For each intervened variable xk , its structural assignment is
replaced either by a constant, xk := x̃k—making it independent of its former parents (direct causes,
pak) and of its exogenous noise (εk)—or by a surrogate mechanism xk := f̃k(εk; p̃ak), forming
a set of counterfactual assignments, S̃. This then defines a counterfactual SCM G̃ = (S̃, PG(ε|10

x)).

Prediction: Finally, we can sample from G̃. Noise variables that were deterministically inverted
(either exactly or approximately) can simply be plugged back into the respective forward mecha-
nism to determine the new output value. Notice that this step is redundant for observed variables
that are not descendants of the ones being intervened upon, as they will be unaffected by the15

changes.

As mentioned above, the posterior distribution over (zk, uk) for an amortised, explicit-likelihood
mechanism does not factorise (Eq. (6.5)), and the resulting distribution over the counterfactual xk
cannot be characterised explicitly. However, sampling from it is straightforward, such that we can
approximate the counterfactual distribution via Monte Carlo as follows, for each sample s:20

z
(s)
k ∼ Q(zk |ek(xk;pak))

u
(s)
k = h−1k (xk; gk(z

(s)
k ;pak),pak)

x̃
(s)
k = h̃k(u

(s)
k ; g̃k(z

(s)
k ; p̃ak), p̃ak) .

(6.6)

Consider an uncorrelated Gaussian decoder for images as a concrete example, predicting vectors
of means and variances for each pixel of xk: gk(zk;pak) = (µ(zk;pak), σ

2(zk;pak)), with the
low-level reparametrisation given byhk(uk; (µ, σ2),pak) = µ+ σ2 � uk. Exploiting the reparametri-
sation trick, counterfactuals that preserve xk ’s mechanism can be computed simply as

u
(s)
k = (xk − µ(z

(s)
k ;pak))� σ(z

(s)
k ;pak), x̃

(s)
k = µ(z

(s)
k ; p̃ak) + σ(z

(s)
k ; p̃ak)� u

(s)
k ,

where � and � denote element-wise division and multiplication, respectively. In particular, in the25
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6.2. Deep Structural Causal Models Causality

constant-variance setting adopted for our experiments, counterfactuals further simplify to

x̃
(s)
k = xk + [µ(z

(s)
k ; p̃ak)− µ(z

(s)
k ;pak)] .

This showcases how true image counterfactuals are able to retain pixel-level details. Typical con-
ditional generative models would output only µ(zk; p̃ak) (which is often blurry in vanilla variational
auto-encoders (Larsen et al. 2016)), or would in addition have to sample P (uk) (resulting in noisy
images). 5

6.2.4 Discrete counterfactuals
The Deep Structural Causal Model framework supports not only low- and high-dimensional con-
tinuous data, but also discrete variables. In particular, discrete mechanisms with a Gumbel–max
parametrisation have been shown to lead to counterfactuals satisfying desirable properties (Oberst
and Sontag 2019). For example, they are invariant to category permutations and are stable, such 10

that increasing the odds only of the observed outcome cannot produce a different counterfactual
outcome. More computational details and properties of the Gumbel distribution are found in (Mad-
dison and Tarlow 2017).

Consider a discrete random variable over K categories, y, with a conditional likelihood described
by logits λ, assumed to be a function gY of its parents, paY :

P (y = k |paY ) =
eλk∑K
l=1 e

λl
, λ = gY (paY ) . (6.7)

Under the Gumbel–max parametrisation, the mechanism generating y can be described as

y := fY (εY ;paY ) = arg max
1≤l≤K

(εlY + λl), εlY ∼ Gumbel(0, 1) . (6.8)

Samples from the Gumbel(0, 1) distribution can be generated by computing − log(− logU),
where U ∼ Unif(0, 1). 15

The Gumbel distribution has certain special properties (Maddison and Tarlow 2017) that enable
tractable abduction. Given that we observed y = k, samples can be generated from the exact
posterior P (εY |y = k,paY ):

εkY = Gk + log
∑

l e
λl − λk, Gk ∼ Gumbel(0, 1),

εlY = − log(e−Gl−λl + e−ε
k
Y −λk)− λl, Gl ∼ Gumbel(0, 1), ∀l 6= k .

(6.9)

Finally, given an upstream counterfactual intervention such that λ̃ = g̃Y (p̃aY ), the counterfactual
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6.2. Deep Structural Causal Models Causality

outcome for y can be determined simply as

y = fY (εY ; p̃aY ) = arg max
1≤l≤K

(εlY + λ̃l) . (6.10)

Note that this entire derivation applies to a truly discrete variable, without the need for continuous
relaxations as commonly used in deep generative models (Jang et al. 2017; Maddison et al. 2017),
as the likelihood is given in closed form and no gradients of expectations are necessary.

6.2.5 Dealing with correlated parents5

Deep learning models are known to pick up on spurious correlations and use shortcuts to fulfil the
tasks they are trained to perform (Makar et al. 2021). Imagine a causal model with three variables:
x, y and z that are factorised as p(x, y, z) = p(z |x, y) p(y |x) p(x), such that x and y cause z
and x causes y. Let x, y and z be Gaussian distributed according to the following SCM,

x := fx(ε
∗
x) = ax · ε∗x + bx , ε∗x ∼ N (0, 1) ,

y := fy(ε
∗
y;x) = ay(x) · ε∗y + by(x) , ε∗y ∼ N (0, 1) ,

z := fz(ε
∗
z;x, y) = az(x, y) · ε∗z + bz(x, y) , ε∗z ∼ N (0, 1) ,

(6.11)

where a(·) and b(·) describe the effect of the parents on the respective variable. In the case of10

ay → 0, the variable y would collapse to be deterministic given x, fy(ε∗y;x) = by(x) = f̄y(x).
Even though in practice, we will rarely encounter situations in which the mechanism collapses
to a deterministic one, it offers a useful perspective of understanding the problem of estimating
fz(ε

∗
z;x, y). The estimation of fz(ε∗z;x, y) from data alone would be susceptible to shortcuts

because fz(ε∗z;x, y) ≈ fz(ε
∗
z;x, f̄y(x)) = f̄z(ε

∗
z;x). This scenario is equivalent to x and y having15

infinite correlation or zero conditional entropy, H(y|x) = 0.

However, ideally we want to learn the true fz(ε∗z;x, y) rather than the shortcut f̄z(ε∗z;x) to enable
interventional and causal queries to extrapolate to different p̃(y |pay). This problem touches upon
topics of shortcut removal (Makar et al. 2021), extrapolation in generative models (Besserve et al.
2021) as well as identifiability of functions expressed by neural networks in general (Khemakhem20

et al. 2020; Mita et al. 2021; Roeder et al. 2021; Sorrenson et al. 2020; Zhou and Wei 2020). So far,
the deep SCM framework learns the different mechanisms fk,θ with parameters θ by optimising
the explicit or implicit (conditional) likelihood of the observed data, pθ(xk |pak). Without any fur-
ther constraints to enforce identifiability, this approach can learn various solutions θ that optimise
pθ(xk |pak). Inspired by the notion of genericity from (Besserve et al. 2021), we use auxiliary dis-25

tributions qϕ(pak |xk) to constrain the space of equivalent solutions. Specifically, in addition to
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the regular likelihood we optimise

arg max
θ

Epθ(x̃k|do(pak=p̃ak),xk=xk)
[qϕ(pak = p̃ak |x̃k)]

≈ arg max
θ

1

M

M∑
m=1

qϕ(pak = p̃ak |x̃
(m)
k ), x̃

(m)
k ∼ pθ(x̃k |do(pak = p̃ak), xk = xk) ,

(6.12)
where x̃k is a counterfactual of xk with the intervention do(pak = p̃ak). Assuming that the aux-
iliary distributions qϕ(pak |xk) are available or easier to learn than p(xk |pak), this encourages
fk to account for all parents rather than only the ones with high conditional entropy. Specifically,
the auxiliary distributions encourage disentanglement of the effect of the parents pak on the vari- 5

able xk by requiring that every parent can individually be recovered from counterfactuals x̃k. If
sufficient interventional or counterfactual data is available it would be possible to follow (Ilse et al.
2021) to directly optimise pθ(x̃k |do(pak = p̃ak)) as the intervention would expose the mech-
anism fk(εk;pak) independently of the observed distributions p(pak) over the parent variables
pak. Similarly, the application of adequately designed data augmentations can be used instead of 10

interventional data (Ilse et al. 2020).

6.3 Related Work
Deep generative modelling has seen a wide range of contributions since the popularisation of vari-
ational auto-encoders (VAEs) (Kingma and Welling 2014), generative adversarial networks (GANs)
(Goodfellow et al. 2014), and normalising flows (Rezende and Mohamed 2015). These models 15

have since been employed to capture conditional distributions (Mirza and Osindero 2014; Sohn
et al. 2015; Trippe and Turner 2017; Winkler et al. 2019), and VAEs and GANs were also extended
to model structured data by incorporating probabilistic graphical models (Johnson et al. 2016; Li
et al. 2018; Lin et al. 2018). In addition, deep generative models have been heavily used for (unsu-
pervised) representation learning with an emphasis on disentanglement (Chen et al. 2016; Higgins 20

et al. 2017; Kulkarni et al. 2015; Pati and Lerch 2020). However, even when these methods faithfully
capture the distribution of observed data, they are capable of fulfilling only the association rung of
the ladder of causation.

Interventions build on the associative capabilities of probabilistic models to enable queries related
to changes in causal mechanisms. By integrating a causal graph into the connectivity of a deep 25

model, it is possible to perform interventions with GANs (Kocaoglu et al. 2018) and causal gen-
erative NNs (Goudet et al. 2018). VAEs can also express causal links using specific covariance
matrices between latent variables, which however restrict the dependences to be linear (Yang et
al. 2020). Alternatively, assuming specific causal structures, (Tran and Blei 2018) and (Louizos
et al. 2017) proposed different approaches for estimating causal effects in the presence of unob- 30

served confounders. Despite reaching the second rung of the causal ladder, all of these methods
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6.4. Case Study 1: Morpho-MNIST Causality

lack tractable abduction capabilities and therefore cannot generate counterfactuals.

Some machine-learning tasks such as explainability, image-to-image translation, or style trans-
fer are closely related to counterfactual queries of the sort ‘How would x (have to) change if we
(wished to) modify y?’. Here, y could be the style of a picture for style transfer (Gatys et al. 2016),
the image domain (e.g. drawing to photo) for image-to-image translation (Isola et al. 2017), the age5

of a person in natural images (Antipov et al. 2017) or medical scans (Xia et al. 2019), or a predicted
output for explainability (Singla et al. 2020). However, these approaches do not explicitly model
associations, interventions, nor causal structure. Potentially closest to our work is a method for
counterfactual explainability of visual models, which extends CausalGANs (Kocaoglu et al. 2018)
to predict reparametrised distributions over image attributes following an assumed causal graph10

(Martinez and Marca 2019). However, this approach performs no abduction step, instead resam-
pling the noise of attributes downstream from the intervention(s), and does not include a genera-
tive model of imaging data. To the best of our knowledge, the proposed DSCM framework is the
first flexible approach enabling end-to-end training and tractable inference on all three levels of the
ladder of causation for high-dimensional data.15

6.4 Case Study 1: Morpho-MNIST
We consider the problem of modelling the causal model of a synthetic dataset based on MNIST
digits (LeCun et al. 1998b), where we defined stroke thickness to cause the brightness of each
digit: thicker digits are brighter whereas thinner digits are dimmer. This simple dataset allows for
examining the three levels of causation in a controlled and measurable environment.20

6.4.1 Data Generation
We use morphological transformations on MNIST (Castro et al. 2019) to generate a dataset with
known causal structure and access to the ‘true’ process of generating counterfactuals. The SCM

t=2.3; i=145 t=3.2; i=229 t=2.9; i=191 t=2.6; i=134 t=2.6; i=125 t=2.7; i=170 t=4.0; i=243 t=2.3; i=122

t=2.1; i=103 t=3.6; i=226 t=2.2; i=106 t=3.3; i=223 t=2.9; i=189 t=3.6; i=242 t=3.5; i=224 t=3.1; i=216

Figure 6.2: Random exemplars from the synthetically generated Morpho-MNIST test dataset.
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Figure 6.3: Computational graphs of the structural causal models for the Morpho-MNIST example.
The image is denoted by x, stroke thickness by t, and image intensity by i. The corresponding
causal diagrams are displayed in the top-right corners.

designed for this synthetic dataset is as follows:

t := f ∗T (ε∗T ) = 0.5 + ε∗T , ε∗T ∼ Γ(10, 5) ,

i := f ∗I (ε∗I ; t) = 191 · σ(0.5 · ε∗I + 2 · t− 5) + 64 , ε∗I ∼ N (0, 1) ,

x := f ∗X(ε∗X ; i, t) = SetIntensity(SetThickness(ε∗X ; t); i) , ε∗X ∼ MNIST ,

(6.13)

where SetIntensity( · ; i) and SetThickness( · ; t) refer to the operations that act on an image of
a digit and set its intensity to i and thickness to t, x is the resulting image, ε∗ is the exogenous
noise for each variable, and σ( · ) is the logistic sigmoid.

We use the original MNIST dataset (LeCun et al. 1998b) together with the morphometric measure- 5

ments introduced with Morpho-MNIST (Castro et al. 2019) to add functionality to measure intensity
as well as set the intensity and thickness to a given value.

We implement MeasureIntensity by following the processing steps proposed by (Castro et al.
2019), and measure the intensity i of an image as the median intensity of pixels within the extracted
binary mask. Once the intensity is measured, the entire image is rescaled to match the target 10

intensity, with values clamped between 0 and 255 (images are assumed to be in unsigned 8-bit
format).

Originally, Morpho-MNIST only proposed relative thinning and thickening operations. We expand
those operations to absolute values by calculating the amount of dilation or erosion based on the
ratio between target thickness and measured thickness. 15

Finally, we follow Eq. (6.13) to modify each image within the MNIST dataset and randomly split the
original training set into a training and validation set. We show random samples from the resulting
test set in Fig. 6.2.

6.4.2 Experimental Setup
We use this setup to study the capabilities of our framework in comparison to models with less 20

causal structure. We adapt the true causal graph from Eq. (6.13) and model thickness and inten-
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sity using (conditional) normalising flows and employ a conditional VAE for modelling the image.
In particular, we adopt the causal graphs shown in Fig. 6.3 and test a fully independent model
(Fig. 6.3a), a conditional decoder model (Fig. 6.3b), as well as our full causal model (Fig. 6.3c). All
our experiments were implemented within PyTorch (Paszke et al. 2019) using the Pyro probabilistic
programming framework (Bingham et al. 2019).5

We use (conditional) normalising flows for all variables apart from the images, which we model
using (conditional) deep encoder-decoder architectures. The flows consist of components that
constrain the support of the output distribution (where applicable) and components relevant for
fitting the distribution. We use unit Gaussians as base distributions for all exogenous noise dis-
tributions P (ε) and, if available, we use the implementations in PyTorch (Paszke et al. 2019) or10

Pyro (Bingham et al. 2019) for all transformations. Otherwise, we adapt the available implementa-
tions, referring to (Durkan et al. 2019) for details. We indicate with θ the modules with learnable
parameters.

We model the mechanisms of the thickness t and intensity i as

t := fT (εT ) = (exp ◦AffineNormalisation ◦ Splineθ)(εT ) , (6.14)

i := fI(εI ; t) =
(
AffineNormalisation ◦ sigmoid ◦ConditionalAffineθ(t̂)

)
(εI) . (6.15)

In the independent model, where i is not conditioned on t, we use instead

i := fI(εI) = (AffineNormalisation ◦ sigmoid ◦ Splineθ ◦Affineθ)(εI) . (6.16)

We found that including normalisation layers help learning dynamics4 and therefore include flows to15

perform commonly used normalisation transformations. For a doubly bounded variable y we learn
the flows in unconstrained space and then constrain them by a sigmoid transform and rescale to the
original range using fixed affine transformations with bias min(Y ) and scale [max(Y )−min(Y )].
We constrain singly bounded values by applying an exponential transform to the unbounded values
and using an affine normalisation equivalent to a whitening operation in unbounded log-space.20

We denote those fixed normalisation transforms as AffineNormalisation and use a hat to refer
to the unconstrained, normalised values (e.g. p̂ak). The Splineθ transformation refers to first-
order neural spline flows (Durkan et al. 2019), Affineθ is an element-wise affine transformation,
and sigmoid refers to the logistic function. ConditionalAffineθ(·) is a regular affine transform
whose transformation parameters are predicted by a context neural network taking · as input. In25

the case of fI(εI ; t), the context network is represented by a simple linear transform. Further, we
4We observed that not normalising the inputs can lead to the deep models prioritising learning the dependence on

the variable with largest magnitude. We provide some first insights into a similar problem when studying correlated
parents in Section 6.6. However, this phenomenon should be investigated further.
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6.4. Case Study 1: Morpho-MNIST Causality

model x using a low-level flow:

hX(uX ;paX) = [Preprocessing ◦ConditionalAffineθ(p̂aX)](uX) , (6.17)

where the ConditionalAffine transform practically reparametrises the noise distribution into another
Gaussian distribution and Preprocessing describes a fixed preprocessing transformation. We fol-
low the same preprocessing as used with RealNVP (Dinh et al. 2017). The context network for the
conditional affine transformation is the high-level mechanism gX(zX ;paX) and is implemented 5

as a decoder network that outputs the bias for of the affine transformation, while the log-variance
is fixed to log σ2 = −5. We implement the decoder network as a CNN:

gX(zX ;paX) = (Convθ(1; 1; 1; 0) ◦ ConvTransposeθ(1; 4; 2; 1) ◦ ReLU ◦BNθ

◦ ConvTransposeθ(64; 4; 2; 1) ◦ Reshape(64, 7, 7)

◦ ReLU ◦BNθ ◦Linearθ(1024)

◦ ReLU ◦BNθ ◦Linearθ(1024))([zX , p̂aX ]) ,

(6.18)

where the operators describe neural network layers as follows: BN is batch normalisation; ReLU

the ReLU activation function; Conv(c; k; s; p) and ConvTranspose(c; k; s; p) are a convolution or
transposed convolution using a kernel with size k, a stride of s, a padding of p and outputting c 10

channels; Linear(h) is a linear layer with h output neurons; and Reshape(·) reshapes its inputs
into the given shape ·. Lastly, [zX ,paX ] denotes the concatenation of zX and paX , and zX ∈
R16.

Equivalently, we implement the encoder function as a simple CNN that outputs mean and log-
variance of an independent Gaussian: 15

eX(x;paX) =
(
[Linearθ(16),Linearθ(16)] ◦ [LeakyReLU(0.1), p̂aX ]

◦ BNθ ◦Linearθ(100) ◦ Reshape(128 · 7 · 7)

◦ LeakyReLU(0.1) ◦ BNθ ◦Convθ(128; 4; 2, 1)

◦ LeakyReLU(0.1) ◦ BNθ ◦Convθ(64; 4; 2, 1)
)
(x) ,

(6.19)

where LeakyReLU(`) is the leaky ReLU activation function with a leakiness of `.

We use Adam (Kingma and Ba 2015) for optimisation with batch size of 256 and a learning rate of
10−4 for the encoder-decoder and 0.005 for the covariate flows. We set the number of particles
(MC samples) for estimating the ELBO to 4. We use 32 MC samples for estimating reconstruction
and counterfactuals. We train all models for 1000 epochs and report the results of the model with 20

the best validation loss.
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6.4. Case Study 1: Morpho-MNIST Causality

Table 6.1: Comparison of the associative abilities of the models shown in Fig. 6.3. The image is
denoted by x, thickness by t, and intensity by i. Quantities with≥ are lower bounds. MAE refers
to the mean absolute error between pixels of the original image and of its reconstruction.

Model log p(x, t, i) ≥ log p(x|t, i) ≥ log p(t) log p(i |t) MAE(x, x′)

Independent −5925.26 −5919.14 −0.93 −5.19 4.50

Conditional −5526.50 −5520.37 −0.93 −5.19 4.26

Full −5692.94 −5687.71 −0.93 −4.30 4.43
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Figure 6.4: Comparison of the target covariates and the corresponding values measured from
the generated images. The leftmost column refers to the accuracy of the SetThickness and
SetIntensity transforms used in generating the synthetic dataset, and the remaining three
columns describe the fidelity of samples generated by each of the learned models. While images
sampled from the independent model are trivially inconsistent with the sampled covariates, the
conditional and full models show comparable conditioning performance.

6.4.3 Results
We quantitatively compare the associative capabilities of all models by evaluating their evidence
lower bound (Eq. (6.3)), log-likelihoods and reconstruction errors as shown in Table 6.1. We find
that performance improves consistently with the model’s capabilities: enabling conditional im-
age generation improves p(x |t, i), and adding a causal dependency between t and i improves5

p(i |t). Further, we examine samples of the conditional and unconditional distributions in Figs. 6.4
to 6.7.

The interventional distributions can be directly compared to the true generative process. Figure 6.8
shows that the densities predicted by our full model after intervening on t closely resemble the
true behaviour. The conditional and independent models operate equivalently to each other and are10

incapable of modelling the relationship between t and i, capturing only their marginal distributions.
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6.4. Case Study 1: Morpho-MNIST Causality

(a) Independent (b) Conditional (c) Full

Figure 6.5: Random samples generated by the independent, conditional and full model. Note how
all models appear to have the same unconditional generation capacity.
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Figure 6.6: Conditional samples generated by the independent, conditional, and full model. The
high-level noise, zX , is shared for all samples from each model, ensuring the same ‘style’ of the
generated digit. The independent model generates images independent of the thickness and in-
tensity values, resulting in identical samples. For the conditional and full models, thickness and
intensity change consistently along each column and row, respectively.

Additionally, we take an explicit look at the differences between intervening and conditioning in
Fig. 6.9.

Lastly, we examine the full model’s ability to generate counterfactuals. In this special case, where
the true data generating process is known, it is possible to evaluate against reference counterfactu-
als that are impossible to obtain in most real-world scenarios. We compare all models on the task 5

of generating counterfactuals with intervention do(t + 2) and compute the mean absolute errors
between the generated and the reference counterfactual image. For this task, the models perform
in order of their complexity: the independent model achieved 41.6, the conditional 31.8, and the
full model achieved a MAE of 17.6. This emphasises that, although wrongly specified models will
give wrong answers to counterfactual queries (and interventions; see Fig. 6.8), the results are con- 10

sistent with the assumptions of each model. The independent model lacks any relationship of the
image on thickness and intensity and therefore does not change the image under the given interven-
tion. The conditional model does not model any dependency of intensity on thickness, which leads
to counterfactuals with varying thickness but constant intensity. Examples of previously unseen
images and generated counterfactuals using the full model are shown in Fig. 6.10 for qualitative 15
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Figure 6.7: Reconstructions. These are computed as Monte Carlo averages approximating
EQ(zX |eX(x;paX))[gX(zX ;paX)], where eX and gX are the image encoder and decoder networks.
All models seem capable of producing faithful reconstructions.
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Figure 6.8: Distributions of thickness and intensity in the true data (left), and learned by the full
(centre) and conditional (right) models. Contours depict the observational (red, shaded) and inter-
ventional joint densities for do(t := fT (εT ) + 1) (blue, solid) and do(t := fT (εT ) − 0.5) (green,
dashed).

examination. We see that our model is capable of generating convincing counterfactuals that pre-
serve the digit identity while changing thickness and intensity consistently with the underlying true
causal model. A larger range of counterfactual samples can be seen in Fig. 6.11.

Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 113Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 113Nick Pawlowski Probabilistic and Causal Reasoning in Deep Learning for Imaging 113



6.4. Case Study 1: Morpho-MNIST Causality

1 2 3 4 5
Thickness (t)

75

100

125

150

175

200

225

250

In
te

ns
ity

 (i
)

p(t | i)

1 2 3 4 5
Thickness (t)

p(t |do(i)) = p(t)

1 2 3 4 5
Thickness (t)

p(i |do(t)) = p(i | t)

Figure 6.9: Difference between conditioning and intervening, based on the trained full model. The
joint density p(t, i) is shown as contours in the background, for reference, and the ‘violin’ shapes
represent the density of one variable when conditioning or intervening on three different values of
the other variable. Since t causes i, notice how p(t|i) (left) is markedly different from p(t |do(i))
(middle), which collapses to p(t). On the other hand, p(i |do(t)) and p(i |t) (right) are identical.
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Figure 6.10: Counterfactuals generated by the full model. (left) Counterfactual ‘trajectories’ of two
original samples, A and B, as their thickness and intensity are modified, overlaid on the learned
joint density p(t, i). (right) Original and counterfactual images corresponding to samples A and B.
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Original do(t=1.0) do(t=3.0) do(t=5.0) do(i=64) do(i=160) do(i=255)

t=1.8
i=119

Original do(t=1.0) do(t=3.0) do(t=5.0) do(i=64) do(i=160) do(i=255)

t=3.6
i=242

Original do(t=1.0) do(t=3.0) do(t=5.0) do(i=64) do(i=160) do(i=255)

t=2.6
i=142

Figure 6.11: Original samples and counterfactuals from the full model. The first column shows
the original image and true values of the non-imaging data. The even rows show the difference
maps between the original image and the corresponding counterfactual image. We observe that
all counterfactuals preserve the digits’ identity and style. Our model even generates sensible coun-
terfactual images (with some artefacts) in very low-density regions, e.g. ‘0’ with do(i = 64) (thick
but dim), and very far from the original, e.g. ‘2’ with do(t = 5.0).
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6.5 Case Study 2: Brain Imaging
Our real-world application touches upon fundamental scientific questions in the context of medi-
cal imaging: how would a person’s anatomy change if particular traits were different? We illustrate
with a simplified example that our DSCM framework may provide the means to answer such coun-
terfactual queries, which may enable entirely new research into better understanding the physical 5

manifestation of lifestyle, demographics, and disease. Note that any conclusions drawn from a
model built in this framework are strictly contingent on the correctness of the assumed SCM. Here,
we model the appearance of brain MRI scans given the person’s age and biological sex, as well as
brain and ventricle volumes5, using population data from the UK Biobank (Sudlow et al. 2015). Ven-
tricle and total brain volumes are two quantities that are closely related to brain age (Peters 2006) 10

and can be observed relatively easily. We adopt the causal graph shown in Fig. 6.13 and otherwise
follow the same training procedure as for the MNIST experiments.6

6.5.1 Data Generation

Figure 6.12: Random examplars from the test set of the adopted UK Biobank dataset (Sudlow et al.
2015).

The original three-dimensional (3D) T1-weighted brain MRI scans have been pre-processed by the
data providers of the UK Biobank Imaging study using the FSL neuroimaging toolkit (Alfaro-Almagro 15

et al. 2018). The pre-processing involves skull removal, bias field correction, and automatic seg-
mentation of brain structures. In addition, we have rigidly registered all scans to the standard
MNI atlas space using an in-house image registration tool, which enabled us to extract anatomi-
cally corresponding mid-axial 2D slices that were used for the experiments presented in this paper.
The 2D slices were normalised in intensity by mapping the minimum and maximum values inside 20

the brain mask to the range [0, 255]. Background pixels outside the brain were set to zero. Age
and biological sex for each subject were retrieved from the UK Biobank database along with the

5Ventricles are fluid-filled cavities identified as the symmetric dark areas in the centre of the brain.
6Note that Fig. 6.13 shows s with a unidirectional arrow from εS : since s has no causal parents in this SCM,

abduction of εS is not necessary. If it had parents and we wished to estimate discrete counterfactuals under upstream
interventions, this could be done with a Gumbel–max parametrisation as described in Section 6.2.4.
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Figure 6.13: Computational graph for the brain imaging example: Variables are image (x), age (a),
sex (s), and brain (b) and ventricle (v) volumes.

pre-computed brain and ventricle volumes. These volumes are derived from the 3D segmentation
maps obtained with FSL, and although these are image-derived measurements, they may serve as
reasonable proxies of the true measurements within our (simplified yet plausible) causal model of
the physical manifestation of the brain anatomy.

6.5.2 Experimental Setup5

The setup for the brain imaging experiment closely follows the MNIST example as described in
Section 6.4.2. We randomly split the available 13, 750 brain images into train, validation and test
sets with the respective ratios 70%, 15% and 15%. During training, we randomly crop the brain
slices from their original size of 233 px× 197 px to 192 px× 192 px and use center crops during
validation and testing. The cropped images are downsampled by a factor of 3 to a size of 64 px×10

64 px.

We use the same low-level mechanism for the image x as with MNIST images but change the
encoder and decoder functions to a deeper architecture with 5 scales consisting of 3 blocks of
(LeakyReLU(0.1) ◦ BNθ ◦Convθ) each as well as a linear layer that converts to and from the
latent space with 100 dimensions. We directly learn the binary probability of the sex s and use the
following invertible transforms to model the age a, brain volume b, and ventricle volume v as

a := fA(εA) =
(
exp ◦AffineNormalisation ◦ Splineθ

)
(εA) , (6.20)

b := fB(εB; s, a) =
(
exp ◦AffineNormalisation ◦ConditionalAffineθ([s, â])

)
(εB) , (6.21)

v := fV (εV ; a, b) =
(
exp ◦AffineNormalisation ◦ConditionalAffineθ([b̂, â])

)
(εV ) , (6.22)

where the context networks are implemented as a fully-connected network with 8 and 16 hidden
units, and a LeakyReLU(0.1) nonlinearity.

6.5.3 Results
The learned DSCM is capable of all three levels of the causal hierarchy. We present the analysis15

of lower levels in Figs. 6.14 to 6.17 and and focus here on counterfactuals, shown in Fig. 6.18.
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Figure 6.14: Random samples from the model trained on the UK Biobank dataset.
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Figure 6.15: Conditional samples from the model trained on the UK Biobank dataset. Images in
each 3×3 block share the same the high-level noise vector, zX . Each row consistently changes the
brain size, whereas each column changes the ventricle volume.

The difference maps show plausible counterfactual changes: increasing age causes slightly larger
ventricles while decreasing the overall brain volume (fourth column). In contrast, directly increasing
the brain volume has an opposite effect on the ventricles compared to changing age (sixth column).
Intervening on ventricle volume has a much more localised effect (last column), while intervening
on the categorical variable of biological sex has smaller yet more diffuse effects. Note how the 5

anatomical ‘identity’ (such as the cortical folding) is well preserved after each intervention.
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Figure 6.16: Original samples and reconstructions from the model trained on the UK Biobank
dataset.
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(a) Age vs. brain volume: p(a, b|s). Here we see differences in head size across biological sexes (reflected
in brain volume), as well as a downward trend in brain volume as age progresses.
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(b) Age vs. ventricle volume: p(a, v |b ∈ · ). As expected from the literature (Peters 2006), we observe a
consistent increase in ventricle volume with age, in addition to a proportionality relationship with the overall
brain volume.

Figure 6.17: Densities for the true data (KDE) and for the learned model. The overall trends and
interactions present in the true data distribution seem faithfully captured by the model.
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Figure 6.18: Original samples and counterfactuals from the model trained on the UK Biobank
dataset. The first column shows the original image and true values of the non-imaging data. The
even rows show the difference maps between the original image and the corresponding counter-
factual image.
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6.6 Case Study 3: Studying correlated parents on
Morpho-MNIST

We follow the setup from Section 6.4 to investigate the behaviour of the deep SCM framework in
the presence of correlated parents as described in Section 6.2.5. This experiment first shows that
the naive training of a deep SCM-based model in this scenario is not capable of learning the true 5

independent mechanisms. We then include the use of auxiliary distributions for constraining the
learned model and show that this approach yields improved results.

6.6.1 Data Generation
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Figure 6.19: Impact of different correlation parameters s on the joint density. The joint density
p(t, i) is shown as contours in the background, for reference, and the ‘violin’ shapes represent
the conditional density p(i|t) of the intensity i when conditioning on three different values for
thickness t. With decreasing correlation parameter s, we see that the intensity i becomes more
deterministic as a function of the thickness t.

We use the same variables and morphological operations as before but change the mechanisms
for the thickness variable t and the intensity variable i and regenerate the dataset. The SCM for 10

the synthetic data7 is as follows:

t := f ∗T (ε∗T ) = 4.5 · σ(ε∗T − 1) + 1.5 , ε∗T ∼ N (0, 1) ,

i := f ∗I (ε∗I ; t) = 191 · σ(s · ε∗I + 2 · t− 5) + 64 , ε∗I ∼ N (0, 1) ,

x := f ∗X(ε∗X ; i, t) = SetIntensity(SetThickness(ε∗X ; t); i) , ε∗X ∼ MNIST ,

(6.23)

where s is a parameter controlling the correlation between i and t – smaller s corresponding to
higher correlation. We generate three variants of this dataset with s set to s = 1, s = 0.1, and
s = 0.01. We visualise the impact of different correlation parameters s in Fig. 6.19, showing the
joint distribution p(t, i) of the thickness t and the intensity i together with violin plots for conditional 15

probabilities of p(i |t). We observe that with decreasing correlation parameter s, the conditional
7Note that this SCM differs to the on in Eq. (6.13) by changes in the mechanisms for i and t.
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Figure 6.20: Computational graphs of the structural causal models for the Morpho-MNIST exper-
iment studying the effect of correlation in parent variables. The image is denoted by x, stroke
thickness by t, and image intensity by i. The corresponding causal diagrams are displayed in the
top-right corners. The red dotted arrows from x to i and t in Fig. 6.20b refer to the auxiliary distri-
butions described in Section 6.2.5.

probability p(i |t) of intensity i given thickness t becomes more deterministic, while the marginal
distribution p(i) barely changes.

6.6.2 Experimental Setup
We use the same setup and the full model as in Section 6.4.2 to investigate the behaviour when
naively training a deep SCM on the different synthetic datasets. We model the auxiliary distributions5

as qϕ(i, t|x) = qϕ(i|x) qϕ(t |x) and approximate them with convolutional neuronal networks
with four scales of (ReLU ◦Convθ) and a final linear layer. The training consists of a two step
procedure. First, the auxiliary distributions are jointly trained with the rest of the model to optimise
the log-likelihood of the observational data:

arg max
θ

log pθ(i, t, x) = arg max
θ

log pθ(t) + log pθ(i|t) + log pθ(x|i, t)

arg max
ϕ

log qϕ(i, t|x) = arg max
ϕ

log qϕ(i|x) + log qϕ(t |x)
(6.24)

Second, the image distribution pθ(x|i, t) and its mechanism fx are optimised to maximise the10

counterfactual log-likelihood of the auxiliary distribution log q(i = ĩ, t = t̃|x̃) = log q(t = t̃|
x̃) + log q(i = ĩ |x̃) while freezing ϕ:

arg max
θ

Epθ(x̃|do(i=ĩ,t=t̃),x=x)[qϕ(i = ĩ, t = t̃ |x̃)]

≈ arg max
θ

1

M

M∑
m=1

qϕ(i = ĩ, t = t̃|x̃(m)), x̃(m) ∼ pθ(x̃|do(i = ĩ, t = t̃), x = x) ,

(6.25)

This constrains the mechanism to rely both on intensity i and thickness t when generating the
image x, because the auxiliary distributions encourage x̃ to contain information about values of its
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6.6. Case Study 3: Studying correlated parents on Morpho-MNIST Causality

Table 6.2: Comparison of the associative and counterfactual abilities of the full model on datasets
generated with different variance parameter s. The image is denoted by x, thickness by t, and
intensity by i. Quantities with≥ are lower bounds. MAE(x, x′) refers to the mean absolute error
between pixels of the original image and of its reconstruction. MAE(xCF , x

′
CF ) refers to the mean

absolute error between pixels of the true counterfactual image and the generated counterfactual
image when performing the intervention do(i′ = 255− i+ 64).

s log p(x, t, i) ≥ log p(x |t, i) ≥ log p(t) log p(i |t) MAE(x, x′) MAE(xCF , x
′
CF )

0.01 −6033.83 −6029.51 −1.12 −3.21 4.48 12.21

0.1 −6045.91 −6041.37 −1.12 −3.42 4.50 7.61

1 −6309.51 −6303.80 −1.13 −4.57 4.59 4.42

counterfactual parents, ĩ and t̃. In practice, we shuffle the intensity and thickness values in a batch
to decide which interventions to perform. We use a single particle to estimate the counterfactual
x̃k and use a factor of 0.001 to scale the negative log-likelihood of the auxiliary distributions for
optimisation.

6.6.3 Results 5

We quantitatively compare the associative and counterfactual capabilities of the full model without
auxiliary constraints trained on the datasets generated with different correlation parameters s in
Table 6.2. By evaluating their evidence lower bound, log-likelihoods and reconstruction errors, we
find that all models achieve comparable associative performance. Models trained on datasets
with higher variance parameter s (lower correlation) exhibit slightly worse associative performance 10

which we attribute to the higher complexity of the modelled data.

Previously, we hypothesised that with increased determinism of the intensity i given the thickness
t, the learned model would increasingly rely on the thickness variable t and ignore the intensity i.
We test this hypothesis by comparing the mean absolute error between true counterfactuals xCF
and the predicted ones x̃CF for the intervention do(i′ = 255− i+ 64) as shown in Table 6.2. We 15

experimentally verify this hypothesis by finding that the models trained on dataset generated with
lower s yield worse MAEs. This can be visually examined in Fig. 6.22, which shows counterfactuals
predicted from the model trained on the dataset generated with s = 0.001. The visual inspection
indicates that the model is still capable of predicting counterfactuals for interventions on thickness,
where it uses the thickness variable as an indicator for intensity as well. 20

We add the auxiliary constraints to the model and evaluate its associative and counterfactual abil-
ities as shown in Table 6.3. Both models achieve comparable performance across the evidence
lower bounds, log-likelihoods and reconstruction errors, with the constrained model showing im-
provements in modelling the image variable. This is aligned with the fact that the constraints are
only applied to the learning of that mechanism. However, the constrained model achieves a sig- 25
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6.6. Case Study 3: Studying correlated parents on Morpho-MNIST Causality

Table 6.3: Comparison of the associative and counterfactual abilities of the full model with and
without auxiliary constraints. The image is denoted by x, thickness by t, and intensity by i. Quan-
tities with ≥ are lower bounds. MAE(x, x′) refers to the mean absolute error between pixels of
the original image and of its reconstruction. MAE(xCF , x

′
CF ) refers to the mean absolute error

between pixels of the true counterfactual image and the generated counterfactual image when
performing the intervention do(i′ = 255− i+ 64).

Aux. log p(x, t, i) ≥ log p(x|t, i) ≥ log p(t) log p(i|t) MAE(x, x′) MAE(xCF , x
′
CF )

7 −6033.83 −6029.51 −1.12 −3.21 4.48 12.21

3 −5963.70 −5959.38 −1.11 −3.21 4.45 9.23

Original
do(i= 256)

Regular
do(i= 256)
Constrained

do(i= 256)
True CF

t= 2.8
i= 138

Figure 6.21: Comparison of counterfactuals from the full model with and without auxiliary con-
straints trained on the dataset generated with s = 0.001. The first column shows the original
image and true values of the non-imaging data. The last column shows the true counterfactual
image generated using the operations from the underlying true SCM. The second row shows the
difference maps between the original image and the corresponding counterfactual image. The
counterfactual generated by the constrained model resembles the true counterfactual more closely
than the one from the regular model without constraints.

nificantly better mean absolute error on the counterfactual prediction task. This suggests that the
addition of the counterfactual constraints helps the learning of the image mechanism fx to rely
less relying on spurious correlations. We also verify this comparison in Fig. 6.21. We find that
the model with auxiliary constraints predicts counterfactuals that more closely resemble the true
counterfactual. Visual inspection of multiple predicted counterfactuals in Fig. 6.23 shows that the5

learned model better disentangles the effect of thickness t and intensity i as interventions on inten-
sity have a bigger visual effect than before and the counterfactuals look more similar to the ones
predicted by the model trained on the original dataset as shown in Fig. 6.11. However, the counter-
factuals in low density regions (high thickness and low intensity) contain image artefacts.
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Original do(t=1.0) do(t=3.0) do(t=5.0) do(i=64) do(i=160) do(i=255)

t=2.8
i=138

Original do(t=1.0) do(t=3.0) do(t=5.0) do(i=64) do(i=160) do(i=255)

t=4.2
i=251

Original do(t=1.0) do(t=3.0) do(t=5.0) do(i=64) do(i=160) do(i=255)

t=3.4
i=232

Figure 6.22: Original samples and counterfactuals from the full model trained on the dataset gener-
ated with s = 0.001. The first column shows the original image and true values of the non-imaging
data. The even rows show the difference maps between the original image and the corresponding
counterfactual image. We observe that all counterfactuals preserve the digits’ identity and style.
The model is still capable of generating sensible counterfactuals for interventions on thickness,
where it changed both thickness and intensity. However, the model does not predict accurate coun-
terfactuals for interventions on intensity, where it only predicts small visual changes compared to
the performed interventions. The model trained on the original dataset was able to reliably predict
all these counterfactuals as shown in Fig. 6.11.
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Original do(t=1.0) do(t=3.0) do(t=5.0) do(i=64) do(i=160) do(i=255)

t=2.8
i=138

Original do(t=1.0) do(t=3.0) do(t=5.0) do(i=64) do(i=160) do(i=255)

t=4.2
i=251

Original do(t=1.0) do(t=3.0) do(t=5.0) do(i=64) do(i=160) do(i=255)

t=3.4
i=232

Figure 6.23: Original samples and counterfactuals from the full model with auxiliary constraints
trained on the dataset generated with s = 0.001. The first column shows the original image and
true values of the non-imaging data. The even rows show the difference maps between the original
image and the corresponding counterfactual image. We observe that all counterfactuals preserve
the digits’ identity and style. The model is still capable of generating sensible counterfactuals for
interventions on thickness, where it changed both thickness and intensity. The addition of the
auxiliary constraints enables the model to predict more accurate counterfactuals for interventions
on intensity compared to the model without (c.f. Fig. 6.22). However, the counterfactuals in low
density regions (high thickness and low intensity) contain image artefacts not present in counter-
factuals predicted by the model trained on the original dataset as shown in Fig. 6.11.
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6.7. Conclusion Causality

6.7 Conclusion
We introduce a novel general framework for fitting SCMs with deep mechanisms. Our deep SCM
(DSCM) framework fulfils all three rungs of Pearl’s causal hierarchy—in particular, it is the first to
enable efficient abduction of exogenous noise, permitting principled counterfactual inference. We
demonstrate the potential of DSCMs with three case studies: a synthetic task of modelling Morpho- 5

MNIST digits with a known causal structure, an extension to a more complicated relation between
the variables, and a real-world example with brain MRI.

The ability to correctly generate plausible counterfactuals could greatly benefit a wide variety of
possible applications, e.g.: explainability, where differences between observed and counterfactual
data can suggest causal explanations of outcomes; data augmentation, as counterfactuals can 10

extrapolate beyond the range of observed data (e.g. novel combinations of attributes); and domain
adaptation, since including the source of the data as an indicator variable in the causal model could
enable generating counterfactual examples in a relevant target domain.

The proposed method does not come without limitations to be investigated in future work. Like the
related approaches, the current setup precludes unobserved confounding and requires all variables 15

to be observed when training and computing a counterfactual, which may limit its applicability in
certain scenarios. This could be alleviated by imputing the missing data via MCMC or learning aux-
iliary distributions. Further work should study more closely the training dynamics of deep mech-
anisms in SCMs: We made some first observations of the neural networks not learning to cleanly
disentangle the roles of its inputs on the output as expected. While we proposed a simple coun- 20

terfactual regularisation technique by using auxiliary distributions, it might require further work.
Potential directions could include approaches similar to losses used in image-to-image translation
(Xia et al. 2019) and explainability (Singla et al. 2020).

The use of such flexible models also raises questions about the identifiability of the ‘true’ mecha-
nism, as counterfactuals may not be uniquely defined. For real datasets, counterfactual evaluation 25

is possible only in very constrained settings, as generally true counterfactuals can never be ob-
served. For example, assuming our brain graph in Section 6.5 is correct, we may use a second
MRI scan of a brain a few years later as an approximate counterfactual on age. Lastly, it would be
interesting to examine whether this framework can be applied to causal discovery, attempting to
uncover plausible causal structures from data. 30
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Chapter 7

Conclusions
This chapter revisits the research goals set out in this thesis and takes a look at the contributions
made in each chapter and their impact on the wider research community. I then discuss limitations5

and open questions of the presented work that could lead to future research.

7.1 Summary of Contributions
Let us recall the research goals set out for my PhD research from Section 1.2:

1. To train neural networks that ignore spurious correlations

2. To teach machines to know when they do not know10

3. To enable neural networks to leverage causal relations

This section summarises the main contributions and conclusions of each chapter and frames them
in the context of the set out research aims. If relevant, I also point out the impact some of these
contributions have already had since their publication.

Chapter 3 explored the behaviour of neural networks with constrained receptive fields. The smaller15

receptive field means that the models are unable to model long range interactions within the input
images and therefore less likely to pick up on long range spurious correlations. In a study on the
proposed needle MNIST dataset we showed that the informed design of the neural network archi-
tecture can support the learning of the desired predictor and ignore present spurious correlations
(Goal 1). This work further inspired later approaches of solving prediction tasks of small regions20

of interest in huge images, such as (Kong and Henao 2021). We then used the same approach to
study whether long-range interactions are necessary for medical tasks such as biological sex and
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age prediction from brain MRI. Our experiments showed that long-range informations are not nec-
essary and texture information is enough for this task. Several works used this approach to further
study texture information for segmentation (Fetit et al. 2020) or investigate the interpretability of
these patch-based approaches (Bintsi et al. 2020).

Chapter 4 tackles the question of how to teach machines when they do not know something (Goal 5

2). To this end we proposed Bayes by Hypernet (BbH), a Bayesian deep learning technique to ap-
proximate the posterior distribution of neural network weights using another weight-generating
network. The experiments on MNIST and CIFAR confirm that this approach is capable of produc-
ing competitive predictive performances while offering relevant uncertainty estimates. However,
the complex engineering and complicated hyper-parameters required to successfully apply this 10

method hindered its adoption. Nevertheless, it has been further studied in an extensive compari-
son of various uncertainty estimation methods (Yao et al. 2019). It also inspired work on using hy-
pernetworks for continual learning (Oswald et al. 2019). Nevertheless, it is unclear whether highly
complex variational distributions are even necessary for successful Bayesian deep learning (Far-
quhar et al. 2020). 15

We extend the work on “knowing what one doesn’t know” in Chapter 5. Here, we have framed
various medically relevant tasks in the light of outlier or novelty detection. First, we introduce the
combination of generative modelling with Bayesian deep learning to capture the model uncertainty.
We show in experiments on real world data that this model is capable of detecting lesions in CT im-
ages. However, non-deep learning baselines are still very competitive and hard to beat. Building on 20

this introductory work, we applied the same VAE-based generative modelling framework to the task
of lesion detection in brain MRI. Here, we found that the domain differences due to MR scanning
physics prevent this method from outperforming classical baselines. Lastly, we turned to another
type of generative model, normalising flows, and explored the task of classifying tumorous tissue
from histopathology images. We confirmed that regular likelihood-based outlier detection metrics 25

perform sub-optimally. Instead, we proposed the use of a Bayesian approach to estimate an out-
lier metric based on the variance of the predicted likelihood. This metric outperforms classical
approaches and is competitive to a fully supervised model.

Even though our work on VAE-based outlier detection hit roadblocks in the form of domain shifts,
it inspired a line of follow-up work using VAEs for outlier detection in medical images. We were 30

involved in a range of collaborations that extended the basic VAE model using a locally Gaussian
approximation (Chen et al. 2019b) and applying iterative optimisation to the reconstruction (Chen
et al. 2021). VAE-based outlier detection has been applied to retinal images (Zhou et al. 2020), lung
CT (Uzunova et al. 2019) and various brain MRI tasks (Baur et al. 2020; Zimmerer et al. 2019).

Finally, we take a stab at enabling neural networks to leverage causal relations (Goal 3) in Chapter 6. 35

We propose deep structural causal models (DSCMs) as a framework combining deep generative
models with concepts of causality to build deep learning models capable of all three rungs of Pearl’s
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ladder of causation (Pearl 2019). DSCMs naturally extend regular structural causal models from
mostly low-dimensional data to high-dimensional data through the use of deep learning compo-
nents. With sufficient prior knowledge or domain expertise, DSCM enable the design and learning
of causal models of the data generating process capable of answering associative, interventional
and counterfactual queries. The careful choice of deep learning components used allows users5

to follow the theoretically grounded three step procedure of “abduction, action and prediction” to
predict counterfactuals. Through extensive experimentation, we validated that this framework is
able to output plausible counterfactual images to arbitrary interventions while preserving details
pertaining to the identity of the object being represented. The last case study also touches upon
the aim of training neural networks that ignore spurious correlations by implementing auxiliary10

distributions to counterfactually constrain the learned functional mechanism.

Since its publication this work has raised awareness of causal methodology amongst medical
imaging researchers and and was further extended. Even though our experiments did not explicitly
validate the capabilities of the proposed adversarially learned mechanism, it has since been imple-
mented by Dash and Sharma (2020). Work by Garrido et al. (2021) proposes a similar method to15

our DSCM framework and uses neural autoregressive models as generative models. Reinhold et al.
(2021) adapted our published code to the task of modelling the MR images of multiple sclerosis pa-
tients. Similarly, Wang et al. (2021) applied the DSCM framework to the task of data harmonization
of data derived from brain MRI.

7.2 Limitations and Future Research20

This final part of this thesis discusses various limitations of the presented work and makes an
attempt at suggesting future research directions.

7.2.1 Actionable Uncertainty Estimates
Various research works have proposed different ways of estimating the uncertainty of predictions
from deep learning models. Bayesian approaches, including the proposed Bayes by Hypernet, claim25

to be theoretically grounded in Bayesian modelling. Other directions include solutions following fre-
quentist beliefs (Lakshminarayanan et al. 2017) or aim to post-hoc correct the predicted uncertainty
estimates (Guo et al. 2017). However, most of those works are positioned without human interac-
tion in mind. What actions should be taken in cases of uncertain predictions? Are human experts
actually more correct than the model in those cases?30

Uncertainty estimates for deep learning methods are as hard to interpret as the model predictions
themselves. Answering why is the model uncertain is as important as whether it is uncertain.
Kendall and Gal (2017) divided uncertainty estimation into aleatoric and epistemic uncertainty –
uncertainty relating to ambiguity or noise in the observations and model uncertainty due to limited
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training data. Actions relating to an ambiguous observation might include acquiring another sam-
ple of that observation. However, if the model is uncertain because it has not seen enough similar
training examples, this approach would be flawed. Malinin and Gales (2018) extended this separa-
tion and added the term of distributional uncertainty which is caused by a shift between training
and test distributions. Even though each of these categories implies a different strategy of dealing 5

with it, none take the human aspect into account.

Similarly, a growing area of research is developing models with reject options (Herbei and Wegkamp
2006). These models are designed and trained to have an additional option: to reject to make a
prediction. This direction is orthogonal to uncertainty estimation as it makes a separate prediction
as to whether the model is likely to be wrong or not. However, first methods again considered 10

the model independently of potential deployment scenarios. Only recently, research has started to
account for human expertise and shifted from a “reject option” to the study of a “deferral option”
(Bansal et al. 2021; Mozannar and Sontag 2020).

Nevertheless, almost all of this research is confined to synthetic setups or cleanly curated research
datasets. Human operators of machine learning systems are not stationary systems and their men- 15

tal model of a machine’s capabilities changes over time. It is imaginable that a human expert that is
supported by an AI system might overwrite the prediction of the machine learning model because
they have learned that the model has difficulties with certain properties of the current observation.
As such it is necessary to design experiments and reader studies that investigate the effect of
uncertainty estimation techniques and deferral options on human trust in AI systems. Addition- 20

ally, real-world datasets should not only contain the target prediction but also a measure of human
uncertainty to allow for the development of AI systems built for human-AI cooperation.

7.2.2 Likelihood as an Outlier Detection Measure
When we are learning a generative model of some data we hope to recover the data distribution
as closely as possible. Intuitively, modelling “normal” data should lead to a normative distribution 25

which allows us to detect abnormal samples as having low likelihood under that model. However,
how do we distinguish between observations that have low likelihood because they are simply rare
events and observations that are abnormal?

Various studies have shown that the likelihood is a flawed quantity to use when distinguishing
between “normal” and “abnormal” data. First, it was observed that generative models can assign 30

higher likelihoods to previously unseen samples than to training data (Nalisnick et al. 2019b). This
has been related to the unintuitive nature of high-dimensional probability distributions and a solu-
tion has been introduced by relying on typicality rather than the likelihood (Nalisnick et al. 2019a).
Later the issue of high likelihood for previously unseen data has been attributed to architectural
choices in the design of the neural networks and it was shown that a change in inductive biases 35

can alleviate the symptoms (Kirichenko et al. 2020).
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However, even if generative models assign higher likelihood to the training distribution than to other
regions in the high-dimensional space, they can still not distinguish between rare events and out-
of-distribution data. The use of the likelihood alone is in itself a flawed concept (Le Lan and Dinh
2020). The use of derived quantities such as likelihood ratios might be better (Ren et al. 2019)
and our experiments in Section 5.3 are in line with these findings. Future research should study5

the edge cases of distinguishing rare observations from samples of other distributions and derive
outlier metrics adequate to this task.

7.2.3 Correctness of Causal Models and Unobserved Variables
Potentially the biggest weaknesses in our work on integrating causal reasoning into neural net-
works are the requirements that the causal relationships are assumed to be known and that all10

relevant variables are observed – ie there are no unobserved confounders and there is no missing
data. In traditional works on causality, do-calculus identifies conditions under which causal effects
are identifiable, and how they can be computed from the data or whether they might be impossible
to compute without further assumptions (Pearl 2009). However, most of those assumptions or
approaches fall short when having to deal with high-dimensional data.15

Instead, our framework relies on the correctness of the causal model and the correct estimation
of the parameters corresponding to the functional mechanisms. However, as seen in experiments
in Section 6.6 there are no guarantees that the “black-box” deep learning components correctly
learn the relationships between the variables even when the causal model is correct. It therefore
becomes impossible to truly judge the correctness of the causal graph or the function estimation20

alone and one can only ever test both of them together. However, the nature of causal queries only
ever allows the evaluation of associative and interventional queries – in real-world scenarios it is
almost always impossible to evaluate predicted counterfactuals against their true value because
we cannot go back in time and intervene on a previous action, or recreate the experiment with the
exact same exogenous influences.25

In certain settings it is possible to simulate specific interventions in controlled environments and
compare the resulting counterfactuals with model predictions. One example of this is the counter-
factual evaluation of our DSCM models in Section 6.4 and Section 6.6 where we use our synthetic
data generating process to compute synthetic counterfactual for the interventions do(thickness+

2) and do(intesity′ = 255− intensity + 64), respectively. Under specific assumptions one could30

use the same approach to counterfactuals in real world scenarios: Assuming that our causal graph
in Section 6.5 is correct, one could collect one or more later brain MR scans of the same subject and
interpret them as an approximate counterfactual on age. Often this will, however, not be possible
and instead one might need to rely on derived metrics – similar to our use of auxiliary distributions
in Section 6.2.5 and Section 6.6, one could imagine to use anti-causal predictive models to evaluate35

specific properties of the counterfactuals. The combination of this approach with the concept of
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double machine learning (Chernozhukov et al. 2018; Jung et al. 2021) might allow the derivation of
certain guarantees. However, the naive evaluation using auxiliary models failed due to the auxiliary
models’ reliance on spurious correlation.

Lastly, the training of the components within the DSCM framework as well as the computation of
causal queries requires full observability of all variables. Various techniques have been proposed 5

to deal with unobserved confounders such as the deconfounder (Wang and Blei 2019) or the inte-
gration of experimental data into the training process (Ilse et al. 2021) and could be adapted for
the use with DSCMs. The problem of missing data during causal effect estimation could again be
tackled with auxiliary models.

7.2.4 Identifiability and Spurious Correlations 10

We have seen in Section 3.1 and Section 6.6, spurious correlations are a constant problem when
training neural networks as the training relies on shortcuts to learn the task at hand. The prob-
lem is not visible when investigating the observational distributions but only becomes apparent
when evaluating interventional or counterfactual queries – that are inherently harder to evaluate. It
therefore is an even more important problem to solve as it is easily hidden behind apparently good 15

performances when modelling the observational distribution.

As there can be multiple – infinitely many – different models that entail the same observational dis-
tribution, this also becomes a question of the identifiability of neural networks: Which is the correct
function that maps the inputs to the outputs? Various works have started addressing this ques-
tion and defining conditions in which a neural network becomes identifiable (or identifiable up to a 20

specific transformation). Khemakhem et al. (2020) study neural networks and their identifiability
in the context of variational autoencoder and nonlinear ICA and introduce an adaptation of regu-
lar VAES, the identifiable VAE (or iVAE). Similarly, Khemakhem et al. (2021) shows that affine and
additive autoregressive flows are identifiable. Besserve et al. (2021) studies the extrapolation of
generative models and touches upon identifiability when talking about equivalent solution spaces. 25

Further works on identifiability include (Mita et al. 2021; Roeder et al. 2021; Sorrenson et al. 2020;
Zhou and Wei 2020). Another approach to tackling the issues in learning could follow recent works
on domain generalisation and shortcut removal such as (Makar et al. 2021). Whatever form the so-
lution might take, robust learning of the functional mechanisms in a causal model would improve
the estimation of causal queries. 30

7.2.5 From modelling pixels to modelling objects
Traditional causality theory has been developed for the use in low-dimensional data settings where
variables are scalars such as in epidimiology or economics. Many of the recent advances of the
field still consider experiments with binary interventions – flipping a switch from on to off or ad-
ministering a medical treatment or not. In the setting of high-dimensional variables, the concept of 35
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7.2. Limitations and Future Research Conclusions

causal modelling becomes more complicated. Imagine a natural image with multiple independent
objects that are visible, e.g. a picture of a road with multiple cars and pedestrians. How would
one formulate interventions of the form “Change the age of this single pedestrian from 20 to 30.”,
“Change the colour of the sunglasses on this pedestrian from red to blue”, or “Change the time
the picture was taken from daytime to nighttime.”? All of those interventions interact with different5

levels of object hierarchies within the image and either require significantly different causal graphs
for different interventions and images, or a very complex and flexible one that allows for different
numbers of observed objects.

The question of how to model object hierarchies in images or other high-dimensional data is still
an open one. Different approaches have been proposed to tackle questions such as perceptual10

grouping (Greff et al. 2016). Other approaches such as capsule networks (Hinton et al. 2018) are
designed to automatically discover object-part hierarchies through a special neural network archi-
tecture. More and more potential solutions are proposed as idea papers (Hinton 2021) but none of
the proposed methods have found widespread adoption and seem to solve the problem. Closely
related are works on neuro-symbolic reasoning that aim to extract symbolic representations of ob-15

jects contained within the image and perform reasoning on the relations between them (De Raedt
et al. 2020). Neuro-symbolic approaches have been applied to different tasks such as visual ques-
tion answering (Amizadeh et al. 2020) or object detection (Manigrasso et al. 2021).

I believe that the modelling of object-part hierarchies as well as the relation between objects can
provide better interpretability of predictions made by those algorithms and enable more complex20

modelling of the world around us. Symbolic reasoning could provide safety guarantees while the
neural components allow for modelling of high-dimensional data. Previous work such as (Garnelo
et al. 2016) has shown improved interpretability on a toy task and (Sun et al. 2020) apply neuro-
symbolic approaches to the problem of self-driving cars.

7.2.6 Towards fairer AI systems25

Lastly, I want to touch upon the topic of fairness in machine learning. Fairness has been a growing
area of interest within the wider machine learning and beyond. It has been shown that data-driven
algorithms learn to reinforce biases present in the datasets they have been trained on (Zhao et al.
2017). Various research efforts are being devoted to developing fair machine learning algorithms
to mitigate problems relating to fairness (Madras et al. 2018) but also analyse existing systems30

(Bird et al. 2020). Causality is a powerful tool in the analysis of the fairness of systems through the
introduction of novel notions of fairness (Chiappa 2019; Kusner et al. 2017). Furthermore, robust
learning of causal models means that they can transparently communicate which variables affect
a certain prediction and allow for the building of fair systems by design. As such, it is clear that the
application of causal principles to machine learning helps to build AI systems that are performant35

but also safe and reliable as well as fair and interpretable for everyone involved.
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Appendices

A Posterior Distributions for Bayes byHypernet
A.1 Toy Example

Figure A.1: Fit of a toy cubic function by various Bayesian deep learning methods, regular deep
learning methods and HMC. The BbH variants refer to the use of an auxiliary noise vector of equiv-
alent dimensionality as the generated weights (BbH with full noise), calculating the KL divergence
using the kernel method with the assumption of independent weights (BbH), and calculating the
full KL divergence using the kernel method (BbH with full KL).
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A. Posterior Distributions for Bayes by Hypernet Appendices

(a) Examples of the posterior weight distributions using BBB.

(b) Examples of the posterior weight distributions using MNF.

(c) Examples of the posterior weight distributions using BbH with an auxiliary noise vector of equivalent
dimensionality as the generated weights.
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A. Posterior Distributions for Bayes by Hypernet Appendices

(d) Examples of the posterior weight distributions using BbH calculating the full KL divergence using
the kernel method.

(e) Examples of the posterior weight distributions using BbH calculating the KL divergence using the
kernel method and the assumption of independent weights.

(f) Examples of the posterior weight distributions using HMC.

Figure A.2: Illustration of the posterior distributions of the first weights of a fully connected net-
work trained on a toy regression task approximated by BBB (a), MNF (b), various settings of BbH
(c-e) and HMC (f).
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A. Posterior Distributions for Bayes by Hypernet Appendices

(a) Examples of the correlations within the
posterior weight distributions using BBB.

(b) Examples of the correlations within the
posterior weight distributions using MNF.

(c) Examples of the posterior correlations
within the weight distributions using BbH
with an auxiliary noise vector of equivalent
dimensionality as the generated weights.

(d) Examples of the correlations within the
posterior weight distributions using BbH
calculating the full KL divergence using the
kernel method.

(e) Examples of the correlations within the
posterior weight distributions using BbH
calculating the KL divergence using the ker-
nel method and the assumption of indepen-
dent weights.

(f) Examples of the correlations within the
posterior weight distributions using HMC.

Figure A.3: Illustration of the correlations within the posterior distributions of the first weights of a
fully connected network trained on a toy regression task approximated by BBB (a), MNF (b), various
settings of BbH (c-e) and HMC (f).
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A. Posterior Distributions for Bayes by Hypernet Appendices

A.2 LeNet on MNIST

(a) Examples of the posterior weight distributions of the LeNet using MNF.

(b) Examples of the posterior weight distributions of the LeNet using BbH.

Figure A.4: Illustration of the posterior distributions of the 25 first weights of a LeNet trained on
the MNIST digit classification task approximated by MNF (a) and BbH (b). BbH clearly generates
more complex approximations whereas MNF’s resemble Gaussians.

A.3 ResNet-32 on CIFAR-5
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A. Posterior Distributions for Bayes by Hypernet Appendices

(a) Examples of the posterior weight distributions of the LeNet using MNF.

(b) Examples of the posterior weight distributions of the LeNet using BbH.

Figure A.5: Illustration of the posterior distributions of the 25 first weights of a ResNet-32 trained
on the CIFAR-5 classification task approximated by MNF (a) and BbH (b). MNF models posterior
distributions that resemble Gaussians. BbH models distributions that are more complex than those
of MNF but less than the ones it modelled for the MNIST task.
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A. Posterior Distributions for Bayes by Hypernet Appendices

(a) Correlations modelled by MNF. (b) Correlations modelled by BbH.

Figure A.6: Illustration of the correlations between the weights in the first convolutional layer of
a ResNet-32 trained on the CIFAR-5 classification task modelled by the posterior distributions ap-
proximated by MNF (a) and BbH (b). Dark spots indicate negative and bright spots positive corre-
lation. BbH models complex dependencies between the weights whereas MNF is only capable of
modelling dependencies along the dimension of the multiplicative factor.
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B. Density plots for histopathology OOD detection Appendices

B Density plots for histopathologyOODdetection
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(a) Using the regular log likelihood, log p(x), for
OOD detection.
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(b) Using the expected log likelihood,
E[log p(x)], for OOD detection.
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(c) Using the variance of log likelihood,
Var[log p(x)], for OOD detection.

20000 18000 16000 14000 12000 10000 8000
E[log p(x)] - Var[log p(x)]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

De
ns

ity

PCAM AUROC: 0.194 - CIFAR-10 AUROC: 0.664
CIFAR-10
Healthy
Unhealthy

(d) Using the WAIC,E[log p(x)]−Var[log p(x)],
for OOD detection.
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(e) Using the expected typicality,
|Eepochs[− log p(x)] − Ex[− log ptrain(x)]|,
for OOD detection.

Figure B.7: Comparison of the distribution of the different outlier metrics on the validation set of
healthy and unhealthy PatchCamelyon images as well as on CIFAR10.
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