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ABSTRACT  
The lymphatic system maintains fluid homeostasis by returning interstitial fluid to the veins. 

Lymphatics pump fluid locally with contracting segments of the vessel (lymphangions) bounded by 

valves. Contractions are generated by specialized muscle exhibiting phasic and tonic contractions. 

Deficient pumping can result in accumulation of interstitial fluid, called lymphoedema. 

Lymphoedema treatments have limited effectiveness, partially attributable to a lack of 

understanding of contractions. A lumped parameter computational model of lymphangion pumping 

has previously been developed in the group. In this thesis I detail development of two multiscale 

models of lymphatic pumping to facilitate improved treatments for lymphoedema. 

The first model captures subcellular mechanisms of lymphatic muscle contraction. This model is 

based on the sliding filament model and its smooth muscle adaptation. Contractile elements are 

combined with passive viscoelastic elements to model a cell. Many arrangements were trialled but 

only one behaved physiologically. The muscle model was then combined with the lymphangion 

model for comparison with experiments. This model captures mechanical and energetic aspects of 

both contraction types. I show that the model provides results similar to published experiments 

from rat mesenteric lymphatics. The model predicted a peak efficiency of 35%, in the upper range 

from other muscle types. In the range of frequencies and amplitudes simulated, the direct effect of 

calcium oscillations can increase lymphangion outflow by up to 40% of the flow in their absence. 

The second model aims to improve our understanding of lymphangion interaction in large networks 

through computational homogenisation. In this model we do not directly simulate all lymphangions 

but sample lymphangions at evenly spaced intervals to reduce the computational intensity. We show 

through this model that increased external pressure at the network inlet collapses lymphangions and 

that this disruption of pumping for a few lymphangions reduces the outflow from the entire 

network. 
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CHAPTER 1 – LYMPHATICS INTRODUCTION AND BACKGROUND 

1.1. Introduction 
The lymphatic system plays important roles in several aspects of normal physiologic function, 

particularly in fluid homeostasis, adaptive immune response, and lipid absorption. The involvement 

in immune response implicates the lymphatics in cancer, autoimmune diseases and atherosclerosis. 

Deficient lymphatic pumping can result in accumulation of protein-rich fluid in the interstitium, 

leading to a chronic debilitating condition called lymphoedema. There is currently no effective 

treatment to enhance the pumping of lymphatic vessels. 

About 4 − 8 L of interstitial fluid enters the lymphatic system per day (Renkin, 1986, Levick and 

Michel, 2010), referred to as lymph once it has entered the lymphatic vessels. Lymph transport must 

work against an adverse pressure gradient from low or sub-atmospheric pressures in the interstitium 

(Jamalian et al., 2017, Aukland and Reed, 1993, Guyton et al., 1971) to central venous pressure at 

the subclavian veins (Bridenbaugh et al., 2003). Pumping is achieved by a combination of external 

compression and intrinsic contractions coupled with bi-leaflet valves to promote unidirectional flow 

towards the centre of the lymphatic tree (Figure 1). It is well established that external compressions 

arise from many sources including transient skeletal muscle contraction (White et al., 1932, 

McMaster, 1937, Yoffey and Courtice, 1956), respiration (Browse et al., 1971, Browse et al., 1974, 

Hall et al., 1965, Yoffey and Courtice, 1956, Schad et al., 1978), intestinal peristalsis (Unthank and 

Bohlen, 1988), and pulsation of adjacent blood vessels (Parsons and McMaster, 1938, Webb Jr and 

Starzl, 1953, Browse et al., 1971, Browse et al., 1974, Negrini et al., 2004). Intrinsic contractions arise 

from specialised muscle cells lining the vessels and are the main mechanism for lymph propulsion in 

many tissues (Olszewski and Engeset, 1980, von der Weid and Zawieja, 2004). The functional 

contractile units of the lymphatic vessels are regions bounded by valves, called lymphangions. 

Lymphatic vessels are formed from chains of lymphangions and a major remaining question is how 

the microscale lymphangions interact to generate the overall network flow. There is significant 

variation in the loads and demands on lymphatic vessels between different regions of the network 
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within an animal (Gashev et al., 2012, Gashev et al., 2004) and between species. Lymphatic pumping 

experiments are often performed using vessels from the rat mesentery because access is easy and 

these vessels are among the most intrinsically active (Gashev et al., 2004). Mouse lymphatics are not 

used much because they exhibit little contractility for reasons that are not known, but it is possibly 

due to the smaller size of mice compared to rats. A significant difference between the rat and 

human lymphatics is that the human lymphatics when standing must contend with gravity. 

The specialised muscle lining lymphatic vessels exhibits properties of both cardiac and smooth 

muscles. This muscle is often referred to as lymphatic smooth muscle, but this can be misleading 

because of its hybrid nature. In this thesis it is referred to as lymphatic muscle. The demand for 

lymphatic muscle’s hybrid nature is due to the lack of a central pump equivalent to the heart. 

Lymphatic muscle must then both generate (cardiac muscle-like, phasic contractions) and regulate 

(vascular smooth muscle-like, tonic contractions) lymph flow (Quick et al., 2007, Bridenbaugh et al., 

2003, von der Weid and Zawieja, 2004). The lack of effective treatment for lymphoedema can be 

attributed in part to a lack of understanding of lymphatic muscle (Scallan et al., 2016, Zhang et al., 

2013). 
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Figure 1: Schematic of the lymphatic system in relation to the cardiovascular system. Arrows indicate the direction of flow. 
(Moore Jr. and Bertram, 2018) Copyright permissions included in Appendix 2 

In vivo experiments of lymphatic vessels allow visual observation of diameter and flow rate but there 

is little control over the pumping conditions and measuring pressure is prohibitively difficult. In vitro 

experiments of cannulated lymphangion chains allow better control of pressure conditions but is 

difficult because of their small diameter, particularly for determining flow rate. The difficulties with 

experimental studies motivated development of an ordinary differential equation (ODE)-based 

lumped parameter lymphangion model that has now been thoroughly validated (Bertram et al., 

2011, Bertram et al., 2014a, Bertram et al., 2014b, Bertram et al., 2016b, Bertram et al., 2017, 

Jamalian et al., 2013, Jamalian et al., 2016, Jamalian et al., 2017). In a parameter sensitivity analysis 

minimum valve resistance, contraction frequency, lymphangion length, transmural pressure, active 

tension, and series number of lymphangions in a chain were identified as major determinants of 

lymphatic pumping. It is also impractical to cannulate large networks of lymphatic vessels. There is 

great difficulty directly studying lymphatic muscle because isolated lymphatic muscle loses its 

contractile phenotype. 
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1.2. Specific aims 
This thesis covers the development of two computational models to improve our understanding of 

lymphatic muscle and large vessel networks by expanding on an existing lymphangion model. 

1. Develop a computational model for the subcellular mechanisms of lymphatic muscle 

contraction (Chapter 3). We combined molecular models of striated and smooth muscles in 

a structural arrangement to model lymphatic muscle cells (LMCs). This allows separation of 

the subcellular mechanisms involved in both types of contraction from lymphatic muscle, 

giving mechanical and energetic properties. We coupled this with an existing model of the 

lymphangion to understand how these subcellular mechanisms influence fluid transport. 

2. Develop a homogenised model of lymphatic networks (Chapter 4). We developed on an 

existing lymphangion model to study the interaction of lymphangions in a large network. We 

then used the model to study the effect of spatial variations in steady external pressure on 

the pumping of large networks of lymphangions. 

1.3. Background 

1.3.1. General anatomy and physiology of the lymphatic system 
The vasculature of the lymphatic system forms a converging tree which runs in parallel with the 

blood vasculature. Almost all tissues in the body have lymphatic drainage, including recently 

discovered presence in the central nervous system (Aspelund et al., 2015, Louveau et al., 2015) and 

eye (Schroedl et al., 2014, Aspelund et al., 2014). 

Interstitial fluid is taken up by the smallest vessels of the lymphatic system (Figure 2). These vessels 

are typically called initial lymphatics, terminal lymphatics, or lymphatic capillaries in the literature. 

Throughout this thesis the term initial lymphatics will be used. Initial lymphatics are blind-ended 

vessels made of a single layer of endothelial cells (LECs) with a discontinuous basement membrane 

(Lutter et al., 2012, Paupert et al., 2011). Interstitial fluid, macromolecules and lymphocytes enter 

the initial lymphatics via button-like junctions formed of overlapping LECs (primary valves) (Trzewik 

et al., 2001). 
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The LECs of the initial lymphatics are attached to the surrounding tissue by anchoring filaments (Leak 

and Burke, 1968, Solito et al., 1997). Anchoring filaments prevent the initial lymphatics from 

collapsing and open the primary valves by transmitting forces from the surrounding tissue (Paupert 

et al., 2011, Heppell, 2013). Initial lymphatics do not have a muscle lining and rely on external forces 

for fluid flow.  The diameter of initial lymphatics varies greatly between tissue beds and with species. 

Initial lymphatics from the rat mesentery have diameters in the range of 25 − 50 μm (Zweifach and 

Prather, 1975). 

In some tissues such as the skin, initial lymphatics combine to form larger vessels called pre-

collectors (Figure 2) which include occasional intraluminal bi-leaflet (secondary) valves (Schmid-

Schönbein, 1990). There is some disagreement on the definition of pre-collectors, with some 

researchers considering them to have no muscle whilst others consider them to have few LMCs 

(Lutter et al., 2012). 

Downstream from pre-collectors, lymphatic vessels are surrounded by multiple layers of LMCs 

(Figure 2) and have consistently present secondary valves (inter-valve spacing of approximately 

600 − 1000 μm in the rat mesentery (Dixon, 2006)). Secondary valves are bi-leaflet and prevent 

retrograde flow along the lymphatics, as opposed to the primary valves which prevent flow out of 

the initial lymphatics. Secondary valves have a transmural pressure-dependent bias to the open 

position and complex dynamics (Wilson et al., 2015, Watson et al., 2017, Bertram et al., 2017). These 

vessels are called collecting vessels and are composed of chains of lymphangions. Collecting vessels 

therefore have an interaction between intrinsic contractions from the muscle cells and external 

compressions by surrounding tissue as mentioned in Section 1.1. The wall structure of collecting 

lymphatic vessels is like that of blood vessels with a tunica intima, tunica media, and tunica 

adventitia. In both blood and lymphatic vessels, the intimal layer is formed of endothelial cells, 

though these endothelial cells differ. The tunica media includes a single layer or several layers of 

LMCs interspersed with collagen and elastin fibres (Boggon and Palfrey, 1973, Yoffey and Courtice, 
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1970, Ohhashi et al., 1980). In lymphatic vessels, the adventitial layer contains fibroblasts, 

connective tissue elements and axons. Progressing centrally through the lymphatic network, the 

collecting vessels contain more muscle with a more circumferential orientation (von der Weid, 2019) 

to allow the larger vessels to contract and pump the greater quantities of lymph from the 

convergence of smaller vessels. In rat mesenteric lymphatic collecting vessels, the average pitch of 

LMCs is 6° from the circumferential direction (Zhang et al., 2007b, Zhang et al., 2013), resulting in 

99% of force being transmitted circumferentially (Walmsley et al., 1982). The reason for this exact 

pitch value is unknown, but it is close to circumferential so that the main effects of contraction are 

reduction of diameter and propulsion of lymph. Collecting vessels from the rat mesentery have 

diameters in the range 80 − 200 μm. LECs in the collecting lymphatics are connected much more 

tightly than in the initial lymphatics by zipper-like junctions. 

At multiple positions throughout the vascular tree there are kidney-shaped or spherical organs 

called lymph nodes (LNs). Rat mesenteric LNs have diameters on the order of 1 mm (Ohtani et al., 

2003). There is a high concentration of immune cells in LNs, and they are where the adaptive 

immune response is stimulated by sampling of the antigen profile of lymph. Fluid transfer between 

the lymphatic and blood vascular systems occurs in LNs. Biologists have so far focused their fluid 

transfer research on specialised blood vessels called high endothelial venules where immune cells 

preferentially transmigrate. The fluid transfer results in a lower volume of lymph with higher protein 

concentrations leaving the LN than entering. 

The vessels downstream of LNs combine to form the lymphatic ducts, the largest vessels of the 

lymphatic system. The right lymph duct drains the right upper quadrant (right side of the head, neck, 

right side of the thorax, and the right arm) and returns lymph to the blood at the right internal 

jugular and right subclavian veins. The thoracic duct drains the rest of the body and returns lymph to 

the blood at the left subclavian vein. 
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Figure 2: Components of the lymphatic vasculature. (a) Progression of the lymph from uptake in the initial lymphatics, 
through pre-collectors and into the collecting vessels. (b) Comparison of the LECs from initial lymphatics and blood 
capillaries, including the attachment of anchoring filaments to initial lymphatics. (Stacker et al., 2014) Copyright 
permissions included in Appendix 2 

1.3.2. Pathologies associated with the lymphatic system 
Insufficient lymph transport can result in chronic tissue swelling from the accumulation of fluid and 

proteins in the interstitium, called lymphoedema. Lymphoedema can be classified as either primary 

(genetic) or secondary (acquired). Genes with associated mutations causing primary lymphoedema 

include PROX1, GATA2, FOXC2, and VEGFR3/FLT4 and can cause defects in vessel development, 

valve development, muscle recruitment and intercell electrical signal propagation (Brice et al., 2005, 

Mellor et al., 2011, Ferrell et al., 2010). Genetic mutations can also lead to an increased risk of 
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developing secondary lymphoedema (Finegold et al., 2012). Primary lymphoedema is less common 

than secondary lymphoedema. The overall population prevalence of lymphoedema has been 

estimated in the range of 1.3 − 1.4 per 1000, but estimates vary widely and are likely often 

underestimates (Rockson and Kahealani, 2008). The leading cause of secondary lymphoedema in the 

world is filariasis, caused by a parasitic worm (Rockson and Kahealani, 2008). Approximately 120 

million people are infected with parasitic worms (Pfarr et al., 2009) and 1.3 billion people are at risk 

(WHO, 2008). In developed countries the leading cause is iatrogenic, particularly from surgical or 

radiation-based interventions for breast cancer (approximately 20% of breast cancer survivors 

develop lymphoedema (Bar Ad et al., 2010, Gillespie et al., 2018, DiSipio et al., 2013). The stasis of 

interstitial fluid in lymphoedema means that there is an accumulation of inflammatory signals and 

lowered macrophage infiltration, causing fibrosis and intense remodelling (Zampell et al., 2012, 

Zampell et al., 2011). In lymphoedema there is also impaired adaptive immune response, causing 

patients to be more susceptible to infections (Angeli et al., 2004, Karpanen and Alitalo, 2008). 

Studies of collecting lymphatic vessels in oedema showed enlarged vessels with inhibited 

contractions and higher diastolic pressure (Olszewski, 2002). 

The other functions (besides maintaining fluid homeostasis) of the lymphatic system implicate it in 

many other diseases including cancer metastasis, autoimmune diseases, and metabolic disorders 

(Padera et al., 2016). A key factor in cancer metastasis via the lymphatics is the ability of primary 

valves to uptake cells and the lymphatics were widely considered passive routes of metastasis until 

recent research showed active involvement via chemokine gradients (Shields et al., 2007, Das and 

Skobe, 2008, Ben-Baruch, 2008, Podgrabinska and Skoba, 2014) and lymphangiogenesis 

(Podgrabinska and Skoba, 2014, Skobe et al., 2001, Stacker et al., 2001). Metastatic cancer tumours 

are commonly found in lymph nodes and have become an important tool for diagnosis and staging. 

1.3.3. Lymphatic muscle 
Lymphatic muscle adapts so that lymphangions act more like mini hearts or resistance vessels 

depending on the local lymphodynamic environment (Gashev et al., 2004, Gashev et al., 2012). 
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Lymphatic pumping can be divided into periods of systole and diastole (Benoit et al., 1989, Li et al., 

1998, Scallan et al., 2012, Scallan et al., 2016) so indexes of lymphatic phasic pumping are often 

calculated using a cardiac pump analogy (particularly ejection fraction and stroke work) (Scallan et 

al., 2012, Scallan et al., 2016, Benoit et al., 1989). 

The two contraction types exhibited by lymphatic muscle have been related to the isoforms of 

contractile proteins present, particularly the presence of striated (slow twitch β) and phasic smooth 

(SM1B and SM2B) myosin heavy chain isoforms (Muthuchamy et al., 2003). In the same paper, it was 

observed that the thoracic duct includes the tonic smooth (SM1A and SM2A) and phasic smooth 

(SM1B and SM2B) heavy chain isoforms. This reflects the different demands on the lymphatic vessels 

in different locations. The hybrid nature of lymphatic muscle results in distinct force-velocity (Zhang 

et al., 2013) and length-tension relationships (Zhang et al., 2007a, Zhang et al., 2007b). The 

maximum shortening velocity of lymphatic muscle (different for isotonic and isobaric conditions) is 

between that of cardiac and smooth muscles (Zhang et al., 2013). 

Many factors including physical (e.g. stretch, shear, preload, afterload) (Scallan et al., 2012, Scallan 

et al., 2013, Davis et al., 2012, Davis et al., 2009b, Gashev, 2010, Gashev, 2008, Gashev, 2002), 

chemical (e.g. inflammatory mediators, endothelium-released mediators) (von der Weid, 2001, 

Bohlen et al., 2009, Bohlen et al., 2011, Nizamutdinova et al., 2014), and neural (reviewed in 

(Zawieja et al., 2011)) regulate lymphatic muscle contractions. Preload and afterload regulation of 

lymphatic muscle phasic contractions resemble cardiac muscle (Scallan et al., 2012, Scallan et al., 

2016). Increasing preload increases phasic contraction strength (Frank-Starling effect) (Scallan et al., 

2016, Scallan et al., 2012, Shirasawa and Benoit, 2003). Preload also increases the frequency of 

phasic contractions (Bainbridge effect) (Scallan et al., 2016, Scallan et al., 2012, Shirasawa and 

Benoit, 2003). Afterload increases phasic contraction strength (Anrep effect) (Davis et al., 2012, 

Scallan et al., 2012, Scallan et al., 2016). Afterload also causes a myogenic constriction of lymphatic 

vessels as observed in arterioles (Scallan et al., 2013, Davis et al., 2009a, Mizuno et al., 1997, von der 
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Weid, 2013). Preload and afterload are coupled between adjacent lymphangions, afterload of the 

upstream lymphangion forming preload of the downstream lymphangion(s). 

Shear regulation of lymphatic muscle affects tonic contractions through the same signalling pathway 

as blood vessels (see Figure 2). Shear stress stimulates the production of nitric oxide (NO) by LECs, 

causing dilation (Gasheva et al., 2006, Bohlen et al., 2011, Munn, 2015, Bohlen et al., 2009, Wilson et 

al., 2013). Histamine also causes dilation of lymphatic vessels in response to increased shear stress 

(Nizamutdinova et al., 2017, Nizamutdinova et al., 2014, Munn, 2015). Shear also inhibits phasic 

contractions because the nitric oxide signalling cascade affects the calcium concentration, resulting 

in the lymphatics acting more as a passive conduit. Shear inhibition can be considered beneficial for 

two reasons: (1) when there is a pressure gradient driving flow the phasic intrinsic contractions are 

unnecessary, wasting energy, and (2) contractions of either type reduce diameter, causing higher 

resistance to and inhibiting flow (Quick et al., 2007, Gashev, 2008). 
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Figure 3: Calcium kinetics in LMCs and LECs. Calcium enters LMC cytosol through ion channels (voltage-gated and stretch 
activated) in the cell membrane or smooth endoplasmic reticulum (SER; ion channel SERCA – sarco endoplasmic reticulum 
calcium ion ATPase). Calcium binds to myosin light chain kinase (MLCK) to allow phosphorylation of myosin heads and tonic 
constriction, or troponin to generate phasic contractions. Calcium-activated chloride channels enhance the depolarisation of 
spontaneous transient depolarisations. LECs release relaxing factors in response to fluid shear. LECs are connected to each 
other and to adjacent LMCs by gap junctions. LMCs are also connected to each other by gap junctions. Pink arrows indicate 
physical input (shear, stretch), orange arrows indicate calcium ion movements, green arrows indicate movement of other 
ions. Adapted from (Munn, 2015) Copyright permissions included in Appendix 2 

Many vasoactive substances in addition to nitric oxide and histamine have been shown to affect 

lymphatic muscle contraction (Hashimoto et al., 1994, Ohhashi et al., 1978, Takahashi et al., 1990). 

The response of lymphatics to inflammatory mediators is of interest in understanding how they 

respond to oedema (von der Weid and Muthuchamy, 2010, von der Weid, 2001). 

1.3.3.1. Excitation-contraction coupling 

The excitation of lymphatic muscle results from changes in membrane voltage called spontaneous 

transient depolarizations (STDs) arising at pacemaker sites within the muscle layer (Zawieja et al., 

1999, von der Weid and Zawieja, 2004, von der Weid, 2001). STDs of the membrane voltage result 

primarily from a release of calcium by intracellular stores activating calcium-dependent chloride 

channels for an outwards 𝐶𝑙− current (Toland et al., 2000) (experiments performed on sheep 
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mesenteric lymphatics). STDs sum to depolarise the cell sufficiently for voltage-dependent calcium 

channels to be activated and generate action potentials (APs) (von der Weid et al., 2014) and after a 

single or group of APs, lymphatic vessels contract phasically (Azuma et al., 1977, Kirkpatrick and 

McHale, 1977, Allen et al., 1983, Ward et al., 1991). The calcium channels involved in lymphatic 

muscle APs again reflect its hybrid nature. Lymphatic muscle contains L-type (long-lasting) Ca2+ 

channels characteristic of smooth muscle and T-type Ca2+ channels which have been implicated as 

possible pacemaking components in cardiac muscle (Lee et al., 2014). It is likely that APs arise in 

LMCs, but possible that they are generated by interstitial cells in the muscle layer (McCloskey et al., 

1999, Sanders and Ward, 2008, Briggs Boedtkjer et al., 2013). STDs are likely to be of myogenic 

origin because they still occur in the presence of the nervous inhibitor tetrodotoxin (McHale et al., 

1980, van Helden, 1993) or after the endothelium is removed (Hanley et al., 1992, van Helden, 

1993). Another potential cause of increased intracellular calcium is the suspected presence of 

stretch-activated calcium channels in LMCs (Munn, 2015) (see Figure 3). The frequency of STDs also 

increases with stretch (von der Weid et al., 2014), making it more likely that they will sum to 

generate APs and increasing the frequency of phasic contractions. 

The calcium concentration and diameter within lymphatic vessels from the rat mesentery were 

simultaneously recorded by Zawieja and colleagues (Zawieja et al., 1999). Their recordings (Figure 4) 

show an AP prior to diameter constriction and fluctuations in the calcium concentration during the 

rest of the contractile cycle.  
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Figure 4: Tracings of diameter and intracellular free calcium concentration in isolated vessels from the rat mesentery. 
(Zawieja et al., 1999) Copyright permissions included in Appendix 2 

Contractions of rat mesenteric lymphatics occur at a rate of approximately 8 − 12 per minute 

(contractile cycle duration of 5.0 − 7.5 s) and systole lasts for 0.5 − 0.7 s (Benoit et al., 1989) (see 

also Figure 4). APs propagate along the lymphangion in either direction (Scallan et al., 2016). There is 

some electrical decoupling between lymphangions, possibly due to the reduced density of LMCs 

around valve sinuses (Hald et al., 2018, van Helden, 1993). 

For excitation-contraction coupling (ECC) in striated muscle, calcium binding to troponin C (TnC) 

causes a conformation change of the troponin-tropomyosin complex, exposing actin binding sites. 

There are two isoforms of TnC: one found in fast skeletal muscle and one found in both slow skeletal 

and cardiac muscles (Wilkinson, 1980, Lu et al., 2011). There is preliminary evidence for the presence 

of slow/cardiac TnC in lymphatic muscle (unpublished observation of M. Muthuchamy). Striated α-

tropomyosin has also been observed in lymphatic muscle (Zhang et al., 2013). 

It is generally accepted that the primary means of ECC for smooth muscle is calcium binding to 

calmodulin (CaM). Calcium-bound CaM activates myosin light chain kinase (MLCK) to phosphorylate 
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myosin heads, allowing binding to actin sites and contraction. Tonic contraction of lymphatic muscle 

appears to be MLCK dependent (Wang et al., 2009, Dougherty et al., 2014) and CaM has been 

observed in lymphatic muscle (Dougherty et al., 2008). Phosphorylation of myosin light chain 20 

leads primarily to a modulation of tonic contraction of mesenteric lymphatics (Wang et al., 2009). 

Smooth muscle force generation is regulated by the ratio of activity between MLCK and myosin light 

chain phosphatase (MLCP), representative of the phosphorylation level of myosin. Smooth muscle, 

like striated muscle, contains tropomyosin but lacks the troponin complex, instead having calponin 

and caldesmon (Seow, 2016). Caldesmon has been observed in lymphatic muscle (Dougherty et al., 

2014). The role of calponin is undetermined, but it has been shown that caldesmon may operate 

similarly to troponin I (Smith, 1985, Marston and Redwood, 1993) with the inhibition again being 

affected by the calcium saturation of CaM (Word et al., 1994). Previous models of smooth muscles 

with ECC have ignored caldesmon (Maggio et al., 2012, Laforêt et al., 2011). 

There have also been several studies that describe calcium-independent mechanisms modulating 

the level of myosin light chain phosphorylation (Somlyo and Somlyo, 1994, Pfitzer, 2001). 

Additionally, MLCK phosphorylation by Ca2+/CaM-dependent protein kinase II increases its sensitivity 

to Ca2+ (greater calcium concentration required for the same saturation level) (Word et al., 1994). 

The electrical signals in lymphatic muscle propagate between LMCs via gap junctions (von der Weid, 

2001, Hald et al., 2018, Castorena-Gonzalez et al., 2018) (see Figure 3). An important distinction 

between arterioles and lymphatics is that there is weak electrical coupling between the LECs and 

LMCs in (von der Weid et al., 1996, Crowe et al., 1997, von der Weid and van Helden, 1997). This 

means that there is limited drainage of electrical signal to the LECs which act as an electrical sink 

(Scallan et al., 2016). APs thus propagate more rapidly along the lymphatic muscle layer (Scallan et 

al., 2016).  



29 
 

Chapter 2 – COMPUTATIONAL MODELLING BACKGROUND 

2.1. Lymphatics 
This thesis is focussed on the computational modelling of collecting lymphatics, so in this section I 

focus on a review of existing models of these vessels whilst mentioning some models of other 

lymphatic system components. 

The first computer model of lymphatic vessel networks was developed by Reddy (Reddy, 1974, 

Reddy et al., 1977, Reddy, 1980). This was an ambitious model that attempted to simulate the major 

contractile lymphatic vessels of the human body through reduction of the Navier-Stokes equations. 

Only the main vessel from each organ is included and second generation or smaller vessels are 

assumed to be lumped into the main vessel as additional compartments. Vessels draining into the 

right thoracic duct are not included. Reddy assumed one-dimensional Poiseuille flow through a 

series of lymphangions with each lymphangion modelled as a single computational element (lumped 

parameter with one pressure 𝑝 and one radius 𝑎 value, computational elements indexed by 𝑖). This 

resulted in the following mass and momentum conservation equations (equations 1 and 2, 

respectively). Note that this model aimed to represent large networks in humans so included 

gravitational effects neglected in many lymphatic models based on the rat mesentery. 

𝑑𝑎𝑖

𝑑𝑡
=

1

2𝜋𝑎𝑖𝑙𝑖
(𝑄𝑖−1 −𝑄𝑖)        (1) 

where 𝑄𝑖  is the flow from lymphangion 𝑖 to 𝑖 + 1, 𝑙 is the length of the lymphangion, 𝑡 is 

time 

𝑑𝑄𝑖

𝑑𝑡
=

𝜋(𝑎𝑖
2+𝑎𝑖+1

2 )

(𝑙𝑖+𝑙𝑖+1)𝜌
(𝑝𝑖 + 𝜌𝑔𝑧𝑖 − 𝑝𝑖+1 − 𝜌𝑔𝑧𝑖+1) −

4𝜇

𝜌
(
1

𝑎𝑖
2 +

1

𝑎𝑖+1
2 )𝑄𝑖 −

𝑅𝑣𝑖

𝜌
  (2) 

where 𝜌 is lymph density, 𝑔 is gravitational acceleration, 𝑧 is height, 𝜇 is lymph viscosity, 𝑅𝑣 

is the valve resistance 

Valves were included as a constant resistance to forward flow when open and a condition that flow 

is never negative (there is no backflow). Valve resistance (equation 3) in the lymphatic system varies 



30 
 

with the size of the vessel, here represented through the resting radius (𝑟0). Intrinsic contractions 

were incorporated through prescription of a time-dependent stress (𝜎𝑎𝑐𝑡) represented by a half-sine 

with a refractory period and summed with hoop stress (𝜎ℎ𝑜𝑜𝑝) and external pressure (𝑝𝑒𝑥𝑡) to give 

the internal pressure (𝑝) in equation 4. 

𝑅𝑣𝑖 = 120𝜋𝑟0𝑖
2       (3) 

𝑝𝑖 = 𝑝𝑒𝑥𝑡,𝑖 +
ℎ𝑖

𝑎𝑖
(𝜎ℎ𝑜𝑜𝑝,𝑖 + 𝜎𝑎𝑐𝑡,𝑖)   (4) 

where ℎ is the thickness of the lymphangion wall 

More recently, Reddy’s model has been updated to include damping and tension coefficients (𝛾 and 

𝑇, respectively), and changing from a thin wall to a thick wall model for a more accurate wall-force 

balance by incorporating variations in thickness of the lymphangion wall (Macdonald, 2008, 

Macdonald et al., 2008). In this study, the computer model was developed simultaneously with 

cannulation experiments on excised lymphatics from the rat mesentery to characterise passive wall 

mechanics and validate the model results. The tension coefficient was included to model axial 

bending of the lymphangion. The second term on the right-hand side of equation 5 is the thick wall 

model for passive forces, the third term is damping and the fourth is the tension term. 

𝑝 = 𝑝𝑒𝑥𝑡 + 𝐸∆𝑎𝑜𝑢𝑡
2 𝑎𝑜𝑢𝑡

2 −𝑎𝑖𝑛
2

2(1−𝜎2)𝑎𝑖𝑛
2 𝑎𝑜𝑢𝑡

+ 2𝜋𝑎𝛾
𝜕𝑎

𝜕𝑡
− 2𝜋𝑎𝑇

𝜕2𝑎

𝜕𝑥2
  (5) 

where 𝐸 is the Young’s modulus, 𝑎𝑜𝑢𝑡 is the outer radius, 𝑎𝑖𝑛 is the inner radius, 𝜎 is 

Poisson’s ratio, 𝛾 is a damping coefficient, 𝑇 is a tension term, 𝑥 is axial distance 
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Figure 5: Comparison of the axial discretisation showing four cells in each of Reddy’s original model and Macdonald’s 
refined model. Valves are shown in red and cell boundaries are marked by grey dashed lines. 

Inclusion of the damping coefficient served to make simulations more stable and suggested that 

some of the behaviour of Reddy’s model was numerical rather than physical. In the more recent 

model, each lymphangion was sub-divided into six computational elements to give more spatial 

resolution, though this had little effect on results interpretation. In this model, the motion of 

secondary valve was imposed rather than calculated through fluid-structure interaction.  

Venugopal, Quick and co-workers published a series of papers that used experimental and 

computational methods to investigate the combination of phasic and tonic contractions of 

lymphatics  (Venugopal et al., 2003, Venugopal et al., 2004, Venugopal et al., 2007, Quick et al., 

2008, Venugopal et al., 2010). The computational methods resulted in a lumped parameter model of 

a lymphangion. The model developed in these studies combined the time-varying elastance model 

(equation 6) originally developed to model the active contractions of the heart’s left ventricle (Suga 

and Sagawa, 1974, Suga et al., 1973, Suga and Sagawa, 1972) with momentum conservation 

including both resistive and inertial terms (equation 7) under the assumption of Poiseuille flow. 

These were combined with mass conservation (equation 8). Valves were modelled as an additional 
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resistance (𝑅𝑣𝑎𝑙𝑣𝑒) when closed and were assumed to close when the valve’s downstream pressure 

exceeded the upstream pressure. 

𝐸(𝑡) =
𝑃(𝑡)

𝑉(𝑡)−𝑉0
     (6) 

where 𝑉 is volume and 𝑉0 is the theoretical volume at zero pressure 

∆𝑃 = (
8𝜂𝐿

𝜋𝑎4
+ 𝑅𝑣𝑎𝑙𝑣𝑒)𝑄 +

𝜌𝐿

𝜋𝑎2
𝑑𝑄

𝑑𝑡
  (7) 

where 𝜂 is lymph viscosity and 𝐿 is the axial lymphangion length 

𝑑𝑉

𝑑𝑡
= 𝑄𝑖𝑛 −𝑄𝑜𝑢𝑡    (8) 

where 𝑄𝑖𝑛 is the inflow and 𝑄𝑜𝑢𝑡 is outflow 

This model is a simple way to represent lymphangions from their fundamental properties but is 

limited by the very simple model of valves (as in the Reddy model and its adaptation by MacDonald) 

and inaccuracies in the time-varying elastance calculation. 

The combined phasic and tonic contractions were also included by Caulk and colleagues (Caulk et al., 

2016, Caulk et al., 2015) and Razavi and co-workers (Razavi et al., 2017). These models used a 

constitutive model (four fibre strain energy density 𝑾 function) for the passive properties of an 

incompressible thin-walled cylinder (equation 9). Intrinsic contractions were included using constant 

tone and a part cosine for the increase in force during phasic contraction. These models were used 

to represent the rat thoracic duct in the research of Caulk and rat tail lymphatics in the work of 

Razavi. The passive tension was calculated for the circumferential and axial directions. It is, however, 

worth noting that the thoracic duct has significantly different contractile properties compared to the 

rat mesenteric collecting lymphatics typically used for studies on contractile lymphatic vessels. 

𝜎𝜃𝜃
𝑝𝑎𝑠

= 2𝑪𝜃𝜃
𝑒 𝜕𝑾

𝜕𝑪𝜃𝜃
𝑒 − 2𝑪𝑟𝑟

𝑒 𝜕𝑾

𝜕𝑪𝑟𝑟
𝑒     (9a) 

𝜎𝑧𝑧
𝑝𝑎𝑠

= 2𝑪𝑧𝑧
𝑒 𝜕𝑾

𝜕𝑪𝑧𝑧
𝑒 − 2𝑪𝑟𝑟

𝑒 𝜕𝑾

𝜕𝑪𝑟𝑟
𝑒     (9b) 
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𝑾 = 𝑏(tr(𝑪𝑒) − 3) + ∑
𝑏1
𝑘

𝑏2
𝑘 (exp {𝑏2

𝑘 [𝜆𝑘
2
− 1]

2
} − 1)𝑘=1,2,3,4   (9c) 

𝜆𝑘
2
= 𝑪𝜃𝜃

𝑒 (sin𝛼𝑘)
2
+ 𝑪𝑧𝑧

𝑒 (cos 𝛼𝑘)
2

     (9d) 

 where 𝜎𝑝𝑎𝑠 is the passive normal stress, 𝑪𝑒 is the right Cauchy-Green strain tensor, 𝑏, 𝑏1
𝑘, 𝑏2

𝑘 

are material parameters, 𝛼𝑘 is the direction of fibre 𝑘 

Moore Jr., Bertram, and co-workers then developed another lumped-parameter model to examine 

the function of lymphangions (Bertram et al., 2011, Bertram et al., 2014a, Bertram et al., 2014b, 

Bertram et al., 2016b, Bertram et al., 2017, Jamalian et al., 2013). This model has been well validated 

through comparison with cannulation experiments (Davis et al., 2011, Davis et al., 2012, Scallan et 

al., 2012) and in vivo recordings (Dixon et al., 2006, Zawieja et al., 1993). In this model, conservation 

of mass was used to give an ordinary differential equation for the lymphangion diameter. Three 

pressures within the lymphangion (upstream, middle and downstream) were calculated to allow for 

the model to simulate valve prolapse. The mid-lymphangion pressure was calculated using a passive 

tube law and prescribed intrinsic contractions combined with an assigned external pressure. 

Throughout its development, the model has been through several forms of the passive tube law, 

valve resistance, and diameter-dependent intrinsic tension. The first form of the relation (equation 

10a) was used in (Bertram et al., 2011) and a second, improved form (equation 10b) that changed to 

negative curvature at exactly zero transmural pressure and 𝐷 𝐷𝑑⁄ = 1 in (Jamalian et al., 2013). The 

third form (equation 10c) was adopted in (Bertram et al., 2014a) and the most recent form (equation 

10d) in (Jamalian et al., 2017). There have also been two versions of the valve resistance model, with 

the first version (equation 10e) being a single sigmoid for valve opening used in (Bertram et al., 

2014a) and the second (equation 10f) including another sigmoid for valve failure used in (Jamalian et 

al., 2017). Additionally, alternate forms of the diameter-dependence of intrinsic contractions have 

been used with one version (equation 10g) in (Bertram et al., 2016b) and another (equation 10h-k) 

in (Jamalian et al., 2017). 
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𝑓𝑝𝑎𝑠,1 = 𝑃𝑑(exp(𝐷 𝐷𝑑⁄ ) − (𝐷𝑑 𝐷⁄ )3)       (10a) 

𝑓𝑝𝑎𝑠,2 =
4

15
𝑃𝑑(12exp(𝐷 𝐷𝑑⁄ − 1) − 11 − (𝐷𝑑 𝐷⁄ )3)     (10b) 

𝑓𝑝𝑎𝑠,3 = 𝑃𝑑 [𝑐1 (
𝐷

𝑐9
− 𝑐2)

2
+ 𝑐3exp(𝑐4 (

𝐷

𝑐9
− 𝑐5)) + 𝑐6 + 𝑐7 (

𝐷

𝑐9
− 𝑐8) + 𝑐10 (

𝑐9

𝐷
)
3
] (10c) 

𝑓𝑝𝑎𝑠,3 = 𝑐1exp(𝑐2𝐷) + 𝑐3exp(𝑐4𝐷) + 𝑐5𝐷 + 𝑐6 − 𝑐7 𝐷3⁄     (10d) 

𝑅𝑣𝑎𝑙𝑣𝑒,1 = 𝑅𝑉𝑛 +
𝑅𝑉𝑥

1+exp(−𝑠𝑜(∆𝑝𝑉−∆𝑝𝑜))
       (10e) 

𝑅𝑣𝑎𝑙𝑣𝑒,2 = 𝑅𝑉𝑛 + 𝑅𝑉𝑥 (
1

1+𝑒𝑥𝑝(−𝑠𝑓(∆𝑝−𝑝𝑓))
+

1

1+𝑒𝑥𝑝(𝑠𝑜(∆𝑝−𝑝𝑜))
− 1)   (10f) 

𝑀𝑑,1 = (
1

1+𝑒𝑥𝑝(−𝑠𝑑(𝐷−𝐷𝑎))
+

1

1+𝑒𝑥𝑝(𝑠𝑑(𝐷−𝐷𝑏))
− 1)     (10g) 

𝑀𝑑,2 =
𝑀𝑎+𝑀𝑏+𝑀𝑐−2

6
         (10h) 

𝑀𝑎 = 5.5 (1 + exp(−𝑠𝑑0(𝐷𝑖 −𝐷0)))⁄        (10i) 

𝑀𝑏 = 0.5 (1 + exp(−𝑠𝑑1(𝐷𝑖 − 𝐷1)))⁄        (10j) 

𝑀𝑐 = 2 (1 + exp(𝑠𝑑2(𝐷𝑖 − 𝐷2)))⁄        (10k) 

 where 𝑃𝑑 is a pressure constant (sets the local passive stiffness), 𝐷𝑑 is a diameter constant 

(sets the size of the unpressurised and relaxed lymphangion), 𝑐1,2,3,4,5,6,7,8,9 are constitutive 

parameters, 𝑅𝑉𝑛 is the resistance of an open valve, 𝑅𝑉𝑥 is the additional resistance on valve closure, 

𝑠𝑜 is the opening slope of valve resistance, ∆𝑝 is the pressure difference across the valve (upstream-

downstream), ∆𝑝𝑜 is the pressure difference for valve opening, 𝑠𝑓 is the slope of valve failure, 𝑝𝑓 is 

the pressure difference for valve failure, 𝑠𝑑0,1,2 and 𝐷0,1,2 are constitutive parameters 

Upstream and downstream pressure were calculated based on momentum conservations relating 

pressure differences to the valve and Poiseuille lymphangion body resistances. In this model the 
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boundary conditions were pressure at either end of the lymphangion as these were the input control 

variables in cannulation experiments. A major contribution of this model was a more realistic 

consideration of valve behaviour, and the inclusion of a passive tube law to incorporate the passive 

properties of the lymphangion wall. The more realistic valve behaviour resulted from using a 

pressure difference-resistance relationship obtained experimentally to include bias of the valves to 

the open position and more accurate backflow values during valve closure. Throughout this series of 

papers, the core of the model remained the same whilst the passive tube law, valve resistance and 

intrinsic contraction equations have been updated to capture experimental results more realistically. 

A parameter sensitivity analysis of this model identified contraction frequency, external pressure, 

intrinsic tension, and lymphangion length as key parameters for further study. We make adaptations 

to this model in this thesis, so more detail is provided in the methods sections for Chapters 3 and 4. 

This model has since been used to represent small idealised networks (Jamalian et al., 2016) and to 

investigate the theory that suction pressure generated by the contracting lymphatics extends into 

the initial lymphatics to facilitate fluid uptake (Jamalian et al., 2017). Shear stress-dependent 

feedback has also been studied by incorporation into this model for lymphangion chains (Bertram et 

al., 2019) and valve failure has been studied again for lymphangion chains without shear feedback 

(Bertram et al., 2017). This model is the state-of-the-art for lumped parameter models of 

lymphangion function. 

A three-dimensional model of a tubular lymphangion has also been developed (Rahbar and Moore 

Jr., 2011) with the main finding that Poiseuille flow is an appropriate assumption for collecting 

lymphatics. This model consisted of a contracting segment that maintained a circular cross-section 

but varied in radius bounded by stationary inlet and outlet regions and was run using Star-CCM+. 

Contractions were imposed as radial wall motion and the inlet boundary condition was parabolic 

flow (steady and unsteady) with a static outlet pressure boundary condition. 
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Figure 6: Illustration of the geometry in the Rahbar model. (a) The contracting segment is prescribed radial motion in time 
with the variation occurring between 40 μm and 120 μm (b) Cross-sectional view at the centre of the contracting segment. 
A trimmed hexahedral mesh was used to accommodate wall motion (cell sizes 10 μm and thickness of the prism layer 
15 μm) (Rahbar and Moore Jr., 2011) Copyright permissions included in Appendix 2 

Several models have also been developed that investigate the signalling and regulation of intrinsic 

contractions in lymphatics. In one of these models the concentrations of NO and calcium were 

implemented as the only two signalling molecules involved in lymphatic contractions, and it was 

shown that calcium and NO levels alternate spatiotemporally for complementary feedback loops 

(Kunert et al., 2015, Baish et al., 2016). This model reproduced experimentally observed responses 

to pressure variations and manipulations of signalling pathways. In another paper, a modified 

FitzHugh-Nagumo model for action potentials was coupled with a non-linear system of hyperbolic 

PDEs to give a one-dimensional model of the electrical and fluid mechanical aspects of collecting 

lymphatics (Contarino and Toro, 2018). Contractions were incorporated by varying between 

phenomenologically derived passive and contracted pressure-diameter functions. In this paper, the 

effects of valve failure (stenosis and regurgitation) were also modelled. The model results showed 

that the regurgitant valve was incapable of preventing backflow and caused the lymph pump to be 

inefficient with an adverse pressure difference. When modelling stenotic valves, the model showed 

an unexpected decrease in efficiency of the downstream lymphangion with increasing contraction 

rate. 
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Figure 7: Pressure-diameter tube laws of the Containo and Toro model under passive and peak intrinsic contraction 
conditions. The external pressure was set to 0 cmH2O so the y axis represents transmural pressure. Also included is the 
passive tube law previously reported by davis and colleagues (Davis et al., 2011). Figure reference (Contarino and Toro, 
2018) Copyright permissions included in Appendix 2 

A more detailed model of NO concentration has also been developed (Wilson et al., 2013). Wilson 

and co-workers used confocal images from rat mesentery to generate realistic geometry and 

investigate the distribution of NO. This model combined flow and mass transfer equations in steady 

and unsteady analyses using Star-CCM+. Parabolic inflow was assumed with a Dirichlet inlet 

concentration boundary condition and a zero-flux outlet boundary condition. End effects were 

avoided by adding 200-micron long inlet and outlet regions. These simulations revealed areas of flow 

stagnation near valve leaflets, providing a potential explanation for experimental observations of 

high NO concentration in this region. This model also supported the theory of shear-dependent NO 

production since removing this dependence yielded unphysiological concentrations. 

Secondary valves are a complex component of the lymphatic network due to their bias to the open 

position and dependence on transmural pressure, so have warranted some detailed models to 

examine their functionality (Wilson et al., 2015, Watson et al., 2017, Bertram, 2020). The difference 

in these models from the lymphangion models covered above is that those models use lumped-

parameter representations whilst these models study the effects of valve geometry in more detail. 

Wilson and co-workers used idealised geometry of secondary valves for a finite element analysis 

study aimed at understanding the effect of valve and sinus size on leaflet deflection and the open 
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valve resistance. Watson and co-workers (Watson et al., 2017) used confocal images of rat 

mesenteric secondary valves (geometry in Figure 8) to perform a finite element analysis study to 

gain further understanding of the pressure for valve closure, and the retrograde flow during valve 

closure. (Bertram, 2020) developed a 3D finite element fluid-structure interaction model of 

secondary lymphatic valves that incorporates the effect of transmural pressure to study valve 

resistance and flow during opening and closing. The geometry was defined using confocal images of 

rat mesenteric secondary valves and the model was run using ADINA software. Both the leaflets and 

lymphangion wall were modelled as neo-Hookean. 

 

Figure 8: Representative geometry of lymphatic valves (A) shows the leaflet shape (B) is a cross-section showing the 
geometry of valve leaflets and sinus (C) is a 3D geometry of the lymphangion (blue) and valve leaflets (red and green). 
(Watson et al., 2017) Copyright permissions included in Appendix 2 

Mathematical models have also been developed for primary valves (Mendoza and Schmid-

Schönbein, 2003, Galie and Spilker, 2009, Heppell et al., 2013). (Mendoza and Schmid-Schönbein, 

2003) modelled a pair of endothelial cells with one firmly attached to the surrounding tissue and one 
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unattached. The unattached cell was able to bend into the lumen of the vessel to allow inflow and 

was assumed to be purely elastic. The aim of this model was to investigate the theory that the 

overlap of endothelial cells was the function of primary valves and suggested that this was the case. 

(Galie and Spilker, 2009) built on the model of (Mendoza and Schmid-Schönbein, 2003) by using a 

finite element approach and using parameters more accurately defined by experimental results. 

(Heppell et al., 2013) simulated fluid leakage from blood vessels, transport through the interstitium, 

and uptake by initial lymphatics. This was accomplished using a basic unit including one blood 

capillary, one initial lymphatic and an interstitial space in between using COMSOL Multiphysics. The 

interstitial space was modelled as a porous medium, the blood capillaries as permeable membranes 

and the. They used this model to investigate the effects of Young’s modulus of interstitium, the 

pressure difference between blood and lymphatic vessels, the permeability of the blood vessel, and 

the primary lymphatic valves as either open or closed by comparing the vessel circumference to a 

threshold value. This model of primary valves was used because it captures their response to 

expansion or contraction of the interstitium. These variations are then discussed in relation to 

changes in the body during aging and pregnancy. 

There have been a few models developed for lymph nodes, such as (Jafarnejad et al., 2015, Cooper 

et al., 2016, Baldazzi et al., 2009, Gong et al., 2013) with the main two objectives being to determine 

the resistance to flow and study activation of immune response. Jafarnejad and co-workers 

(Jafarnejad et al., 2015) used commercial software (STAR-CCM+) to simulate an idealised model of 

mouse LNs, finding that about 90% of lymph flows around the outer edge of the lymph node whilst 

the fluid that gets deeper into the lymph node is absorbed into blood vessels with the magnitude of 

transfer being highly dependent on the surface area of blood vessels. Cooper and co-workers 

(Cooper et al., 2016) used images of mouse lymph nodes for the geometry for simulations in 

COMSOL Multiphysics. They found that the lymph flows directly between afferent and efferent 

vessels, and the amount that is absorbed or extravasated depends on the pressure in efferent 

lymphatics. The difference in predicted flow paths likely arises from the subdivision of different 
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regions of the LN (see Figure 9) with different permeabilities in the model of Jafarnejad. Both models 

combined flow through open spaces with porous sections and Starling’s law for the entry/exit of 

flow into/out of blood vessels. Inflow was prescribed for the afferent vessels and outlet pressure for 

the efferent vessels. (Baldazzi et al., 2009) presented a hybrid discrete/continuous model of the 

lymph node. This model includes three types of cells and four chemokines. Cells were modelled as 

discrete agents residing in a 3D Cartesian mesh and interactions between cells as probabilistic rules. 

Chemokine concentration is modelled as uniform diffusion with degradation. (Gong et al., 2013) 

used a systems biology approach in a 3D agent-based cellular model of a lymph node. This model 

allows for the simultaneous simulation of T cell trafficking, activation, and production of effector 

cells under different antigen conditions. The model produced three important predictions: (1) T cell 

encounters with dendritic cells are more efficient in 3D, suggesting the need for 3D modelling (2) 

lymph nodes are able to produce CD4+T cells at the same efficiency over multiple cognate 

frequencies (3) reducing the time that naïve T-cells are required to bind DCs before becoming 

activated increases the rate of effector cell production. 

  

Figure 9: Schematic diagram of a lymph node, highlighting the different regions as considered by (Jafarnejad et al., 2015). 
Afferent and efferent vessels are the inflow and outflow pathways for lymph, and HEVs are blood vessels that exchange 
fluid with lymph. Figure originally published in open source article (Baldazzi et al., 2009) Copyright permissions included in 
Appendix 2 
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The electrical and calcium dynamics of lymphatic endothelial cells have also been modelled 

(Behringer et al., 2017) to test the hypothesis that these dynamics facilitate lymph flow. This study 

combined experimental and computational approaches. The computational model used the 

Hodgkin-Huxley membrane model incorporating the major ions (Ca2+, Cl-, Na2+ and K+) through their 

Nernst potentials. The key advantage of the computational approach is that it can simultaneously 

calculate currents of ion channels, pumps, transporters, and exchangers that cannot be feasibly 

done experimentally. 

2.2. Muscle 
There are many models of muscle function, so this section does not aim to review all of them. 

Instead, I cover the two commonly used classes of muscle model, the Hill model (Hill, 1938) and the 

Huxley sliding filament model (Huxley, 1957), with some examples of their uses in modelling cardiac, 

skeletal, and smooth muscle. Whilst these models were initially developed a long time ago, they are 

still the basis for many state-of-the-art models today. I also include some of the important 

modifications that have been used since the original models founding these classes were published.  

Hill was the first to observe that there was a hyperbolic relationship between force (𝐹) and velocity 

(𝑣), yielding the famous Hill equation of muscle function (equation 11). 

(𝑣 + 𝑏′)(𝐹 + 𝑎′) = 𝑏′(𝐹0 + 𝑎′)    (11) 

where 𝑏′ is a constant, 𝑎′ is the coefficient of shortening heat, 𝐹0 is the isometric force 

generation 

There are many adaptations of the Hill model that use a more complex representation of the series 

elastic component and include passive elastic elements or dashpots. The most used form of the Hill 

model includes a contractile element, a series elastic element, and a parallel elastic element (Figure 

10. The series elastic element most likely represents a combination of the actin and myosin filament 

backbones, nonuniformity of sarcomeres, and other connective components in the sarcomere 
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(Knudson, 2007). The parallel elastic element represents the passive stiffness of the muscle from 

components of the muscle besides the sarcomeres, primarily the cytoskeleton. 

 

Figure 10: Hill models with contractile elements (CE) along with series and parallel elastic elements (SE and PE, respectively) 
(a) PE in parallel with both SE and CE (b) PE in parallel with CE only (Winters, 1990) Copyright permissions included in 
Appendix 2 

The Hill model is a simple model, and this has been a factor in its ongoing popularity despite the 

generally accepted major limitation of the Hill model that is the lack of mechanistic insight into the 

molecular mechanisms and their relation to the metabolic aspects of muscle function. Comparison 

of the Hill equation to the Huxley model, however, has shown that there are insights into the 

actomyosin cycling rates from the Hill equation (Seow, 2013) made possible by the state-of-the-art 

study on mechanical motors resolved at the piconewton and nanometer scales (Piazzesi et al., 2007). 

In the Huxley model, also known as the sliding filament model, muscle is modelled as a large 

population of myosin heads. Each myosin head is modelled as a linearly elastic spring (stiffness 𝐾) 

with force generation (𝐹) proportional to its displacement (equation 12a) with the equilibrium fixed 

to the myosin filament. Huxley assumed that the myosin heads could occupy either of two states: 

attached or detached with attachment and detachment rates (𝑓 and 𝑔, respectively) depending on 

the displacement of the head. Huxley tried a few different rate functions and the chosen rate 

functions were based on simple intuition. The attachment rate function was intuitively made to 

increase so that the heads are most likely to attach at the powerstroke length and the muscle is 

doing the most work per actomyosin cycle. The heads do not attach at negative displacements 
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(resisting muscle contraction) and cannot attach at greater displacements than the powerstroke 

length. The detachment was high for negative displacements to reduce the heads that resist 

contraction and increased with increasing displacement so that heads do not reach too higher 

displacement and get damaged. The key equation in this model is a hyperbolic partial differential 

equation (equation 12b) governing how the displacement-distribution of myosin heads varies in 

time. 

𝐹 = 𝐾 ∫𝑛𝑥 𝑑𝑥     (12a) 

𝜕𝑛

𝜕𝑡
− 𝑣

𝜕𝑛

𝜕𝑥
= 𝑓(1 − 𝑛) − 𝑔𝑛   (12b) 

The use of linearly elastic springs was motivated by the fact that experiments showed the difference 

in force generation was linearly proportional to rapid length changes (extending or shortening). A 

key conceptual insight of Huxley in developing his model was the mechanistic explanation of the 

maximum shortening velocity (for zero force) being when the resistive force from heads with 

negative displacement equals the force from heads with positive displacement. Huxley showed that 

under isovelocity conditions, his model gave results that were equivalent within experimental error 

to the Hill equation. Huxley also showed that his model fit the energy liberation data, but that data 

has been subsequently questioned leading to improvements to the Huxley model as covered later in 

the next paragraph. There are several other potential choices for the rate functions in the Huxley 

model as he noted in his initial publication (Huxley, 1957) and discussed by (Keener and Sneyd, 

2009). There is also a general binding site model (equation 13) which can be simplified to continuous 

binding site (where the myosin heads can bind anywhere, the opposite situation to the one binding 

site per myosin head assumed in the Huxley model) and discrete binding site (myosin heads each 

have a few binding sites available) by taking different limits in actin binding site spacing. 

𝜕𝑛

𝜕𝑡
− 𝑣

𝜕𝑛

𝜕𝑥
= 𝑓[1 − ∑ 𝑛(𝑥 +𝑚𝑙𝑎 , 𝑡)

∞
𝑖=−∞ ] − 𝑔(𝑥)𝑛   (13) 

 where 𝑚 indexes the lattice spacing of actin binding sites (distance 𝑙𝑎) 
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There have been many studies that attempt to improve on the limitations of the Huxley model (e.g. 

energetics, eccentric contraction, initial response to quick-release) by including additional myosin 

head states and/or transition functions (Huxley and Simmons, 1971, Hill, 1974, Eisenberg et al., 

1980, Piazzesi and Lombardi, 1995, Barclay, 1999). The two-state Huxley model can be viewed as 

lumping multiple different attached states together, leading to the explicit modelling of these 

attached states for more accurate modelling of the experimental data. Huxley also published a paper 

stating that the inclusion of additional states could better represent the energetics than the original 

model (Huxley, 1973). Another conceptual improvement to the Huxley model was the simultaneous 

consideration of thermodynamics and mechanics (Eisenberg and Greene, 1980). Eisenberg and co-

workers modelled heads as having an initial weak attached state with subsequent transition to a 

strongly attached state, these attached states having different equilibrium positions (i.e. different 

strains for zero force). A common concept for improved energetics modelling in Huxley-type models 

is weak coupling between ATPase activity and cross-bridge cycling. The important distinction 

between the strongly and weakly attached states is the ability of the weakly attached state to detach 

without hydrolysing ATP. 

Based on the latch-state hypothesis of smooth muscle, Hai and Murphy published a series of papers 

in which they developed a four-state model of smooth muscle myosin head conformations with first-

order kinetics for transitions between states (Hai and Murphy, 1992, Hai and Murphy, 1988a, Hai 

and Murphy, 1988b). Most quantitative models of smooth muscle are developments of this initial 

model. This model was validated against data from swine carotid vascular smooth muscle under 

isometric and isovelocity conditions. It was assumed that phosphorylation was a prerequisite for 

attachment of myosin heads (direct attachment of unphosphorylated myosin occurred at a 

negligible rate), and that once attached heads were dephosphorylated, they took a lot longer to 

detach than phosphorylated heads (they are in the latch state). They also assumed that the load 

bearing properties of both phosphorylated and dephosphorylated heads are the same and that the 
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only regulatory effect was calcium facilitating phosphorylation. The main limitation of this model 

was the lack of the displacement dependence present in the Huxley model. 

Mijailovich and Fredberg published two papers (Mijailovich et al., 2000, Fredberg et al., 1999) that 

extended the Hai and Murphy model of myosin head states by incorporating the myosin heads’ 

extension-dependence of the Huxley sliding filament model as shown in Figure 11A. They used this 

model to study the effects of length oscillations on airway smooth muscle in a more complete model 

of smooth muscle function than the isovelocity or isometric conditions in the original Hai and 

Murphy model. In their first model publication they combined the Huxley and Hai-Murphy models 

and applied length oscillations to study their effects on muscle force. The combination of Huxley and 

Hai Murphy models yielded four partial differential equations for the development of displacement-

distribution of myosin heads in each of the four states over time. This set of equations was written in 

terms of a vector for the state populations and a four-by-four matrix of transition rates. Their second 

model included calculations of the ATP hydrolysis under sinusoidal length oscillations. In their 

second publication they also included an alternative conservation of myosin heads (equation 14) 

because the Huxley conservation is not technically true under non-isometric conditions because of 

convection of attached heads beyond the powerstroke region they attached in. Following models 

adapting the Huxley-Hai Murphy model, however, neglect this alternate conservation equation. 

𝑛𝑀𝑝(𝜉, 𝑡) + 𝑛𝑀(𝜉, 𝑡) + ∑ [𝑛𝐴𝑀𝑝(𝜉 + 𝑚𝑙𝑎) + 𝑛𝐴𝑀(𝜉 + 𝑚𝑙𝑎)]𝑚 = 1  (14) 

 where 𝑛𝑀𝑝 is the fraction of myosin heads in the detached phosphorylated state, 𝜉 is the 

local displacement (within the range 0 to the maximum possible for head attachment), 𝑡 is time, 𝑛𝑀𝑝 

is the fraction of myosin heads in the detached dephosphorylated state, 𝑛𝐴𝑀𝑝 is the proportion of 

heads in the attached phosphorylated states, 𝑛𝐴𝑀 is the fraction of heads in the attached 

dephosphorylated state 
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Figure 11: Summary diagram for the Huxley-Hai Murphy model (A) shows the four different states of myosin heads in the 
model with transition rates and the physical position of the myosin heads in the four different states and defines 
strain/displacement and (B) shows the difference in head conservations between isometric and lengthening cases due to 
convection of heads between actin binding site regions (Mijailovich et al., 2000) Copyright permissions included in Appendix 
2 

The computational intensity of the Huxley model has led to a series of papers that use a method 

called distribution-moment, originally developed by Zahalak in the 1980s (Zahalak, 1986, Zahalak, 

1981). This method involves assuming a distribution (typically Gaussian, equation 15a-c) of myosin 

heads to allow for the derivation of ordinary differential equations for the macroscale properties of 

muscle function (stiffness, force and elastic energy storage). Using these ordinary differential 

equations greatly reduces the demand of this model despite increasing error in force and velocity 

estimates. Advances in computing power, however, have made the Huxley model much more 

feasible (Lemaire et al., 2016). More recently, the distribution-moment approximation was applied 

to the Huxley-Hai Murphy model (Rampadarath and Donovan, 2018) to study airway smooth muscle 

in asthma. 
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𝑛(𝑥, 𝑡) =
𝑀0(𝑡)

√2𝜋𝜎(𝑡)
exp (− (𝑥 − 𝜇(𝑡))

2
2𝜎2(𝑡)⁄ )   (15a) 

𝜎(𝑡) = √
𝑀2(𝑡)

𝑀0(𝑡)
− (

𝑀1(𝑡)

𝑀0(𝑡)
)
2
     (15b) 

𝜇(𝑡) =
𝑀1(𝑡)

𝑀0(𝑡)
       (15c) 

 where 𝑛 is the proportion of heads that are attached, 𝑥 is displacement, 𝑡 is time, 𝑀0 is the 

zeroth moment of attached heads in displacement (representative of the total fraction of attached 

heads), 𝑀1 is the first moment of attached heads in displacement, 𝑀2 is the second moment of 

attached heads in displacement 

There have also been multiple studies that use multiscale simulations to incorporate muscle function 

into the greater function of organs or organ systems. Larger-scale models of skeletal muscle often 

couple Huxley or phenomenological models of tension generation with finite element methods 

(Röhrle et al., 2012, Ivanović et al., 2016, Fernandez et al., 2005) and often involve the addition of 

passive elements to represent tendons. In (El Makssoud et al., 2011) they coupled the Huxley model 

with macroscale passive elements to model rabbit medial gastrocnemius. Multiscale modelling of 

skeletal muscle was reviewed in (Jung and Buehler, 2017) and continuous model methods in (Dao 

and Ho Ba Tho, 2018). In the continuous model review, it was highlighted that models were either 

for generic muscle tissue or specific muscles including detailed geometric and fibre orientation 

details. There are also many models of skeletal muscle that examine its role in locomotion. 

There have been a few models that use the Huxley model for cardiac muscle (Wong, 1971, Wong, 

1972, Negroni and Lascano, 1996, Wong, 1976, Rice and de Tombe, 2004). A cardiac muscle Hill 

model has also been developed (Grood et al., 1974). Other models take a phenomenological 

approach (Washio et al., 2012, Fung, 1993, Landesberg and Sideman, 1994) and constitutive 

relations have also been used (Guccione and McCulloch, 1993, Guccione et al., 1993). A very simple 

lumped parameter model of ventricular function, as mentioned in the previous section, is time-
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varying elastance. Many recent models of cardiac function use commercial software (for example 

ANSYS, Comsol, Star-CCM+, Solidworks) for fluid-structure interaction with a trend towards patient-

specific modelling (Lopez-Perez et al., 2015, Khalafvand et al., 2011) which is inappropriate for 

lymphatic vessel studies at this time. These types of models also reflect the greater base of 

knowledge acquired over the longer duration of cardiac studies and the more complex flow profiles 

in the heart due to the higher Reynolds number of the flow. For recent reviews of mathematical 

models of cardiac muscle see (Niederer et al., 2019, Regazzoni et al., 2021). 

Several models have coupled Huxley-Hai Murphy models with constitutive solid mechanics for 

passive soft tissue in the lung (Hiorns et al., 2014, Politi et al., 2010, Brook, 2014, Brook and Jensen, 

2014, Tawhai and Bates, 2011, Lauzon et al., 2012), bladder (Laforêt et al., 2011), and various blood 

vessels (Wang et al., 2008, Yang et al., 2003, Coccarelli et al., 2018, Murtada et al., 2017). Another 

study looked into length adaptation of smooth muscle through a phenomenological model (Lambert 

et al., 2004). Brook and co-workers expanded on the Huxley-Hai Murphy model to investigate 

length-adaptation of airway smooth muscle (Brook, 2014, Brook and Jensen, 2014, Hiorns et al., 

2014). Brook and Jensen developed a structural model of an airway smooth muscle cell (Figure 12) 

to study CE reorganisation in length adaptation by arranging HHM CEs in series and parallel (row A in 

parallel with the cell nucleus, modelled as a linearly elastic spring, and row B directly tethered to the 

cell membrane) and applying an instantaneous rearrangement of the CEs, modelled as a change in 

the linear density of available actin binding sites. 
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Figure 12: Schematic of a model for an airway smooth muscle cell. The model contains two parallel rows of contractile 
elements (lengths 𝑌𝐴

∗ and 𝑌𝐵
∗). The cell nucleus is modelled as a Hookean spring with length 𝑍∗ and stiffness 𝐸𝐴

∗. In parallel 
with the rows of contractile elements are a Hookean spring (stiffness 𝐸𝐶

∗) and Newtonian dashpot (viscosity 𝜇𝐷
∗ ). The overall 

cell length is 𝐿∗ and the total force generated by the cell is 𝑇∗ (Brook and Jensen, 2014) Copyright permissions included in 
Appendix 2 

The key equations for this model are the series length balance 

𝐿∗ = 𝑁𝐴
∗𝑌𝐴

∗ + 𝑍∗𝐸𝐴
∗ = 𝑁𝐵

∗𝑌𝐵
∗   (16) 

where 𝑁𝐴
∗ is the series number of row A contractile elements, 𝑁𝐵

∗ is the series number of row 

B contractile elements 

the series force balance between row A contractile elements and the nuclear spring 

𝐹𝐴
∗ = 𝐸𝐴

∗(𝑍∗ − 𝑍𝑟𝑒𝑓
∗ )    (17) 

where 𝑍𝑟𝑒𝑓
∗  is the reference length for zero force from the nuclear spring 

and the parallel force summation 

𝑇∗ = 𝐹𝐴
∗ + 𝐹𝐵

∗ + 𝐸𝐶
∗(𝐿∗ − 𝐿𝑟𝑒𝑓

∗ ) + 𝜇𝐷
∗ 𝑑𝐿

∗

𝑑𝑡∗
  (18) 

where 𝐿𝑟𝑒𝑓
∗  is the reference length for zero force from the cell stiffness and 𝑡∗ is time 

An important factor in modelling muscle function is excitation-contraction coupling, relating the 

stimulus of muscle to force generation through intracellular calcium concentration and its binding to 
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regulatory proteins. The calcium concentration within the muscle affects the transition rates of 

attachment and/or phosphorylation through a Hill function that represents the binding of calcium to 

regulatory proteins (Yochum et al., 2015, Bursztyn et al., 2007, Laforêt et al., 2011, Yang et al., 2003, 

Wang et al., 2008). Calcium concentration is either a prescribed function fit to experimental 

recordings of the free calcium or is the sum of various fluxes into and out of extracellular and 

intracellular stores (Rice and de Tombe, 2004, Rice et al., 2008, Koenigsberger et al., 2004, Parthimos 

et al., 1999). Modelling the calcium concentration through fluxes provides greater insight into the 

relative importance of different channels but requires significantly more model parameters. There 

are also models that include additional compartments for more detailed representation of the 

various calcium-bound states of regulatory proteins (Zahalak and Ma, 1990, Fajmut et al., 2005a, 

Fajmut et al., 2005b). 

Another factor in muscle function is the dependence of force generation on the muscle length, 

representing the overlap of actin and myosin filaments. This is typically incorporated through the 

inclusion of a function relating muscle length and the number of myosin heads available to attach. 

These functions are obtained from the shape of the force-length relationship that is often obtained 

in isometric muscle experiments (see, for example, (Kocková and Cimrman, 2009, Yu et al., 1997)). 

2.3. Thesis structure 
Chapter 1 provides a general introduction to the lymphatic system paying particular attention to the 

biomechanics of pumping and lymphatic muscle contractility. 

Chapter 2 provides a background on existing computational models of the lymphatics and muscle. 

Chapter 3 discusses a model of lymphatic muscle from an article submitted to Biomechanics and 

Modeling in Mechanobiology. 

Chapter 4 discusses a homogenised model of lymphatic networks from an article to be submitted to 

the Journal of Engineering in Medicine pending some recommended adjustments to allow the model 

to capture properties of lymphatic networks. 
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Chapter 5 is a discussion of the findings obtained in this PhD and recommends some future research 

based on the models developed. 
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CHAPTER 3 – SUBCELLULAR MODEL OF LYMPHATIC MUSCLE 

3.1. Introduction 
Fluid homeostasis is maintained by the converging vessels of the lymphatic system that return 4 −

8 L of interstitial fluid per day to the venous system at the subclavian veins. Lymph transport works 

against an adverse pressure gradient from low or subatmospheric pressures in the interstitium 

(Jamalian et al., 2017, Aukland and Reed, 1993, Guyton et al., 1971). Since there is no central lymph 

pump, each lymphatic vessel must impart energy through active contraction of specialised lymphatic 

muscle cells (LMCs). Retrograde flow is prevented by closely spaced one-way intraluminal valves 

(Margaris and Black, 2012, Gashev, 2008, Moore Jr. and Bertram, 2018). In addition to intrinsic 

contractions, external forces such as from skeletal muscle contraction, respiration, and contraction 

of the heart, among others can impart energy to lymph propulsion. The relative contributions of 

intrinsic contractions and external compression vary throughout the lymphatic tree. 

Deficiencies in lymph transport can result in a chronic, debilitating condition involving tissue swelling 

from accumulation of interstitial fluid and proteins called lymphoedema. The effectiveness of 

lymphoedema management strategies is limited, so it is generally said that it has no cure (Fu, 2014). 

The absence of lymphoedema treatments can be attributed in part to a lack of understanding of 

LMC contraction dynamics (Scallan et al., 2016, Zhang et al., 2013). 

The dual roles of lymphatic vessels serving as both pumps and conduits means that intrinsic 

contractions from LMCs must perform the tasks of both cardiac muscle (phasic contractions to 

generate flow) and vascular smooth muscle (tonic constriction to regulate flow through diameter-

based resistance) (Quick et al., 2007, Bridenbaugh et al., 2003, von der Weid and Zawieja, 2004). 

Lymphatic muscle contractions can adapt in the manner of a heart or a resistance artery, depending 

on the local lymphodynamic environment (Gashev et al., 2012, Gashev et al., 2004). 

The dual behaviours of LMCs are grounded in the presence of two isoforms of contractile proteins. 

These cells possess both striated (slow twitch β) and phasic smooth (SM1B and SM2B) myosin heavy 

chain isoforms (Muthuchamy et al., 2003). The key difference between heavy-chain isoforms is that 
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tonic myosin heads can enter a slowly-cycling latch state (Seow, 2016, Murphy and Rembold, 2005). 

Similar to other types of muscle cells, the excitation of LMCs results from STDs arising at pacemaker 

sites within the muscle layer (Zawieja et al., 1999, von der Weid and Zawieja, 2004, von der Weid, 

2001). These depolarisations sum to generate APs which cause changes in the intracellular calcium 

concentration (von der Weid et al., 2014, Zawieja et al., 1999). 

For striated muscle, calcium binding to TnC causes a conformation change of the troponin-

tropomyosin complex. This exposes actin sites for myosin head attachment. There is preliminary 

evidence for the presence of slow/cardiac TnC in lymphatic muscle (unpublished observation of M. 

Muthuchamy). It is generally accepted that the primary means of ECC for smooth muscle is calcium 

binding to CaM. This activates myosin light chain kinase to phosphorylate myosin heads, allowing 

binding to actin sites and force generation. Tonic contraction of LMCs is likely myosin light chain 

kinase dependent given the presence of CaM (Wang et al., 2009, Dougherty et al., 2008). 

No model for the subcellular mechanisms of lymphatic muscle contractility exists. Existing models of 

lymphangions prescribe the intrinsic contraction forces. Computational research into lymphatic 

muscle has focused on the regulation of contractions and the electrical properties of lymphatic 

muscle (Contarino and Toro, 2018, Kunert et al., 2015, Baish et al., 2016). Whilst there have been 

multiple computer models phenomenologically incorporating both phasic and tonic contractions of 

lymphatic muscle  (Kunert et al., 2015, Caulk et al., 2016, Caulk et al., 2015, Razavi et al., 2020, 

Razavi et al., 2017), the different effects of the contraction types was the focus of only one series of 

computational modelling papers. This model used the time-varying elastance model of the heart 

combined with the transmission line equations for blood vessels (Venugopal et al., 2003, Venugopal 

et al., 2004, Venugopal et al., 2007, Quick et al., 2008, Venugopal et al., 2010). Contarino and Toro 

published a phenomenological one-dimensional model of lymphangions with action potentials 

incorporated through a modified FitzHugh-Nagumo model and allowed the inclusion of shear- and 

pressure-dependent effects on contractions. The model consists of a system of nonlinear hyperbolic 
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PDEs and four ODEs. The key advantage/progress of this model is the ability to simulate lymph flow 

in one dimension with contractile responses to mechanical feedback. Kunert and colleagues 

developed a lattice-Boltzmann type model to show that oscillations in nitric oxide and calcium 

concentration can explain lymphatic contractions. Their model predicted that the concentrations of 

calcium and nitric oxide oscillate spatiotemporally and that the periodic contractions result. Baish 

and colleagues simplified the model presented by Kunert and co-workers and noticed the similarities 

of the shear-dependent NO oscillator to the van der Pol oscillator and applied stability methods to 

identify the key parameters. The model is dependent on phenomenological environmental calcium 

influx, stretch-induced calcium influx, and shear-dependent contraction inhibition. The only previous 

computer model focusing on the dual nature of lymphatic muscle used the time-varying elastance 

model of the heart combined with the transmission line equations for blood vessels (Venugopal et 

al., 2003, Venugopal et al., 2004, Venugopal et al., 2007, Quick et al., 2008, Venugopal et al., 2010). 

Whilst this model was important in developing an understanding of the hybrid nature of lymphatic 

muscle it did not incorporate the subcellular mechanisms that give rise to the dual behavior. The 

phenomenological nature of these models combined with the fact that they do not explicitly model 

the subcellular components limits their applicability in studying the effects of modulating subcellular 

components in health and disease. 

Many muscle models are based on those of A.F. Huxley (Huxley, 1957) or of A.V. Hill (Hill, 1938). 

Huxley’s model is a mechanistic model of the molecular interactions of actin and myosin filaments of 

muscle (described in more detail below). Whilst these models are founded in research that has 

existed for a while, the fundamental concepts remained unchanged and Hill’s model is a black-box 

model that relates velocity and force generation. Hill’s model lacks a direct relationship between 

mechanical and metabolic behaviour (Huxley’s includes such a relationship). Computational intensity 

initially hindered use of the Huxley model but this has become less of an issue (Lemaire et al., 2016). 
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3.2. Methods 
The sub-cellular muscle model is based on the molecular sliding filament model of Huxley (Huxley, 

1957) and its adaptation for smooth muscle (Fredberg et al., 1999, Mijailovich et al., 2000). The fully 

coupled model consists of three scales: molecular, cell, and lymphangion. Scales are coupled by 

iteratively passing down the velocity from a larger scale to a smaller scale and returning the 

contractile force, as shown by Figure 13. The cell model is loosely based on the work of Brook and 

Jensen (Brook and Jensen, 2014) with rows of contractile elements in parallel with a Kelvin-Voigt 

viscoelastic element to represent the passive properties of the cell. The model is adapted to account 

for the phasic and tonic contractions of LMCs, and additionally to include the effects of excitation-

contraction coupling. The little existing knowledge of LMC microstructure meant that a simple 

representation of the CEs and passive viscoelasticity was a good start, with the Brook and Jensen 

model providing a good basis. Accounting for the presence of both phasic and tonic contractions in 

lymphatic muscle resulted in a significant change of the cell structure model from that of Brook and 

Jensen. The effects of ECC are included in the muscle model to induce periodic contractions. We 

base the model parameters on rat mesenteric collecting lymphatics. 
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Figure 13: Coupling of scales. The largest scale in the model is based on a lumped parameter model of lymphangion 
pumping, which yields macroscale pressure-flow relations. Intrinsic muscle contractions are incorporated through a wall-
force balance to calculate the pressure in the centre of a lymphangion. LMC contractile force is calculated from a model 
that includes two types of contractile elements (CEs) connected in series with a spring in parallel with phasic elements and 
dashpot in parallel with tonic elements. There is also a parallel viscoelasticity representing cell properties. The molecular 
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force generation of CEs is calculated from the sliding filament model with ECC incorporated using a prescribed periodic 
function of intracellular free calcium concentration. 

3.2.1. Cell model 
The combination of tonic and phasic contractions is captured at the cell scale through two types of 

molecular contractile elements (CEs). Viscoelasticity of LMCs is modelled using a Kelvin-Voigt 

viscoelastic element in parallel with the CEs as a simple case with only two parameters without 

evidence for the use of alternative methods (Figure 13), based on the work of Brook and Jensen 

(Brook and Jensen, 2014) discussed in Chapter 2. Brook and Jensen developed their model to study 

the effects of length adaptation in human airway smooth muscle. CEs provide a velocity- and 

calcium-dependent force modelled as described in Section 3.2.2. 

CEs of both types are connected in series. A strain-stiffening spring is included in parallel with phasic 

CEs (referred to as phasic spring) and a Newtonian dashpot in parallel with tonic CEs (referred to as 

tonic dashpot). The phasic spring allows the tonic force during diastole to be transmitted across 

passive or minimally active phasic CEs and affect the cell force. This is necessary to allow tonic 

constriction of the lymphangion. The tonic dashpot allows phasic contractions to rapidly reduce the 

cell length without causing a significant change in tonic CE length. This is necessary to allow the tonic 

CEs to attach enough heads for physiologic force generation. In the development of this model, 

several series and parallel arrangements of contractile units and mechanical elements were trialed, 

but this was the only arrangement that yielded physiologic behaviors because it allowed for both 

phasic and tonic contractions to influence the overall force, unlike the other arrangements (see 

Appendix 1). The other arrangements that were tried were parallel rows of contractile elements, 

series CEs with passive elements (spring and dashpot) in parallel with phasic CEs only, and series CEs 

with passive elements in parallel with tonic CEs only. The key problem with the parallel arrangement 

was that the faster velocity of phasic CEs was also the velocity of the tonic CEs so the tonic CEs could 

not attach enough heads for physiologic force generation. Having passive elements in parallel with 

the phasic CEs meant that the overall force of the CE row was the tonic force (the passive elements 

simply made up the difference so that the combination of phasic CEs and passive elements was the 
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tonic force). Similarly, with passive elements in parallel with the tonic CEs the row force was the 

phasic force. LMC viscoelasticity was included in addition to the phasic spring and tonic dashpot 

because the phasic spring and tonic dashpot affect the dynamics of the interaction between the two 

types of contractile element whereas the cell viscoelasticity affected the overall force of the cell. 

A force balance between CEs with contributions from the phasic spring and tonic dashpot results in 

the following equation for the force developed by a single row (𝐹𝑅𝑜𝑤) containing the CEs (Figure 13). 

𝐹𝑅𝑜𝑤 = 𝐹𝑃 + 𝐸𝑃(𝑁𝑃𝑌𝑃 − 𝑁𝑃𝑌𝑃,𝑟𝑒𝑓) = 𝐹𝑇 + 𝜇𝑇𝑁𝑇
𝑑𝑌𝑇

𝑑𝑡
   (19) 

where 𝐹𝑃 is the force generated by phasic CEs, 𝐸𝑃 is the stiffness of the phasic spring, 𝑁𝑃 is 

the number of phasic CEs in series, 𝑌𝑃 is the length of phasic CEs, 𝑌𝑃,𝑟𝑒𝑓 is the reference length for 

zero force from the spring in parallel with phasic CEs, 𝐹𝑇 is the force generated by tonic CEs, 𝜇𝑇 is 

the viscosity constant for the tonic dashpot, 𝑁𝑇  is the number of tonic CEs in series, 𝑌𝑇 is the length 

of tonic CEs, 𝑡 is time. 

The strain-stiffening of the phasic spring is given by the exponential equation 

𝐸𝑃 = 𝑎 × exp(𝑏𝑁𝑃𝑌𝑃)       (20) 

where 𝑎, 𝑏 are constitutive parameters 

It is essential for the phasic spring to be in extension during diastole when there is little phasic force, 

and tonic CEs pull on the phasic CEs so that the spring provides an additional contractile force and 

the row force is higher than the phasic force and includes tonic CE effects during diastole. This 

means that the phasic spring needs to resist overextension of phasic CE (otherwise the lymphangion 

would be unable to overcome the pressure demand imposed upon it. Both types of CE are initialized 

to the same length (see Section 3.2.3). 

The total combined length of phasic and tonic CEs corresponds to the cell length (𝐿𝐶𝑒𝑙𝑙) 

𝐿𝐶𝑒𝑙𝑙 = 𝑁𝑃𝑌𝑃 +𝑁𝑇𝑌𝑇      (21) 
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The total contractile force of the cell (𝐹) is the sum of the overall parallel contributions 

𝐹 = 𝑁𝑅𝑜𝑤𝑠𝐹𝑅𝑜𝑤 + 𝐸𝐶𝑒𝑙𝑙(𝐿𝐶𝑒𝑙𝑙 − 𝐿𝐶𝑒𝑙𝑙,𝑟𝑒𝑓) + 𝜇𝐶𝑒𝑙𝑙
𝑑𝐿𝐶𝑒𝑙𝑙

𝑑𝑡
  (22) 

where 𝑁𝑅𝑜𝑤𝑠 is the number of parallel rows of CEs, 𝐸𝐶𝑒𝑙𝑙 is the stiffness of the LMC, 𝐿𝐶𝑒𝑙𝑙,𝑟𝑒𝑓 

is the length of an LMC with zero force from the cell stiffness, 𝜇𝐶𝑒𝑙𝑙 is the viscosity constant for the 

LMC 

The shortening velocity of tonic CEs (𝑣𝑇) is obtained by rearranging the series force balance 

(equation 13a), and the shortening velocity of phasic CEs (𝑣𝑃) by differentiating and rearranging the 

length balance (equation 13b) 

𝑣𝑇 = −
𝑑𝑌𝑇

𝑑𝑡
=

𝐹𝑃+𝐸𝑃(𝑁𝑃𝑌𝑃−𝑁𝑃𝑌𝑃,𝑟𝑒𝑓)−𝐹𝑇

𝜇𝑇𝑁𝑇
    (23a) 

𝑣𝑃 = −
𝑑𝑌𝑃

𝑑𝑡
=

𝑑𝐿𝐶𝑒𝑙𝑙 𝑑𝑡⁄ −𝑁𝑇𝑑𝑌𝑇 𝑑𝑡⁄

𝑁𝑃
    (23b) 

3.2.2. Molecular muscle modelling 
The molecular models for CE force generation are based on adapting the sliding filament model to 

include the effects of ECC. In the sliding filament model, myosin heads are modelled as linearly 

elastic springs (Huxley, 1957) and can occupy different chemical states. Each myosin head has its 

own equilibrium position that moves with the myosin filament, and its contractile force when 

attached is proportional to the displacement from equilibrium (Figure 14). The maximum 

displacement at which a myosin head can still attach to actin is called the powerstroke length 

(assumed consistent between myosin isoforms). Detachment is possible at all displacements. We 

assume that there is an actin site:myosin head ratio of 1: 1 and sufficient spacing between actin sites 

that each myosin head has only one actin site in attachment range. In phasic CEs, ECC is included via 

TnC which affects the attachment rate (Wong, 1971, Wong, 1972). In tonic CEs, ECC is included via 

CaM which affects the phosphorylation rate (Wang et al., 2008, Yochum et al., 2015). 
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It is assumed that phasic myosin heads can occupy two states with the head either attached and 

generating force or detached (see Figure 14). The rate myosin head attachment (𝑓) or detachment 

(𝑔) is dependent on its displacement using the functions of A.F. Huxley (Huxley, 1957) modified so 

that the detachment rate is constant for positive displacements greater than the powerstroke length 

as shown in Figure 14. Constants for transition rates of both myosin isoforms are listed in Table 1. In 

the model presented here, the attachment rate is also dependent on the saturation of cardiac TnC 

with calcium ions, modelled as described in Section 3.2.2.1. Smooth transitions between the 

piecewise rate functions in equations 24a,b and 27a,b are provided by part sines as considered by 

the  original rate functions: 

𝑓 =

{
 
 

 
 
0                                                                                                     𝑖𝑓 𝑥 ℎ⁄ < 0

𝑆𝑇𝑟𝑜𝑝𝑓1 𝑥 ℎ⁄                                                                      𝑖𝑓 0 ≤ 𝑥 ℎ⁄ < 0.9

𝑆𝑇𝑟𝑜𝑝𝑓10.9(
sin(

2𝜋𝑥

0.4ℎ
)+1

2
)                                             𝑖𝑓 0.9 ≤ 𝑥 ℎ⁄ ≤ 1.1

0                                                                                                  𝑖𝑓 𝑥 ℎ⁄ > 1.1

            (24a) 

where 𝑆𝑇𝑟𝑜𝑝 is the saturation of TnC, 𝑓1 is a constant, 𝑥 is displacement, ℎ is powerstroke 

length, 

𝑔 =

{
 
 

 
 
𝑔2                                                                                            𝑖𝑓 𝑥 ℎ⁄ < −0.1

(𝑔2 − 0.1𝑔1) (
sin(

2𝜋𝑥

0.4ℎ
−𝜋)+1

2
) + 0.1𝑔1                𝑖𝑓 − 0.1 ≤ 𝑥 ℎ⁄ ≤ 0.1

𝑔1 𝑥 ℎ⁄                                                                                𝑖𝑓 0.1 < 𝑥 ℎ⁄ ≤ ℎ

𝑔1                                                                                                   𝑖𝑓 𝑥 ℎ⁄ > ℎ

           (24b) 

where 𝑔1, 𝑔2 are constants obtained from a general fit to the shape of diameter and 

pressure tracings obtained experimentally (see Table 1) 

The displacement-distribution of attached phasic heads can be affected by either detachment or 

mechanical convection to a different displacement. Convection is the result of all heads being 

attached to the same actin filament so heads with different extensions are dragged at the rates. 

Using the sign convention of shortening velocity being positive, the convection results in a partial 
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differential reducing the displacement of attached heads during shortening. Using first-order kinetics 

for myosin head state transitions the attached proportion of myosin heads is governed by 

𝜕𝑛𝑃

𝜕𝑡
− 𝑣𝑃

𝜕𝑛𝑃

𝜕𝑥
= (1 − 𝑛𝑃)𝑓 − 𝑛𝑃𝑔   (25) 

where 𝑛𝑃 is the proportion of phasic myosin heads with displacement 𝑥 that are attached. 

Conservation of the total number of myosin heads dictates that the fraction of detached heads is 

(1 − 𝑛𝑃). The minus sign arises from the sign convention of shortening velocity being considered 

positive. The force per phasic CE (𝐹𝑃) is then calculated as in (Huxley, 1957) by integrating Hooke’s 

law over all displacements with constants for the number of myosin heads and density of actin 

binding sites. 

𝐹𝑃 = 𝑁𝑢𝑚𝑃𝜌𝐾𝑃 ∫ 𝑥𝑛𝑃 𝑑𝑥
∞

−∞
    (26) 

where 𝑁𝑢𝑚𝑃 is the number of myosin heads in a phasic CE, 𝜌 is the length density of actin 

binding sites along the thin filament, 𝐾𝑃 is phasic myosin head stiffness 

The force of phasic contractile elements is directly dependent on the density of actin binding sites 

because this limits how many heads can attach and forces from different heads add in parallel. In 

practice the integral has finite bounds with displacements that are large enough (in both positive 

and negative directions) that there is no convection of myosin heads beyond the limits. The integral 

was, in practice, bounded by finite values of −15ℎ to 15ℎ which were far enough from the 

attachment region that all heads were detached before reaching these bounds, so the force was 

unaffected and increasing these bounds would have no effect on the results. Displacement 

discretisation was twenty cells per powerstroke length with the sine region (0.1ℎ on either side of 

the rate transitions at 𝑥 = 0 and 𝑥 = ℎ) subdivided by ten. See Appendix 1 for a check that the 

model results are unaffected by halving displacement discretisation under reference conditions. 

Tonic CE mechanics are also modelled using the sliding filament model, but with additional states 

motivated by the presence of the slowly cycling latch state of smooth muscle (Dillon et al., 1981, 
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Murphy and Rembold, 2005) (Figure 14). The models for these additional states come from Hai and 

Murphy (Hai and Murphy, 1988a, Hai and Murphy, 1988b, Hai and Murphy, 1992). Tonic CE 

transition rate functions for attachment and detachment (plotted in Figure 14) are similar to those 

for phasic CEs, except with increased detachment rates for heads with greater displacement than 

the powerstroke length (Brook and Jensen, 2014). Transitions between the piecewise functions are 

again given by part sines. 

Attachment 𝑘3 

𝑘3 =

{
 
 

 
 
0                                                                                                     𝑖𝑓 𝑥 < 0

𝐾3,1 𝑥 ℎ⁄                                                                            𝑖𝑓 0 ≤ 𝑥 < 0.9

0.9𝐾3,1 (
sin(

2𝜋𝑥

0.4ℎ
)+1

2
)                                                   0.9 ≤ 𝑥 ℎ⁄ ≤ 1.1

0                                                                                           𝑖𝑓 𝑥 ℎ⁄ > 1.1

                      (27a) 

Phosphorylated detachment 𝑘4 

𝑘4 =

{
 
 
 
 

 
 
 
 
𝐾4,2                                                                                                                       𝑖𝑓 𝑥 ℎ⁄ < −0.1

(𝐾4,2 − 0.9𝐾4,1)(
sin(

2𝜋𝑥

0.4ℎ
−𝜋)+1

2
) + 0.9𝐾4,1                                         − 0.1 ≤ 𝑥 ℎ⁄ ≤ 0.1

𝐾4,1 𝑥 ℎ⁄                                                                                                           0.1 < 𝑥 ℎ⁄ < 0.9

(0.9(𝐾4,1 + 𝐾4,3) − 1.1𝐾4,1) (
sin(

2𝜋𝑥

0.4ℎ
−𝜋)+1

2
) + 0.9𝐾4,1                 𝑖𝑓 0.9 ≤ 𝑥 ℎ⁄ ≤ 1.1

(𝐾4,1 + 𝐾4,3) 𝑥 ℎ⁄                                                                                                 𝑖𝑓 𝑥 ℎ⁄ > 1.1

       (27b) 

Dephosphorylated detachment 𝑘7 

𝑘7 = 

{
 
 
 
 

 
 
 
 
𝐾7,2                                                                                                                      𝑖𝑓 𝑥 ℎ⁄ < −0.1

(𝐾7,2 − 0.1𝐾7,1)(
sin(

2𝜋𝑥

0.4ℎ
)+1

2
) + 0.1𝐾7,1                                        𝑖𝑓 − 0.1 ≤ 𝑥 ℎ⁄ ≤ 0.1

𝐾7,1 𝑥 ℎ⁄                                                                                                      𝑖𝑓 0.1 < 𝑥 ℎ⁄ < 0.9

(1.1(𝐾7,1 + 𝐾7,3) − 0.9𝐾7,1) (
sin(

2𝜋𝑥

0.4ℎ
−𝜋)+1

2
) + 0.9𝐾7,1                 𝑖𝑓 0.9 ≤ 𝑥 ℎ⁄ ≤ 1.1

(𝐾7,1 + 𝐾7,3) 𝑥 ℎ⁄                                                                                                𝑖𝑓 𝑥 ℎ⁄ > 1.1

       (27c) 

where 𝐾3,1, 𝐾4,1, 𝐾4,2, 𝐾4,3, 𝐾7,1, 𝐾7,2, 𝐾7,3 are constants 
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The phosphorylation/dephosphorylation rates (𝑘1 and 𝑘6, respectively) are assumed to be 

independent of displacement and the same for both attached and detached heads (Brook and 

Jensen, 2014). The phosphorylation rate of tonic myosin heads is dependent on the saturation of 

CaM. 

𝑘1 = 𝑆𝐶𝑎𝑀𝐾1   (27d) 

𝑘6 = 𝑆𝐶𝑎𝑀𝐾6   (27e) 

where 𝑆𝐶𝑎𝑀 is the saturation of CaM, 𝐾1, 𝐾6 are constants 

The resulting set of partial differential equations (PDEs) describing the displacement-distribution of 

tonic heads in different states can be written as a single equation with a vector of attachment states 

and a matrix of transition rates (Fredberg et al., 1999) as given here in equations 28a,b. 

𝜕𝒏𝑻

𝜕𝑡
− 𝑣𝑇

𝜕𝒏𝑻

𝜕𝑥
= 𝑻𝒏𝑻   (28a) 

𝒏𝑻 = {

𝑀
𝑀𝑝
𝐴𝑀𝑝
𝐴𝑀

}    (28b) 

 where 𝑀 is the proportion in the detached dephosphorylated state, 𝑀𝑝 is the proportion in 

the detached phosphorylated state, 𝐴𝑀𝑝 is the proportion in the attached phosphorylated state and 

𝐴𝑀 is the proportion in the attached dephosphorylated state. 

𝑻 =

[
 
 
 
−𝑘1 𝑘2                               0 𝑘7
𝑘1
0

−(𝑘2 + 𝑘3)                          𝑘4         

        𝑘3                   −(𝑘5 + 𝑘4)
0
𝑘6

0  0                                 𝑘5 −(𝑘6 + 𝑘7)]
 
 
 
  (28c) 

The total number of heads must again be conserved, resulting in an algebraic equation to replace 

one of the PDEs 

∑𝒏𝑻 = 1    (28d) 

In this model 𝐴𝑀 was replaced, meaning that the final row of the transition matrix is not used 
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𝐴𝑀 = 1 −𝑀 −𝑀𝑝 − 𝐴𝑀𝑝  (28e) 

The force generated by tonic CEs is given by the integral of attached states over all displacements 

(Brook and Jensen, 2014) again with constants of the number of myosin heads and density of actin 

binding sites. 

𝐹𝑇 = 𝜌𝑁𝑢𝑚𝑇𝐾𝐻𝐻𝑀 ∫ 𝑥 × 𝐴𝑀𝑝 𝑑𝑥
∞

−∞
+ 𝜌𝑁𝑢𝑚𝑇𝐾𝐻𝐻𝑀 ∫ 𝑥 × 𝐴𝑀 𝑑𝑥

∞

−∞
  (29) 

where 𝑁𝑢𝑚𝑇 is the number of myosin heads in a tonic CE, 𝐾𝐻𝐻𝑀 is the stiffness of tonic 

myosin heads 
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Figure 14: Molecular models of phasic and tonic CE myosin states (upper row) and myosin head rates (middle row) and 
transitions between piecewise rate functions (lowest row) 

To analyse the system’s efficiency (see Figure 15 for an overview of model energetics calculations), 

the rate of energy liberation is calculated. One molecule of ATP is hydrolysed per detachment or 

phosphorylation process. The energy liberated by detachment is calculated from the myosin 

detachment rate and number of attached heads. The number of attached heads is given by the 
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proportion of heads attached integrated over all displacements and multiplied by the density of 

actin sites. The total energy liberation rate is the product of the number of CE rows and the energy 

liberated from a single row, then summed over all LMCs. 

𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑃

𝑑𝑡
= 𝑁𝐶𝑒𝑙𝑙𝑁𝑅𝑜𝑤𝑠𝜌𝑒𝑁𝑢𝑚𝑃𝑁𝑃 ∫ 𝑔 × 𝑛𝑃 𝑑𝑥

∞

−∞
   (30) 

where 𝐸𝑛𝑒𝑟𝑔𝑦𝑃 is the energy liberated by detachment of phasic myosin heads, 𝑁𝐶𝑒𝑙𝑙 is the 

circumferential number of LMCs, 𝑒 is the energy liberated by hydrolysis of one ATP molecule 

The rate of energy liberation in phasic CEs is due solely to the energy liberated in detachment. The 

energy liberation in tonic CEs is the sum of detachment and phosphorylation events (Mijailovich et 

al., 2000). The liberation rates here are summed over all CEs to give the energy liberated by each 

LMC and then summed over all LMCs. 

𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑇,𝑃ℎ𝑜𝑠𝐷𝑒𝑡𝑎𝑐ℎ

𝑑𝑡
= 𝑁𝐶𝑒𝑙𝑙𝜌𝑒𝑁𝑅𝑜𝑤𝑠𝑁𝑢𝑚𝑇𝑁𝑇 ∫ 𝑘4 × 𝐴𝑀𝑝 𝑑𝑥

∞

−∞
   (31a) 

𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑇,𝑈𝑛𝑝ℎ𝑜𝑠𝐷𝑒𝑡𝑎𝑐ℎ

𝑑𝑡
= 𝑁𝐶𝑒𝑙𝑙𝜌𝑒𝑁𝑅𝑜𝑤𝑠𝑁𝑢𝑚𝑇𝑁𝑇 ∫ 𝑘7 × 𝐴𝑀 𝑑𝑥

∞

−∞
   (31b) 

𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑇,𝐷𝑒𝑡𝑎𝑐ℎ𝑃ℎ𝑜𝑠

𝑑𝑡
= 𝑁𝐶𝑒𝑙𝑙𝜌𝑒𝑁𝑅𝑜𝑤𝑠𝑁𝑢𝑚𝑇𝑁𝑇𝑘1 ∫ 𝑀 𝑑𝑥

∞

−∞
   (31c) 

𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑇,𝐴𝑡𝑡𝑎𝑐ℎ𝑃ℎ𝑜𝑠

𝑑𝑡
= 𝑁𝐶𝑒𝑙𝑙𝜌𝑒𝑁𝑅𝑜𝑤𝑠𝑁𝑢𝑚𝑇𝑁𝑇𝑘6 ∫ 𝐴𝑀 𝑑𝑥

∞

−∞
   (31d) 

𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑇

𝑑𝑡
= 𝑁𝐶𝑒𝑙𝑙𝜌𝑒𝑁𝑅𝑜𝑤𝑠𝑁𝑢𝑚𝑇𝑁𝑇(∫ 𝑘4 × 𝐴𝑀𝑝 𝑑𝑥

∞

−∞
+ ∫ 𝑘7 × 𝐴𝑀 𝑑𝑥

∞

−∞
+ 𝑘1 ∫ 𝑀 𝑑𝑥

∞

−∞
+

𝑘6 ∫ 𝐴𝑀 𝑑𝑥
∞

−∞
)         (31e) 

where 𝐸𝑛𝑒𝑟𝑔𝑦𝑇,𝑃ℎ𝑜𝑠𝐷𝑒𝑡𝑎𝑐ℎ is the energy liberated by detachment of phosphorylated tonic 

myosin heads, 𝐸𝑛𝑒𝑟𝑔𝑦𝑇,𝑈𝑛𝑝ℎ𝑜𝑠𝐷𝑒𝑡𝑎𝑐ℎ is the energy liberated by detachment of unphosphorylated 

myosin heads, 𝐸𝑛𝑒𝑟𝑔𝑦𝑇,𝐷𝑒𝑡𝑎𝑐ℎ𝑃ℎ𝑜𝑠 is the energy liberated by phosphorylation of detached myosin 

heads, 𝐸𝑛𝑒𝑟𝑔𝑦𝑇,𝐴𝑡𝑡𝑎𝑐ℎ𝑃ℎ𝑜𝑠 is the energy liberated by phosphorylation of attached myosin heads, 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇 is the total energy liberated by tonic CEs. 
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The rate of doing work per LMC, 𝑑𝑊 𝑑𝑡⁄ , is given by the force multiplied by the shortening velocity, 

which is then summed over all cells. 

𝑑𝑊

𝑑𝑡
= 𝑁𝐶𝑒𝑙𝑙𝐹 × −

𝑑𝐿𝐶𝑒𝑙𝑙

𝑑𝑡
      (32) 

The cell work is overall work done by LMCs (contributions of phasic and tonic CE works, temporary 

storage in the phasic spring and cell stiffness, losses to tonic dashpot and cell viscosity). 

The total energy liberated and work done comes from integrating their rates over the duration of a 

cycle. The overall energy liberated by LMCs is the sum of energy liberation by phasic and tonic CEs. 

Whatever liberated energy not used to do useful work is lost as heat. The energy efficiency (𝜂) is the 

useful work done divided by the energy liberated. 

𝜂 =
𝑊

𝐸𝑛𝑒𝑟𝑔𝑦𝑃+𝐸𝑛𝑒𝑟𝑔𝑦𝑇
     (33) 

Plots for the energy balance for an LMC under reference conditions are given in Appendix 1. 

Energy loss rates due to viscosity are calculated as 

𝑑𝐸𝑇𝐷𝑙𝑜𝑠𝑠

𝑑𝑡
= 𝑃𝑁𝐶𝑒𝑙𝑙𝜇𝑇 (𝑁𝑇

𝑑𝑌𝐻𝐻𝑀

𝑑𝑡
)
2

   (34a) 

where 𝐸𝑇𝐷𝑙𝑜𝑠𝑠 is the loss of energy to viscosity of the tonic dashpot 

𝑑𝐸𝐶𝑆𝑙𝑜𝑠𝑠

𝑑𝑡
= 𝑁𝐶𝑒𝑙𝑙𝜇𝐶𝑒𝑙𝑙 (

𝑑𝐿

𝑑𝑡
)
2
    (34b) 

where 𝐸𝐶𝑆𝑙𝑜𝑠𝑠 is the loss of energy to viscosity of the cell. An additional loss (𝐸𝑙𝑦𝑚𝑝ℎ) occurs 

at the lymphangion level due to the behaviour of the lymph being pumped 

𝑑𝐸𝑙𝑦𝑚𝑝ℎ

𝑑𝑡
=

64𝜇𝐿𝑣

𝜋𝐷3
(𝑄1

2 + 𝑄2
2)    (34c) 

At the sliding filament level, energy is lost because not all heads complete the entire powerstroke 

(𝐸𝑃𝑆). Incomplete powerstrokes liberate the same amount of energy but cannot convert all of the 

energy liberated to work (Barclay and Loiselle, 2020, Eisenberg et al., 1980). This is combined with 
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the fact that ATP hydrolysis is irreversible so the excess liberated energy is not re-captured and is 

lost to entropy as heat (Loiselle et al., 2010, Chapman and Loiselle, 2016). The conversion to heat is 

likely via internal friction between the myosin heads and actin binding sites (Chapman and Loiselle, 

2016). 

 

Figure 15: Figure summarising the energetics in the LMC model. Energy is liberated by detachment in both the phasic and 
tonic components, and additionally by phosphorylation in the tonic component. The liberation by LMCs is the sum of 
contributions from tonic and phasic components, which is then reduced by losses to the viscosities of the tonic dashpot, the 
cytoskeleton, and incomplete powerstrokes, giving the work done by the cell (the efficiency of the muscle cell is the ratio of 
cell work and total energy liberation). The cell work then loses energy overcoming the lymph viscosity to give energy 
transfer to lymph. 

Table 1: Rate constants used for phasic and tonic myosin head state transitions 

Constant symbol Value [1/s] Source 

𝑓1 
𝑔1 

620 
50 

Fit to general features 
(pressure, diameter, flow) of 
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𝑔2 210 rat mesenteric lymphangion 
experiments (Davis et al., 
2008, Davis et al., 2011, Davis 
et al., 2012, Scallan et al., 
2016, Zawieja et al., 1999) 

𝐾3,1 
𝐾4,1 
𝐾4,2 
𝐾4,3 

𝐾7,1 
𝐾7,2 
𝐾7,3 
𝐾1 
𝐾2 
𝐾5 
𝐾6 

0.88 
0.22 
4(𝐾3,1 + 𝐾4,1) 
3𝐾4,1 
0.1 
20𝐾7,1 
3𝐾7,1 
0.35 
0.1 
K2 

K1 

Airway smooth muscle cells 
(Fredberg et al., 1999) 
 

 

3.2.2.1. Excitation-contraction coupling 

To induce contractions, ECC was initiated via a periodic intracellular free calcium concentration (𝑐). 

This concentration was used to calculate the saturation of binding proteins. Saturations alter the 

transition rates between myosin head states to influence force generation (Wang et al., 2008, 

Yochum et al., 2015, Wong, 1971, Wong, 1972). The calcium concentration in this model is not 

affected by the regulatory mechanisms operating in lymphatic muscle (e.g. shear- and pressure-

dependent changes in calcium concentration levels and timing) for simplicity in this first 

implementation of the model, and future work underway to capture such effects. 

The rat mesenteric lymphatic vessel calcium measurements of Zawieja and colleagues (Zawieja et al., 

1999) were fit (Figure 16) and calcium oscillations modelled as sinusoidal oscillations about the 

average diastolic concentration. 

 
Figure 16: Calcium plots (a) fit to the calcium concentration recording of (Zawieja et al., 1999) (b) calcium concentration 
recording of (Zawieja et al., 1999) 
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𝑐(𝑡) = {
(𝐶𝑎𝑎𝑚𝑝 − 𝐶𝑎𝑑)

𝑎2

𝑏2−𝑎2
[exp(−𝑎2𝑡𝑝

6) − exp(−𝑏2𝑡𝑝
6)] + 𝐶𝑎𝑑       𝑖𝑓 𝑡𝑝 < 𝑡𝐶𝑎

𝐶𝑎𝑑 (1 + 𝐶𝑎𝐴𝑚𝑝 sin (𝜔𝐶𝑎2𝜋(𝑡𝑝 − 𝑡𝐶𝑎)))                                     𝑖𝑓 𝑡𝑝 ≥ 𝑡𝐶𝑎
 (35) 

where 𝐶𝑎𝑎𝑚𝑝 is the peak calcium concentration, 𝐶𝑎𝑑 is the diastolic calcium concentration, 

𝑎2, 𝑏2 are constitutive parameters, 𝑡𝑝 is the time from the beginning of the current cycle, 𝑡𝐶𝑎 is the 

time in the current cycle for onset of calcium oscillations, 𝐶𝑎𝐴𝑚𝑝 is the amplitude of calcium 

oscillations as a fraction of the average diastolic calcium, 𝜔𝐶𝑎 is the frequency of calcium oscillations 

Calcium oscillations were modelled as sinusoidal fluctuations in diastolic calcium concentration with 

various amplitudes and frequencies. Amplitudes were expressed as a percentage of the average 

diastolic calcium concentration. Frequencies were included as the number of oscillations per 

diastolic period. This model of calcium transient was chosen because it allows specification of peak 

and resting calcium levels, as well as timings. This model can therefore be manipulated to provide 

many different forms of calcium concentration without many parameters and gives a smooth peak in 

calcium concentration which is more biological than other functions used to model calcium 

transients in other muscle models (Bursztyn et al., 2007). A sinusoidal approximation was chosen for 

fluctuations from spontaneous transient depolarisations despite their randomness as this allowed 

reproducibility of results and the comparison of results with different myosin head compositions, 

pressures, or timing can be compared. 

The calcium saturations of TnC and CaM were modelled using Hill functions following published 

models from bladder smooth muscle (Laforêt et al., 2011), uterine smooth muscle (Yochum et al., 

2015) and rabbit skeletal muscle (Grabarek et al., 1983). The calcium binding/unbinding rates for 

both TnC and CaM are much faster than the rates of actomyosin cycling (Robertson et al., 1981, 

Cannell and Allen, 1984, Faas and Mody, 2012), so a quasi-steady state can be assumed. Calcium-

independent regulatory mechanisms affecting myosin phosphorylation are not considered here. 

Calcium saturations for TnC and CaM with reference binding properties (see Table 2) are shown in 

Figure 17. 
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TnC saturation (𝑆𝑇𝑟𝑜𝑝) is calculated using 

𝑆𝑇𝑟𝑜𝑝 =
𝑐
𝑛𝑚𝑇𝑟𝑜𝑝

𝑐
𝑛𝑚𝑇𝑟𝑜𝑝+𝑐0.5,𝑇𝑟𝑜𝑝

𝑛𝑚𝑇𝑟𝑜𝑝   (36a) 

where 𝑛𝑚𝑇𝑟𝑜𝑝 is the Hill coefficient for TnC, 𝑐0.5,𝑡𝑟𝑜𝑝 is the half saturation concentration for 

TnC 

CaM saturation (𝑆𝐶𝑎𝑀) is calculated using 

𝑆𝐶𝑎𝑀 =
𝑐𝑛𝑚𝐶𝑎𝑀

𝑐𝑛𝑚𝐶𝑎𝑀+𝑐
0.5,𝐶𝑎𝑀

𝑛𝑚𝐶𝑎𝑀
    (36b) 

where 𝑛𝑚𝐶𝑎𝑀 is the Hill coefficient for calmodulin, and 𝑐0.5,𝐶𝑎𝑀 is the calcium concentration 

at which half of the calmodulin calcium binding sites are occupied, representing the affinity of the 

protein to calcium 

The phosphorylation and attachment rates were multiplied by the saturation of the regulatory 

proteins because the overall saturation is representative of the probability that any given protein 

will be saturated. The probability of state transition is then the product of the probability that the 

myosin site is “active” (regulatory protein saturated) and the probability of transition given that a 

site is “active”. 

 
Figure 17: Time-dependent saturations of (A) TnC and (B) calmodulin used in all results with the exception of calcium 
binding sensitivity. 

 

Time [s] Time [s] 
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Table 2: Muscle model parameters other than rate function constants 

Symbol Description Value 
[dimension] 

Source 

𝑁𝐶𝑒𝑙𝑙 Number of LMCs around 
lymphangion 
circumference 

4 [-] Unpublished 
estimate of D. 
Zawieja 

𝑁𝑅𝑜𝑤𝑠 Total number of parallel 
rows of CEs 

3 x 6e3 [-] Reference value 
chosen 
 
Estimate from 
SEM image of rat 
mesenteric 
lymphatic 
(Muthuchamy et 
al., 2003) 

𝑁𝑢𝑚𝑃 Number of myosin heads 
per phasic CE 

4500 [-] Reference value 
chosen 
 
Combined volume 
estimate from 
cultured LMCs in 
(Muthuchamy et 
al., 2003) with 
concentration of 
heads from 
(Bagshaw, 1993) 

𝑁𝑢𝑚𝑇 Number of myosin heads 
per tonic CE 

1000 [-] Reference value 
chosen 
 
Assumed slight 
reduction in head 
number from 
phasic due to less 
structural 
organization 

𝐸𝐶𝑒𝑙𝑙 Stiffness of LMC 
cytoskeleton 

75 [dyne/cm] Reference value 
chosen so that the 
pressure shape 
resembles 
published 
recordings from 
rat mesenteric 
lymphangions 
 
In range of (Trepat 
et al., 2007) for 
human airway 
smooth muscle 

𝜇𝐶𝑒𝑙𝑙 Dynamic viscosity of (one-
dimensional) LMC 

50 [(dyne s)/cm] Reference value 
chosen 
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In range of (Trepat 
et al., 2007) for 
human airway 
smooth muscle 

𝑁𝑃ℎ𝑎𝑠𝑖𝑐 Series number of phasic 
CEs 

14 [-] Made to give 
approximate 
lengths of striated 
CE lengths 
observed in other 
muscles 

𝑁𝑇𝑜𝑛𝑖𝑐 Series number of tonic 
CEs 

14 [-] Made to give 
approximate 
lengths of smooth 
muscle CE lengths 
observed 

𝜌 Length density of actin 
binding sites 

6e5 [1/cm] Assumed 
consistent 
between CE types. 
(Huxley, 1957) 
gave an actin site 
separation of 153Å 
for frog sartorius 
muscle (equivalent 
to density of 
6.5e5[1/cm], 8% 
difference) 
 
Airway smooth 
muscle (Brook and 
Jensen, 2014) 

ℎ Powerstroke length 15.6 [nm] Assumed 
consistent 
between CE types 
 
Frog sartorius 
muscle (Huxley, 
1957) 

𝐾𝐻𝑢𝑥 Stiffness constant of 
phasic myosin heads 

0.4 [dyne/cm] Frog sartorius 
muscle (Huxley, 
1957) 

𝐾𝐻𝐻𝑀 Stiffness constant of tonic 
myosin heads 

1.8 [dyne/cm] Airway smooth 
muscle (Brook and 
Jensen, 2014) 

𝐶𝑎1/2,𝑇𝑟𝑜𝑝 Calcium concentration for 
half saturation of cardiac 
TnC 

0.27 [μM] Reference value 
chosen 

𝐶𝑎1/2,𝐶𝑎𝑀 Calcium concentration for 
half saturation of CaM 

8 [μM] Reference value 
chosen 

𝑛𝑚𝑇𝑟𝑜𝑝 Hill exponent for CaM 
calcium saturation 

12 [-] Reference value 
chosen 



74 
 

𝑛𝑚𝐶𝑎𝑀 Hill exponent for CaM 
calcium saturation 

1.5 [-] Reference value 
chosen 

𝑐𝑦𝑐𝑙𝑒𝑡𝑖𝑚𝑒 Duration of total 
contractile cycle 

5 [s] Rat mesenteric 
lymphatic muscle 
(Zawieja et al., 
1999) 

𝐶𝑎𝑎𝑚𝑝 Peak calcium 
concentration 

240 [nM] Rat mesenteric 
lymphatic muscle 
(Zawieja et al., 
1999) 

𝐶𝑎𝑑 Diastolic calcium 
concentration 

140 [nM] Rat mesenteric 
lymphatic muscle 
(Zawieja et al., 
1999) 

𝑎 Constitutive parameter 
for intracellular free 
calcium concentration 

24.17 [s-6] Rat mesenteric 
lymphatic muscle 
(Zawieja et al., 
1999) 

𝑏 Constitutive parameter 
for intracellular free 
calcium concentration 

0.5278 [s-6] Rat mesenteric 
lymphatic muscle 
(Zawieja et al., 
1999) 

𝐿𝑟𝑒𝑓 Length of an LMC with 
zero storage by the 
cytoskeleton 

0 [cm] Will vary with 
length adaptation 

𝜇𝑇 Tonic dashpot (one-
dimensional) viscosity 
constant 

10 [(dyne s)/cm] Reference value 
chosen 

𝑎𝑝 Constitutive parameter 
for strain-stiffening of 
phasic spring 

5.1282e-23 [dyne/cm] Fit to titin (in 
range from various 
references) 
(Kellermayer et al., 
2003, Labeit et al., 
2003, Linke and 
Grützner, 2008) 

𝑏𝑝 Constitutive parameter 
for strain-stiffening of 
phasic spring 

7.3838e+3 [1/cm] Fit to titin (in 
range from various 
references) 
(Kellermayer et al., 
2003, Labeit et al., 
2003, Linke and 
Grützner, 2008) 

 

3.2.3. Lumped parameter model of lymphatic pumping 
To test the response of the muscle model, it was incorporated into the latest version of an existing 

one-dimensional ODE-based lumped parameter model that has been extensively validated (Bertram 

et al., 2011, Bertram et al., 2014a, Bertram et al., 2014b, Bertram et al., 2016b, Bertram et al., 2017, 
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Jamalian et al., 2013, Jamalian et al., 2016, Jamalian et al., 2017). This model has been through 

several iterations with different versions of the passive tube law, the valve resistance and the 

prescription of intrinsic contractions. This model includes conservation of mass (equation 37), 

conservation of axial momentum (equations 38a-d) and a circumferential wall-force balance 

(equation 39) from the latest iterations of the model (Jamalian et al., 2017) into which the intrinsic 

contractions from the above cell model were incorporated through the LMC force. Momentum 

conservation includes terms for resistances of the lymphangion body and valves. Pressure boundary 

conditions are applied at the inlet and outlet of a single lymphangion or chain of lymphangions. The 

wall force balance is based on the central lymphangion pressure (𝑝𝑚) and includes a passive 

elasticity term (pressure-diameter tube law fitted to experimental data), intrinsic contractions, and 

the pressure external to the lymphangion. In previous iterations of this lymphangion model, the 

intrinsic contractions were based on prescribed diameter- and time-dependencies. This work 

replaces the applied intrinsic contractions with the lymphatic muscle model. Passive viscoelasticity 

of LMCs was included in addition to the passive pressure-diameter fit (plotted in Figure 18) because 

the passive, purely elastic tube law is dominated by collagen and elastin fibers in the vessel wall 

rather than cytoskeletal stiffness of the LMCs. Cytoskeletal stiffness was still included because it 

affects the force generated by LMCs. Appendix 1 shows the effects of varying the cytoskeletal 

stiffness and that this had a significant impact on the model output. Here we use 𝑖 to index the 

lymphangion in a chain of 𝑧 simultaneously contracting lymphangions 

𝑑𝐷𝑖

𝑑𝑡
= 2(𝑄𝑖 − 𝑄𝑖+1) 𝜋𝐷𝑖𝐿𝑣⁄       (37) 

𝑝𝑑𝑜𝑤𝑛,𝑖−1 − 𝑝𝑢𝑝,𝑖 = 𝑄𝑖𝑅𝑉𝑖      (38a) 

𝑃𝑢𝑝,𝑖 − 𝑃𝑚𝑖𝑑,𝑖 = 𝑄𝑖𝑅𝑣𝑒𝑠,𝑖      (38b) 

𝑃𝑚𝑖𝑑,𝑖 − 𝑃𝑑𝑜𝑤𝑛,𝑖 = 𝑄𝑖+1𝑅𝑣𝑒𝑠,𝑖      (38c) 

𝑃𝑑𝑜𝑤𝑛,𝑖 − 𝑃𝑢𝑝,𝑖+1 = 𝑄𝑖+1𝑅𝑉𝑖+1      (38d) 
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𝑝𝑑𝑜𝑤𝑛,𝑖−1 = 𝑝𝑎    and 𝑝𝑢𝑝,𝑖+1 = 𝑝𝑏 are the inlet and outlet boundary conditions, respectively 

 

 
Figure 18: Plot of the passive tube law for the pressure of the lymphatic wall at different diameters 

  
Figure 19: Schematic of a lymphangion. Boundary conditions on pressure are given in green, valves are in pink 

 

Several LMCs around the lymphangion are assumed to be circumferentially oriented. Direct 

transmission of force between LMCs is assumed (no viscous losses or elastic storage in the 

extracellular matrix). Here a single layer of LMCs is modelled, but multiple layers could be modelled. 

Modelling multiple layers would require summing the forces of different layers. The resulting wall-

force balance for mid-lymphangion pressure is 

𝑝𝑚,𝑖 = 𝑝𝑒𝑥𝑡 + 𝑓𝑝𝑎𝑠(𝐷𝑖) +
2𝐹𝑖

𝐷𝑖𝐿𝑣
    (39) 
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where 𝑝𝑒𝑥𝑡 is the pressure external to the lymphangion, 𝑓𝑝𝑎𝑠 is the passive tube law, 𝐷 is 

lymphangion diameter, 𝐿𝑣 is the axial length of a lymphangion 

 

The length of each LMC (𝐿𝐶𝑒𝑙𝑙) is assumed to be the same for all cells in a single layer surrounding a 

lymphangion. Cell length is calculated from a circumferential length balance. 

𝐿𝐶𝑒𝑙𝑙,𝑖 =
𝜋𝐷𝑖

𝑁𝐶𝑒𝑙𝑙
     (40) 

The wall-force balance with zero intrinsic force is 

𝑝𝑚 − 𝑝𝑒 = 𝑓𝑝𝑎𝑠(𝐷0)    (41a) 

The reference length (for zero force) of the phasic parallel spring is therefore set to be the phasic CE 

length with zero intrinsic force and multiplied by a reducing factor 𝜗 = 0.1 to ensure contractile 

force giving a reference phasic spring length of 

𝑌𝑃,𝑟𝑒𝑓 = 𝜗
𝜋𝐷0

𝑁𝐶𝑒𝑙𝑙(𝑁𝑃+𝑁𝑇)
    (41b) 

The ejection fraction (𝐸𝐹), a commonly used metric for lymphatic pumping, was calculated from the 

minimum and maximum diameters to compare the simulation pumping with published experiments. 

𝐸𝐹𝑖 =
𝑚𝑎𝑥(𝐷𝑖)

2−𝑚𝑖𝑛(𝐷𝑖)
2

𝑚𝑎𝑥(𝐷𝑖)
2 × 100   (42) 

The useful energy transferred to fluid movement was calculated from the volumetric outflow rate 

and the adverse pressure difference following (Bertram et al., 2016b) 

𝑑𝐸𝑓𝑙𝑢𝑖𝑑

𝑑𝑡
= �̅�𝑧+1(𝑝𝑏 − 𝑝𝑎)   (43) 

The muscle model was then run for a chain of four lymphangions with the head states updated 

independently with identical calcium input and the only difference being the pressure conditions 

with alternate velocities. 
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3.2.3.1 Prescribed contractions 

Results obtained using the coupled muscle-lymphangion model were compared to results from the 

lymphangion model with prescribed intrinsic contractions, the only difference being that the intrinsic 

contraction term in the wall-force balance depending on prescribed time- and diameter-

dependencies of tension (comparison of equations 39 and 44). The wall-force balance for mid-

lymphangion pressure with prescribed contractions is 

𝑝𝑚,𝑖 = 𝑝𝑒 + 𝑓𝑝𝑎𝑠(𝐷𝑖) +
2𝑀𝑡𝑀𝑑(𝐷𝑖)

𝐷𝑖
   (44) 

so the intrinsic force for comparison to the cell force from the muscle model is 𝐹 = 𝑀𝑡𝑀𝑑𝐿𝑣 

The time-dependent input function for tension (Figure 20) is the latest version as in (Jamalian et al., 

2017) 

𝑡𝑡𝑒𝑚𝑝 = 𝑚𝑜𝑑(𝑡, 𝑐𝑦𝑐𝑙𝑒𝑡𝑖𝑚𝑒)   𝑐𝑦𝑐𝑙𝑒𝑡𝑖𝑚𝑒 = 0.5(𝑡𝑟 + 𝑡𝑐) + 𝑡𝑑  

𝑀𝑡 =

{
  
 

  
 
𝑀0                                                                                                                  𝑖𝑓 𝑡𝑡𝑒𝑚𝑝 > 0.5(𝑡𝑟 + 𝑡𝑐)

𝑀𝑎 (1 − cos (
2𝜋𝑡𝑡𝑒𝑚𝑝

𝑡𝑐
)) /2 +𝑀0                                                                      𝑖𝑓 𝑡𝑡𝑒𝑚𝑝 > 0.5𝑡𝑐

𝑀𝑎 (1 − cos(
2𝜋 (𝑡𝑡𝑒𝑚𝑝 + 0.5(𝑡𝑟 + 𝑡𝑐))

𝑡𝑟
))/2 +𝑀0     𝑖𝑓 0.5𝑡𝑐 < 𝑡𝑡𝑒𝑚𝑝 < 0.5(𝑡𝑟 + 𝑡𝑐)

 

(45) 

where 𝑀𝑡 is the time-dependence of contractions, 𝑀0 is the tonic tension, 𝑀𝑎 is the peak 

tension, 𝑡𝑡𝑒𝑚𝑝 is the time in the current cycle, 𝑡𝑐 is twice the duration of contraction and 𝑡𝑟 is twice 

the duration of relaxation 
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Figure 20: Plot of prescribed time-dependence of intrinsic tension 

The diameter-dependent input function (Figure 21) is also the latest version used in (Jamalian et al., 

2017) 

𝑀𝑑0,𝑖 = 5.5 (1 + exp(−𝑠𝑑0(𝐷𝑖 − 𝐷0)))⁄    (46a) 

𝑀𝑑1,𝑖 = 0.5 (1 + exp(−𝑠𝑑1(𝐷𝑖 − 𝐷1)))⁄    (46b) 

𝑀𝑑0,𝑖 = 2 (1 + exp(𝑠𝑑2(𝐷𝑖 − 𝐷2)))⁄     (46c) 

𝑀𝑑,𝑖 =
𝑀𝑑0,𝑖+𝑀𝑑1,𝑖+𝑀𝑑2,𝑖−2

6
     (46d) 

where 𝑀𝑑 is the diameter-dependence of intrinsic contractions, 𝑠𝑑0, 𝑠𝑑1, 𝑠𝑑2, 𝐷0, 𝐷1 and 𝐷2 

are constitutive constants 
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Figure 21: Plot of prescribed diameter-dependence of intrinsic tension 

Valve resistance (Figure 22) is calculated from the sum of two sigmoids (one for opening and one for 

failure) 

𝑅𝑣,𝑖 = 𝑅𝑣,𝑚𝑖𝑛 + 𝑅𝑣,𝑚𝑎𝑥 [1 (1 + exp(𝑠𝑜(∆𝑝𝑖 − 𝑝𝑜)))⁄ + 1 (1 + exp (−𝑠𝑓(∆𝑝𝑖 − 𝑝𝑓)))⁄ ]  (47) 

 where 𝑅𝑣,𝑚𝑖𝑛 is the resistance of the open valve, 𝑅𝑣,𝑚𝑎𝑥 is the additional resistance on valve 

closure, 𝑠𝑜 is the slope of the valve opening, ∆𝑝 is the pressure difference across the valve (upstream 

minus downstream), 𝑝𝑜 is the pressure for valve opening, 𝑠𝑓 is the slope of failure, 𝑝𝑓 is the pressure 

of valve failure 

 
Figure 22: Plot of the resistance of the valve against the pressure difference across it (upstream - downstream) 
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The calculations for work done in the prescribed contraction model were the equivalent to equation 

32 for the muscle model as given by (Bertram et al., 2016b) 

𝑊𝑖𝑛,𝑖 = 𝜋𝐿𝑣 ∮𝑀𝑑𝑀𝑡 𝑑𝑡   (48) 

where 𝑊𝑖𝑛 is the work done by intrinsic contractions 

The constants in time-dependence of intrinsic contractions (contracting, relaxing diastolic durations, 

peak and tonic tension) were varied to obtain the best match with reference results for the coupled 

muscle-lymphangion model but diameter-dependent constants were left at the previously published 

values of Jamalian and colleagues with values given in Table 3. 

Table 3: Constants used in the prescribed intrinsic contraction model for comparison to muscle model results 

Symbol Value [units] 

𝑀0 188 [dyne/cm] 

𝑀𝑎 500 [dyne/cm] 

𝑡𝑐 2 [s] 

𝑡𝑟 4 [s] 

𝑡𝑑 1 [s] 

𝑠𝑑0 2000 [1/cm] 

𝐷0 0.019 [cm] 

𝑠𝑑1 250 [1/cm] 

𝐷1 0.021 [cm] 

𝑠𝑑2 1000 [1/cm] 

𝐷2 0.050 [cm] 

 

3.2.4. Solution method 

The solution to this system of equations was obtained in two stages. In the first stage, the resting 

(zero muscle force) equilibrium diameter was calculated based on the mid-lymphangion pressure. 
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This was followed by solution of the full coupled model of lymphangion and muscle (algorithm 

flowchart Figure 23). The initial conditions for the lymphangion were diameter (0.02 cm), upstream 

pressure (= 𝑝𝑎) and downstream pressure (= 𝑝𝑏). Equilibrium diameter was obtained using the 

adaptive time step MATLAB solver ODE15S. Phasic and tonic myosin heads were initialised as all 

detached, and tonic myosin heads all dephosphorylated. CEs were initialised to equal lengths. The 

reference lengths for the spring in parallel with phasic CEs and LMC stiffness were calculated as 

fractions of the initial length. This was done to ensure that the phasic parallel spring and the LMC 

stiffness contributed contractile forces. A second solver was then used to develop periodic 

contractions with the coupled lymphangion and muscle equations. The ODE for diameter (equation 

37) was solved using first-order forwards differencing as a simple method with low computational 

intensity. The PDEs for myosin head states of both isoforms (equations 26 and 28) were solved using 

a second-order Godunov solver (Brook and Jensen, 2014, Hiorns et al., 2014) (see Figure 24). The 

second-order Godunov was chosen for reasons of stability (Harten et al., 1983, Roe, 1986). This 

solver is an explicit upwind finite volume scheme. A first-order half time step is calculated with the 

effects of head transitions neglected in calculating the convective fluxes. This uses Riemann 

solutions at the boundaries of each displacement cell, and a separate source/sink term is used for 

transitions. The head distributions after this first half step are used to calculate updated fluxes 

through a spatial gradient for calculation of a full time step. The time step was determined using a 

Courant-Friederichs-Lewy condition (𝑑𝑡 = 0.8𝑑𝑥 𝑚𝑎𝑥(abs[𝑣𝑃ℎ𝑎𝑠𝑖𝑐 , 𝑣𝑇𝑜𝑛𝑖𝑐])⁄ ) and a maximum step 

size of 10−4 s. The validity of this time step was checked by comparing the results under reference 

conditions with this time step to when the time step was halved, yielding negligible changes in the 

average flow (order 10−3%, see Appendix 1 for details). Simulations were also run using a 

MacCormack predictor-corrector method instead of the Godunov and differences in the results were 

negligible (see Appendix 1). Displacement integrals were evaluated using trapezoidal integration. 

Algebraic equations for lymphangion pressures were solved at each time step using the force 
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resulting from updated head states to give updated pressures used in the following time step. 

Simulations were considered periodic when all the following conditions were met: 

|
�̅�2−�̅�1

�̅�2
| × 100 < 1     (49a) 

|
𝑑𝑌𝑇

𝑑𝑡

̅̅ ̅̅
| × 𝑐𝑦𝑐𝑙𝑒𝑡𝑖𝑚𝑒 < 2 × 10−2 cm   (49b) 

|
𝐹𝑇̅̅ ̅̅ −𝐹𝑇̅̅ ̅̅ 𝑃𝑟𝑒𝑣

𝐹𝑇̅̅ ̅̅
| × 100 < 2     (49c) 

where 𝐹𝑇̅̅ ̅𝑃𝑟𝑒𝑣  is the average of tonic CE force over the previous cycle 

Refer to Appendix 1 for details on verification of periodicity conditions under reference conditions. 

The simulation under reference conditions took 6.7 hours on a laptop with an AMD Ryzen 7 3700U 

processor (quad core 2.3GHz per core) and 8GB of RAM. Periodicity was reached after 10 contractile 

cycles. With the use of different input values, the duration of simulations varied in the range of 

approximately 4-10 hours (9-16 contractile cycles). Simulations struggled to reach these periodicity 

conditions when the lymphangion was chronically constricted, so simulations were run for a 

maximum of 10 cycles. For the simulations run for 10 cycles, the magnitude difference in valve flows 

was < 0.09 mL/hr, change in tonic CE length during the final cycle was < 2.5 × 10−6 μm and the 

difference in average tonic force between the final two cycles was < 2.3%. These values represent 

minor changes between contractile cycles, relative to the magnitude of cyclic variations, that do not 

affect overall conclusions from the model. The simulations struggled to reach periodicity under 

these conditions because the flow had small values, so even a negligible difference in flows was a 

significant percent change. 
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Figure 23: Flowchart of the solution algorithm for the coupled muscle-lymphangion model. 𝑗 indexes the time step. The red 
box indicates use of a Godunov solver (algorithm in Figure 24). Note that not every variable calculated is used directly in the 
following step, and arrows indicate the steps rather than equation relationships 
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Figure 24: Solution flowchart for the second-order Godunov solver. 𝑘 indexes the discretised displacement value 

3.3. Parameter Sensitivity Analysis 
This sensitivity analysis focusses on the parameters of the muscle model only, without the 

parameters involved in the lymphangion model. Our model has many independent parameters (𝑝 =

32), and the runtime is significant (7 hours under reference conditions). For the full set of 

parameters, a Latin hypercube sensitivity analysis with 100 trials would take approximately 30,800 

days to run without any parallelisation. This time scales with 𝑝𝑝+1 so screening was used to reduce 

the dimensionality of the parameter sensitivity analysis and make it more practical. 
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The most commonly used screening method in engineering applications is one-at-a-time sensitivity 

analysis (Iooss and Lemaître, 2015). We therefore ran an initial screening sensitivity analysis by 

individually varying parameters from their reference value and examining the effect on the average 

outflow. The parameters with the greatest effect on the average flow were considered the most 

sensitive and a more detailed general sensitivity analysis was run with this reduced set of 

parameters. 

3.3.1. One-at-a-time analysis 
One-at-a-time is a local sensitivity analysis relating model outputs for altered parameter values to 

results from the reference condition. The pressure conditions were maintained at 𝑝𝑎 = 3 cmH2O, 

𝑝𝑏 = 3.1 cmH2O and 𝑝𝑒𝑥𝑡 = 2 cmH2O. Sensitivity of the results to variations in the parameter were 

assessed using the ratio of the normalised change in average flow to the normalised change in input. 

𝑆𝑖,𝑗 =
(�̅�𝑟𝑒𝑓−�̅�𝑖,𝑗) �̅�𝑟𝑒𝑓⁄

(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑟𝑒𝑓,𝑗−𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖,𝑗) 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑟𝑒𝑓,𝑗⁄
    (50) 

where 𝑖 indexes the adjusted parameter values, 𝑗 indexes the parameter, �̅�𝑟𝑒𝑓 is the average 

outflow with reference parameter values, �̅�𝑖,𝑗 is the average outflow with the adjusted parameter 

value, 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑟𝑒𝑓,𝑗 is the reference value of the parameter and 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖,𝑗 is the adjusted 

parameter value 

This sensitivity index can be positive (increase in average flow with increase in parameter) or 

negative (decrease in average flow with increase in parameter) and an absolute value of one 

represents a linear increase, absolute value greater than one represents a superlinear relationship 

and less than one a sublinear relationship. See Appendix 1 for a table of results obtained from this 

analysis. 

Designating parameters with a maximum |𝑆| > 1.2 as sensitive yielded five parameters for a more 

in-depth global sensitivity analysis using Latin hypercube sampling. These were the peak calcium, the 
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phasic calcium binding properties, the phasic detachment rate for negative displacements, and the 

series number of LMCs around the lymphangion. 

3.3.2. Latin hypercube sensitivity analysis 
The range of possible values for the 𝑘 = 5 parameters were each divided into 𝑠 = 𝑘 + 1 = 6 regions 

as required by Latin hypercube sampling (Marino et al., 2008). We assumed a uniform probability 

distribution for the range of values of each parameter. The Latin hypercube sampling method 

randomly takes values from each parameter’s probability distribution (one value from each region) 

without repetition to ensure that the entire range of values for each parameter is sampled. These 

random values for each parameter are then assembled into a matrix with 𝑟 rows for the number of 

samples (equivalently model runs) and 𝑘 columns. One matrix represents a single Latin hypercube 

trial that provides a single measure of the correlation between the parameters and the average 

outflow. Each trial therefore involved 6 model calls and resulted in 6 sample values of average flow. 

Multiple trials are then required to allow for statistical separation of the influence of each parameter 

as they are being simultaneously randomly sampled. 

Sensitivity of the model outflow on each of the parameters was calculated using the partial rank 

correlation coefficient (PRCC). The PRCC measures the linear relationship between the input and the 

output, varying between −1 and 1. Negative values mean that the output decreases with increasing 

input and positive increasing with increasing output with larger magnitudes indicating stronger 

relationships. One PRCC value was calculated for each trial using the 6 samples. These correlation 

coefficients were then plotted using box plots and an overall sensitivity measure calculated from 

their mean over all trials. 

The equation for the PRCC for a single trial is calculated as 

𝑃𝑅𝐶𝐶𝑗 =
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

√𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑗)𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦)
  𝑗 = 1,… , 𝑘   (51a) 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑ (𝑥𝑖𝑗−�̅�)(𝑦𝑖−�̅�)
𝑛
𝑖=1

𝑛−1
            (51b) 
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where 𝑥 is input (overbar is averaged over the 𝑟 samples), 𝑦 is output (overbar is averaged 

over the 𝑛 samples), 𝑖 indexes the sample (combination of randomised parameter values for a single 

model run), 𝑗 indexes input parameter 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑗) =
∑ (𝑥𝑖𝑗−�̅�)

2𝑛
𝑖=1

𝑛−1
       (51c) 

This analysis showed that the model was most sensitive to the peak calcium concentration (PRCC 

value of 0.489) with the next two sensitive parameters of 𝑐0.5,𝑇𝑟𝑜𝑝 and 𝑁𝐶𝑒𝑙𝑙 showing PRCC values 

approximately half of that for the peak calcium concentration (0.251 and 0.234, respectively). 

 

Figure 25: Boxplots of the PRCC for each parameter showing the variation between trials 

Table 4: Overall sensitivity measures for each parameter 

Variable 𝑐0.5,𝑇𝑟𝑜𝑝 𝐶𝑎𝑎𝑚𝑝 𝑛𝑚𝑇𝑟𝑜𝑝 𝑔2 𝑁𝐶𝑒𝑙𝑙 

Average PRCC 0.251 0.489 0.166 0.130 0.234 
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3.4. Results 
Plots of the CE row forces (note that these are the total values for the lymphangion) against time 

show that tonic force is almost constant throughout the contractile cycle with a range of 2.7% the 

average value under reference conditions (Figure 26a). The small variation in tonic force is due to 

the resistance of the tonic dashpot to any changes in tonic CE length. In the absence of a tonic 

dashpot the phasic CEs would cause too much convection for the tonic CEs to form sufficient cross-

bridges for physiologic force generation. The phasic spring provides a means for the tonic CE force to 

be transmitted over the whole cell when the phasic CE force drops in diastole, thus setting the 

diastolic diameter. The phasic force (Figure 26a) increases by 1.4 dyne in response to increased 

calcium concentration to cause the lymphangion to propel fluid downstream, resulting in a peak cell 

force of approximately 2.4 dyne (Figure 26g). The mid-lymphangion pressure increased to a peak 

value of 0.21 cmH2O above the outlet (Figure 26c) and reduced to 0.06 cmH2O below the inlet 

pressure to create a suction effect for diastolic filling (Figure 26c). The time-averaged flow rate was 

0.02 mL/hr with a peak of 0.200 mL/hr (Figure 26e), resulting from a decrease in diameter of 

41 μm below the diastolic value of 165 μm for an ejection fraction of 44% (Figure 26f). Muscle cells 

converted approximately 9.3% of free energy from ATP to work. The peak rate of energy liberation 

by the lymphangion was 0.30 erg/s and peak rate of muscle work was 0.055 erg/s and, during 

diameter recovery, the inflowing lymph performed work lengthening the muscle with a peak value 

of 0.011 erg/s (Figure 26h). Useful output work for fluid motion reached a peak value of 

0.005 erg/s and 30.3% of the muscle work was transferred to the fluid (corresponding to 2.8% of 

energy liberated). 
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Figure 26: Panel of plots summarising results for a single lymphangion contractile cycle under reference conditions (𝑃𝑎 =
3.0 𝑐𝑚𝐻2𝑂, 𝑃𝑏 = 3.1 𝑐𝑚𝐻2𝑂 and 𝑃𝑒𝑥𝑡 = 2.0 𝑐𝑚𝐻2𝑂). (a) summarises the force contributions from subcellular 
components (CEs, phasic spring and tonic dashpot) (b) is the shortening velocity of CEs showing the greatly reduced tonic CE 
velocity resulting from the presence of the tonic dashpot (c) is the pressure in the lymphangion compared to boundary 
conditions showing the increase to expel fluid and the decrease to refill the lymphangion (d) shows the opening and closing 
of the valves (e) shows the volume flow rates (f) shows the diameter of the lymphangion (g) shows the contributions of the 
cell viscoelasticity and CEs to the overall force generated by an LMC (h) shows the rates of useful work done by the muscle 
compared to the energy liberated by ATP hydrolysis to model the metabolic efficiency of lymphatic muscle and the useful 
energy imparted to the fluid 

Model results under conditions of transmural pressure 1 cmH2O and constant axial pressure (𝑝𝑎 =

𝑝𝑏) were primarily compared to the results of Zawieja (Zawieja et al., 1999) obtained from 
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cannulated rat mesenteric lymphatics. The calcium input for the model was a fit of the calcium 

tracing of Zawieja’s results, allowing for closer comparison of the results (Figure 27). The shape of 

the diameter-time plot was similar to that recorded by Zawieja, and the ejection fraction was very 

close to the Zawieja results obtained at 1 cmH2O (46% from model, 45% in experiments). This 

similarity in ejection fraction represents similar normalized volume change and therefore the 

average flow output as a percentage of the diastolic volume. Normalizing the diameter values to the 

diastolic value showed that the muscle model generated smaller changes than recorded in Zawieja’s 

experiments (normalized contracted diameter 0.73 compared to 0.60). 

 

Figure 27: Comparing the diameter results of the muscle model at a transmural pressure 1 𝑐𝑚𝐻2𝑂 and no axial pressure 
difference to experimental data obtained from rat mesenteric lymphatics. (a) diameter and calcium from the coupled 
muscle-lymphangion model (b) diameter and calcium tracings from the experimental results of (Zawieja et al., 1999) 

In a series of experiments (Zawieja, 2009) increased the transmural pressure applied to cannulated 

rat mesenteric lymphatics (1, 2, 3, 5, 7 cmH2O) every 30 s the diameter-time relationship during 

recovery appeared exponential at lower transmural pressures (1 cmH2O) and more linear after 

increasing the transmural pressure (2 cmH2O and higher) as shown in Figure 28a. The reported 

ejection fraction for the transmural pressure results at 1 cmH2O in this set of experiments was 

higher than the previous experimental results and the model results at 65%. At decreased 

transmural pressure (0.4 cmH2O) the model exhibited a more exponential diameter-time shape 

during recovery (Figure 28b). 
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Figure 28: Comparing the diameter-time shape for lymphangions recorded experimentally to coupled muscle-lymphangion 
model results (a) diameter of cannulated rat mesenteric lymphatics at various transmural pressures (1,2,3,5,7 𝑐𝑚𝐻2𝑂, 
increasing in 30 𝑠 intervals) (Zawieja, 2009) showing that the linear recovery of diameter occurs at higher transmural 
pressures (b) results from the muscle-lymphangion model transmural pressures of 0.4 𝑐𝑚𝐻2𝑂 showing the exponential 
shape of diameter-time during recovery and 1.6 𝑐𝑚𝐻2𝑂 showing the more linear diameter-time recovery shape 

Comparing the muscle model under reference conditions to the adjusted model with prescribed 

contractions (Figure 29) showed a more rapid diameter recovery in the prescribed contraction 

model (approximately 1.4 s compared to 2.1 s) whilst the difference in average flows was negligible 

(approximately 0.5%). The diastolic diameters were the same for both the muscle model and the 

model with prescribed contractions at 165 μm whilst the systolic diameter was slightly different at 

123 μm for the muscle model and 124 μm for the prescribed contractions model Figure 29a. The 

diameter returned to the diastolic value at virtually the same time, but the prescribed contraction 

model remained at the systolic value for a longer period (approximately 0.4 s compared to 0.1 s). It 

has been found experimentally that the recovery duration is longer than the contraction period 

(Scallan et al., 2016), indicating that the muscle model better represents lymphangion behaviour in 

this case. The prescribed contraction model exhibited slower pressure reduction (0.26 cmH2O s⁄  

compared to 0.39 cmH2O s⁄ ) with a slightly lower peak pressure (0.17 cmH2O compared to 

0.21 cmH2O) and a larger peak amplitude of suction pressure (0.17 cmH2O below the inlet 

pressure, compared to 0.63 cmH2O), see Figure 29b. This difference could be reduced by altering 

the form of the time-dependent relaxation of intrinsic tension but is not included here. The other 

key differences were that the prescribed contraction model did not allow for separation of the tonic 

and phasic forces of lymphatic muscle (a constant assumed tone was applied which did not reflect 

interactions between the phasic and tonic components) and the subcellular energetics was not 

calculable. Using the calculation of work by intrinsic contractions and the fluid power for both 
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models, however (equations 32, 43 and 48), showed that the peak work rate of the muscle model 

was higher in the muscle model (0.055erg s⁄  compared to 0.043erg s⁄ ) and the work done on the 

lymphangion by fluid was lower (0.011erg s⁄  compared to 0.021erg s⁄ ) as shown by Figure 29d. 

The peak rate of energy transfer to lymph was higher for the muscle model (0.005 erg s⁄  compared 

to 0.004erg s⁄ ). The efficiency of transfer of work done by intrinsic contractions to the energy 

imparted to lymph, was similar in both models (29% in the prescribed contraction model compared 

to 30% in the muscle coupled model). 

 

Figure 29: Comparison of the results obtained using the coupled muscle-lymphangion model and the prescribed intrinsic 
contractions model under reference pressure conditions (inlet 3 cmH2O, outlet 3.1 cmH2O and external 2 cmH2O). (a) 
diameter and (b) mid-lymphangion pressure (c) intrinsic force (cell force of the muscle model, prescribed force from the 
other model) (d) Rate of work transfer to lymph 

Comparing the results of the muscle model to the first test case of Contarino and Toro (single 

lymphangion with inlet pressure 5 cmH2O, outlet pressure 7 cmH2O and external pressure 

2 cmH2O) showed significantly different results. The lymphangions considered by the two models 

are of different size (diastolic diameters of approximately 180 μm in the muscle model and 240 μm 

in the Contarino and Toro model shown by Figure 30a,b, note the difference in the y-axis). At these 

greater pressures, the muscle model did not generate much of a decrease in diameter (the 

contracted diameter normalised to the diastolic diameter was approximately 0.9 in the muscle 

model compared to approximately 0.5 in the model of Contarino and Toro) and the return in 
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diameter was much more rapid (0.4 s compared to 1 s). There was therefore little flow from the 

muscle model 0.01 mL/hr. This corresponded to only a small increase in the pressure above the 

outlet pressure (0.15 cmH2O) and a sharper downwards spike in pressure (to 0.50 cmH2O below 

the inlet pressure) when it came to refilling. Comparing the reference results of the muscle model 

(Figure 26), however, with the results of Contarino and Toro showed much greater agreement with 

the main difference being the pause of the Contarino and Toro model at the outlet pressure before 

the suction-based refilling, corresponding to a pause in the diameter at the contracted value. 

 

Figure 30: Panel of plots summarising the comparison between the muscle model developed here and the model of 
Contarino and Toro using the pressure conditions from Test 1 of (Contarino and Toro, 2018) with an external pressure of 
2 𝑐𝑚𝐻2𝑂, and inlet pressure of 5 𝑐𝑚𝐻2𝑂 and an outlet pressure of 7 𝑐𝑚𝐻2𝑂. (a) shows the mid-lymphangion pressure 
predicted by the muscle model (b) shows the mid-lymphangion pressure from the model of Contarino and Toro (c) shows 
the diameter of the muscle model, and (d) shows the diameter of the model of Contarino and Toro 

The average outflow was more sensitive to 𝑓1 than 𝑔1, decreasing by 15% with halving 𝑓1 and by 2% 

with doubling 𝑔1. Outflow decreased by approximately 60% when 𝑓1 was doubled and 69% when 

𝑔1 halved. This was due to the increased maintenance of cross-bridges causing continuous 

constriction of the lymphangion (Figure 31a,b). The average flow increased by 46% when 𝑔2 was 

doubled and decreased by 38% when 𝑔2 was halved (Figure 31a). 
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Figure 31: Sensitivity of the model to phasic rates (a) rate of fluid output (b) diastolic size of the lymphangion. When the 
attachment is too high (𝑓1 double) or the detachment is too low (𝑔1 half), the phasic force during diastole causes 
constriction of the diameter, so there is greatly reduced flow 

The average outflow varied by < 0.4% when the tonic head rate constants were doubled or halved. 

The insensitivity of flow to changes in tonic rates was because variations in tonic force mainly altered 

the force borne by the tonic dashpot (the greatest change in tonic CE force was 0.34 dyne increase 

with halving 𝑘1𝐻𝐻𝑀 corresponding to a 0.33 dyne decrease in tonic dashpot force). The resulting 

change in the average row force from all tonic rates was up to approximately 2%. Doubling or 

halving 𝜇𝑇 resulted in < 0.5% variation in the average outflow (results not shown). 

There was an optimal range of combinations of troponin Hill coefficient and calcium saturation for 

half saturation that generated a high average flow (Figure 32). This optimal range of 𝑛𝑚𝑇𝑟𝑜𝑝, 

𝑐0.5,𝑇𝑟𝑜𝑝 combinations occurred where the peak concentration is large (between 4.2% and 38.1%) 

with a low enough diastolic saturation (in the range of 0.003% to 0.06%) to prevent constant 

constriction. Constant constriction to diameters < 86 μm occurred when both 𝑛𝑚𝑇𝑟𝑜𝑝 and 𝑐0.5,𝑇𝑟𝑜𝑝 

were low. This was due to an increased diastolic saturation (> 0.07%) causing an increased diastolic 

force (phasic CE force > 0.59 dyne). High combinations of 𝑛𝑚𝑇𝑟𝑜𝑝, 𝑐0.5,𝑇𝑟𝑜𝑝 caused a low peak 

saturation and small phasic contraction amplitudes so the lymphangion was unable to generate 

significant flow. Neglecting constricted results, the average outflow decreased with increasing half 

saturation concentration and this decrease in flow was because of a decreasing peak saturation and 

peak phasic CE force (see Table 5). Varying 𝑐0.5,𝐶𝑎𝑀 between 4 μM and 20 μM caused variations in 

the average flow of < 1%. 
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Table 5: Decreases in average flow with increasing half saturation concentration 

𝒏𝒎𝑻𝒓𝒐𝒑  Decrease in �̅� [𝐦𝐋/𝐡𝐫] Decrease in peak 
𝑺𝑻𝒓𝒐𝒑 [%] 

Decrease in peak 
𝑭𝑷 [𝐝𝐲𝐧𝐞] 

11 0.0017 3.29 0.027 

12 0.0052 13.8 0.082 

13 0.0075 22.1 0.122 

14 0.0099 33.9 0.166 

15 0.0105 34.0 0.197 

 

 

Figure 32: Sensitivity of outflow to variations in the calcium binding properties of TnC. There is a combination of TnC Hill 
coefficients that result in effective pumping 

The efficiency of LMCs increases with increasing adverse pressure difference to a peak value of 65% 

at 7 cmH2O (Figure 33a) before decreasing to 56.5% at 10 cmH2O. Energy losses to viscosity are 

much lower than to inhomogeneities in cross-bridge attachment/detachment displacements (Figure 

33c). Energy losses due to incomplete powerstrokes decrease with adverse pressure due to the 

decrease in convection, and due to viscosity also decrease because of the reduced velocities and the 

greatest viscous losses are from cell viscosity which has the greatest viscous constant and the 

greatest shortening velocity. The efficiency increases with 𝑝𝑏 because there is reduced outflow 

(Figure 33d), meaning that there is less convection and more heads can complete the powerstroke. 

Comparing the muscle work and fluid pumping work shows a similar form for both with a peak cell 

work of 0.0566 erg at 6 cmH2O and a peak fluid work of 0.0440 erg at 4 cmH2O (Figure 33b). This, 

combined with the decreasing energy liberation, resulted in a peak of 86% work transfer from 
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muscle to fluid at 2 cmH2O and 48% efficiency of energy liberated to fluid work at 5 cmH2O (Figure 

33b). The decreased convection also increases the peak force generation by phasic CEs (Figure 33e) 

from 1.52 dyne at an adverse pressure difference of 0 cmH2O to 25.40 dyne at 10 cmH2O. The 

increased phasic force caused an increase in the peak cell force (Figure 33f) from 2.13 dyne at an 

adverse pressure difference of 0 cmH2O to 26.32 dyne at 10 cmH2O. The force increase was linear 

because the outlet pressure was increased linearly, and the maximum mid-lymphangion pressure 

barely increased above the outlet pressure in each case, meaning that the required force increase 

was linear. A maximum flow of 0.021 mL/hr was achieved when the outlet pressure was the same 

as inlet pressure (Figure 33d) and pumping had failed (no net outflow) at 10 cmH2O. 

 

Figure 33: Panel of plots summarising the effect of increasing the outlet pressure for consistent inlet (3 𝑐𝑚𝐻2𝑂) and 
external pressures (2 𝑐𝑚𝐻2𝑂). (a) shows an increase in efficiency with increased afterload until a point after which there is 
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a slight decrease until pump failure (defined as zero net outflow) (b) compares the energy liberated to the work done by the 
muscle and the useful work done on the lymph (c) shows that the viscous losses were much lower than losses to incomplete 
powerstrokes (d) shows the decrease in outflow from the increased load (e) shows the response of increasing phasic force to 
increasing load (f) shows that the increasing phasic force causes an increasing cell force 

The prescribed contraction model fails at much lower adverse pressure (Figure 34b) than the muscle 

model (approximately 2 cmH2O compared to 10 cmH2O) because the muscle model is better 

capable of increasing its force generation in response to higher pressure demand (Figure 34d). The 

failure of pumping in the prescribed contraction model was due to an inability of the lymphangion to 

refill with suction-based flow. This meant that the diastolic diameter increased (Figure 34a) with 

outlet pressure (172 μm at 10 cmH2O for the muscle model and 179 μm for the prescribed 

contractions model) and the peak force increased through reduced convection in the muscle model 

(from 2.13 dyne at 0 cmH2O to 26.32 dyne at 10 cmH2O) as discussed above and through Md in 

the prescribed contraction model (from 2.03 dyne at 0 cmH2O to 22.1 dyne at 10 cmH2O). The 

muscle model work (Figure 34c) response to increased outlet pressure is opposite in the prescribed 

contraction and muscle models. The hyperbolic pressure-flow relationship is somewhat similar to 

force-velocity curves of muscle, and the muscle work is similar to power, with the response of the 

muscle model behaving like the reported response of muscles. 

 

Figure 34: Panel of plots comparing the responses of the muscle model and prescribed contraction model responses to 
increases in adverse pressure whilst the inlet and external pressures were maintained at 2 cmH2O and 3 cmH2O, 
respectively (a) compares the change in diastolic diameter (b) compares the change in average outflow (c) compares the 
changes in work done by the intrinsic contractions (d) compares the peak intrinsic force 
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Varying the transmural pressure by simultaneously changing 𝑝𝑎 and 𝑝𝑏 showed that the efficiency of 

lymphatic muscle followed an inverse relation to average flow (Figure 35a,c) with collapse at low 

transmural pressures (0.8 cmH2O and lower) causing low stroke volume (< 14 nL compared to 

28 nL at 1 cmH2O) (Figure 35c,d). The value of this transmural pressure for optimal flow is primarily 

dependent on the passive tube law, but also depends on the diastolic intrinsic force. This was 

because of the reduced velocity resulting in lower myosin turnover (Figure 35d) as in the adverse 

pressure difference results. The fluid work follows average outflow because the adverse pressure 

difference was constant and had a peak value of 0.003 erg at a transmural pressure of 1 cmH2O 

(Figure 35b,c). There was an optimal transmural pressure for greatest average outflow of 

0.020 mL/hr (corresponding to minimum efficiency of 9.3%), which occurred during the reference 

conditions (Figure 35a). At transmural pressures greater than the optimal, there is increased force 

required to contract (Figure 35e,f), reducing the flow similarly to increasing the outlet pressure 

(Figure 35c). 
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Figure 35: Panel of plots summarising the effect of simultaneously increasing inlet and outlet pressure (axial difference 
0.1 cmH2O) for constant external pressure (2 𝑐𝑚𝐻2𝑂). (a) shows the efficiency of the muscle which follows an inverse 
relation to the average outflow (b) shows compares the energy liberated from ATP to the work done by the muscle and 
energy imparted to the fluid (c) shows the outflow change in response to varying transmural pressure with a peak 
of 0.0256 𝑚𝐿/ℎ𝑟 at a transmural pressure of 1 𝑐𝑚𝐻2𝑂 (d) shows the collapse of lymphangions with transmural pressure 
lower than 1 𝑐𝑚𝐻2𝑂, reducing the stroke volume available for pumping (e) shows variations in phasic force which was 
much greater in collapsed lymphangions (f) shows that the cell force follows phasic CE force 

The muscle model increased its force at low transmural pressures (up to a peak of 9.95 dyne at 

−1 cmH2O) whilst the prescribed contractions model had consistently low force (0.28 dyne at 

−1 cmH2O) as shown by Figure 36c. This is due to the lymphangion collapse (44 μm and 50 μm at 

−1 cmH2O for the muscle model and prescribed contraction model, respectively Figure 36a) and the 

diameter-dependence of force 𝑀𝑑. At higher transmural pressures, however, the diameter of the 

muscle and prescribed contraction models was higher (176.5 μm and 173.1 μm, respectively) and 
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both models increased their peak force (up to 3.96 dyne and 4.29 dyne at 2 cmH2O, respectively). 

The peak flow (Figure 36b) of the prescribed contraction model (0.022 mL/hr) is slightly higher than 

the peak flow of the muscle model (0.020 mL/hr) and occurred at a slightly lower transmural 

pressure (0.8 cmH2O compared to 1 cmH2O). The average flow decreased faster for decreasing 

transmural pressure in the muscle model and for increasing transmural pressure in the prescribed 

contractions model. The response of muscle work (Figure 36d) to varying transmural pressure was 

the opposite in the muscle and prescribed contraction models with the prescribed contraction 

model’s work following the average flow because the increased circumferential shortening velocity 

does not have a convection effect on the force generating capability in the prescribed contraction 

model. 

 

Figure 36: Panel of plots comparing the response of the muscle model and prescribed contractions model to variations in 
transmural pressure with a constant pressure difference along the lymphangion of 0.1 𝑐𝑚𝐻2𝑂. (a) shows the response of 
diastolic diameter (b) the response of average flow (c) the response of the peak force and (d) the work done by intrinsic 
contractions 

Including calcium oscillations (non-zero sinusoid amplitude in equation 35) increased the average 

flow rate (Figure 37a) with one oscillation at 1% amplitude causing only about a 0.3% increase. The 

oscillations without complete opening/closing of the outlet valve were still able to increase outflow 

because they opened the valve slightly. Oscillation peaks of course resulted in decreases in diameter 

(Figure 37b,c) with the greatest occurring at 1 Hz and 19% amplitude. The diameter decreases were 



102 
 

due to an increase in pressure (Figure 37d,e) as a result of the increased calcium allowing more 

heads to bind. There were low amplitude (compared to action potential, maximum peak was 

approximately 18.9% action potential peak) peaks in outflow with oscillatory increases in pressure 

from oscillations (Figure 37f,g). Valves start rapidly opening and closing at lower amplitudes when 

the frequency is greater (Figure 37h,i). The increase in flow became less sensitive to amplitude when 

the valves started to fully open and close with each depolarization. These results could not be 

compared to experimental data because none are available, so the discussion includes suggestions 

for potential experiments to investigate this. 
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Figure 37: Panel of plots showing the effects of varying both amplitude and frequency of calcium oscillations with all 
combinations of amplitude and frequency increasing flow relative to the case without calcium oscillations. (a) contours of 
average outflow normalised to the results without calcium oscillations showing that higher flow is obtained at lower 
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amplitudes when the frequency is increased. (b,c) variation in time-dependence of diameter (d,e) variation in time-
dependent mid-lymphangion pressure (f,g) variation in time-dependence of outflow (h,i) variation in time-dependence of 
outlet valve resistance, showing the opening and closing with calcium oscillations 

A simulation was then run for a series connection of four simultaneously contracting (identical 

calcium inputs, equation 35) lymphangions with the cell viscosity suppressed because simulations 

varying viscoelasticity (see Appendix 1) showed little effect of viscosity on the model results and the 

series connection of lymphangions was unstable with it included. The external and inlet pressures 

were the same as used in the reference results for a single lymphangion (2 cmH2O and 3 cmH2O, 

respectively) and the outlet pressure was increased to 6 cmH2O, giving an adverse pressure 

difference of 3 cmH2O. Progressing down the lymphangion chain the efficiency of muscle 

contractions decreased (39.99 erg s⁄    39.54 erg s⁄    38.00 erg s⁄    35.13 erg s⁄ ) and the total 

efficiency (defined as the sum of work from each lymphangion divided by the sum of energy 

liberated in each lymphangion) was 38.15% (see Figure 38e). This decrease in efficiency was 

because the diameter contraction amplitude increased (20.83 μm   21.10 μm   22.12 μm   

23.79 μm), meaning that there was more convection of heads progressing along the chain as shown 

in Figure 38a. The contractions in the model under these conditions were small, generating an 

average flow of 0.25mL/hr (see Figure 38b). The peak energy liberation rate increased along the 

chain (0.5093erg s⁄     0.5122 erg s⁄     0.5178erg s⁄     0.5258erg s⁄ ), reflecting more turnover of 

myosin heads whilst the peak work rate decreased (0.2394erg s⁄     0.2346erg s⁄     0.2241erg s⁄     

0.2058erg s⁄ ) showing that the decrease in force had more of an influence on work done than the 

increasing velocity. Diastolic diameter decreased slightly for each lymphangion along the chain 

(167.4657μm  166.4497μm  165.4496μm  164.7151μm) because the average tonic CE force 

increased slightly (0.3924dyne    0.3928dyne    0.3938dyne    0.3958dyne). This reduction in the 

diastolic diameter was the cause of the increased diameter change because the lymphangion was a 

cylinder of smaller volume, so pumping the same volume of lymph required a greater change in the 

diameter. The decreased diameter also meant that the phasic CEs were shorter and the phasic spring 

force was negligible (order 10−4 dyne, Figure 38e). The diameter recovery shape is closer to 
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exponential than the linear shape. The suction pressure was much smaller for a chain of 

lymphangions than for the single lymphangion (0.1283cmH2O    0.1891cmH2O    0.2062cmH2O    

0.2095cmH2O below the inlet boundary condition, respectively). This may be because of the much 

greater adverse pressure prescribed in this simulation.  It was necessary for the peak pressure to 

decrease along the chain (1.9191cmH2O    1.7181cmH2O    1.3077cmH2O    0.6772cmH2O over 

the outlet boundary condition, respectively) for flow to occur, corresponding to a decrease in the 

peak cell force (13.2035dyne   12.6987dyne   11.7070dyne   10.2311dyne), given in Figure 38c,d. 

The peak in contraction-based flow increased with progression between valves (0.1193mL/hr    

0.1553mL/hr    0.3148mL/hr    0.4794mL/hr    0.6521mL/hr) whilst the suction-based flow peak 

decreased (0.1193mL/hr    0.0642mL/hr    0.0437mL/hr    0.0269mL/hr   − 0.0001mL/hr). The 

adjusted prescribed contraction model was incapable of generating flow at this pressure difference. 

The efficiency of energy transfer to the lymph was calculated as the energy to lymph divided by the 

sum of work for all lymphangions and proved to be more efficient than for a single lymphangion 

(68.4% compared to 30.3%). This illustrates the ability of the muscle model to generate increased 

force in response to more adverse pressure through the reduced convection of myosin heads 

allowing more heads to attach and generate more force. The prescribed contraction model, 

however, was unable to capture this response due to the constant assigned peak tension 

(equivalently force). 
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Figure 38: Panel of plots summarising the results for a series chain of four simultaneously contracting lymphangions with 
inlet pressure 3 cmH2O outlet pressure 6 cmH2O and external pressure 2 cmH2O (a) diameter (b) volume flow rates (c) 
mid-lymphangion pressures (d) cell force (e) row force balance (f) energetics rates where the muscle rates are the sum of all 
lymphangions 

3.5. Conclusions and discussion 
We have developed a computer model of the subcellular mechanisms of lymphatic muscle 

contraction that, on coupling with a well-characterised larger scale model of lymphangion pumping, 
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produces flow, diameter, and pressure traces similar to those from experiments on rat mesenteric 

lymphatics, and ejection fraction and average outflow under reference conditions are within the 

range previously reported from experiments (Davis et al., 2008, Davis et al., 2011, Davis et al., 2012, 

Scallan et al., 2016). This model is loosely based on the model of Brook and Jensen (Brook and 

Jensen, 2014) but is adapted to incorporate both phasic and tonic contractile elements (initially 

developed for tonic only). The particular arrangement of CEs with the phasic spring and tonic 

dashpot was the only one that produced physiologic results, out of the many we tried, giving some 

insight into the potential subcellular structure of LMCs and providing a basis for testing the potential 

of length-adaptation. Whilst this model contains many parameters, these were necessary to increase 

the detailed understanding of the various contractile and passive subcellular elements of lymphatic 

muscle cells beyond the current state and this model was developed to be as mechanistic as 

possible. Greater understanding of these subcellular mechanisms will be beneficial in developing 

interventions to promote lymph flow (both mechanical through the variation of external pressure 

and pharmacological). Most of the results in this model used a single lymphangion, but one 

simulation with a chain of four lymphangions showed that the energy liberation increased, and the 

work done by the muscle decreased along the chain, causing a decrease in the efficiency. In terms of 

conceptual ties to anatomical features, the phasic spring could represent the elasticity of titin while 

the tonic dashpot could represent the effects of a combination of tonic contractile machinery and 

the fluid environment around the smooth muscle components. Experiments to study the physical 

characteristics of the phasic spring and tonic dashpot would be useful. Smooth muscle contains a 

protein similar to titin, referred to as smitin (Kim and Keller III, 2002, Chi et al., 2005, Chi, 2007). Both 

titin and smitin can attach to smooth and striated actin and myosin (Kim and Keller III, 2002, Chi et 

al., 2005, Chi, 2007). This implies that titin, smitin, or some combination thereof can provide a direct 

connection between phasic and tonic CEs in LMCs. 

A major overall inhibitor of studies on lymphatic muscle is the loss of contractile phenotype in 

previous attempts to culture LMCs. A bioreactor that mechanically stimulates cultured muscle cells 
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to maintain contractility is currently under development in Professor Moore Jr’s research group. 

Cultured muscle cells will allow for more specific studies of lymphatic muscle (for example direct 

length-tension and force-velocity relationships without influence of other components of the 

lymphatic wall) and allow more accurate determination of the many parameters in this model, 

including the transition rates of the tonic component (currently left as the values of human airway 

smooth muscle, without detailed validation of the appropriateness for rat mesenteric lymphatic 

muscle). The suggested presence of titin and smitin should be investigated further using quantitative 

assays similar to (Muthuchamy et al., 2003) including determining the isoform(s) present and more 

detailed analysis of the relative concentrations of 𝛽-cardiac and SMB isoforms would provide 

additional clarity on the subcellular contractile element structure. Another highly useful 

investigation would be the use of specific inhibitors or genetic knockouts of the cardiac 𝛽-

myosin/troponin or SMB isoforms/calmodulin to isolate the active phasic and tonic components of 

lymphatic muscle. Examples include the knockout of cardiac troponin as published by Huang and 

colleagues (Huang et al., 1999) or molecules that competitively bind to troponin, preventing the 

binding of calcium ions and keeping the actin binding sites blocked (see (Audran et al., 2013) for 

more information on calmodulin blockers) to isolate the active phasic and tonic components of 

lymphatic muscle. For example, in our current results the phasic component has a noticeable force 

during diastole though still significantly lower than the tonic force so it would be interesting to see if 

the diastolic force is non-zero if the tonic component is genetically knocked out. Note, however, that 

the genetic knockouts are in mice, not the rat which this model is based on. Understanding the 

molecular functioning of LMCs is a step towards more physiologic models of lymphatic function 

necessary for greater understanding of system performance (Margaris and Black, 2012) and is useful 

for identifying potential pharmaceutical interventions. One potential pharmacological intervention 

in oedema would be the inhibition of contractions during diastole to help with the refilling and allow 

for more lymph flow. Such a time-dependent suppression of force is impractical, however, so 
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suppression of the tonic force is suggested instead. Pharmacological intervention to optimise the 

calcium binding for flow is also indicated by the results of this model. 

A parameter sensitivity analysis showed that the calcium binding properties of troponin, the 

detachment of phasic heads with negative displacement, the peak calcium concentration, and the 

number of LMCs around the circumference were the most sensitive parameters governing model 

outflow. There is a dearth of published calcium concentration measurements in rat mesenteric 

lymphatics so an updated study is recommended. Whilst the number of LMCs around the 

circumference was shown to be an important parameter, there is high confidence in the parameter 

estimate. The calcium binding properties of troponin would be facilitated by determining the 

isoforms of troponin that are present in rat mesenteric LMCs. 

Our model provides the first estimates of the energetics and efficiency of individual LMCs, and their 

dependence on lymphangion upstream, downstream and external pressures. Unfortunately, there 

are no experimental data with which to directly compare the energy conversion predictions of the 

model. Energetics are included here as estimates that will hopefully be comparable with 

experimental estimations of ATP usage as is often performed by measuring the concentration of 

inorganic phosphate through, for example, fluorescent protein MDCC-PBP (He et al., 2000) and heat 

generation. The model calculates the efficiency of cross-bridge cycling converting chemical energy of 

ATP to useful work, ignoring the efficiency associated with the metabolism of storing energy in ATP. 

The thermodynamic cycling efficiency was calculated from the ratio of work done to free energy 

from ATP hydrolysis. Another commonly used measure of cross-bridge efficiency is mechanical, 

based on the ratio of work done to enthalpy (free energy + entropy × temperature). The 

thermodynamic efficiency estimates from our model are within the ranges of published values for 

other muscle types. The thermodynamic efficiency of human skeletal muscle was reported as 40% at 

20°C (He et al., 2000). Cardiac muscle from various species exhibited thermodynamic efficiencies of 

around 20% (Barclay et al., 2003, Barclay and Loiselle, 2020). The efficiency of vascular smooth 
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muscle (rabbit rectococcygeus) has been reported as 18% (Walker et al., 1994). Our model predicts a 

decline in efficiency at lower adverse pressure differences when there is less of a mechanical 

challenge to overcome. LMCs contain a large number of mitochondria (Ohhashi, 1987), so even small 

losses per mitochondria can sum up to cause losses comparable to cross-bridge cycling. By 

comparison, metabolic efficiency has been estimated as 80% for cardiac muscle; 4x the cross-bridge 

cycling efficiency (Barclay et al., 2003, Barclay and Loiselle, 2020). As described in Chapter 2, there 

are several limitations in the calculation of energetics when using the Huxley model. Additional 

states and pathways were not included in this model because there are no experimental data on 

lymphatic muscle energetics, so the additional complexity was deemed unnecessary for a first 

approximation. In future developments of the model, more head states could be included to model 

weak ATP powerstroke coupling.  

The calculation of energetics is a useful development from this model because it may be an 

important factor in the shear- and pressure-dependent regulation of lymphatic contractions. For 

shear-dependent inhibition the theories are that when passive flow (passive pressure gradients 

driving flow) is possible, intrinsic contractions are unnecessary and (1) increase resistance to flow (2) 

waste energy (modelling the calcium-dependence on shear and diameter are currently underway 

and, with the energetics calculation of this model, will likely yield interesting results to better 

understand the regulation of lymphatic contractions that is not possible with existing models). 

Greater understanding of the feedback mechanisms may assist in the development of pharmacologic 

interventions to increase flow in oedema. The availability of energy may also be a limiting factor to 

lymph flow under certain conditions or with co-morbidities so enhanced understanding will facilitate 

treatments. 

This was the first study (experimental or computational) to test the effects of varying amplitude and 

frequency of calcium oscillations in LMCs. Controlling these experimentally would be challenging, so 

the model presents a more tractable means of exploring the potential effects on pumping. Calcium 



111 
 

oscillations cause an increase in flow when strong enough to open the downstream valve, and this 

effect is stronger as frequency increases. Increased oscillation frequency also increases the AP 

frequency (not modelled here) for more phasic contractions as another means of increasing outflow. 

The pressure and diameter fluctuations caused by oscillations have been observed in previously 

published experiments. Contractile force generation should scale more-or-less linearly with the 

number of cells contracting in response to oscillations, which is encompassed in the varying of 

amplitude. Fluctuations in diameter and pressure have been observed experimentally in rat 

mesenteric lymphatics lymphatics (Gashev et al., 2002, Zhang et al., 2007a, Dixon et al., 2006, Dixon 

et al., 2005). It has not, however, been confirmed that these fluctuations correspond to calcium 

fluctuations and this is still a matter of some debate. Detailed experimental observation of the 

effects of amplitude and frequency of calcium oscillations would be difficult to obtain. A commonly 

theorized cause of these oscillations is spontaneous transient depolarizations (STDs) though this is 

not unanimously agreed upon. Inhibitors and activators of STDs used for investigations in smooth 

muscle (for example inhibitors or blockers of inositol 1,4,5-triphosphate receptors or calcium-

activated chloride channels (von der Weid et al., 2008)) could be applied to rat mesenteric 

lymphatics. However, studying the effect on diameter, pressure, and flow would be complicated by 

the lack of action potentials triggered by STDs. 

Comparison of the muscle model with the prescribed contractions model showed that, under the 

reference conditions chosen for the muscle model, the muscle model was better able to capture the 

delayed suction recovery than the prescribed contractions model. The muscle model was also more 

capable of increasing force when the adverse pressure is increased (as observed experimentally 

(Davis et al., 2012, Scallan et al., 2012)) even without the regulatory feedback of calcium 

concentration. The muscle model also displays a more sensitive transmural pressure-dependence 

than the prescribed contraction model though this is not experimentally confirmed. This increased 

sensitivity to transmural pressure means that the muscle model more strongly supports the theory 

previously developed by the prescribed contraction model that application of compression bandages 
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is not necessarily the best treatment, and instead the external pressure should be optimised 

(potentially through applying suction). The major advantage of the muscle model was the ability to 

calculate the rate of energy liberation to better understand the metabolic requirements/limitations 

for lymphatic contractions. Splitting the phasic and tonic CE forces apart allows for greater 

understanding of their interactions under varying pressure conditions to indicate potential targeted 

therapies (for example the suppression of tone and altering the calcium binding of the phasic 

component) and provides an avenue for understanding the potential of lymphatic muscle to adapt 

to different conditions including through length adaptation (not included in this work as want to 

present the model first before investigating more sophisticated effects). The muscle model also 

showed a greater resistance to adverse pressure and had a sharper decrease in the flow with non-

optimal transmural pressures. The work done by intrinsic contractions showed opposite responses 

to variations in pressure (transmural and adverse). Whilst the model increased the number of 

parameters in the model, it also moved towards more close inclusion of the experimental findings 

used as inputs (for example using actual calcium tracings from rat mesenteric lymphatics). 

Calcium regulation by shear stress, diameter, and pressure conditions is not included in our model. 

LMC calcium regulation reduces contractile frequency at lower pressure differences, causing the 

LMCs to spend less time in the contracting state, potentially increasing the long-time-averaged 

efficiency. The increase in diameter that results from fewer contractions plus a notable relaxation in 

tone reduce resistance to pumping by upstream lymphangions. A future development will be to 

include calcium regulation with shear stress-, diameter- and voltage-dependent terms to represent 

calcium fluxes through different channels, following models of various smooth muscles (Bursztyn et 

al., 2007, Yang et al., 2003, Laforêt et al., 2011). 

Sliding filament models have inaccuracies in energetics (Bagshaw, 1993), particularly during 

stretching of active muscle (included in our model during relaxation) and shortening at high velocity. 

The deviation in sliding filament estimates of energy liberation may be due to the tight coupling of 
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ATP hydrolysis and cross-bridge cycling (i.e. one hydrolysis per powerstroke) (Yanagida et al., 1985). 

It has also been suggested that not every powerstroke hydrolyses ATP (Yanagida et al., 1985). There 

have been several models of skeletal muscle which aim to improve energetics estimates by including 

the weak coupling of ATP hydrolysis and powerstroke cycles. These models included additional 

binding states (Piazzesi and Lombardi, 1995, Eisenberg et al., 1980) or additional rates (two 

attachment and two detachment) in the two-state model (Barclay, 1999).  

When the length of a muscle cell is varied, its capability to generate force varies because the 

filaments slide past each other and the region of overlap is different. This means that the number of 

actin binding sites available is changed, so the number of attached heads is different. Overlap 

dependence is not included in the model, but could be through length-dependent variations in the 

number of myosin heads that are available for attachment following (Kocková and Cimrman, 2009, 

Zahalak and Motabarzadeh, 1997). A first required step would be to distribute the overall overlap-

dependence of LMCs amongst the phasic and tonic CEs. Attributing the overlap-dependence entirely 

to the phasic CEs would be justified because of the physiologically low shortening velocity of tonic 

CEs enforced by the tonic dashpot. Another possible further development would be to model the 

structural rearrangement of contractile filaments in response to length changes. We could perform 

something similar to (Brook and Jensen, 2014) with an instantaneous change in the number of 

available heads. Unfortunately, there are no experimental data on which to base such a model or 

determine its parameters. Imaging capable of distinguishing the phasic and tonic CEs and their 

overlap would be useful for understanding the interactions of the two contraction types. 

Another development will be to include the muscle model in a homogenisation scheme being 

developed in our group to model complete lymphatic vessel networks (covered in Chapter 4). We 

would likely want to simplify the muscle model to a distribution-moment model. The distribution-

moment model assumes a Gaussian distribution of head states in displacement to obtain ODEs for 

force, energy, and stiffness (Zahalak, 1981, Zahalak, 1986). This increases error in force and velocity 
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estimates but reduces the computational demand. The four-state Huxley-Hai Murphy model for 

smooth muscle has also been implemented using the distribution-moment approximation 

(Rampadarath and Donovan, 2018). Some example results from the LMC model using the 

distribution-moment approximation are included in Appendix 1. 

In conclusion, we have developed a model of the LMC that provides a first estimate of the energetics 

and efficiency of LMCs, and the effects of calcium oscillations on the average flow. In development 

of the model, some structural insights were obtained from the necessity of including a phasic spring 

and tonic dashpot to obtain physiologic contractions. A major discovery our model was the potential 

calcium oscillation-derived increase in outflow with transmural pressure. This model also provides 

estimates of the energy efficiency of lymphatic muscle which may be an important factor in the 

regulation of lymphatic contractions, important in promoting lymph flow in diseased conditions. It is 

hoped that this model will motivate further studies into the energetic aspects of lymphatic muscle 

function for a more comprehensive understanding of lymphatic muscle function, particularly the 

response to changes in pressure conditions as occur during lymphedema. This model is a step 

towards the more physiologic modelling of lymphatic pumping as required to increase our 

knowledge of the system’s performance by mechanistically rather than phenomenologically 

modelling the intrinsic contractions. 
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CHAPTER 4 – HOMOGENISED MODEL OF LYMPHATIC NETWORKS 

4.1. Introduction 
The lymphatic system is vital for several aspects of physiologic function and is implicated in multiple 

diseased states. A major function of the lymphatic system is fluid homeostasis through the return of 

4 − 8 L of interstitial fluid to the venous system per day. Failure of lymphatic fluid transport can 

result in a chronic debilitating condition involving tissue swelling known as lymphoedema. The 

interstitial fluid collected passes through lymph nodes which contain a high concentration of 

immune cells. The immune cells in lymph nodes sample lymph to detect pathogens and activate the 

adaptive immune response. Lymphatics are also one of the two main routes for cancer metastasis, 

the other being blood vasculature. 

The basic unit of pumping in collecting lymphatic vessels is the lymphangion, a segment of lymphatic 

vessel bounded by two valves. These valves are bi-leaflet with a transmural pressure-dependent bias 

to the open position. Pumping is achieved by the intrinsic contractions of LMCs surrounding the 

lymphatic vessels which can be assisted by external compression (from, for example, skeletal muscle 

contraction and respiration, among others). 

A major hindrance of lymphatic pumping research has been the difficulty with quantifying pressure, 

diameter, and flow in vivo in the human. This has led to the use of experimental animal models 

including rat, sheep, dog, and cow. In vivo experiments can be performed by exteriorising loops of 

vessel to track flow via cell movements and diameter but there is little control over pressure (also 

other factors affecting pumping such as temperature) and exteriorisation removes the surrounding 

tissue contributing external compressions. In vitro experiments can be performed by excising and 

cannulating lymphatic vessels, giving control of pressure conditions (and heat, among others) and 

diameter can still be tracked but flow measurements cannot be obtained, and external compressions 

are removed. The limitations with animal models have led to computational models based on the 

available experimental data. Additionally, the removal and cannulation of a large lymphatic network 

is impractical. 
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As covered in chapter 2, the first computational model of the lymphatic system was developed by 

Reddy and colleagues (Reddy, 1974, Reddy et al., 1977) and was a lumped-parameter model based 

on the reduction of the Navier-Stokes equations. More recent models are primarily also lumped-

parameter models (Venugopal et al., 2003, Quick et al., 2007, Quick et al., 2008, Quick et al., 2009, 

Bertram et al., 2011, Bertram et al., 2014a) but Lattice-Boltzmann models have also been developed 

(Kunert et al., 2015, Ballard et al., 2018). A significant challenge in developing computer models of 

the lymphatic vasculature is the complexity of secondary valve dynamics, including their transmural 

pressure-dependent bias to the open position. 

Scaling up models of lymphangion chains to model networks of lymphatic vessels is not simple and 

results in significant computational demand with the simulation of, for example, the arm lymphatics 

(hundreds of thousands of lymphangions) being impractical particularly with more complex models 

of valve dynamics to capture the bias of the valves to the open position. The network structure of 

lymphatics has not been mapped extensively and there is a great deal of uncertainty in (pressure) 

boundary conditions which, in addition to being difficult to measure, vary with both location and 

time and are specific to the individual. A lumped parameter model of lymphangions has previously 

been used to simulate a small idealised network of lymphangions (Jamalian et al., 2016). The results 

of this network model showed that a delay in contractions between lymphangions at branch points 

increased the flow rate and that having vessels of 10 lymphangions generated the highest flow over 

a wide range of adverse pressure differences. The presence of an optimal vessel length arises 

because increasing the series number of lymphangions is a balance between additional contractility 

and additional resistance. 

Computational homogenisation (also known as coarse graining) is a method in which the boundary 

value problems of two scales are coupled. Macroscale parameters are used to set boundary values 

for a microscale representative volume element (RVE) that models a small segment at the 

microscale and is then homogenised over the macroscale. This means that the microscale need not 
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be simulated for the entire macroscale domain and greatly reduces computational demand. 

Computational homogenisation is therefore a useful tool for scaling up the complex lymphangion 

models to network models. The size of the RVE is an important decision as it must be large enough 

to accurately model the microscale characteristics but small enough to ensure separation of scales 

between the macroscale and microscale (Geers et al., 2010). Various homogenisation techniques 

have been proposed but computational homogenisation is probably one of the most accurate for 

upscaling the nonlinear behaviour of a well-characterised microstructure (Geers et al., 2010). The 

basic concept of computational homogenisation is the return of a single effective parameter to 

represent the complex microscale function for use in a simpler evolution law at the larger scale. 

Initial computational homogenisation models were restricted to small deformations or linear 

material behaviour, but the approach is fully general and has been generalised for large 

deformations with nonlinear material behaviour. Thus far, computational homogenisation has been 

applied primarily to materials science but some studies have applied it to fluid mechanics ((Kelly and 

Muske, 2004, Murphy et al., 2020) primarily porous flow (Chu et al., 2012, Bottaro, 2019, Lewińska 

et al., 2019, Bidier and Ehlers, 2014)) and other multiphysics problems (for example temperature 

(Lewińska et al., 2019, Larsson et al., 2010), electricity (Keip et al., 2013, Lu et al., 2018), chemistry 

(Polukhov and Keip, 2020, Yuan et al., 2014), and magnetics (Javili et al., 2013, Zabihyan et al., 

2018)). Solid mechanics involves spatial homogenisation; however, we require both spatial and 

temporal homogenisation. The first-order method uses linearisation of the macroscale constitutive 

problem and is now quite established (Matsui et al., 2004, McVeigh et al., 2006, Temizer and Zohdi, 

2006, Hain and Wriggers, 2008, Yuan and Fish, 2008). The first-order method, however, has its 

limitations: (1) the method complies with the principle of local action and the material point 

concept, meaning that in a non-modified form it is limited to a standard continuum mechanics 

theory at the macroscale (2) large spatial gradients at the macroscale cannot be resolved because of 

the requirement of separation of scales (3) the principle of local action mathematically enforces an 

infinitely small size to the RVE, meaning that size effects on the macroscale behaviour cannot be 
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properly studied. These limitations have led to a second-order method being developed to include 

the gradient of the macroscale constitutive relation (Geers et al., 2001, Kouznetsova et al., 2002, 

Kouznetsova et al., 2004, Kaczmarcyk et al., 2008). Homogenisation has previously been used to 

model noncontracting initial lymphatics (Roose and Swartz, 2012). A major advantage of 

computational homogenisation is that it is highly parallelisable with RVE models run simultaneously. 

The aim of this study was therefore to develop a method for homogenising a lumped parameter 

model of short lymphangion chains to model large scale converging lymphatic networks. This model 

is then tested under typical physiological conditions and conditions with altered external pressure. 

The overall goal is to examine the macroscale function of lymphatic pumping under various 

conditions to inform development of treatments for lymphoedema. 

4.2. Methods 
We have a well-validated lumped-parameter model of a small chain of lymphangions (Bertram et al., 

2011, Jamalian et al., 2013, Bertram et al., 2014a, Jamalian et al., 2016, Jamalian et al., 2017) that is 

computationally intensive and to simulate the flow through a lymphatic network to better develop 

lymphedema therapies we use computational homogenisation for reduced computational intensity. 

To this end we have designed and implemented in MATLAB a multiscale nested lumped parameter 

model of lymphatic vessels with computational homogenisation that uses the lumped parameter 

model as a detailed microscale model that returns the solution as a single “compliance” that 

represents the link between microscale pressure and flow. This method is loosely based on the 

coupling of continuous porous media flow in nested discrete fluid networks as done by Chu and co-

workers (Chu et al., 2012). Chu and colleagues developed a first-order homogenisation model to 

couple a macroscale conservation of mass with a discrete porous Darcy flow model at the 

microscale, focussing on coupling the pressures of the two scales. Capital parameters correspond to 

the macroscale and lower-case parameters to the microscale. 
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In this model we have two scales: the macroscale network (length scale of order m) and the 

microscale representative volume element (RVE) of a small chain of lymphangions (length scale of 

order mm). The macroscale is one-dimensional (length 𝐿 and position 𝑋) and divided into a series of 

𝑁 elements (element lengths ∆𝑋 = 𝐿 𝑁⁄ ) with one RVE prescribed to each element. Macroscale 

nodal values are indexed by a subscript 𝐼 value (ranging from 1 to 𝑁 + 1) and element midpoint 

values by 𝐼 ± 0.5. The macroscale includes an ODE for mass conservation and the main equation for 

solving at the macroscale is a simple constitutive relationship between pressure (𝑃) and flow (𝑄) 

using the pressure difference from the microscale and the macroscale flow to calculate a single 

representative value linking the two scales. This constitutive relationship is used to update unknown 

pressures at the macroscale given a known (desired) flow. 

Macroscale time 𝑇 is split into multiple time steps and at each macroscale time step the macroscale 

parameters are passed down to the microscale RVE as boundary conditions (see Figure 39). The 

microscale boundary value problem is then solved and returns the pressure difference used to 

update the macroscale solution in the constitutive relationship and provide new microscale 

boundary conditions. 

The microscale pressure difference represents the pressure difference that the lymphangions must 

generate to give the required flow for mass conservation at the macroscale. This is performed 

iteratively within each macroscale time step until the microscale solution has an insignificant effect 

on the macroscale and the following macroscale time step is begun (see Figure 42 for the 

relationship between macroscale and microscale times) for the relationship between the macroscale 

and microscale times). Vascular networks are commonly modelled as graphs with nodes (pressure 

values) and edges (flow values). In such models the edges also include a resistance term that relates 

the flow value to the difference in nodal pressure values. In our model this parameter is an overall 

representation of the microscale solution (pressure-flow relationship) referred to as tangent 

compliance (including total Poiseuille and valve resistances of the entire chain) though it is 
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complicated by the presence of intrinsic contractions in the lymphatics, reflected in the pressure 

difference generated by the RVE. 

Pressure conditions (external 𝑃𝐸𝑋𝑇, inlet 𝑃𝐼𝑁 and outlet 𝑃𝑂𝑈𝑇) are prescribed at the macroscale. The 

model, however, must capture the interaction of lymphangions with both flow and pressure 

coupling, leading to the calculation of a flow boundary condition (𝑄𝐼𝑁). An additional parameter is 

also included to capture the network branching (through parallel number of RVEs 𝑀, assuming all 

vessels at each generation of the network behave identically). External pressure and parallel vessel 

number are assigned at the left and right ends of the macroscale (𝑃𝐸𝑋𝑇,𝐿 , 𝑃𝐸𝑋𝑇,𝑅 , 𝑀𝐿 and 𝑀𝑅, 

respectively) and assumed to vary linearly (so can be linearly interpolated for the nodal values, as in 

equations 52 and 53). A major advantage of using computational homogenisation for this problem is 

the fact that detailed modelling of vessel junctions is not required. 

𝑃𝐸𝑋𝑇,𝐼 = 𝑃𝐸𝑋𝑇,𝐿 (1 −
𝑋𝐼

𝐿
) + 𝑃𝐸𝑋𝑇,𝑅

𝑋𝐼

𝐿
  (52) 

𝑀𝐼 = 𝑀𝐿 (1 −
𝑋

𝐿
) +𝑀𝑅

𝑋

𝐿
   (53) 

4.2.1. Microscale 
There are two types of RVE at the microscale, both lumped-parameter models of simultaneously 

contracting lymphangion chains (though inter-lymphangion contraction delay could easily be 

included). The number of lymphangions (𝑛) in both types of RVE is assumed identical. 

The first RVE type is the lymphangion model as developed previously with pressure-only boundary 

conditions and is used to calculate the network inflow for reasons covered below. This RVE is 

included outside of the macroscale as it is not actually part of the network being considered but is a 

representation of lymphatics upstream of the network being considered. 

The second RVE is the same model with an upstream compliance unit added to allow for the 

prescription of inflow (as required for complete coupling of the lymphangions) without over-
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prescribing the problem. These compliance RVEs are those assigned to each macroscale element of 

the network being considered. 

RVE models are numerically stiff differential-algebraic equations, meaning that the time step 

required is much smaller than the macroscale time step and the RVE uses an adaptive time-step 

solver built into MATLAB (ODE15S) to accurately solve the model. RVEs use an extensively validated 

lumped parameter model for short lymphangion chains (Bertram et al., 2018, Bertram et al., 2017, 

Bertram et al., 2016b, Bertram et al., 2016a, Bertram et al., 2015, Bertram et al., 2014a, Bertram et 

al., 2014b, Jamalian et al., 2013, Bertram et al., 2011). This model has been through several 

iterations as covered in Chapter 2, and the prescribed functions for passive tube law, valve 

resistance, and intrinsic contractions are used here are the most recent versions as given in 

(Jamalian et al., 2017) and here as equations 54 to 60 (plotted in Chapter 3 as Figure 18, Figure 20, 

Figure 21, and Figure 22). 

 

Figure 39: Coupling of the macroscale and microscale showing the inlet and outlet pressure boundary conditions prescribed 
at the macroscale. Below this is an expanded view of a single element and the coupling with the microscale compliance 
RVEs (passing down inlet and outlet pressure, the rate of change of inlet pressure, and the inflow to return the solution of 
pressure difference). The bottom figure shows the parallel RVEs with the pressure conditions and the upstream pressure 
within the first lymphangion, used in the calculation of returned pressure difference. The axial length of an RVE chain is also 
shown. 
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4.2.1.1. Unadapted lymphangion RVE 

The unadapted model takes pressure boundary conditions and consists of an ordinary-differential 

equation for diameter from mass conservation (equation 54) and several momentum conservations 

(two each for the lymphangion body and the valves, equations 55a-d). Intrinsic contractions of the 

lymphangions are included through a wall-force balance (equation 60) relating the pressure in the 

middle of the lymphangion to the external pressure with a passive tube law (equation 61) and 

intrinsic contractions included through the prescription of diameter- and time-dependence 

(equations 58 and 59a-d) of intrinsic contractions. The passive tube law is a diameter-transmural 

pressure relationship of the wall with zero active force. The valve resistance is given by a sigmoidal 

relationship describing the resistance of the valve at different pressure differences across it (positive 

for decreasing pressure) and includes an experimentally observed bias to the open position. The 

flow generated by this RVE is then upscaled to the macroscale and used as a boundary condition for 

compliance RVEs. 

𝑑(𝑑𝑖)

𝑑𝑡
=

2

𝜋𝑑𝑖𝑙𝑙𝑦𝑚
(𝑞𝑖 − 𝑞𝑖+1)  (54) 

 where 𝑑 is the lymphangion diameter, 𝑙𝑙𝑦𝑚 is the length of a lymphangion, 𝑞𝑖 is the flow 

through valve 𝑖 

𝑝2,𝑖−1 − 𝑝1,𝑖 = 𝑅𝑣𝑖𝑞𝑖   (55a) 

 where 𝑝2 is the downstream pressure, 𝑝1 is the upstream pressure, 𝑅𝑣 is the valve 

resistance 

𝑝1,𝑖 − 𝑝𝑚,𝑖 = 𝑅𝑣𝑒𝑠𝑞𝑖   (55b) 

 where 𝑝𝑚 is the mid-lymphangion pressure, 𝑅𝑣𝑒𝑠 is the Poiseuille resistance 

𝑝𝑚,𝑖 − 𝑝2,𝑖 = 𝑅𝑣𝑒𝑠𝑞𝑖+1   (55c) 

𝑝2,𝑖 − 𝑝1,𝑖+1 = 𝑅𝑣𝑖+1𝑞𝑖+1  (55d) 
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𝑝2,𝑖−1 and 𝑝1,𝑖+1 are the inlet and outlet pressure boundary conditions passed down from the 

macroscale. 

𝑅𝑣 = 𝑅𝑣,𝑚𝑖𝑛 + 𝑅𝑣,𝑚𝑎𝑥 [1 (1 + exp(𝑠𝑜(∆𝑝 − 𝑝𝑜)))⁄ + 1 (1 + exp (−𝑠𝑓(∆𝑝 − 𝑝𝑓)))⁄ ]  (56) 

 where 𝑅𝑣 is the valve resistance, 𝑅𝑣,𝑚𝑖𝑛 is the minimum (open) valve resistance, 𝑅𝑣,𝑚𝑎𝑥 is 

the additional resistance on valve closure, 𝑠𝑜 is the slope of valve opening, ∆𝑝 is the pressure 

difference across the valve (positive for decreasing pressure), 𝑝𝑜 is the opening pressure, 𝑠𝑓 is the 

slope of valve failure, 𝑝𝑓 is the pressure for valve failure 

𝑅𝑣𝑒𝑠 = 64𝜇𝑙𝑙𝑦𝑚 𝜋𝑑4⁄    (57) 

𝑀𝑡 =

{
 
 

 
 
𝑀0                                                                                                  𝑖𝑓 𝑡𝑡𝑒𝑚𝑝 > 0.5(𝑡𝑟 + 𝑡𝑐)

𝑀𝑎 (1 − cos (
2𝜋𝑡𝑡𝑒𝑚𝑝

𝑡𝑐
)) /2 +𝑀0                                                         𝑖𝑓 𝑡𝑡𝑒𝑚𝑝 > 0.5𝑡𝑐

𝑀𝑎 (1 − cos (
2𝜋(𝑡𝑡𝑒𝑚𝑝+0.5(𝑡𝑟+𝑡𝑐))

𝑡𝑟
))/2 +𝑀0     𝑖𝑓 0.5𝑡𝑐 < 𝑡𝑡𝑒𝑚𝑝 < 0.5(𝑡𝑟 + 𝑡𝑐)

 (58) 

𝑡𝑡𝑒𝑚𝑝 = 𝑚𝑜𝑑(𝑡, 𝑐𝑦𝑐𝑙𝑒𝑡𝑖𝑚𝑒)   𝑐𝑦𝑐𝑙𝑒𝑡𝑖𝑚𝑒 = 0.5(𝑡𝑟 + 𝑡𝑐) + 𝑡𝑑 

where 𝑐𝑦𝑐𝑙𝑒𝑡𝑖𝑚𝑒 is the duration of the contraction cycle, 𝑡𝑟 is the duration of 

relaxation, 𝑡𝑐 is the duration of contraction, 𝑡𝑑 is the diastolic period, 𝑀𝑡 is the time-dependence of 

intrinsic contractions, 𝑀0 is the tonic tension, 𝑡𝑡𝑒𝑚𝑝 is the time from the beginning of the current 

contractile cycle, 𝑀𝑎 is the additional tension on phasic intrinsic contraction 

𝑀𝑑0 = 5.5 (1 + exp(−𝑠𝑑0(𝐷 − 𝐷0)))⁄      (59a) 

𝑀𝑑1 = 0.5 (1 + exp(−𝑠𝑑1(𝐷 − 𝐷1)))⁄      (59b) 

𝑀𝑑0 = 2 (1 + exp(𝑠𝑑2(𝐷 − 𝐷2)))⁄      (59c) 

𝑀𝑑 =
𝑀𝑑0+𝑀𝑑1+𝑀𝑑2−2

6
       (59d) 
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 where 𝑠𝑑0, 𝐷0, 𝑠𝑑1, 𝐷1, 𝑠𝑑2 and 𝐷2 are constitutive parameters with the same values as in 

the muscle model 

𝑝𝑚,𝑖 = 𝑝𝑒𝑥𝑡,𝑖 + 𝑓𝑝𝑎𝑠,𝑖 + 2𝑀𝑑,𝑖𝑀𝑡 𝑑𝑖⁄      (60) 

𝑓𝑝𝑎𝑠,𝑖 = 𝑐1exp(𝑐2𝑑𝑖) + 𝑐3exp(𝑐4𝑑𝑖) + 𝑐5𝑑𝑖 + 𝑐6 − 𝑐7 𝑑𝑖
3⁄   (61) 

 where 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7 are constitutive parameters with the same values as in the 

muscle model 

Parameter Description Value [units] 

lyml  
Length of each lymphangion 0.3 [cm] 

0d  Initial diameter of each 
lymphangion 

200 [μm] 

C Main RVE upstream 
compliance 

10-12 [cm5/dyne] 

µ Dynamic viscosity 10-4 [Pa s] 

tc Contraction duration 2 [s] 

tr Relaxation duration 2 [s] 

td Diastole duration 1.5 [s] 

M0 Tone tension 0 [dyne/cm] 

Ma Peak intrinsic tension 250 [dyne/cm] 

 

4.2.1.2. Compliance RVE 

The addition of a (zero-dimensional) compliance unit resulted in an additional equation for the 

charging of the pressure in the compliance (𝑝𝑐) resulting from the upstream pressure boundary 

condition and the difference between the inflow boundary condition and the flow through the first 

valve of the lymphangion chain (𝑞𝑣1), initialised to 𝑝𝑐 = 𝑝𝑖𝑛 

𝑑𝑝𝑐

𝑑𝑡
=

𝑑𝑝𝑖𝑛

𝑑𝑡
+
1

𝑐
(𝑞𝑖𝑛 − 𝑞𝑣1)  (62) 

The opening of the first valve is then regulated by the difference between the compliance pressure 

and the pressure at the upstream end of the first lymphangion. 

Note that the incoming boundary conditions are prescribed on the upstream compliance unit, and 

that flow and pressure at the actual inlet of the lymphangion chain can vary depending on the 
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behaviour of the compliance unit. Physically, this unit represents the compliance of upstream 

lymphangions and does not cause additional viscous pressure loss (i.e., resistance is zero). 

 
Figure 40: Schematic of the modified lymphangion pumping model as a microscale RVE. The compliance RVEs are assigned 
a mixture of pressure and flow boundary conditions. These RVEs calculate the pressure in the compliance, the diameter of 
each lymphangion, the flow through each valve, and three pressures per lymphangion (upstream, central and downstream). 
The instantaneous pressure difference across the RVE (𝛿𝑝) is the output returned to the macroscale. 

The compliance of a passive lymphangion can be calculated from the passive tube law. This tube law 

provides a relationship between the transmural pressure and the diameter of passive lymphangions 

and, since we have assumed that the lymphangion is a radially expanding and contracting cylinder of 

constant axial length, we can use this to obtain a relationship between the transmural pressure and 

the lymphangion volume (𝑣). 

𝑣𝑖 = 𝜋𝑙𝑙𝑦𝑚
𝑑𝑖
2

2
  (63) 

This transmural pressure-volume relationship can then be differentiated with respect to the volume 

to get an equation for passive lymphangion compliance (Figure 41). We then use a constant value of 

the compliance that is representative of the values in the stiffening region of the passive tube law 

around a diameter of 200 μm. The result was a compliance value of 𝑐 = 10−12  cm5 dyne⁄ . 

 

Figure 41: Plots showing the passive pressure-volume form of the passive tube law and the resultant compliance 
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4.2.2. Coupling the scales 
Quasi-steady macroscale conditions are passed down to the microscale for solution of the RVE 

models. In addition, the quasi-steady values passed down as microscale boundary conditions mean 

that there are initial transients for each RVE simulation, so several initial contraction cycles were run 

before the calculation of variables that are returned to influence the macroscale solution. Due to the 

periodic nature of the RVE model, the only important factor from macroscale timing is the time into 

the current contraction cycle (i.e., the position in the time-dependent tension). The RVE solution 

returns to the macroscale as either a flow (inlet RVE) or a pressure difference (compliance RVE). 

 

Figure 42: Diagram of the interaction between macroscale and microscale times 

4.2.2.1. Inlet RVE 

The inlet RVE is prescribed inlet and outlet pressure boundary conditions assuming a consistent 

pressure gradient with the main macroscale and is run only once per macroscale time step as 

changes in the macroscale solution do not affect the function of this inlet RVE (it is only dependent 

on the macroscale boundary conditions). 

𝑝𝑖𝑛 = 𝑃𝐼𝑁     (64a) 

𝑝𝑜𝑢𝑡 = 𝑃𝐼𝑁 + 𝛿𝑙 (𝑃𝑂𝑈𝑇 − 𝑃𝐼𝑁) 𝐿⁄   (64b) 

 where 𝛿𝑙 is the length of an RVE 

Additionally, the pressure external to the RVE is passed down as the external pressure at the left of 

the main network. 
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𝑝𝑒𝑥𝑡 = 𝑃𝐸𝑋𝑇,𝐿    (65) 

Equations 54 to 61 are then solved with 𝑝2,𝑖−1 = 𝑝𝑖𝑛 and 𝑝1,𝑖+1 = 𝑝𝑜𝑢𝑡 and the solution stopping at 

the end of the macroscale time step. The instantaneous flow rate through the final valve in the 

lymphangion chain at the end of the macroscopic time step is returned to the macroscale by 

summing over the parallel number of RVEs at the inlet (𝑀𝐿) to give network flow for use in the 

macroscopic solver and inlet boundary conditions in compliance RVEs. 

𝑄𝐼𝑁 = 𝑀𝐿𝑞    (66) 

The radius of the RVE is stored as the instantaneous value of the radius at the end of the macroscale 

time step averaged between the lymphangions of the RVE chain (𝑅). This is not used in the 

macroscale solution, but is required to keep track of the RVE size and prevent model instabilities 

with sudden differences in RVE radius between RVE calls. 

𝑅 =
∑ 𝑟𝑖
𝑛
𝑖=1

𝑛
    (67) 

 where 𝑛 is the number of lymphangions in the RVE, 𝑟𝑖 is the radius of the 𝑛th lymphangion in 

the RVE 

4.2.2.2. Compliance RVE 

The compliance RVE is also passed both inlet and outlet pressure boundary conditions but is 

additionally assigned an inflow condition and the rate of change of inlet boundary pressure. These 

boundary conditions are assigned from the macroscale element values in which the RVE resides. This 

RVE is iteratively run with the macroscale solution giving updated boundary conditions. 

The inlet and outlet pressure conditions are calculated from the midpoint macroscale pressure 

minus or plus the macroscale spatial gradient of pressure (∇𝑃𝐼+0.5) multiplied by half of the RVE 

length (𝛿𝑙), respectively. This is part of the assumption of linear pressure variation between nodes. 

𝑝𝑖𝑛 = 𝑃𝐼+0.5 − ∇𝑃𝐼+0.5
𝛿𝑙

2
  (68a) 
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𝑝𝑜𝑢𝑡 = 𝑃𝐼+0.5 − ∇𝑃𝐼+0.5
𝛿𝑙

2
  (68b) 

∇𝑃𝐼+0.5 = (𝑃𝐼+1 − 𝑃𝐼) ∆𝑋⁄   (68c) 

Differentiating equation 68a with respect to time gives the rate of change of inlet pressure as 

required by the compliance unit 

𝑑𝑝𝑖𝑛

𝑑𝑡
=

𝜕𝑃𝐼+0.5

𝜕𝑇
−
∂∇𝑃𝐼+0.5

𝜕𝑇

𝛿𝑙

2
  (69) 

The flow is calculated as the inflow from the inlet RVE divided by the number of parallel elements at 

the midpoint of the node (macroscale mass conservation assumes no spatial gradient in flow, so the 

inflow is evenly divided by the number of RVEs in parallel) 

𝑞𝑖𝑛 = 𝑄𝐼𝑁/𝑀𝐼+0.5   (70) 

Again, external pressure is passed down but this time by averaging the nodal values on either side of 

the macroscale element the RVE is assigned to. External pressure is prescribed to the microscale as a 

single value (there can be spatial gradients in the external pressure at the macroscale, but they are 

assumed to give negligible differences at the microscale). 

𝑝𝑒𝑥𝑡 =
𝑃𝐸𝑋𝑇,𝐼+𝑃𝐸𝑋𝑇,𝐼+1

2
   (71) 

After solution of the microscale model (equations 62 and 54 to 61 with 𝑝2,𝑖−1 = 𝑝𝑐  and 𝑝1,𝑖+1 =

𝑝𝑜𝑢𝑡) the pressure difference along the RVE (𝛿𝑝) is returned, reflecting the pressure difference that 

the lymphatics must generate to give the required flow for macroscale mass conservation. 

𝛿𝑝 = 𝑝𝑜𝑢𝑡 − 𝑝1,1   (72) 

The radius is again stored for use in the following macroscale time step. A flowchart of the solution 

algorithm for this RVE is included as Figure 43. 
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Figure 43: Solution algorithm for the compliance RVE 

4.2.3. Macroscale solution 
The objective of the macroscale scheme is to use results from the RVEs to determine the pressure 

profile along the network at all nodes except for external nodes as they are prescribed boundary 
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conditions. The initial values of these unknown internal nodal pressures at the very beginning of the 

simulation are assigned by linear interpolation between the boundary conditions at the left and right 

ends of the network. 

𝑃𝐼(𝑇 = 0) = 𝑃𝐼𝑁 (1 −
𝑋

𝐿
) + 𝑃𝑂𝑈𝑇

𝑋

𝐿
  (73) 

Mass conservation at the macroscale is ensured by enforcing that the gradient in flow is zero. 

𝜕𝑄𝐼

𝜕𝑋
= 0      (74) 

Momentum conservation then uses this mass conservation (which dictates the flow at every node 

and element midpoint) in a momentum conservation equation which uses a “resistance-type” term 

based on the microscale pressure difference. The objective of this is to determine the macroscale 

pressure shape that satisfies the mass conservation through sampling the detailed microscale model. 

The coupling between scales includes the macroscale flow from the conservation of mass with the 

inflow from the inlet RVE and momentum conservation from the microscale pressure gradient 

returned by the compliance RVEs. 

The difference in macroscale flow between adjacent macroscale elements can be multiplied by the 

pressure gradient and its reciprocal. 

∆𝑄𝐼 = 𝑄𝐼+0.5 − 𝑄𝐼−0.5 = 𝑄𝐼+0.5(∇𝑃𝐼+0.5)
−1∇𝑃𝐼+0.5 − 𝑄𝐼−0.5(∇𝑃𝐼−0.5)

−1∇𝑃𝐼−0.5  (75) 

The gradient in macroscale pressure can be written as a finite difference such that the flow 

difference can be related to the unknown nodal pressures. 

∆𝑄𝐼 = 𝑄𝐼+0.5 − 𝑄𝐼−0.5 = 𝑄𝐼+0.5(∇𝑃𝐼+0.5)
−1 𝑃𝐼+1−𝑃𝐼

∆𝑋
− 𝑄𝐼−0.5(∇𝑃𝐼−0.5)

−1 𝑃𝐼−𝑃𝐼−1

∆𝑋
  (76) 

The pressure gradient can also be written in terms of the microscale pressure difference by ensuring 

that both the macroscale and microscale pressure gradients are identical 

∆𝑄𝐼 = 𝑄𝐼+0.5 − 𝑄𝐼−0.5 = 𝑄𝐼+0.5 (
𝛿𝑝

𝛿𝑙
)
−1 𝑃𝐼+1−𝑃𝐼

∆𝑋
− 𝑄𝐼−0.5 (

𝛿𝑝

𝛿𝑙
)
−1 𝑃𝐼−𝑃𝐼−1

∆𝑋
   (77) 
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The macroscale pressure-flow momentum relation can then be obtained by defining the 

conductance term combining macroscale and microscale properties to couple the two scales 

𝐺𝐼+0.5 =
𝑄𝐼+0.5

𝛿𝑝

𝛿𝑙

∆𝑋
       (78) 

∆𝑄𝐼 = 𝑄𝐼+0.5 − 𝑄𝐼−0.5 = 𝐺𝐼+0.5(𝑃𝐼+1 − 𝑃𝐼) − 𝐺𝐼−0.5(𝑃𝐼 − 𝑃𝐼−1)  (79) 

This pressure-flow relation can then be applied to all macroscale elements and compared to the 

desired solution of zero flow difference 𝑯 from the conservation of mass to update the unknown 

macroscale pressures (vector 𝑷). 

𝑯(2:𝑁) = 0     (80) 

The flow difference across the first node and last node are special cases. The flow difference across 

the first node is simply the inflow 

𝑯(1) = 𝑄𝐼𝑁     (81) 

The flow difference across the final node is the midpoint flow minus the conductance of the final 

element midpoint multiplied by the outlet pressure boundary condition. 

𝑯(𝑁 + 1) = 𝑄𝑁+0.5 − 𝐺𝑁+0.5𝑃𝑂𝑈𝑇  (82) 

[𝑮] =

[
 
 
 
 
−𝐺0.5 𝐺0.5 0 ⋯ 0
𝐺0.5 −𝐺0.5 − 𝐺1.5 𝐺1.5 0 0
0 𝐺1.5 ⋱ ⋱ 0
⋮ ⋱ ⋱ −𝐺𝑁−1.5 − 𝐺𝑁−0.5 𝐺𝑁−1.5
0 ⋯ 0 𝐺𝑁−1.5 −𝐺𝑁−1.5 − 𝐺𝑁−0.5]

 
 
 
 

  (83a) 

{𝑷} =

{
 
 

 
 
𝑃𝐼𝑁
𝑃1
⋮

𝑃𝑁−2
𝑃𝑁−1}

 
 

 
 

  (83b) 

The macroscale constitutive equation for momentum conservation is then (in vector-matrix format) 

{𝑯} = [𝑮]{𝑷}  (83c) 
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So the pressure can then be updated iteratively within each macroscale time step using 

{𝑷}𝑘+1 = [𝑮]−1
𝑘
{𝑯}𝑘  (84) 

 where 𝑘 is the current macroscale time step 

The nodal pressures are forced to be at least equal to the inlet pressure to ensure that there is no 

backflow during diastole. 

𝑃𝐼 = 𝑃𝐼𝑁     𝑖𝑓 𝑃𝐼 < 𝑃𝐼𝑁  (85) 

The pressure is considered converged when the L2-error of the pressure (change in pressure 

between successive iterations) decreases to below 10−2 

err𝑃 =
‖𝑷𝑘+1−𝑷𝑘‖

‖𝑷𝑘+1‖
< 10−2  (86) 

Once this convergence criterion is reached, the model progresses to the following macroscale time 

step, with a new flow rate calculated from the inlet RVE (due to the different position in the time-

dependence of intrinsic contraction). The boundary conditions of the inlet RVE are not changed, but 

the network inflow is updated as a result. The macroscale solution algorithm flowchart is included as 

Figure 44. 
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Figure 44: Solution algorithm for the macroscale homogenisation. The red box indicates calling the unmodified RVE function 
with the solution algorithm as used previously and green boxes represent calling the compliance RVE (algorithm in Figure 
43). 

 

Symbol Description Value [units] 

𝑇0  Start time for macroscale 24.5 [s] 

𝑇𝐹  End time for macroscale 28.0 [s] 

∆𝑇  Macroscale time step 0.25 [s] 

𝑁  Number of macroscale elements 5 

𝑛  Number of lymphangions per RVE 5 

𝐿  Length of the macroscale domain 7.5 [cm] (equivalent to 25 
lymphangions in series) 

𝑃𝐼𝑁  Inlet pressure boundary condition 5 [cmH2O] 

𝑃𝑂𝑈𝑇  Outlet pressure boundary 
condition 

8 [cmH2O] 

𝑃𝐸𝑋𝑇  External pressure 2 [cmH2O] (unless otherwise 
specified) 
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4.3. Results 
Under reference conditions of inlet pressure 5 cmH2O, outlet pressure 8 cmH2O and external 

pressure 2 cmH2O, the homogenised diameter and pressure both increase with inflow (Figure 

45c,e). This is different from the results of a direct simulation of a 25-lymphangion chain in the 

lymphangion model (essentially a long inlet RVE) under the same pressure conditions that shows a 

decrease in diameter as occurs in vivo. The increasing diameter from the homogenised model is 

because the single peak flow from the inlet pressure RVE (Figure 45a) overwhelms the intrinsic 

contractions of the compliance RVE lymphangions. The homogenised model contains a single peak in 

flow because the flow through the outlet valve of the inlet RVE is prescribed to every RVE in the 

homogenised model, so there is no second peak and no suction pressure (minimum pressure is 

enforced to be at least the inlet pressure). The direct simulation, however, shows two peaks in flow 

through each of the internal valves (i.e. not the inlet or outlet valve) with the second peak 

corresponding to a decrease in the pressure along the chain. The homogenised pressure during 

diastole is constant at the inlet boundary condition along the macroscale except in the final element 

which has an increased value of 6.5 cmH2O in order to meet the outlet pressure boundary 

condition. The direct model, however, has a diastolic pressure decrease of 0.76 cmH2O along the 

chain (Figure 45d). At peak flow, the homogenised pressure of course decreases along the 

macroscale (12.9 cmH2O in the first macroscale element to 8.6 cmH2O in the final element). This is 

to ensure that the flow is constant through all RVEs (as prescribed by the macroscale mass 

conservation) as the diameter along the chain varies by only 1.5% at this time, meaning that the 

resistance to flow varies little (Figure 45c). The diastolic diameter of the direct model is significantly 

greater than that of the homogenised model (average along the chain of 181.0 μm in direct model 

and 175.8 μm in the homogenised model), see Figure 45e. This is because of the suction-based 

filling in the direct model that is absent in the homogenised model causes more fluid uptake. For the 

cases run here, the direct model took approximately 4 minutes whilst the homogenised model took 
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approximately 5 hours on a laptop with an AMD Ryzen 7 3700U processor (quad core 2.3GHz per 

core) and 8GB of RAM. 

 

Figure 45: Panel of plots comparing the time-dependence of results from the homogenised model and a direct pressure 
boundary condition lymphangion chain (long inlet RVE) of 25 lymphangions under the same pressure conditions (inlet 5 
cmH2O, outlet 8 cmH2O and external 2 cmH2O). (a) shows the flow through the homogenised network (b) shows the flow 
through several valves in the direct simulation (c) shows the diameter of the homogenised network (d) shows the diameter 
of lymphangions in the direct simulation (e) shows the pressure in the homogenised model and (f) the diameter of some 
lymphangions in the direct simulation 

Increasing external pressure at the inlet from 2 cmH2O (Figure 46a,b) to 5 cmH2O (Figure 46c,d) 

caused reduced average flow through the network (3 μL/hr compared to 18 μL/hr). This is because 

the inlet lymphangions had reduced transmural pressure (first macroscale element 0.28 cmH2O for 

5 cmH2O and 0.30 cmH2O for 5 cmH2O to 2 cmH2O compared to 3 cmH2O for 2 cmH2O and 

2.7 cmH2O for 2 cmH2O to 5 cmH2O) as shown in Figure 46f, resulting in a smaller diameter (first 

macroscale element 78 μm for 5 cmH2O and 79 μm for 5 cmH2O to 2 cmH2O compared to 173 μm 

for 2 cmH2O and 172 μm for 2 cmH2O to 5 cmH2O) so there was a smaller volume of lymph 
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available to pump (see Figure 46e). Because of the increase in internal pressure along the network, 

transmural pressure is not a mirror image for the increasing and decreasing gradients in external 

pressure, causing the diameter to not be a mirror image. 

 

Figure 46: Panel of plots showing the effects of varying external pressure in the homogenised model for a single vessel 25 
lymphangions long with an inlet pressure of 5 cmH2O, outlet pressure of 8 cmH2O and external pressure of 2 cmH2O. (a-d) 
show the time-dependent network flow (e) shows the variation of diastolic diameter along the macroscale and (f) shows the 
variation of diastolic transmural pressure along the macroscale. In (e) and (f) red circles show the position of nodes and blue 
circles the positions of macroscale element midpoints. 

The flow through the network increases linearly with the parallel number of vessels at the inlet 

(Figure 47a) because the pressure conditions are the same, so the inlet RVE produces the same 

amount of flow (18 μL/hr), and then is summed over the parallel number of vessels. The pressure 

curves during contraction for converging networks become concave (Figure 47b,d). This is because 

there is consistent flow along the network and the total cross-sectional area along the chain 

decreases (due to the decreasing number of vessels in parallel), increasing the resistance to flow so 

more of a pressure drop is required to produce the same flow in more downstream elements. There 
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is only a very slight difference in diameter with more parallel vessels (the maximum diameter in the 

first macroscale element increased from 185 μm with a single vessel to 186 μm for 5 parallel inlet 

vessels and 187 μm for 10 parallel inlet vessels) (see Figure 47e-g) because the lymphangions are in 

the very stiff region of the passive tube law, causing the lymphangions to be unable to reduce their 

resistance. The increased pressure difference required for downstream elements meant that the 

highest pressure in the first element increased (12.9 cmH2O for a single vessel to 16.5 cmH2O for 5 

parallel inlet vessels and 18.2 cmH2O for 10 parallel inlet vessels). 

 

Figure 47: Panel of plots showing the effects of varying the parallel number of vessels at the inlet of the network 25 
lymphangions long. Pressure conditions are kept constant with an inlet of 5 cmH2O, outlet of 8 cmH2O, and external of 2 
cmH2O. (a) shows the time-dependence of network flow which scales linearly with the parallel number of vessels (b-d) show 
the profiles of pressure along the macroscale at different time points and (e-g) show the diameter profiles along the 
macroscale at different time points. 

The effects of external pressure on a converging network of lymphatic vessels (Figure 48) are similar 

to those on a single vessel. As discussed in the results from varying the parallel number of vessels at 

the inlet, the flow has increased proportionally so for each set of external pressure conditions, so the 

flow here is 10 times the flow for a single vessel under the same pressure conditions. The diastolic 
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diameter for inlet vessels again decreased with higher external pressure at the inlet (first macroscale 

element 71 μm for 5 cmH2O and 79 μm for 5 cmH2O to 2 cmH2O compared to 173 μm for 2 

cmH2O and 172 μm for 2 cmH2O to 5 cmH2O) due to a smaller diastolic transmural pressure (first 

macroscale element 0.0 cmH2O for 5 cmH2O and 0.3 cmH2O for 5 cmH2O to 2 cmH2O compared 

to 3 cmH2O for 2 cmH2O and 2.7 cmH2O for 2 cmH2O to 5 cmH2O). 

 

Figure 48: Panel of plots showing the effects of varying the external pressure for a network 25 lymphangions long 
converging from 10 parallel vessels at the inlet to a single vessel at the outlet with an inlet pressure of 5 cmH2O and outlet 
pressure of 8 cmH2O. (a-d) show the time-dependence of flow through the network (e) shows the variation of diastolic 
diameter along the macroscale and (f) shows the variation of diastolic transmural pressure along the macroscale. In (e) and 
(f) red circles show the position of nodes and blue circles the positions of macroscale element midpoints. 

4.4. Discussion 
One of the key functions of the lymphatic vessels is to maintain fluid homeostasis, which can 

breakdown to result in lymphoedema. In this chapter I have covered our progress in developing a 

model of large lymphatic networks that can represent multiple different geometries without re-

deriving the model for each change of network geometry. The motivation behind developing such a 

model is that the small functional elements of the lymphatic system (lymphangions) interact in very 

large networks and that lymphoedema occurs on the network scale. Management/treatment 
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strategies for lymphoedema such as external pressure modulation also work at the network scale. 

This means that to better understand lymphoedema and improve management/treatments we need 

to model the interaction of large networks of lymphangions. A computational model is warranted as 

it is not feasible to remove and cannulate such large networks. 

The model in its current form does not reflect the actuality of lymphatic networks. Prescription of 

the same inflow to each RVE does not reflect the in vivo conditions where the outflow from each 

lymphangion forms the inflow for the following lymphangion, so future developments should use 

the more accurate mass conservation that accounts for different volume changes between RVEs as 

considered in the lymphangion model. The issue with this is deciding which condition to include for 

each macroscale time step’s convergence. As a result of prescribing the same inflow to each RVE, the 

homogenised model gives a diameter increase during the intrinsic contractions of lymphatic muscle 

which is not the case observed in vivo. The prescription of consistent flow throughout the network 

means that, during contraction, the pressure must decrease along the chain after the first RVE. 

Effectively, the entry RVE is providing the input flow and the other RVEs are just dynamic resistors 

that contribute no pumping. Instead, the flow from the entry RVE should input into the first 

macroscale element’s RVE, and the output from each RVE should be the input for the adjacent 

downstream RVE with the macroscale mass conservation adjusted to allow for temporary storage of 

lymph in RVEs (i.e. include a volume change in the macroscale mass conservation as in the 

microscale conservation). The homogenised model does not capture the suction-based refilling 

characteristic of lymphatic function due to the prescription of a single flow peak, neglecting the 

suction-based refilling peak. Flow through the outlet valve on the inlet RVE does not produce a two-

peak flow as occurs in lymphangions due to lymph expulsion during contraction followed by refilling 

with suction. This is a model limitation that could potentially be overcome by returning the flow 

through the penultimate valve. Preventing the macroscale pressure from reducing below the inlet 

boundary condition also prevents the model from capturing the important characteristic of suction-

based refilling. The use of an RVE outside of the macroscale domain without any variations in the 
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outlet pressure condition is not particularly physiological, so it may be useful to move this RVE into 

the first macroscale element. The length scales considered are only a few orders of magnitude, so it 

is also suggested to transition to a second-order homogenisation. The homogenised model took 

longer than the direct model in the reference case presented here because the network is relatively 

short and we are simulating all lymphangions at the microscale to characterise the model under 

conditions where the results will be most similar to the direct model. At longer network scales 

(hundreds to thousands of lymphangions) where the homogenised model is sampling the microscale 

as in its final intended use, the direct simulation will take significantly longer. For example, the 

simulations for 25 lymphangions both took around 5 hours when the homogenised model used 25 

lymphangions in 5 RVEs. These simulations, however, were run without any parallelisation and the 

time taken will reduce when this is implemented. A key development will be to update the model 

such that the resulting flow out of each RVE forms the inflow for the following RVE (the reason for 

implementing the compliance unit). 

Model results obtained so far show that increased external pressure at the inlet reduces flow which 

is consistent with the results from previous publications (Jamalian et al., 2016, Jamalian et al., 2013). 

This implies that increased external pressure as occurs in the commonly used compression bandage 

treatment for lymphoedema can cause decreased flow within the lymphatic vessels. Compression 

bandages can still work, however, because the lymphatics are not the only fluid compartment, so 

inducing pressure gradients can cause flow through the interstitium or alter the flow of plasma out 

of blood vessels to reduce interstitial fluid accumulation. There are also devices that apply varying 

external pressure to the arm. The model predicts a different pressure shape between single vessels 

and converging networks. This is likely the case, but the limitations of the model mean that the 

actual pressure profiles predicted are likely not correct. 

This model is intended to represent the entire lymphatic vasculature, which would require 

representation of the lymph nodes. Lymph nodes provide significant resistance to flow (Jafarnejad et 
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al., 2015), so a resistance unit should be included. There is also fluid exchange in the lymph nodes 

from the lymphatics directly into the blood (Jafarnejad et al., 2015), indicating the applicability of a 

point sink or source. 

Other potential updates include diameter-dependent effects on the passive tube law and diameter-

dependence of intrinsic force because of increased vessel diameters with progression through the 

network. The feedback models developed by Moore Jr and Bertram for shear- and transmural-

pressure could also be incorporated to investigate the effects of local regulation on the overall 

network (Bertram et al., 2019, Bertram et al., 2018, Bertram et al., 2017).  
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CHAPTER 5 – CONCLUSIONS AND FUTURE WORK 

5.1. Conclusions 
The lymphatic vasculature has a major role in many physiologic functions including maintaining fluid 

homeostasis, immunology, cancer, and obesity, among others, but is understudied in comparison to 

the blood vasculature. Lymphatic vessels return interstitial fluid to the venous system by localised 

contractions of vessel segments bounded by valves, called lymphangions. Deficient lymphatic 

pumping can result in a chronic debilitating condition called lymphoedema involving the 

accumulation of fluid and proteins in the interstititum. The effectiveness of treatments for 

lymphoedema is limited and this can be attributed to a lack of understanding of the biomechanics of 

lymphatic pumping, including the contractility of specialised muscle lining the vessels. This muscle is 

called lymphatic muscle and exhibits both phasic and tonic contractions. In vivo and in vitro 

experiments performed on lymphangions are limited in that they cannot simultaneously measure 

pressure, diameter, and flow. This motivated the previous development of a lumped parameter 

model of lymphangion contractions by the research group. This thesis covers the development of 

two multiscale computational models to improve our understanding of lymphatic pumping across 

scales. 

The first model examined the subcellular mechanisms of force generation in lymphatic muscle, and 

their effects on lymphangion-scale pumping. This model combines the sliding filament model of 

Huxley (Huxley, 1957) with its adaptation for smooth muscle (Mijailovich et al., 2000, Fredberg et al., 

1999). These models were then structurally arranged with passive viscoelastic elements to model 

the contractility of lymphatic muscle cells. Multiple structural organisations were trialled but only 

one provided physiologic results. The muscle model was then incorporated into the group’s existing 

lymphangion model for comparison with experimental results. This was the first model to study the 

mechanical and energetic aspects of lymphatic contraction at the subcellular scale. I showed that the 

model produces results that are qualitatively and quantitatively similar to experimental results from 
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rat mesenteric lymphangions whilst additionally estimating the thermodynamic efficiency of cross-

bridge cycling. I then investigated the effects of varying pressure conditions on efficiency, predicting 

a decrease in lymphatic efficiency with low adverse pressure differences in the absence of 

mechanical feedback to excitation-contraction coupling. The maximum reported efficiency was 

approximately 35%, in the upper range reported from a range of muscle types. Finally, I investigated 

the effect of calcium oscillations with varying amplitudes and frequencies. The results show that, in 

the range of values tested, the oscillations can increase lymphangion outflow by up to 40%. The key 

advances of this model compared to the current state-of-the-art and the existing lumped-parameter 

lymphangion model are the prediction of energy aspects which will hopefully allow further insight 

into the reasoning behind lymphatic regulation and act as a step towards understanding the 

signalling pathways involved to possibly intervene and promote lymph flow. Energetics is also the 

other of the two key aspects of muscle function (besides mechanical as has already been 

investigated) and it is hoped that this model will spark increased interest in understanding this. This 

model is also a more mechanistic and detailed representation of the subcellular mechanisms of 

lymphatic muscle contraction and progresses towards physiologic modelling of lymphatic system 

function. The coupled muscle-lymphangion model is more sensitive to transmural pressure than was 

previously predicted in the prescribed contraction model, suggesting even more heavily that 

treatments for lymphedema should carefully consider the external pressure around lymphatics and 

its effect on the active pumping capability. A sensitivity analysis was also performed, finding that the 

muscle model is sensitive to calcium binding properties of troponin, the detachment of phasic heads 

with negative displacement, the peak calcium concentration, and the number of LMCs around the 

circumference. This has led to the suggestion for future experimental studies to gain more accurate 

values for these parameters, as covered in the following section. 

The second model examined the interaction of lymphangions in a large network. A previous model 

of smaller idealised lymphatic networks based on the lumped parameter lymphangion model has 

been developed in the group (Jamalian et al., 2016). It was found that the lymphangion model was 
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prohibitively complex for limb-scale or larger lymphatic networks. Our new model uses 

computational homogenisation to reduce computational intensity by not modelling every 

lymphangion in the network. In the homogenised model we do not have to model the details of flow 

at junctions. The homogenised model also means that we do not have to re-derive the model 

equations for every change in geometry. I then compared the results from the homogenised model 

to a direct simulation of a chain of lymphangions. These results showed different behaviour for the 

homogenised and direct simulations, primarily in the fact that the homogenised model shows 

diameter increases during contraction whilst the direct simulation shows a diameter decrease. This 

is due to the prescription of the same flow at every RVE with mass conservation assuming that the 

spatial gradient of macroscale flow is zero. The homogenised model also doesn’t capture the 

suction-based refilling. We cover suggested future changes to the model that will correct these 

deviations from true lymphatic function in the following section. Comparing the timing for the 

homogenised model and direct simulation showed that, in the case run here, the homogenised 

model took longer. Simulating longer networks, however, will cause the direct simulation to take 

longer than the homogenised model. I studied the effects of varying the external pressure, showing 

that high external pressure at the network inlet can collapse the upstream lymphangions, and that 

this disruption of individual lymphangions reduces the overall flow through the network. I also 

studied the effect of network branching, showing that the pressure profile along the network is 

different for single vessel and converging vessels with a linear decrease for a single vessel and a 

concave shape for a converging network. 

5.2. Future work 
In the muscle model, the CE forces scale with the number of myosin heads and the number of 

parallel rows of CEs. There are some images in the literature that could be used to estimate the 

number of CE rows (for example in (Muthuchamy et al., 2003)), but there is still significant 

uncertainty. 
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The muscle model has suggested multiple useful experiments yet to be performed. Obtaining more 

up-to-date recordings of the dimensional (rather than expression as a ratio of Fura-2 intensities as in 

(Souza-Smith et al., 2011)) calcium concentration in lymphatic muscle would be beneficial. Whilst 

there have already been some studies (for example (Souza-Smith et al., 2011, Shirasawa and Benoit, 

2003)), further investigation into the response of calcium concentration and calcium sensitisation to 

variations in shear and transmural pressure would be beneficial in separating the regulation of 

lymphatic muscle into changes in calcium concentration and in calcium binding, especially since the 

binding properties of troponin and the peak calcium concentration were both shown to be 

important parameters in muscle function. This sensitivity to troponin also prompts further studies 

into the isoform(s) of troponin present. The increased sensitivity of lymphatics to transmural 

pressure shown by the muscle model compared to the prescribed contraction model suggests 

experiments where the external pressure is varied in active and pharmacologically reduced 

activation lymphangions to test whether the inhibition of muscle allows more consistent flow over a 

wider range of external pressures with potential implications in treatments for patients with 

oedema. Such experiments may be performed with the use of specific inhibitors or genetic 

knockouts of the cardiac 𝛽-myosin/troponin or SMB isoforms/calmodulin. Examples include the 

knockout of cardiac troponin as published by Huang and colleagues (Huang et al., 1999) or molecules 

that competitively bind to troponin, preventing the binding of calcium ions and keeping the actin 

binding sites blocked (see (Audran et al., 2013) for more information on calmodulin blockers) to 

isolate the active phasic and tonic components of lymphatic muscle. The suggested presence of titin 

and smitin should be investigated further using quantitative assays similar to (Muthuchamy et al., 

2003) including determining the isoform(s) present and more detailed analysis of the relative 

concentrations of 𝛽-cardiac and SMB isoforms would provide additional clarity on the subcellular 

contractile element structure. It is suggested that inhibitors and activators of STDs used for 

investigation in smooth muscle (for example inhibitors or blockers of inositol 1,4,5-triphosphate 

receptors or calcium-activated chloride channels (von der Weid et al., 2008)) be applied to 
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lymphatics as this model shows that calcium oscillations may significantly affect the flow generated. 

Finally, the addition of energetics estimates in this model require further experimental investigation 

so that they can be validated. Such investigations could potentially be performed by measuring the 

concentration of inorganic phosphate through, for example, fluorescent protein MDCC-PBP (He et 

al., 2000) and heat generation. Investigating the energetics variations under various pressure and 

flow conditions may allow better understanding of the reasoning for regulation of lymphatic muscle 

which would be useful for developing treatments for lymphedema. 

Future developments to the muscle model will include incorporating mechanical feedback through 

shear- and pressure-dependent variations in excitation-contraction coupling. The model will include 

shear-dependent decreases in calcium concentration (through nitric oxide) and transmural pressure-

dependent increases in the calcium concentration and calcium sensitivity. This is motivated by the 

well-documented effects of shear- and transmural pressure-dependent effects on lymphatic 

pumping. The major anticipated insight is how the regulatory feedback optimises the energy 

efficiency of lymphatic muscle under different mechanical conditions, primarily a reduction in 

efficiency decrease at lower adverse pressure differences. Studying the effects of shear regulation 

on average flow and efficiency will also yield some interesting insights. 

Additional potential developments may be to include overlap-dependence of the muscle contraction 

whereby the number of myosin heads that are available for attachment varies with muscle length 

due to the overlapping of filaments varying the number of myosin heads with actin sites in 

attachment range. This is motivated by the documented effects of overlap on force generation in all 

muscles, and additionally the potential importance of length adaptation in optimising flow over a 

large range of lymphangion diameters. The third development may be to include additional rates or 

head states to incorporate the weak ATP coupling that has been observed experimentally in striated 

muscles for improved energetics estimates. Experimental studies on lymphatic muscle energetics 

such as measuring ATP consumption and heat generation would be a very useful development. The 
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model could also be used to simulate lymphangion chains for improved correlation with some 

cannulated experiments. 

The two models covered in this thesis could be combined such that the homogenised model includes 

a mechanistic basis for contractions. This would involve a simplification of the muscle model by using 

distribution-moment approximations in both types of contractile element based on previous 

derivations (Rampadarath and Donovan, 2018, Zahalak, 1981). 

There are several potential developments of the homogenised model, though first the model needs 

to be updated to capture physiologic lymphangion characteristics (decreased diameter with 

contraction and suction-based refilling). The homogenised model is limited through the prescription 

of identical flow to all RVEs at every macroscale time step. The first step in future development of 

the homogenised model will be to use the outflow from each RVE as the inflow boundary condition 

for the following RVE. This will also involve changing the macroscale conservation of mass to allow 

for temporary storage of flow in RVEs by including a term for changes in lymphangion volume as is 

used at the microscale. The average flow over a contraction cycle, however, needs to be consistent 

for all macroscale elements, potentially requiring an additional condition for model solution. This is 

expected to cause the homogenised model to reproduce the diameter reduction observed in vivo 

and in the direct simulation. Prescription of the flow through the final valve means that there is only 

one flow peak which does not capture the suction-based refilling of lymphatics. One potential 

method to rectify this is to use the flow through the penultimate valve. The capture of suction-based 

flow would also require the limit that macroscale pressure never decreases below the inlet pressure 

be removed. Additionally, the pressure boundary condition RVE could be moved into the first 

macroscale element so that it has an updating downstream pressure condition which reflects the in 

vivo case of the afterload of one lymphangion being the preload of the downstream lymphangion. 

Finally, the separation of scales between the macroscale and microscale is not that large (only a few 
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orders of magnitude) in our model, suggesting the transition to a second-order homogenisation 

method. 

This model is intended to model the entire lymphatic vasculature, which would require 

representation of the lymph nodes. Lymph nodes provide significant resistance to flow (Jafarnejad et 

al., 2015), so a resistance unit should be included. There is also fluid exchange in the lymph nodes 

from the lymphatics directly into the blood (Jafarnejad et al., 2015), indicating the applicability of a 

point sink or source. 

A source term could be included to provide a better representation of initial lymphatics, e.g. through 

space- and/or time-dependence of additional flow into the RVE. It has been shown that the suction 

effect created by collecting lymphatics can open the primary valves to allow fluid uptake from the 

interstitium into initial lymphatics (Jamalian et al., 2017), so a coupling between the source term and 

macroscale pressure could be warranted. We may additionally include diameter-dependent effects 

on the passive tube law because of increased vessel diameters with progression through the 

network. The feedback models developed by Moore Jr and Bertram for shear- and transmural-

pressure could also be incorporated to investigate the effects of local regulation on the overall 

network (Bertram et al., 2019, Bertram et al., 2018, Bertram et al., 2017).  
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APPENDIX 1 – MUSCLE MODEL 

Alternate CE arrangements (Original rate functions and values) 

Parallel CEs 

 
Figure 49: Diagram of an LMC with CEs in parallel with parallel spring and dashpot to model passive cell viscoelasticity. 𝑌𝑃 is 
the length of phasic CEs, 𝑁𝑃,𝑆𝑒𝑟𝑖𝑒𝑠 is the series number of phasic CEs, 𝑁𝑃,𝑅𝑜𝑤𝑠 is the parallel number of phasic CEs, 𝑌𝑇 is the 

length of tonic CEs, 𝑁𝑇,𝑆𝑒𝑟𝑖𝑒𝑠 is the series number of tonic CEs, 𝑁𝑇,𝑅𝑜𝑤𝑠 is the parallel number of tonic CEs, 𝐸𝐶𝑒𝑙𝑙 is the 

stiffness of the LMC, 𝜇𝐶𝑒𝑙𝑙  is the viscosity of the LMC, 𝐿𝐶𝑒𝑙𝑙 is the length of the LMC 

The total length of CEs must be the length of the LMC 

𝐿𝐶𝑒𝑙𝑙 = 𝑁𝑃,𝑆𝑒𝑟𝑖𝑒𝑠𝑌𝑃 +𝑁𝑇,𝑆𝑒𝑟𝑖𝑒𝑠𝑌𝑇  

The force of the cell is the sum of parallel contributions 

𝐹 = 𝑁𝑃,𝑅𝑜𝑤𝑠𝐹𝑃 +𝑁𝑇,𝑅𝑜𝑤𝑠𝐹𝑇 + 𝐸𝐶𝑒𝑙𝑙(𝐿𝐶𝑒𝑙𝑙 − 𝐿𝑟𝑒𝑓) + 𝜇𝐶𝑒𝑙𝑙
𝑑𝐿𝐶𝑒𝑙𝑙
𝑑𝑡

 

Series numbers of contractile elements per row were maintained (i.e. in series connection had 14 of 

either type in series, so here have 28 of one CE type in series). The total parallel number of CE rows 

had a phasic:tonic ratio of 50:50 with a total of 1e4 (i.e. 5e3 of either type). Other values were 

consistent with the reference results in Chapter 2. The results show that, during phasic contractions, 

 

𝑌𝑇  

𝑁𝑇,𝑅𝑜𝑤𝑠  

𝑁𝑇,𝑆𝑒𝑟𝑖𝑒𝑠  
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the tonic force resists contractions. This is because of the phasic CEs dragging tonic myosin heads to 

negative displacements. 

 
Figure 50: Panel of plots summarising the results for contractile elements in parallel. (A) is the diameter, (B) shows that the 
contractile elements have the same length (C) shows that the tonic force is negative during phasic contractions (D) shows 
the overall force from an LMC, (E) shows the pressure (F) shows the states of both valves and (G) shows the flow through 
valves 
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Series CEs phasic parallel spring, dashpot 

 
Figure 51: Diagram of an LMC with CEs in series. Phasic contractile elements have a spring and dashpot in parallel. The cell 
also has a spring and dashpot in parallel with contractile element rows to model passive cell viscoelasticity. 𝑌𝑃 is the length 
of phasic CEs, 𝑁𝑃,𝑆𝑒𝑟𝑖𝑒𝑠 is the series number of phasic CEs, 𝑁𝑃,𝑅𝑜𝑤𝑠 is the parallel number of phasic CEs, 𝑌𝑇 is the length of 

tonic CEs, 𝑁𝑇,𝑆𝑒𝑟𝑖𝑒𝑠 is the series number of tonic CEs, 𝑁𝑇,𝑅𝑜𝑤𝑠  is the parallel number of tonic CEs, 𝐸𝐶𝑒𝑙𝑙  is the stiffness of the 

LMC, 𝜇𝐶𝑒𝑙𝑙  is the viscosity of the LMC, 𝐿𝐶𝑒𝑙𝑙 is the length of the LMC 

The shortening velocity of phasic CEs is obtained by rearranging the series force balance 

𝑑𝑌𝑃
𝑑𝑡

= [𝐹𝑇𝑜𝑛𝑖𝑐,𝑖 − 𝐹𝑃ℎ𝑎𝑠𝑖𝑐,𝑖 − 𝐸𝑃(𝑁𝑃ℎ𝑎𝑠𝑖𝑐𝑌𝑃ℎ𝑎𝑠𝑖𝑐,𝑖 − 𝐿𝑃,𝑅𝑒𝑓)] (𝜇𝑃𝑁𝑃ℎ𝑎𝑠𝑖𝑐)⁄  

The shortening velocity of tonic CEs is obtained by rearranging and differentiating the series length 

balance 

𝑑𝑌𝑇
𝑑𝑡

=
𝑑𝐿𝐶𝑒𝑙𝑙 𝑑𝑡⁄ − 𝑁𝑃 𝑑𝑌𝑃 𝑑𝑡⁄

𝑁𝑇
 

The force from a single row of contractile elements is the force from CEs with the phasic spring and 

dashpot 

𝐹𝑅𝑜𝑤 = 𝐹𝑇 = 𝐹𝑃 + 𝐸𝑃𝑁𝑃𝑌𝑃 + 𝜇𝑃𝑁𝑃
𝑑𝑌𝑃
𝑑𝑡
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The force from an LMC is the sum of row forces with contributions from cell viscosity and elasticity 

𝐹 = 𝑃𝐹𝑅𝑜𝑤 + 𝐸𝐶𝑒𝑙𝑙(𝐿 − 𝐿𝑟𝑒𝑓) + 𝜇𝐶𝑒𝑙𝑙
𝑑𝐿𝐶𝑒𝑙𝑙
𝑑𝑡

 

In this model, the phasic spring was not strain-stiffening, instead the stiffness was maintained at a 

constant value of 0.0128 dyne/cm. The phasic dashpot viscosity had a value of 0.0128 dyne s/cm. 

The parallel number of CE rows was 1e4 in agreement with the total number for the parallel CEs 

model. All other values were the same as the reference results in Chapter 2. 

The results showed that there was no phasic contraction because the passive elements in parallel 

with the phasic contractile elements made it so that the row force was only the tonic force. This 

meant that the pressure variation was insufficient to exceed the outlet pressure, so the outlet valve 

didn’t open and there was negligible flow. 
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Figure 52: Panel of plots summarising results from a dashpot and spring in parallel with phasic CEs. (A) shows that there is 
negligible diameter change (B) shows that the shortening of phasic CEs causes an extension of tonic CEs (C) shows the 
phasic and tonic CE forces (D) shows the phasic CE, phasic spring, and phasic viscosity forces (E) shows the overall force 
from an LMC (F) shows the pressure without any suction for refilling and (G) shows that there is no complete opening or 
closing of valves. 
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Series CEs tonic parallel spring, dashpot 

 
Figure 53: Diagram showing an LMC with series connections of CEs. Tonic contractile elements have a spring and dashpot in 
parallel. The cell also has a spring and dashpot in parallel with contractile element rows to model the cell viscoelasticity. 𝑌𝑃 
is the length of phasic CEs, 𝑁𝑃,𝑆𝑒𝑟𝑖𝑒𝑠  is the series number of phasic CEs, 𝑁𝑃,𝑅𝑜𝑤𝑠 is the parallel number of phasic CEs, 𝑌𝑇 is 

the length of tonic CEs, 𝑁𝑇,𝑆𝑒𝑟𝑖𝑒𝑠  is the series number of tonic CEs, 𝑁𝑇,𝑅𝑜𝑤𝑠  is the parallel number of tonic CEs, 𝐸𝐶𝑒𝑙𝑙 is the 

stiffness of the LMC, 𝜇𝐶𝑒𝑙𝑙  is the viscosity of the LMC, 𝐿𝐶𝑒𝑙𝑙 is the length of the LMC 

𝑑𝑌𝑇
𝑑𝑡

= [𝐹𝑃ℎ𝑎𝑠𝑖𝑐,𝑖 − 𝐹𝑇𝑜𝑛𝑖𝑐,𝑖 − 𝐸𝑇(𝑁𝑇𝑜𝑛𝑖𝑐𝑌𝑇𝑜𝑛𝑖𝑐,𝑖 − 𝐿𝑇,𝑅𝑒𝑓)] (𝜇𝑇𝑁𝑇𝑜𝑛𝑖𝑐)⁄  

𝑑𝑌𝑃
𝑑𝑡

=
𝑑𝐿𝐶𝑒𝑙𝑙 𝑑𝑡⁄ − 𝑁𝑇 𝑑𝑌𝑇 𝑑𝑡⁄

𝑁𝑃
 

𝐹𝑅𝑜𝑤 = 𝐹𝑃 = 𝐹𝑇 + 𝐸𝑇𝑁𝑇𝑌𝑇 + 𝜇𝑇𝑁𝑇
𝑑𝑌𝑇
𝑑𝑡

 

𝐹 = 𝑃𝐹𝑅𝑜𝑤 + 𝐸𝐶𝑒𝑙𝑙(𝐿 − 𝐿𝑟𝑒𝑓) + 𝜇𝐶𝑒𝑙𝑙
𝑑𝐿𝐶𝑒𝑙𝑙
𝑑𝑡

 

In this model the tonic spring stiffness was maintained at a constant value of 0.0128 dyne/cm. The 

tonic dashpot viscosity had a value of 0.0128 dyne s/cm. The parallel number of CE rows was 1e4 in 

agreement with the total number for the parallel CEs model. All other values were the same as the 

reference results in Chapter 2. 
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The passive elements in parallel with tonic contractile elements now meant that the cell force was 

only dependent on phasic force, meaning that there was pumping but that tonic force could not 

constrict the lymphangion. 

 
Figure 54: Panel of plots summarising the results for a muscle cell with a spring and dashpot in parallel with tonic 
contractile elements. (A) shows the diameter (B) shows that the tonic CE length is virtually consistent compared to the 
phasic CE length (C) shows the CE forces (D) shows the tonic CE, tonic spring, and tonic dashpot forces (E) compares the row 
force with the effects of cell stiffness and viscosity (F) shows the pressure and (G) shows the flow rates 
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Original rate function (Before smoothed transition) 
The reference rates of (Huxley, 1957) were multiplied by various factors. All other values were 

maintained at the reference values used in Chapter 3. 

 
Figure 55: Panel of plots summarising the effect of varying the phasic attachment and detachment rate constants in the 
original Huxley rate functions. Results were obtained using the final cell model (phasic parallel spring, tonic parallel 
dashpot) with reference values other than phasic rates. (A) shows diameter (B) shows the force from phasic CEs (C) shows 
the force from CE rows (D) shows the force from an LMC (E) shows the inflow (F) shows the outflow (G) shows the pressure 
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Constant detachment for x>h (Before smoothed transition) 
The phasic rate functions originally used by Huxley (Huxley, 1957) were modified so that the 

detachment rate had a constant value as given in Chapter 3. 

 
Figure 56: Panel of plots summarising the effects of varying g1 in a modified phasic rate function with constant detachment 
(g1) for positive displacements greater than the powerstroke length without part sine smoothing. Results were obtained 
using the final cell model (phasic parallel spring, tonic parallel dashpot) with reference values other than g1. (A) shows 
diameter (B) shows the force from phasic CEs (C) shows the cell force (D) shows the pressure (E) shows the inflow rate and 
(F) shows the outflow rate 

Smoothed varying g1Hux (constant detachment for x>h) 
The transitions in rate functions were given by part sine rate functions as described in the Methods 

section (3.2.). 
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Figure 57: Panel of plots summarising the effects of varying g1 in a modified phasic rate function with constant detachment 
(g1) for positive displacements greater than the powerstroke length with part sine smoothing. Results were obtained using 
the final cell model (phasic parallel spring, tonic parallel dashpot) with reference values other than g1. (A) shows diameter 
(B) shows the force from phasic CEs (C) shows the cell force (D) shows the pressure (E) shows the inflow rate and (F) shows 
the outflow rate 

Cell viscoelasticity 
The viscosity and elasticity of the cell were co-varied, showing that increased stiffness caused 

greater contraction and delayed relaxation. The viscosity delayed both contraction and relaxation 

slightly. 



175 
 

 



176 
 

Figure 58: Panel of plots showing the effects of varying cell viscoelasticity. Results were obtained using the final cell model 
(phasic parallel spring, tonic parallel dashpot) with reference values other than cell viscoelasticity. 

Time step check 
It was verified that halving the time step used by the model did not noticeably alter the model 

results. 

 

Figure 59: Panel of plots summarising the effects of halving the time step in simulations under reference conditions. 

Table 6: Effects of halving the time step on key model outputs 

Time step AMP [um] EF [%] Qbar [mL/hr] 

Original 41.23 43.83 0.0201 

Half 41.23 43.83 0.0201 

% difference -7.28e-04 0.003 0.0058 
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Periodicity conditions check 
The simulation for reference conditions was initially run until periodicity conditions were met and 

was then run for an additional five cycles to check that there was negligible change. The main model 

outputs of diameter, pressure, and flow did not change (Figure 38 A-D). There is still some variation 

in tonic CE force and length but they are small (Figure 38 E,F see axes). 

 
Figure 60: Panel of plots verifying that the periodicity conditions ensure that the results have reached periodicity. (A) shows 
that the diameter change is negligible (B) shows that the pressure change is negligible (C) shows that the change in inflow is 
negligible (D) shows that the outflow rate is negligible (E) shows that there is some variation in tonic CE force and (F) shows 
that there is some variation in tonic CE length 

Time step AMP [um] EF [%] Qbar [mL/hr] 

Original 41.2339 43.8320 0.0201 

Half 41.3529 43.9132 0.0201 

% difference -0.2886 -0.1852 0 
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Results from MacCormack predictor corrector 
For each head state in the phasic and tonic models 𝑛 the displacement-distribution of heads is 

updated using a prediction step 

𝑛𝑝(𝑗) = {
𝑛(𝑗) − 𝑉(𝑑𝑡 𝑑𝑥⁄ )[𝑛(𝑗) − 𝑛(𝑖 + 1)] + 𝑆(𝑗)𝑛(𝑗)

𝑛(𝑗) − 𝑉(𝑑𝑡 𝑑𝑥⁄ )[𝑛(𝑗 − 1) − 𝑛(𝑗)] + 𝑆(𝑗)𝑛(𝑗)
 

 where 𝑛𝑝 is a temporary variable used in the update, 𝑉 is the shortening velocity, 𝑑𝑡 is the 

time step, 𝑑𝑥 is the displacement discretisation and 𝑆 is the source/sink term (the transition rates) 

and a correction step 

𝑛(𝑗) = {

𝑛(𝑗) + 𝑛𝑝(𝑗)

2
−
1

2

𝑑𝑡

𝑑𝑥
𝑉[𝑛𝑝(𝑗) − 𝑛𝑝(𝑗 + 1)] + 0.5𝑆(𝑗)𝑛(𝑗)

𝑛(𝑗) + 𝑛𝑝(𝑗)

2
−
1

2

𝑑𝑡

𝑑𝑥
𝑉[𝑛𝑝(𝑗 − 1) − 𝑛𝑝(𝑗)] + 0.5𝑆(𝑗)𝑛(𝑗)

 

With 𝑛 now updated to a new value 

The results obtained using this MacCormack scheme under conditions corresponding to the 

reference results are very similar to those obtained using the second order Godunov scheme. 

 

Figure 61: Panel of plots comparing model results under reference conditions when obtained with the second order 
Godunov solver and obtained with the MacCormack predictor-corrector (A) compares diameter (B) compares the mid-
lymphangion pressure (C) compares the phasic CE force and (D) compares the tonic CE force 
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Time step AMP [um] EF [%] Qbar [mL/hr] 

Original 41.2339 43.8320 0.0201 

Half 41.2267 43.8254 0.0201 

% difference 0.0175 0.0151 0.0114 

 

Muscle cell energy balance 
The balance of work done, energy stored and energy lost for a muscle cell was calculated for the 

reference results from Chapter 2. 

Phasic CE work done + Tonic CE work done – Tonic dashpot loss – Cell dashpot loss + Phasic spring 

storage input + Cell spring storage input = Cell work done 

 

Phasic CE work rate 

𝑑𝑊𝑃

𝑑𝑡
= 𝑃𝐹𝑃 ×−𝑁𝑃

𝑑𝑌𝑃
𝑑𝑡

 

 where the minus sign is included because the muscle does work to reduce the CE length 

 

Tonic CE work rate 

𝑑𝑊𝑇

𝑑𝑡
= 𝑃𝐹𝑇 ×−𝑁𝑇

𝑑𝑌𝑇
𝑑𝑡

 

Cell work rate 

𝑑𝑊

𝑑𝑡
= 𝐹 × −

𝑑𝐿

𝑑𝑡
 

Phasic spring storage rate 

𝑑𝑆𝑡𝑜𝑟𝑒𝑃
𝑑𝑡

= 𝑃𝐸𝑃𝑁𝑃𝑌𝑃 × 𝑁𝑃
𝑑𝑌𝑃
𝑑𝑡

 

Tonic dashpot loss rate 
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𝑑𝐿𝑜𝑠𝑠𝑇
𝑑𝑡

= 𝑃𝜇𝑇𝑁𝑇
𝑑𝑌𝑇
𝑑𝑡

× 𝑁𝑇
𝑑𝑌𝑇
𝑑𝑡

 

Cell spring storage rate 

𝑑𝑆𝑡𝑜𝑟𝑒

𝑑𝑡
= 𝜇𝐶𝑒𝑙𝑙

𝑑𝐿

𝑑𝑡
×
𝑑𝐿

𝑑𝑡
 

Cell dashpot loss rate 

𝑑𝐿𝑜𝑠𝑠

𝑑𝑡
= 𝐸𝐶𝑒𝑙𝑙𝐿 ×

𝑑𝐿

𝑑𝑡
 

The changes in spring storages were calculated by initialising the value to zero, and then energy 

released from springs was calculated as the decrease in stored energy (i.e. changing the sign). 

 
Figure 62: Energetics of an LMC. (A) Time-dependent rates of energy level changes in each form within a muscle cell (note 
that negative values indicate energy lost as heat/work done on the muscle and positive values indicate work done by the 
muscle/energy input into pumping). (B) Energy balance showing that the work done by the cell is the sum of work done by 
CEs, energy released from the spring stores and (negative) energy lost to viscosity. 

Displacement discretisation insensitivity 
Decreasing the displacement discretization from ℎ/20 to ℎ/40 had a negligible effect on the results 

under reference conditions. Average flow differed between the two discretisations by only 0.01%. 

The efficiency of muscle was 9.3% and the efficiency of transfer of muscle work to lymph was 

30.2% in both cases. 
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Figure 63: Panel of plots showing that halving the displacement discretization had a negligible effect on the main output 
parameters of the model 

Time step AMP [um] EF [%] Qbar [mL/hr] 

Original 41.2339 43.8320 0.0201 

Half 41.2300 43.8212 0.0201 

% difference 0.0095 0.0246 0.0107 

 

One-at-a-time sensitivity analysis results 
Table 7: Table of results showing the sensitivity measures obtained for each parameter from the one-at-a-time sensitivity 
analysis. Rows in bold indicate the variables considered sensitive and included in the Latin hypercube analysis 

Parameter Input values 𝑺 

𝑎2 [s
−6] 12.085             48.34                120.85 0.1909    0.0844    0.0450 

𝑎𝑃 [dyne/cm] 5.1282e-24     1.0256e-22      5.1282e-22 -0.0188   -0.0061   -0.0024 

𝑏2 [s
−6] 0.2639             1.0556              2.639 -0.3899   -0.1839   -0.1010 

𝑏𝑃 [1/cm] 73.8382           738.3821 -0.0274   -0.0301 

𝑪𝒂𝒂𝒎𝒑 [𝐌] 1.2e-7              4.8e-7               1.2e-6 2.0067    0.5065    0.0003 
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𝐶𝑎𝑑  [M] 7e-8                 2.8e-7               7.0e-7 0.6196   -1.0000   -0.2500 

𝐸𝐶𝑒𝑙𝑙  [dyne/cm] 7.5                   150                    750 0.0594   -0.6729   -0.1032 

𝑓1 [1/s] 62                    1240                  6200 0.6050   -0.6009   -0.1061 

𝐾3,1 [1/s] 0.088               1.76                   8.80 1.0e-04 * 
0.3037   -0.3800   -0.0467 

𝑔1 [1/s] 5                      100                     500 1.0910   -0.0231   -0.0186 

𝐾7,1 [1/s] 0.01                 0.2                      1 1.0e-03 * 
    0.0444   -0.1320   -0.0433 

𝒈𝟐 [1/s] 21                    420                     2100 2.4213    0.4602    0.0142 

𝐾4,1 [1/s] 0.022              0.44                    2.2 1.0e-04 * 
0.4355   -0.3182   -0.0313 

ℎ [cm] 7.8e-7            3.12e-6               7.8e-6 1.0e-05 * 
-0.4358   -0.5938   -0.7047 

𝐾1 [1/s] 0.035             0.7                       3.5 -0.0134    0.0121    0.0013 

𝐾2 [1/s] 0.01               0.2                       1 -0.0134    0.0121    0.0013 

𝐾𝐻𝐻𝑀 [dyne/cm] 0.18               3.6                       18 1.0e-04 * 
0.2936   -0.4351   -0.1296 

𝐾𝐻𝑢𝑥 [dyne/cm] 0.04               0.8                       4 0.6402   -0.6034   -0.1064 

𝑚 [] 3                     12                        30 -0.9598   -0.3994   -0.1799 

𝜇𝐶𝑒𝑙𝑙  [dyne s/cm] 5                     10                        25 -0.0258   -0.0256   -0.0252 

𝜇𝑇 [dyne s/cm] 1                     20                        100 -0.0122   -0.0008   -0.0002 

𝑵𝑪𝒆𝒍𝒍 [] 3                     5                          10 3.9802    0.7651    0.6196 

𝑁𝑇𝑜𝑛𝑖𝑐  [] 7                     28                        50 0.0320    0.0151    0.0094 

𝑁𝑃ℎ𝑎𝑠𝑖𝑐  [] 7                     28                        50 0.8798    0.6108    0.3853 

𝒄𝟎.𝟓,𝑪𝒂𝑴 [𝐌] 4e-6               20e-6 1.0e-04 * 
0.2782    0.0389 

𝒏𝒎𝑪𝒂𝑴 [] 0.5                 1                          2 1.0e-03 * 
0.7910    0.2688   -0.0802 

𝑁𝑅𝑜𝑤𝑠 [] 1.8e3            3.6e4                   1.8e5 0.6141   -0.6034   -0.1064 

𝑁𝑢𝑚𝑃 [] 450               9000                    45000 0.6402   -0.6034   -0.1064 

𝑁𝑢𝑚𝑇 [] 100               2000                    10000 -0.0220   -0.0071   -0.0026 

𝜌 [1/cm] 6e4               1.2e6                   6e6 0.6402   -0.6034   -0.1064 

 

Distribution-moment approximation 
The displacement-distribution of attached heads (𝑛) is assumed to be Gaussian 

𝑛 = 𝑀0exp(−
(𝑥 − 𝑝)2

2𝑞2
) 

𝑑𝑀0
𝑑𝑡

= 𝑏0 − 𝐹0(𝑀0,𝑀1,𝑀2) 

𝑑𝑀1
𝑑𝑡

= 𝑏1 − 𝐹1(𝑀0,𝑀1,𝑀2) − 𝑣𝑀0 

𝑑𝑀2
𝑑𝑡

= 𝑏2 − 𝐹2(𝑀0,𝑀1,𝑀2) − 2𝑣𝑀1 
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 where 𝑀0,𝑀1,𝑀2 are the zeroth, first and second moments of attached head distribution 
over displacement, initialised to 0.00001, 0.00001 and 0.00002, respectively 
 

𝑏0 = ∫ 𝑆𝑇𝑟𝑜𝑝𝑓1𝑥 𝑑𝑥
𝑥1

𝑥0

 

𝑏1 = ∫ 𝑆𝑇𝑟𝑜𝑝𝑓1𝑥
2 𝑑𝑥

𝑥1

𝑥0

 

𝑏2 = ∫ 𝑆𝑇𝑟𝑜𝑝𝑓1𝑥
3 𝑑𝑥

𝑥1

𝑥0

 

𝐹0 =
𝑀0

√2𝜋𝑞
[∫ 𝑔2exp(−

(𝑥 − 𝑝)2

2𝑞2
)  𝑑𝑥

𝑥0

−∞

+∫ (𝑆𝑇𝑟𝑜𝑝𝑓1 + 𝑔1)𝑥exp(−
(𝑥 − 𝑝)2

2𝑞2
)𝑑𝑥

𝑥1

𝑥0

+∫ 𝑔1exp(−
(𝑥 − 𝑝)2

2𝑞2
)  𝑑𝑥

∞

𝑥1

] 

𝐹1 =
𝑀0

√2𝜋𝑞
[∫ 𝑔2𝑥exp(−

(𝑥 − 𝑝)2

2𝑞2
)  𝑑𝑥

𝑥0

−∞

+∫ (𝑆𝑇𝑟𝑜𝑝𝑓1 + 𝑔1)𝑥
2exp(−

(𝑥 − 𝑝)2

2𝑞2
)𝑑𝑥

𝑥1

𝑥0

+∫ 𝑔1xexp(−
(𝑥 − 𝑝)2

2𝑞2
)  𝑑𝑥

∞

𝑥1

] 

𝐹2 =
𝑀0

√2𝜋𝑞
[∫ 𝑔2𝑥

2exp(−
(𝑥 − 𝑝)2

2𝑞2
)  𝑑𝑥

𝑥0

−∞

+∫ (𝑆𝑇𝑟𝑜𝑝𝑓1 + 𝑔1)𝑥
3exp(−

(𝑥 − 𝑝)2

2𝑞2
)𝑑𝑥

𝑥1

𝑥0

+∫ 𝑔1𝑥
2exp(−

(𝑥 − 𝑝)2

2𝑞2
)  𝑑𝑥

∞

𝑥1

] 

 

𝑝 =
𝑀0
𝑀1

 

𝑞 = √
𝑀2
𝑀0

− (
𝑀1
𝑀0
)
2
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HHM 

𝑑𝑀10
𝑑𝑡

= 𝐴0 − 𝐵0 + 𝐶0 − 𝑘2𝐻𝐻𝑀𝑀10 

𝑑𝑀11
𝑑𝑡

= 𝐴1 − 𝐵1 + 𝐶1 − 𝑘2𝐻𝐻𝑀𝑀11 − 𝑣𝑇𝑀10 

𝑑𝑀12
𝑑𝑡

= 𝐴2 − 𝐵2 + 𝐶2 − 𝑘2𝐻𝐻𝑀𝑀12 − 2𝑣𝑇𝑀11 

𝑑𝑀20
𝑑𝑡

= 𝐷0 − 𝐸0 − 𝑆𝐶𝑎𝑀𝑘1𝐻𝐻𝑀𝑀20 

𝑑𝑀21
𝑑𝑡

= 𝐷1 − 𝐸1 − 𝑆𝐶𝑎𝑀𝑘1𝐻𝐻𝑀𝑀21 − 𝑣𝑇𝑀20 

𝑑𝑀22
𝑑𝑡

= 𝐷2 − 𝐸2 − 𝑆𝐶𝑎𝑀𝑘1𝐻𝐻𝑀𝑀22 − 2𝑣𝑇𝑀21 

𝑑𝑐

𝑑𝑡
= −𝑆𝐶𝑎𝑀𝑘1𝐻𝐻𝑀𝑐 + (1 − 𝑐)𝑘2𝐻𝐻𝑀 

 where 𝑀10,𝑀11,𝑀12 are the zeroth, first and second displacement-distribution moments of 
attached phosphorylated heads (initialised to 0.00001, 0.00001 and 0.00002, respectively), 
𝑀20,𝑀21,𝑀22 are the zeroth, first and second displacement-distribution moments of attached 
dephosphorylated heads, 𝑐 is the sum of the zeroth moments of attached dephosphorylated and 
detached dephosphorylated myosin heads (initialised to 0.9999) 
 

𝑦 =
𝑥 − 𝑝𝑎
𝑞𝑎

 

𝜑1(0) =
1

√2𝜋
∫ exp(0.5𝑦2) 𝑑𝑦
𝑦=0

−∞

 

𝜑1(1) =
1

√2𝜋
∫ exp(0.5𝑦2) 𝑑𝑦
𝑦=1

−∞

 

 

𝐽1(0) = 𝑝𝑎𝜑1(0) −
𝑞𝑎

√2𝜋
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𝐽1(1) = 𝑝𝑎𝜑1(1) −
𝑞𝑎exp (−0.5)

√2𝜋
 

𝐽2(0) = 𝑝𝑎
2𝜑1(0) −

2𝑝𝑎𝑞𝑎

√2𝜋
+ 𝑞𝑎

2𝜑1(0) 

𝐽2(1) = 𝑝𝑎
2𝜑1(1) −

2𝑝𝑎𝑞𝑎 exp(−0.5)

√2𝜋
+ 𝑞𝑎

2 [𝜑1(1) −
exp (−0.5)

√2𝜋
] 

𝐽3(0) = 𝑝𝑎
3𝜑1(0) −

3𝑝𝑎
2𝑞𝑎

√2𝜋
+ 3𝑝𝑎𝑞𝑎

2𝜑1(0) −
2𝑞𝑎

3

√2𝜋
 

𝐽3(1) = 𝑝𝑎
3𝜑1(1) −

3𝑝𝑎
2𝑞𝑎 exp(−0.5)

√2𝜋
+ 3𝑝𝑎𝑞𝑎

2 [𝜑1(1) −
exp(−0.5)

√2𝜋
] −

𝑞𝑎
33exp(−0.5)

√2𝜋
 

 

𝐴0 =
𝑓𝑝1𝐻𝐻𝑀(1 − 𝑐)

2ℎ
− 𝑓𝑝1𝐻𝐻𝑀(𝐽1(1) − 𝐽1(0))𝑀10 

𝐴1 =
𝑓𝑝1𝐻𝐻𝑀(1 − 𝑐)

3ℎ
− 𝑓𝑝1𝐻𝐻𝑀(𝐽2(1) − 𝐽2(0))𝑀10 

𝐴2 =
𝑓𝑝1𝐻𝐻𝑀(1 − 𝑐)

4ℎ
− 𝑓𝑝1𝐻𝐻𝑀(𝐽3(1) − 𝐽3(0))𝑀10 

 

 

𝐵0 =
𝑀10

√2𝜋𝑞𝑎ℎ
[∫ 𝑔𝑝2𝐻𝐻𝑀exp(−

(𝑥 − 𝑝𝑎)
2

2𝑞𝑎
2 )  𝑑𝑥

𝑥0

−∞

+∫ 𝑔𝑝1𝐻𝐻𝑀𝑥exp(−
(𝑥 − 𝑝𝑎)

2

2𝑞𝑎
2 )  𝑑𝑥

𝑥1

𝑥0

+∫ (𝑔𝑝1𝐻𝐻𝑀 + 𝑔𝑝3𝐻𝐻𝑀)𝑥exp(−
(𝑥 − 𝑝𝑎)

2

2𝑞𝑎
2 )  𝑑𝑥

∞

𝑥1

] 

𝐵1 =
𝑀10

√2𝜋𝑞𝑎ℎ
[∫ 𝑔𝑝2𝐻𝐻𝑀𝑥exp(−

(𝑥 − 𝑝𝑎)
2

2𝑞𝑎
2 )  𝑑𝑥

𝑥0

−∞

+∫ 𝑔𝑝1𝐻𝐻𝑀𝑥
2exp(−

(𝑥 − 𝑝𝑎)
2

2𝑞𝑎
2 )  𝑑𝑥

𝑥1

𝑥0

+∫ (𝑔𝑝1𝐻𝐻𝑀 + 𝑔𝑝3𝐻𝐻𝑀)𝑥
2exp(−

(𝑥 − 𝑝𝑎)
2

2𝑞𝑎
2 )  𝑑𝑥

∞

𝑥1

] 
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𝐵2 =
𝑀10

√2𝜋𝑞𝑎ℎ
[∫ 𝑔𝑝2𝐻𝐻𝑀𝑥

2exp(−
(𝑥 − 𝑝𝑎)

2

2𝑞𝑎
2 )  𝑑𝑥

𝑥0

−∞

+∫ 𝑔𝑝1𝐻𝐻𝑀𝑥
3exp(−

(𝑥 − 𝑝𝑎)
2

2𝑞𝑎
2 )  𝑑𝑥

𝑥1

𝑥0

+∫ (𝑔𝑝1𝐻𝐻𝑀 + 𝑔𝑝3𝐻𝐻𝑀)𝑥
3exp(−

(𝑥 − 𝑝𝑎)
2

2𝑞𝑎
2 )  𝑑𝑥

∞

𝑥1

] 

 

𝐶0 =
𝑆𝐶𝑎𝑀𝑘1𝐻𝐻𝑀𝑀20

√2𝜋𝑞𝑏ℎ
[∫ exp(−

(𝑥 − 𝑝𝑏)
2

2𝑞𝑏
2 )  𝑑𝑥

𝑥0

−∞

+∫ 𝑥exp(−
(𝑥 − 𝑝𝑏)

2

2𝑞𝑏
2 )  𝑑𝑥

𝑥1

𝑥0

+∫ exp(−
(𝑥 − 𝑝𝑏)

2

2𝑞𝑏
2 )  𝑑𝑥

∞

𝑥1

] 

𝐶1 =
𝑆𝐶𝑎𝑀𝑘1𝐻𝐻𝑀𝑀20

√2𝜋𝑞𝑏ℎ
[∫ 𝑥exp (−

(𝑥 − 𝑝𝑏)
2

2𝑞𝑏
2 )  𝑑𝑥

𝑥0

−∞

+∫ 𝑥2exp(−
(𝑥 − 𝑝𝑏)

2

2𝑞𝑏
2 )  𝑑𝑥

𝑥1

𝑥0

+∫ 𝑥exp(−
(𝑥 − 𝑝𝑏)

2

2𝑞𝑏
2 )  𝑑𝑥

∞

𝑥1

] 

𝐶2 =
𝑆𝐶𝑎𝑀𝑘1𝐻𝐻𝑀𝑀20

√2𝜋𝑞𝑏ℎ
[∫ 𝑥2exp(−

(𝑥 − 𝑝𝑏)
2

2𝑞𝑏
2 )  𝑑𝑥

𝑥0

−∞

+∫ 𝑥3exp(−
(𝑥 − 𝑝𝑏)

2

2𝑞𝑏
2 )  𝑑𝑥

𝑥1

𝑥0

+∫ 𝑥2exp(−
(𝑥 − 𝑝𝑏)

2

2𝑞𝑏
2 )  𝑑𝑥

∞

𝑥1

] 

 

𝐷0 =
𝑘2𝐻𝐻𝑀𝑀10

√2𝜋𝑞𝑎ℎ
[∫ exp(−

(𝑥 − 𝑝𝑎)
2

2𝑞𝑎
2 )  𝑑𝑥

𝑥0

−∞

+∫ exp(−
(𝑥 − 𝑝𝑎)

2

2𝑞𝑎
2 )  𝑑𝑥

𝑥1

𝑥0

+∫ exp(−
(𝑥 − 𝑝𝑎)

2

2𝑞𝑎
2 )  𝑑𝑥

∞

𝑥1

] 

𝐷1 =
𝑘2𝐻𝐻𝑀𝑀10

√2𝜋𝑞𝑎ℎ
[∫ 𝑥exp(−

(𝑥 − 𝑝𝑎)
2

2𝑞𝑎
2 )  𝑑𝑥

𝑥0

−∞

+∫ 𝑥exp(−
(𝑥 − 𝑝𝑎)

2

2𝑞𝑎
2 )  𝑑𝑥

𝑥1

𝑥0

+∫ 𝑥exp(−
(𝑥 − 𝑝𝑎)

2

2𝑞𝑎
2 )  𝑑𝑥

∞

𝑥1

] 
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𝐷2 =
𝑘2𝐻𝐻𝑀𝑀10

√2𝜋𝑞𝑎ℎ
[∫ 𝑥2exp(−

(𝑥 − 𝑝𝑎)
2

2𝑞𝑎
2 )  𝑑𝑥

𝑥0

−∞

+∫ 𝑥2exp(−
(𝑥 − 𝑝𝑎)

2

2𝑞𝑎
2 )  𝑑𝑥

𝑥1

𝑥0

+∫ 𝑥2exp(−
(𝑥 − 𝑝𝑎)

2

2𝑞𝑎
2 )  𝑑𝑥

∞

𝑥1

] 

 

𝐸0 =
𝑀20

√2𝜋𝑞𝑏ℎ
[∫ 𝑔2𝐻𝐻𝑀exp(−

(𝑥 − 𝑝𝑏)
2

2𝑞𝑏
2 )  𝑑𝑥

𝑥0

−∞

+∫ 𝑔1𝐻𝐻𝑀𝑥exp(−
(𝑥 − 𝑝𝑏)

2

2𝑞𝑏
2 )  𝑑𝑥

𝑥1

𝑥0

+∫ (𝑔1𝐻𝐻𝑀 + 𝑔3𝐻𝐻𝑀)𝑥exp(−
(𝑥 − 𝑝𝑏)

2

2𝑞𝑏
2 )  𝑑𝑥

∞

𝑥1

] 

𝐸1 =
𝑀20

√2𝜋𝑞𝑏ℎ
[∫ 𝑔2𝐻𝐻𝑀𝑥exp(−

(𝑥 − 𝑝𝑏)
2

2𝑞𝑏
2 )  𝑑𝑥

𝑥0

−∞

+∫ 𝑔1𝐻𝐻𝑀𝑥
2exp(−

(𝑥 − 𝑝𝑏)
2

2𝑞𝑏
2 )  𝑑𝑥

𝑥1

𝑥0

+∫ (𝑔1𝐻𝐻𝑀 + 𝑔3𝐻𝐻𝑀)𝑥
2exp(−

(𝑥 − 𝑝𝑏)
2

2𝑞𝑏
2 )  𝑑𝑥

∞

𝑥1

] 

𝐸2 =
𝑀20

√2𝜋𝑞𝑏ℎ
[∫ 𝑔2𝐻𝐻𝑀𝑥

2exp(−
(𝑥 − 𝑝𝑏)

2

2𝑞𝑏
2 )  𝑑𝑥

𝑥0

−∞

+∫ 𝑔1𝐻𝐻𝑀𝑥
3exp(−

(𝑥 − 𝑝𝑏)
2

2𝑞𝑏
2 )  𝑑𝑥

𝑥1

𝑥0

+∫ (𝑔1𝐻𝐻𝑀 + 𝑔3𝐻𝐻𝑀)𝑥
3exp(−

(𝑥 − 𝑝𝑏)
2

2𝑞𝑏
2 )  𝑑𝑥

∞

𝑥1

] 

 

𝑝𝑎 =
𝑀11
𝑀10

 

𝑞𝑎 = √
𝑀12
𝑀10

− (
𝑀11
𝑀10

)
2

 

𝑝𝑏 =
𝑀21
𝑀20

 

𝑞𝑏 = √
𝑀22
𝑀20

− (
𝑀21
𝑀20

)
2
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Comparing the results of a distribution-moment model with the full partial-differential equation 

model under reference conditions showed that the distribution-moment model can capture the 

qualitative features of the full model but that further tuning of the rate parameters is required. The 

diastolic diameter is very similar (165 μm in the original model and 162 μm in the distribution-

moment model) whilst the systolic diameter is significantly larger for the distribution-moment model 

(142 μm) than the original muscle model (123 μm). This is due to weaker contractions in the 

distribution-moment model (peak cell force 2.1 dyne compared to 2.4 dyne) causing lower peak 

pressures (0.1 cmH2O compared to 0.2 cmH2O) and smaller outflow (peak value 0.09 mL/hr 

compared to 0.19 mL/hr and average value 0.01 mL/hr compared to 0.02 mL/hr). The suction-based 

refilling is also slower due to a reduced suction pressure amplitude (0.02 cmH2O below the inlet 

pressure compared to 0.06 cmH2O). These result in lower rates of work (0.05 erg/s compared to 0.02 

erg/s) and energy transfer (0.0025 erg/s compared to 0.0053 erg/s) to the lymph. Additional work is 

required to calculate the energy liberation through hydrolysis of ATP in the distribution-moment 

model.  
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Figure 64: Comparison of the fully-resolved displacement-distribution of myosin heads with the Gaussian distribution-
moment model (A) compares diameter (B) compares mid-lymphangion pressure (C) compares volume inflow rate (D) 
compares volume outflow rate (E) compares the work rate (F) compares the rate of energy transfer to fluid (G) shows the 
subcellular forces from the full model and (H) shows the subcellular forces from the distribution-moment model 
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