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Abstract

The increasing penetration level of renewable energy resources (RES) in the power system

brings fundamental changes of the system operating paradigms. In the future, the intermittent

nature of RES and the corresponding smart grid technologies will lead to a much more volatile

power system with higher level uncertainties. At the same time, as a result of the larger scale

installation of advanced sensor devices in power system, power system engineers for the first

time have the opportunity to gain insights from the influx of massive data sets in order to

improve the system performance in various aspects. To this end, it is imperative to explore

big data methodologies with the aim of exploring the uncertainty space within such complex

data sets and thus supporting real-time decision-making in future power system. In this thesis,

Bayesian Deep learning is investigated with the aim of exploring data-driven methodologies to

deal with uncertainties which is in the following three aspects.

(1) The first part of this thesis proposes a novel probabilistic day-ahead net load forecasting

method to capture both epistemic uncertainty and aleatoric uncertainty using Bayesian deep

long short-term memory network. The proposed methodological framework employs clustering

in sub-profiles and considers residential rooftop PV outputs as input features to enhance the

performance of aggregated net load forecasting. Numerical experiments have been carried out

based on fine-grained smart meter data from the Australian grid with separately recorded

measurements of rooftop PV generation and loads. The results demonstrate the superior

performance of the proposed scheme compared with a series of state-of-the-art methods and

indicate the importance and effectiveness of sub-profile clustering and high PV visibility.

(2) The second part of this thesis studies a novel Conditional Bayesian Deep Auto-Encoder

(CBDAC) based security assessment framework to compute a confidence metric of the prediction.

This informs not only the operator to judge whether the prediction can be trusted, but it also

allows for judging whether the model needs updating. A case study based on IEEE 68-bus

system demonstrates that CBDAC outperforms the state-of-the-art machine learning-based

DSA methods and the models that need updating under different topologies can be effectively

identified. Furthermore, the case study verifies that effective updating of the models is possible

even with very limited data.

(3) The last part of this thesis proposes a novel Bayesian Deep Reinforcement Learning-based
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resilient control approach for multi-energy micro-grid. In particular, the proposed approach

replaces deterministic network in traditional Reinforcement Learning with Bayesian probabilistic

network in order to obtain an approximation of the value function distribution, which effectively

solves Q-value overestimation issue. The proposed model is able to provide both energy

management during normal operating conditions and resilient control during extreme events in a

multi-energy micro-grid system. Comparing with naive DDPG method and optimisation method,

the effectiveness and importance of employing Bayesian Reinforcement Learning approach is

investigated and illustrated across different operating scenarios. Case studies have shown that

by using the Monte Carlo posterior mean of the Bayesian value function distribution instead

of a deterministic estimation, the proposed BDDPG method achieves a near-optimum policy

in a more stable process, which verifies the robustness and the practicability of the proposed

approach.
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Chapter 1

Introduction

1.1 Research Background and Current Challenges

Before the concept of modern smart grid techniques, the energy consumption of most developed

countries was mainly from fossil fuels with less proportion of supplementary, e.g. nuclear or

hydro powers. Carbon dioxide emission from those traditional resources thus are the major

cause of changing climate. In recent decades, climate change and energy security have become

major topics for discussion around the world. Lots of efforts have been made in order to align

regimes worldwide to agree on targets of carbon emissions reduction and also to explore more

advanced alternative technologies with the aim of allowing the incorporating of lower carbon

emissions. A remarkable breakthrough is the Paris Agreement in 2015, and since then, there

was a global consent on carbon emissions reduction in a joint effort. For instance, 20% of the

EU energy consumption is expected to be from renewable energy sources (RES) by 2020, which

is further expected to have a greenhouse gas emission reduction of 80% in 2050. As a result, the

EU electricity system would be significantly decarbonised by 2030, with the contribution from

the increased penetration level of RES, and also from the increased share of electricity demand,

which is driven by the large-scale implementation of multi-energy sectors and transport sectors

(e.g. heat pumps (HPs), electric vehicles (EVs), etc.).
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CHAPTER 1. INTRODUCTION

Traditionally, power system is designed to send energy from large power generators to large

demand with flexible and controllable units that have relatively lower uncertainty level. Opera-

tional flexibility thus is expected to be provided mainly by conventional generators, which are

flexible enough to match variations in demand and are able to adjust its output in response

to various operating scenarios. However, in the future, the shifting to low carbon electricity

system would be characterised by its higher level of energy mix, including intermittent RES

(e.g. wind and solar), the growing penetration of multi-energy sectors etc. Unlike the majority

of conventional generation that could provide both energy and control services (e.g. energy

balancing and network support services), RES is highly variable in time, which means the

prediction would suffer from high level uncertainty and more importantly, it cannot be controlled

in order to maintain normal operation of the power system. Furthermore, due to the fact that

RES always exists as non-synchronous power sources, which do not contribute to system inertia,

the overall system inertia will decrease. As a result, it could increase the possibility of system

compromising to disturbance and thus will change the requirements for system reliability and

resilience.

In other words, merging RES is a shifting process not only from the aspect of the sources of the

energy (i.e. from using fossil fuel based energy toward using electricity), instead, it is the trend

that power system starts using electricity at the point-of-use (i.e. more distributed), such as

charging stations for EVs, PV panels on residential rooftops etc. Although we cannot guarantee

how the power system operation will be like in the following decades, it is certain that it will be

very different from what it was designed. Because when the system was designed, the target

of the system was to transport bulk powers from generation side to demand side and more

importantly, in single direction. In the future, distributed generations, energy storage devices,

EVs, etc. would lead to a fundamental paradigm shift from one-directional power system to

that allows multi-directional power flows. Hence, power system in the future would employ

additional flexibility ancillary techniques, more electronic devices, and distributed generation.

Such implementation was less anticipated in the original design stage, thus the challenge is to

support the system during this paradigm shift. Furthermore, due to the massive cost of changing
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physical infrastructures, it is more reasonable and realistic to find more advanced approaches

to control and operate the system under this shift. In summary, when integrating RES into

the power system, the unpredictability and the corresponding lack of inertia, which are driven

by the nature of RES uncertainties, will bring considerable difficulties to the power system

operation in many aspects. These difficulties require a comprehensive review of the current

methodologies with the aim of improving the system planning (forecasting), safety operation

(security rules) and decision making (real-time control).

This thesis is primarily concerned about the uncertainties brought by the RES. In order to

accurately analyse the low carbon power system with uncertainties driven by RES, it is necessary

to transform the existing deterministic model to probabilistic model in order to incorporate

the stochastic elements. Bayesian Deep Learning (BDL) methods thus are implemented in

this thesis to model the uncertainties from RES in three different task scenes: load forecasting,

dynamic security assessment and resilient control. In addition to uncertainties from RES, there

are also specific challenges in each topic area. Therefore, in the following sections, detailed

challenges of each area will be introduced.

1.1.1 Primary Challenges in Load Forecasting

Decarbonization of electricity systems drives significant and continued investments in distributed

energy sources to support the cost-effective transition to low-carbon energy systems. However,

the rapid integration of distributed photovoltaic (PV) generation presents great challenges in

obtaining reliable and secure grid operations because of its limited visibility and intermittent

nature, which significantly diminishes the predictability of the residential net load. This effect

may be further intensified by the stochasticity in onsite renewable generation injected from

the macrogrid [5]. Under this circumstance, the primary challenges addressed in this area are

summarized as follows:

1) PV Visibility : In general, distributed PV is invisible to the distribution system operators

and retailers as a result of its behind-the-meter installation, which injects additional uncertainty
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into the net load and renders it harder to accurately predict, especially in the context of high

PV penetration. However, with the development of advanced metering technologies, some

residential customers have installed meters that can separately measure electricity consumption

and rooftop PV output to make the distributed PV generation partially visible to stakeholders

with fine-grained data. To this end, developing methods to fully exploit the partially visible or

entirely visible PV to enhance the net load forecasting performance at the aggregated level will

be one of the fundamental challenges that is investigated in this study.

2) Massive Stochastic Uncertainty : For the net load at the aggregated level, uncertainty

is composed of the load uncertainty and the distributed PV uncertainty, which is a more

challenging task than either load forecasting or PV forecasting alone. In this case, we use the

term stochastic uncertainty (aleatoric uncertainty) to represent the uncertainty within the net

load injected from different sources such as climate variability, intermittent power generation,

and aperiodic human activities. In recent years, although a number of probabilistic forecasting

methods have been proposed to capture these massive amounts of uncertainties in the load or

the net load, most of the existing methods can only provide the prediction interval (i.e., the

upper and lower bounds), which does not give detailed information about the distribution of

the forecast at each individual time step. In addition, most probabilistic forecasting models

are inherently deterministic models with limited performance in explicitly capturing stochastic

uncertainty. These models usually either produce a density forecast by employing the probability

density function (pdf) of the residuals to the point forecast or perform post-processing to several

point forecasts to generate quantiles. On the other hand, deep learning has demonstrated

a fair performance in load forecasting; however, most of the existing models are not able to

represent uncertainty. Consequently, it is crucial and imperative to investigate and develop a

pure probabilistic deep learning model to handle the massive stochastic uncertainty in the net

load and to provide confidence bounds for decision making.

3) Uncertainty in the Model : Model uncertainty (epistemic uncertainty) refers to the

uncertainty in the model parameters and the model structure. Beyond the aleatoric uncertainty,

model uncertainty is also a critical part of uncertainty in the task of probabilistic net load
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forecasting to indicate how much uncertainty the model has about its outputs. Among a vast

number of potential model structures and parameters, it is important to understand how much

the selected combinations might be able to accurately predict the net load under different

conditions (e.g., seasons, weekends/weekdays and social factors). In the remainder of this part

of work, we will illustrate in detail how the proposed Bayesian deep learning-based method can

effectively handle the aforementioned challenge.

1.1.2 Primary Challenges in Dynamic Security Assessment

The penetration of RES not only injects massive uncertainties but also increases the complexity

in the context of the power system modelling and operation. Dynamic Security Assessment

(DSA) for the future power system is expected to be increasingly complicated with the higher

level penetration of RES and the widespread deployment of power electronic devices, which drive

new dynamic phenomena. As a result, the increasing complexity and the severe computational

bottleneck in real-time operation encourage researchers to exploit machine learning to extract

offline security rules for the online assessment. However, traditional machine learning methods

lack in providing information on the confidence of their corresponding predictions. A better

understanding of confidence of the prediction is of key importance for Transmission System

Operators (TSOs) to use and rely on these machine learning methods. Specifically, from the

perspective of topological changes, it is often unclear whether the machine learning model can

still be used. Hence, being aware of the confidence of the prediction supports the transition to

using machine learning in real-time operation. Under this circumstance, the primary challenges

addressed in this topic are summarized as follows:

(1) The lack of ability of confidence awareness: Numerous applications of machine

learning approaches in the area of power system have been investigated in the last decades.

Despite a promising performance in various tasks, one of the fundamental limitations that

restrict the practical implementation is that the existing models do not have the ability of

interpretability. More specifically, most of the current methods cannot capture uncertainties
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and thus fail to express confidence. From the perspective of TSOs, how to make decisions

under the uncertainties of the power system? The complicated reality implies that simply

developing the modelling technique to improve its accuracy may not be enough in practice. The

TSOs need additional information that shows whether or quantifies how the model is confident

about its output (i.e. confidence information). To this end, model uncertainty (epistemic

uncertainty) reflects the uncertainty in the model parameters, and the model structure becomes

vital. For safety-critical applications, it is also of significant importance to capture the confidence

information so that the abnormal data points, which are different from training data sets, could

be accurately detected. However, the state-of-the-art machine learning methods usually model

the uncertainties by rigidly simulating noises and thus can hardly be explained as an epistemic

learning process (i.e. uncertainty can be explained away given enough data)[6]. Hence, what

we really need is a more advanced model with the real ability of confidence awareness. The

influence from massive injected uncertainties thus can be alleviated, and more importantly,

TSOs could be offered the flexibility of system operation in the decision-making process.

(2) Multi-contingency issue: The N-1 security criterion provides a preventive standard for

system safety operation. From the perspective of machine learning, the significantly enriched

database brings the opportunity of training a better model. However, challenges occur as well

that more advanced modelling technique is required in order to make full use of the abundant

data. In prior works, the authors in [7] treat the multi-contingency issue as independent tasks,

and they set up the DTs model for each contingency. However, when deep learning methods are

considered to improve the performance further, this strategy will be challenged with a series

of critical issues. One of the most serious is that the total workload of the hyperparameters

tuning task grows significantly and becomes nearly infeasible, especially in the context of a

real-world large scale system. In contrast, the proposed method in [8] employed one-hot coding

so that the contingency label can be included within the training data. It is inspired by the

theory of multi-task learning, and the model is expected to learn not only correlations among

individual contingencies but also the ability to distinguish the difference within a single model.

The work thus has the benefits of using one single deep learning model rather than N-1 models
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in terms of the computational time. However, it actually sacrifices training efficiency since the

data dimension is increased. More importantly, the multi-contingency problem is essentially

different from the multi-task problem since the data sets in a multi-task problem come from

different sources. Therefore, using a single model could cause conflict and thus affect model

performance. To this end, developing a method that fully exploits the contingency information

will be investigated in this study.

(3) Model updating strategy when faced with system topology changes: Topology

changes, either scheduled behaviours or those accidentally happened such as circuit breaker

faults, could cause fundamental changes of system OCs. Those changes, such as line flows,

might be very different for different topology, necessitating timely updating. There are various

approaches to deal with system topology changes. One is to employ a real-time system topology

monitoring scheme as an indicator. The other is to update the model under an experience-based

timely basis. However, depending on the size of the system, the corresponding computational

cost, which includes but not limited to data from new contingency domain, personnel and time

etc., of updating might vary a lot. More importantly, in some cases, the current model can be

kept even if the system topology changes. This brings the potential challenge that in practice,

in order to obtain the operational flexibility, how could we avoid the unnecessary updating cost?

In other words, could the model have self-confidence awareness about its results so that the

system operator is able to aware of the proper time? Two further questions that arise and will

be addressed in the following chapters thus are: (1) How does the data size contribute to model

updating? (2) What would happen if the model performance is already good enough?

1.1.3 Primary Challenges in Resilient Control

The intermittent nature of RES and the increasing incorporating of multi-energy elements bring

massive uncertainties thus increases the complexity in the context of the power system modelling

and operation. Intensified effects could be identified due to the concerns of enhancing resilience

on local power network and to reduce the import of conventional fuels in response to the security
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of energy supplies[9]. Under this circumstance, the primary challenges addressed in this field

are summarized as follows:

(1) The paradox between resiliency and the de-carbonizing electricity system:

In the foreseeable future, increasingly larger power transfers across the network would potentially

exacerbate system vulnerability against natural disasters since system infrastructures tend to

operate near their designed capacity limit. Hence, the chances of system exposed to large

disturbances are escalated, resulting in a drop of system resilience and potentially to large and

prolonged blackouts[9]. Under the current system operation and design philosophy, not only a

significant proportion of the existing conventional plants should be reserved as back-up capacity,

there are even requirement of additional electricity infrastructure reinforcements[10][9]. In other

words, the pursuing and transforming of de-carbonizing future electricity system might be

established at the cost of sacrificing the power system performance in the aspects of steady and

cost-effective operation. This brings the challenges that in order to enhance system resilience,

power system should be able to deal with extreme events with large scale and severity level, even

with low possibilities. Furthermore, the paradigm shift from redundancy in assets to intelligence

also urges the need of more sophisticated control that incorporates more advanced technologies.

(2) The necessity of high-resolution real-time critical load restoration control

scheme:

System 
Function

𝑡" 𝑡# 𝑡$ 𝑡% 𝑡& 𝑡' Time

𝐹(𝑡)

Critical Loads 

Figure 1.1: Illustrative resilience curve through an extreme event
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In recent years, the awareness of resilience has been increasingly recognized and merged

into the design and operation strategy for the critical infrastructures[11]. Researchers and

electrical engineers have been gradually aware that it is unlikely to resist all events at all

time, thus strategies beyond traditional reliability are needed to maintain the service of critical

infrastructures under extreme events[12]. Critical infrastructures are facilities that could support

economic, business, and social activities, including the assets, services, and systems[13]. Hence,

any loss of the critical infrastructures could result in massive costs or even casualties, which

means power system has the obligation to support these critical infrastructures regardless the

costs (e.g. imagine a scene when an earthquake happens during a surgery in the hospital, or

power outage when people are stuck in the subway facing the risk of suffocated to death).

The conceptual resilience curve in Fig. 1.1 shows the process when power system goes through

an extreme event. For instance, t1 is the point when extreme events happen. System function

F (t) denotes the capability of the system to provide services, thus in this case, power system

critical demand can be regarded as system function. t3 is the point when resilience controller

starts to work and try to re-support the critical demand. Hence, t3− t1 is the period that critical

demand is failed to be served. In existing works, optimisation approaches are widely proposed

and improved to give the control decision at t3, but the computing time is high. For example,

in [14], the t3 − t1 period is ∼ 2.5 hour, in IEEE 123-node network. In addition, existing works

usually assume that extreme events last for hours, e.g. 6h in [15], 12h in [16] and the critical

load is always assumed to be a proportion of the total load, which is kept constant during the

events e.g. 30% in [16]. In other words, existing approaches achieve the critical load restoration

by analytically solve an optimisation problem with system state measurements at t2. However,

it is possible that extreme events have longer impact period, and thus the critical loads could

also have its own time-changing profile with a certain level of uncertainty. Furthermore, building

optimisation model needs exact system details, which could be hard for a larger system. In

the existing literature, optimisation models are designed only to deal with a sets of pre-defined

events, while resilience strategy could vary a lot regarding different events. Hence, it is not

possible to model all the combination of fault locations, lines, losses of generations and it will
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be too late to build a new model if an unexpected event happen.

Under this reality, it is crucial and imperative to investigate and develop a model-free, fast-

reacting approach which is able to provide real-time control strategy. In this case, our approach

does not require any knowledge inside the multi-energy micro-grid network nor any information

related to the system elements.

(3) Robust performance under the uncertainties of extreme natural disasters and

for the value function estimation

Extreme natural disasters, such as earthquake, floods, snowstorms, or man-made cyber/physical

attack, could result in cascading consequences to the power system. However, due to their

stochasticity and spatio-temporal unpredictable nature, it is extremely difficult and computa-

tionally expensive to obtain accurate modelling of these events. In fact, even though an accurate

forecasting is given, each time the same event could have different impacts on the power system.

In other words, there are too many potential scenarios but too few data that can be collected.

Hence, conventional deep learning systems might not 100% ready (fully trained) for these events.

However, for Bayesian models, less data are required to train the model. By integrating prior

knowledge into learning systems, Bayesian models can effectively address the over-fitting problem

by imposing a prior on hidden units or neural network parameters, even with small/insufficient

data sets. In addition, though policy gradient methods in RL have earned many credits in

dealing with continuous space control tasks, the stochastic nature of these problems makes

deterministic value estimation difficult. As a result, Q-Learning based RL methods are found

to overestimate action values under common conditions[17]. In other words, there is potential

possibility that the RL agent selects the greedy, short sighted, high-risky or unreasonable actions

with high Q value for the current state. From the perspective of a system operator, the obvious

question will be: how to believe that the decision from the RL agent is reasonable? The key to

the question lies in that whether the model has a comprehensive exploration process over the

entire value function domain so that it could extract more information from the environment as

the experience accumulates. Therefore, it is reasonable to think about estimating a distribution
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of value function rather than in a deterministic fashion by fitting the value function with a

Bayesian Neural Network. By using the posterior mean of this distribution of value estimation,

we are expecting to achieve a more stable learning process and significantly better results against

a traditional deterministic value function estimation.

1.2 Contributions

To address the presented research challenges, this thesis makes the following original contributions,

which are summarised as follows:

• The study in load forecasting work makes the following original contributions:

(1) A clustering-forecasting-aggregation probabilistic day-ahead net load forecasting strat-

egy is proposed to make full use of smart meter data and partially visible PV output

data.

(2) Bayesian theory and deep LSTM networks are combined to generate aggregated level

probabilistic net load forecasts with the target of capturing both epistemic uncertainty and

aleatoric uncertainty. To the best of the authors’ knowledge, this is the first attemption

to exploit Bayesian deep learning for net load prediction.

(3) A comprehensive comparison with a series of state-of-the-art methods is conducted.

The superior performance of the proposed scheme is demonstrated with respect to both

the deterministic and probabilistic forecasting results. Additionally, it is shown that the

forecasting performance can be effectively enhanced in the context of high PV visibility.

• In the second part of the work, a Bayesian deep auto-encoder based methodological

framework is proposed, which is able to solve multi-contingency issue and provide confidence

information. Key contributions of this part can be summarized as follows:

(1) A confidence-aware machine learning framework for DSA of the large-scale electrical

system is proposed. To the best of the authors’ knowledge, this is the first work that

achieves confidence awareness by exploiting Bayesian deep learning in the DSA problem.
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(2) The concept of conditional training is introduced. The proposed framework thus

enhances the performance when facing multi-contingency issue within a single model.

(3) A confidence-oriented model updating strategy is proposed. The proposed strategy

only requires small sample data to update the model.

(4) A series of comprehensive case studies are conducted. The superior and robustness

performance of the proposed method is demonstrated and compared with other state-of-

the-art approaches, which is based on different system topology.

• Original contributions in the third part of this work are:

1) A Bayesian DRL-based real-time decision making scheme has been proposed, which is

designed to deal with the resilient operation of multi-energy micro-grid system. During the

resilience mode, the target is to keep only essential loads served. During normal condition,

the proposed RL approach is able to help the TSO to achieve a near optimal real-time

control with minimum system operation costs.

2) Bayesian Deep Learning theory and Reinforcement Learning are integrated to generate

real-time system control strategy with the aim of capturing uncertainties and avoiding

value function estimation during the training process in the multi-energy micro-grid system.

To the best of the authors’ knowledge, this is the first work to exploit Bayesian Deep

Reinforcement Learning in the area of system resilient control.

3) A series of comprehensive case studies are conducted, which consider the uncertainties in

the extreme events. For example, the extreme events are assumed to have longer duration

period and their own time-changing profiles. Compared with the state-of-the-art methods,

the superior performance and the robustness of the proposed approach are studied and

analysed through various operating scenarios.
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1.3 Thesis Structure

This thesis has seven chapters in order to illustrate the relevant works, which are summarised

as the follows.

In Chapter 2, a brief introduction of deep learning and reinforcement learning is given. Convo-

lution Neural Network (CNN) and Recurrent Neural Network (RNN) as good examples of deep

learning network structures are introduced. In terms of reinforcement learning, classic methods

such as Q-learning, DQN, DPG and DDPG are briefly introduced. The chapter finishes by

explaining the necessity of using Bayesian Deep Learning as probabilistic uncertainty modelling

technique.

In Chapter 3, a novel probabilistic day-ahead net load forecasting framework that captures both

epistemic uncertainty and aleatoric uncertainty is illustrated. The proposed methodological

framework employs clustering in sub-profiles and considers residential rooftop PV outputs

as input features to enhance the performance of aggregated net load forecasting. Numerical

experiments have been carried out based on fine-grained smart meter data from the Australian

grid with separately recorded measurements of rooftop PV generation and loads. The results

demonstrate the superior performance of the proposed scheme compared with a series of state-

of-the-art methods and indicate the importance and effectiveness of subprofile clustering and

high PV visibility.

In Chapter 4, a novel Conditional Bayesian Deep Auto-Encoder (CBDAC) based security

assessment framework to compute a confidence metric of the prediction is illustrated. This

informs not only the operator to judge whether the prediction can be trusted, but it also

allows for judging whether the model needs updating. A case study based on IEEE 68-bus

system demonstrates that CBDAC outperforms the state-of-the-art machine learning-based

DSA methods and the models that need updating under different topologies can be effectively

identified. Furthermore, the case study verifies that effective updating of the models is possible

even with very limited data.
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In Chapter 5, Bayesian Deep Reinforcement Learning algorithm as an advanced real-time

control scheme is investigated, which is designed to provide both the energy management

during normal operation conditions and resilient control during extreme events in a multi-

energy micro-grid system. The proposed Bayesian model explores the entire action domain

and thus could identify more cost-effective control strategies during normal operation period

meanwhile maintain the system critical service during the resilience period. The effectiveness

and importance of employing Bayesian reinforcement learning approach is investigated across

different operating scenarios and compared with naive DDPG method and other optimisation

method. Case studies have demonstrated that the proposed BDDPG method manages to learn

a near-optimum policy in a more stable process, which demonstrates the superior performance

and highlight the contribution of the proposed Bayesian deep learning-based method.

Chapter 6 contains the concluding remarks and the potential further work directions.
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Chapter 2

Bayesian Deep Learning: A

Probabilistic Uncertainty Modelling

Framework

2.1 Deep Learning and Reinforcement Learning

2.1.1 Deep Learning

Deep learning is a particular type of machine learning that enables a model to establish

complicated non-linear functions from high-dimensional features and obtain domain knowledge

with experience and data.

One of the basic deep learning models is called deep feed-forward network. For example, y = f(x)

can be used to denote a classifier that maps an input vector x to a category y. A feed-forward

network defines a mapping function y = fθ(x) and trains the parameters θ that result in the

best function approximation. These models are called feed-forward since information flows from

x, through the intermediate layers that define f , and finally reach the output y. In other words,

the model is regarded as a acyclic graph describing how the functions are stacked together. For
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example, assuming the network has three layers with each layer denoted by functions f 1 , f 2,

and f 3 respectively. These functions are connected in a chain, which forms f(x) = f 3(f 2(f 1(x))).

In this case, f 1 is called the first layer of the network, the second layer f 2 is connected directly

to the first layer, and the final layer f 3 is called the output layer. The overall length of the chain

determines the depth of the model and the dimensionality of these hidden layers determines the

width of the model.

Feed-forward networks are important since they form the basis of many other applications,

which are designed to fulfill various functions such as Convolution Neural Network (CNN) for

the classification tasks or Recurrent Neural Network (RNN) for the regression tasks.

Recurrent Neural Network

Recurrent neural networks are a family of neural networks for processing sequential data, i.e.

x(1), . . . , x(τ), with the time step index t ranging from 1 to τ .
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Figure 2.1: The computational graph of RNN[1]

Fig.2.1 illustrates the computational graph of a recurrent network. The network maps an

input sequence of x to a sequence of output o. Loss function L evaluates the accuracy with
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respect to the corresponding target sequence y. Entering from the input unit, the RNN has its

input-to-hidden connections parametrized by a weight matrix U . The recurrent hidden-to-hidden

connections are represented by a weight matrix W . Finally, hidden-to-output connections are

denoted by a weight matrix V .

The definition of forward propagation equations for the RNN in the left side of Fig.2.1 is given

as follows[1]:

a(t) = U · x(t) +W · h(t−1) + b (2.1)

h(t) = tanh(a(t)) (2.2)

o(t) = c+ V · h(t) (2.3)

ŷ(t) = softmax(o(t)) (2.4)

where the parameters b and c are the bias vectors along with the weight matrices U , V and W

respectively and the activation function is assumed to be hyperbolic tangent. In addition, it is

also assumed that the output is discrete, i.e. the RNN is used to predict words or characters.

Softmax operation is thus implemented in order to post-process the discrete output o and

eventually to obtain a vector ŷ of normalized probabilities.

The unfolding process in the right side of Fig.2.1 results in rolling scheme of parameters updating

across the deep network structure. For instance, consider the classical form of a dynamical

system with an external input x(t)

s(t) = fθ(s
(t−1), x(t)) (2.5)

where s(t) is called the state of the system at time t.

Equation 2.5 demonstrates that the definition of s(t) at current time t depends on the previous
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state s(t−1). Hence, in terms of a finite number of time steps τ , the recurrent network structure

can be unfolded through the direction of time stream by applying equation 2.5 τ − 1 times. By

doing this, it has yielded an expression that can now be represented by a traditional directed

acyclic computational graph.

Convolution Neural Network

Convolutional network is another specially designed neural network structure with the aim of

processing grid-like data. Examples include time-series data, which can be regarded as a 1-D

grid sampling at regular time intervals, and image data, which can be regarded as a 2-D grid of

pixels. Convolution is an operation on two functions of a real-valued argument.

s(t) =

∫
x(a)w(t− a)da (2.6)

The convolution operation is typically denoted with an asterisk:

s(t) = (x ∗ w)(t) (2.7)

In convolution operation equations, the first term is often referred to as the input, and the

second term as the kernel. The output is sometimes referred to as the feature map.

In addition, when dealing with data from real environment, time is always discrete at regular

intervals rather than continuous. Hence, it might be more realistic to assume that the time

index t can take only integer values. Assuming that x and w are also defined only on integer t,

the discrete convolution can be defined as follows:

s(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a) (2.8)
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Fig.2.2 has illustrated an example of convolution applied to a 2-D tensor.
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Figure 2.2: The rolling window computation of CNN[1]

In traditional feed-forward networks, each output unit is connected and interacts with each input

unit. Hence, this interacting process is described by applying matrix multiplication. On the

other hand, in terms of convolutional network, typically it has sparse interactions, which is also

referred to as sparse connectivity or sparse weights. This is realised by establishing a kernel that

is smaller than the input, i.e. as indicated in the small window in the right-top of Fig.2.2. Take

the image processing as an example. The input image might have more than millions of pixels.

However, with small kernels that could occupy only hundreds of pixels, more detail, meaningful

features such as the edges of a picture can be detected. This means that less parameters are

required to be stored, leading to both reduction of the memory requirements and improvement

of its computational efficiency. For instance, if the input and output dimensions are m and n

respectively, matrix multiplication would require m× n parameters, and the training algorithms

would take O(m× n) operations for every training epoch. If the number of connections that

each output may have is limited to k, then this sparsely connected approach would require

only k × n parameters and O(k × n) operation per training epoch. By doing this, it allows

the network to efficiently describe complicated interactions between large-scale variables by

constructing such interactions from small kernels that each describe only sparse interactions[1].
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2.1.2 Reinforcement Learning

Reinforcement Learning Background

In the context of RL, an agent takes actions sequentially to interact with the environment

following a pre-defined rule, which is designed to maximize the cumulative reward (or minimize

the pre-designed cumulative cost). In general, RL is described as a Markov Decision Process

(MDP) which includes: 1) a state space S; 2) an action space A; 3) a state transition probability

p(st+1|st, at), which satisfies the Markov property, i.e., p(st+1|st, at) = p(st+1|s1, a1, ..., st, at); 4)

a reward function r: (S,A)→ R and 5) a policy function π(st) = at, which is used to govern

the agent when choosing the action at at a certain state st.

When the agent interacting with the MDP, a series of states, actions and rewards are generated:

s1, a1, r1, s2, a2, r2, ..., st, at, rt, ... over t time steps. The cumulative return R =
∞∑
t=0

γtrt+1 is the

sum of discounted reward where γ ∈ [0, 1] is the discount factor. It is used to represent how

an agent is going to balance the effect from current and future states. The Q-value function

Qπ(st, at) = E[R|st, at, π] represents the estimation of the cumulative return given an action at,

at state st, and following the policy π from the selected states on-wards. An optimal policy can

be obtained from the optimal Q value Q∗(st, at) = maxQπ(st, at) by selecting the action that

contributes the highest Q-value at each state.

It is notable that RL can be sub-categorized into model-based and model-free algorithms.

In general, model-free algorithms are more popular in the literature since they require less

computational burden and also do not need to develop a model of the environment, which makes

it more convenient for the researchers[18]. More importantly, the integration of RL with Deep

Learning has shown significant performance improvement, which has enabled them to be applied

in many tasks such as auto-driving vehicles. In the following sections, several state-of-the-art

model-free RL algorithms will be introduced.
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Q Learning

Q Learning as one of the classic RL algorithms constructs Q-value function in a recursive format

according to the Bellman equation[19]:

Qπ(st, at) = E[rt + γQπ(st+1, π(st+1))] (2.9)

It is an off-policy, model-free RL algorithm, which has discrete state action spaces. The agent’s

policy is stored in its Q table and the updating procedure of the Q-value after taking action at

at state st with the observed reward rt and the resulting state st+1 follows:

Q(st, at)← Q(st, at) + τδt (2.10)

δt = rt + γmax
at+1

Q(st+1, at+1)−Q(st, at) (2.11)

where τ ∈ [0, 1] is the learning rate, γ ∈ [0, 1] is the discount factor, δt represents the TD error

for the estimation of the Q-value function, and rt + γmaxat+1 Q(st+1, at+1) represents the target

Q-value at time step t.

Q-learning has shown merits of simplicity. However, as the number of considered (A, S)

dimensionality increases, the size of the Q table also grows, which will eventually makes the

problem intractable.

In addition, the resolution of the discretization of the state and action spaces affects the

performance of Q-learning significantly. A higher resolution could result in better performance

but is more likely hard to implement in practice. Therefore, the implementation of Q table

becomes its bottleneck and limits its practical application when it comes to continuous action,

multi-dimensional state space problems.
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Deep Q Network: DQN

In order to address the aforementioned limitations of Q-learning, researchers propose to employ

DNN so as to approximate the Q-value function[20]. The employed DNN is parameterized by θ,

which is shown in equation 2.12:

Q(st, at) ≈ Q(st, at|θ) (2.12)

Comparing to the Q-learning approach, DQN could receive a continuous state st as input and

then outputs a series of estimation of Q-value for each discrete action. The action with maximum

Q value will then be selected at the given state. Similar to Q-learning, DNN is trained based on

minimizing the TD error as shown in equation 2.13:

L(θ) =
1

N

N∑
i=1

(rt + γmax
at+1

Q(st+1, at+1|θ)−Q(st, at|θ))2 (2.13)

θ ← θ + τ∇θL(θ) (2.14)

where N is the size of mini-batch, γ ∈ [0, 1] is the discount factor and then the updating is

applied to the DNN weights θ, as shown in equation 2.14. It can be observed from the above

equation that unlike supervised learning, in the context of RL, there is no clear label for the

data sets. Instead, RL explore and exploit when interacting with the environment and obtain

feedback from the action results. In other words, there is no ‘correct answers (i.e. labels)’ from

the perspective of RL agent. It further implies that the training process of DNN could be

unstable as the RL agent balances itself of exploration and exploitation.

In order to solve this issue, two innovative techniques are proposed: (1) the use of the experience

replay and (2) the use of target network[20]. For instance, the reply buffer can store the

stochastic experiences, which is shuffled in order to obtain the data independence. The DNN is
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trained with randomly sampled mini-batch from the replay buffer, towards the direction of TD

error descending. On the other hand, a target network is constructed with its parameters fixed

temporarily during training, hence the learning process can be stable.

DQN has shown good performance when dealing with continuous state space. However, there

are still limitations since DNN are trained to generate discrete Q value estimations rather than

continuous actions. Therefore, the challenge of finding a precise action that indicates the highest

Q value at a given state still exits, which drives the researchers to find more advanced RL

methods.

Deep Policy Gradient: DPG

As mentioned above, DQN still has the drawbacks when it is required to perform multiple,

continuous actions simultaneously. To this end, researchers have proposed several solutions. In

[21] and [22], the authors use a DNN (with parameters denoted by φ) to estimate a stochastic

policy πφ, which represents the probabilities of selecting an action at the given state st instead

of estimating the Q value directly. As claimed in [23], the probability distribution of the agent’s

action is usually modelled by a Gaussian distribution N(µ, σ2). Hence, the task of the DNN is

to predict the mean µ and the variance σ2 of it, which is referred to as a Gaussian Policy. It is

also notable that DPG now has the advantage to deal with multi-dimension action space by

sampling the Gaussian policy from each action dimension k, as shown in equation 2.15.

πφ(at,k|st) ∼ N(µk, σk
2),∀k = 1, ..., |A|. (2.15)

In terms of the training process, the parameter φ is updated directly according to the policy

gradient, whose target is to maximize the expected reward, as shown in equation 2.16[22]. Monte

Carlo samples xi, p(xi|θ) are used in order to calculate the gradient at the end of an episode,

with the samples xi, r(xi) collected during the game as trajectory[22].
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∇φJ (πφ) = Eπφ [∇φ log πφ(a|s)R] (2.16)

Comparing to DQN approach, it can be found that the action probability in fact can provide

the randomness for the model to explore more states while DQN only generates deterministic

decisions. However, the limitation of DPG lies in the low sampling efficiency in its learning

process since the integration is applied to both state and action space. In addition, the gradient

estimation often has high variance, resulting in slow convergence[24].

Deep Deterministic Policy Gradient (DDPG)

With the aforementioned limitations of DQN and DPG, DDPG is proposed with an actor-critic

architecture, which is realized by employing two DNNs with different purposes [25].

For instance, the actor network is denoted as µθ, with θ indicating its parameters. Given

a state st, it outputs a continuous action at = µφ(st) with respect to the policy. The critic

network is denoted as Qφ, with φ indicating its parameters. Given a state st and an action

at at time t, the critic network outputs the Q value function Qφ(st, at), which performs as

evaluating the action decision. Similar as before, the target of DDPG is also to search for

the optimal policy that could give the maximum Q value. Among the previously introduced

RL algorithms, greedy search is often implemented in order to obtain the maximum of the Q-

value, i.e., µ(st+1) = arg maxat+1
Q(st+1, at+1). However, when it turns to the multi-dimensional

continuous action spaces, greedy policy tends to be intractable. Therefore, the training and

updating process of DDPG with the actor-critic structure achieves the target through the

following procedures:

(1) For a given state st, actor network µ selects the action at from the policy and exploration

noise. A random Gaussian noise N(0, σt
2) with exponential decay is usually chosen and added

to the actor’s output µθ(st). By doing this, the RL agent acquires the ability of maintaining

an appropriate balance between exploration and exploitation. In other words, the agent is
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able to learn both the best decision from the given information and more information from the

environment.

(2) Action at is feed forward to the critic network, then reward rt and new state st+1 are observed,

which will be stored in an experience pool (i.e. reply buffer) as transition tuple (st, at, rt, st+1).

It is notable here that since actions and states are generated by interacting with the environment

sequentially, the samples of experiments are temporally correlated. As a result, the reply buffer

must be shuffled before a mini-batch is generated. In addition, when the reply buffer is full,

more recent experiences will replace the more previous ones.

(3) Once a random mini-batch is generated, gradients should be calculated in order to update

the networks. For instance, in order to train and update the critic network, the following loss

function should be minimized:

L(φ) =
1

N

N∑
t=1

(rt + γQφ(st+1, µθ(st+1))−Qφ(st, at))
2 (2.17)

where rt + γQφ(st+1, µθ(st+1)) represents the target Q value at time step t. In order to stabilize

the updating process, a target network is constructed, which is denoted by Q̂φ(st, at). The

target critic network is initialized by copying the parameters from the online critic network.

The parameters of the target network are updated by slowly tracking the parameters of the

online network. Expressed in equation as:

φ′ ← τφ+ (1− τ)φ′ (2.18)

with τ � 1.

(4) To update the actor µθ, the sampled policy gradients are used and expressed as follows:

∇θJ (µθ) =
1

N

N∑
t=1

∇AQφ(st, at)at=µθ(st)∇θµθ(st) (2.19)
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where ∇AQφ(st, at)at=µθ(st) indicates the direction towards the higher Q value, while gradient

∇θµθ(st) indicates the direction towards the optimal action at the given state st. Following the

same rational, a target actor network is constructed, which is initialized with the online actor

network parameters. Soft update is implemented as before, which is shown in equation below:

θ′ ← τθ + (1− τ)θ′ (2.20)

with τ � 1.

The overall framework of DDPG algorithm is given in Fig.2.3.

Figure 2.3: DDPG overall workflow

2.2 Why Bayesian Deep Learning?

Deep learning has demonstrated state-of-the-art performance in a vast number of tasks; however,

as illustrated in [26], it still suffers from a series of limitations that need to be investigated and

resolved, including 1) uninterpretable black boxes; 2) being weak in its uncertainty representation;

3) being data hungry. To address these challenges, in this part, the benefits and rationale of

employing BDL to conduct different tasks will be explained.
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2.2.1 Inherently probabilistic model

BDL is inherently a probabilistic model that allows a deep learning model to represent uncertainty.

Unlike traditional neural networks, which have fixed parameters once trained, Bayesian neural

network parameters (i.e., the weights and bias) are expressed as distributions. As a result, the

Bayesian model generates its result by directly sampling from its parameters rather than adding

noise to the output or setting up multiple input scenarios. In other words, the Bayesian model

is fundamentally probabilistic rather than deterministic in nature. To further illustrate the

difference between BDL model and traditional models, an simple example is given below.

We start from a simple example of y = sinx function. In Fig. 2.4, BDL model is used. The

yellow line represents the actual value and the red line is mean value of the prediction. x ∈ [−5, 5]

is the training range. The blue shaded area is formed by the direct sampling of BDL model,

thus is the probabilistic predictive distribution of the results.

Figure 2.4: The probabilistic prediction results of BDL model.

Figure 2.5: The probabilistic prediction results of GBQR model.
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In contrast, we choose an ensemble of GBQR models in Fig. 2.5 to provide a traditional fashion

of probabilistic machine learning prediction. The technique uses an ensemble of deterministic

models, meaning that each model in the ensemble produces a point estimate rather than a

distribution. It is notable that usually, it works by independently training many models of

slightly different parameters on the same data-set, or different random sub data-sets upon the

same model. However, these type of models only output a single value of the their prediction.

The so called ‘probabilistic interval’ is usually formed by an upper bound and a lower bound,

which is simply the maximum and minimum values of a series of prediction. In classification

models, the probability vector obtained at the end of the softmax function is often erroneously

interpreted as model confidence. As we can see from Fig. 2.5, when the input testing data

is beyond the training range, the model only provide a wrong prediction and no probabilistic

distribution can be correctly generated.

To emphasize the point of this research and to clarify the ambiguity: The author believe

that the true ‘probabilistic’ ability of a model comes from the model itself, which gives the

model the ability to generate the distribution of its prediction results. Correspondingly, this

generated distribution should reflect the epistemic learning process (i.e. the model enhances its

performance upon the defined tasks with growing knowledge from the given information) of

model. There are already exploration about this type of property of the model, which is often

interpreted as capturing model uncertainties (or epistemic uncertainty). For example, in Fig.

2.4, when the input testing data is out of the training range (x ≤ −5, x ≥ 5), the model cannot

recognise the data, thus gives uncertainty on its results rather than simply provide a wrong

prediction.

2.2.2 Captures both epistemic uncertainty and aleatoric uncertainty

The word epistemic comes from ‘episteme’, which is a Greek word for ‘knowledge’. In other

words, epistemic uncertainty is ‘knowledge uncertainty’. Aleatoric comes from the Latin

‘aleator’, or ‘dice player’, which means that aleatoric uncertainty is the ‘dice player’s’ uncertainty.
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In addition, epistemic and aleatoric uncertainties could also be referred to as reducible and

irreducible uncertainties respectively, since epistemic uncertainty can be reduced with more

knowledge learned from the input data, while aleatoric uncertainty cannot be explained away

even with more data(the stochasticity of a dice roll cannot be reduced by observing more

rolls)[27]. In this thesis, epistemic and aleatoric uncertainties can also be regarded as same

expression as model uncertainty and data uncertainty.

The example in previous section is a simple case that the test data are out of the range of

training distribution. Another typical and more practical example would be: given several

pictures of dogs and cats as training data, then let the model to examine whether the uploaded

picture from a user is a dog or a cat. In this case, it is easy to raise the question that what

should happen if a user uploads a photo of a tiger? The model has been trained on pictures of

dogs and cats, and is expected to distinguish between them. But the model has never seen a

tiger before, thus a picture of a tiger would lie outside of the data distribution where the model

was trained on. This illustrative example can be extended to more serious settings, such as

scenes that an autonomous vehicle system has never been trained on, or operating conditions

that never occur in a power system. A possible desired behaviour of a model in such cases would

be to return a prediction, but also with extra information that the input data lies outside the

training range, which is regarded, in this research, as capturing both epistemic uncertainty and

aleatoric uncertainty.

In the literature, most of the existing Bayesian deep learning approaches can merely capture

either the model uncertainty or the stochastic uncertainty alone [27]. However, Bayesian neural

network can simultaneously capture the model uncertainty and the stochastic uncertainty. More

specifically, the model uncertainty is captured by placing a prior distribution over the model’s

weights; then, the posterior can be approximated via an inference algorithm. Hence, the model

uncertainty is represented by the shape of the distribution of the weights. In other words,

the BDL attempts to capture how much those weights change based on the input data. For

safety-critical applications, it is of significant importance to capture the epistemic uncertainty

to understand examples that are different from the training data. Furthermore, stochastic
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uncertainty is captured by placing a distribution with small variance (usually Gaussian random

noise) over the output and, therefore, the model learns the variance in the noise as a function of

different inputs [6].

2.2.3 Explainable under probability theory

Traditional deep neural networks use their neurons to memorize the information inside the

training data, which implies that the parameters in traditional neural networks have no physical

meaning, and thus, their values can be arbitrary. Nonetheless, Bayesian networks calculate

their outputs with Bayesian theory to render the parameters explainable so that the network

has the ability to ‘feel’ certain or uncertain about its result. In particular, BDL can calibrate

the model and the prediction uncertainty to obtain smart systems that know exactly what

they do not know. For example, in net load forecasting, when the predictor encounters input

features with extremely different or unreasonable values than it has encountered before (i.e.,

out-of-distribution test data), the predictor can give an answer (e.g., the quantified model

uncertainty) indicating that it does not know how to handle this new data-set, rather than

giving a wrong forecast like the current deep learning models. Another typical example is

the Q-value function approximation in RL. This is the function that estimates the quality of

different actions an agent can take. In other words, Q-value directly determines the quality of

the learning process of an RL agent. In the existing approaches, epsilon greedy search is often

employed where the agent selects the action with maximum Q-value. But with uncertainty

information, an agent can avoid greedy, short sighted, high-risky or unreasonable actions with

high Q value, which means the agent’s behaviour becomes reasonable and explainable, thus

could be regarded as balancing when to exploit and when to explore.

2.2.4 Reliable performance with small data-sets

Many real-world tasks have limited amounts of data (small data) that conventional deep learning

systems cannot address. These tasks include choosing what data to learn from, or exploring an
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agent’s environment efficiently. Data collection is sometimes expensive such as the labelling work

of individual examples by an expert, or time consuming such as the time-domain simulations in

a dynamic security assessment problem of multiple times. More importantly, the amount of

labelled data required could increase significantly with the growing of the complexity level of

the problem.

One possible solution to this task could be active learning [28]. For instance, model itself could

choose what unlabelled data to be its next training set, which would be most informative. Then

asking an external party (e.g. a time-domain simulator) for a label only for these selected data

points. An acquisition function is usually required in order to select the correct data points

to be labelled, which is based on the ranking of potential informativeness. Among various

acquisition functions, many of them employ model uncertainty in order to decide on their

potential informativeness[29]. Hence, it could be concluded that by using BDL, the amount of

required data could be further reduced, while still maintaining good performance.

However, even without the aforementioned learning framework, BDL still shows its great

potential in dealing with small data-sets. For example, in terms of the net load forecasting

problem, although a large number of measurements can be collected through advanced smart

metering systems, for classical deep learning, which usually requires millions of training samples,

the performance may still be limited due to the lack of data. However, for BDL, less data are

required to make accurate forecasting. By integrating prior knowledge into learning systems,

BDL can effectively address the over-fitting problem by imposing a prior on hidden units or

neural network parameters, even with small/insufficient data-sets. In other words, BDL enables

the network to achieve automatic model complexity control and structure learning with the

benefits of the built-in implicit regularization [30].
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Chapter 3

Using Bayesian Deep Learning to

Capture Uncertainty for Residential

Net Load Forecasting

3.1 Introduction

Global decarbonization is expected to be achieved by increasing the penetration of renewable

energy sources (RES) and by the electrification of the heating and transport sectors. Although

uncertainty at the higher system level is more likely to be traded off, in future power systems,

the predictability of aggregate loads still tends to be limited by the significant uncertainties

arising from climate variability, electric vehicles, distributed renewable energy generation, energy

efficiency, and demand response [31]. Accurate probabilistic net load forecasting is thus of great

importance to capture these massive uncertainties, contributing to the operation and planning

of future smart, low-carbon energy systems.

In the literature, conventional forecasting approaches focus on point/deterministic forecasting

(e.g., [32, 33, 34, 35]). In particular, the pioneering work of deterministic short-term load

forecasting in [34] and [35] effectively addresses the challenges of peak load estimation at
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system level and bus load prediction, respectively. However, in view of capturing uncertainties

injected from different resources, point forecasting is becoming obsolete because it can provide

only a single output per time step for the decision-making process that heavily depends on

expected values. In other words, the ideal forecasting models should be capable of representing

uncertainty via quantiles, intervals or probability density functions for numerous applications

such as probabilistic load flow analysis, reliability planning, and optimal bidding in electricity

markets. In general, according to reference [31], the probabilistic forecasts can be obtained

via (i) feeding multiple scenarios to a deterministic model [36, 37, 38, 39]; (ii) developing novel

probabilistic forecasting models [40, 41, 42, 43, 44]; (iii) post-processing the point forecasts

[38, 45]; or their combinations [46]. In particular, the novel hybrid probabilistic load forecasting

model proposed in [46] was developed based on an improved wavelet neural network trained by

a generalized extreme learning machine to provide the load forecast with a probabilistic interval

while capturing the forecasting model and data noise uncertainties. A comprehensive review on

probabilistic electric load forecasting challenges and modern probabilistic forecasting models is

presented in [31].

Despite the rich literature focusing on electric load forecasting, very few studies aim to predict

the net load (i.e., the load traded between the microgrid and the utility grid), which is important

for smart grid management and operations as well as resource allocation and electricity market

participation with respect to common coupling between interconnected grids [5]. Different

from traditional load forecasting, net load refers to the total energy consumption partially

supported by the distributed renewable energy, such as local PV generation, thus injecting

additional uncertainty, especially when the PV generation is partially visible or completely

invisible. Therefore, the researchers in [47] designed a novel method to address the invisible

high PV penetration, where the net load profile is decomposed into PV output, actual load and

residual, which are predicted in turn. Additionally, additive and integrated net load forecast

models are compared in [5], and the results demonstrate that the forecasting errors of net load

and solar are cointegrated with a common stochastic drift. Other works, such as [48], propose

very short-term forecasting using a complex-valued neural network. A neural network (NN)
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with a Levenberg-Marquardt training algorithm is used in [49] to generate the feeder net load

forecast.

Beyond the aforementioned studies, which are mostly based on classical statistical or ANN

methods, in recent years, deep learning, as one of the cutting-edge technologies, has received

widespread attention in a range of research fields [50, 51]. Regarding energy-related time-series

forecasting, researchers [52] have used deep learning methods to achieve a load forecasting task

and compared the performance between a conditional restricted Boltzmann machine and a

factored conditional restricted Boltzmann machine. Additionally, the authors of [53] propose a

novel forecasting model for short-term power load and probability density forecasting based on

deep learning, quantile regression and kernel density estimation. Furthermore, another type of

network structure designed for handling sequence dependence (i.e., time-series data in this case)

is recurrent neural networks. The long short-term memory (LSTM) network is one powerful

type of RNN structure that includes a memory cell that can retain information for long periods

of time and deal with the the problem of long-term dependencies [54]. As an example, the

authors of [55] and [56] have used deep LSTM networks to tackle the challenges of high volatility

and uncertainty in household-level loads, showing a verified superior performance. More recent

works such as [57] proposed an improved quantile regression neural network by introducing

Gaussian noise into the training process. In [58], a deep residual network is proposed based on

Monte Carlo dropout to achieve probabilistic forecasting. Additionally, LSTM also has some

other variations, such as dilated LSTM [59] and bidirectional LSTM [60]. When dealing with

the challenges of insufficient data, the authors in [61] designed a transfer training model with

shared layers to perform wind farm forecasting.

Although the existing research has successfully demonstrated the superior performance of deep

learning on forecasting tasks, inherently, most of the studies are actually based on deterministic

models, which lack the ability to capture uncertainty. As a new probabilistic deep learning

model, the concept of Bayesian deep learning (BDL), which enables a deep learning framework

to model uncertainty, is becoming increasingly prevalent in computer vision, natural language

processing, medical diagnostics, and autonomous driving [27]. BDL exhibits the benefits of
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uncertainty representation, understanding generalization, and reliable prediction, leading to a

more interpretable deep neural network through the lens of probability theory. In this part of

work, a novel probabilistic net load forecasting framework is proposed based on BDL, aimed at

capturing both epistemic uncertainty and aleatoric uncertainty. Note that this work will focus

on the net load prediction at the aggregated level, and the proposed framework implements

a clustering technique to group the residential customers and employs PV outputs as parts

of input features for network training. We design case studies based on real PV generation

and load data from the Australian grid. Compared with other state-of-the-art methods, the

proposed approach outperforms conventional approaches, and the results show the importance

of clustering and high PV visibility. To summarize, this study makes the following original

contributions:

(1) A clustering-forecasting-aggregation probabilistic day-ahead net load forecasting strategy is

proposed to make full use of smart meter data and partially visible PV output data.

(2) Bayesian theory and deep LSTM networks are combined to generate aggregated level

probabilistic net load forecasts with the target of capturing both epistemic uncertainty and

aleatoric uncertainty. To the best of the authors’ knowledge, this is the first work to exploit

Bayesian deep learning for net load prediction.

(3) A comprehensive comparison with a series of state-of-the-art methods is conducted. The

superior performance of the proposed scheme is demonstrated with respect to both the deter-

ministic and probabilistic forecasting results. Additionally, it is shown that the forecasting

performance can be effectively enhanced in the context of high PV visibility.

3.2 Bayesian Deep LSTM Network (BDLSTM)

The appeal of a special recurrent neural network architecture, long short-term memory networks

(LSTMs) [62], has been demonstrated for short-term residential load forecasting to tackle

the challenges of long-term dependencies in the literature (e.g., [55]). Beyond that, the deep
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architecture of LSTMs can contribute to learning highly nonlinear relationships between the

input explanatory features and the output residential load data through a series of linear or

nonlinear functions.

Figure 3.1: The structure of one LSTM cell.

To describe the basic architecture of the proposed Bayesian deep neural network, we first briefly

introduce the structure of one LSTM cell, as shown in Fig.3.1. The inputs of the LSTM cell at

one particular time step t are the previous state ht−1 and the current input xt. Through four fully

connected neurons ft, gt, it, and ot, three gates are employed to fulfill the function of memory

or forget information. In particular, the forget gate decides how much previous information

will be transported forward, the input gate controls the aspects of new input information, and

the output gate decides what will be output at this time step. In terms of the outputs, ht is

then fed into the next time step as input, which can be considered as a short-term state, while

ct decides the longer-term dependency. The overall computation is summarized in equations

(3.1)-(3.4) as follows:

ft = η
(
W T
xf · xt +W T

hf · ht−1 + bf

)
(3.1)

51



CHAPTER 3. USING BAYESIAN DEEP LEARNING TO CAPTURE UNCERTAINTY
FOR RESIDENTIAL NET LOAD FORECASTING

it = η
(
W T
xi · xt +W T

hi · ht−1 + bi

)
(3.2)

ot = η
(
W T
xo · xt +W T

ho · ht−1 + bo

)
(3.3)

gt = tanh
(
W T
xg · xt +W T

hg · ht−1 + bg

)
(3.4)

Given the values of the three gates at next time step, the values of next state ct and ht are

calculated by the equations ct = ft · ct−1 + it · gt and yt = ht = ot · tanh (ct), respectively, where

W T
xf , W

T
xi, W

T
xo, and W T

xg represent the weights of each input vector xt, W
T
hf , W

T
hi, W

T
ho, W

T
hg

are the weights of each previous short-term state ht−1; bf , bi, bo, and bg are the biases for each

of the four. It is notable that at the initial stage, bf should be initialized with 1 instead of

0 to avoid forgetting everything from the beginning of training. Overall, through the above

novel structure, LSTM handles time series by storing the important input information in the

long-term state, preserving it for as long as required and retrieving it when necessary.

Figure 3.2: An example of the proposed BDLSTM network with a zoomed-in plot of the forget
gate at time step t in the first layer.

To obtain uncertainty estimates in deep learning, most of existing Bayesian deep learning

approaches can capture only the epistemic uncertain or the aleatoric uncertainty alone, which

are usually formalized as probability distributions over the model parameters or the model
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outputs [27]. To jointly capture the epistemic uncertain and the aleatoric uncertainty, a Bayesian

deep LSTM network (BDLSTM), casting deep LSTMs as Bayesian models, is proposed, which

retains the model architecture, placing a prior distribution upon the network weights and bias

parameters of LSTMs and then inferring a posterior distribution over the given data.

Let Xtrain = [x1, · · · , xTtrain ]T ∈ RTtrain×dx and Ytrain = [y1, · · · , yTtrain ] ∈ RTtrain×dy denote the

input data and output label, respectively, of the BDLSTM model that needs to be trained,

where Ttrain is the total number of training data points, and dx and dy represent the dimensions

of the input and the output, respectively. The primary target of a deep LSTM network can be

formalized as identifying the optimal parameters W of a function y = fW (x) that are likely to

have generated the outputs (i.e., the actual net load). In this case, fW (·) represents the deep

LSTM network with NL layers and model parameters are denoted by W = [W1, ...,WNL ], which

is a set of random variables. An example of the Bayesian LSTM cell of the proposed BDLSTM

network is given in Fig. 3.2 with a zoomed-in plot of the forget gate at time step t in the first

layer. Detailed mathematical illustrations are given as follows.

The Epistemic Uncertainty

In general, the epistemic uncertainty (model uncertainty) comprises structure uncertainty and

model parameter uncertainty. More specifically, structure uncertainty refers to the uncertainty

in selecting the most appropriate model structure to extrapolate or interpolate the data well.

Among a vast number of possible model parameters, which set of parameters should be selected

to best explain the observations is uncertain, denoted by the model parameter uncertainty [27].

To capture the epistemic uncertainty, a prior distribution (e.g., N (0, I)) is placed over W . In

the literature, a series of studies have been carried out on prior selection (e.g., [63, 64]). In

general, prior distributions can be classified into 1) non-informative prior distributions; 2) highly

informative prior distributions; and 3) moderately informative hierarchical prior distributions

[63].

For Bayesian deep neural networks, the prior distributions should represent the prior belief
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about the distribution of the neural network parameters (weights and bias), which are difficult to

be identified because the physical meaning of these parameters remains unclear. In other words,

selecting the prior for the Bayesian deep learning is still an open question that needs to be further

investigated by researchers. According to references [65, 27, 66], employing standard parametric

distributions has been demonstrated as one of the most effective solutions when the prior belief

is difficult to be identified. Therefore, in this case, we set the standard normal distribution as

our prior whose zero mean can bring about the benefit of regularization [27]. It is important to

note that after training the Bayesian deep neural network, the posterior distribution will be

employed to generate the samples of forecasts rather than the prior distribution.

After determining the appropriate prior, the model likelihood p(Ytrain|fW (Xtrain)) is also defined

as a normal distribution N (fW (Xtrain), σ2) with a constant noise level σ. Based on Bayes rule,

the posterior p(W |Xtrain, Ytrain) is calculated by

p(W |Xtrain, Ytrain) =
p(Ytrain|Xtrain,W ) · p(W )

p(Ytrain|Xtrain)
(3.5)

where p(Ytrain|Xtrain) is the marginal probability that cannot be estimated analytically. To

this end, different inference techniques such as variational inference and Markov chain Monte

Carlo (MCMC) [30] are proposed to approximate it. Note that p(W |Xtrain, Ytrain) represents

the posterior distribution over weights given the training data {Xtrain, Ytrain}. Given a new

input point x, the new output y, which is defined as a random variable, can be predicted by

integrating

p(y|x,Xtrain, Ytrain) =

∫
p(y|x,W )p(W |Xtrain, Ytrain)dW (3.6)

It is notable that the true posterior is usually intractable, especially for complex models

(e.g., deep LSTM networks). Therefore, an approximating variational distribution qθ(W ),

parameterized by θ, is employed to ensure that the optimal distribution q̃θ(W ) can well represent

p(W |Xtrain, Ytrain), by minimizing the Kullback-Leibler (KL) divergence between qθ(W ) and
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p(W |Xtrain, Ytrain) [67]:

KL(qθ(W )||p(W |Xtrain, Ytrain)) =

∫
qθ(W ) log

qθ(W )

p(W |Xtrain, Ytrain)
dW, (3.7)

using inference algorithms such as variational inference (VI), which is employed in this work. It

is notable that it is intractable to analytically solve the optimization problem. Consequently,

the objective is transformed from a KL divergence minimization problem to an Evidence Lower

Bound (ELBO) maximization problem. More details regarding the employed VI algorithm can

be found in the reference [27].

After obtaining the optimal distribution q̃θ(W ), the predictive distribution can be approximated

by

p(y|x,Xtrain, Ytrain) =

∫
p(y|x,W )q̃θ(W )dW = q̃θ(y|x). (3.8)

Let Tsample denote the number of sampled weights {Ŵt}
Tsample
t=1 , simulating the model based on

the input x, the predictive mean and the predictive variance of y, which is a vector of size

Tsample, can be approximated based on these samples. Mathematically, the predictive mean (the

first raw moment) can be estimated with the unbiased estimator [27]

Ẽ
[
y] :=

1

Tsample

Tsample∑
t=1

f Ŵt(x) (3.9)

where f Ŵt(x) represents stochastic forward passes through the model (i.e., samples). On the other

hand, to obtain the predictive variance, the second raw moment needs to be estimated. Similar to

the estimation of the first moment, given that Ŵt ∼ q̃θ(W ) and p(y|fW (x)) = N (y; fW (x), σ2)

for some σ > 0, we have the estimator

Ẽ
[
yTy
]

:=
1

Tsample

T∑
t=1

f Ŵt(x)Tf Ŵt(x) + σ2 (3.10)

with Tsample samples. Finally, the predictive variance can be approximated by Ṽar[y] as follows:
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Ṽar[y] = Ẽ
[
yTy
]
− Ẽ

[
y]T Ẽ

[
y] := MU(x, y,W ) + σ2 (3.11)

where

MU =
1

Tsample

Tsample∑
t=1

f Ŵt(x)Tf Ŵt(x)− 1

Tsample
2

Tsample∑
t=1

f Ŵt(x)T
Tsample∑
t=1

f Ŵt(x) (3.12)

represents the epistemic uncertainty (model uncertainty), which measures how much the model is

uncertain about its outputs. It is important to note that in equation (3.11), with the increasing

number of observations, the term MU(x, y,W ) can be reduced whereas the inherent noise

measured by σ2 cannot be vanished.

The Aleatoric Uncertainty

According to the dependency between the uncertainty and the inputs, the aleatoric uncertainty

can be further divided into homoscedastic uncertainty and heteroscedastic uncertainty [6]. For

homoscedastic uncertainty, the observation noise parameter σ is fixed whereas in this case, we

need to capture the heteroscedastic aleatoric uncertainty because the uncertainty varies over

different periods of time when dealing with the net load. To this end, σ in equation (3.11) needs

to be adapted as a function of the input x, which means it is data-dependent. Let Ttrain denote

the number of training observations, and the minimization objective of the data-dependent

heteroscedastic model can be expressed as follows:

L(θ) =
1

Ttrain

Ttrain∑
i=1

1

2σ(xi)2
||yi − f(xi)||2 +

1

2
logσ(xi)

2 (3.13)

In this case, maximum a posteriori (MAP) inference is carried out to locate a single parameter,

θ, rather than the distribution of the weights, leading to neglect of the model uncertainty.
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The Combined Uncertainties

To combine the epistemic uncertainty and the aleatoric uncertainty in a single BDLSTM model,

the most straightforward and effective way is to transform the heteroscedastic model into a

Bayesian model by placing a distribution over the weights and the bias [6]. First, we need to set

up a new expression for the model to split the top layers of a deep LSTM network between the

predictive mean f(x) and the model precision g(x) to simultaneously output ŷ and σ̂2:

[ŷ, σ̂2] = f ŴBDLSTM(x) (3.14)

where fBDLSTM represents the proposed Bayesian deep LSTM network parameterized by Ŵ ∼

qθ(W ). Given that a normal likelihood is chosen to model the aleatoric uncertainty, the final

loss function of the BDLSTM model can be formulated as:

LBDLSTM(θ) =
1

Ttrain

Ttrain∑
i=1

1

2σ̂2
i

||yi − ŷi||2 +
1

2
logσ̂2

i (3.15)

Note that the loss function can consider both the model uncertainty through ŷ and the

heteroscedastic uncertainty through σ̂. Finally, the predictive uncertainty Var[y] of the proposed

BDLSTM model, consisting of both the aleatoric uncertainty and the epistemic uncertainty can

be approximated by

Ṽar[y] :=
[ 1

Tsample

Tsample∑
t=1

ŷt
2 −

 1

Tsample

Tsample∑
t=1

ŷt

2 ]
+

1

Tsample

Tsample∑
t=1

σ̂t
2. (3.16)

It is important to note that, compared with equation (3.11) which has a fixed σ, the second

term in equation (3.16) is data-dependent. Detailed explanations regarding the Bayesian deep

learning are presented in references [27], [6].

57



CHAPTER 3. USING BAYESIAN DEEP LEARNING TO CAPTURE UNCERTAINTY
FOR RESIDENTIAL NET LOAD FORECASTING

Figure 3.3: The overall structure of the proposed framework.

3.3 The Proposed Net Load Forecasting framework

Based on the above-introduced BDLSTM model, a novel probabilistic short-term net load

forecasting scheme is proposed to fully utilize the subprofiles of residential customers and exploit

the partially visible PV output data to enhance the forecasting performance. In particular, the

proposed framework includes four main stages: i) a Clustering Stage; ii) a Feature Construction

Stage; iii) a Forecasting Stage; and iv) an Aggregation Stage, as shown in Fig. 3.3.

In order to provide an illustrative and straightforward forecasting procedure, Fig. 3.4 is also

employed. It is notable that since the work is about day-ahead forecasting, there is no so called

‘real-time operation’. To clarify the ambiguity, the procedure is simplified and summarised as

follows: When it comes to 0 o’clock at midnight, the hourly-resolution measurement of the last

24 hour is conducted and collected, which forms the latest section of historical database. If
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model updating work is required, historical data including load and temperature etc. are used

as input signal to establish the model, which is usually called training process. The testing work

can also be implemented to examine the performance of the updated model. If no updating

work is needed, then the model can be used directly to obtain new forecasting results. In order

to obtain the formal forecasting, the up to date measurements are used as input signal. Since

this is only a feed-forward process, the new formal 24-hour forecasting results would only cost

seconds.

Figure 3.4: Typical diagram of load forecasting

3.3.1 Clustering Stage

In the proposed framework, the Clustering Stage aims to group the prosumers into different

clusters based on their average daily net load patterns over the training days and to extract

representative net load profiles from each cluster. This step is motivated by the fact that

fine-grained subprofiles can reveal more information about the aggregated load and further

assist in improving the forecasting accuracy [68]. However, it is impractical and inefficient to

build a BDLSTM model for each individual customer and then aggregate them. The clustering

procedure can also contribute to effectively reducing the computational complexity by balancing

the number of models and the forecasting accuracy.

Let L = [L1, ..., LN ] ∈ RT×N denote the historical load data of N residential customers where

T is the total number of observations. The first step is to separate all the customers into two
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groups: by invisible PV generation and visible PV generation, represented by Linv ∈ RT×N inv

and Lvis ∈ RT×Nvis
, respectively. Given that the numbers of clusters for each of these groups are

Kinv and Kvis, respectively, as one of the most widely used and powerful methods, a hierarchical

clustering method with Ward’s linkage [69],[70] is applied based on the average daily net load

patterns of Linv and Lvis, defined as RLP inv ∈ RN inv×48 and RLP vis ∈ RNvis×48, respectively,

to obtain the cluster label for each individual customer. In particular, hierarchical clustering

has the benefits of having a deterministic nature and terminating the agglomeration procedure

at any number of clusters as required [71]. A detailed explanation of the hierarchical clustering

method with Ward’s linkage can be found in references [69, 70, 71]. Subsequently, we aggregate

the subprofiles in each cluster for both the invisible and visible groups to obtain the net load

at a higher level:

AL
inv(vis)
k =

∑
i∈Ω

inv(vis)
k

Li,∀k ∈ 1 · · ·Kinv(vis) (3.17)

where ALinvk and ALvisk represent the higher-level net load of the kth cluster in the groups Linv

and Lvis, respectively. It is notable that the weights of each cluster, P inv = [p1 · · · pKinv ] and

P vis = [p1 · · · pKvis ], are also saved in this stage and then will be used in the Aggregation Stage.

3.3.2 Feature Construction Stage

The task of the Feature Construction Stage is to identify the most correlated explanatory

variables that contribute to forecasting and construct the training and testing sets for the

BDLSTM model. For short-term load forecasting, feature selection is a key procedure to

obtain reliable prediction strategies by removing ineffective candidate features. Conventionally,

feature selection is conducted based on either expert experience or trial-and-error procedures

[72]. To automatically select the effective features, the relevance of the input features and the

target variable as well as the redundancy among the candidate features are considered as the

two critical information-theoretic criteria, which have been investigated in the power systems
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literature (e.g., [73, 74, 75]). Beyond that, the concept of interaction (synergy) is proposed

in [72] based on the mutual information (MI) and the interaction gain (IG) to measure the

interaction among candidate features of a forecast process. The effectiveness of this novel feature

selection technique has been well demonstrated based on real load and price data.

Although several advanced feature selection techniques have been proposed for forecasting tasks,

in terms of the practical implementation, it is always the accessibility to the data that matters.

Depending on the maturity level of the data management (e.g. Does the data has aliened

resolution? Does the data storage has enough capability? How to deal with the privacy issue?

Does it require the cooperation of multiple departments?), the data quality might also vary a lot.

More importantly, the development of deep learning techniques renders it possible to effectively

handle raw data without the significant requirements of extensive domain expertise and careful

feature design [76]. Therefore, instead of implementing or proposing novel feature selection

methods, the investigation in this work focuses on the novel Bayesian deep learning technique,

which has the benefit of automatically identifying the representative features based on the raw

features while considering uncertainty. In order to give a benchmark comparison and also to

demonstrate the significance of the training data features, the critical feature components are

discussed next, which is widely agreed and given by [32]. The integration of feature selection

methods will be studied in our future work to further improve the forecasting performance.

As illustrated in [32], feature selection should reflect the temperature relations, the seasonal

effects and the effects of other interactions.

Temperature

Temperature is reported to have relationships with loads. During the previous decades, the

relationship between these two has been intensively studied e.g. piece-wise linear function in

[77]; piece-wise quadratic function in [78] and the 3rd ordered polynomials in [79].

In order to investigate the relationship, a scatter diagram of load and temperature is employed

in Fig. 3.5 from the 2004 to 2008. Both positive and negative correlations can be identified from
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observation. For instance, above approximately 55◦F(13◦C ) a positive correlation between load

and temperature can be observed. While temperature below 55◦F leads to a negative correlation

between two variables. A good example for understanding is that at winter time, people tend to

switch on their electric heaters when the weather gets colder, resulting in increasing demand. It

is also notable that the characteristics of the figure might vary in different service territories,

since the comfortable temperature level might be different for people living in different areas.

Figure 3.5: Load-Temperature scatter diagram from load forecasting competition database[2].

Calendar Variables

It is obvious that there are three fundamental periodic blocks in the load series: day, week, and

year[32]. Depending on the exact methodology to be used or the human activity behavior of

the particular territory, there could be various treatments to each block when constructing the

database. For example, the 7 days of a week can be denoted by a binary variable with 2 classes

(i.e. 1 for weekdays and 0 for weekends), qualitative variables of 3 classes (weekdays, Saturday,

Sunday), or 7 classes for each day, etc. Although the definition of weekdays and weekends might

be different in some of the places in the world, we focus on the most general regulation. Hence,

the calendar variables (hour of the day, day of the week, and month of the year) with 24, 7, and
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12 classes, are used to denote the 24 hours of a day, 7 days of a week, and 12 months of a year

respectively.

Interaction Effects

Apart from the aforementioned aspects, there are also cross effects from the interaction of

the variables. For example, temperature is obviously seasonal-dependent and normally noon

has a higher temperature than in the midnight. Therefore, the selected features should also

consider the correlation hidden in the interaction of the variables. In this case, the effect between

temperature and the calendar variables exists in the form of 3rd ordered polynomial and the

calendar variables Hour and Month should be in the model[2]. In addition, there are hidden

effects within the calendar variables, for example, the same hour in either weekday or weekend

might result in different load consumption due to human activities. For instance, people tend to

get up early during weekdays. Typical activities might include taking a shower, boiling a cup of

coffee etc. In contrast, there might be less load consumption in the morning of the weekends

since people do not have to go to work. Hence, the interaction effect between Hour and Day

should also be explored when constructing the training database.

As discussed above, the significant achievements in Deep Learning area gives researcher and

electrical engineers the opportunity to develop data mining work upon limited data resources.

To this end, we manually select two sets of features for the visible and invisible groups. Given

that the target is to forecast the net load at time t for cluster k in the invisible group, the

key selected training features for ALinvk,t include the following: 1) the net load historical data

at the same time step on the previous day ALinvk,t−24; 2) ALinvk,t−24.5; 3) ALinvk,t−25; 4) the net load

historical data at the same time step on the previous two days ALinvk,t−48; 5) ALinvk,t−48.5; ALinvk,t−49;

6) the hour of the day ht; 7) the day of the week dt; and 8) the month of the year mt. In

addition to the aforementioned features, we consider historical aggregated rooftop PV generation

data AGk,t−24, AGk,t−48, AGk,t−72, and AGk,t−week as additional features to predict the net load

ALvisk,t for cluster a k at time t in visible group. Afterwards, the training sets of cluster k for

both the invisible and visible groups are constructed as follows:
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X invTrain
k,t = [ALinvTraink,t−24 , ALinvTraink,t−24.5 , AL

invTrain
k,t−25 ,

ALinvTraink,t−48 , ALinvTraink,t−48.5 , AL
invTrain
k,t−49 , ht, dt,mt] (3.18)

XvisTrain
k,t = [ALvisTraink,t−24 , ALvisTraink,t−24.5 , AL

visTrain
k,t−25 ,

ALvisTraink,t−48 , ALvisTraink,t−48.5 , AL
visTrain
k,t−49 , ht, dt,mt,

AGk,t−24, AGk,t−48, AGk,t−72, AGk,t−week] (3.19)

where the test sets X invTest
k and XvisTest

k are defined similarly to those of the training sets. In

addition, the training labels, the actual net load, for a cluster k are defined as Y invTrain
k and

Y visTrain
k for the invisible and visible groups, respectively.

3.3.3 Forecasting Stage

The Forecasting Stage is the fundamental core of the entire scheme in which a novel Bayesian

deep learning method is proposed. As illustrated in previous chapter, BDLSTM integrates

the Bayesian method with a deep LSTM network to capture both aleatoric uncertainty and

epistemic uncertainty.

For each k, either in the visible group or the invisible group, the proposed BDLSTM network is

trained based on the constructed features X invTrain
k (or XvisTrain

k ) and the target labels Y invTrain
k

(or Y visTrain
k ). When initializing the Bayesian LSTM network, the network parameters including

their weights and bias values are constructed by setting up a standard normal distribution as the

prior. Additionally, the hyperparameters of the deep LSTM network are optimized in this stage

via grid search and cross-validation. Note that we need to construct a total of K = Kinv +Kvis

BDLSTM networks for each cluster. Applying the test datasets X invTest
k and XvisTest

k to their
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corresponding models, the final outputs of this stage are the predicted aggregated net loads for

each cluster [ÂL
test

1 · · · ÂL
test

K ] with a predetermined number of samples ns for each time step.

3.3.4 Aggregation Stage

In the Aggregation Stage, all the individual probabilistic forecasts are aggregated through

convolution with the previously saved weights to obtain the final probabilistic net load at the

aggregated level, defined as ÂL
test

. Let f(t) and g(t) denote the probability density functions

(PDFs) for two independent variables A and B, respectively; a convolution defined as the

product of functions f and g over an infinite range, which is the probability distribution of the

sum A+B, can be expressed as:

h(t) = f(t) ∗ g(t) ,
∫ +∞

−∞
f(τ)g(t− τ)dτ (3.20)

If A and B follow their respective Gaussian distributions

A ∼ N (µA, σ
2
A), B ∼ N (µB, σ

2
B), (3.21)

then the convolution of two Gaussian distributions is another Gaussian distribution

C = A+B ∼ N (µA + µB, σ
2
A + σ2

B) (3.22)

A detailed explanation and proof of the above equations can be found in reference [80]. In

this case, the probabilistic forecast of each cluster is assumed to be independent of each other

because the clustering procedure aims to differentiate the customers according to their net

load patterns. Additionally, as illustrated in Section III, each individual probabilistic forecast

(uncertainty component) obtained via the proposed Bayesian deep learning method follows

a Gaussian distribution. Therefore, the distribution of the final aggregated net load can be
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directly estimated through the above convolution process, which is expressed as follows:

ÂL
test
∼ N (µ1 + ...+ µ(Kinv+Kvis), σ

2
1 + ...+ σ2

(Kinv+Kvis)) (3.23)

where ÂL
test

k ∼ N (µk, σ
2
k) represents the sub-aggregated level net load of cluster k ∈ {1, ..., Kinv+

Kvis}.

3.4 Case Study

3.4.1 Data Descriptions

Figure 3.6: Outline of the Ausgrid distribution network[3].

The numerical experiments conducted in this study are based on real smart meter data collected

from the Ausgrid distribution network, including load centers in Sydney and regional areas

in NSW as shown in Fig. 3.6 [3]. The Ausgrid datasets are composed of separately reported

measurements of rooftop PV generation and loads at half-hour time intervals over a three-year

66



CHAPTER 3. USING BAYESIAN DEEP LEARNING TO CAPTURE UNCERTAINTY
FOR RESIDENTIAL NET LOAD FORECASTING

period from 1st July 2010 to 30th June 2013.

A subset of 300 customers, which are spread and covered in the shaded area in Fig. 3.6, are

chosen following the rationale as below[3]:

1. Ausgrid identifies the target group of residential customers with the ability to record PV

generation directly from the PV panel over the period 1 July 2010–30 June 2013. At this

step, approximately 15000 are selected.

2. Within this 15000 customers, Ausgrid removes customers the top and bottom 10% of

annual household energy consumption or PV generation.

3. From the remaining customers, 300 are selected randomly by Ausgrid.

In this case, we have the training and test datasets of 21,024 observations and 480 observations,

respectively, for both the load and PV generation data for all 300 customers. The target

aggregated net load is directly obtained by summing the difference between customer power

consumption and the PV outputs for each household. More detailed information about the

Ausgrid dataset is given in the literature [3].

3.4.2 Experimental Setup

To demonstrate the superior performance of the proposed approach, a series of state-of-the-art

load forecasting methods that have been widely used and firmly demonstrated with reliable

performance in the literature are used for comparison. More specifically, M1 (multiple linear

regression) [32] and M2 (long short-term memory) [55] are point forecasting techniques, and

the rest are probabilistic models, i.e., M3 (quantile regression) [32], M4 (support vector quantile

regression) [81], M5 (gradient boosting quantile regression) [43] and M6 (quantile random

forests) [43]. The proposed method M7 (BDLSTM ) is the only method that captures both

the epistemic uncertainty and the aleatoric uncertainty in a single model. More specifically,

the hyperparameters of the proposed BDLSTM model determined by grid searching and cross
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validation are given in Table 3.1. All the tested algorithms were implemented in Python with

the main packages of scikit-learn [82], Keras [83] (M1-M6) and Edward [84] (M7) and were run

on an Intel Xeon PC with an NVIDIA Titan-V GPU.

Table 3.1: Hyperparameters of the Proposed BDLSTM

Parameter Value
Layer type LSTM
Number of hidden layers 2
Number of neurons 10-20
Batch size 720
Number of epochs 150
Number of samples (Tsample) 100
Dropout rate 0.02
Optimizer Adam
Learning rate 0.001

3.4.3 Evaluation Metrics

Typical evaluation metrics are used to assess the forecasting performance of the examined

methods (M1-M7), including the root mean square error (RMSE), the mean absolute error

(MAE), the normalized root mean square deviation (NRMSD), and the mean absolute percentage

error (MAPE) for point forecasting, the pinball loss function (Pinball) and the Winkler score

(Winkler) for probabilistic forecasting [31], [85]. Given the actual net load ALtest and the

predicted net load ÂL
test

, the aforementioned metrics are defined and formulated as below.

Metrics for deterministic forecasting

The RMSE measures the square root of the mean of the squares of the errors between the actual

and the predicted values, which can be formulated as follows:

RMSE =

√∑T
t=1(ALtestt − ÂL

test

p=50,t)
2

T
(3.24)
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where ALtestt and ÂL
test

p=50,t are the actual net load and the 50th percentile value of the predicted

net load, respectively, at time step t. Then, the NRMSD can be calculated as:

NRMSD =
RMSE

(ALtestmax − ALtestmin)
(3.25)

The MAE and the MAPE are calculated to quantify the absolute difference between the actual

and the predicted net load in kW and percent %, respectively, and are expressed as follows:

MAE =
1

T

T∑
t=1

∣∣∣ALtestt − ÂL
test

p=50,t

∣∣∣ (3.26)

MAPE =
100%

T

T∑
t=1

∣∣∣∣∣ALtestt − ÂL
test

p=50,t

ALtestt

∣∣∣∣∣ (3.27)

Metrics for probabilistic forecasting

To evaluate the performance of the probabilistic forecasting methods, the calibration, reliability,

and sharpness are three main factors that indicate the consistency, the variation, and the

tightness of the estimated distribution, respectively [31]. As one of the most comprehensive

metrics to measure the above factors, Pinball is used in this work that can be expressed as

follows:

Pinball =


(ALtestt − ÂL

test

q,t )q ÂL
test

q,t < ALtestt

(ÂL
test

q,t − ALtestt )(1− q) ÂL
test

q,t > ALtestt

(3.28)

Note that the average of all the Pinball values is calculated to evaluate the overall performance

of the probabilistic forecasts for q = 0.01, 0.02, ..., 0.99, and a lower value indicates better

performance.

Additionally, the Winkler score is another type of comprehensive metric for probabilistic

forecasting to simultaneously measure the unconditional coverage and interval width, which can

69



CHAPTER 3. USING BAYESIAN DEEP LEARNING TO CAPTURE UNCERTAINTY
FOR RESIDENTIAL NET LOAD FORECASTING

be expressed as follows:

Winkler =


2(mint − ALtestt )/α + δ, ALtestt < mint

2(ALtestt −maxt)/α + δ, ALtestt > maxt

δ, otherwise

(3.29)

where mint and maxt represent the lower and upper bounds of the probabilistic forecasts at time

t (i.e., ÂL
test

t ), respectively, and α = 0.1 in this case. A lower score implies better probabilistic

estimation results regarding the estimation interval.

3.4.4 Deterministic and Probabilistic Forecasting Results

In this test, we aim to compare the forecasting performance of the proposed BDLSTM method

with other popular methods in terms of both the point and probabilistic forecasting results.

Note that we use the 50th percentile values for M3-M7 to evaluate their deterministic forecasting

results. First, for all the considered methods, we assume that all customers belong to one cluster

(i.e., K=1) and that PV data are 100% available for each individual customer. Fig. 3.7 presents

Figure 3.7: Point forecasting results for different methods.

the point forecasting results of the RMSE and the MAE in kW and the MAPE and the NRMSD

in PU. The length of the bar represents the value of the evaluation metric (i.e., a higher value

corresponds to a longer bar). The results show that the BDLSTM model M7 dominates with

respect to the point forecasting performance, as indicated by the approximately 60.60%, 62.15%,
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62.28%, and 65.98% lower RMSE, MAE, MAPE, and NRMSD, respectively, when compared

with the benchmark method of multiple linear regression (M1). Moreover, the performance

of the BDLSTM model also dominates when compared with the best of the state-of-the-art

methods, quantile random forests (M6), with approximately 14.63 %, 10.29%, 4.8%, and 15.21%

improvements in the four evaluation metrics.

Figure 3.8: Probabilistic forecasting results for different methods.
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Figure 3.9: Probabilistic net load forecasting results: M5 (GBQR)

To illustrate the effectiveness of the proposed BDLSTM method and its capability to capture

uncertainty, the overall probabilistic evaluation metric values of different probabilistic methods
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Figure 3.10: Probabilistic net load forecasting results: M6 (QRF)

(i.e., M3-M7) are listed in Fig. 3.8. The data show that the forecasting results obtained via

the proposed Bayesian deep LSTM network with VI has the highest accuracy followed by the

quantile random forests method (M6). The fact that M7 presents the best predictive capability

indicates the significance of capturing both epistemic uncertainty and aleatoric uncertainty. As

shown in Fig. 3.8, other methods, such as M3 and M4, perform poorly in this respect because

they focus only on the uncertainty in the net load data (i.e., the aleatoric uncertainty). Another

important finding is that the performance order across the different probabilistic forecasting

methods is consistent with the results of point forecasting, shown in Fig. 3.7. For example, M7

(BDLSTM) outperforms the other tested methods, showing approximately 64.46% and 60.57%

performance enhancements for the pinball loss and the Winkler score, respectively, compared

with M3. Furthermore, M6 exhibits better performance than the other conventional approaches.

Additionally, Figs. 3.9 3.10 and 3.11 show the forecasting results of the 10 test days obtained

via the proposed BDLSTM model, the second-best model M6 (QRF), and M5 (GBQR). Note

that the actual net load during the tested periods is represented by the red curve with dots.
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Figure 3.11: Probabilistic net load forecasting results: M7 (BDLSTM)

The 98%, 90%, 70%, and 50% confidence intervals are indicated by an increasing color depth of

the blues. In general, the probabilistic forecasting performance is evaluated in terms of three

primary aspects: reliability, sharpness, and resolution [31], which have been quantified by the

comprehensive evaluation criteria: the pinball loss and the Winkler score. Visually inspecting

the results of M5 (GBQR), M6 (QRF) and M7 (BDLSTM), the probabilistic forecasts generated

using the constructed BDLSTM model present the benefits of a tighter prediction coverage

interval, a lower prediction interval that varies over time, and higher unconditional coverage,

corresponding to sharpness, resolution, and reliability, respectively [31]. It is constructive to

highlight that the net loads during the peak hours of each day, which are crucial factors for

system operation, can be well predicted with reasonable magnitudes using the proposed Bayesian

deep learning method. On the other hand, it can be seen that M5 and M6 overestimates the

peak demand with a misleading trend across the 10 test days.

Additionally, we expand the test datasets from 10 days to four seasons to investigate the

probabilistic forecasting performance across the different seasons. Fig. 3.12 presents the average
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Figure 3.12: The average pinball loss across different seasons.

pinball loss values and the bar plots for all the probabilistic forecasting approaches (M3-M7). As

shown, although the amount of relative improvement varies across different seasons, the proposed

BDBL method (M7) consistently outperforms the other benchmark approaches, especially in

spring, which exhibits a 40.14% lower average pinball loss value than that of M6 (QRF).

Furthermore, compared with QRF, 29.99%, 6.83% and 26.77% improvements are obtained by

using Bayesian deep learning to conduct the probabilistic net load forecasting during the periods

of summer, autumn and winter, respectively.

Table 3.2: Deterministic and Probabilistic Forecasting Results for BDLSTM and QLSTM

Pinball Winkler RMSE MAE MAPE NRMSD
QLSTM 6.1073 91.8621 21.9014 17.7268 0.1155 0.0993
BDLSTM 4.8852 74.7684 17.1698 13.8607 0.0892 0.0775
Relative Improvements (%) 20.01% 18.61% 21.60% 21.81% 22.77% 21.95%

Regarding the computational cost, the CPU times of the training process for all the examined

methods are presented in Table 3.3. The proposed BDLSTM method takes longer to train

than most of the other benchmark approaches. However, it is notable that model training is an

offline procedure. Given the input features, using the constructed model to conduct day-ahead

forecasting only takes a few seconds in practice. Therefore, the main target in this case is to
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Table 3.3: Computational Time For Model Training

CPU Time (s)
M1(MLR) 1.57
M2(DLSTM) 885.25
M3(QR) 53.60
M4(SVQR) 12420,67
M5(GBQR) 198.74
M6(QRF) 441.59
M7(BDLSTM) 2495.13

obtain an accurate forecasting result.

3.4.5 Bayesian LSTM vs Pinball Loss Guided LSTM

Recently, a series of novel deterministic deep learning-based probabilistic models have been

proposed in the literature (e.g., [44, 86, 53]) to exploit deep learning to achieve state-of-the-art

performance in probabilistic load forecasting. In particular, an improved wavelet neural network,

a multilayer perceptron (MLP) and a deep LSTM network are considered the main networks in

[86], [53] and [44], respectively. To make the comparisons based on the same type of network

considered in this work (i.e., LSTM), we implement a pinball loss guided LSTM (QLSTM)

algorithm proposed in [44] in this case. More specifically, instead of using the mean square

error (MSE), QLSTM employs the pinball loss as the loss function to guide the training of

the parameters and thus extends traditional LSTM-based point forecasting to probabilistic

forecasting in the form of quantiles. The deterministic and probabilistic forecasting results

of QLSTM and BDLSTM are given in Table 3.2. As can be seen, with the same network

architecture, Bayesian deep learning exhibits a superior performance to the deterministic deep

learning-based probabilistic model with approximately 20% relative improvements regarding the

evaluation metric values and thus further highlighting the importance and benefit of capturing

the model uncertainty.
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3.4.6 Different Numbers of Clusters

After demonstrating the prominent probabilistic forecasting capability of the Bayesian deep

LSTM network, this part aims to verity the effectiveness of the Clustering Stage in the proposed

framework. In this case, we assume that all the PV data are still visible and that the number

of clusters is set to K = [1, 2, 3, 4, 5, 6]. The point and probabilistic evaluation metrics across

different Ks are shown in Fig. 3.13.

Figure 3.13: Net load forecasting performance across different K.

Most of the criteria decrease from K = 1 and achieve the best performance at K = 4 with

further improvements of 3.39%, 5.99%, 8.96%, 8.77%, and 7.40% for the pinball loss, RMSE,

MAE, NRMSD, and MAPE, respectively, demonstrating the importance and effectiveness of

performing clustering based on the subprofiles and then aggregating to the higher-level net load.

In addition, these separate clusters are all trained by the same network structure, i.e., two layers

of 10 and 20 neurons in each layer, which is the best network structure for the one-cluster, 100%

PV-visibility case. Therefore, further adjustment of the hyperparameters for each individual

cluster may improve the forecasting performance at the aggregated level.

76



CHAPTER 3. USING BAYESIAN DEEP LEARNING TO CAPTURE UNCERTAINTY
FOR RESIDENTIAL NET LOAD FORECASTING

Furthermore, to investigate how categorizing the costumers by the invisibility of their solar

power affects the prediction model, an additional case study is carried out to evaluate the

probabilistic forecasting performance across different combinations of Kvis and Kinv in the

context of visibility= 50%. Table 3.4 presents the calculated average pinball losses for the

proposed BDLSTM method across different numbers of K = Kvis +Kinv, where Kinv = 1, 2, 3

and Kvis = 1, 2, 3. The results show that the optimal combination is Kinv = 1, Kvis = 3,

which results in an approximately 31.14% improvement regarding the average pinball loss when

compared with the no-clustering case (i.e., Kinv = 1, Kvis = 1). In addition, increasing the

number of clusters either for the visible group or for the invisible group both lead to lower

pinball losses than that of the no-clustering case, which demonstrates the effectiveness of the

Clustering Stage in the proposed framework. Note that if the number of clusters increases to a

relatively large value (e.g., Kinv = 4, Kvis = 4), the calculated pinball loss may become larger

than that of the no-clustering case, and thus, it is imperative to select an appropriate range for

Kinv/Kvis to determine the optimal combinations.

Table 3.4: The average pinball loss across different numbers of clusters (M7-BDLSTM, Visibility=
50%)

Kinv = 1 Kinv = 2 Kinv = 3
Kvis = 1 6.2100 4.5021 4.9202
Kvis = 2 5.1478 5.4826 4.8550
Kvis = 3 4.2759 4.6060 5.8326

3.4.7 Different Levels of PV Visibility

In this part, the case study lies in investigating how and to what extent the visibility of distributed

PV generation can contribute to a more accurate net load forecasting at the aggregated level.

This experiment is carried out based on the assumption that K = 1 across various levels of PV

visibility, defined by vis = [0, 0.2, 0.4, 0.5, 0.6, 0.8, 1]. In this case, vis = 0 and vis = 1 represent

the contexts of invisible and visible PV, respectively, whereas other values indicate that PV

data are partially visible. For example, vis = 0.5 means that 50% of the 300 households have

separate meters for rooftop PV generation, and the rest of the PV outputs are not measured.
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Figure 3.14: Net load forecasting performance across various PV visibilities.

Fig. 3.14 contains the bar plots of the pinball loss and the Winkler score across different

visibility levels. The primary conclusions stemming from the results are depicted as follows: i)

exploiting the available PV output data from visible PV generation can enhance the forecasting

performance of the net load at the aggregated level, and ii) in terms of the costs of installing

meters for measuring the PV outputs separately, a trade-off between the forecasting accuracy

and the PV visibility can be made based on the operator’s requirements. For example, if the

system operator can accept an approximately 13% lower pinball loss value (vis = 0.6 vs vis = 1),

only 60% of the households need to install separate meters for rooftop PV generation, thus

leading to a significant reduction in terms of the costs of the devices and their installation.

Finally, to demonstrate the superior performance of the proposed method under different levels of

PV visibility, the pinball losses for all the tested probabilistic forecasting methods are calculated

and presented in Fig 3.15. It can be seen that with the increasing visibility of the PV output, the

probabilistic net load forecasting results of all the tested methods improve and are indicated by
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Figure 3.15: The average pinball loss under different levels of PV visibility.

the reduced pinball loss values. To further enhance the performance of the proposed framework,

our future work will increase the PV ‘visibility’ by estimating the invisible PV generation using

some novel invisible solar power generation estimation approaches (e.g., [87]). In addition, the

results demonstrate the superiority and effectiveness of the proposed BDLSTM method across

different levels of visibility.

3.5 Conclusion

This work proposes a novel probabilistic net load forecasting framework using a Bayesian deep

LSTM neural network to capture epistemic uncertainty and aleatoric uncertainty simultaneously.

In the proposed scheme, the Clustering Stage aims to enhance the forecasting performance by

building a deep learning model for each individual cluster and aggregating the probabilistic

forecasts of each cluster at the end to obtain the final predicted net load at the aggregated

level. The effectiveness and importance of considering visible or partially visible PV output

data as an input feature is investigated across different PV visibility levels. The overall

performance of the proposed method is analyzed and compared with a series of state-of-the-art

probabilistic forecasting models. The evaluation results demonstrate the superior performance of

the proposed Bayesian deep learning-based method and highlight the improvements contributed

by the Clustering Stage and the PV visibility.
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Chapter 4

A Confidence-Aware Machine Learning

Framework for Dynamic Security

Assessment

4.1 Introduction

The world is expecting a securer and cleaner power system in the future. To achieve this,

continued attention is drawn on the integration of RES. However, due to its intermittent nature,

massive uncertainties and corresponding corrective devices are brought to the power system[88].

Suffering from the difficulty of accurately predict the sources (location and levels of power

injections), the operation mode of power flows thus is strongly diversified[89]. Consequently, the

category of traditional disruptive dynamic phenomena might need to be replaced and expanded

with more unforeseen critical conditions, which implies frequent system topology changes. Based

on the connectivity status among power system components such as generators, transformers,

lines, and loads[90], topology changes can be classified as: 1) scheduled system topology changes

(e.g. line maintenance); 2) structure changes caused by the on/off status of circuit breakers.

Traditional DSA doctrine hence is challenged by these potential changes of system operation
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mode, and it is urgently important for TSOs to develop a robust and accurate DSA tool to deal

with the challenges of system topology change.

In general, system security issues could be categorized into either static (e.g. line overloading or

voltage limits exceeding) or dynamic (e.g. rotor angle stability) security problems. The former

is relatively simple since power system parameters in the post-disturbance steady state directly

indicate whether system limits are violated or not. The latter, on the other hand, requires more

advanced modelling techniques, which can be either data-driven or analytical. In the literature,

there are different approaches to predict the transient stability status of a power system: 1)

time-domain simulations (TDS), 2) transient-energy-function (TEF) methods, 3) curve-fitting

techniques, and 4) machine learning-based methods[91][92]. In particular, TDS provides the

most straightforward analytical approach[93]. However, the simulation task is usually highly

computing-intensive since detailed information of network configuration during and after a

fault is required[91]. In order to solve this issue, researchers have investigated the feasibility of

carrying out part of the computation offline. In terms of the TEF methods, Lyapunov function,

which includes the kinetic energy and potential energy of a system, is employed to establish a

critical energy level first. Then the system assessment is achieved by comparing the target value

with this threshold value under a given disturbance[94]. However, one practical issue is that

the determination of the level of kinetic and potential energy is almost intractable, especially

under certain disturbances[91]. To tackle this issue, data-driven approaches are developed since

they do not require the physical information of the network. Examples such as [95] predict

the post-fault rotor angle behaviour using grey Verhulst model. Curve-fitting method (e.g.,

[96][97]) is another approach which aims at avoiding using the network configuration information.

However, the prediction performance is poor as it suffers from the start-up time of prediction

and the sampling period[91].

Recently, with the superior development of phasor measurement units (PMUs), the post-

disturbance dynamic response of a power system can be directly measured. This cutting-edge

technique encourages researchers to construct more reliable models through machine learning

methods instead of using conventional rules[8]. In particular, a machine learning model can be
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established and trained offline by using the TDS results (training labels) collected in advance.

The established operating conditions (OCs) provide a region that the system can operate within

and likely to occur in the near foreseeable future. Hence the system operator can conduct some

analysis before real-time decision-making. As it is released from the constraints of real-time

process, classifier thus can be trained on a significantly larger database in order to obtain

better performance. In the literature, most of the works are focusing on Decision Trees (DTs)

(e.g.[98][99][100][7] [101][102]) since it shows advantage on computational speed. Works such

as [103] also uses Decision trees to provide interpretability. Other techniques such as Support

Vector Machines (SVMs)[104], long short-term memory (LSTM) networks[105], and ensemble

approaches [106][107] have also been widely verified. In addition, works such as [108] and [109]

employ hybrid ensemble models, including extreme learning machine (ELM) and random vector

functional link networks (RVFL). The former uses the idea of transfer learning in order to

implement one model on other faults, so that time cost of training a large number of models

can be alleviated. The latter uses generative adversarial network (GAN) in order to complete

the missing data so that the original feature characters can be reconstructed. With such, the

DSA accuracy can be maintained.

Although machine learning models have shown promising performance in terms of the security

assessment task, most of the existing methods are facing the fundamental limitation regarding

their capability of confidence awareness. In this work, confidence awareness refers to the ability

that a machine learning model obtains model uncertainty through an epistemic learning process.

The model with such an ability thus could quantify how confident the model is about its

outputs upon the given data set. From the perspective of TSOs, the significance of confidence

awareness thus lies in assigning a high level of uncertainty to the erroneous predictions so that

the decision-making process could be assisted. Existing works such as [110] and [111] propose

probabilistic modelling since it could generate probabilistic intervals. However, these generated

intervals cannot be treated as the confidence indicator since the ability of confidence awareness

comes from the internal model uncertainty (epistemic uncertainty). This is the property that

reflects how much model parameter would change with more knowledge obtained by the model.
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Therefore, the value of those works is restricted only to proposing more advanced models so

that the performance is enhanced.

With the new challenge in confidence representation, in recent years, Bayesian Deep Learning

(BDL) has received widespread attention in a range of research fields such as renewable energy

forecasting[112], energy price forecasting [113], semantic segmentation[114], and health-care

[115] etc. Through the angle of probability theory, BDL reveals the advantages in terms of

uncertainty representation, generalization, and prediction reliability, which makes the neural

network more explainable[27]. Currently, there are two different directions to realize Bayesian

Deep Learning. The work in [116] uses direct inference with Kullback-Leibler (KL) divergence

as minimization target. On the other hand, the authors in [6] employ dropout technique as

Bayesian approximation, where the aleatoric part of the uncertainties are used as part of the

minimization objective under an unsupervised process.

In this part of work, a Bayesian deep auto-encoder based methodological framework is pro-

posed, which is able to solve multi-contingency issue and provide confidence information. Key

contributions of this section can be summarized as follows:

(1) A confidence-aware machine learning framework for DSA of the large-scale electrical system

is proposed. To the best of the authors’ knowledge, this is the first attemption that achieves

confidence awareness by exploiting Bayesian deep learning in the DSA problem.

(2) The concept of conditional training is introduced. The proposed framework thus enhances

the performance when facing multi-contingency issue within a single model.

(3) A confidence-oriented model updating strategy is proposed. The proposed strategy only

requires small sample data to update the model.

(4) A series of comprehensive case studies are conducted. The superior and robustness per-

formance of the proposed method is demonstrated and compared with other state-of-the-art

approaches, which is based on different system topology.
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4.2 The Proposed DSA with Model Updating Strategy

Framework

4.2.1 The Concept of Security:

The definition of power system security is ‘the ability of the bulk power electric system to with-

stand sudden disturbances such as electric circuits or unanticipated loss of system components’,

which is widely accepted and given from the North American Reliability Council (NERC) [117].

There are fundamental difference between the concept of security and stability. For instance,

stability is the ability that system could recover from a disturbance regardless of post-fault

operating limits. In other words, after a disturbance, power system returns to its initial position

or enters into a new stable position. Hence, stability reflects the actual response of the system

and it is a feature of the system itself.

On the other hand, security relates to a pre-defined list of contingencies and operating limits of

the system assets. For instance, the occurrence of any contingency in the system might cause

violation of operating limits such as overloading of lines, bus-bar voltage out of nominal range,

generator rotor angels, or system frequency etc. Hence, the list of contingencies should include

those might lead to high impact disruptions in the system operation and are also highly likely to

occur in the foreseeable future. The operating limits of the assets are typically defined by their

nominal operating range. Together, they are associated with different phenomena in the power

system and might eventually affect the power delivery. The specification of security depends on

the definition and criteria that are used to test the system, which provides the fundamental

obligation for the system operator. Currently, the system operator of most countries follows the

‘N-1’ security principle. ‘N-1’ security means that the system operator must ensure that the

operating condition remains stable after the failure of every single asset of the system. Typically,

the analysis focuses on failures of major transmission lines and the largest generators in the

system.
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4.2.2 The Concept of Security Assessment:

To guarantee the system security, it is of significant importance to evaluate the system via

all likely contingencies. The security assessment thus is the process of providing security

information to the operator so that the system operator is able to be aware of the current and

future level of security. For the cases which violate the system’s security rules, appropriate

corrective/preventive actions should be implemented to ensure the system’s security. The

planning and operation of the power system requires information on whether the system will

survive the direct transient disturbance and results in an acceptable steady-state condition with

all assets remain in their nominal operating limits[117]. The system’s security assessment thus

is classified into two categories, static and transient/dynamic security.

Static Security Assessment (SSA):

The target of static security assessment is to evaluate the system voltage and the equipment’s

thermal limits violations after any contingency to ensure that they remain in the acceptable

range upon a pre-fault operating condition. Based on the N-1 principle, the power system

operators must ensure that the operation of the system is maintained for every single failure

of equipment in the system. Hence, operators must assess the contingencies of single faults of

the equipment. For instance, the SSA includes computations for whether the power balance

is met in the post-fault operating condition, which could be obtained from a steady-state

simulator. Typical functions of the SSA include performing load flow calculations and sensitivity

analysis etc. In addition, in order to obtain the limits and constraints for the pre-fault operating

condition, optimal power flow (OPF) based methods are widely used, which are designed with

respect to the network constraints including line capacities, the balance of the network nodes,

and other physical feasibility such as Kirchhoff’s laws. Optimisation techniques are often used to

solve an OPF problem. On the other hand, when extra constrains of static security are involved

in the OPF problem, the common OPF problem can be expanded to a Security Constraint

OPF (SCOPF). Hence, in the SCOPF problem, a set of contingencies are considered and
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the optimisation is conducted so that the post-fault steady-state security remains for these

contingencies.

Dynamic Security Assessment (DSA):

Figure 4.1: The illustrative input-output diagram of DSA.

The target of DSA is to assess the dynamic/transient response for a set of pre-defined contin-

gencies on a pre-fault operating condition. A typical example of DSA workflow is demonstrated

in Fig. 4.1, which shows the input-output signals of both offline training and online assessing.

For instance, the first step in the offline workflow is to collect historical observations of system

operating conditions. These pre-fault operating conditions could be described by bus-bar voltage,

the phase-angles, power generation or load at each bus-bar and power flows of the each line.

From these pre-fault operating conditions, time-domain simulations are conducted so that binary

labels are generated to indicate secure or insecure (1 for a secure response to a contingency and

0 for an insecure response to a contingency). This simulation requires significant computational

resources and more importantly, the computational cost grows with the size of the power system

since the number of studied contingencies and the corresponding operating conditions also

increases significantly. Hence, instead of the real-time online assessment of dynamic security

that is currently not practical, system operators tend to set up large safety margins on the

operating equipment in order to ensure that the dynamic response is secure[118]. However, this
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redundancy setting often results in lower utilise level of the system components, which further

implies less economic profits. Hence, in order to push the system operation approaching to its

limits and also enhancing economic efficiency, it is reasonable to consider more contingency

scenarios. For example, apart from single faults that could happen in the system, sometimes

there could also be multiple assets failure at the same time or in a cascade fashion. Despite

less possibility, once happened it would lead to a much more severe result. In general, higher

security level could be obtained if more contingencies are considered in the assessment. But in

order to stick to the ‘N-1’ principle, the author would like to emphasise that in this work, only

single element failure is considered and explored.

To tackle the challenges and address the issues proposed in previous sections, we propose a

novel Conditional Bayesian Deep Auto-Encoder (CBDAC) based DSA framework, as shown

in Fig.4.2. The framework includes the following stages: off-line training, model updating and

online assessment. In particular, the input database of training stage is constructed with the

input features and their corresponding labels, which are represented by the pre-fault OCs and the

post-fault TDS results, respectively. Furthermore, a validation set is established under different

system topologies to identify when to update the model indicated by the model uncertainty. After

that, the online part can be conducted by feeding in the real-time measurements. Specifically,

the detailed step by step explanation of the framework is given as follows:

4.2.3 Database Construction Stage:

The first step is to construct the database, which includes pre-fault OCs data and the corre-

sponding post-fault labels indicating whether safe or not. The pre-fault OCs include active

and reactive power (either generation Gactive
original ∈ Rn×g, Greactive

original ∈ Rn×g or load Lactiveoriginal ∈

Rn×l, Lreactiveoriginal ∈ Rn×l), power flows F active
original ∈ Rn×f , F reactive

original ∈ Rn×f , voltages Voriginal ∈ Rn×v,

and phase angles Θoriginal ∈ Rn×θ of each bus. These simulations together construct the m

dimension original training features Xoriginal ∈ Rn×m, where n represents the size of entire data

set from one topology and m = 2× (g + l + f) + v + θ. The corresponding post-fault labels,
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Figure 4.2: The proposed CBDAC based DSA framework.

denoted as Yoriginal ∈ Rn, where for each element yi

yi =


1, safe

0, unsafe

(4.1)

are from off-line computed TDS. It is notable here that we use T0, T1, ..., TK to represent the data

from various system topology. In addition, within one system topology, various contingencies

data are generated in order to expand the OCs domain. Given the total contingency number

C, data sets Xoriginal, Yoriginal are stacked up, normalised and shuffled properly. Eventually, the

dimension of features becomes X ∈ R(C×n)×m and the labels become Y ∈ R(C×n)×2 since the

labels are transferred into one-hot code. The data is then separated into training and testing

parts. We use XT0
train, Y T0

train, XT0
test, Y

T0
test to denote the data from T0.

88



CHAPTER 4. A CONFIDENCE-AWARE MACHINE LEARNING FRAMEWORK FOR
DYNAMIC SECURITY ASSESSMENT

4.2.4 Training and Evaluating Stage:

The constructed database XT0
train, Y T0

train, XT0
test, Y

T0
test is then used to train and evaluate the model.

The model is based on auto-encoder with modified Bayesian approximation, instead of logistic

regression, from the hidden layer. In order to enhance the network performance under multiple

contingencies, we set up a conditional mask at each layer. A detailed introduction is given in

the following subsections.

Modified Deep Auto-Encoder

Encoder

DecoderCode Layer

Bayesian Inference

𝒚

ෝ𝒚

…

…

…

…

…

…

…

…

…

…

Constructed feature 

𝑿𝒕𝒓𝒂𝒊𝒏
𝑻𝒌 ∈ ℛ(𝑪×𝒏)×𝒎

Constructed feature 

𝑿𝒕𝒓𝒂𝒊𝒏
𝑻𝒌 ∈ ℛ(𝑪×𝒏)×𝒎

True label 𝒀𝒕𝒓𝒂𝒊𝒏
𝑻𝒌 ∈

ℛ(𝑪×𝒏)×𝟐

Extracted output 
ෝ𝒚 ∈ ℛ(𝑪×𝒏)×𝟐

Figure 4.3: The structure of Conditional Bayesian Deep Auto-Encoder.

In DSA problem, system OCs are evaluated as secure or insecure, which makes DSA essentially

a classification question. To this end, researchers have investigated the feasibility of various

machine learning approaches as the classifier. Among those state-of-the-art methodologies,

auto-encoder is one of the most famous examples. Traditional auto-encoder is unsupervised,

including an input layer, a hidden layer, and an output layer. Auto-encoder is usually used for
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feature extraction tasks, which minimizes the difference between the input data (coding) and

output data sets (decoding). In the area of the power system, auto-encoder based applications

are also widely verified such as abnormal state detection[119], system state reconstruction[120],

and fault diagnose[121] etc. In [8], a deep auto-encoder with greedy layer-wise pre-training and

logistic regression at the hidden layer is demonstrated to have excellent performance in terms of

DSA problem. As a further exploration of this work, we continue our work based on this deep

auto-encoder structure, which is illustrated in Fig.4.3.

Monte Carlo dropout as approximated Bayesian inference

Although auto-encoder is proved to be effective, as stated in chapter II, the limitation of

lacking confidence restricts the practical implementation of this approach in the power system.

Hence, we use dropout, a commonly used regularisation technique, to transfer a deterministic

auto-encoder into a probabilistic Bayesian model.

A traditional neural network is trained by optimizing its parameters directly. To obtain a

probabilistic model, a prior distribution is placed over the weights, usually Gaussian distribution:

N (0, I). With such, a common neural network is transformed into a Bayesian network. How do

we train this type of network? We replace the optimising process by minimising KL divergence

between the true posterior p(ω|XT0
train, Y

T0
train) and the approximating variational distribution

qθ(ω), which is usually referred to as variational inference. Due to its intractable nature,

it is extremely difficult to analytically solve this optimization problem. Consequently, this

optimization problem is transformed from a KL divergence minimization problem to an Evidence

Lower Bound (ELBO) maximization problem. The optimisation function using MC estimator is

give by[27]:

L̂MC [θ] = −N
M

∑
i∈S

log p(ŷi|f g(θ,ε)(xi)) +KL(qθ(ω)||p(ω)) (4.2)

with N,M indicating the sub-sampling process and g(θ, ε), ω represents the corresponding

parameters.
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Although the above optimization approach is straightforward, it has the limitation of high

computational burden in terms of the practical implementation[116]. Considering this fact, one

simplified way is to use dropout as Bayesian approximation. Dropout can be interpreted as

equivalent to variational inference. It generates noise into the feature space, from which we can

transform it into the network parameter space as illustrated in equation (4.3)[27].

ŷ = ĥM2

= (h� ε̂2)M2

= (h · diag(ε̂2))M2

= h(diag(ε̂2)M2)

= η(x̂M1 + B)(diag(ε̂2)M2)

= η((x� ε̂1)M1 + B)(diag(ε̂2)M2)

= η(x(diag(ε̂1)M1) + B)(diag(ε̂2)M2)

(4.3)

In the above equation, we assume an example of a two-layer network with weights M1 and M2

(deterministic matrix), non-linear activation function η, and x, h as input into each layer. We

use x̂, ĥ in order to denote that the input x, h have been through a dropout layer, represented

as ε̂i. We write Ŵ1 = diag(ε̂1)M1 and Ŵ2 = diag(ε̂2)M2, so that it indicates that the network

parameters are going through the dropout mask, thus we have:

ŷ = η(xŴ1 + B)Ŵ2 = f Ŵ1,Ŵ2,B(x) (4.4)

The minimisation function of a neural network thus can be rewritten from:

L[M1,M2,B] = EM1,M2,B(x, y) + λ1||M1||2 + λ2||M2||2 + λ3||B||2 (4.5)

to:

L̂dropout[M1,M2,B] =
1

M

∑
i∈S

EŴ i
1,Ŵ

i
2,B(xi, ŷi) + λ1||M1||2 + λ2||M2||2 + λ3||B||2 (4.6)

91



CHAPTER 4. A CONFIDENCE-AWARE MACHINE LEARNING FRAMEWORK FOR
DYNAMIC SECURITY ASSESSMENT

where i indicates each data point from data sub-sampling with a random set S of size M .

According to [122], the first term EM1,M2,B(x, y) in neural network optimisation objective

function can be rewritten as negative log-likelihood scaled by a constant, as shown in equation

(4.7), where τ indicates the observation noise.

EM1,M2,B(x, y) =
1

2
||y − fM1,M2,B(x)||2 = −1

τ
log p(y|fM1,M2,B(x)) + constant (4.7)

Hence we can rewrite equation (4.6) into (4.8)

L̂dropout[M1,M2,B] = − 1

Mτ

∑
i∈S

log p(ŷi|f g(θ,ε̂i)(xi)) + λ1||M1||2 + λ2||M2||2 + λ3||B||2 (4.8)

with {Ŵ i
1, Ŵ

i
2,B} = {diag(ε̂i1)M1, diag(ε̂i2)M2,B} = g(θ, ε̂i) represents the parameters.

Comparing equation (4.2) and (4.8), it has been proved that for a specific choice of prior

distribution p(ω), such that:

∂

∂θ
KL(qθ(ω)||p(ω)) =

∂

∂θ
Nτ(λ1||M1||2 + λ2||M2||2 + λ3||B||2) (4.9)

which is referred to as KL condition, the dropout neural network would have identical optimisation

procedure as variational inference[27]. In summary, the minimization function of a dropout

approximating network is given as follows[6]:

L[θ, p] = − 1

N

N∑
i=1

log p(ŷi|f g(θ,ε̂i)(xi)) +
1− p
2N
||θ||2 (4.10)

where N refers to the size of data, p represents the dropout probability and θ is the parameter

of the tractable distribution. More details regarding the dropout approximation can be found in

the reference [6] and [27].

In terms of the practical implementation, this approximated inference is made by keeping

dropout on at both training and testing stage, which is easy to implement. In other words,

dropout is done at test stage to sample from the trained network, which can also be treated as
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a stochastic feed-forward process.

Combined epistemic and aleatoric uncertainties in one model in classification tasks

There are two types of uncertainties in Bayesian modelling[123]. The epistemic uncertainty,

as introduced previously, represents the uncertainty in the model parameters. It is of great

significance to capture this type of uncertainty since it could reflect the system topology changes.

The aleatoric uncertainty on the other hand represents noise inherently in the observations and

thus can be further categorized into homoscedastic uncertainty and heteroscedastic uncertainty [6].

For homoscedastic uncertainty, the observation noise parameter σ is fixed while the heteroscedastic

aleatoric uncertainty varies over different periods of time depending on the data itself. Hence it

is obvious that heteroscedastic aleatoric uncertainty is a more general and realistic situation.

In the prior literature, most of the existing BDL approaches can merely capture epistemic

uncertainty or aleatoric uncertainty alone [27]. Hence, it is important to model these two

uncertainties together in one model.

However, it is notable that in our work, the main concentration is on using epistemic uncertainty

to indicate the proper model updating time. In other words, though discussion of the source of

inherent noise (aleatoric uncertainty) such as sensor noise, missing data points or any kinds

of manually added Gaussian noise etc. are important as well, we assume that noise test and

missing data test are out of the scope of this part of work and will not be discussed in the

following chapters. Due to the page limit, we would like to refer the readers to other valuable

works such as [109][124][125].

To combine the epistemic uncertainty and the aleatoric uncertainty in a single model, we need to

split the top layers of a deep auto-encoder network into predictive mean ŷ as well as predictive

variance σ̂2, as follows:

[ŷ, σ̂2] = f ŴBDAC(x) (4.11)

where fBDAC represents the proposed Bayesian deep auto-encoder network. For classification

tasks, the output probability is then computed from approximated Monte Carlo integration,
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which is as follows:

p(ŷ = c|x,X, Y ) ≈ 1

Tsample

Tsample∑
t=1

Softmax(f Ŵ (x)) (4.12)

The epistemic uncertainty mu of the trained model can then be calculated using the entropy:

H(p) = −
J∑
j=1

pj log pj (4.13)

where J represents the total number of classes.

The overall predictive uncertainty Var[y], consisting of both the aleatoric uncertainty and the

epistemic uncertainty thus can be approximated as

Var[ŷ] := H(p) +
1

Tsample

Tsample∑
t=1

σ̂2. (4.14)

Given that a normal likelihood is chosen to model the aleatoric uncertainty, the final loss

function of the BDAC can be formulated as:

Lclassification =
1

Ttrain

Ttrain∑
t=1

(−ŷt,j′ + log
∑
j

exp ŷt,j) (4.15)

ŷt = f Ŵ + εt, εt ∼ N(0, (σ̂)2) (4.16)

with ŷt,j the j element in the logits vector ŷt. Note that the loss function can consider both the

model uncertainty through ŷ and the heteroscedastic uncertainty through σ̂.
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Figure 4.4: Auto-encoder with conditional mask

Conditional mask

As illustrated in chapter II, the corresponding expansion of OCs domain caused by the N-

1 criterion will result in a significant increase in training burden when using deep learning

approaches. Hence, it is reasonable to explore the feasibility of training one model to learn both

the unique contingency information and the common operating information. In Fig. 4.4, we

assume a network of L layers where at each layer l ∈ {1, ..., L}, the input and the output of

layer are xl and ŷl respectively. Given a non-linear activation function σ(), the feed-forward

process within one layer can be written as:

ŷl = σ(Wl · xl + Bl) (4.17)

where Wl and Bl indicate the weights and bias at layer each layer l

We then define the mask layer h, which is consist of one-hot coded 1’s and 0’s indicating the

lines connection or disconnection respectively[126]. Specifically, the width of the mask layer

should be equal to the number of contingency. Hence, neurons with mask layer in front are

used specifically to learn contingency information. By doing this, the network is separated

into two regions. The region without mask will learn and store the common information of

various contingencies, while the neurons with mask covered are not activated unless the labeled
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contingency data comes in. As a result, these neurons with mask do not participate in the

training process since they have fixed values and thus zero gradient. Therefore, the model can

obtain the ability of dealing with multi-contingency data by exploring the inner structure of the

network. The equation for one layer of mask becomes:

ŷlc =


hlc · σ(Wlc · xlc + Blc), c ∈ [1, C]

σ(Wlc · xlc + Blc), c ∈ [C,D]

(4.18)

In the above equation, ŷlc indicates one particular vector output c (column) of layer l. Similarly,

Wlc and Blc denote the cth vector of the matrix of weights and bias respectively. hlc represents

the mask (activation rules) at layer l, colomn c. C denotes the contingency number and D

represents the width of the network.

4.2.5 Model Updating Stage:

Figure 4.5: Model updating stage.

When system topology changes, the decision of whether updating the model becomes vital.

The practical industrial procedure is to update the model parameters following an experience-

based timely basis. Although the current strategy has the advantage of simplicity, it does not

participate in or even has a negative contribution to the whole system operation. Hence by
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employing the property of confidence awareness, the core task of this stage is to provide an

indicator of updating, so that redundancy work can be avoided. In addition, when the model is

indicated to be updated in a practical situation, TSO is always required to finish the updating

work in limited time. Given that the TDS process of simulating a large training database is a

practical bottleneck, the amount of data that required to update model will play a key role.

As can be seen from Fig.4.5, validation sets XTk
val from different system topology T0, T1, ..., TK

are imported into the model firstly. By doing this, an initial classification result ŷi together with

confidence information (model uncertainty) mu, which is defined in equation (4.13), will be

generated and calculated. The confidence information indicates how well the model ‘recognizes’

the input data. In other words, if the system topology changes, due to the change of data

distribution characteristics, mu will increase, which implies that the model does not ‘recognize’

the data, or feel ‘not confident’ about its prediction results. It is important to emphasize here

that since the TDS are not yet processed for the new topology, the initial uncertainty results can

be obtained almost immediately as it only requires stochastic feed-forward calculations based on

the CBDAC trained by the original training data. This is of significant importance in terms of

rapid, frequent topology changes in the future power system since the reaction time of such an

event would be limited. Confidence indicator with a threshold value h is then used to determine

whether to update the model. A small number of training labels Y Tk
train would be simulated

through TDS only when the threshold value h is violated. Therefore, (XTk
train, Y Tk

train) from new

topology will be employed in order to update the model, where k represents the number of

topologies. Under this circumstance, only essential updating work will be implemented, and

the updating task can be guaranteed with reasonable computational burden and accuracy. To

summarize, algorithm 1 demonstrates how the proposed framework works in detail.
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Algorithm 1 Confidence-Aware DSA Framework

Require: XT0
train, Y T0

train, XTk
val, Y

Tk
val , X

Tk
train, Y Tk

train

Ensure: XT0
train, Y T0

train, are from topology T0; XTk
val, Y

Tk
val , X

Tk
train, Y Tk

train, are from topology T1 to
TK
Define learning rate λ, dropout p, data size N , batch size M , optimizer Adam etc.
Initialize all parameters
for CBDAC(XT0

train, Y T0
train) do

repeat
Mini-batch M optimisation through ε̂ ∼ p(ε)
Calculate derivation w.r.t. θ
δ̂θ ← − 1

Mτ

∑
i∈S

∂
∂θ

log p(ŷi|f g(θ,ε̂i)(xi)) + ∂
∂θ
Nτ(λ1||M1||2 + λ2||M2||2 + λ3||B||2)

Update θ: θ = θ + λδθ
until θ has been optimised

return f ŴCBDAC
end for
Define threshold value h
Proceed stochastic feed-forward through f ŴCBDAC using XTk

val, Y
Tk
val

for Confidence Indicator(mu, h) do
if mu > h then

Proceed CBDAC(XTk
train, Y Tk

train)
else

Model can be kept
end if

return Updated model
end for

4.3 Case Study

4.3.1 Data Descriptions

The numerical experiments conducted in this study are based on the example 68-bus system [4],

which is illustrated in Fig 4.6. To simplify our work, we assume that PMUs devices and other

measurement devices are deployed to conduct real-time measurement. For instance, voltage

magnitudes, phases angles of all buses and the active and reactive outputs of generators can be

directly measured and transmitted. Power flow data, on the other hand, can be calculated from

the solver. Also, to enrich the OCs domain, more OCs are simulated from a pre-defined range

of distribution.
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From the system, a set of 12000 observations are sampled, where each observation represents a

pre-fault OC. These observations are created by drawing the active load power from a multivariate

Gaussian distribution and using a Pearson’s correlation coefficient c between all power pairs.

These active load power are then converted to a marginal Kumaraswamy distribution with the

probability density function:

f(x) = abxa−1(1− xa)b−1 (4.19)

where a = 1.6, b = 2.9 and x ∈ [0, 1]. The active load power is scaled to be within ±50% of

the nominal values, while the reactive load power is scaled by assuming constant impedance

of buses. Considering the fact that the resulting OCs might be infeasible and also to restrict

the sampled power factor of generators within the range of [0.95, 1], an optimization is solved

accounting for the full AC network model. The optimization is carried on in Python 3.5. with

Pyomo package and the IPOPT 3.12.4 solver. In order to obtain more general test conditions,

the transient stability of three-phase faults is simulated over 22-line contingencies, where the

work in [103] has proved the effectiveness of the selected contingencies. These 22-contingencies

are selected based on the rules in [127]. For instance, in terms of the fault location, only those

close to generator buses are considered, and the fault clearing is coupled with line tripping. The

reason is that these are the cases of rotor angle stability interest. As a comparison, cases, where

faults are close to loads, are from the angle of voltage stability[128]. The first 14 contingencies

are shown in table III in [127], which are within the NETS part of the IEEE-68 bus system.

The rest contingencies are selected based on the same rationale, but for the NYPS part. An OC

is considered stable if the differences between each two-phase angles of the generators are within

the corresponding limits during 10s simulation time, otherwise unstable. The fault clearance

time is assumed to be 0.1s. The simulation is performed in Matlab R2016b Simulink, and the

model used is described in [4].

To establish the database, data from each contingency are finely shuffled firstly in order to

provide randomness and generalization. 80% of the entire database (i.e. 80%×12000×22) is

used as the training set to train the model, and the rest 20% of the database is used as the

testing set.
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Figure 4.6: IEEE-68 bus system[4].

4.3.2 Experimental Setup

To demonstrate the superior performance of the proposed approach, a series of state-of-the-art

methods that have been widely used and firmly demonstrated with reliable performance are used

for comparison. For the rest of this section, the following notation will be used. For instance, DT

(Decision Tree) SVM (Support Vector Machine) RF (Random Forest) DAC (Deep Auto-Encoder

Classifier) BDAC (Bayesian Deep Auto-Encoder Classifier) and CBDAC (Conditional Bayesian

Deep Auto-Encoder Classifier). All the methodologies mentioned above are implemented in

Python with the main packages of Scikit-learn [82], Keras [129], TensorFlow [130] and run on

an Intel Xeon PC with NIVIDIA Titan-V GPU. The hyper-parameters of the proposed CBDAC

model is determined by grid search and cross-validation, which are given in Table 4.1. The

employed evaluation metrics are precision (PRE), specificity (SPE), F1-Score and accuracy

(ACC) respectively, where detail introduction is given in the next section.
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Table 4.1: Hyperparameters of the Proposed CBDAC

Parameter Value
Layer type dense
Number of hidden layers 13
Encoder structure 450-350-250-150-50-10
Decoder structure 10-50-150-250-350-450
Logistic regression layer 2
Batch size 15000
Number of epochs 160
Number of samples (Tsample) 200
Dropout rate 0.001
Optimizer Adam
Normalisation [0,1]normalisation
Learning rate 0.0001

4.3.3 Evaluation Metrics

In this section, the concept of the confusion matrix and four evaluation metrics are introduced

to evaluate the performance of security assessment. Given a set of input data, four different

types of results can be obtained, which are denoted by True Positive(TP), False Positive(FP),

False Negative(FN), and True Negative(TN). For instance, TP represents that unsafe OCs are

correctly predicted as unsafe, TN represents when safe OCs are correctly predicted as safe. The

wrong results are further grouped into FP, which represents unsafe OCs incorrectly predicted as

safe, and FN, when safe OCs are incorrectly predicted as unsafe. The proposed four evaluation

metrics are calculated based on these four variables. For instance:

(1)The precision: the proportion of the correctly predicted unsafe OCs in all the actual unsafe

OCs.

precision = TP/(TP + FP ) (4.20)

(2)The specificity: the proportion of the correctly predicted safe OCs in all the predicted safe

OCs.

specificity = TN/(TN + FP ) (4.21)

(3)The F1-Score: the comprehensive evaluation of the the precision and the recall. (Recall =
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TP / (TP + FN))

F1− Score = 2× PRE ×REC/(PRE +REC) (4.22)

(4)The accuracy: the proportion of correct classification results over all output results.

accuracy = (TP + TN)/(TP + FP + FN + TN) (4.23)

4.3.4 Case Study 1: CBDAC Classification Performance without

Topology Changes

In this test, we aim to compare the classification performance of the proposed CBDAC method

with other popular methods. As introduced in section IV A, 80% of the database is used to do

the training work. Fig. 4.7 presents the testing results of the four evaluation metrics, where the

testing is based on the data size of 20%×12000×22. The length of the blue bar represents the

value of the evaluation metric (i.e., a higher value corresponds to a longer bar). CA at the last

column indicates the ability of confidence awareness. In terms of the classification performance,

the results show that the CBDAC model dominates when compared with the most popular

method DT with 17.03%, 21.98%, 15.56%, 20.55% improvements, respectively. In addition, the

performance of CBDAC also dominates when comparing with the best of the state-of-the-art

methods, RF, especially when considering the fact that the performance is already approaching

the limit, with approximately 6.52%, 11.40%, 7.91%, and 8.04% improvements for the four

evaluation metrics. Moreover, only Bayesian models have confidence awareness capability. The

fact that Bayesian methods provide the best performance indicates the significance of capturing

uncertainties.

Regarding the computational time, which is presented in Table 4.2, the experiment shows

that DT and RF methods have the shortest training time, 31 and 59 seconds, respectively. In

contrast, SVM has the heaviest computational burden, approximately 18,345 seconds. It can
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Figure 4.7: Classification results for different methods.

be seen that deep learning methods require longer training time than most of the benchmark

approaches, where DAC BDAC and CBDAC consume 763, 1127 and 831 seconds, respectively.

However, it is notable that model training is an offline procedure. Given the input dataset, the

security assessment task can be finished within seconds in practical use. Therefore, the main

target in this case is to obtain an accurate classification result.

Table 4.2: Computation Time For Model Training

CPU Time (s)
DT 31
SVM 18,345
RF 59
DAC 763
BDAC 1,127
CBDAC 831

4.3.5 Case Study 2: CBDAC VS. Other Methods under 44 Different

System Topology

In this test, we aim to evaluate the performance of the proposed CBDAC method and other

methods when facing system topology changes. The trained models shown in case study 1 are

directly used in this test without re-training. OCs data from new topology cases are sampled

following the same rationale as introduced in section IV A. We assume system topology changes

by switching off lines between buses. We have generated 44 different topology cases with various

similarity to the original system topology. For instance, by observing the system structure

from [4], we can find that there is a double line scheme between bus NO.27 and NO.53, hence
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the disconnection between these two buses might have a slight influence on the rest area of

the network. On the other hand, bus NO.17 has the maximum load within the system, which

implies that disconnection occurred here could cause severe power flow pattern changes. It is

notable that due to the extreme time cost, it is unreasonable to keep considering the SVM

method.
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Figure 4.8: Box plots of F1 Score for 44 different topology.
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Figure 4.9: Box plots of PRE for 44 different topology.

The general experiments results are shown in Fig 4.8-4.11, where Bayesian methods show

superior performance than the DT, RF and DAC models. For instance, as illustrated in Fig

4.8(a), in terms of the comprehensive evaluation F1-Score, DT has the lowest score, an average
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Figure 4.10: Box plots of ACC for 44 different topology.
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Figure 4.11: Box plots of SPE for 44 different topology.

of 67.80% while RF has a slightly higher performance of 74.45%. Deep Learning methods show

significantly better results such as DAC at 77.51% and BDAC at 78.06%. Our improved CBDAC

method has the best average performance of 83.31%. CBDAC also outperforms in terms of other

metrics, which is demonstrated in Fig 4.8(b)(c)(d) respectively. Table 4.3 also shows several

individual results of CBDAC model. More importantly, if the acceptable accuracy level is set

to be 0.8 F1-Score, we can find that none result from DT method locates above it. RF has a

proportion of 20.45% (9 of 44) that goes over the threshold. DAC and BDAC methods have

45.45% (20 of 44) and 54.55% (24 of 44) results that go beyond the threshold value respectively.
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CBDAC has 70.45% (31 of 44) above the threshold.

The result proves that the Bayesian model with improvement still has superior performance

when facing system topology changes, which further implies that resources can be saved if

unnecessary updating work can be avoided.

Table 4.3: Different Topology Cases for CBDAC

CBDAC
Case F1-Score ACC PRE SPE
27-53 92.15% 92.91% 92.52% 93.85%
65-64 91.71% 91.91% 93.71% 94.02%
63-64 91.86% 92.18% 92.03% 92.64%
17-36 64.70% 80.41% 69.30% 88.70%
48-40 79.92% 85.41% 82.66% 90.25%

4.3.6 Case Study 3: Epistemic Uncertainty as Model Updating In-

dicator

So far we have proved that the Bayesian deep learning method with improvement is advance

and also robust when faced with system topology changes. However, the essence of forecasting

(classification) itself determines that we will never know whether the next prediction is true

until we know the results. Hence, a reliable auxiliary indicator, which has the ability to show

the ‘confidence’ of the forecasting result becomes vital. Bayesian method thus shows its second

advantage: the ability to represent the prediction confidence using model uncertainty as the

indicator. The model uncertainty mu, as previously illustrated in equation (4.13), represents

the domain knowledge learned by the model. In other words, the uncertainty of the Bayesian

model can reflect the similarity of the original system topology and the new topology, i.e. a big

change of topology means a significantly higher uncertainty.

In this case study, BDAC and CBDAC are used since they are Bayesian-based approaches. It is

notable that in this work, we only consider the topology changes that are pre-defined by the

TSO. As can be seen in Fig.4.5, when system topology changes, a small number of OCs are

feed into the trained CBDAC model firstly, and the uncertainty results can be generated and
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collected. During this process, we find that the generated uncertainty values are around a certain

level. Compared with the uncertainty level of a finely trained model at the original topology, it

is found that the uncertainty level is correlated with the model performance at each topology

case. It is also implied that the level of uncertainty is determined by the characteristics of the

database (system topology characteristics). In other words, when it comes to another network

(e.g. a 108-bus system), there will be another uncertainty level, which could also be decided

by the validation data set XTk
val from the corresponding topology cases. Therefore, considering

the trade-off between the model accuracy and the updating work burden, we found that 0.8

F1-Score is a reasonable setting.

In this test, if 0.8 F1-Score is used to distinguish safe and unsafe, 20 out of 44 topology cases

will be identified as unsafe when using BDAC model. Similarly, in terms of CBDAC model, 13

topology cases have F1-Score lower than 0.8. The performance of the proposed two models

under 44 different topology cases and the effectiveness of uncertainty indicator is demonstrated

in Fig 4.12-4.15. However, it is notable that the uncertainty might not be sensitive enough

when it comes to each individual cases. Instead, it is more reasonable to evaluate various set of

topology cases and calculate the average performance. For instance, though fluctuation could

be observed, as a general calculation, the first 20 topology cases have an average uncertainty of

0.171, which is larger than the average of the last 24 cases: 0.149, in the BDAC figure Fig 4.13.

In terms of CBDAC Fig 4.15, 0.172 VS 0.154 are the average uncertainty values for the first 13

cases and the rest.

Therefore, we can conclude that if 0.8 F1-Score and 0.16 of uncertainty are chosen to be the

threshold value, we can observe that most of the topology with poor performance can be detected.

This ‘detection’ property has significant importance since it is generated simultaneously with

the classification results. In other words, in reality, the system operator can have confidence

information on the model’s prediction, which allows him to decide whether to trust or update

the model.
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Figure 4.12: F1 Score of BDAC under 44 different topologies.
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Figure 4.13: Uncertainty of BDAC under 44 different topologies.

4.3.7 Case Study 4: Model Updating Using Small Data

In this test, we explore the situation when only limited data is available to update the model.

In terms of new topology cases, 800 OCs are randomly sampled for each contingency (i.e. a

total of 800×22=17600). Following the rationale before, the new database is finely shuffled in

order to provide good randomness and generalization. The first 100 OCs of each contingency

are used to generate the uncertainty information (i.e. 100×22=2200). The last 400 OCs of each

contingency (i.e. 400×22=8800) are used as the testing set. The rest 300 OCs thus are used as

the updating data set. Therefore, we design four different updating scenarios, where 30 OCs,

100 OCs, 200 OCs, and 300 OCs are used to update the model, which generates data sample
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Figure 4.14: F1 Score of CBDAC under 44 different topologies.
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Figure 4.15: Uncertainty of CBDAC under 44 different topologies.

size of 660, 2200, 4400, 6600 respectively. The OCs from each scenario are sampled uniformly

except the 300 OCs case so that the test is convincing.

We choose DAC, BDAC, CBDAC in the experiments as a comparison. The evaluation results

are shown in Fig 4.16 to 4.19. Firstly, we can observe that the classification performance can be

improved by updating the model with a few data points. The performance is enhanced as the

number of data increases, which is in line with our intuitive speculation. However, one interesting

phenomenon here is that when using extremely small size data (e.g. 30 OCs), the performance

becomes unstable. For example, the original F1-Score performance of topology NO.10 and

NO.11 are 0.9215 and 0.8615. After updating with 30 new OCs, their new performance is 0.8412
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and 0.7896 respectively. Considering this phenomenon, it is reasonable to think about a more

efficient updating strategy, with the ability to distinguish the necessity of updating the model.

The Bayesian model thus is able to fulfil our requirement.

Table 4.4: Performance of Different Updating Strategies: 100 OCs

100 OCs Updating
F1-Score ACC PRE SPE

Original 83.31% 84.93% 82.93% 84.64%
All 86.30% 87.88% 83.23% 85.03%

Stochastic 84.08% 85.72% 83.10% 84.54%
Selective 86.10% 87.18% 86.03% 86.80%

Table 4.5: Performance of Different Updating Strategies: 30 OCs

30 OCs Updating
F1-Score ACC PRE SPE

Original 83.31% 84.93% 82.93% 84.64%
All 82.40% 84.90% 78.11% 81.16%

Stochastic 82.33% 84.31% 80.45% 83.15%
Selective 84.79% 86.08% 84.77% 85.71%

Based on our previous experience from case study 3, it has been found that the uncertainty

level is mainly decided by the characteristics of the network. In terms of the example IEEE

68-bus system, we find that 0.16 uncertainty could be a proper separation limit, which identifies

16 cases to be updated. It is notable that this time we only focus on the extremely small size

data, i.e. 30 and 100 OCs. As a comparison, we select 16 cases stochastically in order to prove

the effectiveness. Table 4.4 and 4.5 demonstrate the average performance of four evaluation

metrics in terms of different updating strategies. For instance, traditional updating strategy (i.e.

update all) works only if there is sufficient data. However, considering the corresponding time

consuming of 2200 data points during the TDS, the practical value of this strategy remains

questionable. On the other hand, updating the model selectively is proved to have not only

equally robust performance but also significantly fewer time consumption. For example, in

our test, only 16 out of 44 topology cases are required to do the TDS, which means the time

consumption is only 36% of traditional updating strategy, not to mention the part of re-training

the model. Furthermore, comparing to the traditional strategy, the selective updating strategy

still has reliable performance, even with significantly fewer data points.
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Figure 4.16: Model updating with different data size: Box plots show the evaluation of F1-Score
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Figure 4.17: Model updating with different data size: Box plots show the evaluation of ACC

To verify the effectiveness of computational cost reduction of the proposed updating strategy,

we illustrate the simple calculation process which is based on several assumptions. Assume

the model training time is T for one topology and the TDS time for calculating the label

is S for one OC. Comparing to T and S, the model initialization time and the feed-forward

time can be neglected. The traditional updating strategy requires the model to be trained

every time the system topology changes based on the full-sized database, which means the

full-sized database TDS is also needed. In our experiments, the total time consumption thus

should be 44× (T + 300× 22 × S), where 300 × 22 OCs are used for 22 contingencies. This
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Figure 4.18: Model updating with different data size: Box plots show the evaluation of PRE
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Figure 4.19: Model updating with different data size: Box plots show the evaluation of SPE

results in a significantly high computational cost, thus will not be considered. Instead, by using

small size database, the computational cost can be reduced to 44× (T100 + 100× 22× S) or

44× (T30 + 30× 22× S), where T100 and T30 indicate the training time using 100 or 30 OCs

from each contingency. The training time is also reduced as the data size is reduced, which

means T30 < T100 < T . By using the proposed updating strategy, only 16 out of 44 topology

need to be updated which further reduces the computational cost to 16× (T100 + 100× 22× S),

or 16× (T30 + 30× 22× S). Comparing the proposed ‘Selective’ updating strategy and the ‘All’
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strategy, the approximated computational time saving can be calculated as follows

(1− 16× (T30 + 30× 22× S)

44× (T100 + 100× 22× S)
)× 100% ≈

(1− 16× (30× 22× S)

44× (100× 22× S)
)× 100% = 89.09%

(4.24)

where we find in our experiments that T30 � 30× 22× S, and T100 � 100× 22× S.

4.3.8 Discussion

The proposed Conditional Bayesian Deep Auto-Encoder based DSA classifier has shown promis-

ing performance. Specifically, in this work, one practical problem we would like to solve is how

to avoid unnecessary cost when system topology changes? We solve the problem by using the

confidence as updating indicator and small size data.

Given the complexity of a real power grid, it is usually infeasible for the traditional approaches

to scale and adapt to a larger power network. For a medium-sized system such as the IEEE-68,

the use of a pre-trained classifier can be much faster than using optimization approach since it

solely involves the evaluation of a small number of inequality statements (i.e. security rules).

This advantage persists to much larger systems where the computational burden of optimization

problems may scale in a non-linear fashion. It can be particularly important when operating in

a real-time fashion where the available computational time budget is limited, and the list of

contingencies to be checked might include hundreds or thousands of potential faults. However,

the most fundamental benefit of the proposed workflow is that it can be readily extended to

other types of stability indicators that cannot be determined via optimization but only via

TDS (e.g. angle stability, small-signal stability, transient stability etc.). As presented in [101],

performing such simulations in real-time is prohibitively slow, which is why an offline analysis

must have been carried out beforehand.

The limitation of the work lies in: (1) The database to be used in a ML task is usually collected

from various scenarios in advance, and the training works are also done offline. In other words, in
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terms of the basic DSA task, there will be enough time for the TSO to do the database collecting

and updating works. In addition, to enrich the OCs domain, more OCs are simulated from a

pre-defined range of distribution. These OCs are sampled in order to cover the domain that is

potentially to occur in the near future, thus can make the database more effective. However,

TSO might only have limited reacting time when there is a topology change. Considering

the fact that different topology cases might lead to various reacting time, it is possible that

practical updating work could be challenged. (2) The uncertainty threshold value is selected

based on experience. Therefore, it is imperative to investigate an analytical method to identify

the appropriate threshold for the proposed CBDAC method. (3) More comprehensive evaluation

metrics should be proposed or employed to deal with the imbalanced problem of DSA.

4.4 Conclusion

Machine learning approaches have been proved to be promising in terms of forecasting and clas-

sification tasks. Predictably, it will play an important role in the future power system. However,

traditional machine learning techniques are lack of capability in confidence awareness, which is

of great importance for TSOs to understand whether the data-driven model is certain about its

prediction. As a response, this work proposes a confidence-aware machine learning framework

for DSA based on the Conditional Bayesian Deep Auto-Encoder network. The proposed CBDAC

model uses dropout to achieve Bayesian approximation with further improvement of conditional

training. The superiority and robustness of the proposed methodology are demonstrated with

comparison to a series of state-of-the-art methods. We have shown that comparing with the

best of state-of-the-art methods, our proposed model still has 6.52%, 11.40%, 7.91% and 8.03%

improvement in terms of four evaluation metrics. Furthermore, we explore the feasibility of

using limited data in order to update the model and thus propose a selective updating strategy.

Indicated by the model confidence, the proposed strategy significantly alleviates the unnecessary

time consumption, approximately 89%, under frequent system topology changes, which is of

great practical value.
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Chapter 5

A Bayesian Deep Reinforcement

Learning-based Resilient Control for

Multi-Energy Micro-gird

5.1 Introduction

Secure and reliable power system operation is crucial to the modern world as the society depends

on electricity increasingly. In recent years, due to the climate change, people have witness

of more often extreme weather events, which is expected to occur with wider range in the

foreseeable future. Although power systems are designed with a certain extend of ability to

resist potential component outage(usually refer to as the N-1 security principle), many natural

disasters or malicious attacks could result in more serious damages to the power systems, which

is beyond the capability of the power system self-healing. Many blackouts are due to these

natural disasters such as the 2005 Hurricane Katrina, 2011 Japan Earthquake and the most

recent 2021 Texas power crisis. In the future, the increasing penetration of multi-energy sectors

will bring major flexibility challenges but also provide the opportunity for the researchers to

consider enhancing the system resilience in different strategies. To this end, an integrated
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optimal resilient control scheme of multi-energy systems will play a vital role contributing to a

safe, cost-effective and low-carbon energy future.

Researchers have contributed significant efforts to this field and several meaningful works have

been highlighted in this section. In [11], the authors give a comprehensive review of the existing

works with the aim of clarifying ambiguity. In general, enhancing resilience can be classified

into two aspects: 1) the system hardening and 2) the operational resilience strategies. System

hardening is defined as increasing the construction standards and system protection level so as

to make the system infrastructure less vulnerable to extreme events [131]. However, the trade-off

between the system resilience level and the cost is always challenging since one hardening

strategy could be effective only to one particular case [11]. Instead, smart grid technologies that

is regarded as operational resilience strategies have attracted lots of attention, such as topology

reconfiguration, micro-grids etc.

For instance, in the existing literature, [132] and [133] use mixed-integer linear programming

(MILP) method to enhance power system resilience by changing network topology, generation re-

dispatching etc.. The latter specifically focuses on the situation against ice storms. Micro-grids

are able to support their own critical power demand. Under some conditions, micro-grids can

even support the main grid or other micro-grids during an extreme event [134]. Research works

such as [135] and [136] illustrate good examples. In particular, [137] analyzes the effectiveness

of networked micro-grids towards large scale power system resilience enhancement. [14] and

[138] propose to study the strategies for service restoration in the distribution system by using

micro-grids. [15] and [139] investigate the situation when micro-grid is operated in island mode

due to a scheduled interruption from the main grid. In this case, micro-grid is required to serve

critical loads, until back to connected mode. The work focuses on the day-ahead scheduling,

thus the real-time emergency reaction stays unclear. In addition, distributed generator is able to

serve as backup capacities, which is usually in the form of controllable fossil fuel generators[134].

Energy storage of electricity, heating and gas could also provide the same function, such as the

discussion in [140]. There are also important works discussing about preventive strategies. For

instance, the authors in [141] propose a linear programming approach aiming at determining

116



CHAPTER 5. A BAYESIAN DEEP REINFORCEMENT LEARNING-BASED RESILIENT
CONTROL FOR MULTI-ENERGY MICRO-GIRD

the capacity and location of the BESS. The work [142] focuses on the cyber side when there

are bad data injections attacks. In [143], the authors propose a framework of three stages

preventive control, emergency control, and restoration, considering the typhoon path uncertainty.

Moreover, [144] discusses a worse scenario when extreme events such as hurricane happens in a

sequential manner.

Although the aforementioned works have shown effectiveness to enhance the resilience of power

systems, these methods require accurate system knowledge in order to build the model. In

addition, optimisation-based approaches could be less computationally efficient especially for

large-scale, multi-sector power systems. Therefore, data-driven methods that do not depend on

accurate system parameters have attracted increasing attention in recent years.

Reinforcement learning is a model-free and data-driven approach thus provides a solution that

alternative to the model-based approaches. Recent works have shown that reinforcement learning

has great potential in terms of real-time system control and decision making. For instance, [145]

and [146] report to use reinforcement learning to solve voltage regulation task. This is due to

the fact that reinforcement learning can avoid exploiting the exact system models thus could

be computationally efficient. There are applications of reinforcement learning in other aspects

as well. Literature [24][147] and [148] contribute to the smart building energy management

problems. In particular, [24] improves the existing DDPG method in order to obtain better

policy quality and accelerates the training process by using prioritized sampling. Works such as

[149] have shown the potential of reinforcement learning in the field of electricity market. In

[150], it is proposed to use reinforcement learning as a control scheme for the electric vehicles

charging. Moreover, reinforcement learning can also be used to enhance resilience. The authors

in [151] use deep reinforcement learning to manage the planing strategy of shunts to enhance

resilience against multiple line failures. Besides preventive planning, reinforcement learning can

also be used as resilient operation controller. Examples such as [152] develops a real-time service

restoration controller that is able to manage generation and storage units after power outages.

Other works such as [153] investigates the multi-agent resilient control under the situation when

micro-grid is operated in island mode.
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The existing research has successfully demonstrated the superior performance of reinforcement

learning on various tasks. However, most of the studies are based on deterministic models,

which is lack of the ability to capture uncertainty. Bayesian Reinforcement Learning (BRL) has

exhibited the superior performance in dealing with uncertainties in sequential decision-making,

understanding generalization and inferring the proper distribution function between action and

state spaces, which is always regarded as leading to a more interpretable deep neural network

through the lens of probability theory.

Currently, there are a few important works of Bayesian reinforcement learning. For instance,

[154] proposes Bayesian Deep Q-Network (BDQN), where the authors address the issue of

inefficient sampling of the posterior. [155] focuses on the model-free reinforcement learning

algorithms. A good industrial example of autonomous vehicle safety is discussed in [156]. Despite

the aforementioned works, there is only few contribution of Bayesian learning in the area of

power system including [116] and [157].

To fill the gap of the knowledge, in this part of work, a data-driven Bayesian Deep Reinforcement

Learning algorithm is proposed to provide the energy management and resilient control in

a multi-energy micro-grid system. To summarize, this study makes the following original

contributions:

1) A Bayesian DRL-based real-time decision making scheme has been proposed, which is designed

to deal with the resilient operation of multi-energy micro-grid system. During the resilience

mode, the target is to keep only essential loads served. During normal condition, the proposed

RL approach is able to help the TSO to achieve a near optimal real-time control with minimum

system operation costs.

2) Bayesian Deep Learning theory and Reinforcement Learning are integrated to generate real-

time system control strategy with the aim of capturing uncertainties and avoiding value function

estimation during the training process in the multi-energy micro-grid system. To the best of

the authors’ knowledge, this is the first attemption to exploit Bayesian Deep Reinforcement

Learning in the area of system resilient control.
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3) A series of comprehensive case studies are conducted, which consider the uncertainties in the

extreme events. For example, the extreme events are assumed to have longer duration period

and their own time-changing profiles. Compared with the state-of-the-art methods, the superior

performance and the robustness of the proposed approach are studied and analysed through

various operating scenarios.

The rest of this part of work is organized as follows. Section 5.2 reviews the dropout-based

Bayesian Deep Learning method and the proposed Bayesian Deep Deterministic Policy Gra-

dient(BDDPG) is introduced. Section 5.3 illustrates the experiment setting including the

description of the test network and data, the details of the formulation of the reinforcement

learning and other related parameter setting. Comprehensive numerical experiments are then

conducted in order to demonstrate the superior performance of the proposed method. Finally,

section 5.4 draws the conclusions.

5.2 The proposed Bayesian Deep Deterministic Policy

Gradient real-time control scheme

5.2.1 Problem Setting

Figure 5.1: The illustrative structure of the studied multi-energy micro-grid
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We focus on a multi-energy micro-grid, which consists of transmission lines, distributed gener-

ators(DG), RES, gas plants, gas storage, gas well(i.e gas grid), power load, and gas load, as

depicted in Fig. 5.1. In addition, we assume that the connection lines between power system

and gas system are designed so that the gas flow is flexible enough to supply the gas loads, gas

generators, gas storage unit simultaneously.

5.2.2 Markov Decision Process

To tackle the aforementioned challenges, we propose to integrate the Bayesian Deep Learning

theory with the current RL technique. Before illustrating the methodology, we would like to

firstly give background introduction of RL and try to reformulate the proposed problem as a

Markov Decision Process (MDP).

In the context of RL, an agent takes actions sequentially to interact with the environment

following a pre-defined rule, which is designed to maximize the cumulative reward (or minimize

the pre-designed cumulative cost). In general, RL is described as a MDP which includes: 1)

a state space S; 2) an action space A; 3) a state transition probability p(st+1|st, at), which

satisfies the Markov property, i.e., p(st+1|st, at) = p(st+1|s1, a1, ..., st, at); 4) a reward function

r: (S,A) → R and 5) a policy function π(st) = at, which is used to govern the agent when

choosing the action at at a certain state st. More specifically, the components of a MDP for this

problem are detailed as:

(1) Agent: RL involves an agent, the micro-grid central controller (MGCC) in this work,

learning by itself which actions to take in an uncertain and complex environment [158].

At each time step t, MGCC obtains the local information of PV generation, power loads, gas

loads from the installed sensors and measures the state-of-charge (SoC) of gas storage unit. When

the agent interacting with the environment, a series of states, actions and rewards are generated:

s1, a1, r1, s2, a2, r2, ..., st, at, rt, ... over T time steps. The cumulative return R =
∑T

t=0 γ
trt+1 is

the sum of discounted reward where γ ∈ [0, 1] is the discount factor and T is the experiment
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horizon (e.g., 24 hours). It is used to represent how the agent is going to balance the effect

from current and future states. The Q-value function Qπ(st, at) = E[R|st, at, π] represents the

estimation of the cumulative return given an action at, at state st, and following the policy π

from the selected states on-wards. An optimal policy can be obtained from the optimal Q value

Q∗(st, at) = maxQπ(st, at) by selecting the action that contributes the highest Q-value at each

state. Afterwards, the determined optimal control policy will be implemented by the MGCC

upon the controllable units (e.g., traditional generator, gas well, and gas storage), aiming at

minimizing the load shedding cost under the constrains of AC-OPF. This is then returned

to the agent and is used to update the control action at next time step. In order to obtain

the maximum cumulative reward (i.e. optimal policy), the agent must learn this mapping by

continuously interacting with the environment.

(2) State: The state vector st works as providing a feedback signal towards the RL agent,

which represents the results after implementing action at−1 at time step t− 1 on the micro-grid

environment. In this work, the state vector is defined as:

st = [t, PLt, GLt, PVt, GSt] ∈ S (5.1)

where t denotes the time step in the training period, PLt represents the electricity load of the

micro-grid system, GLt represents gas load of the system, and PVt represents the PV generation.

These features are independent to the agent’s actions. On the other hand, GSt denotes the

energy contents of the gas storage unit, which can be affected by agent’s actions.

(3) Action: Given the state st, the corresponding actions at of the RL agent at time step t is

defined as:

at = [aGWt , aDGt , aGSt ] ∈ A (5.2)

where aGWt ∈ [0, 1] represents the output percentage of the gas well. aDGt ∈ [0, 1] represents

the output percentage of the distributed generator. aGSt ∈ [−1, 1] represents the percentage of
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charging (positive) and discharging (negative) gas of the gas storage unit.

(4) Environment and State Transition: When action at is determined, it interacts with

the micro-grid environment in order to obtain the next state st+1 and the reward rt. This

interacting process can be denoted as a mapping function [st+1, rt] = fMG(st, at), which is

constrained and characterized by the operational rules and corresponding physical rules so that

the feasibility of the selected actions at each time step can be ensured.

In this research, the constrains within the transition process is mainly about the energy contents

of the storage/generation units so that both gas demand and electricity demand can be supplied

in both normal mode and resilience mode. As illustrated in previous sections, the state transition

from st to st+1 is not only affected by the action selection policy but also by the uncertainties

in state features. Hence, in this study, the values of PLt+1, GLt+1 and PVt+1 are assumed to

be taken directly from the forecasting scheme, where we assume the forecasting has a certain

level of error, represented by a Gaussian noise. On the other hand, the values of GSt+1 will

be determined by the actions selected at time step t. The details of the environment fMG is

illustrated as follows:

GGW
t = aGWt ×GGW

, ∀ t (5.3)

PDG
t = aDGt × PDG

, ∀ t (5.4)

GSCt =


aGSt ×GS if aGSt ≥ 0

0 else

, ∀ t (5.5)

GSDt =


aGSt ×GS if aGSt < 0

0 else

, ∀ t (5.6)
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GSt+1 = GSt +GSCt +GSDt, ∀ t (5.7)

PGG
t = max

( 1

ηGP
(GSDt +GGW

t −GLt −GSCt), 0
)

(5.8)

PGG
t = min

(
PGG
t , P

GG

t

)
(5.9)

where equations (5.3) and (5.4) represent the gas output of gas well and the power output of

distributed generator, respectively. Equations (5.5) and (5.6) indicate the mutually charging and

discharging gas quantities GSCt, GSDt of gas storage unit, and the energy dynamics in (5.7) is

calculated given GSCt, GSDt. Finally, the system still needs to purchase a certain level of gas

quantity from the gas grid, converting into the power quantity PGG
t with a certain conversion

ratio ηGP , as presented in (5.8).

(5) Reward: At the end of time step t, agent obtains its reward rt. The objective of the agent

is to optimally manage the energy schedules of each controllable component to minimize the

system energy cost and to avoid load shedding when an extreme event occurs. Thus, the reward

function can be designed as the following aspects: 1) the penalty for violating power balance rbalt ,

where δ represents a tolerable slack margin that ensures the stability of the system frequency

and ξ works as a bias constant that helps balancing the ratio of reward and penalty during

the training process; 2) the negative cost for providing fuels to the generators and gas wells as

well as the operating cost for gas storage unit rcostt ; 3) the penalty when system fails to support

critical electric load during extreme event period rctlt , where PNSt represents the proportion

of power load not served at time step t and cPL indicates the cost with the unit of $/MW; 4)

the reward when gas load is properly served and the penalty when it fails to support the gas

load, represented as rgast , where cGL indicates the cost with the unit of $/Sm3; 5) the penalty

when gas storage unit violates its physical capacity limit rgst ; 6) the reward when power load is

123



CHAPTER 5. A BAYESIAN DEEP REINFORCEMENT LEARNING-BASED RESILIENT
CONTROL FOR MULTI-ENERGY MICRO-GIRD

properly balanced rpowt

rbalt = − |ξ1 + PGG
t + PDG

t + PVt − PLt − δ|,

if PGG
t + PDG

t + PVt > PLt + δ

(5.10)

rcostt = − bGS ×GSt − bGW ×GGW
t

−(aDG + bDG × PDG
t + cDG × PDG

t × PDG
t )

(5.11)

rctlt = −cPL × PNSt × PLt (5.12)

rgast =


20 if GPt −GLt >= 0

−cGL ×GNSt ×GLt else

(5.13)

rgst = −100, if GSt > GS or GSt < 0 (5.14)

rpowt = 20, ∀ PLt − δ <= Pt <= PLt + δ (5.15)

Finally, the overall reward function can be written as:

rt = rpowt + rgast + κ1 × rcostt +

κ2 × rctlt + κ3 × rgst + κ4 × rbalt

(5.16)

where κ works as a bias constant that helps balancing the ratio of each reward component and

penalty component during the training process. This reward function equation 5.16 indicates

the direction that RL agent is trained towards, i.e. positive value for ’what to do’ and negative

value for ’what not to do’. In the test, the values of the reward have no physical meaning

since they are normalised during the training process but the selection of the values follows the
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principle that the reward should has similar level of magnitude compared to the total penalty

and cost.

5.2.3 Bayesian Deep Deterministic Policy Gradient (BDDPG)

Policy gradient based approaches have shown great success in solving continuous action-state

control tasks. However, with the growing stochasticity of such problems, the estimation of the

deterministic value function becomes difficult. Due to the superior performance of Bayesian deep

learning in probabilistic modelling, it is reasonable to investigate the feasibility of integrating

Bayesian deep learning theory with RL.

In previous existing works such as [116] and [157], it has been illustrated that a deterministic

neural network can be transformed into an equivalent Bayesian neural network by applying

stochastic regularisation techniques in the model, such as dropout. To avoid redundancy, only

key parts are kept and re-introduced here:

Dropout Approximated Inference

To combine the epistemic uncertainty and the aleatoric uncertainty in a single model, a

distribution is firstly placed over the weights and the bias. The structure of a deep neural

network also needs to be slightly changed, where the top layers are splited into two parts in

order to simultaneously generate ŷ and σ̂2:

[ŷ, σ̂2] = f ŴBNN(x) (5.17)

where fBNN represents the Bayesian deep neural network parameterized by Ŵ ∼ qθ(W ). Given

that a normal likelihood is chosen to model the aleatoric uncertainty, the final loss function of

the Bayesian neural network can be formulated as:
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LBNN(θ) =
1

Ttrain

Ttrain∑
i=1

1

2σ̂2
i

||yi − ŷi||2 +
1

2
logσ̂2

i (5.18)

Note that the loss function can consider both the model uncertainty through ŷ and the aleatoric

uncertainty through σ̂.

Dropout variational inference is a good example of inference approximation, which has great

practical value of being simple to be implemented. However, there are also limitations such as

underestimating the model uncertainty[27]. This is due to the unbalanced penalty setting when

minimising the KL divergence between the approximating posterior q(w) and true posterior

p(w|X, Y ). For instance, penalty only occurs when q(w) has probability mass where p(w|X, Y )

has no mass, but there is no penalty for q(w) when not placing probability mass at locations

where p(w|X, Y ) does have mass [159]. To avoid this underestimation, α-divergences could be

regarded as an alternative divergences to the KL objective of variational inference.

Dropout Approximated α-Divergence Inference

The distribution to be approximated usually has a general form shown as below:

p(w) =
1

Z
p0(w)

∏
n

fn(w) (5.19)

where in the contexts of Bayesian neural networks, fn(w) represent the likelihood terms

p(yn|xn, w), Z = p(Y |X), and the target of approximation is the posterior p(w|X, Y ) [159].

Several approximating inference techniques such as variational inference (VI) or expectation

propagation (EP) are widely used and have already shown their effectiveness. But these two

techniques are special cases of power-EP with α-divergences as its minimisation objective[160].

Various accepted definitions of α-divergences could be found in the existing literature. It is

notable that these forms can be converted to each other, thus in this work, Amari’s definition is

used and expressed as follows[161]:
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Dα[p||q] =
1

α(1− α)
(1−

∫
p(w)αq(w)1−αdw) (5.20)

Due to the fact that power-EP might have issues with space complexity when facing larger size

data, since the approximating factors are attached to every likelihood term fn(w), researchers

have proposed alternative inference methods such as BB-α in [162], with the aim of reducing

space complexity[159].

A general form of BB-α energy function given α 6= 0 is firstly shown as below[163]:

Lα(q) = − 1

α

∑
n

logEq[(
fn(w)p0(w)

1
N

q(w)
1
N

)α] (5.21)

An MC approximation form is given in equation 5.22 since the expectation might be intractable:

LMC
α (q) = − 1

α

∑
n

log
1

K

∑
k

[(
fn(ŵk)p0(ŵk)

1
N

q(ŵk)
1
N

)α] (5.22)

where ŵk ∼ q(w). Although this MC approximation is a biased approximation since the

expectation Eq[. . . ] in equation 5.22 is computed before logarithm, the work in [164] has shown

that the bias can be overcome properly by the variance of the samples, resulting in negligible

effect. When α→ 0 it becomes the variational free energy (the VI objective), which is expressed

in equation 5.23[159].

L0(q) = LV FE(q) = KL[q||p0]−
∑
n

Eq[log fn(w)] (5.23)

This time, the corresponding MC approximation LMC
V FE can be regarded as an unbiased approx-

imation of LV FE. In [164], the authors directly evaluates the MC estimation equation 5.22

with samples ŵk ∼ q(w). However, when applied with dropout approximation, there could be

prohibitive cost if the network has more complicated structure. This is because sampling ŵ
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from dropout masked q(w) are implemented to each data point, which will then be formed into

a mini-batch. On the other hand, the minimisation of the variational free energy (α = 0) with

the dropout approximation can be computed very efficiently. As discussed before, the main

computational burden comes from the sampling process of q(w), which means if the additional

part KL[q||p0] can be approximated properly, there will be no need to evaluate q(w), thus the

whole minimisation process could be relieved[159]. Hence, the next step is to give an improved

form of BB − α energy to allow applications with dropout.

First, rewrite the approximate posterior q(w) with respect to q̃(w), which is a free-form cavity

distribution[159]:

q(w) =
1

Zq
q̃(w)

(
q̃(w)

p0(w)

) α
N−α

(5.24)

In order to ensure q(w) a valid distribution, Zq < +∞ is assumed as a normalising constant[159].

When α/N → 0 (e.g. when α → 0, N → +∞ or when α increases sub-linearly to N), the

un-normalised density term in equation 5.24 converges to q̃(w) for every w, and Zq → 1 by the

assumption of Zq < +∞[165]. Hence q → q̃ when α/N → 0. Next, rewrite the BB − α energy

in terms of q̃[159]:

Lα(q) = − 1

α

∑
n

log

∫ (
1

Zq
q̃(w)

(
q̃(w)

p0(w)

) α
N−α
)1− α

N

p0(w)
α
N fn(w)αdw

=
N

α
(1− α

N
) log

∫
q̃(w)

(
q̃(w)

p0(w)

) α
N−α

dw − 1

α

∑
n

logEq̃[fn(w)α]

= Rβ[q̃||p0]− 1

α

∑
n

logEq̃[fn(w)α], β =
N

N − α

(5.25)

where Rβ[q̃||p0] represents the Renyi divergence of order β and Rβ[q̃||p0] → KL[q̃||p0] =

KL[q||p0][166]. This means that the BB-α energy can be further approximated as expressed in

equation 5.26, if a constant α scales sub-linearly with N[159]:
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Lα(q) ≈ Lα(q̃) = KL[q||p0]− 1

α

∑
n

logEq[fn(w)α] (5.26)

Given a loss function L(. . . ) (e.g. l2 loss in regression or cross entropy in classification), the

likelihood term fn(w) can be found to be fn(w) ∝ p(yn|xn, w) ∝ exp[−l(yn, fw(xn))][167].

Hence, replacing fn(w) with the loss function and using Monte Carlo sampling as a unbiased

approximation of the expectation over q(w), the following minimisation objective can be obtained

and shown as below[159]:

L̃MC
α (q) = KL[q||p0] + C − 1

α

∑
n

LogSumExp[−αl(yn, fw(xn))] (5.27)

with Log-Sum-Exp being over K stochastic samples from ŵk ∼ q(w). Comparing with the

original BB-α energy function formulation equation 5.21, the approximated form in equation 5.27

has less computational burden due to the negligence of the posterior evaluation. In addition, the

overall form is similar to standard objective functions in deep learning, which means practically

easier to implement.

Specifically, in regression problems, the loss function is defined as L(y, fw(x)) = 1
τ
||y− fw(xn)||22

and the likelihood term can be interpreted as y ∼ N(y; fw(xn), τ−1I)[159]. Re-formulating the

energy function in equation 5.27 returns the final objective[159]:

L̃MC
α (q) = − 1

α

∑
n

logSumExp[−ατ
2
||yn − f ŵk(xn)||22] +

ND

2
log τ +

∑
i

pi||M ||22 (5.28)

where τ is the precision of the model, ŵk are the stochastic samples from dropout masked

weights, f ŵk(xn)
K

k=1 are a set of K stochastic forward passes through the neural network, D

and pi represents the drop probability and keep probability of dropout rate of the ith layer

respectively, N represents the size of the mini-batch and M are the neural network weights
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without dropout[159][168].

In terms of the practical implementation with DDPG, due to the fundamental theory that

one state has one deterministic action, only the critic network can be transformed into a

Bayesian network. Hence, it is implemented by replacing the critic network loss function with

equation 5.28, doing the stochastic feed-forward process through the dropout mask multiple

times, generating and collecting the corresponding outputs, calculating the relevant gradients

through new loss function and updating the target network parameters following the rules

introduced in previous sections.

5.3 Case Study

In this section, three case studies have been designed aiming at investigating the superior

performance of the proposed BDDPG approach in multi-energy micro-grid network. We start

by modelling the normal, steady state network operation, which is a classic energy management

problem. Resilient operation is studied next, where the micro-grid system is connected to the

main grid during normal condition in case study II while in case study III, micro-grid operates

in island mode.

5.3.1 Data Description

The topology of examined multi-energy micro-grid is shown in Fig. 5.3, which is modified

from[169]. It is notable that here, the system is simplified properly compared to the original

structure since we only focus on the electrical sector. For instance, the network has 6 electrical

nodes (buses), 6 gas nodes, 1 gas-supplied generator (G3), 1 traditional generator unit (G1), 2 gas

wells (GW1, GW2), 1 gas storage unit (GS), 1 PV unit (G2), 3 power loads (PL1, PL2, PL3) and

3 gas loads (GL1, GL2, GL3). The parameters of the network units including generator capacities,

line capacities, line impedance, gas/power conversion ratio etc. are from the supplementary

materials of [169]. The average daily power and gas loads profiles are shown in the right top
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Figure 5.2: The studied power-gas network with corresponding load profiles

figure in Fig. 5.3. In order to explore the system operation under emergency situation, PV

generation profile and critical demand profile are included and demonstrated in the right bottom

figure in Fig. 5.3, which is from [139]. Table 5.1 has provided the summary of the detailed

parameter setting.

5.3.2 Experiment Setup

To demonstrate the superior performance of the proposed approach, we compare our Bayesian

DDPG with the current state-of-the-art DDPG method. It is notable here that since our task

has multi-dimensional continuous action space, it is meaningless to consider the traditional

DQN, DPG methodologies due to their limitations as illustrated in previous chapters. We would

like to refer the readers to other high level works such as [24][149][150], where DDPG has been

proved to have better performance than other approaches.

We set up four DNNs for the online actor, target actor, online critic, target critic respectively.

All DNNs have three hidden layers with 64-128-64 neurons and Relu activation function at each
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Figure 5.3: Power and Gas Demand

Table 5.1: Hyper-parameters of the studied multi-energy micro-grid network

Parameter Value

G
GW

10000 Sm3/h, 12000 Sm3/h

P
DG

220 MW
GS 15000 Sm3

ηGP 500 Sm3/MW

P
GG

t 50 MW
cPL 1000 $/MW , 900 $/MW , 800 $/MW
cGL 3.6 $/Sm3, 3.8 $/Sm3, 4 $/Sm3

ξ1 100
δ 5 MW
bGS 0.0342 $/Sm3

bGW 0.04 $/Sm3, 0.036 $/Sm3

aDG 176 $/h, 137 $/h
bDG 13.5 $/MWh, 17.7 $/MWh
cDG 0.0004 $/MWh2, 0.005 $/MWh2

layer respectively. The Adam optimizer is used for training with a learning rate of αφ = 10−4

and αθ = 10−4 for the critic and actor network respectively. We use τ = 0.001 as the target

network’s soft updating rate. For the critic, we use a discount factor of γ = 0.75. For the

Bayesian model, the dropout keep probability is set to be 0.95. α-divergence and model precision

τv are set to be 0.98 and 12 respectively. We train the networks with a mini-batch size N = 128

and for Mtrain = 2000 episodes with 72 time steps in each episode. The proposed RL approaches

are implemented based on Tensorflow 2.2.0 in Python[130]. The simulations are carried out on

a Macbook Pro laptop with 2.7 GHz Intel Core i7 processor and 16 GB of RAM. Table 5.2 has

provided the summary of the detailed parameter setting.
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Table 5.2: Hyperparameters of the Proposed BDDPG

Parameter Value
Layer type dense
Number of state space 13
Number of action space 6
Hidden layer structure 64-128-64
Batch size 128
Number of episode 2000
Number of samples (Tsample) 50
Dropout rate 0.95
Optimizer Adam
Normalisation [0,1]normalisation
Actor learning rate 0.0001
Critic learning rate 0.0001
Discount factor 0.75
α-divergence 0.98
model precision 12

5.3.3 Case Study 1: Multi-Energy Micro-grid System Energy Man-

agement

In this test, we illustrate the advantages of using Bayesian RL agent as a real-time MGCC

comparing with naive DDPG method. In order to prove that RL agent has the flexibility of

modelling multi-dimensional continuous action space, the test is carried out under the assumption

that the micro-grid is operated in island mode. The simulation in this case study is performed

with hourly resolution, i.e. T = 1, 2, ..., 24 and the test period length is one day.

Performance of DDPG and BDDPG approach

Fig. 5.4 to 5.5 have shown the power demand balance and the individual generator contribution

of each method respectively. As can be observed, both approaches are able to exploit the

flexibility from multiple supply sources and maintain an accepted level of demand-supply

balance. Furthermore, DDPG has a total MSE of 88.62 and it is interesting to point out that

the majority of the error occurs when there is abundant PV generation. In terms of BDDPG

method, significant improvement of controlling accuracy could be observed with a total MSE of
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52.57, which is a 40.68% improvement.

Figure 5.4: Balancing of load and generation: BDDPG (left) DDPG (right)

Figure 5.5: Individual schedule of generators: BDDPG (left) DDPG (right)

Comparison of two approaches

As a standard procedure in RL, the training quality of DDPG and BDDPG methods are assessed

over 2000 episodes. Fig. 5.6 illustrates the average reward for the examined methods of 10

random seeds.

As illustrated in Fig. 5.6, BDDPG significantly outperforms the naive DDPG method, with the

cumulative reward converged to around 200 while DDPG has a stabilised cumulative reward of

around 100. The superior performance of BDDPG could be explained in the following reasons:

(1) Bayesian model has the ability of capturing the massive uncertainties in PV generation,

which can be supported by the fact that large amount of error occurs when PV generation is

involved (as shown in Fig. 5.4); (2) DDPG optimises the parameters along the direction of

maximising the Q value from critic network, thus, as previously explained, there is potential

possibility that DDPG selects the greedy, short sighted, high-risky or unreasonable actions

134



CHAPTER 5. A BAYESIAN DEEP REINFORCEMENT LEARNING-BASED RESILIENT
CONTROL FOR MULTI-ENERGY MICRO-GIRD

0 250 500 750 1000 1250 1500 1750 2000
Episode

500

400

300

200

100

0

100

200

Re
w
ar
d

BDDPG
DDPG

Figure 5.6: Average reward of DDPG and BDDPG over 10 random seeds.

with high Q value for the current state. In other words, due to the Q value maximising

operator Q∗(st, at) = maxQπ(st, at), Q-learning based methods are essentially more likely to

select overestimated values, resulting in an overoptimistic value estimation, which can be found

a confirmed conclusion in [168] and [17]. On the other hand, by using Monte Carlo dropout

sampling, the uncertainties over value functions in continuous control domains are modelled

and explored to full advantage. BDDPG thus is able to offset the effect from uncertainties and

tackle the overestimation issue.

As illustrated in Fig. 5.7, the area shaded with light and dark blue indicates the explored

domain from Monte Carlo dropout sampling. After sampling, the red line that represents the

mean of the posterior will participate in the training process. In contrast, the green line from

DDPG is slower to converge and has more variance, which leads to a less stable training process.

It is observed that though the uncertainty distribution of BDDPG is large during early stages

of training, eventually it will converge to a reasonable and more stable level.
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Figure 5.7: The illustrative Q-value estimation process of DDPG and BDDPG over 10 random
seeds.

5.3.4 Case Study 2: Multi-Energy Micro-grid Resilient Control

In this test, we aim to evaluate the performance of the proposed BDDPG method and naive

DDPG method when facing with extreme events. This experiment is carried out based on

the assumption that the micro-grid is supplied from the transmission system during normal

condition, then when an extreme event happens, the micro-grid is dis-connected from the

transmission system thus operating in island mode. Due to the prohibitive cost, diesel generator

G1 and gas unit G3 can only be regarded as back up generators during resilience period. On

the other hand, PV unit G2 is assumed to be available all the time, which is an un-controllable

variable. The critical demand is assumed to be a proportion of the total demand with some

uncertainties. Hence the objective of this test is to provide energy balance at minimum cost

during normal mode and support only critical demand during resilience mode. In order to show a

completed normal-resilience-normal cycle, the test period is set to be 3 days, i.e. T = 1, 2, ..., 72,

thus the extreme events are assumed to last for 24 hours on day 2.
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Performance of DDPG and BDDPG approach

Fig. 5.8 and 5.9 have shown the energy balance and the behaviour of each generator of each

method respectively. For instance, during the periods hour 1-24 and 48-72, when the whole

network is in normal condition, micro-grid electricity demand is supplied by the transmission

system and PV generation. Gas demand is supplied only by the gas well. The gas storage

device tends to obtain more energy content during the normal period, which will eventually

contribute to the back-up capacity when an extreme event happens. During the event period

hour 24-48, the micro-grid switches to island mode, thus generators G1 and G3 start operating.

The diesel generator G1 uses its own back-up fuel supply, thus can be treated as an independent

unit. On the other hand, gas generator G3 uses gas supply from gas storage device GS and

gas wells GW1 and GW2, which means the gas demand has the priority to be met over the gas

generator since any failure of gas service would cause a large amount of penalty. In addition, it

is easily observed that large errors can always be found during the switching phase, e.g. hour

24, 48. This is because of the uncertainties of the extreme events such as the length of the

duration, the exact happening and ending hour etc. It is important to point out that, in this

test, the events period setting is realised by adding an extra dimension of binary variables into

the training feature, which means that in the practical real-time implementation, the agent

can give policy decisions according to different event scenarios. In summary, the proposed

BDDPG can provide cost-saving operation strategies during normal condition and is also able

to adaptively adjust to the resilience condition through capturing the uncertainties during the

training stage. In addition, the proposed method also learns i) the priority of each sector in the

network in different operating conditions and ii) the flexibility of gas storage device in order to

provide emergency supply.

Comparison of two approaches and with optimisation approach

To demonstrate the superior performance of the proposed method, once again MSE is calculated

as evaluation. From the calculation, BDDPG has a total MSE of 91.07, which is 34.87% lower
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Figure 5.8: Balancing of load and generation: BDDPG(left) DDPG(right)

Figure 5.9: Individual schedule of generators: BDDPG(left) DDPG(right)

than 139.83 of naive DDPG. However, it is notable that during resilience mode, the cost function

is asymmetric since any losses of critical load will cause a significant penalty, but there is only

extra fuel cost for over-supply instead of penalty. Hence the cumulative reward is employed to

provide a more comprehensive evaluation, which considers the asymmetric nature of the loss

function. Similar as in previous case study, 10 different random seeds are generated and for

each seed the RL agent is trained for 2000 episodes, where each episode consists of 72 time steps

(i.e. 3 days). Fig. 5.10 has illustrated average cumulative reward of DDPG and BDDPG over

10 random seeds. For instance, in the first hundreds of episodes large penalties can be observed.

This is the stage when tuples of actions and states are filling into the memory buffer and the

model starts training only after the memory buffer is full. When the agent starts learning,

BDDPG learns its control policy in a faster and more stable fashion and eventually BDDPG

manages to converge to a higher optimal value than naive DDPG. To prove this, the last 400

episodes’ average cumulative reward (i.e. zoomed in area in Fig. 5.10 ) is calculated, which

could be considered as stabilised results. BDDPG has an average of 1235.25, which is 9.08%

higher than DDPG (1132.39).
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As a recent concept of off-line training approach, people always ask that why using such a

method instead of traditional optimisation methods. As discussed in previous sections, one of

the most important advantages of RL is that it is able to provide real-time decision-making

in an uncertain environment, which is the drawback of most of the optimisation approaches.

To prove this, stochastic programming (SP), which is one of the widely employed optimisation

methods, is used as comparison[170]. In [170], SP is implemented based on a rolling scheduling

procedure, which is solved on an hourly basis. For instance, at the first hour t0, deterministic

operational decisions are directly calculated from the available real-time data indexed at t0

Then, from t0 + 1 to the end of the scheduling horizon, various scenarios are generated at each

time step and the scenario-dependent operational decisions are optimized in order to represent

the uncertainties in each scenario[170]. Hence the objective of each stochastic optimization is to

minimize both the cost at t0 and the expected cost of all scenarios from t0 + 1 to the end of

the scheduling horizon, which includes operational cost at normal operating condition plus the

potential penalties during the resilience mode.

Table 5.3 has shown the comparison among the discussed methods in terms of total cost and

computational time. It is notable that different from optimisation methods, RL methods train

the model following the trial-and-error rule, thus the cumulative reward shown in Fig. 5.10

includes the part of corresponding penalties and needs to be removed. For instance, BDDPG

has slightly higher computation time (7s VS. 3s) due to the Monte Carlo sampling process but

achieves 5.31% lower total cost than the naive DDPG method. On the other hand, despite

the highest accuracy, the computational time for SP is around 4292 seconds since it considers

100 stochastic scenarios for a rolling horizon of 72 time steps. It can be found that both RL

methods can provide real-time decision making while SP optimisation is suffering from high

computational burden thus cannot guarantee hourly (or higher) resolution real-time decision

making.

Table 5.3: Case Study 2: Comparison of RL methods with SP

Method DDPG BDDPG SP
Total Cost 138, 387.89$ 131, 405.93$ 129, 500.43$

Computation Time < 3s < 7s 4292s
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Figure 5.10: Average reward of DDPG and BDDPG over 10 random seeds.

5.3.5 Case Study 3: Island Multi-Energy Micro-grid System Re-

silient Control

In this test, we further investigate the extreme situation when the micro-grid is operated in

island mode during normal days, then when an extreme event happens, the micro-grid losses its

PV generation. In other words, case study 2 considers the situation when the extreme events

happen outside the micro-grid thus has no influence on the micro-grid itself, while the effect

of extreme events inside micro-grid is considered in this case study. In addition, due to the

fact that the maximum capacity of PV unit is less than the electricity demand, we assume

that the micro-grid is also supplied by G1 during normal condition. Similar as before, due to

the prohibitive cost, gas unit G3 can only be regarded as back up generators during extreme

events period. Furthermore, G1 is assumed to have only partial generation capacity during

the resilience mode (i.e. 30%) as a reasonable response to the extreme events. Hence in this

study, the difficulty lies in making efficient use of the limited generation resources so that both

cost-saving normal operation and safety-oriented resilient operation can be satisfied. In order to

show a completed normal-resilience-normal operation cycle, the test period is set to be 3 days,

i.e. T = 1, 2, ..., 72, thus the extreme events are assumed to last for 24 hours on day 2.
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Performance of DDPG and BDDPG approach

Fig. 5.11 and 5.12 have shown the energy balance and the behaviour of each generator for each

method respectively. Similar as in case study 2, during hour 1-24 and 48-72, micro-grid is in

normal operation. Micro-grid electricity demand is supplied by the distributed generator G1

and PV unit, which plays as an important role of reducing the total electricity bills. When

entering the extreme events hour 24-48, the micro-grid is still in island mode, but PV unit is out

of service due to the extreme events. It is notable here that we assume the effect of the extreme

events is on the local bus-bar area, thus node 2 in Fig. 5.2 together with line L1, L3, L5 are all

erased from the network, thus PV generation cannot be transmitted to the micro-grid customers.

G3 starts operating when enters the resilience mode. Similar as before, the gas demand has the

priority to be met over the gas generator. Hence, in this test, due to the limited generation

capacity and the potential uncertainties in demand (both electricity and gas demand), it is likely

that the theoretical generation capacity is lower than the total demand, which means under this

circumstance there has to be partial critical loads out of service. In terms of a brief comparison

of control accuracy, the two methods have total MSE of 77.47 and 122.78 respectively, where

BDDPG is 36.91% lower than naive DDPG.

Figure 5.11: Balancing of load and generation: BDDPG (left) DDPG (right)

Comparison of two approaches and with optimisation approach

Fig. 5.13 has illustrated average cumulative reward of DDPG and BDDPG over 10 random seeds

for 2000 episodes. For instance, when the agent starts learning, BDDPG is able to learn from
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Figure 5.12: Individual schedule of generators: BDDPG (left) DDPG (right)

the generated experience with less disturbance, which implies that BDDPG tends to interact

with the environment in a more reasonable fashion and eventually BDDPG could manage to

converge to a higher optimal value than naive DDPG. The last 400 episodes’ average cumulative

reward (i.e. zoomed in area in Fig. 5.13) is calculated, which could be regarded as stabilised

results. BDDPG (green line in Fig. 5.13) has an average of 1245.48, which is 27.04% higher

than 980.39 of DDPG (red line in Fig. 5.13). Furthermore, compared with SP method in terms

of total cost and computational time, BDDPG has slightly higher computation time (7s VS. 3s)

due to the Monte Carlo sampling process but achieves total cost of 185,655.90$, which is 5.08%

lower than 195,586.81$ from naive DDPG method. Despite the lowest total cost, SP is restricted

by its high computational burden, which is around 4022 seconds. In addition, SP obtains its

lower cost mainly because of the fact that it takes more greedy policy. For instance, when there

is energy stored in the gas storage unit, SP tends to sell all of them due to the storage costs

and starts re-charging it right before the event happens. However, as explained earlier, there

are uncertainties about the exact start and duration hour of an event. Hence, an extreme event

happens earlier than expected could easily cause zero back-up capacity thus compromises the

whole network. More importantly, as discussed before, due to the limited generation capacity,

occasionally there will be particular period when the theoretical generation capacity is less than

the total demand, which could lead to different results for different methods. For instance,

optimisation-based methods employ various constrains conditions such as energy balance (i.e.

power generation = power consumption), operational parameters within the bounded range (i.e.

transmission line capacity or bus-bar voltage less than the maximum value), which could lead

to the situation that no optimal solution exists. Under this circumstance, optimisation-based
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methods would fail to give any control decision, which is fatal during the extreme events period.

On the other hand, since RL agents are trained by minimising objective function (maximising

cumulative reward in this test), they can always provide near optimal results rather than NaN.

In addition, some of the hard constrains in the system could be slightly violated during special

situation for a temporary period of time. For example, there could be a minor gap between

the generation and the demand and also, for a short period, power flow through a transmission

line can exceed the upper limit. In other words, these kinds of operation flexibility is highly

situation-dependent, thus it needs not only fast decision making response but also the controlling

model to deal with various scenario uncertainties.
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Figure 5.13: Average reward of DDPG and BDDPG over 10 random seeds.

Table 5.4: Case Study 3: Comparison of RL methods with SP

Method DDPG BDDPG SP
Total Cost 195, 586.81$ 185, 655.90$ 180, 284.14$

Computation Time < 3s < 7s 4022s

5.4 Conclusion

This part of work proposes a novel Bayesian Deep Reinforcement Learning based real-time

control scheme in order to provide energy management and resilient control in a multi-energy
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micro-grid system. The proposed approach is able to capture the uncertainties in various

energy sectors such as PV unit, energy storage devices etc. By using the Monte Carlo dropout

sampling mean of the Bayesian value function distribution, the proposed BDDPG method

could effectively avoid value function overestimation issue. The overall performance of the

proposed method is analyzed and compared with naive DDPG method and another widely used

optimisation method i.e. stochastic programming. Case studies have demonstrated that the

proposed BDDPG method manages to learn a near-optimum policy, which has a significantly

better performance of over 30% than naive DDPG method. In addition, the proposed approach

can achieve approximately 5% lower total cost for various operating conditions (i.e. extreme

events that occur either outside or inside the micro-grid) and can achieve high time resolution

decision making. Comparing to traditional approaches, the proposed method is more stable and

has shown great practical value.
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Chapter 6

Thesis Summary and Future Work

6.1 Thesis Summary

This thesis focuses on a novel probabilistic uncertainty modelling technique, i.e. Bayesian Deep

Learning, in order to deal with the challenges arising from the influx of uncertainties due to the

large-scale penetration of RES. This chapter summarises the key findings and conclusions of

this thesis and outlines the potential direction for further research.

Using Bayesian Deep Learning to Capture Uncertainty for Residential Net Load

Forecasting:

This part of work proposes a novel probabilistic net load forecasting framework with the ability

of capturing epistemic uncertainty and aleatoric uncertainty simultaneously. The designed

framework consists of clustering-forecasting-aggregating stages, where we build deep learning

models for each individual cluster and aggregate the probabilistic forecasts of each cluster at

the end to obtain the final predicted net load at the aggregated level. The effectiveness and

importance of different PV visibility levels are also studied considering the practical challenge of

partially installed smart meters. The overall performance of the proposed method is analyzed and
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compared with a series of state-of-the-art probabilistic forecasting models, which demonstrates

the superior performance of the proposed BDLSTM method.

A Confidence-Aware Machine Learning Framework for Dynamic Security Assess-

ment:

This part of work designs a confidence-aware machine learning framework for DSA based on the

Conditional Bayesian Deep Auto-Encoder network. The proposed CBDAC model uses dropout

to achieve Bayesian approximation with further improvement by using conditional masks. It

is firstly demonstrated that the proposed Bayesian model has better performance than other

state-of-the-art models. We also consider the practical situation when the system is facing

with topology changes. In addition, by using the CBDAC model, epistemic uncertainty can

be regarded as an indicator of the model confidence. Furthermore, we verify the feasibility of

using limited data in order to update the model and thus propose a selective model updating

strategy. Indicated by the model confidence, the proposed strategy significantly alleviates the

time consumption under the situation of frequent system topology changes, which is of great

practical value.

A Bayesian Deep Reinforcement Learning-based Resilient Control for Multi-Energy

Micro-gird:

This part of work proposes a novel Bayesian Deep Reinforcement Learning-based resilient

control approach for multi-energy micro-grid. In particular, the proposed approach replaces

deterministic network in traditional Reinforcement Learning with Bayesian probabilistic network

in order to obtain an approximation of the value function distribution, which effectively solves

Q-value overestimation issue. The proposed model is able to provide both energy management

during normal operating conditions and resilient control during extreme events in a multi-

energy micro-grid system. Comparing with naive DDPG method and optimisation method,

the effectiveness and importance of employing Bayesian Reinforcement Learning approach is
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investigated and illustrated across different operating scenarios. Case studies have shown that

by using the Monte Carlo posterior mean of the Bayesian value function distribution instead

of a deterministic estimation, the proposed BDDPG method achieves a near-optimum policy

in a more stable process, which verifies the robustness and the practicability of the proposed

approach.

6.2 Future work

Future work will further exploit and develop this powerful technique, Bayesian deep learning,

for more challenging tasks. For example, in terms of forecasting topics, wind power forecasting

is always a challenging area due to its high variability and uncertainty. With higher level RES

penetration in the future, an accurate and believable wind power forecasting model would

make significant contribution to the system power flow management by providing efficient

use of RES generation. In addition, in recent years, large scale energy storage schemes have

attracted lots of attention and there are massive investments ongoing as a response to the

zero carbon emission target by many governments in the world. Hence, in terms of the system

security aspect, the cost-effective behaviour and the integrated operation of these infrastructures

would fundamentally change the power system operation philosophy thus urges more advanced

techniques. In terms of the technical details, with the ability to quantify both epistemic and

aleatoric uncertainties, it might be helpful to further investigate using the Bayesian model as an

uncertainty indicator, which could have great potential in the AI safety aspect. Furthermore,

selecting an appropriate prior is still an open question for Bayesian deep learning, which will also

be worth investigating in the future. Another potential direction could be how to optimize the

updating strategy, according to the research findings in the second part of this thesis. Algorithms

such as active sampling or incremental learning could be employed and improved. It is also

believed that it is of high interest to consider the full workflow from measurements, over data

processing and state estimation together.

On the other hand, RL has the following future work directions. (1): It is valuable to investigate
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more complicated, real-world example networks with richer energy sources (e.g. electricity, gas,

H2, heat, etc.), various generation sectors representing the supply of electricity (e.g. wind, PV,

CHP, gas storage, battery system, pumped-storage hydroelectricity etc.), and critical demand

with more details (e.g. a rolling schedule of priority level). (2): Another direction could be

applying multi-agent BDDPG to inter-connected micro-grids instead of a single network. In this

context, coordinated control strategies for a group of micro-grids in the distribution network will

take into account the aforementioned energy elements with the aim of maintaining the critical

service during extreme events period and economical normal state operation of the system.
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