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Abstract

Wind turbine blades have significantly increased in length over the last few decades and

are being operated in increasingly complex inflows such as the wake of other wind turbines

or on floating platforms. This is increasing the unsteady and three-dimensional aerody-

namic effects and the nonlinear structural dynamics that are neglected by the industry-

standard Blade-Element Momentum and linear structural theories, respectively. In this

dissertation, we employ Unsteady Vortex-Lattice Method for the aerodynamics and nonlin-

ear Geometrically-Exact Beam Theory for the structural dynamics computations to describe

these phenomena and their role on wind turbine aeroelasticity. We show that, Unsteady

Vortex-Lattice Method fails to provide accurate drag estimation that we overcome with a

semiempirical correction to include drag from steady-state tabulated data. We also show

that, in cases of yaw, Blade-Element Momentum theory predicts accurate root-bending mo-

ments and rotor coefficients up to about ten degrees of yaw, for larger yaw angles, it over

estimates the loads decay with the yaw angle. Furthermore, the interaction between radial

sections of the blade under turbulent inflow is significant but not accounted for by Blade-

Element Momentum theory so we study this phenomenon with Unsteady Vortex-Lattice

Method and propose a correction to include the interaction between blade sections in Blade-

Element Momentum theory that improves the prediction of loads along the span. We also

reduce the computational cost of the Unsteady Vortex-Lattice Method by proposing a new

wake discretisation scheme of the wake convection equation. We study the change in aero-

dynamic surface orientation in long flexible blades and conclude that capturing the twist

degree of freedom is important for loads and power estimation. Moreover, we describe the

influence of the platform pitch and roll motions in the unsteady character of the aerody-

namic loads. Finally, we redesign the controller of the blade pitch to account for nonlinear

structural dynamics and unsteady aerodynamics showing a reduction in the fluctuations of

the main platform motions and energy production around the equilibrium position.
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Chapter 1

Introduction

A long history of developments has transformed wind energy from the agricultural use

of windmills to one of the main stakeholders in the electricity market [1]. Wind energy for

electricity generation has its origins at the end of the nineteenth century in remote regions

without electricity access and its surge at the end of the twentieth century as a result of

a significant increase in oil prices and Governmental subsidies [2, 3]. Until this point, the

large-scale deployment of wind energy was delayed due to the cheap and easy electricity

generation with fossil fuels. Wind turbines have significantly increased in size from blades of

the order of 10 m in the 1950s to current prototypes of more than 100 m to increase the rotor

swept area and, thus, the energy production of each wind turbine [4] (Figure 1.1). With

the same objective, towers have also become higher to avoid the low-speed wind near the

ground. All these improvements, have reduced the levelised cost of energy (LCoE) and have

created conditions under which onshore wind energy generation has increased from 30 TWh

in 2000 to 1300 TWh in 2019 (out of 25000 TWh electricity consumption in the world). In

Europe, wind energy currently provides 10% of the electricity generation [5].

The development of wind energy science started with the study of ship propellers by

Rankine and Froude at the end of the nineteenth century. They set the basis of rotor

aerodynamics [2] with the idealisation of the propellers as a permeable infinitely thin disc

covering the rotor sweep area on which the propeller force is uniformly distributed (actuator

disc). The flow velocity at the rotor plane and the propeller thrust are obtained through

mass, axial momentum and energy balances. At the beginning of the twentieth century, Betz

and Joukowsky proved that the maximum efficiency of this idealised rotor is 16/27. Wind

turbines work by extracting kinetic energy from wind and, unavoidably, slowing it down, thus,

maximum efficiency is obtained at an optimum balance where as much energy as possible is

37
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(a) 2.5kW Jakobs turbine
(1940s).

(b) Current 3 MW Siemens-
Gamesa wind turbine. 132 m
rotor diameter.

(c) 14 MW Haliade-X wind tur-
bine prototype. 220 m rotor di-
ameter.

Figure 1.1: Wind turbine designs from the 1940s to the current prototypes∗.

taken out from the flow, yet, it is left with enough momentum to move downstream. The

previous one-dimensional rotor model was improved by including a tangential momentum

balance, which provides information about the azimuthal force that generates rotor torque

and the associated rotation of the fluid in the wake. The ratio between blade tip and

freestream velocities (also known as tip-speed ratio) is a measure of the wake rotation and is

associated with a reduction of the maximum efficiency estimated by Betz and Joukowsky: a

rotor with zero velocity has zero efficiency which increases asymptotically with the tip-speed

ratio towards the 16/27 limit [2].

These theories were not useful for rotor design because they did not provide local in-

formation at blade level. At the same time, Joukowsky in Russia and Prandtl and Betz in

Germany developed two idealised rotor models (Figure 1.2) based on vortex theory [6]. The

former assumes constant circulation along the span while the latter allows spanwise varying

circulation based on Prandtl’s lifting line theory. Analytical solutions were only available

for an infinite number of blades and were useful to corroborate momentum theory and to

set the basis for the study of rotors with finite number of blades that would be significantly

∗Image 1.1a from Jacobs Wind Electric https://www.jacobswind.net/history. Accessed on October
4th, 2021.
Image 1.1b from Siemens-Gamesa https://www.siemensgamesa.com/es-es/products-and-services/

onshore/aerogenerador-sg-5-0-132. Accessed on October 4th, 2021.
Image 1.1c from General Electric. https://www.ge.com/renewableenergy/wind-energy/offshore-wind/
haliade-x-offshore-turbine. Accessed on October 4th, 2021.

https://www.jacobswind.net/history
https://www.siemensgamesa.com/es-es/products-and-services/onshore/aerogenerador-sg-5-0-132
https://www.siemensgamesa.com/es-es/products-and-services/onshore/aerogenerador-sg-5-0-132
https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine
https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine
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simplified with the increase in computational power.

(a) Joukowski. Image from van Kuik et al. [2]. (b) Betz. Image from Okulov et al. [7].

Figure 1.2: Sketches of two early rotor models.

Blade-element theory appeared at the end of the nineteenth century in the work of

Drzewiecki but it only became sufficiently accurate when the concept of induced velocity from

momentum and vortex theories was included [6]. The combination of the blade-element and

momentum theories is known as Blade-Element Momentum (BEM) theory and its accuracy

has been improved with vortex methods studies, such as, the vortex solution of a cascade of

semi-infinite sheets that gave rise to the Prandtl tip-loss correction [4]. Modern versions of

BEM theory include semi-empirical corrections to improve the results in cases outside the

original steady uniform wind perpendicular to the rotor plane such as yaw and dynamic cases

[4]. Nowadays, this theory constitutes the industry standard and has been the main driver

of the evolution of numerical models for wind energy for electricity production. Recently,

the applicability of BEM theory has been compromised due to the intensified aerodynamic

unsteadiness and three-dimensional effects associated to the increased blade length and flex-

ibility and the larger sweep rotor areas operating in turbulent inflows. Other computational

methods provide insights about aerodynamic effects that are outside the range of applicabil-

ity of BEM theory [8] and target smaller or larger spatial scales. On the one hand, Reynolds

Averaged Navier-Stokes (RANS) solutions are usually employed to accurately describe fluid

phenomena with relevant scales up to wind turbine size including rotation effects on the flow,

boundary layer transition and separation. Thus, they have been used for the specific design

of high-lift airfoils for wind energy, as opposed to aeronautical shapes, that have enabled

more slender and lighter blades (90% lighter than the first designs in the 1980s [9]). The

baseline blade design has also been improved with other local add-ons like flat-back airfoils,

vortex generators or gurney flaps and with increasing tip-speed ratios to reduce torque and,

thus, drivetrain loading [9] (Figure 1.3). On the other hand, Large-Eddy Simulation with
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Actuator Line (LES-AL) captures the large turbulent structures that contain most of the

energy in the flow and models wind turbines as distributed forces in the flow. Therefore it

is suitable to describe wind farm aerodynamics and the interaction between wind turbines.

Aerodynamics is only the first step for the characterisation of wind turbine mechanics

because it provides the wind forces on the blades and tower that generate power, displace

the wind turbine platform and bend the structure. Consequently, the complete mechani-

cal characterisation of onshore wind turbines requires other physical models, some of which

are relevant for this project: multibody structural dynamics to study aeroelastic couplings

and control to improve the behaviour of the wind turbine through power production op-

timisation and load reduction. Traditionally linear structural methods that assume small

displacements have been used for wind turbine design [10]. However, they are being pushed

outside their range of applicability due to the previously described increase in length of

blades and tower and the use of composite materials, which generate more flexible blades

that undergo larger deformations [9]. Moreover, they require an adequate characterisation

of composite anisotropic material including complex couplings such as bend-twist coupling.

Thus, composite nonlinear beam theories are gaining importance. Control design requires

accurate computational methods that account for all the relevant physics of the system but

simple and inexpensive to run due to the large number of computations that are typically

required by the design process. Aerodynamics, structural dynamics and control interact with

each other and should be studied concurrently (aeroservoelasticity) to accurately describe

wind turbine behaviour.

Figure 1.3: Current and 1980s blade designs. Image from Veers et al. [9].

The future of wind energy is very promising with onshore expecting to triple its generation

in the next ten years by placing wind turbines in more complex terrains and in more dense

layouts within wind farms forcing them to operate in the wake of other wind turbines and
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more complicated inflow conditions [5, 9]. Moreover, there is a need of cost reduction due

to competition. Offshore wind energy, that started only in the late 1990s with bottom-fixed

wind turbines, is expected to grow from 70 TWh in 2018 to 600 TWh in 2030 [5]. In shallow

waters, foundations to the seabed include monopile for depths up to 30 m and jackets for

depths up to 60 m. Bottom-fixed wind energy is very expensive compared to onshore wind

energy due to the large foundations needed, the manufacturing cost and the scarce availability

of shallow water that is, in addition, more exposed to visual impact [8]. For water depths

larger than 60 m, floating platforms are considered as support structures for wind turbines.

In onshore wind energy, the wind turbine itself is the main contributor to the life-cycle cost,

however, in offshore wind energy, the platform and the operation and maintenance costs due

to the extreme weather conditions [9] exceed those of the wind turbine, thus, an accurate

and robust design of the system is very critical [11].

The operation in floating platforms and the need of accurate prediction of robust designs

will make unsteady and three-dimensional aerodynamic effects and nonlinear structural de-

formation even more relevant. Moreover, experimental campaigns are very expensive, for

example, blades are structurally tested at full scale in very expensive destructive experi-

ments, however, all aerodynamic tests are performed on scaled down models in wind tunnels

that sometimes need to be pressurised to match as closely as possible the Reynolds and Mach

numbers between reality and experiments. Scaling down a floating wind turbine maintain-

ing the relative importance of aerodynamic, structural and hydrodynamic effects is almost

impossible.

In summary, computational methods, specially low-fidelity, have massively transformed

wind turbines in the last decades together with advances in other engineering fields. More-

over, higher-fidelity methods and experiments have been used to validate low-fidelity meth-

ods, get insights into wind turbine’s physics and for very detailed designs of wind turbine

blades but they are extremely expensive and difficult to scale. Thus, having accurate and

efficient numerical methods for design is critical.

1.1 Literature review

Wind energy has evolved and changed during the last one hundred years as we described

in the preface of this chapter and the current knowledge about their mechanical behaviour

is vast. In this section, we aim to describe some previous work to characterise the important

physics in offshore wind turbine aeroservoelasticity with special attention to computational
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methods, their ranges of applicability and relevant uses in wind energy.

1.1.1 Aerodynamics

Wind turbine aerodynamics studies the forces generated by the wind on the wind tur-

bine. A wide range of physical phenomena is needed to explain rotor aerodynamics, which

are qualitatively well understood [4] when analysed separately such as wake-skewness in yaw

cases and unsteadiness. However, numerical methods are needed to quantify them, especially

under complex scenarios [8] such as complicated geometries or combination of phenomena.

Aerodynamics is the most resource-consuming physical process to model of all those involved

in wind turbine aeroservoelasticity, thus, there are different theories available that are classi-

fied according to their accuracy and computational cost [12]. This section uses previous work

to highlight existing knowledge concerning wind turbine aerodynamics with especial atten-

tion to the computational methods employed describing their limitations and some efforts

to overcome them.

Uniform inflow perpendicular to the rotor plane

Momentum theory is based on a momentum balance (Figure 1.4a) of the flow in control

volumes that extend far upstream and downstream in annular sections of the rotor. The

momentum loss of the flow is equivalent to the force exerted on the rotor. This force is

computed with blade-element theory (Figure 1.4b) that obtains the forces at blade sections

from steady-state look-up tables based on the angle of attack. The simplest case for wind

turbine aerodynamics is the operation at constant rotation speed under steady uniform

wind perpendicular to the rotor plane. In this situation, incoming velocities do not vary

azimuthally and, thus, neither do blade forces. This is a steady-state situation in a frame

of reference rotating with the rotor and, typically, the optimum for power production and

loading. In this scenario all BEM hypotheses hold making this method very accurate [13,

14].

Vortex theory [15] constitutes a medium fidelity approximation at an intermediate com-

putational cost in its different variations [16]. In general, it is based on the solution of the

potential inviscid flow equations through Green’s theorem to compute singularity fields on

the fluid domain boundaries. However, it has also been applied to viscous flows [17]. The

type of singularity used in the boundaries (source, doublet or vortex) defines the model.

In this work, we pay special attention to the Unsteady Vortex Lattice Method (UVLM) in
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which solid surfaces and wakes are discretised with vortex rings [18] (Figure 1.4c) . The most

important simplification of UVLM is the assumption of potential flow, which neglects the

effect of viscosity. As an example, in the computation of 2D airfoil properties with vortex

methods and Computational Fluid Dynamics (CFD) [19], the former cannot predict friction

drag or flow separation. The effect of drag has been proved considerable in the estimation

of wind turbine loads and power but not so critical in the prediction of wake velocities [20].

For this reason, different drag corrections have been proposed in the past for vortex methods

such as employing the integral boundary layer equations [18] which consist of: first, inviscid

vortex methods simulate the flow outside boundary layers according to Laplace equations;

second, Navier-Stokes equations are simplified in the boundary layer, assuming small thick-

ness and two-dimensional flow. The velocity at the interface of these two domains (the edge

of the boundary layer) should match, thus, the coupled solution through different schemes

[18] provide solutions for the whole flow field. The 2D implementation of Drela in XFOIL

[15] is the most popular one and it has also been applied to 3D wind turbines by some

authors [16, 20].

(a) Momentum theory. (b) Blade-Element theory. (c) UVLM.

Figure 1.4: Sketches of three aerodynamic theories. Images (a) and (b) from Burton et al.
[4].

In ordinary power-production operation, separation only affects the blade root which is

not a critical contributor to blade loads or power generation. The basic implementation

of vortex methods has also been successfully modified to account for stall in wind turbines

[21, 22] which requires knowing the separation point and assuming a pressure distribution

along the separated airfoil. This effect is even more complicated in dynamic cases of pitching

airfoils at high angles of attack [23]. With the same purpose, some strip vortex methods use

a decambering approach [24] to change the airfoil camber such that the viscous lift-angle of

attack curve is tracked throughout the vortex simulation. Moreover, some vortex methods

are able to account for body thickness [15] capturing the associated increase in slope of the
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lift curve and drag up to a certain extent. Finally, the effect of compressibility based on

Karman-Tsien correction [25] has been shown to be relevant and adequately captured by

corrected vortex methods [15].

It is important to notice that some vortex methods impose strong constraints on domain

discretisation [26] that, together with free wake approximations to accurately model aero-

dynamic loads, can result in significant computational cost [27]. For example, in the UVLM

implementation of vortex theory, the size of the vortex shed at each time step has to be equal

to the last trailing edge panel [28] which links and tightly constrains spatial and time dis-

cretisations. This requirement arises from the stability limitations of the first order upwind

scheme used to discretise the convection equation. There are attempts to discretise a non-

uniform wake with simple geometries using Galerkin approximation [29]. Multiple strategies

to reduce the UVLM’s computational burden exist [16] such as transforming vortex rings

into vortex blobs far away from solid surfaces [30] or using mathematical approximations

like the fast multipole method [31]. The former requires the numerical treatment of a new

kind of singularity and the latter constitutes a numerical approximation to the problem so

they are complex methods that do not completely solve the problem of computational cost

in vortex methods.

Yawed inflow

Uniform steady wind perpendicular to the rotor is not the usual operating state of wind

turbines because incoming flows are not uniform (shear and turbulence), steady (turbulence)

or perpendicular to the rotor plane (yaw). In the presence of wind shear, the largest incoming

velocity and induction occur when blades are at the upper position, giving rise to the largest

loads [32]. In the presence of yaw (Figure 1.5), two effects differentiate wind turbine aero-

dynamics from the reference case of zero-yaw [33]. The first one is the advancing/retreating

effect and accounts for the change in angle of attack along a revolution due to the change in

relative orientation between the blade and the inflow. For example, for positive yaw angles

(wind comes from the right hand side according to an observer at the wind turbine position

looking upwind), when the blade is at the top position, the blade rotation is in the opposite

direction to the in-plane component of the incoming wind which increases the angle of at-

tack with respect to the zero-yaw case. This effect does not create a net out-of-plane loading

along one complete rotation. This effect is less noticeable near the tip because the velocity

of the blade due to rotation is dominant there. The second effect is known as the skewed-

wake effect and accounts for the different distances from the blade to the shed vorticity in
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the wake along a revolution. The blade and the vorticity will be closer when the blade is

in the downwind position and further away when it is in the upwind position. This effect

generates a net yaw moment that tends to orient the wind turbine perpendicular to the wind

with minimum and maximum when the blade is at one of the two horizontal positions and

stronger near the tips.

The azimuthal variation of incoming speed in shear cases and in the advancing/retracting

effect of yaw cases contradict the basic hypothesis of BEM. The corrections implemented to

overcome this drawback perform one axisymmetric computation for each blade based on the

real conditions seen by that blade at each location. However, there is no agreement in the

particular details of the implementation [32] which leads to slightly different solutions. The

skewed-wake effect requires another model (originally related to Glauert theory of autogyro

[34]) that includes a theoretical equation for the azimuthal variations of axial induction

up to some unknown parameters. Those parameters were initially estimated according to

vortex theory [35] and improved [36], afterwards, based on some reviews and comparisons

with experiments [33]. Other corrections for BEM based on high fidelity computations [37]

include root vortex, yaw, tip-speed ratio, azimuthal and radial variations.

(a) Wind turbines at zero yaw (b) Yawed wind turbines

Figure 1.5: Two wind tunnel tests of a wind farm. Top view of horizontal velocity contours
at a horizontal plane at hub height. Image from Wang et al. [38].

Turbulent inflow

The numerical characterisation of wind turbine loads under turbulent wind conditions

requires sufficiently accurate descriptions of both the turbulence field and the unsteady

and three dimensional aerodynamic effects on blades [8]. Moreover, the stochastic nature

of turbulence implies that very long experiments or computations are needed to provide

statistically converged results for fundamental metrics such as mean power or equivalent

fatigue loads.
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The characterisation of turbulence in wind farms is challenging due to the numerous

physical phenomena and wide range of temporal and spatial scales [39] from boundary layer

turbulence to atmospheric weather. Moreover, experimental campaigns to evaluate wind

turbine loads under these turbulent conditions are extremely expensive and, thus, only a

small number of studies are available. For example, in wind tunnels, active grids have been

created to generate controlled turbulence [40] to test wind turbine airfoils under turbulent

flows with prescribed statistics [41], while some in-field campaigns have provided relevant

validation data [42].

Computational techniques offer an alternative to full-scale experimental campaigns but

the challenge in this setting is to ensure simulation accuracy. First, the generation of a

representative turbulence field is a challenging task. One approach is to generate a box

of turbulence to feed as inflow conditions to a wind turbine computational model through

Taylor’s frozen turbulence hypothesis which relates the spatial coordinates in the box with

the time scale using the mean wind velocity. Statistical (Turbsim [43]) and physical models

based on linearised Navier-Stokes equations (Mann boxes [44]) can be used, but a more

accurate approach is to generate turbulence with Large Eddy Simulations (LES) of the

boundary layer as a precursor simulation [45].

The simulation of turbulent flows is outside the range of applicability of vortex methods

[27] because these flows have inherent vorticity which is in conflict with the basic assumptions

of vortex theory. However, vortex methods have been employed for that purpose, for example,

in [46] variations on the lateral wind conditions with a vortex method and an indicial response

method show very good agreement in the estimation of yaw moment coefficient.

Advantages of vortex methods

The greatest advantage of vortex methods is their intrinsic capability to account for

three-dimensional and unsteady aerodynamic phenomena. To highlight the importance of

this capability, we describe next the corrections needed by lower fidelity models to attempt

to provide acceptable predictions under these scenarios: three-dimensional effects, unsteadi-

ness and azimuthal variations. Despite all the semi-empirical corrections created for BEM

methods, they should be put into perspective as long as they are restricted to the operation

conditions under which they were designed and they do not account for interaction between

effects but apply corrections on top of each other. Thus, even after all these corrections,

BEM still cannot predict yaw as well as CFD does [47].

Conventional BEM does not account for unsteadiness because it is based on steady equi-
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librium. For that reason, when sudden changes occur in the system that go beyond the

quasi-steady approximation a correction needs to be applied. In this case, it is based on

the indicial response of Beddoes-Leishman theory of airfoils [48] which was later revisited

by [23] for three dimensional effects and inclusion into BEM codes. These models are usu-

ally referred to as Unsteady BEM and are being used for load design cases with significant

unsteady and three-dimensional flows, such as, sudden pitch changes [49] and gusts even if

they are not within their applicability limits.

The induction changes along the azimuthal direction in rotors with a finite number of

blades because the flow slows down more in front of the blades than in the space between

them. This three-dimensional effect is against the basic hypothesis of BEM of constant induc-

tion along the azimuthal direction forcing the use of the tip-loss correction. The correction

name comes from the fact that this effect is important near the tip and the root of the blade.

Another correction for the change of induction in the azimuthal (and radial) direction is the

accelerated-potential method that assumes an a-priori distribution for the induction within

the rotor plane. The well-known Prandtl tip-loss correction and the accelerated-potential

method have been developed based on vortex theory [4]. The second three-dimensional effect

is the interaction between blade sections which has long been of interest in aeronautics for

complex wing geometries [50, 51]. For wind turbines, near wake models have been developed

to account for the induction change along the blade span that is disregarded in BEM. They

make use of vortex theory to define this interaction between radial sections by assuming, for

example, that the trail vorticity (associated to vortices perpendicular to the trailing edge

and responsible for the three-dimensional effects) stays in the rotor plane and that its influ-

ence is negligible after a certain amount of time [52]. The complexity of this method is to

combine the near wake model with the far wake model of BEM that is required to define the

steady-state response.

Higher-fidelity methods

CFD is usually considered a very high fidelity method for aerodynamic computations

which would be extremely expensive [8] to analyse all the load cases in the design process.

However, CFD is very useful for particular analysis such as the design of blades add-ons

[9]. They require a fluid domain discretisation to solve the Navier-Stokes equations, and,

these equations are solved filtered in time or space which are known as RANS and LES,

respectively [53]. The largest Mach numbers are found at the blade tip due to the rotation

velocity, when they are small, the incompressible version of the equations are solved to
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reduce the computational cost [54]. There is no agreement in the literature concerning

the performance of BEM, UVLM and CFD under turbulent inflow conditions. BEM has

previously been found to provide good agreement with measurements and CFD simulations

[55]. However, it has also been found to overestimate fluctuations with respect to blade

resolved and vortex simulations and experiments [56, 57]. Even within the blade resolved

simulations, the results arising from different turbulence models have not been found to be

consistent [58, 59].

In three-dimensional cases, such as, complex inflow [60], the qualitative trends of forces

and rotor power and thrust coefficients between CFD and vortex methods are generally in

good agreement, but the mean values are not. Moreover, CFD methods provide results

closer to experiments for wind turbines under yaw and tower effect [61]. As a consequence,

CFD has been used for very detailed analysis of specific phenomena like aeroelasticity [62],

flap performance [63] and cases involving deep stall such as parked or standstill conditions

[61]. In the case of comparing flow field velocities against experiments, both CFD codes

and vortex methods have been found to provide accurate results [64, 65, 66]. Some complex

scenarios, like the influence of the ground, can be equally computed with CFD and vortex

methods [67].

Analysing wind farms with CFD codes is very expensive due to the large range of scales

present from the blade boundary layer to atmospheric flows. To overcome this problem,

actuator disc (AD) or actuator line (AL) models embedded in LES have become fashionable

[68]. They solve forces on blades with the same approach as BEM methods but retrieving the

velocity from the LES simulation which constitutes a high fidelity representation of the turbu-

lent field [69]. At the same time, the previously-estimated forces are introduced into the LES

flow through momentum sources. The main difficulties of these simulations are retrieving

the velocity from the LES simulation, computing the force based on two-dimensional infor-

mation and feeding back the force. AL combined with LES has been extensively validated

against experimental wind turbine wake velocity profiles [70]. However, more discrepancies

appear when blade loads are estimated [71, 32].

1.1.2 Structural dynamics

Understanding and modelling wind turbine structural dynamics is important to accu-

rately estimate displacements, loads and assess stability [4, 72]. Extreme loads are usually

large and occur in the event of extreme inflow conditions and/or exceptional machine states

such as emergency stops or grid loss. These are experienced only a very limited number of
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times during a turbine’s life cycle. On the other hand, fatigue loads are smaller in amplitude

but are time-varying and affect the structure in a continuous manner even during normal

operation of a wind turbine [4].

Fully three-dimensional models provide very detailed information about local deforma-

tions which is needed to analyse problems such as buckling or propagation of cracks [73].

These models have a very large computational cost that can be reduced taking advantage of

the slenderness of wind turbine blades and tower through the simplification of the structure

as a collection of one-dimensional beams [74]. Good agreement between one-dimensional

beam models and three-dimensional shell models has been confirmed unless local effects like

buckling occur [75], which is usually associated to edgewise bending moments and it softens

the structure. Generating a one-dimensional beam model of a three-dimensional structure

requires a step of cross-sectional properties homogenisation [74] to quantify the stress-strain

relationship of the cross section. It consists of approximating the strain energy of the three-

dimensional beam as a function of the reference line properties by means of an asymptotic

analysis based on the assumption that the blade length is much larger than the other two

[76, 77].

Linear beam theory assumes small rotations, displacements and curvatures [78] and linear

relationships between stresses and strains. Euler-Bernoulli theory provides the simplest

model, while Timoshenko beam models include shear, account for cross-sectional rotation

with respect to the reference line and centrifugal stiffening which is important in rotating

systems [79]. The number of degrees of freedom of the system can be further reduced by

using the modal approximation in which the deformed shape is approximated by a set of

appropriately chosen basis functions, selected to efficiently capture realistic deformations [12].

Theoretically, the exact deformation can be recovered with a large number of independent

functions but the solution is usually approximated by choosing only the shape functions

associated to the lowest eigenvalues of the structure. Most computational codes for wind

turbine certification originally used modal approximation [10], however, most of them have

implemented nonlinear approximations in the recent years because geometrically nonlinear

deformations are expected in new blades with increasing flexibility and length, [80] can occur.

Geometrically-Exact Beam Theory (GEBT) is an exact representation of the equilibrium

of forces and moments in one-dimensional beams under small strains (linear stress-strain

relation) but large displacements and rotations [81, 82, 83] which introduce nonlinearities

in the theory. The representation of the rotations constitutes a critical point of this theory

that is tackled through the definition of a set of parameters for the invariants of the rotation
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field [84, 85]. One option for these parameters is using Euler angles that are intuitively

defined as the rotation around cartesian axis. Rotations can also be parametrised with the

cartesian rotation vector (CRV) that has the direction of the rotation axis and the module

equal to the rotation amplitude. The CRV is an adequate choice because it requires the

minimum number of parameters (three) and provides good linearisation properties. Third,

quaternions are a representation of rotations in space through a set of four parameters

and the particular algebraic operations associated to them. They remove the singularity

present in Euler parameters and CRV. Nevertheless, quaternions do not perform as well as

cartesian rotation vector upon linearisation. The beam dynamics equations are obtained

from the principle of least action and displacements and rotations or beam strains (intrinsic

formulation) [86] can be chosen as independent variables. The former has the advantage

of directly providing the beam geometry, which facilitates the coupling with aerodynamic

models that rely on displacements and rotations and the disadvantage of increased numerical

cost of treating the rotations. The latter has the advantage of reduced computational cost

but the disadvantage of requiring postprocessing of the independent variables to obtain the

beam geometry. There are also hybrid approaches with increased computational cost but

enhanced numerical stability [87]. This theory is usually implemented through finite elements

[80, 88] and, sometimes, with multibody approximations [89].

In GEBT, global rigid body motions of the structure are tracked by means of a non-

inertial frame of reference moving with the structure with respect to a ground-fixed inertial

frame of reference [90]. Moreover, deformations and rotations with respect to the undeformed

configuration are measured on the non-inertial frame of reference that moves with the struc-

ture (Figure 1.6a). This approach is commonly referred to as floating frame of reference

[91]. Geometrically nonlinear deformations are usually associated with large deformations

and rotations of the flexible structure when measured with respect to the non-inertial frame

of reference moving with the structure [89]. If the body is divided into enough substruc-

tures, each of which has its own non-inertial frame of reference, deformations become small

when measured on the substructure’s own frame of reference [92], such that, they can be

considered linear (Figure 1.6b). Multibody dynamics are employed to impose constraints

between all the non-inertial frames of reference associated to the substructures. It allows a

simple implementation of geometrically nonlinear deformations in multibody linear software

packages [89]. For nonlinear benchmark cases, GEBT provides extremely accurate results

and good agreement is also achieved with the multibody approach [93]. Moreover, results for

common wind turbine loading cases are very similar between the two models [94]. However,
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the multibody approximation shows small discrepancies in the computation of very nonlinear

structural couplings [93].

Ground-fixed inertial frame of reference

Single structure-fixed non-inertial frame of reference

tip
displacement

(a) Single floating.

Ground-fixed inertial frame of reference

Substructures’ frames of reference

tip
displacement

(b) Several substructures.

Figure 1.6: Frames of reference in nonlinear multibody dynamics.

GEBT can represent initially pre-bent, pre-swept and pretwisted blades that constitute

the current design trends of wind turbine blades. It also accounts for large deformations that

were not important in old stiff blades [88] but are gaining importance in current ones [95]

due to their increasing flexibility (Figure 1.7). Moreover, it includes fully-populated stiffness

matrices characteristic of anisotropic composite materials [75] and it has the capability to

track the true deformation of the beam and apply the forces on it instead of using the

undeformed geometry [10]. This feature makes GEBT more suitable for systems whose

forces depend on the orientation of the surfaces such as wind turbine blades and to study

aeroelastic problems. In particular, vortex methods can be easily integrated with beam

dynamics through the assumption of rigid cross sections for flight dynamics [96, 97] or wind

turbine applications [67, 98, 99, 100, 101, 102].

Composite anisotropic wind turbine blades exhibit couplings between different modes

of deformation, for example, under a bending deformation the blade will also twist. This

particular example is known as bend-twist coupling (BTC) and can be achieved through

composite layout modification (introducing material couplings) or through geometric sweep

(modifying the relative position of the aerodynamic centre, the pitch axis and the elastic

centre of the cross section). Thus, it is important to accurately estimate the position of the

shear and geometric centre when the one-dimensional model is created to avoid unrealistic

torsion-bending couplings [75]. This coupling mechanism is more efficient under large bend-

ing deformations [94], therefore, it is mainly observed at below-rated conditions when large

out-of-plane deformations occur due to the relatively low stiffness in the flapwise direction.

BTC is accurately modelled by GEBT and a promising mechanism for passive load allevia-
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Figure 1.7: Wind turbine blade test. Image from Renew-
able Energy World https://www.renewableenergyworld.com/storage/

substructure-testing-paving-the-way-to-longer-blades/. Accessed October
5th, 2021.

tion [103, 104]. As a consequence of the load reduction in critical cases, the rotor radius, and

hence the energy yield, can be increased [105]. This optimisation process requires concurrent

optimisation of the blade aerodynamic surface and structure [104].

The assessment of the aeroelastic system stability concerns the study of resonance and

self-excited instabilities. Resonance is the linear growth of the structure motion due to an ex-

ternal force that interacts with the natural frequencies of the system. Given that it occurs at

the structure’s natural frequencies, it is relatively easily predicted and avoided at the initial

design stage by separating the characteristic vibration frequencies of the structure from the

operational regimes of the rotor and other external forcing. This is done, for example, by re-

stricting the rotor velocities equal to the system natural frequencies. Self-excited instabilities

do not require external forcing at natural frequencies but appear when a dynamic feedback

loop is established between, for example, aerodynamic loading and structural deformation

(flutter) [106] or between a static force and displacement (divergence). In linear systems,

displacements grow exponentially at the beginning and, in nonlinear systems, might exhibit

limit-cycle oscillation. Some authors claim future designs will be stability-driven instead

of loads-driven due to the increasing appearance of this effects on very flexible blades and

associated with floating dynamics [107]. The combination of a vortex method with a non-

linear beam theory provides more accurate predictions of the damping values of the edgewise

https://www.renewableenergyworld.com/storage/substructure-testing-paving-the-way-to-longer-blades/
https://www.renewableenergyworld.com/storage/substructure-testing-paving-the-way-to-longer-blades/
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vibrations than those of the BEM theory with linear beam dynamics when compared against

experiments [99]. However, the damping of the tower fore-aft movement is overestimated by

free wake vortex methods due to the overly large lift-to-angle-of-attack slope [99].

Low aerodynamic damping in the edgewise direction causes very high frequency in-plane

vibrations that strongly influence the drivetrain and tower dynamics [107]. Instabilities are

not usually experienced at design operating conditions because they are avoided during de-

sign. However, they can arise in parked and idling conditions in both onshore and offshore

configurations [107]. Some studies on flutter instability on wind turbine blades [72, 106]

suggest that such instabilities would only occur at much higher frequencies than those ex-

perienced in current operational regimes. However, they could be reached for future wind

turbines.

Finally, the time integration of second order beam dynamics is characterised by the

wide range of characteristic frequencies (stiff system) which makes unconditional stability

desirable. In nonlinear systems, a certain level of numerical damping to high frequencies [85]

is usually required. Two common algorithms are the Newmark-β [85] and the generalized-α

[108] which are second-order accurate for linear systems, stable under certain constraints of

their parameters and permit the inclusion of dissipation controlled by the user.

1.1.3 Multibody dynamics

In previous Section 1.1.2 we described the structural behaviour of continuous elements

in the system, known as elastic bodies. Complex systems, such as wind turbines, are com-

posed of several bodies connected through a wide variety of joints, for example, hinges or

sliding joints. In the finite element method, each body is divided into elements with a certain

number of nodes to solve the structural dynamics equations and joints are just a description

of the constrained movements between the nodes at both sides of the joint. Very rarely,

these constraints are explicit on the degrees of freedom of the nodes. They are more com-

monly described by an implicit algebraic equation involving several degrees of freedom or

their derivatives. When these equations are a function of the generalised coordinates only,

the constraint is called “holonomic” and “non-holonomic” in all other cases, such as cases

involving the time derivative of the generalised coordinates [85].

Additional constraints to describe joints generate a system with more equations than

unknowns. In some simple cases, these systems can be solved by removing the constrained

degrees of freedom, for example, when a node is clamped, all its degrees of freedom need to

be removed. Another approach is, first, to compute for each body independently, second,
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obtaining the reaction forces at the joints, applying those forces to the other bodies and

iterate until convergence [109]. Generating universal procedures to solve constrained systems

with the previous approaches is very difficult because each set of bodies and constraints has

to be solved differently. Thus, the implementation of these approaches in general purpose

computational codes is not feasible [110].

The application of Newton’s laws and the principle of least action are two alternatives

to compute the equations of motion of a system. The former requires a procedure that is

very system-dependent and, thus, only convenient for simple systems. However, for more

complex systems, the principle of least action provides a very general procedure in which

the equations of motion are obtained by minimising the action of the system. The action

of a system is the integral of its Lagrangian which consists of expressions for potential

and kinetic energies and work of external forces on the system as a function of the system

degrees of freedom. We use the principle of virtual work to obtain the equations of the

GEBT in Section 2.1. To account for the constraints in multibody systems, we employ

the Lagrange multipliers method which is a mathematical tool to compute maxima and

minima of a function (in this case the system Lagrangian) under constraints (in this case the

multibody constraints) [111]. There are subtle variations of the Lagrange multipliers method

for flexible multibody systems [85] that aim to improve the numerical characteristics such as

stability and convergence [91]. First, the penalty function variation proposes to substitute

the evaluation of the constraints by the introduction of a penalty term into the Lagrangian

that will automatically force the boundary conditions. Second, the perturbed Lagrangian

variation aims to improve the computational properties of the Lagrange multipliers method

through an additional term. These two variations cannot provide the exact solution of the

problem. Finally, the augmented Lagrangian variation is a modification of the Lagrange

multipliers approach that also includes a penalty function to improve the computational

properties such as the condition number but it retains the constraints to achieve the exact

solution.

The combination of the differential equations of motion of bodies with the algebraic

equations of the constraints generates a differential-algebraic system of equations (DAE)

that requires specific treatment for the solution. One of the approaches to solve DAE sys-

tems (known as constraint regularisation) is transforming them into a second order ODE by

differentiating the constraint equations. Enforcing accelerations removes constant terms in

velocities and first order terms in coordinates and controlling this numerical drift requires

introducing a stabilisation term which leads to not satisfying the constraints exactly. An-
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other option is to transform the structural differential equations and the constraints into

a first order system [112]. For nonlinear flexible multibody systems, specific studies have

shown the importance of time integration algorithms [113]. Some authors have shown that

the conditioning and sensitivity of the DAE systems get worse with decreasing time step

requiring more complex methods for their solution [114, 115].

In wind turbine dynamics, the most common approach to structural dynamics is to use

the finite element method or modal approximation. Wind turbines require joint modelling,

for example, in the hub-nacelle joint and this is almost always done through the Lagrange

multipliers approach. Some examples of the use of multibody dynamcis in wind energy

include CFD, drivetrain dynamics and control [116], others implement the floating frame

of reference concept [103] and others have been coupled with vortex methods [117]. The

use of multibody dynamics is also required in the study of wind turbine control [118, 119]

because the yaw and blade pitch control mechanisms effectively constitute joints between

wind turbine parts.

1.1.4 Floating platform dynamics

Floating platform dynamics include all physics associated with the interaction between

the floating platform [120] and the sea. Hydrostatics is the application of Archimedes’

principle to submerged bodies that results in a vertical buoyancy force to keep the wind

turbine afloat through integration of the hydrostatic pressure on the platform wetted surface.

Hydrostatic force (and moments) depend on the platform location and orientation. Usually,

this dependency is linearised, which is accurate when the displacements are small compared

to the platform characteristic length [121]. On the other hand, nonlinear effects are typically

only important when the platform undergoes large amplitude motions or operates in complex

sea states. In those cases, a complete integration of forces over the instantaneous wetted

surface is needed. Most of the knowledge on marine dynamics has been transferred from the

oil and gas industry. The knowledge directly associated to wind turbines comes from the

laboratory conditions because of the few available floating wind turbines. For example, [122]

presents an analysis on mooring lines, [123] studies hydrodynamics and [124] wave impact

loads.

It is very common to separate hydrodynamic effects into two different contributions.

Radiation explains the dissipative forces generated on a submerged body that oscillates in

a fluid initially at rest as a result of the waves radiated by the body. In general, these

forces are linearised and identified as damping and added-mass forces that depend on the
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platform velocity and acceleration, respectively [120]. Added-mass forces can be applied to

the forcing term of the wind turbine’s dynamical equations but the convergence of numerical

algorithms is significantly deteriorated because, in reality, these forces depend on the system

acceleration. It is usually a better approach to include these forces on the mass matrix of

the system [125, 123].

The diffraction phenomenon describes the wave forces on solid bodies. In particular, Airy

theory studies the sea surface elevation under single amplitude and single frequency waves,

and the forces they generate on solid surfaces. Again, a linearisation of this problem allows

the superposition of different frequencies and amplitudes to simulate sea-states characterised

by a complex spectrum of waves [126]. Second-order effects appear as a result of quadratic

interactions in a situation with an irregular wave spectrum [127]. There is a non-zero-average

force acting on solid bodies that displaces them from the equilibrium position known as mean-

drift. There are also slow-varying loads associated with terms of frequency differences and,

similarly, associated with the addition of two frequencies. The former can interact with the

slow platform motions and the latter with vibration modes of the structure [128].

The study of hydrodynamics with CFD is very complex and expensive, particularly, if

the air-water interface is accounted for [129]. In general, lower order methods like potential

flow theory [130] are applied and, in particular, slender structures are of interest due to

their abundance in offshore applications. There is a wide theory about slender structures

(i.e. their characteristic length is small compared to the wave length) [120] that is usually

simplified through Morison’s equation [123] which just separates forces on drag and inertia

and computes them through a coefficient times kinematic properties of the system. This

formulation can be corrected [131] for more complex structures. The Cummings equation

[121] computes the platform dynamics from a convolution integral of a retardation function

matrix.

Different levels of approximation for mooring lines are available [132]. The quasi-steady

approach proposes to solve the catenary equation to obtain the forces accounting for mooring

line weight, buoyancy, axial stiffness and friction with the seabed [133, 134]. Quasi-steady

models can be assumed in the estimation of blade loads although they introduce a small-to-

significant error in tower-base loads and clearly fail to predict dynamic loads on the mooring

lines [122]. Quasi-steady approximation neglects the added-mass, damping and drag effects

that are only captured by dynamic models based on finite element representations of the

mooring lines. The force-displacement theory is a finite element solution that takes into

account similar effects to the quasi-steady approach. Lastly, dynamic models include inertia,
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added mass and hydrodynamic drag to the previous effects. Usually, they employ Morison’s

equation due to the slender shape of mooring lines. These effects might be important in

deep waters where mooring lines undergo large and quick movements [135].

There are several designs for wind turbine floating platforms [11] whose main objective is

to provide buoyancy and stability to the system at a minimum cost such as spar buoy, barge,

tension leg platform (TLP) and hybrid designs. They are usually classified as a function of

their main stabilisation mechanism. Spar buoy (Figure 1.8a) is a vertical deep-draft structure

with an underwater ballast that acts as a pendulum to provide stability and increases the

material cost. The links of the mooring system provide some yaw stability. Barge (Figure

1.8b) is a shallow-draft structure with a relatively large water plane area to provide stability.

It usually results in simple but heavy platforms which are self-stable making their shipping

easier and cheaper. Ideally, platforms should be placed at a certain depth underwater (draft)

to avoid excessive wave interaction, this is especially critical in the barge-type because this

is the most exposed to wave motions and air and water exposure enhancing corrosion. The

tension leg platform (Figure 1.8c) consists of a small platform linked to the seabed by mooring

lines in tension which provide the stability to the wind turbine. It is the most complex in

design and installation of the platforms presented here but it provides the most stable system

and, thus, the least impact on turbine dynamics. The spar buoy and the barge use mooring

lines to avoid platform drifting but they do not significantly provide stabilisation. Thus, the

mooring lines are longer, simpler and less loaded in the spar buoy and barge platforms than

in the TLP. In practice, most designs are hybrid among the previous ones, such as the Dutch

tri-floater (Figure 1.8d).

(a) Spar (b) Barge. (c) Tension leg. (d) Dutch tri-floater.

Figure 1.8: Floating platform designs.

A particular numerical study [136] involving the three platform concepts shows that the
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barge design is very influenced by the waves and leads to excessive pitch and roll motions

generating the largest fatigue and ultimate loads. The TLP concept shows much less plat-

form motion than the barge, which slightly increases the loads with respect to the land

based turbine. The controller for the spar buoy design was changed generating results that

are difficult to compare against the land based turbine but it exhibits intermediate move-

ments and loads than the other two. Experimental studies have shown significant changes

in the dynamics of the three concepts [137], and have evidenced the need to design specific

controllers for offshore wind turbines mainly for displacement and load reduction due to the

influence on the pitch damping [138].

The rotor mean and dynamic displacements in pitch significantly influence the power

production [139]. The average pitch displacement reduces the power generation more in the

spar configuration than the semisubmersible platform studied. The semisubmersible shows

power increases with respect to the fixed base wind turbine due to dynamic motions of

the rotor upwind/downwind which increase/decrease the relative velocity of the wind and

the rotor. The rest of the platform displacements show insignificant effects on the power

generation in the studied setup. For high pitching frequencies equal to half of the rotation

frequency, huge differences in power and thrust with respect to the fixed base turbine can

be found [140]. In these cases, aerodynamic states out of the range of application of BEM

can be found such as vortex ring state.

1.1.5 Control

Wind turbines operate with a feedback control in which the state of the system is mea-

sured and modified through a series of actuators to satisfy a user input. Control systems

seek to achieve optimal operation, stabilisation and load reduction. Some examples have

already been introduced in the previous Section 1.1.4 where we described the problem of

establishing and optimising the pitching motion of floating wind turbines.

Nowadays, the most common wind turbine configuration is variable rotor speed and

variable pitch. It has relatively high complexity but allows optimal operation of the wind

turbine at a wider range of wind speeds as compared to other concepts, such as, fixed speed or

fixed-pitch wind turbines. At low wind speeds, wind turbines operate at maximum efficiency

extracting all the possible power from wind. At a certain wind speed, which depends on the

wind turbine design, nominal power generation is reached such that for higher wind speeds

the wind turbine does not operate at maximum efficiency but at constant rated power. The

reason to limit the efficiency and power generation is avoiding excessive structural loads
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that would increase the wind turbine cost. These two regimes are named “below-rated”

and “above-rated”, respectively. The main objective of the wind turbine controller below

rated power is operating the wind turbine in optimal conditions such that the maximum

power generation is achieved. Above rated power, the objective is maintaining a constant

power generation and rotational speed [4]. A traditional control scheme of a variable-pitch

variable-velocity wind turbine is included in Figure 1.9.

The main control actuator in current wind turbines is the pitch actuator (rotation of

the blade around its longitudinal axis) through a proportional-integral feedback controller.

A change in the pitch angle modifies the aerodynamic forces and consequently the power

production and loading of the wind turbine. Positive and negative pitch angles rotate the

blade such that its chord aligns with the incoming wind speed or the rotation velocity,

respectively. These pitch motions are usually referred to as “pitch-to-feather” and “pitch-

to-stall”, respectively. Above rated power, pitch is typically operated towards feather. The

pitch angle is increased to reduce the angle of attack and, thus, decrease the power generation

with respect to the maximum production to reduce the design loads. Another option is the

pitch-to-stall, which generates less pitch actuation and smoother control [141] but it is not

commonly employed because stall loads are not very desirable on wind turbines due to the

uncertainty in their estimation and unsteadiness. If the three blades are operated at the

same pitch angle we call it “collective pitch” control. Individual pitch control (IPC) allows

the definition of the pitch angle of each blade independently achieving even better results at

the cost of increased control complexity and the availability of other sensors [141]. There is

a second important actuator (yaw) used to align the rotor to the wind through the rotation

of the nacelle and rotor around the longitudinal axis of the tower. The need of rotating the

large mass and inertia of the rotor and the nacelle makes this mechanism very slow (it is

usually actuated every ten minutes) and not suitable for load reduction during the operation

of individual wind turbines. However, it can be used to reduce the influence of one wind

turbine in the downstream one optimising the whole wind farm behaviour [142].

We now present a series of problems in wind energy that can be tackled just through

controller design. A first problem is to minimise deterministic loads (associated to shear and

tower shadow) which can be tackled by just measuring the rotor azimuthal angle [144]. If the

individual loading of the blades can be measured, for example with strain gauges at blade

roots, shaft or yaw bearing sensors, more complex designs could be generated for example

through linear–quadratic–gaussian control design techniques, which represents the simplest

modern technique for multiple input and output controller design. IPC can be especially
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Figure 1.9: Control scheme of a variable-pitch variable-velocity wind turbine. Image from
Mughal et al. [143].

useful to reduce the peak in the root-bending moment spectrum at rotation frequency, the

shaft bending moment or the yaw moment on the bearing [141].

A second problem is the non-desirable tower fore-aft movement that causes fatigue loads

at the tower base. Rotor thrust is the main excitation to tower fore-aft movement and it

is significantly influenced by the blade pitch angle. The quantification of pitch-to-thrust

sensitivity and the measurement of the tower-top acceleration enables the generation of

control logic that attempts to reduce the tower-top movement. This effect is aggravated in

floating wind turbines in which large rotor excursions imply a significant change of the relative

velocity between the wind and the rotor. This affects the rotor loads and the aerodynamic

damping of the platform pitching motion, and, consequently, the system stability. Some

authors [145] have run experiments that use this philosophy to reduce the tower vibrations.

However, some computations [146] and experiments [138] have shown that it was not possible

to reduce the platform motions because the two objectives of the controller require opposite

operation of the pitch actuation. This is, in an event of a forward movement of the platform,

the relative wind velocity increases, the controller would try to, first, maintain the rotor

velocity by increasing the pitch and, second, to increase damping to reduce the forward

movement by reducing the pitch. The assumption of constant damping coefficient with

frequency leads to an underestimation of the system displacements. However, accounting

for the changes of the pitch-to-thrust sensitivity with frequency is not enough to keep the

platform displacements in adequate ranges [147].

Torque oscillations in the drivetrain of variable speed wind turbines are also of concern
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because they generate life-limitting fatigue loads. The most efficient way of reducing these

fatigue loads is by avoiding excessive operation around the drivetrain resonant frequencies.

With this objective, a band-rejection filter around the drivetrain resonant frequency is ap-

plied to the generator velocity measurement such that the pitch actuation at the resonant

frequencies is reduced [141].

Smart rotors include a series of distributed sensors, such as accelerometers and strain

gauges, and actuators, such as flaps or plasma actuators. These actuators provide a local

mechanism to control loads with higher frequencies than the achievable by the pitch actuator

[148]. Some modern control techniques like model predictive control, that estimate the cur-

rent and future state of the system base on an internal model of the wind turbine, have been

used to study the performance of flaps showing promising load reduction at the cost of com-

plex system identification techniques [149]. This method has been validated in experimental

wind turbines [144] showing root bending moment reduction. Flaps, in particular, have also

been tested in collaboration with passive control mechanisms such as bend-twist coupling

based on a explicit linearisation of the system and a H∞ controller [150]. Smart rotors are

being studied in the research community but they require new sensors and actuators that

are not currently available in commercial wind turbines and improvements in computational

methods to match experimental results.

The control design process should be informed by all the relevant phenomena involved

in the system behaviour. For example, the tower fore-aft movement, the blade pitching

rotation and the blade flapwise and torsional deformations generate unsteady aerodynamic

phenomena that should be accounted for in the control design process to avoid the large

overshoot of aerodynamic forces [151].

1.1.6 Some software packages for wind turbine aeroelasticity

This section presents a review of the state of the art for aeroelastic simulation code

developed in both industry and academia. We pay special attention to the similarities and

differences with SHARPy which is the software package in which we have implemented all

the required capabilities to enable the simulation of floating wind turbines from the baseline

code thought for aircraft simulation.

• SHARPy (Simulation of High-Aspect Ratio Planes in Python) is the open-source [152,

153, 154] aeroelastic code from Imperial College London for the simulation of flexible

aircraft [155, 156] and wind turbines. It is based on UVLM and GEBT for the aero-
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dynamics and the structural dynamics, respectively. It includes multibody dynamics

based on Lagrange multipliers, floating dynamics with added-mass and damping radi-

ation matrices, Airy theory for waves and quasi-steady mooring dynamics. It also has

collective blade pitch control capabilities through PID. It includes explicit linearisation

and model order reduction (balanced truncation and Krylov methods).

• OpenFAST (Open Fatigue, Aerodynamics, Structures and Turbulence) [157] is the aeroe-

lastic code of National Renewable Energy Laboratory (NREL). It is built in a modular

framework in which different modules compute different physics. It has traditionally

used BEM for the aerodynamics with the usual corrections (Section 1.1.1) but the

latest versions include also a free vortex wake method [158] based on actuator-line the-

ory. It includes structural solution based on linear modal analysis with two flap and

one edgewise modes and nonlinear approaches. It has interfaces with external hydro-

dynamic and control libraries. It also implements internal simple models for control

and linearisation capabilities to aid the control design. As a part of the distribution

TurbSim [43] generates 3D turbulent velocity fields.

• HAWC2 (Horizontal Axis Wind turbine simulation Code 2nd generation) is the aeroelas-

tic code from Danmarks Tekniske Universitet (DTU) Wind Energy [159]. It is based on

BEM with the usual corrections (Section 1.1.1), multibody formulation and structural

dynamics with Timoshenko beam theory with a fully populated stiffness matrix. It has

interfacing capabilities with other solvers such as the CFD code EllipSys3D [160] and

control libraries. It has also interesting preprocessing open-source tools like a Mann

box turbulence generator [44, 161].

• Bladed is the commercial software from DNV-GL [162]. It uses BEM with the usual

corrections and a multibody approach for nonlinear beam dynamics [89]. It includes

hydrodynamics and interfaces with other software for complex scenarios and control

libraries.

• In the National Technical University of Athens (NTUA) they have several modules

that can be combined for wind turbine aeroelasticity. hGAST is the linear and nonlinear

structural solver and GenUVP (GENeral Unsteady Vortex Particle) is the aerodynamic

one. It discretises solid surfaces with panels and it sheds free vorticity to the fluid in

form of vortex blobs. It uses a particle-mesh method to reduce the computational cost

[59, 163, 99].
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• Energy Research Centre of the Netherlands (ECN), now part of TNO, has the aeroelas-

tic code PHATAS (Program for Horizontal Axis wind Turbine Analysis and Simulation).

The aero-module includes BEM and free vortex wake modules (AWSM). And the struc-

tural dynamics are managed by FOCUS-Phatas [27].

• WAMIT is not an aeroelastic code but a hydrodynamic inviscid panel method used to

compute the platform frequency response [130, 164] for the radiation and diffraction

problems. It is used as preprocessing tool for some of the above aeroelastic codes.

Some implementations use vortex methods for the aerodynamics (GenUVP and AWSM) but

most of them employ BEM methods (OpenFAST, HAWC2, Bladed and PHATAS). In the past,

they employed linear models but most of them offer the possibility to compute nonlinear

structural dynamics through traditional (OpenFAST and hGAST) or multibody (Bladed and

HAWC2) approaches. The hydrodynamics and control are always included as an interface

with a dedicated library. SHARPy is a state-of-the-art software package for the computation

of offshore wind turbine aeroelasticity which is the only one that combines UVLM with

GEBT and the advantage of being open-source. In this dissertation, we also analyse the

capabilities of LES-AL theory to capture wind turbine dynamics. LES-AL theory is usually

employed for wind farm simulation and has been implemented, for example, in the following

packages

• WInc3D is a LES-AL wind farm simulator previously developed at Imperial College

London to study the flow structure and turbulence in wind farms [45]. It includes

several LES implicit and explicit models (such as the constant Smagorinsky explicit

LES) with a sixth-order finite difference discretisation. The AL model is an in-house

implementation based on rigid blades and tower.

• SOWFA (Simulator fOr Wind Farm Applications) combines OpenFOAM as the flow solver

and FAST as the actuator-line model. SOWFA includes the capabilities of both software

packages, being of particular interest, the applications for wind energy such as the

simulation of atmospheric boundary layer or the use of precursor simulations as input.

In this thesis, we compare the accuracy of BEM, UVLM and LES-AL with their imple-

mentations in OpenFAST, SHARPy and WInc3D, respectively.
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1.2 Motivation and research questions

We have identified some phenomena that are or might be of concern in wind energy

including unsteady and three-dimensional aerodynamics and anisotropic nonlinear structural

dynamics and that might require more complex numerical methods for their estimation. This

idea motivates the study of several operating conditions (yaw, turbulent and floating cases) of

wind turbines with several modelling fidelities (BEM, UVLM, LES-AL) to identify whether

these phenomena are relevant or negligible, to establish ranges of validity for these methods

and to improve them when possible. This analysis is based on the collaboration between

modelling fidelities due to the lack of access to experiments or higher-accuracy numerical

methods. This motivation leads to the following research questions (RQ):

Research Question 1: When are vortex methods sufficiently accurate for the

analysis of wind turbines? The main drawback of UVLM is the assumption of

negligible flow viscosity which prevents the modelling of viscous drag and flow sepa-

ration (Section 1.1.1) which are effects occurring in wind turbines. This reduces the

accuracy on the estimation of blade loads and flow velocities in the wake.

Research Question 2 : When are unsteady and three-dimensional aerodynamic

effects relevant in wind turbine aerodynamics and can vortex methods help

understanding them? Unsteady and three-dimensional aerodynamic effects come

from the operation of wind turbines in complex inflows (e.g., arising from uneven

terrain or the wake of upstream turbines), blade vibrations and rotor excursions asso-

ciated with tower flexibility and, more importantly, platform displacement. They are

inherently captured by UVLM but not by BEM.

Research Question 3: Can we define the accuracy of BEM computations in cases

of yaw using vortex methods? When a wind turbine operates in yaw, BEM hy-

potheses fail because there is not uniform induction in the radial and azimuthal direc-

tions. To include this effect in BEM, skewed-wake models have long been proposed

(Section 1.1.1). Vortex methods inherently account for unsteady and three-dimensional

aerodynamic effects that are characteristics in cases of yaw so they are a suitable tool

to evaluate the accuracy of the skewed-wake models for BEM.

Research Question 4: When are nonlinear structural deformations and platform

displacements relevant and how do they interact with aerodynamics? New

wind turbine designs with longer and more flexible blades are increasing the structural
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deformations. This has an effect on structural dynamics but also on aerodynamics due

to the change in aerodynamic surface orientation. Moreover, the platform movements

generates rotor excursions and might interact with the rotor structural dynamics and

aerodynamics causing unsteady effects that could lead to a load increase or a perfor-

mance decrease

Research Question 5: Is the combination of vortex methods with nonlinear beam

theory sufficiently efficient for design purposes? One of the main advantages of

BEM is the low computational cost that makes it more suitable to run the large number

of computations required in the design phase. The increase in accuracy expected from

the use of vortex methods and nonlinear beam theories cannot come at the expenses

of a privative computational cost. Another desirable characteristic of the numerical

implementation is being open-source to achieve an impact on industry and academia.

Research Question 6: Can the improved modelling features be used to improve

the controller design towards load reduction? The previous questions are ori-

ented towards increasing the knowledge about aeroelasticity of offshore wind turbines

and describe the accuracy and efficiency of numerical tools. Both the increased knowl-

edge and the availability of an accurate numerical tool for testing provide a suitable

environment to propose controllers with increased performance that could achieve loads

reduction or performance increase.

1.3 Dissertation outline

Chapter 2 describes the numerical methods employed during this thesis for the com-

putation of floating wind turbine aeroservoelasticity. First, nonlinear multibody structural

dynamics are described together with the Newmark-β and the generalized-α time integration

schemes. Then, BEM, UVLM and LES-AL are described as the three fidelities to capture

the aerodynamics. Then, the simple models chosen for floating dynamics are outlined. Fi-

nally, the integration of all the different physics fields is illustrated together with the wind

turbine controller. The advantages and drawbacks of each numerical method stems from

their theoretical basis, thus, this chapter is important to understand the suitability of each

method for each scenario.

Chapter 3 includes validation cases for the numerical implementations performed during

this thesis. First, multibody dynamics and time integration schemes. Second, unsteady
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and three dimensional capabilities of UVLM. Third, a mesh convergence study on a wind

turbine rotor is performed for UVLM together with the analysis of the different wake models.

Finally, floating dynamics and the control implementations are validated against literature

results. This chapter provides certainty about the numerical implementations used in the

following ones.

Chapter 4 describes our efforts to include a drag estimation in UVLM (RQ 1), to reduce

the computational cost of UVLM through a new discretisation of the wake convection equa-

tion (RQ 5) and the improvement of BEM to account for the interaction between spanwise

sections based on a UVLM analysis of this phenomenon (RQ 2). Then, the three aerody-

namic fidelities are benchmarked for traditional flows such as steady uniform, yawed (RQ

3) and turbulent inflows (RQ 2) to critically describe the suitability of each one of them in

each case including ranges of applicability.

Chapter 5 presents the effect of twist deformation on wind turbine aerodynamic load-

ing and the unsteady contribution of the platform pitch and roll motions (RQ 4) to the

aeroelastic behaviour of the blades. It is shown that accounting for the twist deformation

significantly modifies the sensitivity of the generated power to a change in blade pitch angle.

Thus, we redefine the baseline controller based on our UVLM and GEBT computations that

achieves a reduction of the fluctuations of platform displacements and rotor velocity with

respect to the baseline controller (RQ 6).

Chapter 6 presents a summary of this dissertation together with the main conclusions,

contributions and guidelines for future work.

1.4 Publications

Part of the work compiled in this dissertation has also been disseminated in the following

conference and journal papers:

• A. Muñoz-Simón, A. Wynn, and R. Palacios. “Unsteady and three-dimensional aero-

dynamic effects on wind turbine rotor loads”. AIAA Scitech 2020 Forum (Jan. 2020).

DOI:10.2514/6.2020-0991

• A. Muñoz-Simón, R. Palacios, and A. Wynn. “Benchmarking different fidelities in

wind turbine aerodynamics under yaw”. Journal of Physics: Conference Series 1618

(Sept. 2020), p.042017. DOI:10.1088/1742-6596/1618/4/042017
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• C. Wang, A. Muñoz-Simón, G. Deskos, S. Laizet, R. Palacios, F. Campagnolo, and

C.L. Bottasso. “Code-to-code-to-experiment validation of LES-ALM wind farm simu-

lators”. Journal of Physics: Conference Series 1618 (Sept. 2020), p.062041.

DOI:10.1088/1742-6596/1618/6/062041

• A. del Carre, A. Muñoz-Simón, N. Goizueta, and R. Palacios. “SHARPy: A dynamic

aeroelastic simulation toolbox for very flexible aircraft and wind turbines”. Journal of

Open Source Software 4.44 (Dec. 2019), p. 1885. DOI:10.21105/joss.01885

• A. Muñoz-Simón, R. Palacios and A. Wynn. “Some modelling improvements for pre-

diction of wind turbine rotor loads in turbulent wind”. Wind Energy, Wiley, 2021.

DOI:10.1002/we.2675
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Chapter 2

Numerical methods

Wind turbine blades with increasing length and flexibility are the current design trends

to increase the power generation and reduce the cost. First, the increasing blade length

and flexibility is leading to larger and possibly nonlinear deformations that are not captured

by linear structural theories, thus, we describe nonlinear Geometrically-Exact Beam Theory

(GEBT) that is adequate for the simulation of nonlinear deformation in anisotropic composite

materials. This theory needs to be generalised for multibody systems that use joints between

the different bodies (nacelle and blades) and to be equipped with time integration schemes

to capture the system dynamics. The GEBT expanded with multibody dynamics and time

integration schemes constitutes the structural dynamics of the system described in Section

2.1.

Moreover, increasing blade length and flexibility together with the operation of the wind

turbine in more complex inflows (i.e. from the wake of other turbines, platform motions or

complex terrain) is increasing the unsteady and three-dimensional aerodynamic effects. We

describe three different aerodynamic fidelities for the computation of the wind forces on the

wind turbine blades (Section 2.2). Blade-Element Momentum (BEM) theory is the indus-

try standard for aerodynamic computations and it is extremely efficient. However, it does

not intrinsically account for unsteady (sudden pitch changes, gusts and blade vibrations)

and three-dimensional (skewed-wake in yaw cases and quick changes of circulation along the

span) aerodynamic effects because it is based on steady theories and two-dimensional force

data. The Unsteady Vortex-Lattice Method (UVLM) inherently captures these effects at

the expense of increased computational cost with respect to BEM theory and assuming po-

tential inviscid flow. Finally, Large-Eddy Simulation with Actuator-Line (LES-AL) is gain-

ing relevance in the computation of wind-farm scale flows accounting for flow unsteadiness

69
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and three-dimensionality but relying on two-dimensional information for the computation of

forces at an extremely high cost.

Future wind turbines will be mounted on floating platforms in the sea as opposed to

current onshore wind turbines. This will significantly increase the rotor excursions and

requires more complex simulations described in Section 2.3. It includes a quasi-steady model

for the mooring dynamics that accounts for mooring forces as a function of the platform

displacements but disregards dynamic effects. The hydrostatics are described though a linear

method suitable for small displacements and rotations. The hydrodynamics are divided into

radiation and wave diffraction forces for which we also describe linear models suitable for

small platform displacements and small amplitude wakes. These models are completed

with a viscous drag estimation from the Morison’s equation. Morison’s equation can be

considered accurate for the structures employed in this dissertation, whose characteristic

length is smaller than the wave length [120, 165].

Finally, we describe the interactions between the structural dynamics, aerodynamics,

mooring dynamics and hydrodynamics and the control system in Section 2.4 because the

concurrent simulation of all of them is vital for the adequate prediction of wind turbine

aeroelasticity.

2.1 Structural dynamics

Originally, SHARPy included single-body geometrically nonlinear beam theory GEBT (Sec-

tion 2.1.1) with a Newmark-β time integration scheme (Section 2.1.2). Nevertheless, under-

standing the underlying theory was needed by the author for code debugging and developing

the author’s own contributions, thus, a brief theory description is presented next. More-

over, the code has been extended by the author with multibody dynamics (Section 2.1.3)

to account for the tower-rotor joint and the generalized-α time integration scheme (Section

2.1.2).

2.1.1 Nonlinear geometrically-exact beam theory

Each wind turbine blade and the tower are considered as beams and modelled by defin-

ing a reference line with rigid cross sections [74]. The reference line geometry along time is

tracked with a displacement-based approach using Cartesian coordinates and cross-sectional

rotations. GEBT [87] does not assume infinitesimal displacements and rotations as opposed

to linear theories of elasticity. This implies acknowledging the differences between the initial
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and the deformed reference lines, the effect it has on the system mass and stiffness distribu-

tion and the direction of application of aerodynamic forces. This constitutes a geometrically

nonlinear theory which uses linear stress-strain relationships of the material.

Three different frames of references (Figure 2.1) are defined to characterise the geometry

of the structure [80]. A non-inertial body-fixed frame of reference A (also referred to as the

global frame) is placed at the wind turbine base or the rotor hub position. The kinematics

of this frame of reference with respect to a global inertial frame of reference G corresponds

to the rigid body motions of the structure. The inertial G frame of reference is also used

as a reference for gravity loads. Finally, a local frame of reference B (also referred to as

the material frame) is defined at each position along the reference line. Reference line

displacements and rotations associated with the structure flexibility are tracked through

the motion of the B frame of reference with respect to the A frame of reference. In this

way, displacements and rotations associated to rigid-body motions and flexibility, which

are usually of different orders of magnitude, are tracked with different variables increasing

computational accuracy and speed [90].

Subindices are added to variables according to the frame of reference they refer to. Lower-

case variables track rigid-body motions: position rA, rotation ϕ, linear vA and angular

ωA velocities of the A frame of reference. Upper-case variables represent flexible beam

deformation: position RA, rotation Φ, linear VB and angular ΩB velocities of the B frames

of reference which are fixed at each position of the reference line. Lastly, the position of

points outside the reference line is given by b with respect to the B frame of reference. The

representation of large rotations (ϕ and Φ) in space requires further discussion which is

given next.

XA
vA,ωA,χ

ZA
YAXG

ZG
YG

XB

ZB
YB

VB,ΩB,Ψ

rG

RA

Figure 2.1: Scheme of the structural problem nomenclature.
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Parametrisation of rotations

To represent rotations, we follow an algebraic approach [85] based on parametrising the

invariants of rotation [84] with two different sets of parameters: one for the flexible (Φ)

and one for the rigid body (χ) rotations. Moreover, the mathematical tools required in the

following section to obtain the equations of motion are also discussed.

First, the rotations of the beam cross sections associated with the flexible deformation

of the beam (denoted by Φ in general) are parametrised with the cartesian rotation vector

(CRV, Ψ). This approach provides a minimum set of parameters and are easy to interpolate

in the finite-element model described next in Section 2.1.1. The coordinate transformation

matrix between the A and B frames of reference, CBA, can be computed from the CRV (Ψ)

CBA(Ψ) = I3×3 +
sin (‖Ψ‖)
‖Ψ‖ Ψ̃ +

1− cos (‖Ψ‖)
‖Ψ‖2

Ψ̃2 =
∞∑
k=0

1

k!
Ψ̃k, (2.1)

where the •̃ operator [87] is defined as

Ψ̃ =

 0 −Ψ3 Ψ2

Ψ3 0 −Ψ1

−Ψ2 Ψ1 0

 , (2.2)

where Ψi represents the ith component of the Ψ vector. Eventually, this operator will be

useful to express the cross product of two vectors a1 and a2 as a1 × a2 = ã1a2.

The angular velocities ΩB of the material frame of reference are computed as the time

derivative of the CRV Ψ:

ΩB = T (Ψ)Ψ̇ + CBA(Ψ)ωA. (2.3)

with the tangential operator T defined as

T (Ψ) = I3×3 +
cos (‖Ψ‖)− 1

‖Ψ‖2
Ψ̃ +

(
1− sin (‖Ψ‖)

‖Ψ‖

)
Ψ̃2

‖Ψ‖2
=
∞∑
k=0

(−1)k

(k + 1)!
Ψ̃k. (2.4)

Two expressions are given for the rotation matrix (Equation 2.1) and the tangential

operator (Equation 2.4) because the exact expression generates numerical problems for small

norms of the CRV and the series expression is easily truncated to a certain accuracy in

numerical methods.

Second, the rotation of the body-fixed frame of reference is parametrised with quater-
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nions (χ = [χ0 χTv ]T ) which require four parameters instead of the three employed by the

CRV but are more robust in the characterisation of large rotations because they have no

singularities. The rotation matrix between the frames of reference G and A is computed as:

CGA(χ) = (2χ2
0 − 1)I3×3 + 2(χvχ

>
v + χ0χ̃v). (2.5)

Moreover, the time evolution of the quaternion is described by the following equation [166]:

χ̇ =
1

2

[
0 −ω>A
ωA −ω̃A

]
χ. (2.6)

Continuous beam equations of motion

The action of a flexible system S between two time instants t1 and t2 is defined as:

S =

∫ t2

t1

∫ L

0

(L+W) ds dt, (2.7)

with s a variable along the beam of length L, L the Lagrangian per unit length of the system

equivalent to the difference between the kinetic T and potential U energies and the work W
of externally applied forces. The kinetic energy is

T =
1

2
[V >B Ω>B]Mcs[V

>
B Ω>B]> = [V >B Ω>B][P>B H>B ]>, (2.8)

with PB and HB the local transitional and angular momenta, respectively, and Mcs the

cross-sectional mass matrix. The mass matrix relates forces and accelerations and, under

the assumption of non-deformable cross sections (∂bB/∂t = 0), is obtained from rigid body

properties: the mass per unit length m, the cross-sectional inertia matrix J , and the distance

between the reference line and the centre of mass of the cross section bcg
B :

Mcs =

[
mI3×3 −mb̃cg

B

mb̃cg
B J

]
. (2.9)

The potential energy is

U =
1

2
[γ> κ>]Scs[γ

> κ>]> = [γ> κ>][F>B M>
B ]>, (2.10)
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with γ and κ the generalised strains and curvatures, respectively, FB andMB are the internal

forces and moments, respectively, and Scs the cross-sectional stiffness matrix. The stiffness

matrix relates strains and stresses in the cross section and is obtained from the constitutive

relations of the material. It depends on the elastic properties of the material such as elastic

modulus, shear modulus and Poisson coefficient and on the geometric properties of the

cross section such as area, shear area and moments of inertia. Anisotropic properties of

wind turbine blades are represented through the definition of the full mass and stiffness

matrices of each cross section. Strains γ and curvatures κ are obtained from the geometrical

description of the system:

γ(s, t) = CBA(s, t)R′A(s, t)− CBA(s, 0)R′A(s, 0), (2.11a)

κ(s, t) = KB(s, t)−KB(s, 0), (2.11b)

where •′ denotes the derivative with respect to the arc length s and K̃B is defined [167] as

K̃B = CBA
(
CAB

)′
. In particular, for the CRV parametrisation of the rotations,

KB(s, t) = T (Ψ(s, t))Ψ′(s, t)− T (Ψ(s, 0))Ψ′(s, 0). (2.12)

Finally, the work W performed by external forces µ is

W =

∫
Acs

X>GµG dσ, (2.13)

withXG the coordinates of the application point of the force µG, σ a differential area element

in the cross-sectional area Acs.

Equation (2.7) describes the action of the system. The evolution of the system follows

the minimum action path according Hamilton’s principle [80]. Thus, differentiating Equation

(2.7) with respect to the degrees of freedom of the system (RA, Φ, rG and ϕ) and integrating
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by parts, the weak formulation of the equations of motion is obtained [87, 80]∫ t2

t1

{∫
L

{
δR>AC

AB
(
ṖB + Ω̃BPB − fB − K̃BF − F ′B

)
+

δΦ>
(
ḢB + Ω̃BHB + ṼBPB − K̃BMB −M ′

B − R̃′AFB −mB

)
+ δΦ′>MB

}
ds+

δr>GC
GA
(
ṖR

A + ω̃APR
A −FA

)
+ δϕ>

(
ḢR

A + ω̃AHR
A −MR

A

)}
dt =∫

L

[
δR>AC

ABPB + δΦ>HB

]t2
t1

ds+
[
δr>GC

GAPR
A + δϕ>HR

A

]t2
t1
−
∫ t2

t1

[
δRAC

ABFB + δΦ>MB

]
L

dt,

(2.14)

where fB and mB are integration in the cross section area of the externally applied forces

(µB) and moments (bB × µB). Moreover, FA, MA, PR
A and HR

A are the integration of

the externally applied forces and moments and the local transitional and angular momenta,

respectively, and expressed in the A as required by the rigid-body equations. This system has

as many equations as generalised coordinates, thus, to satisfy the previous equations each

term accompanying the variation of one generalised coordinate (δRA, δΦ, δrG, δϕ) needs to

be independently zero (which follows from the fundamental lemma of calculus of variations)

leading to the associated strong formulation or Euler-Lagrange equations:

ṖB + Ω̃BPB = fB + K̃BF + F ′B, (2.15a)

ḢB + Ω̃BHB + ṼBPB = K̃BMB +M ′
B + R̃′AFB +mB, (2.15b)

ṖR

A + ω̃APR
A = FA, (2.15c)

ḢR

A + ω̃AHR
A =MR

A. (2.15d)

For Equation (2.14) to hold, the terms on the right hand side of the equation should also

vanish, which happens under compatible boundary and initial conditions to the problem.

Finally, the evolution of the quaternion with time in Equation (2.6) should be added to the

previous set of equations to capture effects that depend on the orientation global orientation

of the system such as gravity forces.

Discretised equations of motion

The Equations of motion (2.15) are solved through the finite-element method. In the

present work, the structure is divided into elements composed of three nodes (quadratic

elements). The spatial distribution of the unknown variables is approximated through the
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shape functions N which depend on the value of these variables at the nodes •:

RA(s) =
3∑
i=1

Ni(s)RA(si), (2.16a)

Ψ(s) =
3∑
i=1

Ni(s)Ψ(si). (2.16b)

For simplicity, the vector of generalised coordinates q is created joining RA and Ψ at each

one of the Nn nodes, the A frame of reference linear and angular velocities (β =
[
v>A ;ω>A

]>
)

and the quaternion χ:

q =
[
R
>
Ai

; Ψ
>
i ;v>A ;ω>A ;χ

]>
1 ≤ i ≤ Nn. (2.17)

Upon discretisation of Equation (2.15) we obtain:

M q̈ +Qg +Qs = Qe, (2.18)

where, M is the global mass matrix and Q• are the different forces that appear in the system

[80]: gyroscopic (Qg), stiffness (Qs) or externally applied (Qe). Only gyroscopic and external

effects influence the rigid body dynamics meanwhile the three of them influence the flexible

movements of the structure. The problem is closed with the time evolution Equation (2.6)

for the quaternion.

At each time step, Equation (2.18) is solved through a fixed-point iteration based on the

following analytical linearisation [80]:Mηη Mηβ 0

Mβη Mββ 0

0 0 I4x 4


︸ ︷︷ ︸

M


∆η̈

∆β̇

∆χ̇

+

C
t
ηη Ct

ηβ 0

Ct
βη Ct

ββ 0

0 Ct
χβ Ct

χχ


︸ ︷︷ ︸

Ct


∆η̇

∆β

∆χ

+

K
t
ηη 0 0

Kt
βη 0 0

0 0 0


︸ ︷︷ ︸

Kt


∆η

0

0

 =


rη

rβ

rχ

︸ ︷︷ ︸
r

,

(2.19)

where M are mass , Ct tangent damping and Kt tangent stiffness matrices, I is the identity

matrix and 0 represents a zero matrix of the appropriate size. The first subscript shows the

equations the matrix refer to and the second one the variables increments. The matrices and

vectors in the previous equations will be renamed M , Ct, Kt, ∆q and r for convencience:

M∆q̈ + Ct∆q̇ +Kt∆q = r. (2.20)
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The solution of Equation (2.20) at each time step needs to be accompanied by a time

marching scheme (Section 2.1.2).

2.1.2 Time integration

Time discretisation of the Equations of motion (2.20) requires the definition of rela-

tionships between generalised displacements ∆q, velocities ∆q̇ and accelerations ∆q̈. The

different possible relationships constitute the different time integration schemes, two of which

are widely applied to multibody systems [85] and presented next: the Newmark-β and the

generalized-α. In general, the requirements of time marching schemes is a balance between

accuracy, computational cost and stability. Ideally, the scheme should be unconditionally

stable with respect to the time step. Moreover, numerical methods usually require the intro-

duction of a certain degree of dissipation for the higher frequencies that, otherwise, would

require a prohibitively small time step. This dissipation should not affect the low frequencies

that are usually the most important ones for the system dynamics.

Newmark-beta

The Taylor expansion of the velocities and accelerations is:

qn+1 = qn + q̇n∆t+
1

2
q̈n∆t2 +O(∆t3), (2.21a)

q̇n+1 = q̇n + q̈n∆t+O(∆t3). (2.21b)

Based on these expansions, the Newmark-β approximation [85, 168] proposes a weighted

average between the beginning n and the end n+ 1 of the time step ∆t for the accelerations

that lead to:

qn+1 = qn + q̇n∆t+ (
1

2
− βT)q̈n∆t2 + βTq̈n+1∆t2 +O(∆t3), (2.22a)

q̇n+1 = q̇n + (1− γT)q̈n∆t+ γTq̈n+1∆t+O(∆t3), (2.22b)

where γT and βT are the model parameters.

Neglecting the higher order terms and rearranging the formulas, the increments in the

velocities and accelerations of the generalised coordinates are obtained from the increments
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in the generalised coordinates themselves:

∆q = qn+1 − qn = βT∆t2q̈n+1, (2.23a)

∆q̇n+1 = q̇n+1 − q̇n+1 = γT∆tq̈n+1 =
γT

βT∆t
∆qn+1. (2.23b)

Substituting these relations in Equation (2.20):(
1

βT∆t2
M +

γT

βT∆t
Ct +Kt

)k
︸ ︷︷ ︸

M∗

∆qk+1
n+1 = rkn+1. (2.24)

This equation should be solved iteratively (loop denoted by k) given the non-linearity of the

problem through a conventional predictor-corrector step. At the beginning of the time-step

iteration, the increments with respect to the previous time step in generalised coordinates

and velocities are estimated through Equation (2.22) assuming zero-acceleration at n + 1

(predictor step). These values are used to compute M∗ and r in Equation (2.24) which

provides the values of ∆qk+1
n+1 that are used to correct the previous guess for the generalised

coordinates and velocities (corrector step).

The βT and the γT values are parameters of the time stepping scheme which is stable

[85] for:

γT ≥
1

2
and βT ≥

1

4

(
γT +

1

2

)2

. (2.25)

Moreover, for γT = 1/2 and βT = 1/4, the scheme reaches maximum (second order) accuracy.

The numerical damping of high frequencies is introduced with the αN parameter around the

maximum-accuracy unconditionally-stable point defined before:

γT =
1

2
+ αN and βT =

1

4

(
γT +

1

2

)2

. (2.26)

Generalized-α

Several time integration schemes with high frequency dissipation (like the Newmark-β

algorithm) are unified in the generalized-α algorithm [108]. The relations between coordi-

nates, velocities and accelerations in Equation (2.22) still hold. Moreover, this algorithm

enforces the equilibrium Equation (2.20) not only at the beginning n and the end n + 1

of the discrete time steps but also at intermediate points tn+1−αF = (1 − αF )tn+1 + αF tn

computed as a weighted average between n and n+ 1 with the αF and αM parameters [108].
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The study of the algorithm accuracy through the amplification matrix and the truncation

error [108] concludes that the generalized-α method is second order accurate if

γT =
1

2
− αM + αF . (2.27)

Moreover, algorithms are unconditionally stable for linear systems if the spectral radius

ρr ≤ 1. In particular, the generalized-α is unconditionally stable if

αM ≤ αF ≤ 0.5 and βT ≥ 0.25 + 0.5 (αF − αM) . (2.28)

The dissipation at high frequencies is quantified by the algorithm spectral radius at high

frequencies ρ∞. This property is desirable and maximised if

βT =
1

4
(1− αM + αF )2 . (2.29)

It is also desirable to minimise the low-frequency dissipation which leads to the expression

of the αM and αF coefficients as a function of the spectral radius at high frequencies

αM =
2ρ∞ − 1

ρ∞ + 1
and αF =

ρ∞
ρ∞ + 1

. (2.30)

These expressions guarantee that the algorithm will be stable and second order accurate

for linear systems with adequate low and high frequency limits for the dissipation that is

easily controlled by the user through the ρ∞ parameter. In particular, ρ∞ = 1 provides no

dissipation and ρ∞ = 0 completely annihilates the oscillations.

The M∗ matrix used in Equation (2.24) is computed [111] as:

M∗ =
1− αM
βT∆t2

M +
γT (1− αF )

βT∆t
Ct + (1− αF )Kt. (2.31)

2.1.3 Multibody dynamics

Section 2.1.1 describes the dynamics of single bodies. Consider a multibody system

with nb bodies, the vector of generalised coordinates for the whole system is generated

by stacking the generalised coordinates of each body described by Equation (2.17): q =[
q>1 ; q>2 ; . . . ; q>k ; . . . ; q>nb

]>
with 1 ≤ k ≤ nb leading to nq generalised coordinates. Equiva-

lently, we define the system generalised velocities q̇. The action of a multibody system S
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includes the contribution of every body

S =

nb∑
i=0

Si, (2.32)

where Si is the action of each body described in Equation (2.7). The minimisation of the

system action (Hamilton’s principle) that lead to the Euler-Lagrange Equations (2.15) in

previous section becomes a minimisation problem under the constraints between the bodies

that are expressed by nc equations g{
min S(q, q̇, t),

subjected to g(q, q̇, t) = 0.
(2.33)

This Equation (2.33) is a system with more equations (nq+nc) than unknowns (nq). Minimi-

sation problems under constraints are usually solved with the Lagrange multipliers method

which introduces a series of unknowns (the Lagrange multipliers, λ) equal to the number of

constraints that are physically associated to the forces generated in the joints to satisfy the

constrain equations. The solving procedure is different for holonomic and non-holonomic

constraints and is detailed next.

Holonomic constraints

Holonomic constraints gh(q, t) = 0 can be stated as a function of the generalised coordi-

nates and, possibly, time. If they depend explicitly on time, they are called rheonomic and

are called scleronomic otherwise. If we apply variations to the constraint Equation (2.33) in

system:

δgh =

nq∑
i=0

∂gh

∂qi
δqi = 0, (2.34)

where qi are each one of the generalised coordinates of the system. Multiplying by the nc

Lagrange multipliers λ and rearranging the equation

nq∑
i=0

nc∑
j=0

kLj

∂gh

∂qi
λjδqi = 0, (2.35)
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where kLj is just a constant factor which relevance is shown below. Equation (2.35) can be

included into the variational description of the system action

δS =

∫ t2

t1

nq∑
i=0

(
δL

δqi
+

nc∑
j=0

kLjλj
∂gh

∂qi

)
δqi dt = 0, (2.36)

which suggest the definition of an augmented Lagrangian of the system

L∗(q, q̇, t,λ) = L − kLλ
>gh. (2.37)

The matrix containing the derivative of the constraints with the generalised coordinates is

Bh =
∂gh

∂q
. (2.38)

Which leads to the full definition of the problem{
M(q)q̈ +B>h (q, t)kLλ = Q (q, q̇, t) ,

kLgh (q, t) = 0,
(2.39)

where Q are the forces on the system generated by concatenating the forces of each body as

per Equation (2.18). In incremental form:[
M 0

0 0

]{
∆q̈

0

}
+

[
Ct 0

0 0

]{
∆q̇

0

}
+

[
Kt kLB

>
h

kLBh 0

]{
∆q

∆λ

}
=

{
r∗

−g∗h

}
+O(∆2) (2.40)

using the following definitions:

r∗ = Q−M q̈ −B>h kLλ, Ct = −∂Q
∂q̇

and Kt = −∂r
∂q

+
∂(M q̈)

∂q
− ∂(BT

h kLλ)

∂q
. (2.41)

These equations are the multibody equivalent of Equation (2.20) in single body system. The

terms in the system mass M , tangent damping Ct and tangent stiffness Kt matrices are

usually several orders of magnitude larger than those in the Bh matrix, thus, the kL scaling

parameter is used to scale the constraint equations such that the condition number of the

matrices is kept in reasonable bounds to enable numerical operations.
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Non-holonomic constraints

A non-holonomic constraint is any constraint that can be writen as gn(q̇, q, t) = 0. There

is a particular subset in this wide group of constraints that is of interest in this work which

are those that depend linearly on the generalised velocities:

gn(q̇, q, t) = Bn(q, t) · q̇ + g0 = 0. (2.42)

This type of non-holonomic constraint can be transformed through a procedure [169] similar

to the explained in previous section to the following set of equations{
M(q)q̈ +B>n (q̇, t)kLλ̇ = Q

kLgn(q, q̇, t) = 0
(2.43)

with the incremental equations:[
M 0

0 0

]{
∆q̈

0

}
+

[
Ct kLB

>
n

kLBn 0

]{
∆q̇

∆λ

}
+

[
Kt 0

0 0

]{
∆q

0

}
=

{
r∗

−g∗n

}
+O(∆2) (2.44)

using the following definitions:

r = Q−M q̈ −B>n kLλ̇, Ct = −∂Q
∂q̇

and Kt = −∂r
∂q
. (2.45)

The derivatives of the term Bn required are computed analytically. For each joint, the con-

straint equations gn, and, thus, the derivatives with the degrees of freedom Bn are different.

This description and the implementation in SHARPy is general in the sense that it allows

the addition of any new constraint. At the moment of writing, the author has implemented

spherical, hinge, rigid joint as well as the possibility to define linear and angular velocities

in nodes. Next, we present some examples that are useful for the computation of Chapters

3 and 5.

Nacelle-rotor joint

Figure 2.2 shows a scheme of a simplified joint between the nacelle (left hand side of the

image) and the rotor (right hand side the image) that is described in this section. The frame

of reference at the tower base position A0 captures the platform motions. On one side of the

joint there is a tower node •p and, on the other, a frame of reference A1 that rotates together



2.1. Structural dynamics 83

with the rotor. Actually, the present description allows the use of one frame of reference at

the root of each blade if needed. Moreover, Rp
A0

will be the position of the last node of the

tower.

XA1

YA1ZA1

XA0

YA0
ZA0

XG

YGZG

XB

YB

ZB

vA1
,ωA1

,χ1

vA0
,ωA0

,χ0

V p
B ,Ω

p
B,Ψ

p

Rp
A0

Figure 2.2: Scheme of the multibody nacelle-rotor joint.

First, equal linear velocity between the node •p and the frame of reference A1 should

be imposed. The velocity of the tower top node is a composition of the velocities of the

A0 frame of reference plus the velocity due to flexible deformation of the tower. The rotor

velocity is directly a generalised velocity of the system vA1

gn1 = CGA1 · vA1 − CGA0 ·
(
Ṙp
A0

+ vA0 + ωA0 ×Rp
A0

)
= 0. (2.46)

The easiest way to include these equations in Equation (2.44) is to put them in matrix

notation showing the function dependencies to facilitate the analytical computation of the

Bn matrices

gn1 =
[
CGA1(χ1) − CGA0(χ0) − CGA0(χ0) + CGA0(χ0)R̃p

A0

]
︸ ︷︷ ︸

Bn1


vA1

Ṙp
A0

vA0

ωA0

 = 0. (2.47)

Second, the relative angular velocities between the tower top and the rotor hub ω∗A1
is

composed of the rotor velocity ωr and the blade pitch velocity θ̇p which is assumed to be
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prescribed although not necessarily constant

gn2 = CBA0CA0GCGA1ωA1 − T Ψ̇− CBA0ωA0 − CBA1ω∗A1
= 0, (2.48)

In matrix form

gn2 =
[
CBA0(Ψ)CA0G(χ0)CGA1(χ1) − T (Ψ) − CBA0(Ψ)

]
︸ ︷︷ ︸

Bn2

[
ωA1 Ψ̇ ωA0

]>
− CBA1ω∗A1

= 0.

(2.49)

Double pendulum joints

A double pendulum system is used for validation purposes in Chapter 3. This system

(Figure 2.3) has two joints to be modelled.

XA0

ZA0

XA1

ZA1

XG

ZG

YB

ZB

vA1,ωA1,χ1

vA0,ωA0,χ0

Rp
A0
,V p

B ,Ω
p
B,Ψ

p

Figure 2.3: Scheme of the multibody double pendulum.

In the first joint, only the rotation around YG is allowed, thus, the linear velocities of the

A0 frame of reference should be zero

gn3 ≡ vA0 = 0. (2.50)

Moreover, the rotations around XA0 and ZA0 should also be zero to avoid the rotation of

beam 0 around itself and to keep it in the plane of Figure 2.3, respectively,

gn4 ≡ ZωA0 = 0, (2.51)

where Z is used to choose the two components of ωA0 that are zero, in this particular case:

Z =

[
1 0 0

0 0 1

]
. (2.52)

In the second joint, the two beams have equal linear velocities which is equivalent to
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Equation (2.46). Moreover, the relative rotation velocity of body 1 with respect to body

0 has to be zero in two components: the XA1 component to avoid rotation of the beam 1

around itself and the rotation around ZA1 so the beam stays in the plane of the image in

Figure 2.3

gn5 ≡ ZCBA0CA0GCGA1ωA1 − ZT Ψ̇− ZCBA0ωA0 = 0. (2.53)

This constraint is equivalent to the joint between the tower top and the rotor Equation (2.49)

with zero relative velocity (ω∗A1
= 0) between them. Thus, it constitutes a simpler case than

the nacelle-rotor joint suitable for validation purposes.

Coordinate changes between frames of reference

Each one of the nb bodies that compose a multibody system has an associated Ai frame

of reference in which the structural dynamic equations are solved. Sometimes it is convenient

to describe the whole system in the same frame of reference, for example, to interact with

other physical fields that do not have multibody models such as aerodynamics (Section 2.2)

or hydrodynamics (Section 2.3). This requires the change of coordinates between frames of

reference. In this work, we consider A0 as the main frame of reference and the rest Ai frames

of reference are considered secondary.

First, the position of a generic node in the A0 frame of reference RA0 is computed from

its position in the A1 frame of reference RA1 as

RA0 = CA0A1RA1 + CA0G (r1 − r0) , (2.54)

where C•• are rotation matrices and ri is the location of the origin of the ith frame of reference

with respect to G. The time derivative of the previous expression leads to the relationship

between node velocities:

ṘA0 = CA0A1

(
ṘA1 + vA1 + ωA1 ×RA1

)
− vA0 − ωA0 ×RA0 , (2.55)

where vAi and ωAi are the linear and angular velocities of the i-th A frame of reference.

Second, rotations are referred to a different frame of reference by successive rotation

matrix multiplication

CA0B (ΨA0) = CA0G (χA0)C
GA1 (χA1)C

A1B (ΨA1) . (2.56)
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The angular velocity of a cross section with respect to a generic A frame of reference is

ΩB = T (Ψ)Ψ̇ + CBA(Ψ)ωA. (2.3 revisited)

The angular velocity ΩB is expressed in its own B frame of reference (thus, the subindex

B), then, the value of ΩB is the same regardless of the A frame of reference

T (ΨA0)Ψ̇A0 + CBA(ΨA0)ωA0 = T (ΨA1)Ψ̇A1 + CBA(ΨA1)ωA1 , (2.57)

rearranging we obtain the expression for the change in frame of reference of the CRV time

derivative

Ψ̇A1 = T−1(ΨA1)
(
T (ΨA0)Ψ̇A0 + CBA(ΨA0)ωA0 − CBA(ΨA1)ωA1

)
. (2.58)

2.2 Aerodynamics

One of the main objectives of this dissertation is to analyse the unsteady and three-

dimensional effects on wind turbine aerodynamics. UVLM is a suitable theory to capture

these effects at a reasonable cost and is described in Section 2.2.1. Moreover, its perfor-

mance is compared against traditional BEM theory (Section 2.2.2) and LES-AL (Section

2.2.3), therefore, short summaries are included. These theories were already implemented

at the beginning of this dissertation but a description is included next because the basic

theory behind each method defines the physical phenomena that it is able to describe and

the possible drawbacks. Additionally, the author has also implemented a new discretisation

scheme for the wake convection equation (Section 4.1.2). In Chapter 4, we use the knowl-

edge on the phenomena that each method is able to describe, to evaluate the performance of

each method. Moreover, we propose improvements on their drawbacks. We use the imple-

mentations of BEM, UVLM and LES-AL in OpenFAST v2.1.0, SHARPy v1.2 and WInc3D,

respectively, which are further described in Section 1.1.6.

2.2.1 Unsteady Vortex-Lattice Method

The flow equations are solved under the assumptions of inviscid, incompressible and

irrotational flow in a fluid domain Ω ⊂ R3. In this case, the continuity equation is enough
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to define the velocity field

∇ · u = 0 on Ω, (2.59a)

(u− ξ̇) · n = 0 on ∂Ωs, (2.59b)

u = U∞ on ∂Ω∞. (2.59c)

where, ∂Ωs represent solid boundaries with ξ̇ velocity and n unit normal where a non-

penetrating condition applies. Infinitely far away from solid boundaries ||x|| → ∞, ∂Ω∞ is

the other boundary of the problem where the free-stream flow velocity U∞ is imposed. The

free-stream flow is assumed irrotational, thus, in absence of rotation forces, the velocity field

remains irrotational (Helmholtz’s third theorem) in Ω. However, rotation, i.e. vorticity ∇×
u, is generated in the boundary layer of solid surfaces [25], is shed into the flow at the trailing

edges of lifting surfaces by means of the Kutta condition, and is convected downstream giving

rise to a wake ∂Ωw. This wake constitutes a further boundary of the irrotational flow field in

Ω. The wake and the boundary layers on solid surfaces are not irrotational. Using Green’s

first identity [18], the velocity field in the domain can be computed from two fields on the

boundaries:

u = − 1

4π

∫
∂Ωs

σG∇
(

1

r

)
dσ +

1

4π

∫
∂Ω

µG∇
(
∂

∂n

(
1

r

))
dσ +U∞, (2.60)

where the source σG and doublet µG singularity fields are associated with the divergence and

the curl of the velocity field, respectively [18, 15], and dσ a differential element of area. The

divergence of the velocity field in Ω is zero according to Equation (2.59a), thus, the source

field should be zero in this region, however, it could be non-zero outside of the flow field (for

example, inside solid boundaries). Wind turbine blade thickness is considerably smaller than

blades chord and span. Thus, in the present work, wind turbine blades are assumed to have

zero thickness (strip theory) and the source field will be zero in the whole domain. Equation

(2.60) shows that the flow velocity u is composed of a velocity induced by the singularity

field û plus the free-stream velocity U∞:

u = û+U∞. (2.61)
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Numerical solution of the vortex problem

The singularity terms on the right-hand side of Equation (2.60) satisfy the continuity

Equation (2.59a) and the boundary condition in Equation (2.59c). Thus, the solution process

is reduced to find the value of the doublet field µG on the boundaries such that the non-

penetrating boundary condition in Equation (2.59b) is satisfied [18].

The numerical solution requires dividing the boundaries into polygonal regions (usually

with four sides) called panels (Figure 2.4). Within each panel the value of the doublet field

is constant. Moreover, a vortex along the perimeter ∂Σ of the panel can be defined such

that its strength Γ is related with the doublet value and the fluid vorticity enclosed

Γ = −µG =

∫
∂Σ

u · dl =

∫
Σ

∇× u dS. (2.62)

Each one of the sides of the vortex is a called a vortex segment. Vortices associated with the

solid surfaces and wakes are usually called “bound vortices” and “wake vortices”, respectively.

Wake vortex ring

Γ

Blade vortex ring
Blade panel

Blade surface

Γ

Figure 2.4: Aerodynamic discretisation nomenclature.

The velocity field induced by each vortex segment is computed through the Biot-Savart

law [25]

ûij =
Γj
4π

4∑
k=1

lk × rik
|rik|3

(2.63)

where i indexes the point where the velocity is being induced, j indexes the vortex ring and

k indexes the segments within the vortex ring. Γ is the strength of the vortex ring, lk is the

length of the segment, rik is the distance between the point and the segment centre and ûij is

the velocity induced by the jth vortex ring on the ith collocation point. The linear character
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of the flow Equations (2.59) allows the use of the superposition principle to compute the

velocity induced at a collocation point as the sum of the contribution of each bound and

wake vortex segment

ûi · ni =

Nb∑
j=1

AijΓj +
Nw∑
j=1

AwijΓwj , (2.64)

where Γ and Γw is the circulation at each bound or wake vortex ring, respectively, A and

Aw are the bound and wake vortices influence coefficient matrices, respectively.

The bound Γ and wake Γw circulation of each vortex ring can be gathered into the vectors

Γ and Γw, respectively, through the mapping

J(η, ζ) 7→ j, (2.65)

where η and ζ are the spanwise and streamwise coordinates and j is the jth position in the

Γ or Γw vectors (Figure 2.5). In general, the notation ΓwJ(η,ζ) is omitted in this work to

avoid excessive notation but it is recovered whenever it clarifies the explanation. Together

with Equations (2.61) and (2.64) the mapping J permits the expression of Equation (2.59b)

in matrix form

AΓ =
(
ξ̇ +U∞

)
· n−AwΓw. (2.66)

This condition is enforced at the centre of each bound vortex (collocation point) where the

solid velocity ξ̇ and the boundary normal vector n are known. This system of equation in-

cludes Nb unknowns (the circulation at bounder vortices) and equations (the non-penetrating

condition at collocation points).

In a steady-state case, the circulation associated to all the wake panels in a particular

row ηp is the same and equal to the value at the last bound panel ζ = M , this is,

ΓwJ(ηp,ζ) = ΓJ(ηp,M) for 1 < ζ ≤Mw. (2.67)

Applying this equation to every row ηp, the matrix As can be generated such that Γw = AsΓ.

Together with Equation (2.66) the steady-state solution can be obtained solving for Γ:

(A+AwAs) Γ =
(
ξ̇ +U∞

)
· n. (2.68)

For unsteady cases, an additional description of the wake convection is needed and included

next.
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Figure 2.5: Detail of the aerodynamic problem nomenclature.

Wake convection

The wake moves and changes shape with time, in particular, it convects together with

the flow such that a generic point x ∈ ∂Ωw initially located at x0 moves following the flow

velocity u as

x(t) = x0 +

∫ t

0

u(x(s), s) ds. (2.69)

A free wake model moves the wake with the flow velocity in Equation (2.61). However,

the flow velocity can also be approximated by the unperturbed upstream velocity U∞ such

that the wake shape is known a-priori (prescribed wake approximation) which significantly

reduces the computational cost at the expense of reduced accuracy on the axial induction

and aerodynamic forces computation in wind turbine rotors.

The relative wind velocity is the responsible for the convection of the circulation in the

wake and, for convenience, the wake discretisation is generated aligned with the relative wind

(Figure 2.5) such that the circulation convection only occurs along panels indexed with ζ,

that is, rows (indexed with η) in Figure 2.5 are independent. We describe the convection for

one particular row (constant ηp) by defining Γw,ζ = ΓwJ(ηp,ζ) the circulation of the ηp and

ζth panel of the wake. The first order upwind discretisation of Equation (2.69) along one

particular ηp row is
Γt+1

wζ − Γtwζ
∆t

+ ur
Γtwζ − Γtwζ−1

∆ζ
= 0, (2.70)
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with ∆ζ the vortex size in the ζ direction, ur the relative wind velocity and t the time

index. In most UVLM implementations [18], the wake discretisation is generated such that

ur∆t = ∆ζ, simplifying Equation (2.70) as

Γt+1
wζ = Γtwζ−1 for 1 < ζ ≤Mw, (2.71)

which represents a shift of circulation from one panel to the following one in the ζ direction

at every time step. This complies with Kelvin’s theorem that states that, in inviscid flow,

each vortex moves according to Equation (2.69) and keeps its strength. In particular, the

circulation of the first wake vortex Γw1 is obtained from the last bound vortex ζb = M in

the previous time step:

Γt+1
w1 = ΓtM , (2.72)

which represents the Kutta condition for vorticity shedding. By applying Equations (2.71)

and (2.72) to all the η rows and applying, again, the J mapping in Equation (2.65) to

organise Γ and Γw into Γ and Γw, respectively, the wake convection equation for the whole

system is [98]

Γn+1
w = CΓΓn + CΓwΓn

w, (2.73)

where the CΓ matrices are sparse matrices.

Forces

The momentum conservation equation reduces to the unsteady Bernoulli equation under

the previous hypothesis of inviscid, incompressible flow without relevant buoyancy forces [25]

ρ
∂φ

∂t
+ p+

1

2
ρ‖u‖2 = constant, (2.74)

where ρ is the flow velocity, φ is the potential field from which the velocity field can be

obtained (u = ∇φ) and p is the fluid pressure. This equation is used to compute the

unsteady term of the forces at the vortex collocation point

Fu = ρAp
∂φ

∂t
· n = ρApΓ̇n, (2.75)

where A is the panel surface. The steady term is more easily calculated through the Kutta-

Joukowsky theorem [18] that defines the force that a vortex filament with strength Γ and
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length l experiences in steady conditions applied at its centre:

Fq = ρΓu× l. (2.76)

Linearisation

UVLM can be analytically linearised around a steady-state reference to generate a very

efficient model with the only assumption of the wake geometry not changing with time [170]

∂•
∂ξw

= 0, (2.77)

where ξw describes the wake geometry through the vertex locations. The linearisation process

assumes small perturbations δ around the steady-state reference •0 for the bound circulation

Γ = Γ0 + δΓ but also for its time derivative Γ̇, the wake circulation Γw, the bound vortex

corners coordinates ξ and velocities ξ̇, the inflow velocities U∞ and the forces Fu and Fq.

Freestream flow velocities U∞ in Equation (2.66) are required at the collocation points

•c. Meanwhile, in Equation (2.76) they are required at segment mid points •s. In the linear

system, linear mappings are required to interpolate variables between these grid notable

points including, also, the vertices of the vortices •v (Figure 2.5). These mappings W are

indicated with the relevant subindices: •c, •s and •v. For example, the interpolation of a

variable defined at a vertex onto a collocation points is:

•c =Wcv •v . (2.78)

With this notation and showing the variable dependency, Equation (2.66) is rewritten:

A(ξn+1) +Aw(ξn+1, ξn+1
w )Γn+1

w +Wcv(ξn+1)
(
un+1 − ξ̇n+1

)
= 0 (2.79)

The perturbation around equilibrium is

∂A
∂ξ

Γn+1
0 +A0δΓ

n+1+
∂Aw

∂ξ
Γn+1

w0 +Aw0δΓ
n+1
w +

∂Wcv

∂ξ

(
ϑn+1

0 − ξ̇n+1
0

)
+Wcv0

(
δϑn+1

0 − δξ̇n+1
0

)
= 0.

(2.80)

For convenience in the next sections, we rewrite:

A0δΓ
n+1 +Aw0δΓ

n+1
w = Bva, (2.81)
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where va is a vector generated by staggering the inputs
[
δξ; δξ̇; δU∞

]
. The wake convection

Equation (2.73) is already linear, the perturbation of the unsteady forces in Equation (2.75)

is

δFu = −ρAp0
nδΓ̇− ρΓ̇0

∂Apn

∂ξ
δξ, (2.82)

and the quasisteady component in Equation (2.76) is

δFq = ρδΓu0 × l0 + ρΓ0δu× l0 + ρΓ0δu0 × δl, (2.83)

that should be linearly interpolated on the grid vertices:

F =WvcFu +WvsFq. (2.84)

Finally, the time derivative in Equation (2.82) is approximated with a second-order back-

wards scheme:

∆tΓ̇n+1 =
3

2
Γn+1 − 4

2
Γn +

1

2
Γn−1, (2.85)

where the factors are renamed as β1 = 3/2, β0 = −2 and β−1 = 1/2.

Substituting the perturbation of Equation (2.73) in (2.80) and the result into (2.85), the

system can be written in standard state-space form [170]:{
xn+1
a = Aax

n
a +Bav

n+1
a

yn+1
a = Cax

n
a +Dav

n
a

(2.86)

where the xa column vector gathers the system states
[
δΓn; δΓn

w; ∆tδΓ̇n; δΓn−1
]
, va the

inputs
[
δξ; δξ̇; δU∞

]
and y the forces δF . The use of ∆t in the state associated with δΓ̇

makes the Aa matrix independent of the time step. The term δΓn−1 in the state vector is

required only for the second-order approximation of the time derivative in Equation (2.85).

Moreover, the system has a delay (input defined at n+ 1) that can be removed through the

change of state definition x̂na = xna −Bav
n
a if required.

Reduced order models

We partially reproduce here the work in [171] to give the basis for a small contribution

we make in Section 4.1.2 and a numerical example we show in Section 4.2.3. Balanced

truncation is a method to find reduced order models of discrete linear time invariant (DLTI)
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systems such as Equation (2.86). It consists of eliminating from the state-space equations

those states that are less controllable and observable. The controllability and observability

properties are quantified through the controllability Wc and observability Wo Gramians,

respectively. In general, both Gramians are different such that the truncation criteria is not

obvious. However, for stable systems with controllable and observable states, there exists a

state transformation

xb = T−1xa, (2.87)

the so-called balanced transformation, such that the controllability and observability Grami-

ans are equal and equal to a positive-definite diagonal matrix.

The computation of the balancing transformation requires the solution of the Lyapunov

equations to obtain the system Gramians, the computation of their Cholesky factorisation

and their singular value decomposition (SVD). These operations are unaffordable for UVLM

Equations (2.86) because they require hundreds of thousands of states, inputs and outputs

for wind turbine simulation. Thus, a bespoke methodology [171] is described and employed

here exploiting the particular structure of the system (2.86) for the direct integration of

the controllability and observability Gramians in a limited-frequency range 0 ≤ k ≤ kc and

0 ≤ k ≤ ko, respectively:

Wc =
1

2kN

∫ kc

−kc
Hb(k)BaB

>
a H

∗
b (k) dk =

∫ kc

−kc
φc(k)φ∗c(k) dk, (2.88a)

Wo =
1

2kN

∫ ko

−ko
H∗b (k)C>a C

>
a Hb(k) dk =

∫ ko

−ko
φo(k)φ∗o(k) dk, (2.88b)

where kN = π/∆t is the reduced Nyquist frequency, φc and φo are transfer functions and

Hb(k) is defined as

Hb(k) =
(
ejk∆tINx − Aa

)−1
, (2.89)

with INx an identity matrix with number of rows and columns equal to the system states

Nx. We use the subindices •c,o to indicate that an expression applies to the controllability

and observability Gramians. The approximation of the integrals in Equation (2.88) by finite

sums and the symmetry of transfer functions φc,o(k) = φ∗c,o(−k) leads to the expression of

the Gramians as a function of the Zc,o factors:

Wc,o ≈ Zc,oZ
>
c,o. (2.90)
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The singular value decomposition of Z>o Zc = UΣV > provides the transformation T =

ZcV Σ−1/2 that balances the system (2.87).

The complex factor φc(z) = xa(z) requires to solve for the system states in the frequency

domain. This is easily obtained by applying the z-transform to the UVLM Equations (2.81),

(2.73) and (2.85):

AΓ +AwΓw = Bu, (2.91a)

zΓw = CΓΓ + CΓwΓw, (2.91b)

z∆Γ̇ =
1∑

i=−1

βiz
iΓ, (2.91c)

where • represents the z-transform and the frequency domain is obtained by setting z = ejk∆t.

According to Equations (2.71) and (2.72), the circulation at a wake panel can be computed

from the circulation at the trailing edge ζ time steps before, being ζ the panel number in

the chordwise direction. In the z-domain:

Γw = z−ζΓ, (2.92)

from which a closed form solution can be found for Equation (2.91a)

Γ =
[
A+AwCw(z)

]−1 Bua, (2.93)

where Cw(z) comes from applying (2.92) to every row and expressing it in matrix form.

2.2.2 Blade-Element Momentum

We have described in previous Section 2.2.1 the UVLM which is suitable for the computa-

tion of unsteady and three-dimensional aerodynamic effects. However, it does not account for

viscous effects that lead to flow separation and viscous drag in wind turbine aerodynamics.

BEM theory is widely used due to its accuracy under steady uniform inflow perpendicular

to the rotor plane and high computational efficiency. However, as we explain next, BEM is

based on steady theory and two-dimensional data. In Chapter 4, we benchmark these meth-

ods under uniform, yawed and turbulent inflows and we propose improvements for them.

BEM theory [4] connects momentum theory with rotor blade theory. Momentum theory

idealises the rotor as a porous disc such that the mass conservation along a streamtube that
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includes the rotor is

ρA∞U∞ = ρAdUd = ρAwUw, (2.94)

where U∞, Ud and Uw are the flow velocities infinitely upstream of the rotor, at the rotor plane

and in the wake, respectively. Similarly, A∞, Ad and Aw are the cross-sectional area of the

streamtube at these positions and ρ is the flow density. Traditionally, the axial induction a is

defined as Ud = U∞(1−a) and measures, in average terms, the velocity reduction experienced

by the wind upstream of a rotor. Moreover, the force on the porous disc can be related to

the momentum loss of the flow across the disc

(p+
d − p−d )Ad = (U∞ − Uw)ρAdU∞(1− a), (2.95)

where p+
d and p−d are the pressure immediately upstream and downstream the rotor. The

flow pressures and velocities are also related by the Bernoulli equation that should be applied

separately upstream and downstream the rotor

1

2
ρU2
∞ + p∞ =

1

2
ρU2

d + p+
d and

1

2
ρU2

w + p∞ =
1

2
ρU2

d + p−d , (2.96)

where p∞ is the flow pressure infinitely away from the rotor.

Under the assumption of independent radial sections of the rotor, the momentum theory

described above can be applied separately to each radial annulus such that it can be related

with the rotor blade theory. This theory defines the aerodynamic lift δL and drag δD forces

per unit length in each annulus via

δL cosφf + δD sinφf =
1

2
ρu2

rNblc(cL cosφf + cD sinφf )δr, (2.97)

where ur is the local relative flow velocity, cL and cD are two-dimensional aerodynamic force

coefficients typically obtained from tabulated values, r is the radial coordinate, φf the flow

angle at a section with chord c and Nbl is the number of rotor blades. The combination of the

two previous theories and the appropriate geometrical relationships between velocities give

rise to a system of equations that can be iteratively solved to obtain velocities and forces.

There are some further details needed to complete the method such as the angular mo-

mentum equation [4]. Moreover, important three-dimensional and unsteady effects are miss-

ing, forcing this method to use semi-empirical corrections [172] for rotation, tip and root

ends. There are two more semi-empirical corrections of relevance for this dissertation. First,

the Unsteady BEM [4] employs indicial responses from the theory of airfoils [48] to model
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unsteady effects. Second, the Pitt and Peters [4] model assumes sinusoidal variation of in-

duction along a revolution to account for the skewed-wake effect. Usually, these corrections

are adjusted for the most simple cases leading to miscalculations in the most complex ones

[61] such as unsteady inflow or large yaw angles.

2.2.3 Large-Eddy Simulation with Actuator-Line

LES-AL is currently gaining importance to capture wind farm aerodynamics. In Chapter

4, we benchmark it against UVLM and BEM to describe its accuracy in the computation of

aerodynamic loads on the wind turbine. We also use it to generate a realistic turbulent field

to estimate aerodynamic loads with BEM, UVLM and LES-AL in Section 4.1.4.

The LES-AL technique combines two theories. First, incompressible Navier-Stokes equa-

tions are solved subjected to the forces generated on the flow. Second, the forces on the

wind turbine are computed from an actuator line (AL) theory [173].

LES solves the incompressible flow equations for the largest scales of turbulence which

represent the largest energy content in the flow. Meanwhile, the small scales of turbulence are

modelled. This decomposition of every field ψ into a filtered component ψ̄ and a sub-filtered

component ψ′ is achieved by a low-pass filter. This procedure applied to the Navier-Stokes

equations (in Einstein notation) gives

∂ūi
∂xi

= 0, (2.98a)

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

− ∂τij
∂xj

, (2.98b)

with ν the kinematic viscosity and τij = uiuj − ūiūj the stress tensor which is modelled

through a turbulent viscosity νt approximation as

τij −
1

3
τkkδij = 2νtS̄ij = 2νt

1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
, (2.99)

with S̄ij the strain rate tensor and δij the Kronecker delta. The turbulent viscosity is

estimated with the subgrid-scale model of Smagorinsky based on a model constant, Cs, and

the grid characteristic size, ∆g , as

νt = (Cs∆g)
2
√

2S̄ijS̄ij. (2.100)
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AL theory is very similar to BEM theory explained in Section 2.2.2. Instead of establish-

ing a balance between induced velocities and forces on the wind turbine, the velocities are

known because they are sampled from the LES velocity field at blade locations. Thus, the

forces can be directly computed from Equation (2.97) at the discrete actuator line locations.

These forces are distributed onto the LES nodes according to a Gaussian kernel

χij(r) =
1

ε3gπ
3/2
e−(r/εg)2 , (2.101)

where χ is the fraction of the actuator line force at node i that is applied onto the LES

node j, r is the distance between these nodes and εg measures the strength of the smearing

and is computed as twice the characteristic grid size ∆g. Unlike BEM, LES-AL inherently

accounts for the azimuthal change in induction and, thus, it does not require tip and root

semi-empirical corrections for the aerodynamic forces.

During the course of the project that is summarised in this dissertation, we performed

a preliminary code-to-code-to-experiments validation of the wind farm aerodynamics under

large yaw angles. It was a collaborative work with the Technical University of Munich that

was published in [38].

2.3 Floating platform dynamics

Wind turbine platform is just an extension of the multibody system formed by tower

and rotor that was described in Section 2.1.3. This section aims to compute the forces

generated on the platform to completely simulate floating wind turbine behaviour. The

platform displacements (surge, sway and heave) and rotations (roll, pitch and yaw) are

illustrated in Figure 2.6 and grouped in a vector for simplicity p = [rG;ϕ]>. The resultant

forces and moments generated on the platform Fp referred to the tower base

Fp = Fm + Fs + Fr + Fa + Fw + Fv, (2.102)

with contributions from the mooring system Fm, buoyancy of the submerged part Fs, water

reaction to platform movements associated to radiation Fr, additional damping forces Fa,

waves’ excitation Fw and viscous drag Fv that are detailed later in this section. The de-

scription below is as general as possible following [174] but modelling details change between

different solutions. In the rest of this dissertation we use the NREL5 MW wind turbine with

the OC3 spar platform [133] because of the detailed definition [175] and data available for
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validation [176]. A spar platform consist of a submerged cylinder that provides the required

buoyancy to the system to keep the wind turbine afloat and a ballast to stabilise it (Fig-

ure 2.6). The implementation of floating dynamics on SHARPy is one of the author’s main

contributions. Thus, we choose the simplest platform model (Section 1.1.4) to facilitate

the validation. While the implementation is general, some limitations of the method are

described below because it might not be suitable for all platforms. For example, Morison’s

equation cannot be used to accurately simulate semi-submersible platforms (Section 1.1.4).

Surge (rGx)

Sway (rGy)

Heave (rGz)

Fp

Yaw (ϕz)

Roll (ϕx)

Pitch (ϕy)

Figure 2.6: Floating platform movements and forces nomenclature.

2.3.1 Mooring forces

Mooring lines are modelled as a set of cable structures without bending stiffness extending

from seabed anchors to the wind turbine attachment points (fairleads). Here we use a quasi-

steady approximation that neglects the added-mass, damping and drag effects that are only

captured by dynamic models based on finite element representations of the mooring lines.

Dynamic effects might be important in deep waters where mooring lines undergo large and

quick movements [135]. They are also typically important for the computation of loads on

the mooring lines but not so for the computation of blade loads [122].
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First, we consider the case of a free-hanging line, namely, the anchor is the only point of

contact between the seabed and the mooring line which deforms in the shape of a catenary

curve under the action of gravity. Using the equations to describe the catenary shape,

Hooke’s law for the elongation-force relationship and assuming quasi-steady approximation,

the horizontal xh and vertical xv coordinates of the fairlead location with respect to the

anchor position satisfy the following equations [133]:

xh =
Fh
µm

ln

Fv
Fh

+

√
1 +

(
Fv
Fh

)2
− ln

Fv − µmLm

Fh
+

√
1 +

(
Fv − µmLm

Fh

)2
+

FhFl
EmAm

,

(2.103a)

xv =
Fh
µm

√1 +

(
Fv
Fh

)2

−
√

1 +

(
Fv − µmLm

Fh

)2
+

1

EmAm

(
FvLm −

µmL
2
m

2

)
, (2.103b)

where Fv and Fh are, respectively, the vertical and horizontal forces at the fairlead, g is

gravity, ρw is the water density and the mooring line properties are: unstretched length Lm,

area Am, density ρm and Young modulus Em. For convenience, µm = gAm (ρm − ρw) is the

apparent weight per unit length of the mooring line in water.

In our simulations with SHARPy, the fairlead coordinates (xh and xv) are known from the

simulation and the force values (Fh and Fv) are sought. Thus, these equations are solved

through a Newton-Raphson iteration based on an analytical computation of the Jacobian.

The iteration is initialised with the value at the previous time step.

Second, we consider the possibility to have part of the mooring line laying on the seabed

LB which generates an additional horizontal force based on the seabed drag coefficient CB.

The rest of the line follows a catenary shape and contributes with its apparent weight to the

vertical force on the fairlead [133]

xh =LB +

(
Fh
µm

)
ln

Fv
Fh

+

√
1 +

(
Fv
Fh

)2
+

FhLm

EAm

+

CBµm

2EmAm

[
−L2

B + (LB −
Fh

CBµm

) max(LB −
Fh

CBµm

, 0)

]
,

(2.104a)

xv =
Fh
µm

√1 +

(
Fv
Fh

)2

− 1

+
F 2
v

2EmAmµm

, (2.104b)

LB = Lm − Fv/µm. (2.104c)
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The total mooring force acting on the platform fairleads Fmf is

Fmf = Fvnv + Fhnh, (2.105)

where nv and nh are the vertical and horizontal components of the anchor-fairlead direction.

The mooring forces applied at tower base Fm are computed from Fmf assuming rigid platform

structure.

Figure 2.7 shows the solution of the Equations (2.103) and (2.104) for the OC3 platform

mooring lines [175]. For xh < 858.5 m the behaviour is dominated by the apparent weight

of the mooring line that partially lies on the seabed, thus, the suspended length is smaller

than the unstretched length (902.2 m). For xh > 858.5 m the mooring line does not lie on

the seabed and there is a very quick increase of the tension with the distance dominated

by the mooring line stiffness. In the intermediate region, there is a balance between both

effects. Finally, the mooring system has a small resistance against yaw rotation which is
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Figure 2.7: Mooring line tension and suspended length as a function of the distance between
anchor and fairlead.

implemented as a torsion spring

Mz = cz · ϕz, (2.106)

being Mz the yaw moment generated by the mooring system, cz the spring proportional

constant and ϕz the rotation around the yaw axis.

2.3.2 Hydrostatics

Archimedes principle defines the buoyancy force and moments generated on the platform

due to the submerged part. In particular, only a vertical force appears on vertical spar

structures with value ρwgV0 being ρw the water density, g the gravity and V0 the initial

volume submerged. When the platform displaces or rotates, this force changes. Under a
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linear assumption, these changes in forces and moments Fs can be related to the (small)

displacements and rotations of the structure p through the buoyancy restoring matrix Cs:

Fs = Csp. (2.107)

The ith jth element of the Cs matrix is the ith force (or moment) per unit jth displacement (or

rotation). In a spar platform, due to symmetry, only the terms associated to heave-heave,

pitch-pitch and roll-roll in Cs are different from zero.

2.3.3 Potential hydrodynamics

Hydrodynamics study the forces on solid bodies due to the relative motion between solids

and fluids coming from platform motions, currents and waves. These effects interact nonlin-

early with the platform, however, in the present work we will consider a linear approximation

to these interactions which allows the analysis of each effect separately and their combination

through superposition principle. This assumption requires small platform displacements and

rotations, for example, in the realistic operation case in Section 5.3, the surge displacement

and the pitch rotation with respect to the equilibrium position are below 10 m and 8 deg

respectively. The heave and sway displacements and the yaw and roll rotations are below

2 m and 2 deg, respectively.

Panel methods (similar to the one described in Section 2.2.1) are suitable to compute the

forces on structures interacting with water in cases where inertia forces are significantly larger

than viscous forces, in particular, when no separation occurs in the flow. For the spar OC3

platform, separation occurs only for extreme sea states (long wave periods and high waves)

[175], which are not of interest in this work. Potential panel methods do not account for

viscous effects which are of relevance for the cases studied in this dissertation, thus, they are

computed through Morison’s equation in Section 2.3.4. Roughly, inviscid, incompressible and

irrotational flow assumptions lead to flow dynamics governed by the Laplace equation. On

the platform wetted surface and the seabed (for swallow water assumption), non-penetrating

boundary conditions are applied. The free surface also has boundary conditions

∂φw

∂z
− κφw = 0, (2.108)

with φw the water velocity potential, z the main direction perpendicular to the surface and κ

the wave number. This boundary condition transforms into Newman and Dirichlet boundary



2.3. Floating platform dynamics 103

conditions in the zero and infinite frequency limits. Once the water velocity field uw = ∇φw

is obtained, the forces on the solid surface are computed with Bernoulli equation. The

radiation and diffraction phenomena described next can be quantified with this theory.

Radiation

A solid body (in this case the wind turbine platform) oscillating in water radiates waves

and generates a pressure field in the surrounding water. The integration of this pressure field

on the solid boundary in contact with the water results in the reaction force generated on

the solid body Fr that is applied in this work to the tower base. Under the assumption of a

linear system, the forces on the platform can be computed from the platform velocities ṗ

Fr(t) =

∫ t

0

K(t− τ)ṗ(τ)dτ, (2.109)

where K(t) is the impulse response function [177]. In the particular case of the OC3 spar

platform, the non-zero terms of the impulse response function are shown in Figure 2.8.
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Figure 2.8: Radiation impulse response function. OC3 platform.

The radiation process is usually studied in the frequency domain as a function of the

platform oscillation frequency ωp. Computer codes like WAMIT (Section 1.1.6) numerically

solve Equation (2.108) upon discretisation of the platform shape to obtain K. In particular,

WAMIT provides the platform added-mass A(ωp) and damping B(ωp) matrices that are the

Fourier sine and cosine transformations of the impulse response function K, respectively

A(ωp) = A(∞)− 1

ωp

∫ ∞
0

K(t) sin(ωpt) dt, (2.110)
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and

B(ωp) =

∫ ∞
0

K(t) cos(ωpt) dt. (2.111)

Figure 2.9 shows the non-zero terms of the added-mass matrix of the OC3 platform

which present almost constant values across the frequencies. Similarly, the damping values

are shown in Figure 2.10 which decay very quickly for frequencies beyond 5 rad/s and show

a peak around 1 rad/s.
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Figure 2.9: Added-mass force excitation coefficients. OC3 platform.
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Figure 2.10: Damping force excitation coefficients. OC3 platform.

It is convenient for the numerical computation of forces on the platform to define a

transfer function Hr from the impulse response function K:

Hr(ωp) = B(ωp) + (A(∞)− A(ωp)) iωp. (2.112)

Our contribution to this method is to generate a rational function approximation (RFA)

of the solution of the potential flow Equation (2.108) at a discrete set of frequencies for the

OC3 platform that was computed in [175]. For numerical simulation, we generate a RFA
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for each term of the previous matrix for the range of frequencies of relevance. Then, we use

the transfer function Hr in Equation (2.112) to create MIMO state space representation that

uses platform velocities ṗ as input and generates forces Fp on the platform as the output.

Figure 2.11 shows the RFA of the non-zero terms in the Hr function for the particular

case of the OC3 platform. All terms in Hr tend to zero for ωp → 0 and ωp → ∞, thus,

the numerator of the RFA is forced to have zero independent term and the degree of the

denominator polynomial is forced to be higher than the numerator. All functions show a

maximum between 0 rad/s and 2 rad/s. The heave-heave RFA (Figure 2.11a) has degree-

one and degree-four polynomials in the numerator and denominator, respectively. Due to

symmetry, the RFA that relates a surge input with a surge output is the same as the sway-

sway RFA and has been fitted with a RFA with degree-one and degree-four polynomials

in the numerator and denominator, respectively. Similarly, the roll-roll term is equal to

the pitch-pitch (RFA numerator polynominal degree one and denominator of degree two),

and the surge-pitch is equal to the sway-roll (RFA numerator polynomial degree one and

denominator polynomial degree four). Moreover, the term pitch-surge term (and the roll-

sway) are opposite to surge-pitch (and sway-roll). Finally, the yaw-yaw term has been

approximated to zero. The maximum errors of the heave-heave (Figure 2.11a), surge-surge

(Figure 2.11b), pitch-pitch (Figure 2.11c) and sway-roll (Figure 2.11d) RFA are: 30%, 16%,

28% and 33%, respectively.

The damping force coefficients vanish at both ωp → 0 and ωp →∞ limits. However, the

added-mass coefficients do not. A(∞) can be seen as an added mass force to the platform

which are known to be problematic [125], thus, in our implementation in SHARPy, we prefer to

include this term as a constant lumped mass in our model and keep A(ωp) as a time-varying

exciting force1.

In some cases, additional damping is required to match real life experiments. It is in-

cluded, again, through a matrix of coefficients relating platform motion velocities to forces:

Fa = −Baṗ. (2.113)

In the OC3 platform, additional damping is advised [175] in surge-surge, sway-sway, heave-

heave and yaw-yaw terms.

1The A(∞) lumped mass should not be affected by gravity, thus, we include a force equivalent to −A(∞)g
as the structural library does not distinguishes between regular and added masses in the computation of
gravity forces.
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Figure 2.11: Radiation coefficient values and rational function approximation. OC3 platform.

Waves

Another type of loading that floating wind turbine platforms are subjected to comes

from the sea waves. Airy linear theory describes the sea elevation with sinusoidal waves of a

single amplitude aw and frequency ωw. The forces on the support platform are closely related

with the wave elevation through the diffraction problem which is a function of the platform

geometry, wave frequency and incidence angle (βw). The solution of Equation (2.108) in

this case generates the force excitation coefficients (Xw) that now relate the sea elevation

Re (awe
jωwt) at the platform location with the forces generated on it. For single frequency

wave, the force generated on the platform Fw is

Fw(t, βw) = Re
(
awe

jωtXw(ωw, βw)
)
. (2.114)

For negative ωw values, the force excitation coefficients are the complex conjugate •∗ of the

coefficient at positive ωw: Xw(−ωw, βw) = X∗w(ωw, βw). For the OC3 platform, the force

excitation coefficients for waves of different frequencies have been computed in [175, 176]

and are shown in Figure 2.12. Forces in surge, heave and pitch show a maximum around

0.5 rad/s and decay to zero at high frequencies. The rest of the coefficients are negligible.

Superposition can be used to account for sea states with multiple wave components with
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Figure 2.12: Wave force excitation coefficients. OC3 platform.

frequency domain representation J(ω):

Fw(t, βw) = F−1{W (ωw)J(ωw)Xw(ωw, βw)}, (2.115)

where F−1 is the inverse Fourier transformation and W (ωw) is a frequency-domain represen-

tation of a white noise that enables the generation of different non-deterministic realisations

of the wave forces with a spectra close to the original one. This white noise is generated

with the Box-Muller approach [178] as

W (ωw) =
√
−2 lnU1 (cos (2πU2) + j sin (2πU2)) , (2.116)

for ωw ≥ 0 and W (−ωw) = W ∗(ωw). U1 and U2 two independent random variables in [0, 1).

Sea states are usually represented by the 1-sided power spectral density S1 of the wave

elevation. For example, the JONSWAP [126] power spectral density is:

S1(ωw) =
1

2π

5

16
h2
sTp

(
ωwTp
2π

)−5

e
− 5

4

(
ωwTp
2π

)−4

(1− 0.287 ln γJ) γ

exp

−0.5

(
ωwTp
2π −1

σJ

)2


J , (2.117)
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for waves of characteristic height hs, peak period Tp and γJ(ωw, Tp, hs) the peak shape pa-

rameter and σJ(ωw, Tp) the scaling factor according to IEC 61400-3 [174]. The two-sided

power spectral density is S2(ωw) = 0.5S1(ωw) for positive frequencies and S2(−ωw) = S2(ωw)

for negative ones. The discrete frequency-domain representation of the sea state is computed

as:

J(ωw) =

√
NS2

∆t
, (2.118)

for a discrete time signal with N time steps of size ∆t.

The implementation of the white noise has been validated by computing 100 realisations

and comparing the average to the original JONSWAP spectrum (Equation (2.117)) in Figure

2.13 for Tp = 14.656 s and hs = 5.49 m showing good agreement and a significant deviation

of the realisations with respect to the average value.
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Figure 2.13: Different realisations, their average and analytical value of the JONSWAP
spectrum.

2.3.4 Viscous drag

A dimensional analysis [120] for the forces in the interaction between platform and water

shows that there are two dominant terms. The first term is associated to the inertia of

displaced fluid and dominant in bluff bodies: ρwcmV0u̇w, where ρw is the water density, cm

the apparent-mass force coefficient, V0 is the volume of displaced fluid, uw is the relative

solid-fluid velocity. The second term is related to drag forces and dominates for slender and

small (with respect to the wave amplitude) structures:

Fv =
1

2
ρwcdAsuw|uw|, (2.119)
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where Fv is the hydrodynamic force, cd the apparent-damping force coefficient, As is the solid

area perpendicular to uw. The addition of these two terms constitutes Morison’s equation.

Section 2.3.3 assumes potential hydrodynamics which accurately capture the terms asso-

ciated to inertia more accurately than Morison’s equation. However, viscous forces are not

accounted for and we consider that it is important to include them because they provide

significant damping to the system. In our SHARPy implementation, the OC3 spar platform

is modelled as a series of 2D independent cross sections that support a drag force computed

though Equation (2.119). cd is estimated as the drag coefficient of a infinite-span cylinder

at high enough Reynolds number to be considered independent from it. We do not account

for currents of wave velocities in the computation of the relative solid-fluid velocity.

2.4 Multiphysics integration

The concurrent simulation of the structural dynamics (Section 2.1), aerodynamics (Sec-

tion 2.2) and floating dynamics (Section 2.3) generates dependencies and interactions be-

tween the different dynamics. In this section, we first describe the dependencies between

the structural and the aerodynamic grid. Second, we present the exchange of information

between the different dynamics. And, finally, we detail the control system. The single-body

fluid-structure interaction (FSI) loop was already implemented in SHARPy at the beginning

of this dissertation. However, the multibody and control dynamics are two of the author’s

main contributions.

The backbone of the aeroelastic system is the beam structure defined in Section 2.1. At

the beginning of the simulation, the initial structural node coordinates together with a B

frame of reference are defined at each node (Figure 2.14a). The XB axis runs along the beam

reference line and, in the most simple case, the airfoil chord is defined along the YB direction

and discretised with aerodynamic nodes according to a user-defined distribution (Figure

2.14b). For more complex cases, such as cambered airfoils of swept blades, a curvilinear chord

in other directions than YB is permitted. Assuming rigid airfoil chords, the aerodynamic

grid is recomputed upon structural deformation (Figure 2.14d) and the velocities of the

aerodynamic nodes are computed from the velocity of the structural nodes.

The aerodynamic theory (Section 2.2) computes the forces that wind generates on blades.

In UVLM, in particular, these forces are computed at the aerodynamic grid vertices which

are mapped onto the beam nodes assuming, again, rigid cross sections as described in Figure

2.15.



110 Chapter 2. Numerical methods
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(b) Chordwise aerodynamic mesh discretisa-
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(c) Aerodynamic mesh. (d) Deformed aerodynamic mesh.

Figure 2.14: Scheme of the aeroelastic mesh.

Force mapping

Structural nodeAerodynamic grid vertice

Figure 2.15: Scheme of the aerodynamic forces (left) mapping on the structural nodes (right).

Figure 2.16 describes the information exchange between the different physics. It shows

the definition of the aerodynamic grid coordinates ξ and velocities ξ̇ from the structural node

coordinatesRA, orientation through the CRV Ψ and the linear VB and angular velocities ΩB.

It also shows the mapping of aerodynamic forces on structural nodes and the interpolation

of the wind velocity field on the aerodynamic grid to compute the aerodynamic forces.

The platform location rG, orientation ϕ and its linear vA and angular ωA velocities are

computed by the multibody structural solver. These variables are used by the hydrodynamic

module to compute the reaction forces Fp generated on the platform by the sea water and

the mooring lines. These forces are transferred to the structural multibody solver.

This bidirectional dependency of the structural, aerodynamic and aerodynamic modules
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Figure 2.16: Scheme of the interactions between different dynamics.

generates a fluid-structure interaction (FSI) that is strongly enforced in the computations

of the present work through a FSI iteration loop (indexed by f here). The error between

iterations is computed as

εFSI =
||qf+1 − qf ||
||q0|| , (2.120)

where q are the generalised coordinates computed by the structural solver as per Equation

(2.17). The FSI iteration is terminated when the error is below a certain threshold. We also

enforce the same criteria to the generalised velocities, such that, both need to be satisfied to

terminate the iteration.

The multibody module (Figure 2.16) solves the structural dynamics equations for each

body together with the constraints among them through Lagrange Multipliers (Section 2.1.3)

and it performs the time integration of the system dynamics (Section 2.1.2). The constraint

equations are algebraic equations and do not need to be time marched as opposed to the

differential equations arising from GEBT (Section 2.1.2). These systems are named Differ-
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ential algebraic equations and there is a wide theory on how to numerically compute their

solutions [114, 115]. In particular, Equations (2.24) and (2.31) in the Newmark-β and the

generalized-α time integration schemes, respectively, need to be modified. In the present

work, a simple approach has been proved to be sufficient to converge the results:[
M∗ γT

βT∆t
kLB

>

kLB 0

]{
∆q

∆λ

}
=

{
r∗

−g∗

}
(2.121)

Finally, the control module samples the rotor velocity ωr from the structural multibody

solver and computes a control command on the blade pitch θp. Next, we describe the control

system in more detail.

2.4.1 Wind turbine control

This section describes the basics of the wind turbine control for power production [4,

179]. Other functions of the control system (start-up, stops, . . . ) are not of relevance in the

present dissertation. Moreover, we focus on the aeroelasticity of the wind turbine, thus, we

use a simplified model to simulate the drivetrain (Figure 2.17). The rotor is connected to

the low speed shaft of a gearbox. Its high-speed shaft is connected to the generator which

provides electric power E to the grid. Moreover, the generator speed ωg is sampled, filtered

ω∗g and used as input to the collective (meaning that all blades operate at the same pitch

angle) blade pitch θp controller.

Rotor Gearbox Generator Grid

FilterController

Tr, ωr Tg, ωg E

ωgω∗g
θp

Figure 2.17: Scheme of the wind turbine drivetrain.

First, we describe the behaviour of the gearbox and the generator in a simplified manner

that is convenient for aeroelastic simulations. The gearbox is modelled as a one-degree-of-

freedom system in which the torque moment balance provides the rotor acceleration:

ω̇r =
Tr −GTg

ID

, (2.122)

where ωr is the rotation velocity of the rotor, Tr and Tg are the rotor and generator torque
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respectively, G is the gearbox ratio and ID is the rotation inertia of the drive train. Moreover,

the generator can operate in two simplified configurations. The first configuration consists

of operation at constant power E by means of prescribing the generator torque Tg equal to

Tg = E/ωg. (2.123)

The second configuration is operation at constant torque Tg. Operation at constant power

is usually employed in onshore wind turbines because it provides more stable power output.

However, in offshore wind turbines [180], the controller natural frequency should be reduced

below the wind turbine pitch natural frequency to avoid the negative damping of this motion.

This increases the rotation speed excursions from the nominal value which are reduced with

a constant torque operation of the generator.

Next, we describe the control of variable-speed and variable-pitch wind turbines. The

power generated by the wind turbine in quasi-steady operation and excluding losses is

E =
1

2
ρU3
∞πR

2CP , (2.124)

where ρ is the air density, U∞ is the unperturbed air speed, R is the rotor radius and CP

is the power coefficient. The power coefficient CP is the ratio between the power extracted

by the wind turbine E and the available power in the wind stream that passes through the

rotor sweep area 1
2
ρU3
∞πR

2. In steady-state, the power coefficient depends on the collective

blade pitch angle θp and the tip-speed ratio λt = (ωrR)/U∞, where ωr is the rotor velocity,

this is, CP (λt, θp).

At wind speeds below rated production, the objective of the control is to maximise the

power generation which is equivalent to maintaining the tip-speed ratio and the collective

pitch angle that maximise the power coefficient and are known from the rotor design. In

that situation, Equation (2.124), the tip-speed ratio definition and the gear-box ratio G lead

to the relation between the generator torque Tg and velocity ωg:

Tg =
ρπR5

2λ3
tmax

G3
ω2
g . (2.125)

In this operation regime, the collective blade pitch is set to the one that maximises the power

coefficient and the generator measures its speed and sets the generator torque according to

Equation (2.125). This configuration is able to track the optimum operation point through

the torque balance in Equation (2.122) and is easily understood with the next example.
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Consider the rotor operating at optimum power coefficient, that is, optimum collective blade

pitch and tip-speed ratio (known for each rotor), an increase in rotor speed will increase the

aerodynamic torque which will speed up the rotor and the generator. Under an increase of the

generator velocity, the generator will generate an opposing torque such that the equilibrium

is restored.

When the nominal power production has been reached, the controller objective changes to

maintain nominal power production constant. To do so, a control loop is established between

the generator velocity and the collective blade pitch. Next, we describe the behaviour of

the closed loop system in Figure 2.17. In this operational regime, the generator maintains

constant power and the aerodynamic torque depends on the collective pitch angle such that,

in first approximation, we can write:

Tg(Gωr) =
E0

Gωr

≈ E0

Gωr

− E0

Gω2
r

∆ωr, (2.126a)

Tr(θp) =
E(θp, ωr)

ωr

≈ E

ωr

+
1

ωr

∂E

∂θp
∆θp. (2.126b)

The controller is modelled with a PID equation with proportional KP , integral KI and

derivative KD gains between the generator velocity ωg and the collective blade pitch angle

θp:

∆θp = KPG∆ωr +KI

∫ t

0

G∆ωr dt+KDG∆ω̇r. (2.127)

Renaming θ̇ = ∆ωr a second order equation of motion is obtained:(
I +

1

ωr

(
−∂E
∂θp

)
GKD

)
θ̈ +

(
1

ωr

(
−∂E
∂θp

)
GKP −

E

ω2
r

)
θ̇ +

(
1

ωr

(
−∂E
∂θp

)
GKI

)
θ = 0.

(2.128)

This equation models the closed loop behaviour of the system in Figure 2.17 and it is useful

because it allows the choice of the PID constants by the definition of the desired natural

frequency and the damping ratio of the system [179]. The choice of PID constants is shown

in Section 5.1. All the simulations in this dissertation are in the above-rated regime so only

this control loop is currently implemented in SHARPy.

The input signal to the controller (generator velocity) can be filtered to eliminate high

frequency oscillations. In this work, a first order low-pass filter has been implemented

ω∗g
ωg

=
ωc

s+ ωc

, (2.129)
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where ω∗g is the filtered generator speed and ωc the corner frequency of the low pass filter

and s the Laplace variable.

In the floating environment, for the NREL 5 MW wind turbine on the OC3 platform,

it has been proposed in literature [175] to use a generator that provides constant torque

instead of constant power and to choose different PID constants to reduce the positive

damping associated to the tower fore-after movement. This model is used in Sections 3.4.3

and 5.3.

In the multibody implementation (Section 2.1.3) we have discussed that the nacelle-rotor

joint is characterised by a relative rotation between the tower top and the blade roots ω∗A1

(Equation (2.48)). This relative rotation velocity is composed by the rotor velocity ωr from

Equation (2.122) and the blade pitch velocity θ̇p from Equation (2.127).
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Chapter 3

Verification and validation

The aeroelastic theory presented in Sections 2.1.1 and 2.2.1 has been widely validated

in the past for aircraft applications. The structural model has good performance under

large deformations and rotations [98] and the estimation of aerodynamic forces generated in

these largely-deformed unsteady cases has been found to be accurate [86, 181]. The range

of application of linear and reduced order models has also been analysed in [182]. There are

specific publications about the SHARPy implementation [154, 155] including some cases of

wind turbine structural dynamics [101, 150] in previous versions of the code. The objective

of this chapter is to verify and validate the author’s new implementations and relevant phe-

nomena to wind turbine aeroelasticity. First, multibody dynamics are validated in a double

pendulum system, for which the performance of the time integration schemes (Newmark-β

and the generalized-α) is also analysed. Second, the accuracy of Unsteady Vortex-Lattice

Method (UVLM) to capture three-dimensional (sideslip and spanwise variations in inflow

velocity) and unsteady aerodynamic effects is evaluated on a flat plate example. Third, a

mesh convergence study is performed on the AVATAR 10 MW wind turbine rotor together

with a comparison of UVLM and Blade-Element Momentum (BEM) loads in steady uniform

wind. Finally, the floating dynamics, the influence of waves and the control implementation

are validated on the NREL 5 MW OC3 wind turbine.

3.1 Double planar pendulum

The double pendulum is a multibody system composed by two beams and two constraints

that has been widely studied in literature [85, 111]. In particular, the constraint between

the two beams imposes equal linear velocity at both sides of the joint and the relative

117
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rotation between them is only allowed around one predefined axis. This joint is numerically

equivalent to the rotor-nacelle joint in wind turbines. Thus, a double pendulum constitutes

a suitable verification case for the multibody dynamics described in Section 2.1.3. Moreover,

the numerical solution of the double pendulum is very challenging [85], thus, we use it to

study the performance of the time integration schemes described in Section 2.1.2.

3.1.1 Rigid multibody dynamics validation

The double pendulum described in [85] is employed to validate the present model. At

the beginning of the simulation, the first beam is located horizontally along the X axis and

the second one is vertically hanging along the negative Z axis (Figure 3.1). Both beams are

one-meter long, rigid, massless, each one has a mass of one kilogram attached at the end

point and they move in vacuum. Each beam is discretised with 10 elements. The reference

[85] employs a Newmark-β time integration scheme with a ∆t = 0.01 s time step.

XA0

ZA0

XA1

ZA1

XG

ϕ0

ZG

Figure 3.1: Initial position of the double pendulum.

The rotation angle of first node of the two beams (ϕ0 and ϕ1) is shown in Figure 3.2. The

literature results [85] require a dissipation coefficient of αN = 0.015 to stabilise the solution

that fails otherwise. Our solution is stable for much smaller dissipation coefficients αN =

10−4. Moreover, our solution requires a dissipation coefficient ten times larger αN = 0.15 to

match the literature results. In summary, we can reproduce the available results in literature

but our solution is less dissipative and, yet, more robust.
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Figure 3.2: Rigid double pendulum: multibody validation against Ref [85].

3.1.2 Performance of the time integration schemes

The double pendulum in Figure Figure 3.1 is considered again. Initially, the first beam

is located horizontally along the X axis and the second one is hanging vertically along the

negative Z axis, as in the previous Section 3.1.1. In this case, beams are considered flexible

with the properties described in Table 3.1, no masses are attached to the end position of the

beams and they also move in vacuum. Each beam is discretised with 20 elements. This case

is interesting to analyse the time integration schemes because numerical dissipation plays a

major role in the numerics due to the large and quick deformations of the beam.

Table 3.1: Flexible double pendulum structural properties.

Mass Mass Axial Shear Torsional Bending
per unit length inertia stiffness stiffness stiffness stiffness

1 [kg/m] 10−5 [kgm] 1000 [N] 105 [N] 105 [Nm2] 1 [Nm2]

Simulations with the Newmark-β and the generalized-α are run and compared to results

of a code based on intrinsic beam equations [183]. Two time steps ∆t = 10−4 s and ∆t =

10−5 s and several dissipation levels are computed: the Newmark-β computations include

dissipation parameters equal to αN ∈ [10−4, 10−3, 10−2, 10−1] and the generalized-α ones

include spectral radius at infinite equal to ρ∞ ∈ [1, 0.75, 0.5, 0.25, 0]. However, some of these

computations are not stable due to the extreme flexibility of the system, which has very low

natural frequencies that would require an extremely small time step to be captured. In the

case of the Newmark-β algorithm only the cases with the smallest time step ∆t = 10−5 s

converge. The generalized-α method converges for the smallest time step and for cases with

time step ∆t = 10−4 s when the spectral radius at infinity is ρ∞ ≤ 0.5. Very small time steps
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are required for convergence due to the very high flexibility of the beams (Table 3.1).

First, the results with the smallest time step ∆t = 10−5 s and smallest dissipation are

compared with the intrinsic beam results [183] in Figure 3.3. The smallest dissipation is

achieved for αN = 10−4 in the Newmark-β and ρ∞ = 0 in the generalized-α schemes. Figure

3.3a shows the global horizontal coordinate of the end of the first beam xG. Moreover,

Figures 3.3b and 3.3c show the power spectral density P of the bending displacement of the

tip of the first zA0 and second zA1 beams, respectively. Both time integration schemes and

the intrinsic beam results show similar time evolution of the coordinates and power spectral

density of the tip displacement in bending.
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Figure 3.3: Flexible double pendulum: time integration scheme comparison. Ref [183].

The simulations of the flexible double pendulum with the Newmark-β time integration

schemes at time step ∆t = 10−5 s and two damping levels αN = 10−4 (less dissipative) and

αN = 10−1 (more dissipative) are shown in Figure 3.4. The other dissipation levels (αN =

10−2, αN = 10−3) are not reported here for clarity but they provide intermediate results.

Figure 3.4a shows the global horizontal coordinate of the end position of the first beam

that has negligible difference for both dissipation levels. Figures 3.4b and 3.4c show that

low frequencies are not affected by the numerical dissipation which only shows effects above

102 Hz. Above that frequency, the energy content of the signal is six orders of magnitude

below the zero-frequency value and, thus, negligible.

The performance of the generalized-α time integration scheme is presented next and

shown in Figure 3.5. The two computations (∆t = 10−5 s and ∆t = 10−4 s) with the same

dissipation level ρ∞ = 0.50 show the same results for the time evolution of the position

of the end of the first beam (Figure 3.5a). The energy content (Figures 3.5b and 3.5b)
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Figure 3.4: Flexible double pendulum: Newmark-β damping analysis.

in these two cases shows differences in dissipation for frequencies over 102 Hz where the

amount of energy is negligible. The two simulations with the same time step ∆t = 10−5 s at

two dissipation levels ρ∞ = 1.00 (less dissipative) and ρ∞ = 0.50 (more dissipative), show

significant differences in the time evolution of the position (Figure 3.5a) associated with the

dissipation at all frequencies (Figures 3.5b and 3.5c).
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Figure 3.5: Flexible double pendulum: generalized-α analysis.

In summary, for stable results (small enough time step and dissipation) Newmark-β and

generalized-α provide similar results. The generalized-α scheme provides stable solutions for

larger time steps than the Newmark-β scheme when enough dissipation is applied. How-

ever, this dissipation affects all the frequency range, thus, modifying relevant physics of the

problem and should be evaluated on a specific case base. No significant advantages of the
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generalized-α were identified so the Newmark-β algorithm will be used in the rest of this

report, unless specified otherwise.

3.2 Flat plate

Unsteady and three-dimensional aerodynamic effects under arbitrary kinematics are the

main advantages of UVLM over other aerodynamic methods for wind turbines such as BEM.

This section aims to validate and study these effects on a rigid flat plate where analytical

solutions exist. First, we validate the unsteady capabilities of UVLM with the study of time-

varying gusts on a flat plate in Section 3.2.1. Then, we validate the suitability of UVLM

to compute three-dimensional effects with two examples, the study of sideslip flow (Section

3.2.2) and the study of inflow conditions that vary with the spanwise coordinate (Section

3.2.3) on a flat plate. This analysis was published by the authors in [184].

3.2.1 UVLM unsteady aerodynamics

Unsteadiness in wind turbine aerodynamics originates from a variety of sources such as

aeroelastic couplings (flutter), wind fluctuations, separation or transition. BEM methods

account for unsteadiness through dynamic wake models [12] and unsteady airfoil aerody-

namics [48] but vortex methods can inherently account for most of them. The study of wing

responses to incoming gusts [15] is the most common problem associated with unsteady

aerodynamics. A suitable scale to measure the unsteady effects is the convective time scale

which is generated using the airfoil semi-chord and the relative velocity

t∗ =
tur
c/2

, (3.1)

where t∗ is the non-dimensional time, t is time, ur is the relative velocity to the airfoil and

c is the airfoil chord.

Small perturbation theory [15] provides the analytical lift response of 2D airfoils to dif-

ferent types of gusts. A Küssner gust is a sudden step in the vertical component of the inflow

that is convected by the incoming wind velocity along the airfoil generating the following

time history of the lift coefficient

cL (t∗) = 2π∆α(0)ψK(t∗), (3.2)
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where cL is the lift coefficient, t∗ is the non-dimensional time, ∆α is the effective change

in angle of attack due to the gust and ψK is the Küssner function. On the other hand, a

Wagner gust is a sudden change in the incoming velocity that applies to the whole flow field

at the same time and generates the following lift response

cL (t∗) = 2π∆α3c/4φW(t∗), (3.3)

where cL is the lift coefficient, t∗ is the non-dimensional time, ∆α3c/4 is the change in angle

of attack measured at 3/4 of the chord and φW is the Wagner function.

The airfoil model based on thin-airfoil theory defines a linear dynamical system whose

frequency response can be computed and approximated with a state-space representation

of the system through rational function approximation. In this context, the Küssner and

Wagner functions are obtained from the system response to a step in the incoming velocity or

the airfoil pitch, respectively. In the present work, 10 states were enough to reach convergence

and thus, this approximation of the system was used.

For validation, both Küssner and Wagner gusts have been computed for a flat plate

(A = 107) at initially zero angle of attack and a gust step of 0.1 deg. The numerical solution

is accurate for both gusts with an error below 1% after the noise in the first time steps

(Figure 3.6). This noise is associated to the computation of the unsteady force Equation

(2.75) which requires the approximation of the time derivative of the circulation which is

infinite in the analytical solution.
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Figure 3.6: Küssner and Wagner gusts over an airfoil.

The computation of gusts on airfoils is the first step towards the characterisation of

unsteady effects on full rotor configurations. For that reason, it is interesting to compute

continuous varying velocity inflows. With that objective, a convolution integral can be

applied to generate an analytical solution for continuous turbulence [15] based on the previous
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solution for Küssner gusts in Equation (3.2)

cL (t∗) = 2πα(0)ψK(t∗) + 2π

∫ t∗

0+

dα

dτ
ψK(t∗ − τ) dτ, (3.4)

where cL is the lift coefficient, t∗ is the non-dimensional time, α is the angle of attack and

ψK is the Küssner function.

Continuous turbulence has been analysed on an airfoil (A = 107) whose characteristics

(twist βt = 4.52 deg, pitch θp = 0 deg, chord c = 3.41 m, blade velocity ωrr = 72.92 m/s and

inflow velocity U∞ = 10.5 m/s) have been obtained from the spanwise position r = 0.75R

of the AVATAR wind turbine that will be described in Section 3.3. The turbulence has

been introduced in the system though the incoming wind velocity U∞ which will generate a

change in the angle of attack according to the geometric relationships in Figure 3.7a, this is,

α + ∆α = arctan

(
U∞ + ∆U∞

ωrr

)
− βt − θp. (3.5)

The time series of the inflow velocity has been obtained from the hub height probe of a

turbulent field generated according to IEC-KAI level A with Turbsim [43]. The undisturbed

relative velocity between the incident wind and the airfoil ur is obtained as
√

(U∞)2 + (ωrr)
2.

Figure 3.7b shows good agreement between the numerical and the analytical solutions in

Equation (3.4). Moreover, the importance of unsteadiness is revealed through the compar-

ison between the previous solutions and the steady approximation. The unsteady signal is

smoother and slightly delayed with respect to the steady approximation. This effects high-

lights the importance of having an adequate unsteady model to capture the flow unsteadiness

in rotor aerodynamics. Cases of wind turbulence on full rotor configurations are studied in

Section 4.2.3.
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α + ∆α
φf + ∆φf

(a) Scheme.

0 20 40 60 80 100
t∗

0.40

0.45

0.50

0.55

c L

steady

UVLM

convolution

(b) Lift response.

Figure 3.7: Turbulent inflow on an airfoil.
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3.2.2 UVLM sideslip

Wind turbine blades are always subjected to spanwise flow due to the variations in loading

along the span. In the root region, the dominant source of spanwise flow is separation and

is usually corrected in BEM methods [185]. Spanwise flow is usually not addressed in the

tip region where the behaviour is dominated by the tip-loss correction [4]. In yawed rotors,

spanwise flow is of primary importance and cannot be tackled by the previous corrections,

thus, it has to be further corrected by engineering approximations [35, 33]. On the other

hand, vortex methods can inherently account for this effect. While this effect is very complex

in three-dimensional wind turbine configurations, a first investigation to the problem can be

done through flying wings under sideslip.

Lifting-line theory [18] provides the lift coefficient of elliptic wings under no sideslip for

a certain aspect ratio A. The extension of this theory for oblique wings [186] provides an

approximation of the lift on wings under oblique inflow. For validation, an elliptic wing is

used which has an analytical lift distribution given as

cLa
8 cos(Λ)α

=
√

1− y2
l

(
1− π

2Al

)
− sin Λ

Al

√
1− y2

l sin−1 yl+

sin Λ

Al

yl

(
ln 8Al

√
1− y2

l − (1− 2as)− csc Λ (ln |1 + sin Λ| − (1− sin Λ) ln | cos Λ|)
)
,

(3.6)

where cLa is the analytical lift coefficient, Λ is the sideslip, α in the angle of attack, yl is the

spanwise coordinate projected on the flow direction with Al associated aspect ratio and as

is the straight axis location as a function of the chord.

The numerical estimation of lift with respect to the lift at zero sideslip (cL/cL0) agrees

very well with the theoretical solution in Equation (3.6) in value and maximum position

(Figure 3.8a). A small difference occurs between both estimations towards the wing edges

(Figure 3.8b), which can be explained from the lack of chordwise information in the lifting

line model.

The effect of sideslip on wings is analysed through two variables: the maximum lift

coefficient cLmax with respect to the maximum lift coefficient at zero side slip cLmax0 and

its position along the span y(cLmax)/b where b is the semi-span. As pointed out by the

validation case, the maximum lift coefficient decreases and displaces out of the mid position

with the sideslip angle. Figure 3.9a shows how the decay of maximum lift coefficient is

stronger the larger the sideslip angle and the weak influence of the aspect ratio. Moreover,
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Figure 3.8: Sectional lift on an elliptic wing with oblique inflow (45 deg).

Figure 3.9b shows the location of the maximum lift coefficient along the span: the smaller

the aspect ratio the quicker the displacement of the maximum position with the sideslip

angle. It is important to capture this effect because it will appear in wind turbines under

yaw (Section 4.2.2). Furthermore, it will be complemented by the advancing/retreating and

the skewed-wake three-dimensional effects.
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Figure 3.9: Sideslip effect on sectional lift coefficient value and position.

3.2.3 UVLM spanwise variations

In cases of inflow turbulence there are spanwise variations of the incoming velocity that

generate, consequently, spanwise varying loads. This scenario is against the fundamental

hypothesis of BEM methods and is usually ignored. Vortex methods can inherently account

for this effect and are used here to systematically study these cases on airfoil geometries

before computing the full wind turbine configuration. In Section 4.2.3 this will be seen to

have a huge effect for uncorrelated inflows on large rotors.
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Lifting-line theory [25] provides, again, an analytical solution for the steady aerodynamics

of finite-span wings under arbitrary incoming flow based on a spanwise parametrisation

complying with the change of variable

y = b cos Θ, (3.7)

where b is the semi-span, y is the coordinate along the span and Θ is the parameter of

the change of variables. This solution consists of a Fourier series decomposition of the

circulation along the airfoil whose coefficients should be resolved to meet the equilibrium

between incoming and induced angles of attack

8b

cLα(Θ)c(Θ)

∞∑
n=1

An sin(nΘ) +
∞∑
n=1

nAn
sin(nΘ)

sin Θ
= α(Θ)− αL0(Θ), (3.8)

where b is the semi-span, cLα is the lift vs. angle of attack curve slope, c is the airfoil chord,

α is the angle of attack, αL0 is the angle of attack of zero lift and n and An are the index

and coefficients of the Fourier series expansion, respectively.

The validation has been done for a wing of A = 100, with λ = 10c in a gust amplitude

of 0.01 with respect to the average incoming velocity. In particular, 500 harmonics of the

lifting line have been computed through a least squares approximation of 1500 sampling

points. The difference between the UVLM and the lifting line solution (Figure 3.10b) is

below 10% , yet, much more accurate than the 2D approximation (Figure 3.10a).
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Figure 3.10: Sectional lift coefficient due to spanwise-varying incoming normal velocity on a
slender wing (A = 100).
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3.3 Aerodynamic model of the AVATAR 10 MW wind

turbine rotor

The AVATAR wind turbine is a benchmark case for large offshore wind turbines [187]

which will be extensively used in this dissertation. Its main characteristics are: 10 MW of

nominal power, R = 102.88 m rotor radius and 137.5 m hub height. In this dissertation no

tilt, prebending or presweep are applied according to the wind turbine description in [188]

and the structure is considered rigid. The operation point has been chosen at the end of the

optimal production region of the power curve, namely an incoming wind speed of 10.5 m/s,

a rotation velocity of 0.945 rad/s (tip-speed ratio equal to 9.26) and zero blade pitch.

For each airfoil, the out-of-plane Fout(r) and in-plane Fin(r) forces are computed from

the airfoil lift L(r) and drag D(r) and the flow angle φf(r) are

Fout = L cosφf +D sinφf, (3.9a)

Fin = L sinφf −D cosφf. (3.9b)

The non-dimensional out-of-plane cout(r) and in-plane cin(r) force coefficients are computed

by dividing Fout(r) and Fin(r), respectively, by 0.5ρ(U∞)2πR2 where ρ is the air density, U∞

is the average incoming wind velocity and R is the rotor radius. It is of interest to study the

variation of the force coefficients along the normalised spanwise direction r/R. Finally, the

integration of cout(r) and cin(r)rωr along the span provides rotor thrust CT and power CP

coefficients, that will be provided if required.

3.3.1 Steady UVLM mesh convergence

This section presents a mesh convergence study for the steady aerodynamics of the

AVATAR 10 MW wind turbine, thus, it aims to find an adequate mesh of the aerodynamic

surfaces and wakes yet computationally efficient. Steady-state UVLM solutions are directly

obtained as described in Section 2.2.1. The baseline case consists of blades discretised with

N = 28 spanwise panels, M = 64 chordwise panels and a wake able to account for the

vorticity shed during 7 rotor revolutions. The wake discretisations in the spanwise direction

matches the blade discretisation and it employs uniform size panels on the perpendicular

direction (Figures 2.4 and 2.5). Each one of these variables is modified independently while

the others are kept constant at the baseline value to evaluate the mesh convergence.

The wind turbine blade geometry and the flow circulation vary along the span. Thus,
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the more spanwise panels, the more accurate the discretisation of the geometry and flow

vorticity distribution. The baseline case has N = 28 spanwise panels following a half-sine

distribution

r = sin (Θ)R, (3.10)

with R the wind turbine radius and 0 ≤ Θ ≤ 90 deg a uniformly distributed set of N + 1

points. The case with 14 spanwise panels is obtained by removing every other point in the

previous distribution. The case with 56 spanwise nodes adds one extra point at the middle

of the original distribution.

The out-of-plane and the in-plane force coefficients along the span for the three spanwise

discretisations are shown in Figures 3.11a and Figures 3.11b, respectively. The mid-span

region (0.2R < r < 0.8R) has slow varying force coefficients and chords, thus, the sensitivity

of the loads to the panels in that area is small. Near the root (r < 0.2R) and the tip (r >

0.8R) the force coefficients and the chords show larger variations with the span coordinate,

hence the discretisation sensitivity. Table 3.2 shows the values of steady rotor thrust and

power coefficients and the errors with respect to the case with 56 spanwise panels. The

differences come from the root region where UVLM results are not trustworthy due to the

significant thickness of the blade and the expected flow separation. The results for the cases

of N = 28 and N = 56 spanwise panels are very close and, thus, a mesh with N = 28

spanwise panels is used in the rest of this work.
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Figure 3.11: Spanwise panels UVLM mesh convergence.

Wind turbine blades are curved along the camber line in the chordwise direction, thus,

enough straight panels should be used to accurately reproduce this geometry. These panels

are uniformly distributed along the camber line. The error in rotor thrust coefficient with

respect to the case with M = 128 chordwise panels reduces significantly after M = 64

chordwise panels (Figure 3.12a). Figure 3.12b shows the spanwise distribution of in-plane
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Table 3.2: Spanwise panels UVLM mesh convergence. Steady rotor thrust and power coef-
ficients.

spanwise panels CT CP ε(CT ) ε(CP )
14 0.676 0.540 -1.12 % -1.86 %
28 0.676 0.546 -1.19 % -0.69 %
56 0.684 0.550 0 % 0 %

force coefficient for the 4 discretisations. In this case, the mid-span region 0.2R < r < 0.8R

is the most influenced by the discretisation because it includes cambered airfoils with large

chords. Table 3.3 contains the numerical values of rotor thrust and power coefficients and

the errors with respect to the case with M = 128. In the rest of this work, a mesh with

M = 64 chordwise panels is used.
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Figure 3.12: Chordwise panels UVLM mesh convergence.

Table 3.3: Chordwise panels UVLM mesh convergence. Steady rotor thrust and power
coefficients.

chordwise panels CT CP ε(CT ) ε(CP )
16 0.640 0.523 -6.15 % -4.78 %
32 0.664 0.539 -2.58 % -1.97 %
64 0.676 0.546 -0.83 % -0.63 %
128 0.682 0.550 0 % 0 %

In vortex methods, the vorticity shed from solid surfaces to the wake should be accounted

for throughout the simulation to capture unsteady effects. However, the influence of vorticity

on solid surfaces decays with the inverse of the distance as per Equation (2.60). Thus, this

mesh convergence study aims to find the distance behind the wind turbine above which

the effects of the vorticity are negligible and can be ignored for computational efficiency.
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The wake length is measured as the time (measured in rotor revolutions) that it can store

information for. Figure 3.13a shows the changes in out-of-plane force coefficient for different

discretisations which are more significant in the region 0.1R < r < 0.9R where the wake

induction dominates the aerodynamic forces as opposed to the root and tip regions where

the force are dominated by the three-dimensional effects. Figure 3.13b and Table 3.4 include

the rotor thrust and power coefficients and the errors with respect to the case with a wake

able to store 20 rotor revolutions of information. In the rest of this report, the tip-speed ratio

does not change significantly and the rotor excursions in the cases of floating wind turbines

are small compared with the wake length, thus, the case of 7 rotor revolutions stored in the

wake (498112 wake panels) is considered to be converged in the rest of the report.
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Figure 3.13: Wake length UVLM mesh convergence.

Table 3.4: Wake length UVLM mesh convergence. Steady rotor thrust and power coefficients.

revolutions in wake CT CP ε(CT ) ε(CP )
1 0.725 0.617 7.67 % 13.80 %
3 0.686 0.560 1.83 % 3.28 %
5 0.678 0.550 0.728 % 1.30 %
10 0.675 0.544 0.16 % 0.28 %
20 0.673 0.543 0 % 0 %

In wind turbine rotors, the time step ∆t and the change in azimuthal angle ∆θ of the

rotor are related as

ωr∆t = ∆θ, (3.11)

with ωr the rotor angular velocity. We believe that the use of the step in azimuthal angle

∆θ is more intuitive and, thus, we use it from here on as the measure for the time step.

Moreover, the time step and the wake panel size are linked through the Courant number as
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we will explain in Section 4.1.2 and Equation (4.4). For now, it is enough with understanding

that the time step influences the static solution because it defines the wake discretisation.

This influence has been found to be small with a CT and CP difference of 0.2% and 0.3%

when the time step is changed from ∆θ = 8 deg (0.145 s) to ∆θ = 0.5 deg (0.009 s). The

usual time step employed in the rest of the report is below ∆θ = 8 deg so the influence of

the time step on the steady wake discretisation is not the limiting factor. In the rest of the

report, the time step will be adjusted to the dynamic physical phenomena that is studied.

3.3.2 UVLM wake modelling

There are two wake fidelities (prescribed and free) in UVLM to compute the wake con-

vection as described in Section 2.2.1. The prescribed approximation assumes that the wake

convects with the free-stream velocity. The free wake model includes the induced velocity

generated by the shed vorticity and is substantially more computationally expensive.

Figures 3.14a and 3.14b show the out-of-plane and in-plane force coefficients, respectively,

along the span for the AVATAR 10 MW wind turbine rotor in the steady-state case of inflow

wind perpendicular to the rotor. In this case, all the BEM hypothesis hold (steady-state,

low interaction between mid-span radial sections and use of Prandtl tip correction to model

spanwise interactions at the blade root and tip regions), thus, BEM results are of reference

[14] and two UVLM wake convection methods are compared against BEM. The estimation

of out-of-plane force coefficient in Figure 3.14a is very similar in all the cases which shows

the ability of all the solvers to capture the out-of-plane force coefficient. The reason is that,

the flow angle φf is below 20 deg in regular wind turbine operation in the outermost part of

the blade, thus, the out-of-plane coefficient is dominated by the blade lift as per Equation

(3.9a). Lift is accurately captured by UVLM and BEM. The out-of-plane force is the main

contributor to the system loads because it is around one order of magnitude larger than the

in-plane force coefficient. On the other hand, Figure 3.14b shows the in-plane force coefficient

which has significant contributions from both the blade lift and drag as per Equation (3.9b).

This is very accurately captured by BEM in the steady uniform wind as it is computed from

tabulated data but not by UVLM which estimates it from first principles (albeit without

viscosity). In particular, the free wake approximation of UVLM is better than the prescribed

wake approximation. The in-plane force coefficient is responsible for the power production

which cannot be accurately predicted by UVLM. A correction for this difference in in-plane

force coefficient is presented in Section 4.1.1.
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Figure 3.14: UVLM wake model and BEM comparison. Uniform inflow. AVATAR 10 MW.

3.4 NREL 5 MW OC3 floating wind turbine

The NREL 5 MW [179] wind turbine including offshore platforms [175] has long been used

by the wind energy research community. It has 5 MW nominal power and 63 m rotor radius.

Two operation points have been used: 11.4 m/s and 18 m/s incoming wind speed with 0 deg

and 15 deg pitch angle, respectively, with 12.1 rpm average rotation velocity in both cases.

In particular, the floating OC3 spar structure has been used that leads to a hub height of

87 m. This platform is composed by an underwater vertical cylinder of Ls = 120 m and

6.5 m diameter, an underwater ballast and a base structure above sea water level (SWL) of

Lb = 10 m on top of which the wind turbine is placed. The onshore and floating NREL 5 MW

turbines have the same nacelle and rotor, however, the tower of the offshore wind turbine is

lighter and more flexible [175]. We use this wind turbine for the validation of the floating

forces due to the valuable open data available [176, 189]. There is some scatter between the

different literature results, which is detailed in [176] and summarised next. Each contributor

to the literature results detailed their modelling capabilities but some uncertainty remains

about which of those capabilities were actually used in the analysis. As a general summary,

all the contributors have BEM and Generalized Dynamic Wakes aerodynamic models and

most of them include dynamic stall corrections. For the waves they all implement Airy

theory and Morison’s equation. Most of them have interfaces with external tools and some

of them also include potential flow theory with radiation and diffraction. All of them used

the same dynamic library as control module. In the structural models there are some that use

modal, multibody or finite-element approximation. For the mooring dynamics, they show

implementations with force-displacement relationships, quasi-steady catenary equations or
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finite element methods. The objective of this section is not analysing those discrepancies

but comparing our model to theirs.

The data about the spar structure is limited to the location of the centre of mass below

sea water level zg, the total mass of the platform Mp, the moments of inertia at the centre

of gravity Iy = Iz and Ix. We have generated two spar models that met the previous

specifications. The first spar model (concentrated-spar) consists of the wind turbine base

and a lumped mass (Figure 3.15a). The mass per unit length of the base has been assumed

equal to the tower mT and its stiffness has been set to 100 times that of the tower to model

a rigid body. The lumped mass ML is computed to keep the total mass of the platform

ML = Mp −mTLb. (3.12)

The lumped mass location is such that the global centre of mass of the platform is kept to

the provided zg value

zLML +mTL
2
b/2 = Mpzg. (3.13)

Finally, the moment of inertia around the ILy axis with respect to the sea water level is

ILy = Iy +MPz
2
g −

1

3
mTL

3
b . (3.14)
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Figure 3.15: Floating platform models schemes.

The second model is referred to as full-spar and consist of two continuous uniform beams

for the spar and the base, respectively and a ballast (Figure 3.15b). The spar stiffness is set

as 100 times the tower stiffness and the base stiffness is linearly defined between the spar

and the tower. The spar and the base have constant mass per unit length ms, the ballast

has mass Mw and is located zw meters below sea water level. These properties are obtained
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from the following system of equations
Mp = Mw +ms (Lb + Ls) ,

zgMp =
1

2
ms

(
L2

s − L2
b

)
+Mwzw,

Iy +Mpz
2
g = Mwz

2
w +

1

3
ms

(
L3

s − L3
b

)
,

(3.15)

which guarantees that the global properties of the platform (mass, centre of mass and mo-

ments of inertia) are kept to the reported values.

In both cases, the symmetry of the system leads to the same moment of inertia in the y

and x axis and the moment of inertia with respect to the z axis can be computed from the

perpendicular axis theorem. In Section 3.4.1, some free decay simulations have been used

to validate the floating dynamics as well as the mass distribution of the NREL 5 MW OC3

model set up in SHARPy. Results are shown for the platform displacements (surge rGx, sway

rGy and heave rGz), rotations (roll ϕx, pitch ϕy and yaw ϕz), tower-top fore-aft movement

xfa, generator power E and rotor velocity ωr. In some cases, the power spectral density P

of the variables is used.

3.4.1 Floating dynamics: free decay tests

In each one of the simulations one of the platform degrees of freedom is displaced from the

equilibrium position and the system is let to evolve. These cases do not include aerodynamics

and assume a rigid structure. The literature results [176] (“Ref” in the next figures) include

10 different simulations (as explained in the introduction of this Section 3.4). Few results

are considered not accurate in the original reference [176] because they lay clearly away from

the majority of the results. We have removed those from the next plots to make a more clear

explanation. From the heave free decay test (Figure 3.16), two literature results have been

removed because one of them does not accurately capture the coupled motions and the other

one has too much damping. In the case of the surge free decay test (Figure 3.17), one of the

literature results shows less damping than the rest due to the lack of additional damping

(Equation (2.113)) and has been removed. In the case of pitch free decay test (Figure 3.19),

two literature results have been removed because one has too little damping and another

one predicts the wrong coupling with the heave motion.

Consider an initial displacement along the heave direction and the following free decay

movement of the platform (Figure 3.16). Our estimation of the time evolution of heave dis-
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placement (Figure 3.16a) is in good agreement with the literature results. Despite the initial

displacement of the platform along the heave direction, movements with smaller amplitudes

appear on other directions. For example, the surge movement estimation (Figure 3.16b)

the displacements are smaller than in the heave motion and, thus, numerical and modelling

errors are more evident which makes literature results more scattered. In any case, our solu-

tion is in good agreement with the majority of them. Finally, there are movements, such as

roll (Figure 3.16c), which are not excited at all in our case and most of the literature results

but there is one of the literature results that reports small, yet non zero, values.
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Figure 3.16: Platform movements in the heave free decay test. Comparison with Ref [176].

Our results for for surge decay (Figure 3.17a) the two spar models (concentrated and full

spar) are identical and in agreement with the rest of the results obtained from the literature.

This proves the possibility to simulate full spar cases, including, for example, spar flexibility.

However, it comes to a cost of three times more computational resources due to the increased

number of nodes and the poor conditioning of the structural stiffness matrix. Flexible spar

structures are not considered here and, thus, the computational cost is not justified so the

concentrated spar model is used from here on. In the pitch motion (Figure 3.17b), literature

results are divided intro two groups and our results agree with the largest group in number.

Finally, there is one outlier in the literature results in the estimation of the coupled sway

motion (Figure 3.17c).

The case of free decay after an initial yaw perturbation (Figure 3.18) shows faster dynam-

ics than the previous examples and it is still in good agreement with most of the literature

results (Figure 3.18a) for the yaw motion. The surge displacement is very small compared to

the system characteristic lengths and, thus, the numerical results show more scatter because

small modelling or numerical errors are more relevant to the mean value (Figure 3.18b). Our
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Figure 3.17: Platform movements in the surge free decay test. Comparison with Ref [176].

results fall within the scatter of the literature results and agree with the majority of them.

However, there is a small non-zero roll rotation (Figure 3.18c) which is not predicted by any

of the literature results and is attributed to small asymmetries in our system.
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Figure 3.18: Platform movements in the yaw free decay test. Comparison with Ref [176].

Our results are also in good agreement with most of the literature results for the free

decay case after an initial pitch perturbation (Figure 3.19). Small differences appear in the

yaw variable (Figure 3.19c) that is not excited in our simulations but shows a very small

decaying movement in the literature results. We do not consider this is a concern because the

values are very small and decaying to zero in short periods of time. A time step convergence

study has been performed in this case that shows that a time step equivalent to 20 deg rotor

azimuth is enough to achieve converged results due to the slow dynamics of the floating

platform movements.

Consistent results have been obtained for the free decay tests associated with the pertur-
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Figure 3.19: Platform movements in the pitch free decay test and time step convergence.
Comparison with Ref [176].

bation of other degrees of freedom (sway and roll) and for the rest of variables but they are

now shown for brevity.

3.4.2 Floating dynamics: waves

In this section, some examples of the dynamics of the NREL 5 MW OC3 platform under

the effect of waves have been simulated. These cases do not include aerodynamics but they

include structural flexibility. In particular, the results of the literature assume flexible tower

and rigid blades. Our results include completely rigid cases and cases with flexible tower

and blades.

The case of unidirectional regular waves with period 10 s, wave height 6 m and zero

incidence βw = 0 deg is shown in Figure 3.20. Our estimation of heave (Figure 3.20a) is in

good agreement with the literature results in amplitude and period but it shows a very small

constant positive value which comes from small modelling differences such as the system

mass. Surge (Figure 3.20b) is the movement with the largest amplitude and our results fall

within the scatter of the literature. In the pitch movement (not shown) our estimation of

the movement amplitude is slightly larger than the literature results. Finally, the tower-top

fore-aft displacement (Figure 3.20c) is twice as large in our case than in the literature results.

We consider that the wave model we have implemented is introducing excessive energy in

the system. However, this is not considered of concern in this validation case because the

system behaves as expected. The platform displacements and rotations are the same for the

rigid and the flexible models.

We generate a superposition of unidirectional (incidence βw = 0 deg) waves according to
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Figure 3.20: Platform movements and tower-top displacement under regular waves. Com-
parison with Ref [176].

the JONSWAP spectra described by Equation (2.117) with Tp = 10 s and hs = 6 m. The

wave height spectrum is shown in Figure 3.21a with the maximum peak around fw = 0.1 Hz.

Moreover, a detailed region of the spectrum is highlighted in Figure 3.21b because it shows

some noise that may be a numerical artefact but that also has an impact on the system

dynamics as shown in the following analysis. We do not have enough resolution to further

analyse this noise, but we will highlight the two small frequency peaks (0.15 Hz and 0.17 Hz)

in the next figures. These frequencies have been collected together with the system natural

frequencies in Table 3.5 to facilitate the following analysis. In the following figures, relevant

frequencies are marked with symbols that are also shown in Table 3.5. These cases have

been run for 600 s starting from steady state scenario of calm sea and constant wind.
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Figure 3.21: Wave height spectrum.

Figures 3.22a and 3.22b show the power spectral density of the surge and the tower-top

fore-aft displacements, respectively, which are in good agreement with the literature. In par-
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Table 3.5: NREL 5 MW OC3 natural frequencies and waves spectrum peaks for the JON-
SWAP waves validation case.

Platform
Movement Surge and sway Heave Roll and pitch Yaw

Natural frequency [Hz] 0.008� 0.032 0.034× 0.12

Tower
Movement Side-to-side bending Fore-aft bending

Natural frequency [Hz] 0.46 0.47�

Blades
Movement Collective flapwise bending Edgewise bending

Natural frequency [Hz] 0.71 1.08

Rotor
Movement rotation frequency (1P) Blade-passing (3P)

Natural frequency [Hz] 0.2F 0.6+

Waves
Main peak Minor peaks

Natural frequency [Hz] 0.1• 0.15H, 0.17J

Symbols are used in figures to mark frequencies

ticular, the rigid and the flexible wind turbine models provide very close predictions of the

platform degrees of freedom: surge (Figure 3.22a), heave (Figure 3.23a) and pitch (Figure

3.24a). The tower top fore-aft displacement (Figure 3.22b) is also in good agreement with

the literature results. Major peaks in the spectrum are shown at the platform pitch natural

frequency (0.034×Hz) and the waves main spectral peak (0.1•Hz). There is another impor-

tant peak at twice the platform pitch natural frequency (0.07 Hz). Other small ones coming

from the waves spectrum (0.15HHz and 0.17JHz) which do not appear in the literature re-

sults because their wave inflow spectrum was smoother. Finally, in the tower-top fore-aft

displacement the peak of the tower fore-aft natural frequency (0.47�Hz) shows significant

resonance (Figure 3.22b). There is not a relevant peak in the surge spectrum (Figure 3.22a)

at the surge natural frequency (0.008�Hz) because the simulations are not long enough to

accurately capture this small frequency movement.

The influence of the Newmark-β dissipation parameter αN is shown in Figures 3.23a and

3.23b for the heave movement and the tower top fore-aft displacement, respectively. There

is a very small influence of the Newmark-β dissipation parameter at low frequencies which

only show significant effect on higher order modes that are more damped for the largest

values of the dissipation αN. There is a local effect of the damping parameter around the

platform natural pitching frequency (0.034 Hz) but all our simulations are within the range

of the literature simulations. The location of the peaks in the spectra are similar to the ones

explained above.

Finally, a time step analysis is shown in Figure 3.24 for the platform pitch (Figure 3.24a)

and tower-top fore-aft displacement (Figure 3.24b). The differences between the reference
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Figure 3.22: Platform surge and tower-top fore-aft displacement under JONSWAP waves.
Comparison with Ref [176].
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Figure 3.23: Platform heave and tower-top fore-aft displacement under JONSWAP waves at
different damping ratios. Comparison with Ref [176].

case ∆θ = 5 deg (0.07 s) and the case of ∆θ = 10 deg (0.14 s) are very small and very similar

to the literature results. Thus, we can consider that the time step equivalent to ∆θ = 10 deg

is small enough to capture the wave influence on floating dynamics. The location of the

peaks in the spectra are similar to the ones explained above.

There is a general good agreement with the literature results. However, there is still

some extra energy introduced in the system by the wave model, as discussed above, and

some secondary peaks that come directly from the non-perfectly smooth wave spectrum that
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Figure 3.24: Platform pitch and tower-top fore-aft displacement under JONSWAP waves for
different time steps. Comparison with Ref [176].

is used as inflow. Nevertheless, these differences do not compromise the accuracy of the

model.

3.4.3 Multiphysics validation

In Section 3.4.1 we have validated the radiation and diffraction phenomena and the

mooring dynamics by using a rigid model and comparing with free decay tests available

in the literature results. Then, in Section 3.4.2, we validated the wave forces on a flexible

structure by comparing, again, with literature results. In this section, we use literature

results that include all the physics described in Chapter 2: multibody structural dynamics,

aerodynamics, hydrodynamics, mooring dynamics, irregular wave forcing and control.

Again, we use the NREL 5 MW OC3 wind turbine operating under a mean incoming

wind speed of 18 m/s with a turbulence intensity IT = 11 %. The longitudinal inflow veloc-

ity U∞x and its power spectral density are shown in Figures 3.25a and 3.25b, respectively.

The unidirectional wave spectrum follows a JONSWAP shape according to Equation (2.117)

with a peak spectral period Tp = 10 s, a significant wave height hs = 6 m and a propagation

direction along the positive x axis (Figure 2.6). We simulated 150 s with a time step equiva-

lent to ∆θ = 2 deg (0.028 s) but we do not have information about the simulation time used

in the literature results [176]. The simulation begins at trimmed conditions under calm sea

and constant wind. The wave height spectrum was already shown in Figure 3.21. The inflow

wind velocity (Figure 3.25b) also shows small peaks at 0.02 Hz, 0.035 Hz, 0.06 Hz and even
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smaller ones (0.1 Hz, 0.14 Hz, 0.17 Hz and 0.22 Hz) that are associated with the numerical

generation of the turbulence field in the Mann box generator. These frequencies together

with the system natural frequencies are included in Table 3.6 to facilitate the analysis below.
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Figure 3.25: Longitudinal wind velocity inflow.

Table 3.6: NREL 5 MW OC3 natural frequencies and waves spectrum peaks for the JON-
SWAP multiphysics validation case.

Platform
Movement Surge and sway Heave Roll and pitch Yaw

Natural frequency [Hz] 0.008� 0.032 0.034× 0.12

Tower
Movement Side-to-side bending Fore-aft bending

Natural frequency [Hz] 0.46 0.47�

Blades
Movement Collective flapwise bending Edgewise bending

Natural frequency [Hz] 0.71 1.08

Rotor
Movement Rotation frequency (1P) Blade-passing (3P)

Natural frequency [Hz] 0.2F 0.6+

Waves
Main peak Minor peaks

Natural frequency [Hz] 0.1• 0.15H, 0.17J

Symbols are used in figures to mark frequencies

Figures 3.26 to 3.28 show the power spectral density of the platform displacements rG,

rotations ϕ, the first blade tip out-of-plane displacement xout, the tower-top fore-aft move-

ment xfa and the rotor velocity ωr. The largest platform movements are surge (Figure 3.26a),

heave (Figure 3.26b) and pitch (Figure 3.26c) they all agree well with the literature results.

However the zero-frequency value is slightly different in the case of surge and pitch. We can

also see that the peak associated with the waves (0.1•Hz) is larger in our case than in some

literature results. There is also a small peak at the rotor rotating frequency (0.2FHz) and

a significant peak at the tower fore-aft bending frequency (0.47�Hz) which overlaps with

the blade passing frequency (0.6+ Hz). Our results show some peaks at the power spectral
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that do not appear in the literature results. The most significant are one peak at twice the

platform pitching natural frequency (0.07 Hz) and two peaks coming from the peaks in the

wave and wind inflow spectra: 0.15HHz and 0.17JHz. These peaks are shown at all Figures

from 3.26 to 3.28.

Ref SHARPy

0.008 Hz 0.034 Hz 0.1 Hz 0.15 Hz 0.17 Hz 0.2 Hz 0.47 Hz 0.6 Hz

10−2 10−1 100

f [Hz]

10−6

10−3

100

103

P
(r

G
x
)
[m

2
/H

z]

(a) Surge.

10−2 10−1 100

f [Hz]

10−9

10−5

10−1

P
(r

G
z
)
[m

2
/H

z]

(b) Heave.

10−2 10−1 100

f [Hz]

10−6

10−3

100

P
(ϕ

y
)
[d
eg

2
/H

z]

(c) Pitch.

Figure 3.26: Power spectral density of the larger platform movements under turbulent wind
and JONSWAP waves with pitch control. Comparison with Ref [176].

We predict slightly smaller fluctuations in sway (Figure 3.27a) and roll (Figure 3.27b)

movements around the platform natural pitch frequency (0.034×Hz) and slightly larger fluc-

tuations around the wave peak frequencies (0.1•, 0.15H and 0.17JHz) and 1P frequency

(0.2FHz). There is good agreement in the large peak in the spectrum associated to the

tower fore-aft bending frequency (0.47�Hz). The peak associated with the blade passing

frequency (3P) is more noticeable than the peak at rotor frequency (1P) because in this

simulation there is no shear or other input that can excite the rotor frequency. However,

gravity excites the blade passing frequency (3P).

The tower-top fore-aft displacement (Figure 3.28a) shows similar tendencies between our

solution and the literature: three peaks at platform pitch natural frequency (0.034×Hz),
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Figure 3.27: Power spectral density of the smaller platform movements under turbulent wind
and JONSWAP waves with pitch control. Comparison with Ref [176].

the waves peak period (0.1•Hz) and tower fore-aft bending frequency (0.47�Hz). We can

appreciate again the small peaks that our wave spectrum has at 0.15H and 0.17JHz. However,

the zero-frequency value is significantly smaller in out estimation, possibly related to the

short simulation time and it shows again a larger peak around the wave peak frequency.

This analysis is also valid for the out-of-plane blade-tip displacement in Figure 3.28b which

shows more noisy spectrum at higher frequencies and a peak at the blade flapwise bending

frequency 0.71 Hz.

The rotor velocity (Figure 3.28c) which is the variable stabilised by the controller shows

a peak around the wave peak period (0.1•Hz) which is significantly larger, again, in our

prediction with respect to the literature value. The constant value is smaller which is related

to the short simulation time because the average value of the rotor velocity is equal to the

set-up value (12.1 rpm). Our results show the small peaks coming from the wave spectrum

(0.15H and 0.17JHz) and there is a wide peak from the tower fore-aft bending frequency

(0.47�Hz) to the blade passing frequency (0.6+ Hz).

In summary, we have validated the mooring dynamics and the hydrodynamics with very

accurate results when free-decay test are compared against the literature results. However,

the waves model generates higher fluctuations on the platform that should come from higher

forces. This requires an analysis of the wave model to match the forcing of the sea but it

confirms the accuracy of the structural, aerodynamic, hydrodynamic and mooring dynamics.
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Figure 3.28: Power spectral density of the tower-top fore-aft deformation, out-of-plane blade-
tip displacement and rotor speed under turbulent wind and JONSWAP waves with pitch
control. Comparison with Ref [176].



Chapter 4

Numerical improvements and

benchmark of rigid wind turbine rotor

aerodynamics

Experimental testing of current and future wind turbines is very challenging due to

the large size of the designs [55] and the difficulty of coherently scaling the large number

of physical phenomena involved [137, 190]. The most accurate numerical methods (fully-

resolved CFD) are usually less expensive than experimental campaigns, however, they are

still too time and resource consuming to be widely applied in wind turbine design [8]. Medium

and low fidelity methods yield a balance between accuracy and efficiency and, as a result,

are employed in most of the current industry analysis and design of wind turbines [8]. The

basic theory behind each method (Chapter 2) defines the range of conditions for which the

particular method is accurate. Unsteady and three-dimensional aerodynamic effects are

gaining relevance in current designs due to the increasing length and flexibility of the tower

and blades, the operation in floating platforms and the wake of other wind turbines. To

account for these effects, the range of conditions in which numerical methods are accurate

need to be usually expanded by semi-empirical corrections.

This chapter presents the analysis of rigid wind turbine rotor aerodynamics with three

different numerical fidelities: Blade-Element Momentum (BEM), Unsteady Vortex-Lattice

Method (UVLM) and Large-Eddy Simulation with Actuator Line (LES-AL). The first ob-

jective of this chapter is analysing the advantages and drawbacks of each numerical method

and the inflow conditions under which they are accurate. A second objective is proposing

improvements to increase the accuracy of some numerical methods under inflow conditions

147
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that apriori cannot be captured by the basic methods described in Chapter 2. Thus, we

benchmark the three fidelities and the proposed improvements under three common inflows.

First, steady uniform inflow perpendicular to the rotor plane is a baseline for comparison.

Second, the inherent capability of UVLM to describe the skewed-wake and unsteadiness

of yawed inflow is shown and compared against LES-AL and BEM. Finally, the unsteadi-

ness and interaction between spanwise sections of the blade in cases of turbulent inflow are

analysed.

In this chapter, a rigid model of the AVATAR 10 MW wind turbine rotor described in

Section 3.3 is analysed as an example of a future offshore wind turbine. Three numerical

aerodynamic fidelities and their numerical implementation described in Section 2.2 are used:

OpenFAST v2.1.0 (BEM), SHARPy v1.2 (UVLM) and WInc3D (LES-AL). Part of the results

in this chapter have been published by the authors in [184, 191, 192].

4.1 Numerical improvements

This section describes some numerical improvements in the context of rigid rotor aero-

dynamics. We have already identified in Section 3.3.2 a significant in-plane force coefficient

difference between UVLM and BEM associated to the absence of viscous drag estimation in

UVLM. Thus, in Section 4.1.1, we propose a method to approximate viscous drag in UVLM

following a methodology similar to BEM were the drag coefficient value is obtained from

tabulated data. In Section 4.1.2, we tackle the high computational cost of UVLM through

a new wake convection equation discretisation. In Section 4.1.3, we propose a method to

account for spanwise-varying loads in BEM with the help of UVLM results. The turbulent

inflow experience by the wind turbine in each modelling fidelity should be the same to reduce

the uncertainty in the comparison. Thus, in Section 4.1.4, we present a method to generate

turbulent fields that reduce the dissipation that takes place in the LES grid and not in the

BEM and UVLM simulations.

4.1.1 Semi-empirical correction of UVLM viscous drag estimation

One of the drawbacks of UVLM arises from the assumption of inviscid flow, which implies

an inability to account for viscous drag and, therefore, can lead to inaccurate force prediction.

For this reason, we now propose a simple methodology to include viscous drag in the UVLM

computation. This method is based on BEM philosophy in which forces are computed

from look-up tables of steady lift, drag and moment force coefficients, parametrised by the
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angle of attack, which is schematically shown in Figure 4.1a. These tables are obtained

from steady two-dimensional wind tunnel experiments or Reynolds-Averaged Navier Stokes

computations.

The velocity induced by the vortices in the UVLM discretisation becomes infinite at

the vortex location (Section 2.2.1) generating singularities in the velocity field. Therefore,

the computation of the angle of attack in UVLM is not well defined. Thus, we choose to

determine the drag coefficient from the sectional lift coefficient cL instead, computed from

the UVLM forces in Equations (2.76) and (2.75), as input information (Figure 4.1b). The

drag force is, then, computed from the non-dimensional coefficient using the relative velocity

between the solid surface and the undisturbed incoming velocity and is added to the induced

drag originally captured by UVLM. This approach is restricted to the region of the cL − α
curve between the maximum and the minimum lift coefficient so there is an unique value of

drag associated to a certain lift. This is sufficient to capture the typical operational dynamics

of wind turbines but it would require further development for other cases where the changes

in lift-drag relation due to unsteady effects are not negligible. Moreover, operation at low

angles of attack is considered so the lift does not need to be corrected due to viscous effects

because the inviscid approximation is accurate. The effect of this improvement is shown in

Section 4.2.1 on a full wind turbine rotor configuration.

Steady 2D data

Computed by BEM

BEM result

α

cL

Steady 2D data

Computed by BEM

BEM result
α

cD

(a) BEM interpolation.

cL

Steady 2D data

Applied to UVLM as a correction
cD

Computed

by UVLM

(b) UVLM drag correction.

Figure 4.1: Scheme of the computation of force coefficients from tabulated data.

4.1.2 Generic discretisation of the UVLM wake convection equa-

tion

The vorticity shed by the solid surfaces ∂Ωs at the trailing edge moves with the flow

generating the wake ∂Ωw (Figure 4.2). The circulation in the wake Γw in an arbitrary region
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Σ with boundary ∂Σ is related to the flow vorticity through Stokes’ theorem

Γw =

∮
∂Σ

u · dl =

∫∫
Σ

∇× u · dσ. (4.1)

The wake does not experiences any load, thus the pressure jump across the wake is zero

∆p = 0, which implies that it convects with the flow such that a generic point x ∈ ∂Ωw

initially located at x0 moves following the flow velocity u as

x(t) = x0 +

∫ t

0

u(x(s), s)ds. (2.69 revisited)

The flow velocity can be approximated either by the unperturbed upstream velocity U∞ or,

more accurately, by Equation (2.61), in which the unperturbed upstream velocity is combined

with vortex-induced velocities. The former approximation is called prescribed-wake, since it

implies that the wake shape is known a-priori. The latter choice is referred to as a free-wake

model and leads to a more accurate computation of wake shape and, thus, more accurate

values for axial induction and aerodynamic forces, as shown in Section 3.3.2 in the case of a

wind turbine rotor.

Σ

∂Σ

∂Ωw

∂Ωs

ζ

η

ur

(ur∆t)t−3

(ur∆t)t−2

(ur∆t)t−1

vortex 1 vortex 2 vortex 3 vortex 4

Figure 4.2: Solid and wake surfaces discretisation in UVLM.

In the wake, no external forces are applied and the fluid is ideal (a UVLM assumption),

thus, Kelvin’s theorem states that the flow circulation around a closed curve ∂Σ does not

change with time. In this scenario, the movement of the wake is simple and easily imple-

mented via a Lagrangian description: displacement of the closed curves ∂Σ with Equation

(2.69) which retain their initial circulation.

However, aerodynamic problems are usually described with respect to frames of reference

moving with solid surfaces because the influence of vorticity on the forces they experience de-

creases with the distance between them. This generates an effective convection of the wake

circulation Γw away from solid surfaces that is convenient to describe with an Arbitrary
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Lagrangian-Eulerian methodology. Two coordinates η and ζ parametrise the wake surface

∂Ωw such that they run along the spanwise and streamwise directions, respectively. There-

fore, curves along the streamwise direction ζ constitute streaklines and convection occurs

only along them, such that, the convection equation for the circulation Γw can be applied

independently for each streakline η:

∂Γw

∂t
+ ur

∂Γw

∂ζ
= 0, (4.2)

where Γw(ζ, η, t) is the flow circulation, the norm of the relative flow-solid velocity is com-

puted as ur(ζ, η, t) = u(ζ, η, t) · ζ̂(ζ, η, t)− us(0, η, t) · ζ̂(0, η, t) where u and us are the flow

and known solid trailing edge velocities, respectively and ζ̂, the unit vector in the ζ direction.

In general, the coupling of this equation with the vortex method described in Section 2.2.1

closes the problem. In practice, equations (2.59) and (4.2) are solved in a staggered manner

such that the former provides the initial (i.e. Γw(η, ζ, 0)) and boundary (i.e. Γw(0, ζ, t))

conditions for the latter.

The discretisation of the spanwise direction η is chosen at the beginning of the simulation

while the discretisation in the streamwise direction ζ is generated automatically at each

time step. This automatic generation is now described and is illustrated in Figure 4.3 which

shows a side view (perpendicular to η) of the three-dimensional scheme in Figure 4.2. At the

beginning of each time step (Figure 4.3b), solid surfaces have moved due to their velocity

us and the wake has been convected by the local flow velocity u. These movements have

generated a gap between the trailing edge and the first wake node where a new segment of

a vortex is created. This segment is equal to a vector (u− us) ∆t parallel to the streamwise

direction ζ and the relative solid-fluid velocity (ur = u− us) by construction. The regions

∂Σ generated with this discretisation (Figure 4.2) are called vortices and their corners are

convected with Equation (2.69) to keep track of the wake surface.

Equation (4.2) is usually numerically solved on the mesh described in the previous para-

graph and sketched in Figure 4.3. We denote Γtwζ = Γw(ζ, ηp, t) for clarity. With this

objective Equation (4.2) is discretised with a first order upwind scheme

Γt+1
wζ − Γtwζ

∆t
+ ur

Γtwζ − Γtwζ−1

∆ζ
= 0, (4.3)

with ∆ζ the vortex size in the ζ direction. This equation can be rearranged and simplified
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vortex 1* vortex 2* vortex 3* vortex 4*

wake convection: u∆t

new vortex

solid surface

vortex 1 vortex 2 vortex 3 vortex 4

movement:

Figure 4.3: New non-uniform wake rediscretisation method.

by defining C = ur∆t/∆ζ to give

Γt+1
wζ =

(
1− ur∆t

∆ζ

)
Γtwζ +

ur∆t

∆ζ
Γtwζ−1 = (1− C) · Γtwζ + C · Γtwζ−1. (4.4)

In most UVLM implementations [18], the wake discretisation is generated such that ∆ζ =

ur∆t, forcing C = 1 and simplifying the wake convection equation to displace the values

from one discretisation element to the following:

Γt+1
wζ = Γtwζ−1. (4.5)

However, Equation (4.4) allows the discretisation of the wake surface to be performed with

coarser vortices in regions where vorticity has less influence on the forces on solid surfaces

(usually far away from them) such that ∆ζ 6= ur∆t. This improves computational efficiency,

which is of importance for the free wake model, since computation time grows as O(N2
w)

where Nw is the number of vortices that discretise the wake geometry.

To give a simple example, consider the airfoil in Figure 4.3 subjected to a step gust

(Küssner gust) with horizontal relative velocity ur. In particular, the airfoil is infinite in the

spanwise direction, has a chord c and is initially placed at zero angle of attack. Figure 4.4a

shows two wake discretisations, one complying with the traditional assumption of C = 1

and another employing a coarser wake discretisation using the method described above. It

is clear that a large reduction in the number of vortices required to discretise the wake is

achieved and, importantly, this does not lead to a decrease in accuracy. Indeed, the ratio

between instantaneous lift coefficient cL and its value in steady-state cLss is shown in Figure
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4.4b with respect to the reduced time

t∗ =
2tur
c
. (3.1 revisited)

The results of both models are identical and equal to the analytical solution based on thin

airfoil theory.

(a) Traditional (top) and new (bottom) wake discretisa-
tion.

0 50 100
t∗

0.00

0.25

0.50

0.75

1.00

c L
/c

L
ss

analytical Küssner

traditional

new wake

(b) Lift coefficient.

Figure 4.4: Scheme and lift force in a Küssner gust with traditional and new wake discreti-
sation schemes.

Resuming the analysis of Figure 4.3, at each time step, one vortex is created, while the last

vortex is removed (vortex 4∗ in Figure 4.3b) in order to keep the number of vortices constant

for computational convenience. If the size of the vortices is not uniform (in the schematic

example, vortex 4∗ is larger than the new vortex created), the wake length is reduced at

each time step which leads to reduced accuracy in the loads computation (Section 3.3.1).

To avoid this shortening, an additional step of mesh regularisation is performed after the

wake convection, as described in Figure 4.3c. The wake discretisation is updated along each

streakline independently such that the distribution of distances from the solid trailing edge to

each vortex corner matches the initial distribution at time t = 0 (Figure 4.3a). The remeshing

algorithm conserves the total vorticity in the wake (zero-th moment of the distribution),

which guarantees that the system complies with Kelvin’s law. For straight wakes, a simple

linear interpolation scheme in Cartesian coordinates is sufficiently accurate. For helicoidal

wakes which are of importance to wind-energy applications, linear interpolation in Cartesian

coordinates lead to a significant reduction of the wake radius. Figure 4.5a shows an example
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of the error induced by the interpolation in Cartesian coordinates and the resulting non-

physical reduction in wake radius between simulation time θ = 0 deg and θ = 23 deg in

Figures 4.5b and 4.5c, respectively.

ζ

original

interpolated

(a) Scheme. (b) θ = 0 deg. (c) θ = 23 deg.

Figure 4.5: Scheme and example of the failure of the linear interpolation in cartesian coor-
dinates of helicoidal wakes.

This problem was overcome with a slerp interpolation scheme

a3 =
sin ((1− q)ϑs)

sin (ϑs)
a1 +

sin (qϑs)

sin (ϑs)
a2, (4.6)

where a3 is the slerp-interpolated vector between a1 and a2 with q the interpolation param-

eter and ϑs the angle between a1 and a2. Equation (4.6) tends to the linear interpolation

when ϑs → 0. This interpolation scheme represented in Figure 4.6 preserves the wake radius

and does not need special treatment of the discontinuity at azimuth angle π radians as op-

posed to cylindrical coordinates. In the case of the real wind turbine studied in Section 4.2.1,

the relative root-mean square error between the traditional UVLM and this new wake dis-

cretisation scheme is below 0.5% for rotor thrust and power coefficients. In the cases of inflow

turbulence on a wind turbine rotor run in Section 4.2.3, the new wake convection equation

reduces the computational time by 90% with respect to the standard UVLM implementation.

Moreover, this new scheme does not modify the inherent capability of UVLM to capture the

wake tip vortex roll-up, indeed, it just describes this vortex with a new discretisation.
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ϑs

qϑs

a2

a1

a3

Figure 4.6: Slerp interpolation scheme.

Frequency-limited balanced truncation of the UVLM

The bespoke method for reduction of linear UVLM systems through frequency-limited

balancing truncation briefly described in Section 2.2.1 from [171] assumes C = 1 in the

wake convection Equation (4.4). The new wake convection equation described above allows

discretisation such that C 6= 1. Again, each wake row ηp is independent of the others and

convection only occurs along the ζ direction. The method in [171] requires the z-transform

of Equation (4.4)

Γwζ = (1− Cζ) z−1Γwζ + Cζz
−1Γwζ−1, (4.7)

with • the z-transform of the variable. Moreover, the method requires the explicit computa-

tion of the wake circulation at each vortex from the values at the bound vortices at previous

time steps. With the new wake convection scheme, the first wake vortex ζ = 1

Γw1 =
C1z

−1

1− (1− C1) z−1
ΓM . (4.8)

The circulation of the rest of the vortices can be recursively computed according to

Γwζ =
Cζz

−1

1− (1− Cζ) z−1
Γwζ−1, 1 < ζ ≤Mw. (4.9)

Finally, if Equations (4.8) and (4.9) are applied to every row η and the mapping

J(η, ζ) 7→ j, (2.65 revisited)

is employed again to gather the bound Γ(ζ, η, t) and wake Γw(ζ, η, t) distributions into the
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Γj and Γwj vectors, respectively. Thus, Equation (4.4) can be described in matrix form

Γn+1
w = CΓΓn + CΓwΓn

w, (2.73 revisited)

In Section 2.2.1, the non-zero terms in the CΓ and CΓw were ones that represented the shift

operator in Equation (2.71). With the new wake convection equation, these non-zero terms

are (1− C) and C, according to Equation (4.4). C is computed from the distance between

the centre of two vortices, thus, Cζ is computed from the (ζ − 1)th to the ζth vortex. This

is the only change that needs to be introduced in the frequency-limited balanced truncation

method summarised in Section 2.2.1 and described in [171].

4.1.3 Spanwise sections interaction filter for BEM

Wind turbine blades under uniform inflow perpendicular to the rotor plane have nearly

constant circulation except at the root and tip regions [4] and, in this case, the BEM hy-

pothesis of independent 2D radial sections is reasonable. However, turbulent inflow cases

generate spanwise-varying input velocities and forces that change significantly in distances

comparable to the airfoil chord invalidating the hypothesis of constant circulation along the

span and independent 2D radial sections. This is not accounted for by BEM, but can be

described using, for example, strip theory as validated in Section 3.2.3 and expanded next.

The velocity distribution along the span under turbulent inflow can be formed by Fourier

superposition of harmonic functions with a single wavelength. We study the wavelength

dependence of this phenomena through the study of single wavelength signals. Consider a

wing of infinite span, chord c and zero camber subject to an inflow velocity consisting of

a constant horizontal component U∞x plus a span-varying vertical component, as shown in

Figure 4.7. In particular, suppose that the vertical velocity has a sinusoidal distribution

which varies with the spanwise coordinate y,

U = U∞x x̂+ (U∞z + ∆U∞z sin(2πy/λ)) ẑ, (4.10)

where U∞z is a constant, ∆U∞z the perturbation amplitude and λ its wavelength. The

constant baseline angle of attack, α0, the local angle of attack, α(y), and the peak-to-peak

relative amplitude A are defined as

α0 = arctan

(
U∞z
U∞x

)
, α(y) = arctan

(
U∞z + ∆U∞z sin(2πy/λ)

U∞x

)
and A =

(
2∆U∞z
U∞x

)
.
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x̂ŷ
ẑ

Figure 4.7: Spanwise-varying inflow velocity on airfoil.

BEM assigns a lift coefficient to every two-dimensional spanwise section according to the

effective angle of attack α of the incoming velocity and disregards the interactions between

spanwise sections. Similarly, in the 2D approximation of the studied case, the lift coefficient

of each spanwise section is equal to 2πα. On the other hand, the lift predicted by UVLM

inherently accounts for three-dimensional spanwise interactions. UVLM results are based

on a three-dimensional implementation without periodic boundary conditions. The features

of this process have been modelled through a convergence study on a very long blade with

constant sections subjected to periodic inflow. In particular, at the centre of the UVLM blade

a discretisation of 20 nodes per wavelength is used in the first 10 cycles of the inflow velocity.

For computational efficiency, this discretisation is continuously coarsened towards the edges.

Both models are now compared to demonstrate the disparity between three-dimensional and

two-dimensional methods and to motivate a proposed correction to improve results based

upon two-dimensional theory.

Figure 4.8 shows the force coefficients along the span for wavelength λ = 10c, baseline

angle of attack α0 = 4 deg, and peak-to-peak relative amplitude A = 0.1. The mean values

of lift cL, moment cM and spanwise cs force coefficients are the same in the 2D and UVLM

models (Figures 4.8a, 4.8c and 4.8d, respectively). However, a non-zero mean drag coefficient

cD is apparent in the 3D case (Figure 4.8b). The peak-to-peak values (which we subsequently

denote using angled brackets 〈•〉) of the lift coefficient are smaller in the UVLM case than

in the 2D approximation (Figure 4.8a).

The previous example does not cover the wide range of characteristic spatial scales—

ranging from the smallest spatial scale of atmospheric turbulence to blade-long eddies—that

are of importance for wind turbines. For this reason, the effect of wavelength variation on

the previous geometry (Figure 4.7) needs to be considered over a range of baseline angles of

attack α0 and peak-to-peak relative amplitudes A.

Previous qualitative analysis holds for all wavelengths, however there is an important

quantitative influence of the inflow wavelength on the peak-to-peak value of the lift coefficient

cL. Figure 4.9 shows the ratio between the 3D model and the 2D approximation. The peak-

to-peak lift coefficient cL in the 3D model is reduced around 40% for inflow wavelength λ =
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Figure 4.8: Force coefficients under spanwise sine varying inflow. λ = 10c, α0 = 4 deg and
A = 0.1 case.

10c and by approximately 90% for wavelengths λ = c with respect to the 2D approximation.

Moreover, this effect is not influenced by the initial angle of attack (Figure 4.9a) or the inflow

amplitude A (Figure 4.9b).
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(a) Angle of attack effect. A = 0.2 case.
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(b) Gust intensity effect. α0 = 4 deg case.

Figure 4.9: Peak-to-peak lift coefficient as a function of the spanwise sine varying inflow
wavelength λ/c.

The numerical results in Figure 4.9 can be approximated by a second-order filter given
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by a chord-normalised rational function Hc,

cL(λ−1)

cL2D
(λ−1)

= Hc(λ
−1) =

0.47

(cλ−1)2 + 3.3(cλ−1) + 0.47
, λ > 0, (4.11)

where

cL(λ−1) = F{cL}(λ−1) =

∫ ∞
−∞

cL(y)e−2πiyλ−1

dy, λ−1 > 0,

is the Fourier transform of cL. This approximation has a root-mean square error of 9× 10−3

and a maximum relative error of 7%. This suggests that the proposed spanwise filter can

be applied to codes that assume 2D behaviour of blade sections (i.e. BEM). In particular,

given the spanwise lift distribution cL2D
(y) computed with a 2D approximation, its filtered

version c̃L2D
(y) is defined by

c̃L2D
(y) = F−1 {HcF{cL2D

}} (y), y > 0.

In other words, the 2D approximation to the spanwise lift distribution is first transformed

into instantaneous spatial frequencies, then filtered by Hc(λ
−1) and, finally, transformed back

into the spatial domain. A numerical example on a full wind turbine rotor configuration is

given in Section 4.2.3.

Some additional details of the implementation deserve some discussion. In particular,

the filter function depends on the chord c which, in many applications, varies with span. It

is possible to adapt the filter to this scenario by, first, computing the Fourier transformation

of the lift distribution along the span. Then, for each of point y at which the filtered value

of the lift distribution is to be obtained, the Fourier-transformed function is filtered using

the chord at this location by using Hc(y) in Equation (4.11). Afterwards, an inverse Fourier

transformation is computed keeping only the value at the considered node and discarding

the rest, that is F−1
{
Hc(y)F{cL2D

}
}

(y). Usually, computational algorithms for the Fourier

transformation require equi-spaced points. If known values of the lift distribution do not

satisfy this property, then the lift distribution should be interpolated in a uniform grid at

the beginning of the procedure, and subsequently interpolated back into the original grid.

A correction for the remaining force coefficients could be equally generated although their

effect on loads would be less significant than lift. Moreover, higher fidelity simulations would

be required to correct drag because UVLM does not provide a reference value. This exceeds

the scope of this work but some results are shown next for completeness.

The average lift, moment and spanwise coefficients that appear on the UVLM approach
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are zero for all wavelengths of the input (not shown). However, Figure 4.10 shows an average

non-zero drag coefficient between 10−2 and 2×10−2 (100 and 200 drag counts, respectively),

which is comparable to the usual drag value of airfoils. It reaches a maximum for wavelengths

of the order of ten chords with larger value the larger the gust intensity (Figure 4.10b) but

almost unaffected by the average angle of attack (Figure 4.10a).
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(a) Angle of attack effect. A = 0.1 case.
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(b) Gust intensity effect. α0 = 0 deg case.

Figure 4.10: Mean drag coefficient as a function of the spanwise sine varying inflow wave-
length λ/c.

Similarly to Figure 4.9, the peak-to-peak drag, moment and spanwise coefficients are

included in Figures 4.11, 4.12 and 4.13, respectively. The behaviour of the peak-to-peak drag

coefficient is not well defined as a function of the wavelength because it depends on a balance

between the average angle of attack (Figure 4.11a) and the gust intensity (Figure 4.11b).

The peak-to-peak moment (Figures 4.12a and 4.12b) coefficient reaches the maximum for

wavelengths of the order of 1 chord. The peak-to-peak spanwise (Figures 4.13a and 4.13b)

coefficient decreases with the wavelength. These two coefficients are slightly affected by the

initial angle of attack (Figures 4.12a and 4.13a) and they both increase with the gust intensity

(Figures 4.12b and 4.13b). Their values are small but could be significant for certain airfoils.
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Figure 4.11: Peak-to-peak drag coefficient as a function of the spanwise sine varying inflow
wavelength λ/c.
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(a) Angle of attack effect. A = 0.1 case.
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Figure 4.12: Peak-to-peak moment coefficient as a function of the spanwise sine varying
inflow wavelength λ/c.
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(a) Angle of attack effect. A = 0.1 case.
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Figure 4.13: Peak-to-peak spanwise coefficient as a function of the spanwise sine varying
inflow wavelength λ/c.

4.1.4 Turbulence generation

The three aerodynamic fidelities studied here treat the turbulent field differently: LES-

AL fully simulates the most energetic scales of the turbulent field while BEM and UVLM rely
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on the convection of a turbulence box based Taylor’s hypothesis and not accounting for any

interaction from the solid surfaces on the turbulence field. In Section 4.2.3, we benchmark

the three aerodynamic fidelities under turbulent inflow. To achieve a fair comparison the

turbulent field acting on the wind turbine in each fidelity has to be as similar as possible.

Thus, in this section, we propose a procedure to generate turbulence boxes that reduce the

uncertainty between different treatments of turbulence. The procedure combines the gener-

ation of turbulence from Mann boxes and the realistic turbulence fields of LES simulations.

Two turbulence boxes, referred to as “higher turbulence” and “lower turbulence”, generate

the inflow for the three models (BEM, UVLM and LES-AL). The process to create these

boxes is illustrated in Figure 4.15.

First, two random turbulence boxes are generated using the Mann box method [44],

which controls the turbulence intensity. We use the numerical implementation of the Mann

box method that comes as a pre-processing tool for the aeroelastic code HAWC2 [161, 193,

55]. The input parameters are shown in Table 4.1 which are similar to other publications

[59]. In particular, LT is the largest characteristic length of turbulence. We use LT = R,

being R = 102.88 m the rotor radius of the wind turbine analysed in Section 4.2. ΓT is the

stretching parameter, Nx, Ny and Nz and ∆x, ∆y and ∆z are the number of nodes and the

grid size in the x, y and z directions, “seed” is the input for the random number generator

and high frequency correction has been applied. The desired level of turbulence intensity IT

is defined through the combined parameter αTε
2/3 where αT = 1.7 is an empirical value and

εT, the wind specific turbulence dissipation rate. This combined parameter is computed as

αTε
2/3
T =

(U∞IT )2

0.688L2/3
, (4.12)

where U∞ is the average wind speed perpendicular to the rotor.

Table 4.1: Mann box input parameters.

αTε
2/3
T LT ΓT seed Nx Ny Nz ∆x ∆y ∆z

case name [m1/3 s−2] [m] [-] [-] [-] [m] [m] [m]
higher turbulence 1.478 R 0 -100 1024 256 256 2 2 2
lower turbulence 0.894 R 0 -100 1024 256 256 2 2 2

Secondly, these Mann boxes have been separately used as input for an empty-box LES

simulation (WInc3D [45]) with the objective of generating an energy spectrum closer to real

flows. The empty LES box has a cell spacing of 2 m in a grid with dimensions Lex = 4R,

Ly = 8R and Lz = 8R.
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The flow field statistics (mean, standard deviation, turbulence intensity and power spec-

trum P (u) of the axial velocity u) in each plane (characterised by the x coordinate) parallel

to the rotor are computed at 17 points and averaged, i.e. the turbulence intensity at x = 0 m

is computed as

IT (x = 0) =
1

17

17∑
i=1

IT (x = 0, i) , (4.13)

with i the index of the 17 points distributed in the x = 0 m plane as described in Figure

4.14. The distribution of the 17 locations is as follows: one point in the rotation axis and 8

points each on the circumference of circles with radii r = 0.5R and r = R (with R the wind

turbine rotor radius in Section 4.2.3) in azimuthal increments of 45 deg.

R0.5R

Figure 4.14: Distribution of points on a y − z plane for the computation of flow statistics.

Simulations were run for 100 seconds, which was found to be sufficient to converge a

moving average for the flow velocity and turbulence intensity at each plane, thus, to achieve

steady state. After the transient period, 720 time steps (equivalent to one revolution in

the example cases of Section 4.2.3) of the outflow were recorded and used as inflow for the

following computations.

Due to the LES dissipation, the values of turbulence intensity are different at different

x locations in the gird. Figure 4.16 shows the decay of turbulence within the empty LES

grid. The x = 0 m and x = Lex locations show the power spectrum and turbulence intensity

immediately after the Mann box and at the output of the LES domain, respectively. The

latter represents the inflow for wind turbine rotor computations. Due to this turbulence

decay, the desired turbulence intensity in Equation (4.12) has been increased by a factor of

2.5 obtained from preliminary studies.
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Figure 4.15: Scheme of the generation of the turbulent inflow for wind turbine simulations.
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Figure 4.16: Turbulence decay along the first “empty” LES box.

Long turbulent inflow BEM and UVLM do not modify the inflow as it approaches

the rotor, however, LES-AL does. The turbulent inflows generated before aimed to reduce

these differences to perform a fair comparison among the three fidelities in the prediction of

aerodynamic loads and to explain the physical reasons for the similarities and differences.

Next, we describe the generation of a turbulent flow with a Mann box that is longer than the

previous ones and aims to provide enough time to show statistically significant results. In

this case, we choose the integral length scale of turbulence LT = 29.4 m and the stretching

parameter ΓT = 3.9 according to the IEC 61400 norm and a turbulence intensity of IT = 0.16.

The input parameters for the Mann turbulence box are gathered in Table 4.2. The wind

axial velocity is shown in Figure 4.17.

Table 4.2: Mann box input parameters.

αTε
2/3
T LT ΓT seed Nx Ny Nz ∆x ∆y ∆z

case name [m1/3 s−2] [m] [-] [-] [-] [m] [m] [m]
long 01 0.431 29.4 3.9 -100 1024 128 128 2 2 2
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Figure 4.17: Wind axial component at hub height of the long turbulent inflow.

4.2 Benchmark of the three aerodynamic fidelities

In this section, the three aerodynamic fidelities (BEM, UVLM and LES-AL) are bench-

marked on the AVATAR 10 MW rotor under three traditional inflow conditions: uniform

inflow perpendicular to the rotor plane, yawed inflow and turbulent inflow. Moreover, the

accuracy of the numerical improvements proposed in the previous Section 4.1 are evaluated.

We evaluate the drag correction for UVLM and the free wake and prescribed wake models

in UVLM under uniform flow perpendicular to the rotor plane (Section 4.2.1) where BEM

is a very accurate reference case. We also describe the yaw aerodynamics and the accuracy

of each fidelity under yawed inflow (Section 4.2.2). Finally, we use the turbulence generated

in Section 4.1.4 to describe the unsteady character of the flow, to illustrate the effect of the

spanwise filter we have generated for BEM and to benchmark the three aerodynamic models

(BEM, UVLM and LES-AL) in Section 4.2.3. The average wind speed is U∞ = 10.5 m/s, the

rotor velocity is ωr = 0.945 rad/s and the collective blade pitch is zero. These cases do not

include any control action to highlight the aerodynamic effects. We employ for the analysis

the out-of-plane Fout(r) and in-plane Fin(r) forces along the spanwise direction r,

Fout = L cosφf +D sinφf, (3.9a revisited)

Fin = L sinφf −D cosφf. (3.9b revisited)

where L(r) and D(r) are the airfoil lift and drag forces, respectively and φf(r) the flow angle.

By dividing them by 1
2
ρ (U∞)2 πR2 (ρ is the air density, U∞ is the average inflow velocity

and R is the wind turbine radius), we obtain the out-of-plane cout(r) and in-plane cin(r) force

coefficients, respectively. The use of U∞ instead of the relative wind velocity ur makes the

comparison between the three fidelities easier because the induced velocity is different in the

three fidelities and very difficult to compute in UVLM and LES-AL. Their power spectral
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densities P (•) are shown with respect to the reduced frequency

k =
ωc

2ur
, (4.15)

where ω is the associated circular frequency, c(r) is the airfoil chord and ur(r) is the local

relative velocity between the flow and blade sections. As described in Section 3.3 we also

employ the rotor thrust CT and power CP coefficients.

4.2.1 Uniform inflow

The ideal uniform steady wind perpendicular to the rotor plane generates steady loading

along a revolution and is, therefore, an appropriate case with which to establish a baseline

comparison. BEM is very accurate in this scenario [13, 14] because the flow is steady and

there is low interaction between mid-span radial sections due to the blade optimally designed

for this case. The spanwise interactions that appear at the blade root and tip regions are

adequately corrected by the Prandtl tip correction. Thus, BEM will be considered as the

reference in this section to evaluate the performance of UVLM and LES-AL. We start with

an analysis of the UVLM modelling options and then we benchmark the three aerodynamic

fidelities. In these simulations, the average wind speed is U∞ = 10.5 m/s, the rotor velocity

is ωr = 0.945 rad/s and the collective blade pitch is zero.

Effect of the UVLM drag correction and the UVLM wake models

In regular operation, the flow angle at the outboard section of the blade is not larger

than 20 deg and lift is two orders of magnitude larger than drag. It follows that lift provides

the dominant contribution to the out-of-plane force, while the in-plane force’s behaviour is

dependent upon both lift and drag contributions (Equation (3.9) revisited in Section 4.2).

We study the simulation results of the AVATAR wind turbine under uniform inflow.

First, we describe the differences between the prescribed and free UVLM wake models in

Figure 4.18 and Table 4.3. In general, there are very small differences in the out-of-plane

force coefficient between all the cases (Figure 4.18a) with two exceptions. First, UVLM

with both wake models overpredicts the out-of-plane force coefficient with respect to BEM

in the blade root region (r < 0.25R) where UVLM is not valid due to the separated flow.

Second, in the blade tip region (r > 0.8R) there is a very small difference between UVLM

and BEM that is associated with the tip losses that are inherently captured by UVLM and

modelled by BEM. The balance between these contributions results in a better agreement of
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the rotor thrust coefficient between UVLM and BEM when the free wake is applied (Table

4.3). However, it is important to understand these effects separately. The free wake model

reduces the rotor thrust and power coefficients in 3% and 5%, respectively, in comparison

with the prescribed wake approximation. Then, it can be observed that the free wake agrees

better with the BEM estimation.

The UVLM prescribed wake approximation slightly overpredicts the in-plane force coeffi-

cient. The viscous drag correction in UVLM explained in Section 4.1.1 does not significantly

modify the out-of-plane force coefficient (Figure 4.18a) or the rotor thrust coefficient (Table

4.3). However, this drag correction significantly reduces the in-plane force coefficient (Figure

4.18b) and it reduces the rotor power coefficient, around 8% (Table 4.3). When the drag

correction is included in free-wake UVLM, the agreement with BEM is very good especially

in the span region r > 0.6R.
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Figure 4.18: Force coefficients along the span under uniform inflow. UVLM modelling op-
tions.

Table 4.3: Rotor thrust and power coefficients under uniform inflow.

aerodynamic model wake model drag accounted for CT CP
UVLM free No 0.66 0.52
UVLM free Yes 0.66 0.48
UVLM prescribed Yes 0.68 0.50
UVLM prescribed No 0.68 0.55
BEM - Yes 0.66 0.45

LES-AL - Yes 0.66 0.46
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Benchmark

In conclusion, UVLM with a free wake and the drag correction described in Section

4.1.1 provides better agreement with BEM for cases of uniform flow perpendicular to the

rotor plane than the other set-ups of UVLM. Thus, it is compared alone with the other

two aerodynamic fidelities (BEM and LES-AL) in Figure 4.19. In general, the agreement

between the fidelities is good. UVLM slightly overestimates the loads in the root region

r < 0.25R with respect to BEM and LES-AL, due to the separated flow. In the tip region

r > 0.8, UVLM slightly underestimates the out-of-plane force coefficient with respect to

BEM. In the tip region, three-dimensional effects appear that should be captured by UVLM

and the Prandtl tip-correction in BEM, discerning which one is the accurate requires more

precise studies, such as RANS. Nevertheless, this difference is very small. Finally, LES-AL

agrees very well with BEM except in the tip region r > 0.9R where it overestimates the

force coefficients. This might be related to a lack of refinement of the LES grid in this region

that was too computationally expensive to achieve because our LES solver uses uniform

grids which imply meshing the whole domain with smaller cells. We considered that the

computational cost was not justified due to the small differences observed.
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Figure 4.19: Benchmark force coefficients along the span under uniform inflow.

4.2.2 Yawed inflow

Historically, misalignment between the rotation axis and the mean wind speed direction

(yaw) was not expected in typical operation and only associated to small errors in the

aligning mechanism (some certification load cases include large yaw error). However, larger

yaw angles are expected in future wind turbines due to emerging wind farm control strategies
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which attempt to voluntarily operate wind turbines in large yaw angles to reduce the influence

of the wake on the downstream turbines [194].

The aerodynamic forces on wind turbine blades operating in yaw can be explained by

addition of the skewed-wake and the advancing/retreating effects. These effects are studied

first under a 30 deg yaw inflow. This yaw angle is large for traditional operation but is

likely to be experienced in cases of wind farm control. Next, the aerodynamic fidelities are

compared at smaller angles of attack to define a range of validity for each one of them. In the

previous Section 4.2.1, BEM was considered the reference and we showed that also UVLM

(with the drag correction) and LES-AL are accurate. However, in cases of yaw unsteady

and three-dimensional aerodynamic effects are expected to be relevant, thus, UVLM and

LES-AL are considered of reference because they inherently capture these effects.

Unsteady BEM models are used here because they are required to account for the blade

loading unsteadiness. Moreover, the non-symmetry of the wake behind the wind turbine

in cases of yaw is not accounted for by the basic BEM theory described in Section 2.2.2

(labelled as “BEM no skew” in the following analysis). There are empirical corrections to

include these effects on BEM such as the Pitt and Peters model that will be employed here

(labelled as “BEM skew”). The results in this section include the UVLM drag correction

described in Section 4.1.1 which was not included in the original publication by the authors

[191]. In these simulations, the average wind speed is U∞ = 10.5 m/s, the rotor velocity

is ωr = 0.945 rad/s, the collective blade pitch is zero and the time step is equivalent to

∆θ = 0.5 deg (0.0092 s).

Rotor aerodynamics in extreme yaw (γ = 30 deg)

The extreme case of γ = 30 deg has been chosen to make the aerodynamic effects as-

sociated to the yaw inflow obvious. Figure 4.20a shows a top view of a turbine under a γ

yaw angle (positive as shown on the image) between the rotation axis and the inflow wind

velocity U∞ on the horizontal plane. Moreover, Figure 4.20b shows a front view in which

the azimuthal angle θ, the rotation velocity ωr and the initial position are shown. The first

blade (at θ = 0 deg in Figure 4.20b) is the blade whose forces are shown on the rest of this

section.

In yaw cases, the forces along a revolution under uniform inflow are not constant and,

thus, time series are shown below. However, we start with the average along a revolution

• of the out-of-plane and in-plane force coefficients in Figures 4.21a and 4.21b, respectively.

There is a good agreement between UVLM and LES-AL for both coefficients. The agreement
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Figure 4.20: Scheme of yawed inflow on a wind turbine.

of BEM with the other fidelities is good in the mean out-of-plane force coefficient (Figure

4.21a) but BEM underpredicts the in-plane force coefficient with respect to the other fidelities

(Figure 4.21b). The mean force coefficients predicted by BEM with and without skewed-

wake model are the same because the skewed-wake model assumes sinusoidal fluctuations

around the average value, thus, the differences between these two models shown in the rest

of this section average out along a revolution (Figure 4.21).
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Figure 4.21: Mean force coefficients along the span (γ = 30 deg).

The mean in-plane and out-of-plane force coefficients in the case of 30 deg yaw (Figure

4.21) are significantly smaller than those of the zero-yaw case (Figure 4.19). These differences

are shown in Table 4.4 through the mean rotor thrust and power coefficients: the reduction

in rotor thrust and power coefficients with the yaw angle predicted by UVLM and LES-AL

are in good agreement and they are significantly smaller than those predicted by BEM no
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skew and BEM skew.

Table 4.4: Differences in mean rotor thrust and power coefficients between the 30 deg yaw
and the zero-yaw cases for each aerodynamic model.

CT CP
UVLM −15% −27%

BEM no skew −20% −35%
BEM skew −20% −35%

LES-AL −16% −27%

Yaw inflow has some unsteadiness associated to blade rotation because the relative orien-

tation between the inflow and the blade changes along a revolution. In this case the reduced

frequencies in Equation (4.15) for the airfoils at r = 0.45R and r = 0.75R are 0.055 and

0.022 (Table 4.5), respectively. Thereby, wind turbine loads under yaw can be reasonably

approximated by a quasi-steady assumption and the Unsteady BEM model described in

Section 4.2.2 does not predict significantly different loads to the BEM model in the studied

cases. We keep using the dynamic corrections throughout this section.

Table 4.5: Reduced frequency associated to yaw at two spanwise positions. AVATAR 10 MW.

r/R 0.45 0.75
k 0.055 0.022

Yaw inflow also generates three dimensional effects (tip and root ends, azimuthal vari-

ations of induction and interaction between radial sections) which are only inherently ac-

counted for by UVLM according to Section 2.2. LES-AL also accounts for some of these

three dimensional effects, but it employs a two-dimensional approximation for the compu-

tation of aerodynamic loads. These three-dimensional effects generate varying loads along a

revolution in yaw cases (as opposed to the γ = 0 deg case) that can be explained through the

interaction between two effects [33]: the advancing/retreating effect and the skewed-wake

effect. The best way to show these effects is by looking at different spanwise positions on the

blade analysing how loads change along a revolution. This is done for two radial positions

(r = 0.75R and r = 0.45R) in Figures 4.22 and 4.24, respectively.

The skewed-wake effect accounts for the non-axisymmetric velocity deficit behind a wind

turbine in yaw (Figure 4.20a). As a consequence, blades travel through regions of varying

velocity deficit which generates oscillating induction along a revolution. In particular, the

maximum loading is experienced when blades are in the upwind position (θ = 270 deg),
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and the minimum loading, when they are in the downwind position (θ = 90 deg). The

oscillations along a revolution are stronger near the tips and thus this effect is more important

in the outer part of the blade. We show the force coefficients at r = 0.75R in Figure

4.22. First, BEM no skew lacks a wake model to capture the induction change along a

revolution and, thus, it predicts incorrect locations of maximum and minimum loading which

are incorrectly predicted at θ = 180 deg and θ = 0 deg azimuth locations. When the skewed-

wake model is applied to BEM (BEM skew) it is able to reproduce the correct locations of the

maxima and minima according to the previous explanation of the skewed-wake effect around

θ = 270 deg and θ = 90 deg azimuth locations, respectively. However, BEM skew leads

to larger fluctuations of the force coefficients compared to UVLM and LES-AL. UVLM can

inherently account for unsteady and three-dimensional physics needed to capture the skewed-

wake effect and LES-AL accounts for the flow unsteadiness and three-dimensional effects but

it is not clear the influence of using steady-state tabulated data to retrieve the blade forces

from the flow velocity. To quantify these fluctuations, we use the standard deviation along

a revolution of the out-of-plane force coefficient at r = 0.75R which is 52% and 23% smaller

in UVLM and LES-AL, respectively, with respect to the BEM skew prediction.
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Figure 4.22: Azimuthal variations of loads at r = 0.75R (γ = 30 deg).

The advancing/retreating effect accounts for the change in angle of attack along a revo-

lution due to the change in relative orientation between the blade and the incoming wind.

Figure 4.23 shows an scheme of this effect including the blade relative velocities for the

zero-yaw case (Figure 4.23a) that do not change along a revolution and the blade relative

velocities in a case of yaw for two blade azimuthal positions: θ = 0 deg and θ = 180 deg

in Figures 4.23b and 4.23c, respectively. For example, at the top position (for positive yaw

angles) the relative velocity due to blade rotation (ωrr) is in the opposite direction as the
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in-plane component of the incoming wind U∞ sin (γ) which increases the angle of attack

(Figure 4.23b) with respect to the reference case (Figure 4.23a). At the bottom position

θ = 180 deg (Figure 4.23c), the effect is the opposite. The advancing/retreating effect gener-

ates maximum and minimum angle of attack at θ = 0 deg and θ = 180 deg with γ > 0. The

advancing/retreating effect is less noticeable near the tip, since the velocity of the blade due

to rotation is dominant there (ωrr � U∞ sin (γ)). However, this effect is dominant in the

inboard region, thus, we show the out-of-plane and in-plane force coefficients at r = 0.45R

in Figure 4.24. UVLM, BEM no skew and LES-AL predict coherent locations of maxima

and minima according to the previous theory for the in-plane force coefficient (Figure 4.24b)

but not in the out-of-plane force coefficient (Figure 4.24a) whose variations are, nonetheless,

very small.

The advancing/retreating effect is quasi-steady (Table 4.5) and should be captured by all

the numerical methods. However, BEM skew does not capture it (Figure 4.24). The skewed-

wake model was tuned to capture the effect near the tip and, inconveniently, this skewed-wake

model extends beyond its real influence region (the outer part of the blade) leading to the

incorrect location of the maximum and minimum loading predicted by the BEM skew model

in the inboard region (r = 0.45R). Probably, this choice was made because the root-bending

moments are the variable used for load design of wind turbines and, to accurately compute

them, the contributions of the outer part of the blade force coefficients are more relevant

than those of the root region.
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ωrr
α

U∞ sin γ
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(θ = 0 deg).

βt + θp

U∞ cos γ

ωrr
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(c) Yaw, bottom position
(θ = 180 deg).

Figure 4.23: Scheme of the advancing/retreating effect in yaw cases with respect to the zero
yaw case.

Figures 4.22 and 4.24 have shown the aerodynamic force coefficients at local r = 0.75R

and r = 0.45R spanwise positions, respectively, to investigate yaw aerodynamics in some

detail. However, in load analysis it is more common to use the integration of these coefficients

along the blade, namely the root-bending moments (Mout and Min). In this integration,

the tip region is the most important contributor and thus, the location of maximum and
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Figure 4.24: Azimuthal variations of force coefficients at r = 0.45R (γ = 30 deg).

minimum root-bending moments along a revolution (Figure 4.25) follows a similar pattern

as the force coefficients in the outboard region (Figure 4.22). Specifically, the minimum

and maximum root-bending moments should appear at positions close to θ = 90 deg and

θ = 270 deg, respectively. Figure 4.25 shows that UVLM, BEM skew and LES-AL methods

are able to capture these positions, however, the variations predicted by the BEM skew model

are very large (Table 4.6). Finally, BEM no skew provides the wrong positions because it

does not account for the skewed-wake effect that dominates in the outer part of the blade

which is the main contributor to the root bending moments.

Table 4.6: Differences in root-bending moments’ standard deviation between each fidelity
and BEM skew.

σ (Mout) σ (Min)
UVLM −52% −34%
BEM −75% −59%

BEM skew 0% 0%
LES-AL −28% −16%

Finally, the rotor integrated coefficients of thrust (CT ) and power (CP ) provide a simple

metric to define the rotor operating state (Figure 4.26). The maximum difference in mean

thrust coefficient between solvers has changed from 0.6% in the case of γ = 0 deg to 7% in

the case of γ = 30 deg due to the differences in the yaw aerodynamic modelling explained

in this section. Moreover, in the case of γ = 0 deg UVLM already predicts 3% higher

mean CP than the other solvers. However, in the case of γ = 30 deg yaw, UVLM and

LES-AL predict even higher mean CP than BEM (15%) due to the different modelling

accuracy of yaw aerodynamics. This evidences that in cases of uniform inflow all fidelities
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Figure 4.25: Azimuthal variations of root-bending moments (γ = 30 deg).

perform well. However, in yaw cases more aerodynamic relevant effects appear, such as,

the advancing/retreating and skewed-wake effects that require complex models to accurately

capture them (UVLM and LES-AL). Finally, Figure 4.26 shows that the large fluctuations

along a revolution of local force coefficients showed in Figures 4.24 and 4.22 have almost

disappeared in the case of rotor coefficients due to the balancing effect between the three

blades.
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Figure 4.26: Azimuthal variations of rotor thrust and power coefficients (γ = 30 deg).

In this section we show that computational methods need to account for three dimensional

effects to capture the local behaviour of loads under yaw, which is the case for UVLM

and LES-AL. This behaviour is noticeable in the mean root-bending moments and rotor

coefficients. It is also relevant in the oscillations of the root-bending moment coefficients but

not in the oscillations of the rotor coefficients because they are significantly reduced by the

balancing between the three blades.
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Rotor aerodynamics as a function of the yaw angle (0 deg ≤ γ ≤ 30 deg)

In the previous section, the effect on loads of the extreme case of 30 deg yaw was analysed.

This section aims to analyse the effect of milder yaw angles. To reduce the amount of data

presented, this will be achieved via analysis of several statistics: the mean • and standard

deviation σ(•) of fluctuations and the position of maximum θ(•)max and minimum θ(•)min

loading along a revolution. As in the previous section, loads at two spanwise positions

(r = 0.45R and r = 0.75R), root-bending moments and rotor coefficients are studied.

Figure 4.27 shows the statistics for the out-of-plane force coefficient at r = 0.45R span-

wise position. The small changes in out-of-plane coefficient at r = 0.45R shown in Figure

4.24a make the minimum θ(cout)min and maximum locations θ(cout)max difficult to distinguish

(Figures 4.27a and 4.27b, respectively). These small changes also lead to a good agreement

of the methods in mean values of the out-of-plane force coefficient (Figure 4.27c). BEM skew

model that predicts significantly larger standard deviation than the others (Figure 4.27d)

due to the excessive influence of the skewed-wake model.
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Figure 4.27: Yaw effect on the out-of-plane force coefficient at r = 0.45R.

Figure 4.28 shows the statistics for the in-plane force coefficient at r = 0.45R spanwise

position. In this region, the advancing/retreating effect is dominant, thus, the azimuthal

location of the minimum and maximum in-plane force coefficient should be around θ =

180 deg (Figure 4.28a) and θ = 360 deg (Figure 4.28b), respectively. These locations are well

captured by all the solvers. There is a difference in the mean in-plane force coefficient at zero-

yaw (Figure 4.28c) between UVLM and the rest of the solvers of 3%. For larger yaw angles,

the reduction of the mean in-plane force coefficient is stronger in both BEM estimations than

in UVLM and LES-AL. The difference between the in-plane force coefficient at γ = 30 deg

and γ = 0 deg is 29% in UVLM and LES-AL and 36% in both BEM models. Again, UVLM
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and LES-AL agree well on the standard deviation but BEM skew overestimates the standard

deviation (Figure 4.28d).
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Figure 4.28: Yaw effect on the in-plane force coefficient at r = 0.45R.

Figures 4.29 and 4.30 show the out-of-plane and in-plane force coefficients at r = 0.75R.

At this position, the skewed-wake effect is dominant over the advancing/retreating effect and

the minimum and maximum location of the force coefficients (Figures 4.29a, 4.29b, 4.30a,

4.30b) are around θ = 90 deg and θ = 270 deg, respectively, except from, BEM no skew

that does not capture this effect. Again, we observe a decrease of the mean out-of-plane

(Figure 4.29c) and in-plane (Figure 4.30c) force coefficients with the yaw angle which is

stronger for both BEM than UVLM and LES-AL. Finally, BEM skew always predicts the

largest fluctuations along a revolution of the out-of-plane (Figure 4.29d) and in-plane force

coefficients (Figure 4.30d), and BEM no skew the smallest.
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Figure 4.29: Yaw effect on the out-of-plane force coefficient at r = 0.75R.
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Figure 4.30: Yaw effect on the in-plane force coefficient at r = 0.75R.

The integration of the out-of-plane and in-plane force coefficients along the span give

rise to the out-of-plane and in-plane root-bending moments shown in Figures 4.31 and 4.32,

respectively. The minimum and maximum out-of-plane and in-plane force coefficient occur at

θ = 90 deg (Figures 4.31a and 4.32a) and θ = 270 deg (Figures 4.31b and 4.32b), respectively,

showing the dominance of the skewed-wake effect that generates maximum and minimum

loading at these positions. The maximum and minimum do not occur exactly at these

azimuthal locations because there are second-order effects (like the advancing/retreating

effect) that slightly displace them. UVLM and LES-AL predict 3% and 6% higher mean

out-of-plane root-bending moment (Figure 4.31c) than the two BEM models at zero-yaw

angle. At 10 deg yaw angle, those differences are still similar. Moreover, at 30 deg yaw angle,

those differences increase to 8% and 12%, respectively. This indicates that both BEM predict

quicker reduction of the mean out-of-plane root-bending moment than UVLM and LES-AL

which are more trustworthy because they capture the unsteady and three-dimensional effects

associated to yaw. The mean in-plane root bending moment is smaller than the out-of-plane

one and, thus, less important for wind turbine loading. It presents similar reduction with

the yaw angle for all solvers (Figure 4.32c). Again, the largest fluctuations in out-of-plane

(Figure 4.31d) and in-plane (Figure 4.32d) root-bending moments are predicted by BEM

skew and the smallest by BEM no skew.

Finally, Figure 4.33 shows the effect of yaw on rotor coefficient. The agreement in the

mean thrust coefficient (Figure 4.33a) for yaw angles below 10 deg is very good for all models.

For larger yaw angles, the decrease of thrust predicted by both BEM methods is overly large

compared to UVLM and LES-AL: at 30 deg yaw, both BEM models predict a decay of 20%

with respect to the zero-yaw case while UVLM and LES-AL predict 15% and 16% decrease
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Figure 4.31: Yaw effect on the out-of-plane root-bending moments.
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Figure 4.32: Yaw effect on the in-plane root-bending moments.

with respect to the zero-yaw case, respectively. In the case of the mean power coefficient

(Figure 4.33c) below 10 deg of yaw, there is a small but constant difference between both

BEM and UVLM and LES-AL. For larger yaw angles, the reduction predicted by BEM is

again larger than UVLM and LES-AL. It is important to point out that these coefficients

imply an important averaging effect and, consequently, their standard deviation is very small

(Figures 4.33b and 4.33d). It is small enough to evidence the numerical noise in UVLM and

LES-AL in the case of γ = 0 deg which should be exactly zero. It is interesting that,

albeit small, UVLM and LES-AL predict larger fluctuations along a revolution. All the

models agree on predicting a significant increase of the fluctuations for very high yaw angles

(γ ≥ 20 deg).

In this section we have described the aerodynamics of wind turbines in yaw through the

skewed-wake and advancing/retreating effect. At zero-yaw we trust BEM models that have

been calibrated for this case in the last few decades. In this scenario, we have shown small
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Figure 4.33: Yaw effect on rotor thrust (CT ) and power (CP ) coefficients.

mismatches below 3% in the force and rotor coefficients with UVLM and LES-AL. These

differences are kept constant for yaw angles below 10 deg. For yaw angles larger than 10 deg,

the unsteady and three-dimensional effects are very significant and, thus, we trust more

the decreases with the yaw angle of the force and rotor coefficients predicted with UVLM

and LES-AL. For yaw angles larger than 10 deg, both BEM methods predict overly large

fluctuations and power and thrust decrease with the yaw angle. Thus, the skewed-wake

model in BEM performs well at angles of yaw below 10 deg, however, for larger yaw angles,

it overestimates the effect of yaw on blade forces and rotor coefficients.

4.2.3 Turbulent inflow

The temporal and spatial scales of wind turbulence relevant for wind energy are very

wide: from blade boundary layer fluctuations triggering laminar to turbulent transition to

seasonal changes in wind direction and intensity. In this section, we use the turbulence box

generated in Section 4.1.4 as inflow for BEM, UVLM and LES-AL. First, we quantify the level

of unsteadiness present in the computations according to thin airfoil theory. Viscous drag

corrections have been included into UVLM results according to Section 4.1.1 and labelled

“UVLM + drag” in the following analysis. Next, we show the results of applying the spanwise

filter to account for BEM spanwise sections interaction described in Section 4.1.3 (denoted

“BEM + filter” in the next results). Finally, we compare the performance of the three

aerodynamic fidelities in cases of turbulence. In these simulations, the average wind speed

is U∞ = 10.5 m/s, the rotor velocity is ωr = 0.945 rad/s, the collective blade pitch is zero

and the time step is equivalent to ∆θ = 0.5 deg (0.0092 s).
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Unsteady effects in turbulent inflow

This section assesses the non-stationary character of the flow over a rotor under turbu-

lent atmospheric inflow and, therefore, the importance of employing unsteady aerodynamic

models. First, the unsteadiness of different phenomena will be quantified according to the

reduced frequency:

k =
ωc

2ur
, (4.15 revisited)

where ω is the associated circular frequency, c(r) is the airfoil chord and ur(r) is the local

relative velocity between the flow and blade sections. In attached flow conditions, thin airfoil

theory defines processes with reduced frequencies below 0.05 as quasi-steady, and processes

with reduced frequency over 0.6 as highly unsteady. Effects with reduced frequency between

these two values are referred to as unsteady processes. This analysis is not valid for regions

of separated flow such as the blade root region, which is intrinsically unsteady. Second, the

unsteady aerodynamic models in BEM and UVLM will be analysed against their quasi-steady

approximations.

Figure 4.34a shows the reduced frequency in Equation (4.15) of phenomena with char-

acteristic frequency ω equal to rotor frequency (1P), for example, yaw or shear, and blade-

passing frequency (3P). They change along the span r/R due to the varying local chord c and

relative velocity u2
r = (U∞)2 + (ωrr)

2. Phenomena with characteristic frequencies 1P and 3P

give rise to unsteady airfoil aerodynamics for spanwise positions r < 0.5R and r < 0.9R, re-

spectively. However, quasi-steady aerodynamics are observed from these spanwise positions

to the tip. The picture is more complex for turbulent inflow in which the incoming velocity

has its own frequency spectrum, Figure 4.34b shows the energy content of the higher tur-

bulence inflow velocity generated in Section 4.1.4 at different radial positions. In the inner

region (r < 0.45R) there is a large amount of energy in the unsteady and highly unsteady

range. However, towards the tip, the term ur in Equation (4.15) increases and the chord c

decreases, thus, lowering the reduced frequencies. At the spanwise location r = 0.75R the

input turbulence velocity does not have significant energy beyond k = 0.6 and closer to the

tip r = 0.94R there is no significant energy content for k > 0.07.

It is therefore evident that non-stationary aerodynamics are of importance for a large

part of the blade. Next, the effect of using quasi-steady or unsteady aerodynamic models is

studied under the turbulent inflows described in Section 4.1.4. Simulations have just been

run for one rotor revolution after steady state because it permits the detail analysis of the

aerodynamic loads and the explanation of the physics behind. At the end of this section,
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Figure 4.34: Reduced frequency values in the AVATAR rotor for different phenomena.

a longer simulation has been run to provide statistically significant results. On the one

hand, BEM is originally a steady methodology (“BEM quasi-steady” label in next figures),

although unsteady features are usually incorporated as sectional corrections as described in

Section 2.2.2 (“BEM” label in next figures). BEM results are shown filtered according to

Section 4.1.3 because it will be shown in Section 4.2.3 that it improves the accuracy of BEM.

Thus, they are labelled “BEM + filter”, however, it is irrelevant for this analysis. On the

other hand, UVLM is inherently unsteady (“UVLM + drag” in next figures) but can be

restricted to a quasi-steady solver by 1) neglecting the forces associated to time derivatives

in Equation (2.75) and 2) completely convecting the shed vorticity to the end of the wake

at each time step (“UVLM quasi-steady + drag” in next figures).

Figures 4.35a and 4.35b show the out-of-plane and in-plane force coefficients, respectively,

along a revolution at an inner spanwise position r = 0.45R. The quasi-steady UVLM model

predicts an increase in the standard deviation of the out-of-plane force coefficient by 19%

with respect to the unsteady UVLM (Figure 4.35a) and a 27% increase for the in-plane

force coefficient (Figure 4.35b). However, the quasi-steady BEM model predicts a decrease

of both the out-of-plane (Figure 4.35a) and the in-plane (Figure 4.35b) force coefficients

standard deviation by 17% and 8%, respectively, with respect to the unsteady BEM model.

This evidences that the unsteady aerodynamic captured by UVLM act as a low-pass filter

smoothing out the force coefficients along time (similar to the effect shown in Section 3.2.1)

but the BEM model for unsteady aerodynamics fails to do so.

Figures 4.36a and 4.36b shows the out-of-plane and in-plane force coefficients, respec-

tively, along a revolution at a spanwise outboard position r = 0.75R. Again, the quasi-steady

UVLM model predicts increasing standard deviation with respect to the unsteady UVLM

model, while the quasi-steady BEM model predicts smaller standard deviation with respect
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Figure 4.35: Time history of force coefficients predicted by both quasi-steady and unsteady
UVLM and BEM at r = 0.45R. Higher turbulence case.

to the unsteady BEM model.
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Figure 4.36: Time history of force coefficients predicted by both quasi-steady and unsteady
UVLM and BEM at r = 0.75R. Higher turbulence case.

Figure 4.37 shows an example (θ = 90 deg) of the instantaneous force coefficients along

the span. At this instant, quasi-steady UVLM at the outer part of the blade r > 0.6R

predicts slightly lower out-of-plane force coefficient than unsteady UVLM and there are

not significant differences between both BEM models (Figure 4.37a). The in-plane force

coefficient (Figure 4.37b) predictions are very similar for both UVLM models and the quasi-

steady BEM, however, the unsteady BEM deviates from the rest.

Power spectral density of the force coefficients at different spanwise locations are shown

in Figure 4.38. The quasi-steady approximation of UVLM predicts higher in-plane (Figures

4.38b and 4.38d) and out-of-plane (Figures 4.38a and 4.38c) power spectral density of the

force coefficients than the unsteady UVLM model. This means that unsteady aerodynamics
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Figure 4.37: Instantaneous force coefficients along the span predicted by both quasi-steady
and unsteady UVLM and BEM. Higher turbulence, θ = 90 deg.

have a damping or smoothing effect. On the contrary, quasi-steady BEM consistently pre-

dicts lower power spectral density of the force coefficients than the full model. In the inner

region (Figures 4.38a and 4.38b) the unsteady aerodynamic models have a much stronger

effect than at the tip region (Figures 4.38c and 4.38d) because of the smaller reduced fre-

quencies near the tip explained before in Figure 4.34.
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Figure 4.38: Power spectral density of force coefficients predicted by both quasi-steady and
unsteady UVLM and BEM. Higher turbulence.

To conclude, the mean and standard deviation along a revolution for the root-bending

moments are shown in Table 4.7. It evidences that, the quasi-steady UVLM model predicts

larger average loads and standard deviations with respect to the unsteady UVLM; while

the quasi-steady BEM predicts smaller loads and standard deviations with respect to the

unsteady BEM.
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Table 4.7: Aerodynamic root-bending moments mean and standard deviation for unsteady
and quasi-steady models.

Mout [MNm] σ (Mout) [MNm] Min [MNm] σ (Min) [MNm]
UVLM + drag 31.35 7.45 3.74 1.59

UVLM quasi-steady + drag 31.81 9.16 4.62 6.65
BEM + filter 31.63 9.17 3.66 1.93

BEM quasi-steady + filter 30.85 8.52 3.52 1.79

Long turbulent inflow We have just described the unsteadiness in turbulent flow and

the behaviour of BEM and UVLM and their quasi-steady approximations. Here, we use

the long turbulent inflow generated in Section 4.1.4 (Table 4.2 and Figure 4.17) to provide

statistically significant values. Wake vortices in UVLM can eventually become close to other

vortices experiencing a large induced velocity (Equation (2.63)) that is nonphysical. In this

case, vortices experience a sudden displacement. If these vortices interact with the blades,

the load estimation is not realistic. We have substituted those time steps by the interpolation

of the contiguous ones. For clarity, the following figures show the last 7 rotor revolutions

(47 s) of the computations, however, the average and standard deviation values are computed

for 15 revolutions (93 s) after the steady-state has been reached.

Figures 4.39 and 4.40 show the time evolution of the out-of-plane and the in-plane root-

bending moments, respectively. They confirm that the effect of the unsteady model in BEM

barely modifies the results. However, the root-bending moments predicted by the unsteady

UVLM model are significantly smoother than the quasi-steady UVLM predictions which can

also be seen in the standard deviation included in Table 4.8. There are still some time steps

in which the quasi-steady UVLM results show extremely large peaks that are considered

non-realistic.
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Figure 4.39: Time evolution of the out-of-plane root bending moment predicted by both
quasi-steady and unsteady UVLM and BEM. Long turbulence case.

The average and standard deviation of the root-bending moments are shown in Table
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Figure 4.40: Time evolution of the in-plane root bending moment predicted by both quasi-
steady and unsteady UVLM and BEM. Long turbulence case.

4.8. The average values are very similar between the unsteady and the quasi-steady ap-

proximations. UVLM predicts larger standard deviation of the root-bending moments when

the quasi-steady model is used. This is coherent with airfoil theory (Section 3.2.1) because

aerodynamic forces grow from zero to the steady-state value (Figures 3.6 and 3.7). However,

the standard deviation predicted by the quasi-steady BEM model are smaller than those

from the unsteady BEM approximation.

Table 4.8: Aerodynamic root-bending moments mean and standard deviation for unsteady
and quasi-steady models.

Mout [MNm] σ (Mout) [MNm] Min [MNm] σ (Min) [MNm]
UVLM + drag 28.10 5.59 3.03 1.14

UVLM quasi-steady + drag 27.77 6.86 3.03 1.45
BEM + filter 25.69 7.39 2.52 1.37

BEM quasi-steady + filter 26.08 6.91 2.58 1.29

Figures 4.41 and 4.42 show the time evolution of the rotor thrust and power coefficients,

respectively. Moreover, Table 4.9 shows the average and the standard deviation of these

coefficients. The differences between the quasi-steady and the unsteady numerical models

are very small in the prediction of these coefficients as explained before.

Table 4.9: Rotor coefficients mean and standard deviation for unsteady and quasi-steady
models.

CT σ (CT ) CP σ (CP )
UVLM + drag 0.54 0.073 0.36 0.091

UVLM quasi-steady + drag 0.55 0.071 0.37 0.081
BEM + filter 0.49 0.089 0.31 0.103

BEM quasi-steady + filter 0.50 0.086 0.31 0.103
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Figure 4.41: Time evolution of the rotor thrust coefficient predicted by both quasi-steady
and unsteady UVLM and BEM. Long turbulence case.
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Figure 4.42: Time evolution of the rotor power coefficient predicted by both quasi-steady
and unsteady UVLM and BEM. Long turbulence case.

Three-dimensional spanwise effects in turbulent inflow

In this section, we analyse the sectional force coefficients on wind turbine blades under

the turbulent inflow generated in Section 4.1.4 in Figures 4.44 to 4.46. Simulations have just

been run for one rotor revolution after steady state because it permits the detail analysis of

the aerodynamic loads and the explanation of the physics behind. At the end of this section, a

longer simulation has been run to provide statistical value to the results shown. We compare

the original BEM prediction, the BEM prediction corrected for the three-dimensional effects

for the interaction between spanwise sections according to Section 4.1.3 (labelled “BEM +

filter” in figure legends). The prediction of UVLM (including the drag correction in Section

4.1.1) is also plotted in solid grey line as a reference in this section. The following figures

do not include LES-AL data because, while achieved in literature [13], synchronising the

LES-AL and the other signals is impractical because BEM and UVLM does not modify the

upstream turbulence but, inevitably, LES-AL does.

Figure 4.43 shows the effect of the filter to account for spanwise interaction for the

higher turbulence level at θ = 90 deg as an example. The filter always smooths the spanwise

results, and has the effect of modifying the BEM loads predictions to give a closer match to

those provided by UVLM. There is a stronger effect of the filter on fluctuations with short
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wavelengths which is coherent with the filter function shown in Figure 4.9.
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Figure 4.43: Instantaneous force coefficients along the span at θ = 90 deg. Higher turbulence
case.

Figure 4.44 shows the same variables for the lower turbulence case. Depending on the

specific time step and turbulent case, the filtered BEM loads fall slightly above (Figure 4.43)

or below (Figure 4.44) the UVLM prediction.
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Figure 4.44: Instantaneous force coefficients along the span at θ = 90 deg. Lower turbulence
case.

Figure 4.45 shows the force coefficients at an inner spanwise position r = 0.45R in the

higher turbulence case. The filter smooths also the time signal of the loads and improves the

BEM approximation with respect to the UVLM one. The difference in standard deviation

between BEM and UVLM is 82% and 47% for the out-of-plane (Figure 4.45a) and the in-

plane (Figure 4.45b) force coefficients, respectively. When the filter is applied to BEM, these

differences are reduced to 37% and 26%, respectively.
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Figure 4.45: Time history of force coefficients at r = 0.45R. Higher turbulence case.

In the case of the force coefficients at an outboard location (r = 0.75R) shown in Figure

4.46 the filter also makes the BEM prediction closer to the UVLM one. However, the

initial differences between BEM and UVLM predictions are not as large as in the inboard

region: 44% and 30% for the out-of-plane (Figure 4.46a) and the in-plane (Figure 4.46b)

force coefficients standard deviation, respectively. And the effect of the filter is smaller: it

reduces the differences by 23% and 12% for the out-of-plane and the in-plane force coefficients

standard deviation, respectively. The reason is that the chords near the tip are smaller, thus,

for the same input wavelength, the force coefficients near the tip are less filtered (Figure 4.9).
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Figure 4.46: Time history of force coefficients at r = 0.75R. Higher turbulence case.

Figure 4.47 shows the mean force coefficients along a revolution as a function of the

spanwise coordinate for the higher turbulence case. It evidences that the filter improves the

agreement between BEM and UVLM.

Figure 4.48 shows the mean force coefficients as a function of the spanwise coordinate for

the lower turbulence case with similar qualitative behaviour as the higher turbulence case
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Figure 4.47: Mean over one revolution of the force coefficients along the span. Higher
turbulence case.

(Figure 4.47). Table 4.10 shows the qualitative differences of both BEM models with respect

to UVLM in the estimation of the rotor thrust and power coefficients. There are small

changes in the mean values but significant improvements in the estimation of the standard

deviation when the spanwise filter is used.
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Figure 4.48: Mean over one revolution of the force coefficients along the span. Lower turbu-
lence case.

Table 4.10: Rotor coefficients mean and standard deviation differences for BEM with and
without spanwise filter with respect to UVLM.

CT σ (CT ) CP σ (CP )
BEM 1.57% 37.36% 5.59% 31.92%

BEM + filter -1.25% 27.07% -1.30% 18.21%
UVLM + drag 0.00% 0.00% 0.00% 0.00%
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Long turbulent inflow We have just described the effect of the spanwise filter (Section

4.1.3) on the BEM computations. Here, we use the long turbulent inflow generated in

Section 4.1.4 (Table 4.2 and Figure 4.17) to provide statistically significant values. For

clarity, the following figures show the last 7 rotor revolutions (47 s) of the computations,

however, the average and standard deviation values are computed for 15 revolutions (93 s)

after the steady-state has been reached.

Figures 4.49a and 4.49b show the standard deviation of the out-of-plane and the in-

plane force coefficients along the span. They show that the filter applied to BEM reduces

the standard deviation of the force coefficients and makes BEM prediction closer to UVLM

which is considered more accurate because it inherently accounts for the three-dimensional

effect of interacting spanwise sections in turbulent inflow.
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Figure 4.49: Standard deviation of the force coefficients along the span. Long turbulence
case.

Figures 4.50 and 4.51 show the time evolution of the out-of-plane and the in-plane root-

bending moments, respectively. There are still some small differences between UVLM and

BEM but the spanwise filter applied to BEM always makes the results closer to UVLM. The

average and standard deviations are shown in Table 4.11.

Table 4.11: Aerodynamic root-bending moments mean and standard deviation.

Mout [MNm] σ (Mout) [MNm] Min [MNm] σ (Min) [MNm]
BEM 25.78 7.61 2.61 1.38

BEM + filter 25.69 7.39 2.52 1.37
UVLM + drag 28.10 5.59 3.03 1.14

Figures 4.52 and 4.53 show the time evolution of the rotor thrust and power coefficients,
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Figure 4.50: Time evolution of the out-of-plane root bending moment. Long turbulence case.
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Figure 4.51: Time evolution of the in-plane root bending moment. Long turbulence case.

respectively, and Table 4.12 the average and standard deviation values. Again, they confirm

that the filter applied to BEM makes the results closer to UVLM.
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Figure 4.52: Time evolution of the rotor thrust coefficient. Long turbulence case.

Table 4.12: Rotor coefficients mean and standard deviation.

CT σ (CT ) CP σ (CP )
BEM 0.51 0.096 0.33 0.109

BEM + filter 0.49 0.089 0.31 0.103
UVLM + drag 0.54 0.073 0.36 0.091

In summary, the use of the spanwise filter on BEM computations makes the aerodynamic
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Figure 4.53: Time evolution of the rotor power coefficient. Long turbulence case.

loads of BEM more similar to UVLM in cases where significant interaction between spanwise

sections are present. However, this filter could be improved with higher-fidelity methods.

Turbulent inflow benchmark

This section analyses the performance of the different fidelities with the proposed im-

provements in the computation of aerodynamic loads under the turbulent inflows generated

in Section 4.1.4. Results are presented in terms of conventional statistics calculated over a

short time window equivalent to one rotor revolution. The unsteady and three-dimensional

aerodynamic effects that are of interest to this section have time scales shorter than one rotor

revolution as shown in Section 4.2.3. However, this time would not be suitable to compute

life-cycle performance indicators such as equivalent fatigue loads.

The average out-of-plane and in-plane force coefficients along a revolution for the higher

turbulence case are shown in Figures 4.54a and 4.54b, respectively. In general, there is a

very good agreement between UVLM and BEM for spanwise positions r > 0.3R. In the root

region, UVLM is no longer valid because of the inapplicability of the thin-airfoil theory to this

region of significant flow separation. LES-AL agrees well with the other solvers in the out-of-

plane and in-plane force coefficients in the midspan region. However, it overpredicts the force

coefficient near the tip probably because the grid refinement is not enough in that region

where the chords become smaller. The LES-AL solver employs uniform grids so refining the

mesh requires refining the whole domain which was computationally too expensive for this

study.

Figure 4.55 also shows the out-of-plane and the in-plane force coefficients along the span

for the lower turbulence case. The conclusions detailed for the higher turbulence case (Figure

4.54) are confirmed here. In the region 0.2R < r < 0.4R there is a significant disagreement

between the LES-AL and the BEM predictions of the in-plane force coefficient in the higher
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Figure 4.54: Mean over one revolution of the force coefficients along the span. Higher
turbulence case.

and lower turbulence cases (Figures 4.54b and 4.55b, respectively) and the out-of-plane

foce coefficient in the lower turbulence case (Figure 4.55a). In this region, the flow is very

unsteady and differences are expected because of the different treatment of unsteadiness by

BEM and LES-AL.
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Figure 4.55: Mean over one revolution of the force coefficients along the span. Lower turbu-
lence case.

The standard deviation of the out-of-plane force coefficient in the higher and lower tur-

bulence cases is shown in Figures 4.56a and 4.57a, respectively. The three methods are in

good agreement. BEM slightly overpredicts the standard deviation of the in-plane force

coefficients in the higher (Figure 4.56b) and the lower turbulence (Figure 4.57b) cases with

respect to UVLM. In the prediction of the in-plane force coefficient, LES-AL agrees well

with UVLM in the case of higher turbulence (Figure 4.56b) and LES-AL agrees better with

BEM in the case of lower turbulence (Figure 4.57b). However, these differences in standard
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deviation in the prediction of the in-plane force coefficients are small so we consider there is

a general good agreement between the three numerical methods.
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Figure 4.56: Standard deviation over one revolution of the force coefficients along the span.
Higher turbulence case.

The standard deviation of the in-plane force coefficients (Figures 4.56b and 4.57b) is

around 50% the mean value of these coefficients (Figures 4.54b and 4.55b). However, in

the case of the out-of-plane force coefficients, the standard deviation (Figures 4.56a and

4.57a) is around 25% of the mean values (Figures 4.54a and 4.55a). This indicates that the

in-plane force coefficient is more sensitive to atmospheric turbulence than the out-of-plane

force coefficient.
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Figure 4.57: Standard deviation over one revolution of the force coefficients along the span.
Lower turbulence case.

Finally, Figure 4.58 shows the power spectral density of the out-of-plane and the in-plane

force coefficients at two spanwise locations (r = 0.45R and r = 0.75R) for the higher turbu-

lence case. In the inner region r = 0.45R (Figures 4.58a and 4.58b) there is a considerable
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amount of energy in the highly unsteady range k > 0.6 which suggest that the flow behaviour

is highly unsteady in the inner region. At the spanwise position r = 0.75R (Figures 4.58c

and 4.58d) the energy content in the highly unsteady range k > 0.6 is significantly smaller

and the agreement of the three solvers has improved with respect to the inner region. For

both spanwise positions and both force coefficients, BEM and LES-AL agree quite well in the

power spectral density decay with increasing reduced frequency. However, UVLM predicts

faster decay of power spectral density with the reduced frequency. It is likely that the un-

steady BEM model and the computation of forces with steady-state data in LES-AL are not

filtering enough these extremely high frequencies that are usually damped by aerodynamic

effects (as described in Section 3.2.1).
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Figure 4.58: Force coefficients power spectral density. Higher turbulence case.

In the lower turbulence case (Figure 4.59) the same trends are observed. The energy con-

tent in the inner region is smaller than in the higher turbulence case (Figure 4.58), however,

at the spanwise position r = 0.75R the energy is very similar between both turbulence levels

because the relative velocity between the blade and the flow is dominated by the rotation

velocity ωrr, instead of the freestream U∞ velocity.

In general, the three modelling methods for rotor aerodynamics (BEM, UVLM and LES-

AL) agree well in the estimation of force coefficients along the span for cases of turbulent

inflow when the improvements suggested in Section 4.1 are applied.
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Figure 4.59: Force coefficients power spectral density. Lower turbulence case.

Reduced order models

To conclude this chapter, we show a brief study on the accuracy of the reduced order

models (ROM) of the linearised UVLM described in Section 2.2.1. The linearisation has

been performed around steady-state conditions under uniform steady wind perpendicular to

the rotor plane. In this case, the inflow is constant for any azimuthal position of the blades

and the system becomes a time-invariant problem. The linear model includes 300000 states

and the ROM only 72. In particular, the stability of this ROM was verified before running

the computations. The H∞ norm of the error of the frequency response is 10−3. Figure 4.60

shows the frequency response between the inflow velocity perpendicular to the rotor and the

aerodynamic force out-of-plane at r = 0.75R as an example.
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Figure 4.60: Full linear and reduced order model frequency response.

The nonlinear UVLM, the linear UVLM and the reduced order model (UVLM ROM)

have been tested under an idealised uniform turbulent inflow, this is, the wind velocity

changes with time but at every instant the velocity is the same everywhere in the flow field.
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This idealisation is required to reduce the input dimensions of the linear system such that

the cost of the model order reduction is feasible. The time variation of the wind velocity

has been generated as the hub height sampling of a turbulent field of turbulence intensity

IT ≈ 18%. Figure 4.61 shows the average out-of-plane and in-plane coefficients along the

blade span. The three approximations provide very close results in every region of the blade.
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Figure 4.61: Force coefficients along the span. A-level turbulence.

Figure 4.62 shows the change of the force coefficients along a revolution at the span

position r = 0.75R showing very good agreement for all approximations. However, the

nonlinear solution is slightly smoother and the linear and ROM solutions are slightly delayed.

This is also observed in the rotor thrust and power coefficients (Figure 4.63).
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Figure 4.62: Time history of force coefficients at r = 0.75R. A-level turbulence.

Exploring the use of reduced order models could be a line of future research that has

enormous potential to reduce the computational cost of aerodynamic modelling, especially,

in combination with the new wake convection equation discretisation (Section 4.1.2).
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Figure 4.63: Time history of rotor coefficients. A-level turbulence.
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Chapter 5

Floating wind turbine aeroelasticity

and control

Chapter 4 has shown the suitability of vortex methods to capture unsteady and three-

dimensional effects on rigid wind turbine rotors. However, offshore wind turbines have

increasingly flexible blades and include tower and platform dynamics, which are studied in

this chapter. First, we analyse the differences between a rigid and a flexible rotor, in Section

5.1. We describe the aeroelasticity of a flexible rotor under steady uniform inflow using Un-

steady Vortex-Lattice Method (UVLM) for the aerodynamic computation (Section 2.2) and

Geometrically-Exact Beam Theory (GEBT) for the nonlinear structural dynamics (Section

2.1.1). The combination of these two methods captures the dominant geometric changes of

the aerodynamic surfaces associated to the structural deformation. Capturing blade twist

has been shown to be of particular importance because it changes the angle of attack of the

blade sections [195] and, therefore, wind turbine loads and power generation. This concur-

rent aeroelastic simulation is the basis to study complex phenomena like bend-twist coupling

in composite structures [94] which are a promising tool for passive load alleviation [103].

In addition, floating platforms displace, rotate and are excited by forces with a wide range

of characteristic frequencies from the wave and wind spectra, which can interact with the nat-

ural frequencies of tower, blades and rotor. In Section 5.2, a simplified set of cases including

prescribed base movements provides insights on the influence of the platform motions on the

system, in particular, the unsteady character of flow on the blades. The floating dynamics

model (Section 2.3) includes quasi-steady mooring dynamics, linear hydrodynamics based on

precomputed frequency response with vortex methods and viscous drag contribution from

Morison’s equation.

201



202 Chapter 5. Floating wind turbine aeroelasticity and control

Finally, we have built a suitable model to study unsteady and three-dimensional aerody-

namic effects with UVLM on large offshore wind turbines that require multibody nonlinear

GEBT to capture the structural dynamics together with a model for the floating dynamics.

In Section 5.3, we simulate the whole floating system subjected to a wide spectrum of waves

and wind turbulence with a collective (all blades are pitched at the same angle) blade pitch

control system as described in Section 2.4.1 which we redesign based on our complex model

aiming to improve the wind turbine dynamics. As an initial study, we only consider oper-

ation in the above-rated regime because it has more influence on structural loads than the

below-rated regime [141].

In this chapter, we analyse the NREL 5 MW wind turbine with the OC3 platform de-

scribed in Section 3.4, due to the availability of an exhaustive description of the floating

platform [175] and numerical data for validation [176, 189]. We perform prescribed wake

UVLM simulations to reduce the computational cost at the expense of diminished accuracy

in the computation of in-plane forces and, thus, power coefficient. The methodology to in-

clude viscous drag described in Section 4.1.1 does not provide improved results here because

the baseline values on which the correction would be applied are not accurate due to the

use of a prescribed wake model. However, the in-plane force is usually smaller than the out-

of-plane force and less relevant for the system dynamics. Moreover, this chapter focuses on

above-rated conditions where fatigue loads appear and the control algorithm has significant

influence on their limitation.

5.1 Steady flexible rotor

In this section and the rest of this chapter, we analyse the NREL 5 MW wind turbine

(Section 3.4). The blade discretisation includes 28 spanwise and 64 chordwise panels and

a wake able to account for the vorticity shed during 7 rotor revolutions to obtain mesh

converged results according to Section 3.3.1. The time step is equivalent to ∆θ = 2 deg

(0.028 s). The wind turbine is mounted on the OC3 platform which is modelled with a

concentrated-spar model according to Section 3.4.

Consider the rotor operating under steady uniform wind of U∞ = 18 m/s which cor-

responds to operation in the above-rated regime. In this regime, operating at maximum

efficiency (for power production) is not desirable anymore because it would imply extremely

high loads. A reduction in loads (and efficiency) is achieved by pitching the blades with the

intention to keep the power production to the nominal value (E = 5.3 MW). At U∞ = 18 m/s



5.1. Steady flexible rotor 203

the collective pitch angle needed to generate nominal power is θp = 15 deg according to [179].

In this section, we study the forces and deformations of blades though the out-of-plane cout (r)

and the in-plane cin (r) force coefficients described in Equation (3.9) along the spanwise di-

rection r with respect to the rotor radius R = 63 m. We also include blade deformations with

respect to the unloaded state in the out-of-plane xout (r) and the in-plane xin (r) directions.

The deformations of the tower-top are described along the x and y axis, that is, moving

forward and backwards (fore-aft) and side-to-side, respectively.

The blade twist angle βt (r) is the rotation around the local x axis (parallel to the blade

reference line). According to GEBT, the blade twist coincides with the first of the Euler

angles associated to the rotation CBdB0 [85] between the undeformed B0 and the deformed

Bd local frames of reference (Figure 2.1). We also compute the pitching moment coefficient

around the pitch axis cM (r), which is computed as the moment per unit span length around

this axis divided by 0.5ρ (U∞)2 πR3. Positive twist angles and moment coefficients twist

the blade towards feather (when the airfoil chord is aligned with U∞), otherwise, it would

indicate a twist towards stall (when the airfoil chord is aligned with ωrr) as shown in Figure

5.1. Notice that this is the usual sign convention in wind energy but is contrary to that used

in traditional airfoil theory.

U∞

ωrr

ur

βt + θp

α
φf

Aerodynamic centre
Pitch axis

cM > 0
cL

cMAC
> 0

Figure 5.1: Blade pitching moment scheme.

We start the analysis with the rigid model. Figures 5.2a, 5.3a and 5.4a show the out-of-

plane, in-plane forces and moment coefficients which, at the operation point (θp = 15 deg) are

all small because the power available in the wind is much higher than required for nominal

operation. At low pitch angles (θp = 10 deg), the angle of attack and, thus, the force

coefficients increase. For high pitch angles (θp = 20 deg), the opposite behaviour is observed

and, eventually, the in-plane force coefficient (associated with the power generation) becomes

negative at the outer part of the blade r > 0.6R as shown in Figure 5.3a, thus, opposing the
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power generation in this part of the blade.
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Figure 5.2: Out-of-plane force coefficient and displacement for different pitch angles and
structural models.

The rigid and flexible models, labelled as “rigid” and “flex”, respectively, in the figures

of this chapter, have the true mass and stiffness distribution of the wind turbine [179]. The

mean out-of-plane, in-plane and twist deformation are shown in Figures 5.2b, 5.3b and 5.4b,

respectively. At the real operating point (θp = 15 deg), the out-of-plane and the in-plane

tip deformations are small: 1% and 0.5% of the blade radius, respectively. For smaller pitch

angles (θp = 10 deg), the blade is more heavily loaded and the out-of-plane and in-plane

tip deformations are 6% and 2% of the blade radius, respectively. In the flexible blade

estimation at pitch angles θp = 15 deg and θp = 20 deg the out-of-plane and the in-plane

force coefficients decrease significantly in the outer part of the blade r > 0.5R with respect

to the rigid approximation (Figures 5.2a and 5.3a, respectively) and the pitching moment

coefficient becomes more positive (Figure 5.4a). The case of θp = 20 deg shows the smaller

loads, but still, the differences between the rigid and the flexible approximations are the

largest. To explain this effect, we need to consider, first, that the pitch axis is behind

aerodynamic centre and, second, that the pitching moment coefficient with respect to the

pitch axis is composed by an approximately constant positive moment coefficient around the

aerodynamic centre (remember the sign convention is opposite to traditional airfoil theory)

plus a negative moment generated by the lift force as shown in Figure 5.1. The case of

θp = 10 deg has the highest out-of-plane and in-plane force coefficients which are mainly

related to the airfoil lift coefficient. In this cases, the negative and the positive contribution
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to the moment coefficient balance out and thus, the blade twists less (Figure 5.4b). On

the other hand, the case of θp = 20 deg, the lift coefficient is smaller and then it does not

counteract the constant positive moment around the aerodynamic centre leading to larger

twist angles.
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Figure 5.3: In-plane force coefficient and displacement for different pitch angles and struc-
tural models.

In the previous paragraph we have explained the significant decrease of in-plane and out-

of-plane force coefficients of the flexible model with respect to the rigid one as a result of the

blade twist. To corroborate this hypothesis, we have also created a fictitious wind turbine

model in which the torsional stiffness has been increased by 100 times and it is labelled as

“100GJ”. If the decrease in in-plane and out-of-plane force coefficients is associated with the

twist angle, as we proposed in the previous paragraph, this model should not display such

behaviour. This change implies that the blade will not twist under these loads as shown

in Figure 5.4b and it makes all the force coefficients (Figures 5.2a, 5.3a and 5.4a) equal to

the rigid model. Notice that the blade does not twist (Figure 5.4b) but it bends in the

out-of-plane (Figure 5.2b) and the in-plane (Figure 5.3b) directions. It actually bends more

in those directions that the original flexible model because when the blade is not allowed to

twist, the in-plane and out-of-plane force coefficients are the same as in the rigid case (larger

than the flexible case) and, thus, the structure bends more.

In summary, a flexible model predicts significantly lower in-plane and out-of-plane force

and pitching moment coefficients with respect to a rigid model. We measure this decrease

in force coefficients through the integrated root-bending moments: in the true operation
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Figure 5.4: Moment force coefficient and twist for different pitch angles and structural
models.

case of θp = 15 deg, the out-of-plane and the in-plane root-bending moments computed with

the flexible model are 35% and 24% lower than the rigid approximation. This constitutes

a coupled interaction between the structural and the aerodynamic models in the sense that

when the blade twists due to a positive pitching moment it deforms towards feather, this

reduces the angle of attack and the lift coefficient, thus, the pitching moment becomes

more positive and the blade deforms even further towards feather until an equilibrium is

reached. This analysis shows the importance of accounting for the change in orientation of

the aerodynamic surface due to structural deformation (in particular the twist rotation) to

adequately capture forces and deformations.

The previous effect also influences the power production estimation. In the NREL 5 MW

wind turbine description [179] the pitch angle at which the nominal power production E =

5.3 MW is generated in the above-rated regime is computed with BEM method and shown

in Figure 5.5b. We use the collective blade pitch angle in Figure 5.5b to estimate the power

based on UVLM for the rigid and the flexible (GEBT) models which is shown in Figure 5.5a.

The inaccuracy of UVLM in the computation of the power production described in Section

4.1.1 is also evidenced here in the excess power generation with the rigid model with respect

to the reference values. The power generation of the rigid and flexible models at wind speeds

of 12 m/s is very similar (3% difference). As wind increases and the blade flexes, as described

before in this section, the power generation decreases significantly in the flexible model with

differences of 25% and 50% at U∞ = 18 m/s and U∞ = 24 m/s, respectively, with respect to
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the rigid model. The decrease in loads associated with the blade twisting has already been

reported for the NREL 5 MW wind turbine in aeroelastic simulations with BEM [195] and

CFD [196].
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(b) Collective blade pitch angle.

Figure 5.5: Power production as a function of the freestream wind speed at blade pitch angle
defined in Ref [133]. NREL 5 MW rotor.

Obviously, it is not desirable that the wind turbine generates power below nominal in the

above-rated regime. Consequently, the collective pitch angle should be redefined for each

wind speed such that the nominal power is achieved for each model. The rigid model should

operate at higher pitch angles to reduce the angle of attack and, thus, the power generation.

On the contrary, for the flexible model, the pitch should be decreased with respect to the

reference approximation. The collective pitch angle that each model requires to generate

nominal power is shown in Figure 5.6b and, for the ease of reading, we show how each model

effectively generates nominal power in Figure 5.6a.
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Figure 5.6: Rotor collective pitch angle for nominal power production. NREL 5 MW rotor.
Ref [133].

As we have seen, the blade pitch significantly modifies loads and power generation and

it is currently the main actuation strategy for wind turbine control. Thus, an accurate
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computation of the sensitivity of power to collective pitch angle is an important quantity to

tune the control parameters according to(
I +

1

ωr

(
−∂E
∂θp

)
GKD

)
θ̈ +

(
1

ωr

(
−∂E
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)
GKP −

E

ω2
r

)
θ̇ +

(
1

ωr

(
−∂E
∂θp

)
GKI

)
θ = 0,

(2.128 revisited)

to define the natural frequency and the damping ratio of the closed-loop system (Section

2.4.1). Figure 5.7 shows the power generation as a function of the blade pitch at different

wind speeds around the pitch angle previously defined in Figure 5.6 at which we obtain

nominal power generation.
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Figure 5.7: Power generation as a function of the collective blade pitch. NREL 5 MW rotor.

The slopes of the power-to-pitch curves in Figure 5.7, computed as the slope of the least

squares fit of the points for each wind speed, provide the sensitivity dE/ dθp required to

define the gains of the PID controller, such that, through the closed loop system (Equation

(2.128)) has the damping and natural frequencies desired. This sensitivity is shown in Figure

5.8. The sensitivity of the flexible model is smaller than the rigid approximation. A better

estimation of the sensitivity of power with respect to pitch leads to new PID gains that make

the closed-loop natural frequencies and damping ratio closer to the desired ones.

Equation (2.128) describes the behaviour of an onshore wind turbine but the offshore

wind turbine shows reduced aerodynamic damping due to platform pitching as we have

already described in Section 1.1. To reduce the impact of this effect, it has been proposed in

the literature [175] to reduce the P and I gains by 3 and 9 times, respectively, with respect

to the onshore values. In the same way, we have computed the new P and I gains with the

new power-to-pitch sensitivity and the new values are gathered in Table 5.1. Our model that

includes flexibility and accounts for blade twist leads to P and I parameters 23% lower than

those of the Reference [179]. We only consider operation in the above-rated regime because
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Figure 5.8: Change of the power generation with the pitch angle. NREL 5 MW rotor.

it has more influence on structural loads than the below-rated regime [141]. We will analyse

the differences between the reference and the redesigned controllers in Section 5.3.

Table 5.1: PI values at θp = 0 deg for the NREL 5 MW wind turbine.

obtained from Ref [179] computed from Figure 5.8
onshore offshore onshore/offshore onshore offshore

KP 0.01883 0.006276 3 0.01455 0.004849
KI 0.008069 0.0008965 9 0.006235 0.0006927

5.2 Prescribed platform movements

We prescribe sinusoidal motions at the base of the NREL 5 MW wind turbine mounted

on the OC3 platform to study if these cases generate unsteady and three-dimensional aero-

dynamic and nonlinear structural effects. Computations are performed with flexible tower

and blades, at incoming wind speed U∞ = 11.4 m/s, rotor velocity ωr = 12.1 rpm (0.2 Hz)

and fixed collective blade pitch angle θp = 0 deg. The system dynamics are closely related

to the natural frequencies of the system, thus, the natural frequencies associated with plat-

form motions and tower and blade flexibility are recorded in Tables 5.2 and 5.3, respectively.

These natural frequencies were obtained in [179] assuming a rigid nacelle-rotor joint and zero

rotation velocity.

Table 5.2: NREL 5 MW OC3 natural frequencies. Platform degrees of freedom.

Movement Surge and sway Heave Roll and pitch Yaw
Natural frequency [Hz] 0.008 0.032 0.034 0.12
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Table 5.3: NREL 5 MW OC3 natural frequencies. Tower and blades deformations.

Tower Blade
Movement fore-aft bending collective flapwise bending edgewise bending

Natural frequency [Hz] 0.47 0.71 1.08

5.2.1 Platform pitch

First, we prescribe a pitching motion of the platform, according to

ϕy =
A

2
cos (2πfpt) , (5.1)

where ϕy is the platform pitch angle, A is the peak-to-peak movement amplitude, fp is the

prescribed movement frequency and t is time. In particular, we have chosen the platform

pitch natural frequency (0.034 Hz) for this motion because at this frequency large displace-

ments are likely. We have also simulated twice that frequency (0.068 Hz). We have run

the cases with amplitudes of A = 4 deg and A = 0.04 deg. We use the zero-amplitude case

(A = 0 deg) as a reference, that corresponds to an onshore wind turbine configuration.

All cases show negligible differences in mean out-of-plane and in-plane force coefficients

as shown, along the spanwise direction r, in Figures 5.9a and 5.9b, respectively. However,

each case generates significantly different fluctuations as measured by the standard deviation

of these coefficients (Figure 5.10). To quantify these differences, both the out-of-plane and

in-plane root-bending moments standard deviation increase by 2.5 times in the case with

frequency equal to 0.034 Hz with respect to the fixed case. In the case of 0.068 Hz, the

out-of-plane and the in-plane root-bending moments standard deviation increase by 6 and

5 times, respectively, with respect to the fixed case. Even the fixed case shows non-zero

standard deviation of the force coefficients because of the gravity loads and the out-of-plane

deformations.

The power spectral density of the tower-top displacements for the oscillation at pitching

frequency 0.034 Hz has two large peaks of energy at the platform pitching frequency (fp =

0.034 Hz) and close to the tower fore-aft bending frequency (0.4 Hz) as shown in Figures

5.11a and 5.11b for the fore-aft and the side-to-side displacements. The peaks associated

to the tower fore-aft bending appear at frequencies of around 0.4 Hz which is slightly below

the tower bending frequency reported in literature [176] (0.47 Hz) because of a small mistake

in the tower mass distribution. In the case of oscillation at 0.068 Hz, the first peak of the

frequency spectrum is displaced to that frequency. The fore-aft displacement has the highest



5.2. Prescribed platform movements 211

A = 0deg A = 4deg, fp = 0.034Hz A = 4deg, fp = 0.068Hz A = 0.04 deg, fp = 0.034Hz

0.0 0.2 0.4 0.6 0.8 1.0
r/R

0.0

0.2

0.4

c o
u
t

(a) Out-of-plane force coefficient.

0.0 0.2 0.4 0.6 0.8 1.0
r/R

0.00

0.03

0.05

c i
n

(b) In-plane force coefficient.

Figure 5.9: Prescribed platform pitch at different frequencies and amplitudes. Mean force
coefficients.
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Figure 5.10: Prescribed platform pitch at different frequencies and amplitudes. Standard
deviation of the force coefficients.

peak at the prescribed frequency because the platform pitching movement is aligned with

the fore-aft displacement. On the other hand, the side-to-side energy content is smaller

and centred around the tower bending frequency instead of the forced prescribed pitching

frequency. It is important to highlight that the system is being excited at the platform

natural frequencies because we consider that the critical case for operation. However, here we

aimed to do a systematic analysis, thus, the platform movements are not free but prescribed

(Equation (5.1)). Therefore, the platform is not free to move and, thus, cannot resonate

at its natural frequencies. On the other hand, the tower and blades are resonating at their

natural frequencies.

The tower-top displacements become an excitation at the blade root, thus, the blade

forces and displacements show peaks at the previous frequencies (prescribed movement fre-

quency fp and tower bending frequency at 0.4 Hz). Additionally, there are peaks at the rotor
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(a) Fore-aft tower top displacement.
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(b) Side-to-side tower top displacements.

Figure 5.11: Prescribed platform pitch at different frequencies and amplitudes. Tower-top
displacements.

rotation frequency (0.2 Hz), the blade passing frequency (0.6 Hz), the tower fore-aft bending

frequency (0.4 Hz). Moreover, there are two peaks that appear at 0.17 Hz and 0.23 Hz in the

case of oscillation at 0.034 Hz and at 0.13 Hz and 0.27 Hz in the case of oscillation at 0.068 Hz.

They do not correspond to any natural frequency of the system or external excitation and

they do not appear in the case of small amplitude (A = 0.04 deg). Thus, we can attribute

them to nonlinear couplings in the system. The peak associated to the rotor rotation fre-

quency (0.2 Hz) has, obviously, the same value regardless of the platform motion amplitude.

However the peak associated with the platform motion value varies significantly with the

movement amplitude. This makes the peak in the case of 0.04 deg almost imperceptible.

A = 0deg A = 4deg, fp = 0.034Hz A = 4deg, fp = 0.068Hz A = 0.04 deg, fp = 0.034Hz
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0.27 Hz

0.13 Hz

0.2 Hz (1P)

0.4 Hz

0.6 Hz

  (3P)

(b) In-plane blade displacements.

Figure 5.12: Prescribed platform pitch at different frequencies and amplitudes. Blade tip
displacements.

Next, we analyse whether these displacements have triggered unsteady aerodynamics or

if the quasi-steady approximation is accurate. As described in Section 4.2.3, the reduced
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frequency in Equation (4.15) is a good measure of the aerodynamic unsteadiness of a process

and is plotted here on the x axis, while the real frequency is shown for some peaks of

the spectrum to identify them with natural frequencies. Figures 5.13a and 5.13b show the

out-of-plane and the in-plane force coefficients’ power spectral densities, respectively, at the

spanwise position r = 0.75R. Processes with reduced order frequencies below k < 0.05

are considered quasi-steady which includes the peak associated with the pitching motion

(0.034 Hz, k ≈ 0.005). The rotor rotation frequency (0.2 Hz, k ≈ 0.03) is also in the quasi-

steady range. There is no relevant energy in the range of the spectrum considered highly

unsteady k > 0.6.

A = 0deg A = 4deg, fp = 0.034Hz A = 4deg, fp = 0.068Hz A = 0.04 deg, fp = 0.034Hz
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(b) In-plane force coefficient.

Figure 5.13: Prescribed platform pitch at different frequencies and amplitudes. Force coef-
ficients at spanwise location r = 0.75R.

We analyse the same variables at an inner spanwise position r = 0.45R in Figure 5.14.

The pitching motion is still in the quasi-steady range (0.034 Hz, k ≈ 0.01). However, the

rotor rotation (0.2 Hz, k ≈ 0.07) and the tower and blades generate unsteady aerodynamic

phenomena. These vibrations could be of concern for aerodynamic unsteadiness. Neverthe-

less, this region is usually unsteady due to blade stall [12].

In summary, prescribed pitch movements of the wind turbine base do not modify the

average out-of-plane and in-plane force coefficients due to the symmetry of the movement.

However, they significantly increase the standard deviation of these force coefficients which

is relevant for fatigue load analysis. These movements at the platform natural pitching

frequency and twice that frequency induce unsteady aerodynamic forces in the inner region

of the blade but they are associated with quasi-steady effects in the outer part of the blade.
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Figure 5.14: Prescribed platform pitch at different frequencies and amplitudes. Force coef-
ficients at spanwise location r = 0.45R.

5.2.2 Platform roll

Similar to Equation (5.1) we now prescribe a rolling ϕx motion of the platform at the

platform rolling natural frequency (0.034 Hz). Again the mean out-of-plane and in-plane force

coefficients do not significantly change with the platform prescribed roll motion as shown in

Figures 5.15a and 5.15b, respectively. The standard deviation of these coefficients increases

when the motion is prescribed except for the in-plane force coefficient in the tip region

r > 0.8R (Figure 5.16b). The in-plane and out-of-plane root-bending moments standard

deviation increases by 15% and 46%, respectively, with respect to the fixed case.
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Figure 5.15: Fixed and prescribed platform roll. Mean force coefficients.

The tower-top fore-aft and side-to-side displacements are shown in Figures 5.17a and

5.17b, respectively. The peaks associated with the prescribed rolling frequency (0.034 Hz)

and tower bending (0.4 Hz) are equally significant. These peaks are smaller than those

found in the case of the prescribed pitching motion in previous Section 5.2.1 because the
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Figure 5.16: Fixed and prescribed platform roll. Force coefficients standard deviation.

interaction with the aerodynamics is not as strong as in the previous case. There are other

interactions at twice the rolling frequency (0.07 Hz) and the blade passing frequency (0.6 Hz)

in the fore-aft tower-top displacement (Figure 5.17a).
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(a) Fore-aft tower top displacement.
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(b) Side-to-side tower top displacements.

Figure 5.17: Fixed and prescribed platform roll. Tower-top displacements.

In this case, the dominant peak at blade-tip out-of-plane (Figure 5.18a) and in-plane

(Figure 5.18b) displacements appears at the rotor rotation frequency (0.2 Hz). However, the

prescribed rolling frequency (0.034 Hz) is not significantly excited. There are two peaks in

the tower-top fore-aft (Figure 5.17a) and the blade out-of-plane (Figure 5.18a) displacements

spectra at frequencies 0.17 Hz and 0.23 linked to nonlinearities in the system.

In summary, the roll motion at the platform natural rolling frequency does not influence

the mean out-of-plane and in-plane force coefficients but increases their standard deviation.

The tower top displacements occur at the platform pitching motion and close to the tower

bending frequency with similar energy content of both of them. This motion does not

significantly affect the blade deformation that happens at the rotor frequency and close to
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Figure 5.18: Fixed and prescribed platform roll. Blade-tip displacements.

the blade bending frequencies.

5.3 Floating operation under turbulent wind and waves

Finally, we simulate the floating NREL 5 MW wind turbine with the OC3 platform under

turbulent wind and an irregular wave spectrum excitation following the case description in

[176]. Similar to Section 4.1.4, we generate a Mann box of turbulence to be convected to the

wind turbine based on Taylor’s hypothesis. The mean wind speed is U∞ = 18 m/s without

wind shear and with a turbulence intensity of IT = 11 % using the parameters described in

Table 5.4. The time evolution and the power spectral density of the wind velocity at hub

height are shown in Figure 5.19. The mean wind speed and the wave spectrum are correlated

under the assumption of fully-developed sea [120], in this case, the wave spectrum follows

a JONSWAP shape according to Equation (2.117) with a peak spectral period Tp = 10 s,

a significant wave height hs = 6 m and a unidirectional propagation direction along the

positive x axis (Figure 2.6) which power spectral density is shown in Figure 5.20. These

cases have been run for 150 s starting from steady state scenario of calm sea and constant

wind with a time step equivalent to ∆θ = 2 deg (0.028 s). The system natural frequencies

and the characteristic peaks of the waves spectrum have been collected into Table 5.5 to

facilitate the next analysis. We simulate the system in open-loop and closed-loop with the

two sets of PI gains for offshore operation in Table 5.1 associated to the reference model [175]

and the redesign model accounting for UVLM aerodynamics and GEBT structural dynamics

(Section 5.1) to evaluate their performance.

Figures 5.21 to 5.24 show the mean value (diamond marker) and minimum-to-maximum
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Table 5.4: Mann box input parameters. Floating NREL 5 MW OC3 simulation.

αTε
2/3
T LT ΓT seed Nx Ny Nz ∆x ∆y ∆z

[m 1/3 s−2] [m] [-] [-] [-] [m] [m] [m]
0.33 29.4 3.9 7 8192 32 32 1.5381 4.6875 4.6875
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(a) Time evolution.
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Figure 5.19: Longitudinal wind velocity inflow.
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Figure 5.20: Wave height spectrum.

range (black horizontal lines) of some relevant variables. They also include a vertical dotted

line at the equilibrium values, which are zero for all the variables except from the platform

surge (rGx = 11.6 m), pitch (ϕy = 2.3 deg), blade pitch (θp = 14.6 deg), rotor velocity

(ωr = 12.1 rpm) and generator power (E = 5.3 MW).

In the open-loop case, the pitch is fixed at the equilibrium value but the rotor velocity

can freely change based on the aerodynamic torque that it withstands. In this case, the

effect of turbulent wind and waves reduces the system mean power generation by 10% with

respect to the closed-loop reference case (Figure 5.24a), thus, the mean rotor speed is also

10% lower (Figure 5.24c) and the mean platform surge (Figure 5.21a) and pitch (Figure

5.21b) are both reduced by 16% with respect to the closed-loop reference case due to the
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Table 5.5: NREL 5 MW OC3 natural frequencies and waves spectrum peaks for the JON-
SWAP multiphysics validation case.

Platform
Movement Surge and sway Heave Roll and pitch Yaw

Natural frequency [Hz] 0.008� 0.032 0.034× 0.12

Tower
Movement Side-to-side bending Fore-aft bending

Natural frequency [Hz] 0.46 0.47�

Blades
Movement Collective flapwise bending Edgewise bending

Natural frequency [Hz] 0.71 1.08

Rotor
Movement Rotation frequency (1P) Blade-passing (3P)

Natural frequency [Hz] 0.2F 0.6+

Waves
Main peak Minor peaks

Natural frequency [Hz] 0.1• 0.15H, 0.17J

Symbols are used in figures to mark frequencies

reduction in thrust associated with the decreasing rotor velocity.
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Figure 5.21: Open-loop (OL) and closed-loop (CL) mean � and minimum-to-maximum range
à of platform motions.

Moreover, in the closed-loop case we can observe smaller maximum-to-minimum ranges

in most of the variables with respect to the open-loop reference case because it actively

reacts to external perturbations: 20% in surge (Figure 5.21a), 14% in both power (Figure

5.24a) and rotor velocity (Figure 5.24c) maximum-to-minimum range decrease. However,

the closed-loop case shows larger ranges in the platform motions with almost zero average

(Figure 5.22), a 5% decrease in tower-top fore-aft displacement standard deviation (Figure

5.23a) and a blade-tip out-of-plane deformation standard deviation increase of 8% (Figure

5.23b). In the closed-loop case, the mean out-of-plane and in-plane root bending moments

increase by 20% and 2%, respectively, with respect to the open-loop reference case. The

standard deviation of the out-of-plane root-bending moment also increases in 3% but the

standard deviation of the in-plane force coefficient decreases by 12%, with respect to the
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open-loop reference case. This increase in average loads is directly related to the larger

power generation that the closed-loop controller achieves with respect to the open-loop.
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Figure 5.22: Open-loop (OL) and closed-loop (CL) mean � and minimum-to-maximum range
à of platform motions (continuation).

After the comparison of the reference controller to the open-loop dynamics in the previous

paragraph, we now compare the closed-loop redesigned controller to the reference one [175]

which is included in the same Figures 5.21 to 5.24. The redesign sets the average blade

pitch angle 1% lower than the reference case (Figure 5.24b) but it still keeps the same

average generator power and rotor velocity (Figure 5.24) by means of increasing the surge

by 5% (Figure 5.21a) and the pitch (Figure 5.21b) by 8% with respect to the reference

case. The redesigned controller accounts for the blade flexibility, and, thus, it performs

better at keeping the rotor velocity constant than the reference controller based on BEM

aerodynamics of rigid blades. The closed-loop redesign case increases the mean out-of-plane

root-bending moment 3% with respect to the closed-loop reference case. However, it reduces

the standard deviation of the out-of-plane and the in-plane root-bending moments in 8% and

11%, respectively, with respect to the closed-loop reference case which reduces the fatigue

loads at blade root.

The platform surge standard deviation is 9% larger than the reference case (Figure 5.21a),

however, the platform pitch standard deviation decreases by 9% (Figure 5.21b). Both the

tower-top fore-aft and the out-of-plane blade-tip displacement standard deviation are reduced

by 18% and 6%, respectively (Figure 5.23). Finally, an increase in blade pitch actuation of

23% in standard deviation achieves an 18% reduction in rotor speed standard deviation

(Figure 5.24).

We additionally show the power spectral density of the platform displacements and ro-

tations, the blade pitch, rotor velocity, generator power, the blade tip out-of-plane and the

tower-top fore-aft displacement in Figures 5.25 to 5.29.
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Figure 5.24: Open-loop (OL) and closed-loop (CL) mean � and minimum-to-maximum range
à of control-related variables.

The platform and wind turbine symmetry and the mean wind and waves propagation

direction parallel to the positive x axis make surge rGx (Figure 5.25a) and pitch ϕy (Figure

5.25b) the largest movements of the platform. They show peaks at the platform natural

frequencies (0.008� Hz and 0.034×Hz respectively), the main peak spectral period (0.1•Hz)

and other minor peaks (0.15HHz and 0.17JHz) of the waves (Figure 5.20). Both the open-

loop system and the redesign of the controller based on the flexible aeroelastic model show

significantly wider peaks around the wave peak spectral period than the reference controller.

The open-loop system shows less energy around the platform natural frequencies and the

redesigned closed-loop controller reduces the peak associated with the wave spectrum. The

heave displacement (Figure 5.26b) also resonates with the waves showing a peak around

0.1•Hz. However, this peak does not significantly appear in the sway (Figure 5.26a), roll

(Figure 5.27a) or yaw (Figure 5.27b) motions because the waves’ propagation direction is

along the x axis. The two minor peaks in the wave spectrum (0.15HHz and 0.17JHz) are

significantly smoothed out in the open-loop and the redesigned closed-loop cases (Figures
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5.25a and 5.26b).
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Figure 5.25: Waves and wind turbulence controlled case (I).
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Figure 5.26: Waves and wind turbulence controlled case (II).

Figure 5.28a shows the generator velocity ωg which is the parameter that the controller

tries to stabilise and is related to the rotor velocity ωr and the gear-box ratio G as ωg = Gωr.

The main actuator strategy is to vary the collective blade pitch θp angle (Figure 5.28b) to

stabilise the power generation of the wind turbine E. Again, the spectra of these variables

show peaks at the platform natural frequencies (0.008�Hz and 0.034×Hz) which are wider

for the open-loop and the controller redesign. The latter reduces the highest peaks except

in the case of the pitch actuation. The two minor peaks in the wave spectrum (0.15HHz and

0.17JHz) are significant in the closed-loop reference case (Figure 5.28a).

Finally, the first blade tip displacement out of the rotor plane xout (Figure 5.29a) has
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Figure 5.27: Waves and wind turbulence controlled case (III).

Open-loop Closed-loop Ref Closed-loop redesign

0.008 Hz 0.034 Hz 0.1 Hz 0.15 Hz 0.17 Hz 0.2 Hz 0.47 Hz 0.6 Hz

10−2 10−1 100

f [Hz]

10−5

10−2

101

P
(ω
r)
[r
p
m

2
/H

z]

(a) Rotor speed.

10−2 10−1 100

f [Hz]

10−5

10−2

101

P
(θ
p
)
[d
eg

2
/H

z]

(b) Blade Pitch.

Figure 5.28: Waves and wind turbulence controlled case (IV).

the most significant peak around the wave spectrum peak but the energy content is quite

evenly distributed in the frequency range f < 0.4 Hz. In the case of the tower top fore-aft

displacement xfa (Figure 5.29b) there are three peaks associated to the platform motion

(0.034×Hz), the wave peak (0.1•Hz) and the tower fore-aft bending frequency (0.47�Hz).

The open-loop and the redesign controllers shift the maximum value of the highest peak

but displace it to slightly higher frequencies and make it wider. The open-loop case clearly

decreases the peak at platform natural frequencies.

In summary, the open-loop system is well designed to operate at the equilibrium point of a

design state without perturbations. Perturbations to the system in form of wind turbulence

and waves make the system less efficient with a reduction of power generation and rotor

velocity with respect to the desired values. On the other hand, closed-loop controllers are
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Figure 5.29: Waves and wind turbulence controlled case (V).

able to track the average rotor velocity and power generation. The controller redesign based

on UVLM aerodynamics and GEBT structural dynamics is able to reduce fluctuations with

respect to the original redesign. In this case, platform floating dynamics are dominated by

motions at the platform natural frequencies and the wave spectrum forcing. The reference

controller keeps the highest spectrum peaks narrower and the controller redesign including

flexible behaviour slightly reduces this peak but makes it wider.



224 Chapter 5. Floating wind turbine aeroelasticity and control



Chapter 6

Conclusions

We conclude this dissertation with a general overview of the work in Section 6.1, a

highlight of the key contributions in Section 6.2 and a series of open questions as a starting

point for future work in Section 6.3.

6.1 Summary

Over the last few decades, wind energy has revolutionised electricity generation as wind

turbines have increased in height and blade length, become more flexible and are being

operated under increasingly complex inflow conditions. All of this is forcing a review of

the accuracy of computational methods to enable new designs, because physical phenomena

of importance for wind turbine dynamics, such as unsteady and three-dimensional aerody-

namics, can no longer be assumed to be negligible. Baseline Blade-Element Momentum

(BEM) theory is based on steady assumptions and Large-Eddy Simulation with Actuator

Line (LES-AL) employs steady tabulated data for the computation of forces, so these nu-

merical methods are not adequate for problems in which unsteady and three-dimensional

effects on blade aerodynamics are involved. Even so, BEM is the industry standard for wind

turbine design due to its simplicity and LES-AL provides very useful information about wind

turbine wakes and their interaction in the current problems of wind farm optimisation and

control. Vortex methods, in particular Unsteady Vortex-Lattice Method (UVLM), inher-

ently account for unsteady and three-dimensional effects which motivated our use of UVLM

to gain understanding on these effects, decide if these effects are important and evaluate the

range of validity of BEM and LES-AL when the semi-empirical corrections are applied.

Vortex methods have always been important in the research community to describe com-
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plex aerodynamic phenomena like the change in induction along the azimuthal direction in

wind turbines that resulted in the tip-loss correction for BEM. However, they have not been

widely exploited by the wind energy industry. Therefore, in Chapter 3, we have thoroughly

assessed the suitability of vortex methods for the computation of wind turbines, including a

validation of their accuracy to capture unsteady and three-dimensional effects in comparison

with classical airfoil theory. In Chapter 4, we have also compared UVLM against BEM

and LES-AL, which evidenced that the main drawback of UVLM is the inability to capture

viscous drag because it is based on potential flow theory. We have generated a correction

for viscous drag inspired by BEM methodology that obtains forces from the interpolation of

steady data (Section 4.1.1). In contrast to BEM, computing the angle of attack in UVLM is

complex due to the singularities in the velocity field, thus, we decided to obtain the drag from

the steady look-up tables by using the sectional lift provided by UVLM. This choice limited

our method to cases where airfoils are in the region between the minimum and the maxi-

mum lift values. This is sufficient for the regular operation cases of wind turbines studied

here. Regardless of the drag correction, UVLM is not an adequate theory to analyse extreme

operation cases in which stall plays a significant role because UVLM assumes attached flow

conditions.

In Section 4.2.2, we have analysed yaw cases characterised by significant three-dimensional

aerodynamics that are described through the advancing/retreating and skewed-wake effects.

The advancing/retreating effect is dominant at the inner region of the blade and we have

shown that it is well captured by BEM, UVLM and LES-AL. The skewed-wake effect is dom-

inant at the outer part of the blade and is captured by UVLM and LES-AL. However, this

effect is not accounted for by basic BEM. We have shown that the skewed-wake corrections

in BEM proposed before this dissertation improve the results where this effect is dominant

(near the tip) but mask the advancing/retreating effect at inner spanwise positions. BEM

provides accurate predictions of the mean loads along a revolution for yaw angles of less

than ten degrees. Beyond this point, it overestimates the changes caused by yaw when

compared to UVLM and LES-AL. BEM with the skewed-wake correction shows more severe

fluctuations along a revolution than UVLM and LES-AL.

The skewed-wake effect in yaw cases is directly related with the wake shape. Therefore,

UVLM requires a free-wake model to capture the wake shape, the skewed-wake effect and the

associated loads. This model has medium computational cost (higher than BEM and lower

than LES-AL) because it requires computing the influence of wake vorticity on the wake

convection velocity which makes the computational cost grow as the number of wake panels
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squared. Most implementations of the UVLM demand the same panel size near the wind

turbine and far away from it which gives rise to the extremely high computational cost and

does not significantly improve the accuracy of the results. In Section 4.1.2, we have proposed

a new discretisation scheme for the wake convection equation that permits the use of coarser

panels in regions of the flow that have a small influence on the aerodynamic forces and we

have achieved a significant reduction of the computational time. In the cases of turbulence

run in Section 4.2.3, the new wake convection equation reduces the computational time by

90% with respect to the standard UVLM implementation.

We have also exploited the suitability of UVLM to capture unsteady and three-dimensional

effects triggered by turbulent wind that includes time and space velocity variations. Regard-

ing flow unsteadiness, we have shown that the large velocity of the blade makes the reduced

frequencies typically very small in the outer part of the blade, thus a large part of the loads

spectrum generated by turbulent wind can be resolved by quasi-steady models. However,

for the higher frequencies of the turbulent inflow or inboard sections of the blade, unsteady

models are needed. In these cases, the unsteady corrections included in BEM perform rea-

sonably well. Regarding the three-dimensional effects coming from the interaction between

blade sections that is not accounted for by BEM but inherently accounted for by UVLM, we

have discovered significant differences in the estimation of forces between BEM and UVLM.

Thus, we have performed a systematic study of the interaction between blade sections for

different inflow wavelengths with UVLM and we have generated a filter that turned the

two-dimensional approximation of BEM into a three-dimensional prediction that accounts

for these interactions. The application of this filter to BEM has led to very good agreement

with the UVLM results in turbulent inflows. UVLM cannot account for drag so we could

not correct this force and we could not apply this correction to LES-AL because it computes

forces from two-dimensional data but it shows some interactions between the blades sections

through the feedback of forces to the flow.

Throughout this project, we have relied on the comparison between different compu-

tational fidelities to learn about aerodynamics due to the lack of access to high-quality

experimental data or high-fidelity CFD computations. In particular, for turbulent flows we

needed to reduce the differences between the turbulence seen by BEM and UVLM, that do

not interact with the incoming flow, and LES-AL, that modifies the upstream turbulence.

In Section 4.1.4, we used a box of artificially generated turbulence as an inflow to an empty

LES domain and we let it evolve until a realistic turbulent spectra was obtained to be used

as inflow to all the models.
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We have focused on studying the effect of increasing length and flexibility of wind turbines

blades that is making deformations larger and might require substituting the traditional lin-

ear analysis for nonlinear ones. Moreover, the anisotropic behaviour of composite materials

requires complex models able to capture all the degrees of freedom of the beam. For these

reasons, we have coupled UVLM with a nonlinear geometrically-exact beam theory (GEBT)

that is also able to model the tower-rotor joint through a multibody approach based on

Lagrange multipliers. On top of that, the base movements of floating wind turbines generate

rotor excursions that might reinforce the unsteady and three-dimensional aerodynamic ef-

fects. Thus, we have also included a quasi-steady mooring line model, a linear hydrodynamic

model based on precomputed added-mass and damping matrices from potential theory and

the addition of viscous drag from Morison’s equation. We have shown that for increasingly

longer and more flexible blades, it is particularly relevant to capture the twist degree of

freedom because there is a coupling between the structural deformation in twist and the

aerodynamic forces generated that is not routinely included in all the numerical methods.

This leads to very significant loads and power overestimation of rigid models with respect

to flexible ones. We have also shown that, for the cases we studied, the pitch and roll at

platform natural frequencies do not generate significant unsteadiness on the blades away

from the root region.

Overall, we have built a medium-fidelity framework for the analysis of aeroelastic phe-

nomena in current and future offshore wind turbines that accounts for unsteady and three-

dimensional aerodynamic effects and nonlinear deformations. In this environment, we have

studied how to improve controller efficiency by taking advantage of the significant change

in aerodynamic loads observed due to blade twist. We confirmed that the open-loop system

was not able to maintain the rotor velocity and generated power when the system was per-

turbed from the equilibrium position by waves and turbulent inflow. We recomputed the

PID controller gains based on a model (UVLM and GEBT) that accounts for changes in

aerodynamic loading due to flexibility. This controller reduces the fluctuations of rotor ve-

locity and generator power with respect to the controller designed based on the rigid model.

Finally, we have briefly explored the possibility of computing wind turbine response to tur-

bulent flows with reduced order models based on UVLM because control design and testing

requires extremely efficient computational methods.
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6.2 Key contributions

From the work summarised in previous Section 6.1 we highlight here the key contributions

of this thesis. To begin with, we have described wind turbine aerodynamics in cases of

uniform wind perpendicular to the rotor plane, yaw and turbulent inflows with three models:

BEM, UVLM and LES-AL. Moreover, we have described aeroelastic phenomena and the

effect of prescribed base movements. The main findings are:

• In cases of uniform inflow perpendicular to the rotor plane, BEM and LES-AL predict

very accurate force coefficients along the span. The basic implementation of UVLM

predicts the correct out-of-plane force coefficient but needs semiempirical corrections

for the in-plane force coefficient due to the absence of viscous drag estimation.

• In yawed inflow, BEM, UVLM and LES-AL predict similar results of root-bending

moments, rotor power and thrust coefficients up to yaw angles of approximately ten

degrees. For larger yaw angles, BEM overpredicts the decay of forces with the increas-

ing yaw angle and the fluctuations of the loads along a revolution. In the inner region

of the blade, dominated by the advancing/retreating effect, the basic BEM, UVLM

and LES-AL predict the correct locations of maximum and minimum loading. How-

ever, BEM with skewed-wake model fails to do so. In the tip region, dominated by a

skewed-wake effect, BEM with a skewed-wake model, UVLM and LES-AL predict the

true locations of maximum and minimum loading but the basic BEM fails.

• In cases of turbulent wind, UVLM, BEM with dynamic corrections and LES-AL per-

form well in the representation of the airfoil-level unsteady aerodynamics. The span-

wise interaction between blade sections is relevant for characteristic wavelengths of the

inflow smaller than 10 times the airfoil chord. The loads along the spanwise direction

are smoother when the three-dimensional effects are accounted for. BEM does not

inherently captures these effect but UVLM does.

• The structural twist is coupled to the aerodynamic loading such that models need

to account for the twist degree of freedom to adequately predict the wind turbine

loading. This effect is particularly relevant in current and future wind turbine blades.

First, blades are becoming longer and more flexible which is leading to larger bending

and twisting deformations. Moreover, the structural couplings of composite materials

generate more blade twist from couplings with the bending deformations. Thus, it
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is crucial that future models for wind turbine dynamic loading include aeroelastic

behaviour which is not true for some current LES-AL simulations.

• The prescribed platform dynamics in pitch and roll motions at the platform natural fre-

quencies do not trigger unsteady aerodynamic phenomena except from the root region

of the blade which is usually already in the unsteady regime due to flow separation.

The knowledge about the physical processes evidenced by the previous analysis and the

capabilities of the different aerodynamic fidelities were the foundation to propose numerical

improvements to increase the accuracy or reduce the computational cost of some of the

aerodynamic solvers. Our main contributions in this field are:

• We provide a methodology to include viscous drag in UVLM computations. The drag

is computed from the lift coefficient predicted by UVLM and look-up tables with two-

dimensional steady data similar to the BEM procedure.

• We have studied the three-dimensional interaction between blade sections with UVLM

and the differences with the two-dimensional approximation. This has lead to a spatial

filter to simulate the effect of the interaction between blade sections on the BEM

computations.

• We have proposed a turbulence generation method based on two steps. First, a box of

artificial turbulence is generated with linearised Navier-Stokes techniques. Second, this

turbulence is convected through an LES grid that converges to a flow with realistic tur-

bulence spectra. This method reduces the differences in the turbulence experienced by

the wind turbine in LES-AL and BEM and UVLM simulation to reduce the uncertainty

of benchmarking analysis.

We have demonstrated that having a model that accounts for the previously described

effects is important for the design and analysis of control algorithms. We have illustrated it

with a PI controller above rated wind speed whose gains have been adjusted based on the

knowledge about the flexible behaviour of the blade. This controller is able to reduce the

fluctuations around the target values of generator velocity and power generation.

Finally, we have implemented all of these contributions together with other minor ones

required for the simulation of floating wind turbines in the aeroelastic code SHARPy which is

available open-source [152]. These contributions include:

• Automatic generation of models from the usual available aerodynamic and structural

data of wind turbines, that is, sectional data along the tower and blade span.
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• Multibody dynamics through Lagrange multipliers for the tower-rotor joint and other

constraints for testing and validation.

• A new module to simulate quasi-steady mooring dynamics, linear hydrodynamics from

external precomputed damping and added-mass matrices and viscous drag from Mori-

son’s equation.

• Collective blade pitch PID control.

• Implementation of the viscous drag correction for UVLM.

• Reduced computational cost of UVLM based on the new wake convection equation and

possibility to generate reduced order models.

• Turbulence field input from TurbSim and Mann box generators.

SHARPy is a state-of-the-art software package thanks to the collaboration with other members

of the team. We have provided SHARPy with version control and a discussion forum open

to everyone on Github and Zenodo [197], automatic testing of new code contributions with

unittest, Travis and Codecov and a theory and user manual on Read the Docs [198].

6.3 Future work

We propose some recommendations for future work based on our analysis of offshore wind

turbine aeroservoelasticity using low and medium fidelity computational methods. These

recommendations arise from the critical view on our work as possible improvements, but

also, from the certainty that our work can provide important advantages to solve wind

energy problems.

Improve the accuracy of BEM in cases of yaw

In Section 4.2.2, we showed that the corrections applied to BEM to account for the

skewed-wake effect provide accurate results up to 10 deg of yaw. Above that angle, they pre-

dict an overly large decay of loads and power in the wind turbines compared to UVLM. Until

recently, wind turbines did not operate under large yaw angles, however, it is increasingly

the case that large yaw angles are being explored as a wake steering mechanism for wind

farm optimisation and control. The research community is mainly focusing on accurately
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representing the complex wake behaviour but, the evidence presented in this thesis suggests

that more effort should be put on the accurate computation of aerodynamic loads under

yaw.

Improve the spanwise filter for BEM including drag forces and feed-

back to the aerodynamics

We have proposed a spanwise filter for BEM loads to account for the spanwise interaction

of blade sections based on the analysis of this effect with UVLM in Section 4.1.3. UVLM

does not provide an accurate drag estimation so it is not adequate to study three-dimensional

effects on the drag force. For this reason, our method does not modify the drag prediction.

An analysis with Reynolds-Averaged Navier Stokes simulations should be able to provide

this information. Second, our methodology corrects the forces applied on the blade but does

not account for the feedback effect that it has on the aerodynamics: the correction modifies

the forces on the blade but we do not recompute the new equilibrium between the wake

induction and the applied forces. This can be easily implemented with adequate knowledge

of a BEM implementation.

Improve the stability of vortex methods

The velocity field induced by vortices is singular in the sense that the velocity tends to

infinity at the vortex position. When two vortices come too close together the model predicts

high velocities and, thus, they suddenly displace very far away from their original position.

This nonphysical behaviour compromises the accuracy and stability of the computation.

There is an abundant literature about stabilising the solution through the vortex radius

concept which, briefly, defines a distance below which the induced velocity is limited. The

vortex radius has to be small enough to capture all the interactions between bound vortices,

otherwise, the boundary conditions are not satisfied and the aerodynamic loads estimation

is not accurate. Thus, the use of a vortex radius is often not very useful. However, we use

a vortex radius for the wake convection because it becomes very unstable and it does not

introduce the same problem as in bound vortices. This problem is difficult to tackle because

the velocity field associated to a infinitesimal vortices is inherently singular.
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Study the change of aerodynamic damping with rotor excursions

based on UVLM

The aerodynamic forces generated on the rotor provide damping for the rotor excursions,

especially, those in the direction of the hub axis. This damping varies with the relative wind-

rotor velocity and, thus, it is strongly influenced by the platform motions of floating wind

turbines or the tower deformation. Moreover, this damping is also modified when blades are

pitched due to the change in rotor thrust. This damping helps in the stabilisation of the

system and, therefore, needs to be accurately controlled. The blade pitch actuation needs

to be informed of these phenomena to maximise the efficiency of the control and guarantee

the system stability. We have generated an aeroservoelastic framework for the simulation

of wind turbines that captures unsteady aerodynamics, coupled nonlinear deformations,

platform dynamics and control of wind turbines. It constitutes a suitable environment to

study these phenomena that have been reported in literature as a significant problem. This

framework is also suitable for the analysis of smart rotors with distributed actuation (i.e.

flaps) that can be useful to stabilise the future large offshore wind turbines through new

control designs.

Exploit reduced order models based on UVLM aerodynamics

Extremely efficient computational methods are required to perform processes that involve

a large number of computations like design or optimisation. They are also useful for controller

design such as model predictive control. We believe that there is a significant potential for

reduced order models based on UVLM aerodynamics to provide accurate and efficient results

to support these processes of design and optimisation. We have performed a short study on

the accuracy of UVLM reduced order models in Section 4.2.3 showing very promising results.

The accuracy of reduced order models needs to be assessed against higher order models or

experiments and our full simulation environment, that provided much information about the

wind turbine aeroservoelasticity, could be used to assess the accuracy of the reduced order

methods in the future.

Methods to estimate separated flow effects with UVLM

Viscous drag was introduced into UVLM computations in Section 4.1.1 through a pro-

cedure that is limited to the region between the minimum and the maximum airfoil lift

coefficients where the drag-to-lift relationship is univocal. This limitation comes from the
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difficulty of defining the angle of attack in UVLM due to the singularities of the velocity

field, similarly to difficulties found in experiments and CFD computations. Overcoming this

limitation and also correcting the lift coefficient due to stall would not only make the range

of application of the viscous drag addition larger but also tackle other of the main drawbacks

of UVLM which is the assumption of attached flow which does not hold for the root region

of the blade in complex cases of operation. There are proposals in the literature to measure

the angle of attack, other approaches to include viscous drag and options to account for

separated flow. Despite the proposed solutions in literature, it not an easy task. On the one

hand, including viscous drag and correcting the lift coefficient due to stall would improve

the accuracy of UVLM. On the other hand, some of the proposed corrections might show

the same problems as BEM: they are based on steady two-dimensional data, not accounting

for unsteady and three-dimensional effects. These corrections should be performed carefully

to avoid ruining the appealing unsteady and three-dimensional physics inherently provided

by UVLM and avoid building a model which might behave like a computationally-expensive

BEM.
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[23] Á. González and X. Munduate. “Unsteady modelling of the oscillating S809 aerofoil

and NREL phase VI parked blade using the Beddoes-Leishman dynamic stall model”.

Journal of Physics: Conference Series 75 (July 2007), p. 012020. doi: 10.1088/1742-

6596/75/1/012020.

[24] R. C. Paul and A. Gopalarathnam. “Iteration schemes for rapid post-stall aerody-

namic prediction of wings using a decambering approach”. International Journal for

Numerical Methods in Fluids 76.4 (July 2014), pp. 199–222. doi: 10.1002/fld.3931.

[25] J. D. Anderson. Fundamentals of Aerodynamics. McGraw-Hill Science/Engineering/Math,

2001.

[26] B. T. Roesler and B. P. Epps. “Discretization Requirements for Vortex Lattice Meth-

ods to Match Unsteady Aerodynamics Theory”. AIAA Journal 56.6 (June 2018),

pp. 2478–2483. doi: 10.2514/1.j056400.

[27] K. Boorsma, M. Hartvelt, and L. M. Orsi. “Application of the lifting line vortex wake

method to dynamic load case simulations”. Journal of Physics: Conference Series 753

(Sept. 2016), p. 022030. doi: 10.1088/1742-6596/753/2/022030.

[28] R. J. S. Simpson, R. Palacios, and J. Murua. “Induced-Drag Calculations in the

Unsteady Vortex Lattice Method”. AIAA Journal 51.7 (July 2013), pp. 1775–1779.

doi: 10.2514/1.j052136.

[29] N. P. M. Werter, R. De Breuker, and M. M. Abdalla. “Continuous-Time State-Space

Unsteady Aerodynamic Modeling for Efficient Loads Analysis”. AIAA Journal 56.3

(Mar. 2018), pp. 905–916. doi: 10.2514/1.j056068.

[30] M. Belessis, P. Chasapogiannis, and S. Voutsinas. “Free-wake modelling of rotor aero-

dynamics: recent developments and future perspectives”. EWEC 2001 (July 2001).

https://doi.org/10.1016/j.renene.2014.04.001
https://doi.org/10.1016/0167-6105(92)90539-m
https://doi.org/10.2514/6.2018-1049
https://doi.org/10.1088/1742-6596/75/1/012020
https://doi.org/10.1088/1742-6596/75/1/012020
https://doi.org/10.1002/fld.3931
https://doi.org/10.2514/1.j056400
https://doi.org/10.1088/1742-6596/753/2/022030
https://doi.org/10.2514/1.j052136
https://doi.org/10.2514/1.j056068


238 References

[31] A. B. Kebbie-Anthony, N. Gumerov, S. Preidikman, B. Balachandran, and S. Azarm.

“Fast Multipole Method for Nonlinear, Unsteady Aerodynamic Simulations”. 2018

AIAA Modeling and Simulation Technologies Conference (Jan. 1, 2018). doi: 10.

2514/6.2018-1929.

[32] H. A. Madsen, V. Riziotis, F. Zahle, M. Hansen, H. Snel, F. Grasso, T. Larsen, E.

Politis, and F. Rasmussen. “Blade element momentum modeling of inflow with shear

in comparison with advanced model results”. Wind Energy 15.1 (Oct. 2011), pp. 63–

81. doi: 10.1002/we.493.

[33] H. Snel and J. G. Schepers. Joint investigation of dynamic inflow effects and imple-

mentation of an engineering method. Tech. rep. ECN-C–94-107. ECN, 1995.

[34] H. M. A. Glauert. A general theory of the autogyro. Tech. rep. 1111. ARCR R&M,

1926.

[35] D. M. Pitt and D. A. Peters. “Theoretical prediction of dynamic infow derivatives”.

Vertica 5(1) (1983), pp. 21–34.

[36] J. Schepers. “An engineering model for yawed conditions, developed on basis of wind

tunnel measurements”. 37th Aerospace Sciences Meeting and Exhibit. American In-

stitute of Aeronautics and Astronautics, Jan. 1999. doi: 10.2514/6.1999-39.

[37] H. Rahimi, A. Martinez Garcia, B. Stoevesandt, J. Peinke, and G. Schepers. “An

engineering model for wind turbines under yawed conditions derived from high fidelity

models”. Wind Energy 21.8 (Mar. 2018), pp. 618–633. doi: 10.1002/we.2182.
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