
S T E I N D Ó R S Æ M U N D S S O N

C O N S E R VAT I O N L A W S
A S I N D U C T I V E B I A S E S

A thesis presented for the degree of

D O C T O R O F P H I L O S O P H Y

Supervised by

M A R C D E I S E N R O T H
K AT J A H O F M A N N

D P T. O F C O M P U T I N G

I M P E R I A L C O L L E G E L O N D O N A U G U S T, 2 0 2 1

2

Statement of Originality

The work presented in this thesis is my own, except where otherwise indicated.

3

Copyright Notice

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are licensed under a

Creative Commons Attribution-Non Commercial 4.0 International Licence (CC BY-NC). Under this licence, you

may copy and redistribute the material in any medium or format. You may also create and distribute modified

versions of the work. This is on the condition that: you credit the author and do not use it, or any derivative

works, for a commercial purpose. When reusing or sharing this work, ensure you make the licence terms clear

to others by naming the licence and linking to the licence text. Where a work has been adapted, you should in-

dicate that the work has been changed and describe those changes. Please seek permission from the copyright

holder for uses of this work that are not included in this licence or permitted under UK Copyright Law.

4

Acknowledgements

For the innumerable ways in which others have generously contributed to and supported this thesis. . .

I have been particularly fortunate to do my PhD with the guidance of Marc Deisenroth as my supervisor.

Throughout, he has gone over and beyond in supporting me both academically and personally. I will always be

grateful to him—especially for his patience of my (sometimes unreasonable) desire for exploration.

I have also had the great joy and luck to be supervised by Katja Hofmann. Much of my growth as a researcher

can be attributed to her ever-insightful questions and astute feedback. For this, and all her support during my

PhD/internship, I am truly grateful.

A number of students in the Statistical Machine Learning group at Imperial/UCL have been important for this

thesis. Conversations with Hugh Salimbeni and Sanket Kamthe were always informative and clearly important

to my progression; key components of the thesis would not have been possible without my collaboration with

Alexander Terenin; and James Wilson often pointed me towards useful work in the literature.

Outside the group, I had the pleasure of supervising/collaborating with Jean Kaddour, producing results

contained in the thesis. I would also like to thank Nick Pawlowski and Sebastian Popescu for always being

a source of interesting conversation; Andreas Hochlehnert for his excellent work as a supervisee; and Amani

El-Kholy for her continued support during my time at Imperial.

This thesis was supported by Microsoft Research (MSR) through its PhD Scholarship Programme. I would like

to thank Sebastian Tschiatschek for his support as a supervisor during my time as an intern, and Richard E.

Turner for his great advice.

On that note, I would like to thank the people that shaped my internship at X (the moonshot factory): Julian

Green, Raffi Hotter, Albin Jones, Isaac Kauvar, Owen Lewis and Marius Wiggert; all of whom introduced me to

new and interesting perspectives on life and research.

I also wish to express my deepest gratitude to Emma and Andrew Dunn for their generosity and kindness, and

Max Dunn for his unrivalled spirit and infectious drive. Undoubtedly, this thesis is shaped by the inspiring

environment I have enjoyed in their company.

Finally, I would like to thank Grace Dunn for infusing the last two years with meaning—for her creativity,

kindness, and insight—and for her time and attention throughout my writing of this thesis.

5

Abstract

A basic pattern in nature is invariance: the notion that properties (e.g. energy) of a system remain unchanged

through a transformation (e.g. time). However, learning such patterns from data can be challenging since they

are often non-trivially disguised as variation in observed phenomena. The motivation for the work in the thesis

is improved data efficiency when learning predictive models of physical dynamical systems. Building on ideas

from machine learning and physics, it explores learning algorithms using conserved quantities and conserva-

tion laws as general purpose model components, with the aim of more efficient learning.

Chapter 2 develops learning algorithms for task structured problems where the notion of a task is identified

with an unobserved conserved quantity to be learned from data. The main contribution is a model that ac-

counts for globally invariant sources of variation (e.g. the laws of physics) and task-specific sources of variation

(e.g. system parameters). The idea is to encourage modularity: a separation of reusable components of the

model from task-specific ones. The chapter empirically studies the model in the context of learning predictive

models of dynamical systems. It is found to be useful as an inductive bias for modularity, as measured by data

efficiency in multi-task, transfer- and meta-learning settings.

Chapter 3 develops expressive function classes with inbuilt physical geometry such as conservation laws.

The main contribution is a tying together of the theory of variational integrators and neural networks. This

produces a scheme for deriving symplectic and momentum-preserving architectures (variational integrator net-

works). The architectures are studied empirically in the context of noisy, and image observations, of physical

systems. In the former, they are found to be efficient and flexible learners. In the latter, they are found to learn

physically meaningful geometric representations, enabling accurate long-term forecasts in image space.

Learning modular task representations is potentially important for developing practically useful meta-learning

algorithms. In chapter 2 the representations are non-hierarchical and require labelling at the task-level. Extend-

ing the idea to hierarchical and unsupervised settings is an interesting future direction. Physical geometry is

an elegant example of compact general-purpose representations. Extending chapter 3 to different and more

general physics/manifolds, building on the literature on variational integrators, is also an interesting direction.

6

Thesis Outline

§ Chapter 1—Introduction. Contextualises chapters 2–3 and discusses the motivation:

data efficiency, modular task representations, and physical structure as inductive biases.

It also introduces the basic theory used in subsequent chapters and gives an overview of

the problem setting considered in the thesis.

§ Chapter 2—Representing Tasks as Conserved Quantities. Develops a model for task

structured learning problems where the aim is to share and transfer knowledge between

tasks. The content in this chapter is based on two published works:

1. S. Sæmundsson, K. Hofmann and M. Deisenroth.

Meta Reinforcement Learning with Latent Variable Gaussian Processes, UAI 2018;

2. J. Kaddour, S. Sæmundsson and M. Deisenroth.

Probabilistic Active Meta-Learning, NeurIPS 2020.

Compared to the published texts, the thesis uses a revised notation and places more

emphasis on modularity for task structured learning problems.

§ Chapter 3—Variational Integrator Networks. Bridges the theory of variational integra-

tors and neural networks and develops function classes with inbuilt conservation laws.

The content in the chapter is based on:

1. S. Sæmundsson, A. Terenin, K. Hofmann and M. Deisenroth.

Variational Integrator Networks for Physically Structured Embeddings, AISTATS 2020.1 1 See also A. Hochlehn-
ert, A. Terenin, S.
Sæmundsson and M.
Deisenroth. Learning
contact dynamics using
physically structured
neural networks, AIS-
TATS 2021; for related
follow up work.

Different from the paper, the thesis interprets the networks as being a part of the likeli-

hood function. The experimental results in the noisy regime are also extended with more

random seeds, an additional baseline, and further analysis.

§ Chapter 4—Conclusion. This chapter summarises the main findings from chapters 2–3,

and discusses the limitations and potential future work.

7

Contents

1 Introduction 20

1.1 Motivation: Data Efficiency 21

1.2 Problem Setting: Physical Dynamical Systems 22

Ordinary Differential Equations (22)

Geometric Mechanics (23)

Conservation Laws as Inductive Biases (24)

1.3 Function Approximation 27

Probabilistic Machine Learning (27)

Neural Networks (31)

Gaussian Processes (32)

1.4 Latent Variable Models 35

Latent Variable Models (35)

Variational Inference (37)

Stochastic Variational Inference (41)

2 Representing Tasks as Conserved Quantities 44

2.1 Background 45

Dynamical Systems and Task Structure (45)

Multi-Task and Transfer Learning (46)

Meta-Learning (47)

Sparse Variational Gaussian Processes (47)

Model Predictive Control (51)

2.2 Invariant Task Representations 53

Latent Variable Model for Modular Task Structure (53)

Learning Invariant Task Representations (56)

Meta-Learning Gaussian Processes (57)

8

Task Descriptors for Active Meta-Learning (59)

Probabilistic Active Meta-Learning Algorithm (PAML) (61)
2.3 Modularity and Meta-Learning (Experiments) 62

Multi-Task and Transfer Learning (64)

Meta-Learning in Model-Based RL (67)

Active Task Learning (71)

2.4 Related Work 76

2.5 Summary & Discussion 79

3 Variational Integrator Networks 81

3.1 Background 82

Learning Flow Maps (82)

Variational Integrators (85)

3.2 Variational Integrators as Function Classes 87

Variational Integrator Networks (87)

Newtonian VIN in Cartesian Coordinates (88)

Newtonian VIN for the Pendulum (90)

Learning Variational Integrator Networks (91)

3.3 Learning from Physical Systems (Experiments) 93

Problem Setting (94)

Noisy Observations (96)

Pixel Observations (102)

3.4 Related Work 107

3.5 Summary & Discussion 109

4 Conclusion 111

Bibliography 114

A Representing Tasks as Conserved Quantities 130

A.1 Multi-Task and Transfer Learning, Meta-Learning in Model-Based RL 130

A.2 Active Task Learning 134

9

B Variational Integrator Networks 137

B.1 Noisy Observations 137

B.2 Pixel Observations 138

10

List of Figures

1.1 The idealised pendulum. The figure illustrates two imagined consecutive snap-

shots in time, denoted by 1, 2. The idealised pendulum conserves energy (swings

back and forth forever). The length and mass of the pendulum pl, mq are sys-

tem parameters that affect its behaviour. The problem considered in the the-

sis is learning a function that can predict the position (and velocity/momentum)

of the pendulum at some time t in the future. 25

1.2 Graphical model (notation 6) for the observation model from definition 2, us-

ing a NN observation function. The model parameters θ parametrise a NN fθpxq.

The function values f n “ fθpxnq are deterministic variables. 31

1.3 Graphical model (notation 6) for the observation model from definition 2, us-

ing a GP observation function. The undirected thick line denotes that f n P f pxq.

GPs model the function values as latent random variables. 33

1.4 Graphical models (notation 6) for the generative model in definition 7 where

the observation function is modelled by (a) a NN and (b) a GP. The undirected

thick line in (b) denotes that f n P f pxq. In contrast to section 1.3, the inputs xn

are latent variables. 36

1.5 Graphical model and inference graph (notation 6) for the VAE in definition 8.

The observation function fθ is modelled by a NN, and so is the inference net-

work hφ. The vector hn “ hφpynq is used to denote the parameters of the dis-

tribution qpxn|hφpynqq, e.g., the mean and variance in the Gaussian family from

eq. (1.73). 42

11

2.1 Graphical model and inference graph (notation 6) for the SVGP in definition 9.

The undirected thick line denotes that f n, f m P f pxq and xm P φ. The dashed

arrows denote dependence on variational parameters through the variational

distribution qφ. The SVGP defines a variational distribution over the infinite

set f pxq, through the distribution over f pmq. For multi-dimensional outputs

in the thesis, the variational distribution for the SVGP consists of independent

GPs for each output dimension: qφp f pxqq “
ś
d

qφp f dpxqq. 50

2.2 Graphical model (notation 6) for eq. (2.33), assuming that the observation func-

tion is modelled by a GP. The inputs x and model parameters θ are determin-

istic. The outputs y (observed) and task variables z (latent) are random vari-

ables. The undirected thick line denotes that f rp,ns P f px, zq. P denotes the num-

ber of tasks and N the number of observations. 54

2.3 Modular task structure. The function f models global variation and the task

variable z models task-specific variation. The indices a, b denote different tasks

and m, n different samples within those tasks. Modularity refers to the disen-

tangled nature of z and f . Since f is global, it is reusable. Since z is task-specific,

the latent task space represents task differences. 55

2.4 Graphical model and inference graph for the ML-GP (notation 6). The undi-

rected thick line denotes that f rp,ns, f rp,ms P f px, zq and xrp,ms P φ. The dashed

arrows denote dependence on variational parameters through the variational

distribution qφ. 58

2.5 The multi-task and transfer learning setup used in the experiments. Given data

from P tasks, multi-task learning consists of learning the model parameters

θ and the variational parameters φp corresponding to the training tasks. Trans-

fer learning consists of learning only the φ˚ given observations from a test task.

. 64

2.6 Mean and two standard deviation confidence error-bars of the RMSE and NLL

for the ML-GP, SVGP and the GP as a function of the number of inducing points.

The ML-GP significantly outperforms both baselines. 65

2.7 One-step predictions of the angular velocity in the cart-pole system. The fig-

ure shows the true data points (discs), and the predictive distributions with

a two standard deviation confidence interval for the ML-GP, SVGP and the

GP. The ML-GP generalises well to the test tasks, whereas both the SVGP and

GP baselines generalise poorly in terms of RMSE. Each timestep corresponds

to 0.1s in the simulation. 66

12

2.8 Invariant task representations learned from the cart-pole system. The figure

shows the mean (discs) of the inferred task variables and two standard devi-

ation error bars. Filled discs are training tasks and empty discs are test tasks.

The colours of the discs represent the length and the colours of the dotted lines

between discs represent the mass. The arrows are lines indicating directions

of increasing mass (kg) and length (m)—as configured by the true system but

not observed by the model. 67

2.9 Cart-pole system: Mean success rate with standard errors over 10 random ini-

tialisations and the four test tasks after training on six tasks. The graph com-

pares the ML-GP with the SVGP-I (trained independently) and SVGP-ML (trained

on all tasks). The ML-GP and SVGP-ML models attempt to solve all unsolved

tasks in a given trial before update the model. Since each episode for each task

consists of 30 steps (3s), and all unsolved tasks are attempted in each trial, each

tick on the horizontal axis consists of up to 4 ˆ 3 “ 12s. 69

2.10 Double-pendulum system: Mean success rate with standard errors over 10 ran-

dom initialisations and the four test tasks after training on six tasks. The graph

compares the ML-GP against the SVGP-I (trained independently on each task)

and the SVGP-ML (trained using the meta learning procedure). Since each episode

for each task consists of 30 steps (3s), and all unsolved tasks are attempted in

each trial, each tick on the horizontal axis consists of up to 4 ˆ 3 “ 12s. . . . 70

2.11 The active task learning setup in the experiments using PAML. T is the task

descriptor space, Z is the latent space of the ML-GP model in eq. (2.60). Step

1 shows how when a task descriptor τp is selected by the algorithm, it resolves

to a physical system with system parameters ψp (these need not be the same).

Observations are generated from the system and added to a dataset, and in

step 2, the ML-GP model learns an updated latent space. In step 3, points in

the latent space are ranked with the utility function from eq. (2.68) and in step

4, the selected point z˚ is mapped to a new task descriptor τ˚ using the ob-

servation model pθpτ|zq. 71

13

2.12 NLL/RMSE for 100 test tasks for the cart-pole, pendubot and cart-double-pole

with observed task parameters as task-descriptors. Error bars denote ˘1 stan-

dard errors across 10 random initialised trials. Across all environments, PAML

performs significantly better than the baselines UNI and LHS. Since PAML learns

representation of the task differences, it explores the task space more efficienctly

than the baselines, despite the task parameters being fully observed for all mod-

els. 72

2.13 NLL/RMSE for 100 test tasks for the cart-pole system with partially observed

task parameters. Error bars denote ˘1 standard errors across 10 random ini-

tialised trials. PAML is able to infer useful task representations for active ex-

ploration when the task parameters are only partially observed. 73

2.14 NLL/RMSE for 100 test tasks for the cart-pole system with noisy task param-

eters. Error bars denote ˘1 standard errors across 10 random initialised tri-

als. PAML is able to explore the task space more efficiently since it learns to

ignore the redundant dimension added to the task parameters. 74

2.15 Latent embeddings from the cart-pole system with noisy task parameter ǫ. Black

discs denote training tasks, and colored discs chosen by PAML (with two stan-

dard deviation error bars). The latent space dimensions are given by z1, z2. The

numbers above each disc denotes the order in which it was selected by PAML.

The legend shows the task configurations chosen by PAML after ranking points

in the latent space pz1, z2q. 75

2.16 Pixel task-descriptors for the cart-pole system with different lengths. PAML

can infer latent embeddings from pixel observations and exploit these for faster

learning of a task domain. 75

2.17 NLL/RMSE for 25 test tasks of the cart-pole system using pixel task-descriptors.

Error bars denote ˘1 standard errors across 10 random initialised trials. PAML

outperforms uniform sampling by exploiting a learned latent representation

of the task domain. The pixel task descriptors, used for learning the task rep-

resentations, are shown in fig. 2.16. 76

3.1 Relationship between baselines and VINs. N-ODE is a ODE parametrised by

a NN, eq. (3.7). HNN adds physical structure in continuous-time. ResNet is

an Euler discretisation of a N-ODE, eq. (3.13). VIN is a discrete-time counter-

part to the HNN, eq. (3.51). 95

14

3.2 RMSE across varying noise levels σx “ r0.1, 0.2, 0.3, 0.4s, amount of training data

and 10 random seeds; on (a) the mass-spring system and (b) the pendulum

system. The left column shows each experiment as a coloured disc for the dif-

ferent models: N-ODE (red), HNN (purple), ResNet (green), VIN (blue). The

box-plots denotes the minimum/maximum by the whiskers, and the 25´50´75th

percentiles respectively. The median (50th percentile) is the horizontal line in

the middle of each box. The RMSE axis is broken to account for outliers in the

scaling. The right column plots the median (trend) of the highest and lowest

noise levels (0.1, 0.4). Adding physical structure in the discrete-time case is clearly

advantageous on both systems, as seen by comparing ResNets (green) to VINs

(blue) on both the left and right. 99

3.3 (Top) Phase space plots of predictions for a single test trajectory and 10 ran-

dom seeds, given 20s of training data corrupted with high levels of noise σx “ 0.4;

for (a) the mass-spring and (b) pendulum systems. The true system is plot-

ted in black and the models are plotted in colour. The initial condition is given

by a disc and the final state by a cross (white for the true system and coloured

for the models). (Bottom) The energy associated with the evolution given by

the top row. The HNN (purple) and VIN (blue) evolve on a symplectic trajec-

tory like the true system. The N-ODE (red) and ResNet (green) artificially add

or remove energy. This can lead to significant failures, e.g. the N-ODE model

on the pendulum system or the ResNet on both systems. 101

3.4 Energy behaviour of the ResNet (top, green) and the VIN (bottom, blue) mod-

els with increasing amounts of training data, from left-to-right, for each of the

10 random seeds. With increasing data, the ResNet is more likely to converge

to a model that quickly dissipates energy to 0. The VIN model oscillates around

the true energy with decreasing variance. 102

3.5 Illustration of pendulum pixel observations at different times t1, t2, t3. The faded

pendulums are shown only to indicate the dynamic nature of the system. The

actual observations are also greyscale. 102

15

3.6 The structure of the learned latent space (2D), given 28 ˆ 28 images of a pen-

dulum in motion; for the ResNet (top-left), VAE (top-middle), VAE-SOp2q (top-

right), VIN-SV (bottom-left), VIN-VV (bottom-middle), VIN-SOp2q (bottom-

right). The black discs denote the mean of training observations encoded into

latent space, and the coloured triangles denote the mean of observations from

test trajectories. The grey lines plot the dynamics in pixel space, i.e. they con-

nect points in latent space corresponding to neighbouring points in time. In

the top row, the two axes represent the 2D Euclidean latent spaces. In the bot-

tom row, the VIN-SV (left) plots the position coordinate on the horizontal axis,

and the change in position on the vertical axis. The VIN-VV (middle) plots the

position on the horizontal axis and the momentum on the vertical axis. The

VIN-SOp2q (right) plots the sin, cos of the position on the horizontal/vertical

axis respectively, representing eq. (B.11). (Top) The ResNet trajectory diverges

due to the form of the Euler method. The VAE does not capture the under-

lying circle manifold, whereas the VAE-SOp2q captures the circle by construc-

tion. However, neither models the underlying dynamics. (Bottom) The VIN

models all capture physically structured manifolds due to their inductive bias.

The VIN-SV traverses elliptical paths in latent space, whereas the VIN-VV and

VIN-SOp2q are both circular. The VIN-VV maps to circles with a different ra-

dius for each trajectory but the VIN-SOp2q maps all trajectories to the unit length

circle by construction. 105

3.7 Example predictions in pixel space for the pendulum (left) and the associated

paths in latent space for each model (right). Due to the diverging behaviour

of the ResNet (green), the predictions in pixel space exhibit discontinuous and

otherwise erratic behaviour such as disappearing. The VIN-VV (blue) evolves

on a physically structured manifold in latent space, producing coherent pre-

dictions in pixel space. However, after 15s, it is out of phase with the true sys-

tem. The VIN-SOp2q remains faithful to the true system after 20s due to the

additional constraint to the SOp2q manifold. 107

B.1 Model architecture for pixel experiments. The images yk are processed by a

FFNN to give a sequence zk. This sequence is given in reverse to a LSTM, pro-

ducing the distribution qφph0q. The sequence hk is generated by a ResNet or

VIN, which is processed by a FFNN to generate reconstructions pyk. 139

16

List of Tables

2.1 Cart-pole system: Mean (with ˘1 standard errors) time spent solving the cart-

pole system and the single-shot success rate. 69

2.2 Double-pendulum system: Mean (with ˘1 standard errors) time spent solv-

ing the double-pendulum system and the single-shot success rate. 71

3.1 RMSE and log-likelihood (with ˘1 standard errors) for the pendulum and mass-

spring systems over 5s forecasts on pixel observations. 106

17

List of Algorithms

1 Iterative MPC. Learnable control parameters are denoted by C, x1 is an ini-

tial state, T is the trajectory horizon and H is the planning horizon. The func-

tion loops over the full trajectory horizon T and at each step it finds an opti-

mal planning sequence by minimising the cost in eq. (2.25) [line 4]. Next it ap-

plies only the control for the current state ct [line 5]. The CreateReturnArgs

function call [line 8] is included for ease of notation, to match the output in

Algorithm 4. Technically, the data consists of state transitions and the applied

controls (2.9). 51

2 Probabilistic active meta-learning algorithm (PAML). The inputs are the model

(pθ) and variational distribution (qφ) from section 2.2.4; a policy π and task de-

scriptors T. PAML selects a point in latent space based on a pre-defined util-

ity funtion, eq. (2.68) and the task descriptors T [line 3.]. It then uses π to sam-

ple data from the new system [line 5.] and updates the model and variational

parameters [line 7.]. 62

3 A birds eye view of a meta-learning algorithm using invariant task represen-

tations. It starts with a model pθ and a variational distribution qφ from sec-

tion 2.2. S contains training and test systems S, S‹ which are subjected to con-

trols according to policies in Π, producing observations that are collected in

D. These observations are used to learn new parameters, denoted by the hat

symbol p̈. The subscript ‹ denotes parameters and data corresponding to test

systems. These are systems that are used in the transfer learning function [line

4]. 133

4 Multi-task learning with model predictive control (MPC). The function loops

over the tasks in S, applying control signals based on MPC and producing ob-

servations Di [line 3]. In each iteration, the observations are added to the full

dataset which is used to update the model and variational parameters θ, φ [line

5] using SVI from eq. (1.81). 133

18

5 Transfer learning with MPC. After each step of MPC [line 4], the new obser-

vation is added to the dataset and the variational parameters for the ongoing

task is updated using SVI [line 6]. Since the model parameters are global across

all tasks, these are not updated. The algorithm can be thought of as doing on-

line inference of the task variables. 134

19

Notation
Notation 1 (Variables, functions, and distributions). Unless otherwise stated, scalar

variables tx, y, zu are denoted by lowercase italics, (column) vector variables tx, y, zu

by boldface lowercase italics, and matrices tX, Y, Zu by boldface uppercase symbols.

Boldface uppercase sans serif symbols will denote higher dimensional arrays tX, Y, Zu, or

datasets D “ tX, Yu.

Notation 2 (Scalar sample vectors). It will be useful to represent collections of scalars

corresponding to samples or a specific set of indices. To distinguish these from multi-

dimensional vectors y (typically representing output features),

ypnq “ pynq, n “ 1, . . . , N

is used to represent a column vector of scalar samples or indices.

Notation 3 (Model and variational parameters θ, φ). The set θ contains all the parame-

ters that define a statistical model of data. Distributions pθ or functions fθ that depend

on θ are subscripted, even if they only depend on a subset. The set φ analogously con-

tains parameters that are used to define approximate posterior distributions.2 2 Specifically, varia-
tional distributions
(section 1.4).Notation 4 (Identity matrix). Identity matrices are denoted by 1A, where A is the num-

ber of rows and columns.

Notation 5 (Shorthand for distributions.). The superscript notation pa|b denotes the

conditional distribution over a given b, i.e. pa|b “ ppa|bq, and analogously pa denotes

the marginal ppaq.

Notation 6 (Graphical models/Inference graphs.). The thesis uses graphical models and

inference graphs throughout. The figure below illustrates the key components.

an bn

α β

αn
N

Circles represent random variables where shad-

ing denotes observed instances (otherwise

latent). Diamonds denote deterministic vari-

ables. Solid arrows denote dependencies in a

statistical model. Dashed arrows denote depen-

dencies in a variational distribution. Thick lines

denote that one variable is a subset of the other

(depending on context).

The figure defines a model ppbn|an, βqppan|βq for n “ 1, . . . , N; and a variational distri-

bution qpan|αnq, where αn P α.

20

1

Introduction

Now symmetry and consistency are convertible terms: — thus Poetry and Truth are one.

—Edgar Allan Poe

Conservation laws are fundamental to our understanding of the nature of nature. In-

tuitively, they are (relatively) simple statements about invariant properties of physical

systems that nonetheless explain remarkably rich phenomena. For example, rotational

invariance of the laws of electromagnetism can be seen to produce the irregular shape of

a snowflake in addition to the round shape of a raindrop [Council et al., 2001].

Richness in observed phenomena means that learning these structures from data is

a challenge. A reoccurring example in the thesis is learning to predict the dynamics of

systems that conserve energy. This conservation law (invariant structure) is hidden in the

evolution of the system due to the nonlinear relationship between energy and evolution.

The problem is further complicated by how the data is represented and the presence of

noise in the observations.1

1 A more general ex-
ample from machine
learning is given by
images of the same
object (the invariant)
from different perspec-
tives: Even for small
changes in perspective,
the variation in the
images may be large
due to the complicated
nature of the interac-
tions between light and
the object’s shape and
material.

One way to address the problem—the one considered in the thesis—is to build these

structures into the learning algorithms in the form of an inductive bias. Assuming the

structure is present in the data distribution, this will generally improve efficiency and

generalisation [Wolpert and Macready, 1996, Baxter, 2000]. Canonical examples of invari-

ant structures as inductive biases are found in existing neural network architectures.2 In

2 E.g. approximate
translation invariance
due to pooling in
convolutional neural
networks (CNNs)
[Fukushima, 1980,
LeCun et al., 1999];
time invariance in
recurrent neural
networks (RNNs)
[Rumelhart et al.,
1986, Hochreiter
and Schmidhuber,
1997]; or permutation
invariance in graph
neural networks
(GNNs) [Scarselli et al.,
2009].

fact, invariance has been considered a key concept for understanding neural networks

since at least Minsky and Papert [1972], and remains a core element in a recent unified

perspective on neural networks [Bronstein et al., 2021].

introduction 21

1.1 Motivation: Data Efficiency

The core motivation for the thesis is improved data efficiency when learning from phys-

ical dynamical systems. Data efficiency makes explicit the practical concern of perfor-

mance as a function of the available data or cost of collecting data. Since the focus of the

thesis is on the design of inductive biases, data efficiency is also one of the key measure-

ments that are made in the experiments in chapters 2–3.

A common criticism of deep neural networks (DNNs) is the need for large datasets

[Lucic et al., 2018, Adadi, 2021]. Requiring less data for equal (or better) generalisation

performance is for practical purposes an important goal in its own right [Riedmiller,

2005, Deisenroth, 2010, Kamthe and Deisenroth, 2018a]. In many applications, data col-

lection is either expensive or impossible. For example, in robotics due to wear-and-tear,

drug design due to cost of running experiments, or in medical applications where it

might be impossible to run experiments for ethical or practical reasons [Deisenroth et al.,

2015, Liu et al., 2021, Esteva et al., 2021].

In chapter 2, data efficiency is pursued using ideas from multi-task learning [Ruder,

2017], transfer learning [Pan and Yang, 2010, Weiss et al., 2016], meta-learning [Lemke

et al., 2015], and active (task) learning [Settles, 2009]. Crucially, the aim is to learn a

model that can share information between different but related physical dynamical sys-

tems, each one being related to the notion of a task.3 A key motivation for the develop- 3 In the thesis, each task
is also identified by
conserved quantities
representing the system
parameters (e.g. length
or mass).

ments in chapter 2 is to separate task-specific sources of variation from global ones. This

view is shared by work on disentangled representations [Bengio et al., 2013, Higgins

et al., 2018], which aims to learn separated representations from data automatically. In

contrast, the work in the thesis is more focused on building this structure into the model

in the form of an inductive bias.

In chapter 3, data efficiency is pursued from the standpoint of encoding geometric

mechanics as inductive bias in neural networks. A key motivation for the developments

in the chapter is the observation that without this structure, neural networks struggle

to learn properties of physical systems such as the conservation of energy [Greydanus

et al., 2019]. A number of recent works have considered this problem [Toth et al., 2019,

Cranmer et al., 2020b, Zhong and Leonard, 2020],4 which also shares commonalities with 4 See Botev et al. [2021]
for an overview.

works relating differential equations and neural networks [Haber and Ruthotto, 2017,

E, 2017, Chen et al., 2018, Scholkopf, 2019] and scientific machine learning [Raissi et al.,

2019, Rackauckas et al., 2020].

22

1.2 Problem Setting: Physical Dynamical Systems

The learning problems considered in the thesis consist of observations generated by sim-

ulated physical dynamical systems, such as the pendulum example in fig. 1.1. Practically,

this is achieved by numerical simulation of ordinary differential equations (ODEs), pro-

ducing observed samples in discrete-time. Importantly, ODEs are also used to reason

about the inductive biases of the model. Inductive bias is defined generally as the set of

assumptions (implicit and explicit) that enable generalisation [Hullermeier et al., 2013].

In the thesis, it refers to assumptions about:

1. The form of the ODE used to define the model;

2. The strategy for representing a continuous-time system in discrete time;

3. Statistical relationships between variables of the resulting model.

The rest of this section introduces the key concepts of dynamical systems that are rel-

evant to the thesis. In the context of the thesis, continuous-time dynamical systems

are formal descriptions of a point evolving on a manifold. Since the full machinery of

manifolds is not needed for understanding chapters 2–3, the general exposition will be

limited to points evolving in Euclidean space and specific references to manifolds are

addressed individually.

1.2.1 Ordinary Differential Equations

The state of a dynamical system is a Q-dimensional vector variable hptq P R
Q, and t is a

parameterisation of a path such that

C “ thptq : t P r0, Tsu, (1.1)

defines the path between hp0q and hpTq. The path is determined by a dynamics function

through an ordinary differential equation (ODE).

Definition 1 (Ordinary Differential Equation). A nonlinear deterministic ODE is

defined as:
dh

dt
“ f ph, tq, (1.2)

where f is a nonlinear dynamics function. Subject to initial conditions hp0q “ h0,

the solution hptq is entirely determined by the dynamics f —assuming it exists.

Note that the form of eq. (1.2) is very general. In particular, the assumptions made about

what the state represents and the behaviour of the dynamics function are largely unspec-

introduction 23

ified. Further, although it is given as a first order ODE, it can represent an n-th order

ODE by change of variables. For example, a 2nd order ODE is given by

hptq “ pxptq, 9xptqq, 9x “
dx

dt
, (1.3)

where x corresponds to position and 9x to velocity.

1.2.2 Geometric Mechanics

The physical dynamical systems considered in the thesis have more structure than is

apparent in definition 1. This structure is elegantly described by geometric mechanics

[Holm et al., 2009]. Geometric mechanics is a formulation of Lagrangian and Hamilto-

nian mechanics and generally applies for a very large class of physical systems.5 The

5 For example, geomet-
ric mechanics can be
used to represent rigid
bodies, fluids, electro-
magnetic and quantum
systems [Holm et al.,
2009].

thesis only considers finite-dimensional, time-invariant (conservative), N-particle sys-

tems to represent models. It is standard to use the notation qptq P Q to denote the gen-

eralised position of a system, where Q is called the configuration manifold.6 The thesis 6 Analogously,
9qptq P R

ND denotes
the generalised velocity.only considers simple manifolds, namely Q “ R

ND and Q “ SOp2q.7

7 The SOp2q manifold
is the circle manifold.
It can also be thought
of in terms of polar
coordinates pr, ωq with
fixed radius r and
varying angle ω.

The notion of generalised coordinates points to a powerful property of geometric

mechanics, namely that one can write down the equations in coordinate independent

form. For example, one can choose to represent the position of a pendulum either by

a single angle or by two positional coordinates in space and the equations describing

the evolution would generically look different. Since the laws of physics are the same,

it is useful to be able to abstract away this choice (generalised coordinates) by having

coordinate independent equations (geometric mechanics).

Hamilton’s Principle. Hamilton’s principle of stationary action is a particularly beau-

tiful formulation of mechanics [Hamilton, 1837]. In essence, it says that a path between

two points

C “ tqptq : t P ra, bs, a ă bu, (1.4)

acts according to the laws of physics, if it is a stationary point of a functional S,

δS “ 0, (1.5)

where S is called the action. Unpacking eq. (1.5) requires some definitions. The action

Srqspa, bq “

ż b

a
Lpqptq, 9qptqqdt, (1.6)

is a functional of the path qptq between two points in time pa, bq, that sums up the con-

tribution of a smooth scalar function called the Lagrangian over the path.8 Applying 8 A functional is a
’function of a function’
that returns a scalar.

24

Hamilton’s principle on eq. (1.6), using standard results from the calculus of variation

[Gelfand et al., 2000], one obtains the Euler-Lagrange (E-L) equations,

d

dt

´BL

B 9q

¯
´

BL

Bq
“ 0. (1.7)

The Lagrangian characterises the physics of the system. The one considered in the thesis

is given by,

Lpq, 9qq “ Tp 9qq ´ Upqq “
1
2

9qTM 9q ´ Upqq, (1.8)

where T is the kinetic energy of the system and U is the potential energy. In eq. (1.8),

M P R
NDˆND is a diagonal mass matrix

M “ diagpm1, . . . , m1looooomooooon
D times

. . . , mN , . . . , mNloooooomoooooon
D times

q “ diagpM1, . . . , MNq, (1.9)

where mn is the mass of particle n. Using eq. (1.8) in the E-L equations (1.7) gives

M:q “
BU

Bq
, (1.10)

which is the familiar form of Newton’s second law of motion.9 9 That is, force “
mass ˆ acceleration.

An important result by Noether [1918] is that continuous symmetries of the action

(1.6) correspond to conservation laws (Noether’s Theorem). An important corollary is

that if the Lagrangian is invariant with respect to continuous transformations, the system

has conservation laws. One immediate consequence is that due to the (explicit) time-

invariance of L in (1.8), the energy function

Epq, 9qq “
BL

B 9q
¨ 9q ´ Lpq, 9qq, (1.11)

is a conserved quantity in time [Holm et al., 2009].

1.2.3 Conservation Laws as Inductive Biases

The kinds of problems considered in the thesis are almost entirely captured by thinking

about how to learn a model that predicts the evolution of an idealised pendulum, given

observations of its state (position and velocity/momentum).10 10 Or multiple indepen-
dent pendulums in the
case of chapter 2The idealised pendulum is a point-mass swinging from the end of a perfectly rigid

rod (fig. 1.1), with no friction due to air resistance. The Lagrangian for the pendulum

system is given by

Lppq, 9qq “ Tpp 9qq ´ Uppqq “
1
2

ml2
9q2 ` mglp1 ´ cos qq, q P p´π, πq, (1.12)

where q is an angle measuring the displacement from vertical and 9q is the angular ve-

locity; m is the point-mass and l is the length of the rod; and g is the magnitude of the

introduction 25

gravitational field. Using eq. (1.12) in eq. (1.7) gives the equations of motion (EOM) for

the pendulum,11 11

BLp

Bq
“ mgl sin q,

d

dt

´ BLp

B 9q

¯
“ ml2

:q.

:q ´
g

l
sin q “ 0, (1.13)

which is a 2nd order ODE in the angle q. Finally, the energy function for the pendulum

is given by eq. (1.11),

Eppq, 9qq “
1
2

ml2
9q2 ´ mglp1 ´ cos qq, (1.14)

which is a conserved quantity of the system.

Figure 1.1: The idealised pendulum. The
figure illustrates two imagined consecu-
tive snapshots in time, denoted by 1, 2.
The idealised pendulum conserves energy
(swings back and forth forever). The length
and mass of the pendulum pl, mq are sys-
tem parameters that affect its behaviour.
The problem considered in the thesis is
learning a function that can predict the
position (and velocity/momentum) of the
pendulum at some time t in the future.

The main properties of interest in the pendulum system are:

1. The state dynamics are nonlinear;

2. The system has physical geometric structure.

The first property implies that a learning algorithm needs to be expressive enough to

represent the dynamics accurately. However, for accurate predictions beyond the training

examples (generalisation), it is crucial that the model contain the geometric structure as

well.12 The structure can either be learned or built in to the predictive model in the form

12 To illustrate the
point, imagine a pre-
dictive model that vio-
lates the conservation
of energy (geometric
property) in the case of
the idealised pendulum
in such a way that at
each step the energy
is increased by a small
amount. The predicted
evolution would then
be a pendulum in-
creasing its velocity at
each step. Analogous
behaviour is demon-
strated empirically
to occur for standard
neural networks in
chapter 3.

of an inductive bias. Motivated by data efficiency, the latter option is used in the thesis.

Chapter 2 is largely summarised by the most straightforward example of such struc-

ture. In the case of the idealised pendulum, the conservation of length and mass.13 The

13 More generally, one
might think of a set of
unknown conserved
system parameters that
affect the dynamics.

key idea is to assume that there exist for each instance of a system—or task—a set of

conserved system parameters. A good example of different tasks would be many pendu-

lums with different lengths and masses. The idea is then to improve data efficiency by

sharing a model of global properties (e.g. laws of physics) and only having to infer the

underlying value of the conserved quantities for new tasks.

Chapter 3 is concerned with capturing more general and subtle geometric structures

found in systems like the pendulum, one example being the conservation of energy.

26

More generally, it encodes geometric mechanics or classical physics into neural network

architectures. The approach relies on the interpretation of neural networks as the solu-

tion to ordinary differential equations [E, 2017], specifically ones arising from classical

mechanics. The key idea is to derive network architectures by discretising these physical

systems using geometry preserving variational integrators.14 14 Roughly speaking,
geometry preserv-
ing means physics
preserving in this case.

introduction 27

1.3 Function Approximation

A basic problem in machine learning is discovering regularities in a relationship between

two vector variables

x “ pxqq, y “ pydq, q “ 1, . . . , Q, d “ 1, . . . , D, (1.15)

given a collection of observed examples

D “ tX, Yu “ tpxnq, pynqu, n “ 1, . . . , N. (1.16)

In other words, what structure or pattern remains constant as the values of x, y are var-

ied? Naturally, this can be framed as learning a function y “ f pxq that captures this

regularity, where x has been chosen as the input and y as the output. If a general pattern

exists, and it is captured by f , then the function can produce any value of the output

given the input—that is, the function can make predictions.

Intuitively, learning a function from examples is a matter of finding the best approx-

imation to the underlying pattern, where best is measured by how closely the learned

function matches the true function for all possible inputs (or some subset of interest).

The problem is fundamentally approximate in the sense of the aphorism all models are

wrong, but some are useful [Box, 1976], and it is practically approximate since:

§ Data is finite. For modestly complicated functions, there are an infinite number of

solutions that perfectly match the observed values but have different behaviour for

other points;

§ Computational resources are finite. Even if all the points of interest were observed, a

complete enumeration of interesting functions is inefficient.15

15 For a binary clas-
sification task with
megapixel greyscale
images as inputs, a
complete enumeration
of any given function
requires 2561,000,000

numbers [Lin et al.,
2017].

This section looks at function approximation using neural networks (NNs) and Gaussian

processes (GPs), since both model classes are used in chapters 2–3. Classically, the main

difference between NNs and GPs is in how they represent the function f . GPs are inher-

ently probabilistic and define a distribution over the infinite function values, whereas

NNs represent the function values implicitly by a finite set of parameters.16

16 This distinction is
blurry. For instance,
Bayesian NNs (BNNs)
[MacKay, 1995] are
probabilistic variants of
NNs. Neural processes
(NPs) sit somewhere
inbetween GPs and
NNs [Garnelo et al.,
2018]. Further, NNs
with i.i.d. Gaussian
priors over the weights
are equivalent to a
certain class of GPs
[Neal, 1996, Lee et al.,
2017].

1.3.1 Probabilistic Machine Learning

Learning is framed probabilistically in the thesis. In this section, the inputs x are as-

sumed to be observed and the outputs y are modelled as independent random variables

by an observation model.

28

Definition 2 (Observation Model). An observation model assigns a probability to

any output vector y. It is defined as a conditional distribution

pθpy| f pxqq, (1.17)

parametrised by a set of model parameters θ (notation 3) and indexed by input

vectors x P R
Q. The observation function in (1.17) is defined as the set

f pxq “ t f pxiq|xi P R
Qu, (1.18)

where the vector-valued function values are defined as

f i “ f pxiq “ p f dpxiqq, d “ 1, . . . , D. (1.19)

The observations from eq. (1.16) are assumed to be independent samples from a set

of unknown distributions

yn „ pθ‹py| f pxnqq “ pθ‹py| f nq, (1.20)

indexed by the inputs xn P X, where θ‹ denotes the true state of nature. That is, the

data were really generated by θ‹.

Assuming a distribution in (1.17) gives a natural way to model noise in the output vari-

able explicitly, i.e. variation in the output that is not explained by the function values.17

17 Some care must be
taken to ensure that
these are reasonably
calibrated [Kuleshov
et al., 2018]. This
is one reason one
might choose Bayesian
methods such as GPs.

However, requiring an explicit form of the distribution can be restrictive.18

18 For example, com-
plicated simulators
[Cranmer et al., 2020a]
and image compres-
sion models [Ballé
et al., 2018] often have
intractable/ill-defined
observation densities.

Output Dimensions. The thesis only considers two instances of the distribution in

(1.17). For real-valued outputs y P R
D, it will be a factorised Gaussian19 19 N py|¨q denotes the

Gaussian distribu-
tion evaluated at y,
whereas N p¨q defines
a Gaussian random
variable.

pθpy| f pxqq “
Dź

d“1

N pyd| f dpxq, σ2
d q “ p2πq´ D

2

Dź

d“1

σ´1
d exp

´
´

1
2σ2

d

py ´ f dpxqq2
¯

, (1.21)

where f dpxq models the mean and σ2
d is a noise variance parameter. For binary outputs

y P r0, 1sD, used to represent images in the thesis, it will be a factorised Bernoulli

pθpy| f pxqq “
Dź

d“1

Bpyd| f dpxqq “
Dź

d“1

`
f dpxq

˘yd p1 ´ f dpxqqp1´ydq, (1.22)

where f dpxq specifies the probability of yd “ 1.

Bayesian Learning. For probabilistic models, learning can be motivated by a Bayesian

perspective.

introduction 29

Definition 3 (Bayesian Learning). Given a dataset D and a model class θ, Bayes’

theorem [Bayes, 1958] says

ppθ|Dqloomoon
posterior

9 ppD|θqppθqlooooomooooon
likelihoodˆprior

, (1.23)

where the posterior is the conditional distribution over models given the data (belief

given data); the likelihood is the conditional distribution over data given a model

(relating models to data); and the prior captures assumptions about the model class

before observing data (belief prior to data). The constant of proportionality is the

marginal likelihood

ppDq “

ż
ppD|θqppθqdθ. (1.24)

Bayesian learning identifies the process of learning with the transformation of the

prior distribution into a posterior distribution. In other words, it returns a posterior

distribution over models. Two key assumptions made in Bayesian learning are:

§ The data was really generated by some model θ‹ P θ with likelihood ppD|θ‹q.

§ The prior accurately reflects the prior beliefs about the model class.

Generally speaking, a Bayesian perspective on learning is both conceptually and prac-

tically attractive since it models uncertainty, and probability is the language of much of

science and engineering [Ghahramani, 2015, Murphy, 2021]. Importantly, it gives a prin-

cipled approach to incorporating prior knowledge (in both the prior and likelihood) and

to model selection via the marginal likelihood.

At the same time, exact posterior inference is difficult in practice due to the integral in

the marginal likelihood (1.24), which requires integrating over the entire model space.20

20 GPs are one class of
models which allow
for tractable Bayesian
inference, assuming an
independent Gaussian
likelihood.

Another issue is that incorporating prior knowledge can be challenging for practically

relevant models. Using misspecified priors and/or likelihoods can result in arbitrarily

bad posterior inference [Knoblauch et al., 2019].

Point Estimates. Alternatively, in cases where only a point estimate is desired, defini-

tion 3 also points to a form for the learning objective. The maximum a posteriori (MAP)

estimate is obtained by maximising the posterior with respect to the model class. In the

context of eq. (1.17), this is equivalent to minimising the negative log-posterior21

21 Since the marginal
likelihood (1.24) does
not depend on θ it can
be ignored. Further, the
log is monotonically
increasing so the
maximum/minimum
occurs at the same
point.

OMAPpθ; Y, Xq “ ´

˜´ Nÿ

n“1

log pθpyn| f pxnqq
¯

` log ppθq

¸
, (1.25)

where OMAP is the maximum a posteriori (MAP) objective and the semicolon is used to

make the implicit dependence on the data explicit. The term ppθq is a prior distribution

30

over the model parameters, and the log-prior acts as a regularisation term, typically

preferring simpler models.22 The maximum likelihood (ML) estimate is obtained by 22 By some suitable
definition of simple.
A canonical example
is a Gaussian prior,
which can be seen as
the squared L2 norm.
That is,

logppθq9
ÿ

i

||vi||
2
2, @vi P θ.

A similar relationship
exists for the L1 norm
and the Laplace prior.

assuming a uniform prior in eq. (1.25),

OMLpθ; Y, Xq “ ´
Nÿ

n“1

log pθpyn| f pxnqq. (1.26)

Uninformative prior distributions (e.g. uniform) are known to have issues from a Bayesian

perspective [Gelman and Yao, 2021], but the ML estimate has attractive asymptotic prop-

erties. If the data were really generated by a model θ‹, then the ML estimate pθ converges

(in probability) to the true value in the limit of infinite samples. In practice:

§ Data is not actually generated by the model;

§ Finite datasets and large number of model parameters;

§ True model is unidentifiable (no unique θ‹).

Despite these issues, assuming enough data, the ML estimate can work well in practice

for some or all of the parameters.23 23 Highly dependent on
specifics of the model
and data.

Stochastic Gradient Descent. Minimising the objectives from eqs. (1.25)–(1.26) can be

done with gradient descent (GD), by making small updates to the model parameters θ

in the opposite direction of the gradient. Naively, this involves computing the sum over

the entire dataset which is often intractable for large datasets. Stochastic (mini-batch)

gradient descent (SGD) [Ruder, 2016] can be used to estimate the gradient instead. SGD

requires that the objective decompose into a sum over samples, for example, due to an

independence assumption like the one in definition 2. Instead of computing the full

sum, the true gradient is estimated as

Nÿ

n“1

∇θOpθ; yn, xnq «
Bÿ

b“1

∇θOpθ; yb, xbq, (1.27)

where ∇θ denotes the gradient with respect to θ, and Opθ; y, xq is a per-sample loss

term. Note that pyb, xbq are samples from the dataset, collected in a mini-batch of size

B ă N.24 Typically these are sampled uniformly at random from the dataset. The model

24 The size of the mini-
batch B determines
the amount of noise in
the gradient estimate,
which is balanced
against the compu-
tational cost. That
is, larger B means
less noise but more
compute.

parameters are then updated with a fixed learning rate using the estimate in (1.27).

Using a fixed learning rate has well documented problems.25 In practice, numerous 25 E.g. choosing the
right learning rate, or
the right annealing
schedule, and getting
stuck in suboptimal
local minima [Ruder,
2016]

stochastic optimisation algorithms have been developed to deal with these challenges.

The popular Adam algorithm [Kingma and Ba, 2017] is used in the thesis.

introduction 31

1.3.2 Neural Networks

Definition 4. Neural networks (NNs) are nonlinear parametric function approxima-

tors made up of a composition of simpler functions

fθ “ f K
θ ˝ . . . ˝ f 1

θ , K ě 2 (1.28)

where k “ 1, . . . , K indexes layers in the network, and the dependence on the model

parameters has been made explicit. In the simplest case, K “ 2 and (1.28) is called a

shallow or single-layer neural network (NN) and otherwise it is a deep neural net-

work (DNN). In addition to the number of layers K, a basic configuration parameter

in neural networks is the width of each layer, i.e. the dimension of the output. In

general, the output of a NN layer will be denoted by

hk “ f k
θ phk´1q P R

Wk , h0 “ x, hK “ y, (1.29)

where hk is the hidden state at layer k (excluding the input and output), and each

layer will generally have a different dimension Wk.

A basic form for eq. (1.28) is the fully-connected neural network architecture (FCNN),

going back at least as far as the work in [Ivakhnenko and Lapa, 1966, Berners-Lee,

1968].26 The layers are given by a linear transform followed by a simple nonlinearity 26 See Schmidhuber
[2014], section 5.3 for
more detail.

f k
θ phk´1q “ ak

`
Wkhk´1 ` bk

˘
, (1.30)

where ak is the nonlinear activation function (acting pointwise) for layer k, Wk is the

weight matrix for layer k and bk is its bias term. The weight matrices and bias terms for

all layers are the parameters of the network (collected in θ).

A common choice of activation function is the ReLU [Nair and Hinton, 2010]

ReLUpxq “ maxp0, xq, (1.31)

where the max is taken element-wise. The output activation aK is often different from

the rest, or taken to be the identity, depending on the nature of the outputs.

ynf nxn

θ

N

pθpy| f pxqq Figure 1.2: Graphical model (notation 6)
for the observation model from defini-
tion 2, using a NN observation function.
The model parameters θ parametrise a NN
fθpxq. The function values f n “ fθpxnq are
deterministic variables.

32

1.3.3 Gaussian Processes

Intuitively, a GP can be thought of as a distribution over a scalar function f .27 Formally, 27 They can also be seen
as infinitely wide and
deep neural networks
assuming an i.i.d.
Gaussian prior on
the parameters of the
network. This was
shown by Neal [1996]
for infinitely wide
single-layer networks
and Lee et al. [2017] in
the infinitely wide and
deep case.

GPs consist of an infinite collection of random variables

f pxq “ t f pxiq|xi P X u, (1.32)

where X is an index set, and f pxiq is a random variable assigned to each element xi P X .

The defining characteristic of GPs is that any finite subset of these variables is jointly

Gaussian [Rasmussen and Williams, 2006]. Rather than manipulate the infinite set in

(1.32), GPs can be represented by a pair of functions on the indices x P X . These are the

mean function

µpxiq “ E
“

f pxiq
‰
, (1.33)

which gives the expected value of the random variable f pxiq, and the positive definite

covariance function

Σpxi, xjq “ E
“
p f pxiq ´ µpxiqqp f pxjq ´ µpxjqq

‰
, (1.34)

which outputs the covariance between f pxiq and f pxjq.28 28 To be clear, both µp¨q
and Σp¨, ¨q are actual
functions whereas f pxiq
is a label for a random
variable in the infinite
set from eq. (1.32).

Throughout the thesis, the notation pp f pxqq is used as if it were a density over the

infinite set of random variables. While this is not technically correct, the computations

will always reduce to a finite set, and the notation is intuitive. A proper treatment of the

subject is found in [Matthews et al., 2016].

Definition 5 (Gaussian Process). Using eqs. (1.33)–(1.34), a GP is defined as

pθp f pxqq “ GPpµθpxq, Σθpx, x1qq, (1.35)

where x, x1 P X and µθ and Σθ are parametrised by θ (hyperparameters). For an ar-

bitrary subset of indices X “ px1, . . . , xNq, eq. (1.35) says that

pθp f pnqq “ N pµ, Kq, (1.36)

where f pnq “ p f px1q, . . . , f pxNqq and the conditioning on X is not included for ease

of notation. This will be the convention throughout the thesis, and the index set

will be clear from context. The mean vector and covariance matrix are defined as

µn “ µθpxnq, (1.37)

Krm,ns “ Σθpxm, xnq, (1.38)

where µ P R
N , K P R

NˆN , and xm, xn P X.

introduction 33

ynf nxn

f pxq θ

N

pθpy| f pxqqpθp f pxqq Figure 1.3: Graphical model (notation 6)
for the observation model from defini-
tion 2, using a GP observation function.
The undirected thick line denotes that
f n P f pxq. GPs model the function values
as latent random variables.

Mean And Covariance Functions. A useful property of GPs is that global features

of the function can be specified through interpretable hyperparameters in the mean and

covariance functions. For the purposes of the thesis, the mean function will be taken to

be the zero-function29

29 There are many
situations where one
might want to include
a mean function,
since it is a natural
place to add prior
knowledge. For the
systems modelled in
the thesis, the zero-
mean function is used
since the function
models changes in state
variables.

µθpxq “ 0. (1.39)

The covariance function, will be taken to be the exponentiated quadratic (EQ) kernel30 30 Often referred to as
squared exponential
(SE) kernel or radial
basis function (RBF)
kernel

Σθpx, x1q “ σ2
k exp

˜
´

1
2

px ´ x1qTL´1px ´ x1q

¸
(1.40)

“ σ2
k exp

˜
´

1
2

Qÿ

q“1

pxq ´ x1
qq2

l2
q

¸
, (1.41)

where σ2
k is a signal variance parameter, and L “ diagpl2

1 , . . . , l2
qq is a diagonal matrix

with entries called the characteristic lengthscales.

Posterior GP. Equation (1.35) can be used as a prior over functions in a Bayesian learn-

ing setting (definition 3). In this case, learning the function is achieved by computing

the posterior distribution over the function. In contrast to the notation in definition 3,

it is the function values f pxq that are treated as latent variables that define the model

class. The model parameters θ (technically hyperparameters) will be learned by maxi-

mum likelihood. This section reviews posterior inference for GPs when the likelihood is

Gaussian, eq. (1.21), such that inference is analytically tractable.

Analytic inference (and variational inference, section 1.4) takes advantage of the fact

that conditioning a GP on a subset of function values results in another GP.31

31 The result follows
from considering
standard properties of
multivariate Gaussian
distributions. Namely,
conditioning one of the
variables on the rest
results in a Gaussian.
If this variable were
indexed by x‹, then the
mean and covariance
would be given by
equations (1.44)–(1.45),
with the argument x

replaced by x‹.

Definition 6 (Conditional GP). Given an arbitrary subset of random function val-

ues f pnq, and denoting the rest of the infinite set from (1.32) by f px‹q, their joint

distribution is given by

pθp f px‹q, f pnqq “ pθp f px‹q| f pnqqpθp f pnqq, (1.42)

34

using the definition of conditional probability. Using standard properties of Gaus-

sian distributions [Rasmussen and Williams, 2006], the conditional

pθp f px‹q| f pnqq “ GPpµc
θpxq, Σ

c
θpx, x1qq, (1.43)

is a GP with mean and covariance functions given by

µc
θpxq “ µθpxq ` kpxqTK´1p f pnq ´ µq, (1.44)

Σ
c
θpx, x1q “ Σθpx, x1q ´ kpxqTK´1kpx1q, (1.45)

where rkpxqsn “ Σθpxn, xq is a (column) vector of covariances between the function

values at the inputs xn and the argument x.

Using the likelihood from eq. (1.21) and the partitioning from eq. (1.42), the joint distri-

bution over the observations and the function is given by

pθpypnq, f pnq, f px‹qq “ pθp f px‹q| f pnqqpθpypnq, f pnqq (1.46)

“ pθp f px‹q| f pnqqpθp f pnq|ypnqqpθpypnqq, (1.47)

where the second step uses the definition of conditional probability to pull pθpypnqq out

of the joint distribution. Using (1.47) in Bayes’ theorem (1.23) gives32 32 Note that:

f pxq “ f px‹q Y f pnq
pθp f pxq|ypnqq “ pθp f px‹q| f pnqqpθp f pnq|ypnqq, (1.48)

where the first term on the RHS is a GP (definition 6) and the second term is a Gaussian

over f pnq. The latter statement follows from the fact that the Gaussian family is self-

conjugate and the likelihood is Gaussian.

Since the mean function in eq. (1.44) for the conditional pθp f px‹q| f pnqq is linear in f pnq,

one can analytically marginalise out f pnq from eq. (1.48) [Rasmussen and Williams, 2006].

When µθ is the zero function from eq. (1.39), the resulting posterior GP is given by

pp f pxq|ypnqq “ GPpµ
p
θ pxq, Σ

p
θ px, x1qq, (1.49)

with mean and covariance functions given by

µ
p
θ pxq “ kpxqT`

K ` σ21N

˘´1
ypnq, (1.50)

Σ
p
θ px, x1q “ Σθpx, x1q ´ kpxqT`

K ` σ21N

˘´1
kpx1q. (1.51)

Learning GP Hyperparameters. GPs model the relationships between different ob-

servations explicitly in the distribution over function values. Learning is partly accom-

plished by computing the posterior distribution (1.49), which describes how the infinite

set of function values in relate to each other given the observations.

introduction 35

Typically, the hyperparameters that specify the mean and covariance function are

learned from data also. This can be achieved by obtaining a ML estimate (1.26) of the

hyperparameters, however, the function values have to be marginalised out. The objec-

tive is then the log-marginal-likelihood (LML)

OGPpθ; ypnqq “ log pθpypnqq “ log
ż

pθpypnq| f pnqqpθp f pnqqd f pnq. (1.52)

In the case of i.i.d. Gaussian likelihood, eq. (1.52) is available in closed form since it is a

Gaussian33

33 The integral in
(1.52) can be done by
hand using standard
identities for the
product of Gaussian
functions. However,
by the definition of the
model:

ypnq “ f pnq ` ǫpnq,

ǫpnq „ N p0, σ21Nq.

The result follows
immediately since the
sum of two indepen-
dent Gaussian random
variables is a Gaussian

ypnq „ N p f pnq, K ` σ21Nq.
log pθpypnqq “ ´

1
2

yT
pnqpK ` σ21Nq´1ypnq ´

1
2

log
ˇ̌
K ` σ21N

ˇ̌
´

N

2
log 2π, (1.53)

where K is given in (1.38) and σ2 is the noise variance from (1.21).

1.4 Latent Variable Models

A more general problem than that of section 1.3 is discovering regularities and hidden

structure in a vector variable y, given a collection of observed examples

y “ pydq, d “ 1, . . . , D, (1.54)

Y “ pynq, n “ 1, . . . , N. (1.55)

Many interesting learning problems are naturally framed in this way, for example: gen-

erating new observations that are similar to the observed examples but usefully differ-

ent,34 and data compression [Soliman and Omari, 2006, Ballé et al., 2018].

34 Notable examples
include: drug design
[Gupta et al., 2018b]
music generation
[Oord et al., 2016], text
generation [Collobert
and Weston, 2008],
image generation
[Goodfellow et al.,
2020].

These patterns are still usefully captured by a function f pxq, but generally speaking,

the input space is unknown and needs to be learned by the model. The section begins

by defining generative models by treating the inputs from section 1.3 as latent variables

in a probabilistic model. The subsequent section introduces variational inference for

approximate inference in latent variable models that have intractable posterior distribu-

tions and marginal likelihoods. Finally, variational inference is applied to the GP model

introduced in section 1.3 to derive sparse variational Gaussian processes (SVGPs).

1.4.1 Latent Variable Models

The inputs x are modelled as independent and identically distributed (i.i.d.) random

variables, and the outputs y are modelled by the observation model from definition 2.

The joint distribution over the inputs and outputs defines a generative model.

Since the function is modelled by a GP or NN (section 1.3), the marginal distribution

36

over the outputs—pθpyq—will generally be complex even if the conditional distribution

over observations is simple. In the thesis, the form of the conditional distribution will be

Gaussian or Bernoulli as described in equations (1.21)–(1.22).35 35 This may still be a
restrictive assumption
for certain applica-
tions, as evidenced
by the popularity of
generative adversar-
ial networks (GANs)
[Goodfellow et al.,
2020] which do not
enforce an explicit form
for the conditional.

Definition 7 (Generative Model). A generative model is defined as a joint dis-

tribution over input vectors x and output vectors y, indexed by a set of model

parameters (notation 3),

pθpy, xq “ pθpy| f pxqqppxq, (1.56)

where the conditional distribution in (1.56) is the observation model from eq. (1.17),

and ppxq is the prior distribution (definition 3) over the latent (unknown) inputs.

The observations from eq. (1.55) are assumed to be independent samples from a

generative process described by

xn „ ppxq, yn „ pθ‹py| f pxnqq “ pθ‹py| f nq, (1.57)

where θ‹ denotes the true state of nature.

ynf nxn

θ

N

pθpy| f pxqqppxq

(a) Neural networks (NNs).

ynf nxn

f pxq θ

N

pθpy| f pxqqpθp f pxqqppxq

(b) Gaussian processes (GPs).

Figure 1.4: Graphical models (notation 6)
for the generative model in definition 7

where the observation function is modelled
by (a) a NN and (b) a GP. The undirected
thick line in (b) denotes that f n P f pxq. In
contrast to section 1.3, the inputs xn are
latent variables.

Learning Latent Variable Models. The generative model defined in (1.56) is also

called a latent variable model (LVM) due to the latent inputs x. LVMs are learned by

maximising the log-marginal-likelihood (LML)

OLMLpθ; yq “ log pθpyq “

ż
pθpy| f pxqqpθpxqdx (1.58)

with respect to the model parameters θ, using for instance stochastic gradient descent

(SGD) eq. (1.27). Typically, however, the LML is intractable due to the function f , which

means that the posterior distribution over the inputs—needed for downstream process-

ing, analysis or prediction—is intractable also. The posterior is given by Bayes’ theorem

(1.23)

pθpx|yq “
pθpy| f pxqqpθpxq

pθpyq
, (1.59)

which involves pθpyq in the denominator. Section 1.4.2 introduces variational inference

introduction 37

as a strategy for dealing with both eqs. (1.58)–(1.59).

Prior. The prior over the latent inputs plays an important role since it encodes prior

assumptions about the structure of the latent space, and acts as regularising term in

the objective for variational inference. In the thesis, the prior distribution is generally

assumed to be a simple isotropic Gaussian

ppxq “ N p0, 1Qq, (1.60)

where 1Q is an identity matrix (notation 4).

The main advantage of eq. (1.60) is that it is easy to work with, having closed form

solutions for information theoretic quantities and being easy to sample. Another possible

motivation is that it encourages simple, independent sources of variation due to the

independence assumption.

However, it has been pointed out by numerous works that the prior in eq. (1.60) may

be too restrictive for certain domains [Chen et al., 2016, Hoffman and Johnson, 2018,

Lavda et al., 2020], leading to degraded performance. A partial explanation is that the

regularisation effect the prior in (1.60) produces is too strong, since the true posterior is

decidedly not independent in typical cases. However, this effect is more pronounced for

larger latent spaces [Hoffman and Johnson, 2018], and the latent spaces considered in the

thesis are relatively low dimensional.36

36 From the perspective
of Bayesian learning
(definition 3), it would
be considered bad
practice to assume
independence if the
latent dimensions are
known to be highly
correlated a priori. For
complicated generative
models (expressive
f), however, this can
be difficult to reason
about.

1.4.2 Variational Inference

This subsection introduces variational inference (VI) [Anderson and Peterson, 1987,

Hinton and Van Camp, 1993, Jaakkola and Jordan, 1999], a remarkably useful tool for

approximate inference, and integral to contemporary machine learning [Kingma and

Welling, 2014, Jimenez Rezende et al., 2014, Blei et al., 2017, Zhang et al., 2018].

§ Fundamentally, VI turns integration into optimisation—or an infinite-dimensional

optimisation problem into a finite one—making otherwise intractable probabilistic

learning algorithms highly scalable, particularly when combined with SGD (1.27).

The approach is generally applicable to most probabilistic models and makes many

of the advantages of Bayesian learning (definition 3) readily available, such as access

to (a lower-bound of) the marginal likelihood for learning and model selection, and

uncertainty estimates in the (approximate) posterior.

§ The main limitations of VI include the bias of the approximate posterior: which is

38

not guaranteed to converge to the true posterior [Blei et al., 2017], is known to un-

derestimate the variance [Giordano et al., 2017], and can bias estimation of the model

parameters [Cremer et al., 2018]. Additionally, the approximate posterior can be diffi-

cult to diagnose [Yao et al., 2018]. VI is an active area of research and these limitations

have not been left unaddressed.37 37 Some examples
include more flexible
approximate posteriors
[Jimenez Rezende
and Mohamed, 2015],
tighter lower-bounds
[Burda et al., 2015]
better understanding
of when tigher lower-
bounds are better
[Rainforth et al.], new
perspectives on the
lower-bound [Hoffman
and Johnson, 2018], to
name a few. A recent
review is given by
Zhang et al. [2018].

Bayesian Inference as Optimisation. There are many technically equivalent deriva-

tions of VI, offering different perspectives on the learning objective. This section starts

with the viewpoint in [Knoblauch et al., 2019], and subsequently explores different inter-

pretations of the objective that exist in the literature.

Knoblauch et al. [2019] point out that work dating back to at least [Csiszár, 1975,

Donsker and Varadhan, 1983] had formulated exact Bayesian inference as a solution to

an infinite-dimensional optimisation problem. Focusing on intuition, the result is stated

here in the context of the posterior (1.59) and the dataset in (1.55), where the dependence

on the model parameters has been dropped. Specifically, the posterior over the latent

inputs X (given the observations Y) is given by the solution to

ppX|Yq “ arg max
qPPpX q

«
EqX

”
log ppY|Xq

ı
´ KL

“
qX||pX

‰
ff

, (1.61)

where PpX q is the space of all probability distributions on X , q P PpX q is the opti-

misation variable (a distribution), and the second term denotes the Kullback-Leibler

divergence [Kullback and Leibler, 1951]

KL
“
qa||pa

‰
“ Eqa

”
log

qpaq

ppaq

ı
(1.62)

between q and p, and qX “ qpXq is the shorthand defined in notation 5.

The key point is this: Bayes’ theorem is equivalent to the optimisation in (1.61) in the

sense that a solution corresponds to the posterior given by the theorem. To be clear—no

approximation has been made, it is simply a rephrasing of Bayes’ theorem.

Equation (1.61) has an intuitive interpretation: it consists of a log-likelihood term that

fits the observations, and a regularisation term that minimises the KL-distance between

the optimised posterior qpXq and the prior ppXq. This is analogous to Bayes’ theorem,

where the posterior is proportional to the product (sum in log space) of the likelihood

terms and the prior.

Approximate Inference as Optimisation. The core idea of VI is to approximate the

true posterior with a parametric family of distributions tqφ|φ P Φu, having variational

introduction 39

parameters φ (notation 3) living in a finite-dimensional space Φ. This variational poste-

rior is denoted by

qx
φ “ qφpxq « pθpx|yq (1.63)

and is optimised to fit the true posterior. Intuitively, this approximation will be bias if

the variational family does not contain the true posterior. However, the flexibility of the

family has to be balanced with tractability, since this is the purpose of VI. A popular and

simple assumption, originating from physics [Opper and Saad, 2001], is the mean-field

variational family [Blei et al., 2017]

qφpXq “
Nź

n“1

qφpxnq, (1.64)

which assumes that all the latent variables are independent and governed by unique

variational parameters φn P φ.38 Equation (1.64) is a strong assumption that is unlikely 38 Technically, eq. (1.64)
has not assumed
independence across
the dimensions of
x P R

Q.

to hold for the true posterior in general. This can cause significant problems, such as

underestimating the variance and biasing the estimate of the model parameters θ. The

advantage of the mean-field family is primarily tractability, which is the motivation

in the thesis.39 In the context of (1.61), a parametric approximation qφ to the posterior 39 Later in the section,
a more structured
approximation is intro-
duced. However, the
independence across
marginal distributions
is still assumed.

immediately leads to the first perspective on VI.

Finite Dimensional Approximation. VI replaces the infinite-dimensional optimisa-

tion problem in (1.61), i.e. exact Bayesian inference, with a finite dimensional optimisa-

tion problem over the family qφ. Introducing the model and variational parameters θ, φ,

the VI learning objective for the generative model in (1.56) is given by

OELBOpθ, φ; Yq “ EqX
φ

”
log pθpY|Xq

ı
´ KL

“
qX

φ ||pX
θ

‰
(1.65)

“

˜
Nÿ

n“1

Eqxn
φ

“
log pθpyn| f pxnqq

‰
´ KL

“
qxn

φ ||pxn
θ

‰
¸

, (1.66)

where OELBO is commonly referred to as the evidence lower-bound (ELBO) since it is a

lower-bound of the log-evidence log pθpYq (detailed next). Note that, the decomposition

into a sum over individual data samples is a consequence of the independence assump-

tion in eq. (1.57), and the mean-field family in eq. (1.64).

Knoblauch et al. [2019] show that the standard ELBO (1.65) is optimal with respect to

a given variational family, in the sense that it converges to the best constrained solution

to the original problem (1.61), however, this does not suggest that it is the optimal choice

in practice.40 40 Knoblauch et al.
[2019] point out that
key assumptions are
typically violated in
contemporary machine
learning algorithms,
and deviations from
the standard ELBO
can be motivated by
addressing these.

40

Evidence Lower-Bound. VI maximises a lower-bound on the log-marginal-likelihood

(log-evidence). The marginal likelihood can be expressed in terms of the variational

posterior as follows,

pθpyq “

ż
pθpy|xqpθpxqdx “

ż
pθpy|xq

pθpxq

qφpxq
qφpxqdx “ Eqx

φ

”
pθpy|xq

pθpxq

qφpxq

ı
, (1.67)

where the expectation is now with respect to the variational posterior.

Taking the log of eq. (1.67), and using Jensen’s inequality to move the expectation

outside the log [Jensen, 1906],

log pθpyq “ log Eqx
φ

” pθpy, xq

qφpxq

ı

ě Eqx
φ

”
log

pθpy, xq

qφpxq

ı
Ź Jensen’s inequality (1.68)

“ Eqx
φ

“
log pθpy, xq ´ log qφpxq

‰
(1.69)

“ Eqx
φ

“
log pθpy| f pxqq

‰
´ KL

“
qx

φ||px
θ

‰
, (1.70)

which is the objective in (1.65) written in terms of a single output vector y. Note that,

maximising the ELBO with respect to φ corresponds to approximate inference (as above),

whereas maximising the ELBO with respect to θ corresponds to maximum likelihood

learning of θ in (1.58).

Minimum KL. VI minimises the KL-divergence between the true posterior and the

variational posterior. To see this, consider that the ELBO term from (1.68) can be rewrit-

ten as

Eqx
φ

”
log

pθpy, xq

qφpxq

ı
“ Eqx

φ

”
log pθpyq ` log

pθpx|yq

qφpxq

ı

“ log pθpyq ` Eqx
φ

”
log

pθpx|yq

qφpxq

ı
Ź pθpyq does not depend on x

“ log pθpyq ´ KL
“
p

x|y
θ ||qx

φ

‰
, Ź by definition of KL (1.71)

where the first step follows from the definition of conditional probability. Since the KL

terms is non-negative, and pθpyq does not depend on φ, the only way to increase the

ELBO in (1.70) by varying the variational parameters is by minimising the KL-divergence

between the true posterior p
x|y
θ and variational posterior qx

φ. Further, by properties of the

KL (1.62), it is equal to zero only when p
x|y
θ “ qx

φ.

introduction 41

1.4.3 Stochastic Variational Inference

Stochastic variational inference (SVI) [Hoffman et al., 2013, Sato, 2001, Honkela and

Valpola, 2003] combines the scalability of SGD (1.27) with the VI objective in eq. (1.65).

In particular, when the likelihood of a generative model has an independence structure

like the one in (1.57), the ELBO decomposes into a sum over log-likelihood (LL) terms.41 41 Sometimes the sum
also includes the KL
terms, like in (1.66), but
this is not necessary for
SVI.

This makes the gradient of the ELBO, with respect to both the model parameters θ and

variational parameters φ, a suitable candidate for SGD. An additional complication in

the case of SVI is the stochastic nature of the objective itself:

§ SGD is stochastic with respect to the dataset since it draws samples from it (typically)

uniformly at random [Ruder, 2016]. The ELBO involves two terms under an expec-

tation over the variational posterior, the LL and the log-ratio of the posterior against

the prior (1.65). Both terms are potentially stochastic when the ELBO is computed in

practice, since the expectations are not available in closed form generally.

§ When the ELBO is estimated stochastically, the gradient is potentially subject to high

variance. The approach used in the thesis is due to the work in [Kingma and Welling,

2014, Jimenez Rezende et al., 2014], which often enables low variance estimates even

when using naive Monte Carlo sampling of terms in the ELBO [Zhang et al., 2018].

In the thesis, the form of each marginal in the mean-field family (1.64) is chosen as a

diagonal Gaussian

qφpxnq “ N pµn, diag
`
σ

2
nqq, (1.72)

where µn P R
Q is the mean of the n´th latent variable, σ2

n P R
Q
ě0 is a vector specifying

the variance of the n´th variable, diag transforms a vector to a diagonal matrix with the

vector on the diagonal. This Gaussian mean-field variational family is used in two ways:

1. The parameters µn, σ2
n are optimised directly, i.e. each latent variable has unique

variational parameters.

2. The mean and variance are given as the output of an inference network.

In the second, the variational distribution is denoted

qpxn|hφpynqq “ N pµn, diag
`
σ

2
nqq, (1.73)

which is taken to imply that the mean and variance are given by an inference network hφ

µn, σ
2
n “ h

µ

φpynq, hσ
φ pynq, (1.74)

42

where h
µ

φ, hσ
φ denote different outputs from the same inference network. A sample from

the approximate posterior in (1.72) is then given by [Kingma and Welling, 2014]

xn “ µn ` σn d ǫ, ǫ „ N p0, 1Qq. (1.75)

One of the main benefits of using an inference network is that the variational parameters

are shared. This means that each example contributes to the approximate posterior over

all latent variables, in contrast to having to optimise each set individually in (1.72). This

can make the optimisation problem converge faster [Zhang et al., 2018].

ynf nxnhn

θφ

N

pθpy| f pxqqppxq

qpx|hφpyqq

Figure 1.5: Graphical model and inference
graph (notation 6) for the VAE in defi-
nition 8. The observation function fθ is
modelled by a NN, and so is the inference
network hφ. The vector hn “ hφpynq is used
to denote the parameters of the distribution
qpxn|hφpynqq, e.g., the mean and variance in
the Gaussian family from eq. (1.73).

Definition 8 (Variational Auto-Encoder). When fθ is a NN and the variational pos-

terior is modelled by an inference network hφ, the combination is referred to as a

variational auto-encoder (VAE) [Kingma and Welling, 2014, Jimenez Rezende et al.,

2014]. For example, if the observation model is Gaussian (1.21), then the composite

function is given by

y “ fθph
µ

φpyq ` hσ
φ pyq d ǫxq ` ǫy, (1.76)

where ǫy „ N p0, σ21Dq and ǫx „ N p0, 1Qq. Equation (1.76) is a deterministic func-

tion of the observation—corrupted by noise at two levels—that outputs a reconstruc-

tion of the observation. If the noise is taken to be zero ǫy “ ǫx “ 0, then the model

is equivalent to deterministic auto-encoder models [Zhang et al., 2018].

Computing The ELBO. The mean-field approximation in (1.64) simplifies the ELBO

significantly, since the expectation can be distributed across the terms in the sum (1.66).

Since the variational family is Gaussian (1.72)–(1.73), and the prior is assumed Gaussian

(1.60), the KL terms are available in closed form (in nats):

KL
“
qx

φ||px
‰

“
1
2

Qÿ

q“1

σ2
q ` µ2

q ´ 1 ´ 2 lnpσqq, (1.77)

where µq P µ and σ2
q P σ2. Finally, the expected LL term is computed with Monte Carlo

introduction 43

samples

Eqx
φ

“
log pθpy| f pxqq

‰
«

1
S

Sÿ

s“1

log pθpy| f pxsqq, (1.78)

where xs „ qφpxq is sample from the variational distribution. Note that, technically

xs “ µ ` σ d ǫs where ǫs „ N p0, 1Qq, but this is taken to be implied by the former.

To conclude: Given the dataset in (1.55), the full objective is given in eq. (1.66), and the

model parameters θ and variational parameters φ are jointly optimised using SVI. Specif-

ically, random batches of samples are drawn from the dataset and the gradient is esti-

mated using samples according to (1.75),

EYB„D

“
∇θ,φOELBOpθ, φ; Yq

‰
«

1
B

Bÿ

b“1

∇θ,φOELBOpθ, φ; ybq (1.79)

“
1
B
∇θ,φ

˜
Bÿ

b“1

E
q

xb
φ

“
log pθpyb| f pxbqq

‰
´ KL

“
q

xb
φ ||pxb

‰
¸

(1.80)

«
1
B
∇θ,φ

˜
Bÿ

b“1

1
S

˜
Sÿ

s“1

log pθpyb| f pxrb,ssqq

¸
´ KL

“
q

xb
φ ||pxb

‰
¸

, (1.81)

where xrb,ss „ qφpxbq and the KL terms are computed using (1.77).

44

2

Representing Tasks as Conserved Quantities

If you look for a meaning, you’ll miss everything that happens.

—Andrei Tarkovsky

The focus of this chapter is on inductive biases for task structured learning problems. At

its core, task structure is a reflection of the hierarchical structure inherent to the physical

world.1 In our context, it refers to settings where the learning problem is broken up into 1 For example, galaxies
contain planets, that
contain molecules, that
contain atoms and so
on. Similarly, a division
of time gives rise to
sequential hierarchies.

related sub-problems (tasks) and the aim is to share information between them, and

generalise to new ones.

We assume that tasks are defined based on prior knowledge, for example, by assign-

ing observations from different but related robotic systems into separate tasks. Task-

specific sources of variation are modelled as latent conserved (invariant) quantities, and

global sources of variation are modelled by a shared function. Since the latent task vari-

ables are assumed to be invariant representations with respect to observations within a

task, they are called invariant task representations. The motivation behind this construction

is designing modular learning algorithms for meta-learning in the context of physical

dynamical systems.2 In this setting, the task representations can be seen as a way of

2 In short, a modular
learning algorithm
disentangles reusable
(transferable) and task-
specific components.

modelling conserved quantities corresponding to system parameters.3 3 For example, lengths
and masses in different
but related robotic
systems.

The results in this chapter are reproduced from the work in [Sæmundsson et al., 2018]

and [Kaddour et al., 2020]. We run experiments on simulated robotics systems, exploring

the properties of invariant task representations when learning predictive models of the

dynamics (multi-task and transfer-learning) and in a model-based (meta) reinforcement

learning setting; as well as in active learning of task spaces (section 2.3). We find that

invariant task representations are useful for:

§ Sharing knowledge between training tasks (multi-task learning);

representing tasks as conserved quantities 45

§ Disentangling global and task-specific sources of variation (transfer learning);

§ Informed (active) learning of task spaces.

2.1 Background

A general framing of learning algorithms in task structured settings is meta-learning

[Schmidhuber, 1987, Bengio et al., 1991, Baxter, 2000, Andrychowicz et al., 2016, Finn

et al., 2017], although definitions of meta-learning are generally broader in scope [Lemke

et al., 2015, Schmidhuber, 2020]. In the context of learning predictive models of physical

dynamical systems, meta-learning is a promising strategy for improving data efficiency

by sharing information between related systems. Learning such predictive models from

minimal data has applications in areas such as robotics, where data collection might be

expensive due to wear-and-tear of the robot [Deisenroth, 2010, Deisenroth et al., 2015,

Kamthe and Deisenroth, 2018a].

2.1.1 Dynamical Systems and Task Structure

The systems considered in this chapter take the form of nonlinear ordinary differential

equations (ODEs) with control forces. Control forces, denoted by c, appear as additional

inputs into the dynamics in contrast to eq. (1.2). Specifically,

dx

dt
“ fψpx, cq, xt “ xptq, ct “ cptq, (2.1)

where fψ characterises the dynamics of a system parametrised by physical parameters ψ,

e.g. lengths and masses of components of the system. A given setting of the parameters

is called the system configuration and is not observed by the learning algorithm. Varying

the system configuration produces different regimes of dynamics. For example, a heavy

pendulum will respond less to control signals, but it will have a larger gravitational pull

compared to a lighter one—all else being equal.

The states in eq. (2.1) consist of position and velocity components x “ rxpos, xvels, and

the control signals are K´dimensional vectors c P R
K representing external forces. For

ease of notation, we define the state-control inputs as

x̃ “ concatpx, cq P R
Q`K. (2.2)

Given a discrete-time control sequence

C “ pctq, t “ 1, . . . , T, (2.3)

46

the underlying ODEs are numerically solved and the states are measured at fixed inter-

vals to produce observations in discrete time. Details about numerical solvers are given

in appendix A.

The initial state (initial condition) is sampled from a Gaussian

xrn,1s „ N pµ1, Σ1q “ ppx1q, (2.4)

where µ1, Σ1 are experimental parameters, to produce random realisations of trajectories.

In particular, given a system configuration ψp, a control sequence (2.3) and an initial

state (2.4), each simulation produces a task trajectory

Xrp,ns “ pxrp,n,tsq, t “ 1, . . . , T, (2.5)

where p is a task index identified with the configuration ψ and n indexes the samples.

2.1.2 Multi-Task and Transfer Learning

In the context of predictive models, multi-task learning [Caruana, 1997, Ruder, 2017]

describes the setting where a single model is learned for prediction on multiple tasks.

In this setting, the aim is to improve generalisation performance with respect to new

observations from the same tasks.

This chapter assumes prediction tasks with observed inputs and outputs, where the

tasks share a common input and output space.4 It is also assumed (for ease of exposi- 4 This assumption is
discussed further in
section 2.5.tion) that there are a fixed number of tasks P, consisting of an equal number of observa-

tions N. A collection of tasks is represented by a pair of 3-dimensional input and output

arrays

D “ tpYpq, pXpqu, p “ 1, . . . , P, (2.6)

where p indexes the tasks. In this case, Xp, Yp are matrices that collect the N input-

output pairs belonging to task P. The multi-task learning approach is then concerned

with learning a single model that performs well on new observations from all the tasks

p “ 1, . . . , P. For our context, the tasks correspond to different system parameters ψp.

Multi-task learning can also be seen as the training phase of approaches such as trans-

fer and meta-learning. In transfer learning [Pan and Yang, 2010, Weiss et al., 2016], the

focus is generally on generalisation performance with respect to observations from new

tasks.5 5 The distinction from
multi-task learning
is not always as clear
as that. However, this
is the usage in this
chapter.

For example, having learned a single model on a set of training tasks eq. (2.6), gener-

alisation performance is measured on a new task p˚ that is not contained in dataset. In

our context, this means predictive performance on a new physical system ψp˚ .

representing tasks as conserved quantities 47

2.1.3 Meta-Learning

Meta-learning, as introduced by Schmidhuber [1987], and appearing in a number of

works in subsequent years [Bengio et al., 1991, Naik and Mammone, 1992, Schmidhuber,

1995, Baxter, 2000], had a resurgence of interest following the work by Andrychowicz

et al. [2016] and Finn et al. [2017]. Definitions of meta-learning are typically broad in

scope and have significant overlap with related lines of research such as transfer learning

and continual learning [Lemke et al., 2015, Schmidhuber, 2020].

In our context, meta-learning refers to a combination of multi-task and transfer learn-

ing of predictive models, in addition to a (meta-)learning problem that depends on the

generalisation performance of the predictive models. This is explored in two ways:

1. Model-based meta reinforcement learning, where the ability of an agent to efficiently

solve new tasks depends crucially on the quality of multi-task and transfer learning;

2. Active learning of tasks, where the ability to select new tasks efficiently requires rank-

ing tasks based on how well the model predicts/expects it would transfer knowledge.

The key idea of active learning is that data efficiency can be improved by enabling the

algorithm to select the training data it receives next [Settles, 2009].

In this chapter, we consider active learning of task spaces, i.e. choosing which task to

learn next. Since the approach is built on top of a multi-task and transfer learning sys-

tem, we refer to this is active meta-learning. Similar approaches have been developed

under the rubric of automatic curriculum learning [Portelas et al., 2020] and unsuper-

vised meta-learning [Gupta et al., 2018a].

2.1.4 Sparse Variational Gaussian Processes

Gaussian processes (GPs) (section 1.3.3) are especially data efficient models for the

kinds of learning problems considered in this chapter [Deisenroth and Rasmussen, 2011,

Deisenroth et al., 2015]. For this reason, GPs serve as the core building block and base-

lines in the experiments. A scalar output GP is given by definition 5,6

6 Since the vector-
valued GP models
used in the thesis
are assumed to be
independent across
output dimensions,
the generalisation is
straightforward. That
is, each dimension is
modelled by a separate
GP.

pθp f px̃qq “ GPp0, Σθpx̃, x̃1qq, (2.7)

assuming a zero mean function and the state-control variable from eq. (2.2) as input. The

kernel used throughout the chapter is the EQ kernel from eq. (1.40)

Σθpx̃, x̃1q “ σ2
k exp

˜
´

1
2

px̃ ´ x̃1qTL´1px̃ ´ x̃1q

¸
(2.8)

48

where σ2
k is the signal variance and L contains the characteristic lengthscales.

Given discrete-time observations from dynamical systems, the GP is used to model

a single step discretisation of the ODE in eq. (2.1), with added noise. Concretely, the

outputs are defined as the one-step transition

yrp,ts “ pxrp,t`1s ´ xrp,tsq ` ǫ “ f rp,ts ` ǫ, (2.9)

where ǫ „ N p0, σ21Qq is independent Gaussian noise.

Sparse GPs. One of the main drawbacks of using the analytic form for the GP models

from eq. (2.7) is that evaluating the posterior has a complexity cost of OpN3q, where N is

the size of the dataset. Further, if the likelihood is non-Gaussian or the inputs are latent

variables, posterior inference is no longer tractable.

This subsection introduces a variational family for approximate posterior inference in

GPs, called sparse variational Gaussian processes (SVGPs) [Titsias, 2009, Hensman et al.,

2013, Matthews, 2017], which address both the issue of intractable posteriors and scal-

ability with respect to the number of data. The exposition assumes scalar observations

ypnq, that are conditionally independent given the function values.

The key idea behind sparse approaches is to condition a GP on a set of M function

values that can be optimised, instead of conditioning on the data [Snelson and Ghahra-

mani, 2006, Titsias, 2009]. Intuitively, if M ă N and these function values are able to

approximately represent the dataset, the evaluations that usually scale with the size of

the dataset are instead proportional to M, which is a tunable hyperparameter.

The function values are not optimised directly but they are naturally related to a set of

inputs, typically called inducing inputs, which are optimised instead. In the thesis, these

are denoted by

Xpmq “ pxmq, f pmq “ p f pxmqq, m “ 1, . . . , M, (2.10)

where Xpmq are the inducing inputs, and f pmq are the corresponding function values

evaluated at the inducing inputs. From the definition of a GP (definition 5), the prior

over the function values is given by

pθp f pmqq “ N pµ, Kq, (2.11)

where µ P R
M is given by the mean function (1.37) and K P R

MˆM is given by the

covariance function (1.38).

Sparse Variational GP. An important consideration is how the function values corre-

representing tasks as conserved quantities 49

sponding to the inputs (2.10) should be optimised. Sparse variational GPs, introduced

by Titsias [2009], identify the inducing inputs and corresponding function values (2.10)

with a variational family over function values. The complete picture emerged with sub-

sequent work on SVGPs [Hensman et al., 2013, Matthews, 2017], and the family is con-

structed as follows:

Definition 9 (Sparse Variational Gaussian Process). A SVGP is defined over the

infinite set of function values f pxq “ t f px‹q, f pmqu,

qφp f px‹q, f pmqq “ pθp f px‹q| f pmqqqφp f pmqq, (2.12)

where the RHS is the conditional GP from (1.42) conditioned on the function values

at the inducing inputs, and f px‹q denotes the set of function values in f pxq ex-

cluding f pmq. The variational distribution qφp f pmqq, referred to here as the induced

variational posterior, is specified as a Gaussian

qφp f pmqq “ N pm, Sq, (2.13)

where m P R
M and S P R

MˆM is a full rank covariance matrix. Since the condi-

tional pθp f px‹q| f pmqq is a GP (definition 6), and its mean function is linear in f pmq,

it is possible to marginalise over f pmq when the inducing variational posterior is

Gaussian. This is exactly analogous to the steps for the true posterior in section 1.3,

except the conditional GP is conditioned on f pmq instead of f pnq. Assuming a zero-

mean GP prior, the result is

qφp f pxqq “ GPpµφpxq, Σφpx, x1qq, (2.14)

with mean and covariance function given by

µφpxq “ kpxqTK´1m, (2.15)

Σφpx, x1q “ Σθpx, x1q ` kpxqTK´1`
S ´ K

˘
K´1kpx1q, (2.16)

where rkpxqsm “ Σθpxm, xq P R
M and Kri,js “ Σθpxi, xjq P R

MˆM.

Equation (2.12) is intuitive: The goal is to define a variational approximation to the pos-

terior of a GP (1.49). Using eq. (1.47), the true posterior is given by

pθp f pxq|ypnqq “ pθp f px‹q| f pnqqpθp f pnq|ypnqq. (2.17)

Comparing the SVGP (2.12) to eq. (2.17), it is clear that the induced variational distri-

bution qφp f pmqq plays the role of the posterior over function values at the observations

pθp f pnq|ypnqq. In turn, the conditional GP is conditioned on the function values f pmq.

When the qφp f pmqq is Gaussian (2.13), qφp f pxqq is also a GP, given in eq. (2.14).

50

ynf nxn

xm f m

f pxq θφ

N

M

pθpy| f pxqqpθp f pxqq

qφp f dpxqq“qφp f d
pmqqpθp f dpx‹q| f d

pmqq

Figure 2.1: Graphical model and inference
graph (notation 6) for the SVGP in defini-
tion 9. The undirected thick line denotes
that f n, f m P f pxq and xm P φ. The dashed
arrows denote dependence on variational
parameters through the variational distri-
bution qφ. The SVGP defines a variational
distribution over the infinite set f pxq,
through the distribution over f pmq. For
multi-dimensional outputs in the thesis, the
variational distribution for the SVGP con-
sists of independent GPs for each output
dimension: qφp f pxqq “

ś
d

qφp f dpxqq.

SVGP ELBO. In eq. (1.65), the infinite-dimensional optimisation problem correspond-

ing to exact Bayesian inference (1.61) was approximated with a finite-dimensional op-

timisation, by representing the posterior with a parametric variational family. For GPs,

there is a second source of infiniteness since the distributions, defined by pθp f pxqq and

qφp f pxqq are over the infinite function values.7 By construction, the SVGP makes both 7 As mentioned in
section 1.3 these terms
are used as if pp f pxqq
were a density over the
infinite function values.
While not technically
proper, the derived
objects are only in
terms of a finite set of
function values. The
infinite-dimensional
analogs are treated
in, e.g. [Matthews
et al., 2016], but do not
change the conclusion.

sources finite. Using the arguments from [Knoblauch et al., 2019], as presented in (1.61),

gives

pθp f pxq|ypnqq « arg max
φPΦ

«
E

q
f pxq
φ

”
log pθpypnq| f pnqq

ı
´ KL

“
q

f pxq
φ ||p

f pxq
θ

‰
ff

, (2.18)

where the KL term contains the second source of infinity. However, using the definition

of the SVGP (2.12) and conditioning the GP (1.42) on the same function values,

KL
“
q

f pxq
φ ||p

f pxq
θ

‰
“ E

q
f pxq
φ

«
pθp f px‹q| f pmqqqφp f pmqq

pθp f px‹q| f pmqqpθp f pmqq

ff
“ KL

“
q

f pmq

φ ||p
f pmq

θ

‰
, (2.19)

means that the infinite terms cancel. Additionally, since the likelihood is assumed to

factorise,

E
q

f pxq
φ

”
log pθpypnq| f pnqq

ı
“

Nÿ

n“1

E
q

f pxnq
φ

”
log pθpyn| f pxnqq

ı
, (2.20)

the LL term decomposes into a sum and the expectation can be expressed in terms of

the marginals [Salimbeni, 2019]. Combining (2.19)–(2.20), the ELBO for the SVGP is then

given by

OSVGPpθ, φ; ypnqq “
Nÿ

n“1

E
q

f pxnq
φ

”
log pθpyn| f pxnqq

ı
´ KL

“
q

f pmq

φ ||p
f pmq

θ

‰
. (2.21)

Computing The ELBO. Since both the induced prior (2.10) and the induced variational

representing tasks as conserved quantities 51

posterior (2.13) are Gaussian, the KL term in eq. (2.21) is computable in closed form,

KL
“
q

f pmq

φ ||p
f pmq

θ

‰
“

1
2

˜
Tr

`
K´1Sq ` pµ ´ mqTK´1pµ ´ mq ´ M ` ln

ˇ̌
K

ˇ̌
ˇ̌
S

ˇ̌
¸

. (2.22)

When the likelihood is Gaussian (1.21), the expected LL term can be computed in closed

form also.8 The result is given by [Hensman et al., 2015] 8 This is not required
using SVGPs since
it is a part of a VI
scheme. However, in
the thesis the likelihood
is Gaussian.

E
q

f pxnq
φ

”
log pθpyn| f pxnqq

ı
“ logN pyn|µφpxnq, σ2q ´

Σφpxn, xnq

2σ2 , (2.23)

where µφ, Σφ are given in equations (2.15)–(2.16).

2.1.5 Model Predictive Control

Reinforcement learning (RL) is a framework for learning optimal policies from trial and

error [Sutton and Barto, 1998]. In model-based RL, policies are learned from a simula-

tion of an environment. In the context of this chapter, the environment is described by

the unknown dynamics in eq. (2.1). Without knowledge of the underlying dynamics, a

model of the dynamics can be learned from observed trajectory data, e.g. eq. (2.5). The

model can then be used to simulate the environment in order to learn policies.

Require: π “ C

Require: H, T, ℓ, x1

1: function MPC(pθ , qφ, S, π; H, T, ℓ, x1)

2: X “ rx1s

3: for t “ 1, . . . , T ´ 1 do

4: Ct:t`H “ arg min JpCt:t`H ; pθ , qφ, xtq Ź Plan sequence, eq. (2.25)

5: xt`1 “ Spctq Ź Apply only next control, ct, on system.

6: X “ X Y xt`1

7: end for

8: D, π “ CreateReturnArgs(X, C)

9: return D, π

10: end function

Algorithm 1: Iterative MPC.
Learnable control parameters
are denoted by C, x1 is an initial
state, T is the trajectory horizon
and H is the planning horizon.
The function loops over the full
trajectory horizon T and at each
step it finds an optimal plan-
ning sequence by minimising the
cost in eq. (2.25) [line 4]. Next
it applies only the control for
the current state ct [line 5]. The
CreateReturnArgs function call
[line 8] is included for ease of
notation, to match the output in
Algorithm 4. Technically, the data
consists of state transitions and
the applied controls (2.9).

Given a model of the dynamics, model predictive control (MPC) aims to find an optimal

sequence of controls
pC1:H “ ppctq, t “ 1, . . . , H, (2.24)

52

for a finite horizon H, that minimises the expected long-term cost

JpC1:H ; pθ , x1q “
Hÿ

t“1

Epθpxt`1|ctq

“
ℓpxt`1q

‰
. (2.25)

The expectation is over the distribution over state trajectories, specified in this case by

the model pθ . The cost function ℓ is a known function that encodes the task through

the immediate cost ℓpxt`1q, that is, the cost given the state of the system at time t ` 1

having executed the control ct in the previous state xt. In the experiments, a variant of

the iterative MPC scheme by Kamthe and Deisenroth [2018a] is used to learn the full

control sequence9 9 A fixed horizon is not
necessary for MPC.pC “ ppctq, t “ 1, . . . , T. (2.26)

Algorithm 1 outlines the steps of the procedure assuming a single system for ease of

notation.10 In the context of Algorithm 4, the policy π is made to contain all the required 10 For multiple systems,
the same procedure is
run indepedently on
each system.

parameters for MPC, as well as the cost function ℓ and the initial state x1.

Given an initial state x1, the algorithm iterates through the steps t “ 1, . . . , T ´ 1

in the full trajectory. At each step, it finds the optimal open-loop sequence (2.24), for

the control sequence starting at step t and up to step t ` H [line 4]. It then executes the

control signal at step t only, to give a new state xt`1 from the environment [line 5]. This

is repeated until the desired sequence of control trajectories are obtained (2.26).

Computing The Expected Cost. Computing eq. (2.25) requires the expectation over

future state trajectories. Here we give the details for computing the expectation it-

eratively using a SVGP model, assuming a one step transition model of the form in

eq. (2.9).11 11 The steps are directly
analogous for the
GP case. However,
the notation for the
SVGP is closer to that
of results later in the
chapter.

Assuming the state-control pair at step x̃t is observed, the distribution over the change

in state is given by the predictive distribution over the output

pθpyt|x̃tq “

ż
pθpyt| f tqqφp f t|x̃tqd f t “ N pµφpx̃tq, Σφpx̃t, x̃tq ` σ21Qq, (2.27)

where µφ, Σφ are given in definition 9, and the integral is available in closed form since

both the likelihood and the variational posterior are Gaussian. The distribution over the

next state is then given by adding xt to the mean.

Since the state xt in the input x̃t is a random variable for all but the initial state, we

also have to consider the integral over the latent state. Generally, this integral is in-

tractable. However, given the EQ kernel from eq. (2.8), it is possible to compute the first

and second moments, assuming that the input distribution is Gaussian [Candela et al.,

representing tasks as conserved quantities 53

2003, Deisenroth and Rasmussen, 2011, Deisenroth et al., 2015]. Specifically,

pθpyt|ctq “

ż
pθpyt| f tqqφp f t|x̃tqpθpxtqd f tdxt « N pyt|µ

y
t , Σ

y
t q, (2.28)

µ
y
t , Σ

y
t are obtained by computing the first two moments of eq. (2.28) and assuming a

Gaussian form for the resulting distribution.12 Since both pθpytq and pθpxtq are Gaussian 12 A detailed de-
scription of moment
matching for µ

y
t , Σ

y
t is

given by Deisenroth
et al. [2015].

by construction, the distribution over the next state is also Gaussian

pθpxt`1|ctq “ N pxt`1|µ
y
t ` µ

x
t , Σ

y
t ` Σ

x
t ` covryt, xts ` covrxt, ytsq. (2.29)

Finally, the expected immediate cost is computed as

E
“
ℓpxt`1q|ct

‰
«

ż
ℓpxt`1qpθpxt`1|ctqdxt`1, (2.30)

and the cost function ℓpxt`1q is chosen such that the integral in eq. (2.30) is computable

in closed form, e.g. a quadratic function of the state.

2.2 Invariant Task Representations

This section formulates the main contribution of the chapter. The motivating problem is

multi-task, transfer and meta-learning on observations coming from dynamical systems

with control forces, described by eq. (2.1).

The central idea is to identify system parameters (or other task-invariant sources of

variation) with a conserved latent variable for each task, called invariant task representa-

tions. This is combined with a shared global model conditioned on the task variable. The

aim is that global model captures reusable/transferable information and that the task

representations can be used for more data efficient learning.

2.2.1 Latent Variable Model for Modular Task Structure

The first step is to define a generative model for a modular task structure, where glob-

ally invariant sources of variation are disentangled from task-specific sources. To accom-

plish this, we define a generative process

zp „ ppzq, yrp,ns „ pθpy| f pxrp,ns, zpqq, (2.31)

where y are conditionally independent random variables, given the inputs x and a latent

task variable z P R
W . The global sources of variation are the model parameters θ and the

function f , since they are shared by all the observations in eq. (2.31). The task-specific

sources are zp since they are shared by all observations belonging to the task indexed by

p. This defines a modular inductive bias for task structure. For example, in the context

54

of the dynamical systems from eq. (2.1), zp can be seen to model the system parameters

ψp.

The prior over task variables in eq. (2.31) is similar to the latent variables in defini-

tion 7, and the observation model is analogous to the one in definition 2, where the func-

tion is modelled by a neural network (NN) or a Gaussian process (GP). The generative

model corresponding to the generative process in eq. (2.31) is given by13 13 The indices p, n are
omitted when dif-
ferentiating between
samples is not neces-
sary for parsing the
equations.

pθpy, z|xq “ pθpy| f px, zqqppzq. (2.32)

A key takeaway from eq. (2.32) is that the task structure is defined entirely by the group-

ing of observations into tasks, and modelled through the observation model pθpy| f px, zqq.

yrp,nsf rp,ns
xrp,ns

f px, zq θ

zp
N

P Figure 2.2: Graphical model (notation 6)
for eq. (2.33), assuming that the observation
function is modelled by a GP. The inputs
x and model parameters θ are determin-
istic. The outputs y (observed) and task
variables z (latent) are random variables.
The undirected thick line denotes that
f rp,ns P f px, zq. P denotes the number of
tasks and N the number of observations.

This clarified by looking at the joint distribution over data and task variables,

Pź

p“1

ppzpqpθpYp|Xp, zpq “
Pź

p“1

ppzpq

˜
Nź

n“1

pθpyrp,ns| f pxrp,ns, zpqq

¸
(2.33)

which is illustrated in fig. 2.2, the graphical model for (2.33). The figure further high-

lights the global role of the model parameters θ and the function f , in contrast to the

task-specific role of the task variable z.

A full specification of the generative model in (2.32) requires defining the observation

model and the prior over the task variable. The observation model is a straightforward

extension of the observation model from eq. (1.17). Specifically, z is included as an input

to the observation function,

f px, zq “ f prx, zsq, rx, zs “ concatpx, zq P R
Q`W , (2.34)

which is achieved by concatenating the vectors x and z.

To complete the specification of the model in (2.32), the prior distribution over z is

assumed to be a standard Gaussian distribution

ppzq “ N p0, 1Wq. (2.35)

representing tasks as conserved quantities 55

As discussed in section 1.4, assuming independence between latent dimensions has

important trade-offs. The approach taken here is motivated by ease of inference but

richer distributions might improve performance.

Modular Task Structure. An important intuition into the inductive bias encoded by

invariant task representations can be read off (2.33). Consider a pair of hypothetical

tasks indexed by a, b. The log-likelihood given a single input-output pair from each task

pxra,ms, yra,msq, pxrb,ns, yrb,nsq, is given by

LL “ log pθpyra,ms| f pxra,ms, zaqq ` log pθpyrb,ns| f pxrb,ns, zbqq. (2.36)

§ Suppose that the observations come from the same task a “ b. Then za is invariant for

the observations by construction. In this case, the only way to model the relationship

between x and y, using the function f px, zaq, is through the global parameters θ.

§ Suppose that the inputs have the same value xra,ms “ xrb,ns, but that the observations

are different yra,ms ‰ yrb,ns. In this case, the only way to represent the difference as a

signal—i.e. not as noise or uncertainty in f —is through the task variables za, zb. This

is illustrated in fig. 2.3 by comparing the two functions at the point xra,ms “ xrb,ns.

Since f is a nonlinear function of both x, z, the functions can exhibit very different

behaviour by varying z.

Since the log-likelihood (2.36) appears in the objective (detailed in section 2.2.2), the

inductive bias encoded by the model (2.32) is strongly in favour of learning a modular

representation of the tasks.

Figure 2.3: Modular task structure. The
function f models global variation and the
task variable z models task-specific varia-
tion. The indices a, b denote different tasks
and m, n different samples within those
tasks. Modularity refers to the disentangled
nature of z and f . Since f is global, it is
reusable. Since z is task-specific, the latent
task space represents task differences.

Although the model is modular by construction, the degree to which a learned model

is disentangled will depend on the training data and how well the assumed task struc-

ture maps on to the data distribution. For example, if the function class for f is flexible

56

enough and there is little overlap in the input spaces between tasks, the task variables

might be ignored by the model despite the existence of a relationship between tasks.

2.2.2 Learning Invariant Task Representations

In this subsection, variational inference (section 1.4) is used to approach learning the

model parameters θ, and doing approximate inference of the task variables. Specifically,

we define an approximation to the true posterior parametrised by φ (variational poste-

rior) and the corresponding evidence lower-bound (ELBO) is derived. We frame this as

a multi-task learning problem, consisting of learning θ and φ from the tasks in eq. (2.6).

The relevant conditional for posterior inference of the task variable is given by

pθpz|Y, Xq “
pθpY|X, zqppzq

pθpY|Xq
. (2.37)

As discussed in section 1.4, this posterior is intractable in general.14 To address this, we 14 On account of the
marginal likelihood
pθpYq and the nonlin-
ear function f .

approximate the posterior with variational inference. We assume a Gaussian mean-field

approximation (1.64)

qZ
φ “ qφpZq “

Pź

p“1

qφpzpq “
Pź

p“1

N pµp, Σpq, (2.38)

where Z is a matrix collecting P task representations zp, and µp, Σp P φ.

Multi-Task Learning. Using the standard form for the evidence lower bound from

eq. (1.68), together with equations (2.32) and (2.38) gives

log pθpY|Xq ě Eqz
φ

«
log

pθpY, z|Xq

qφpzq

ff
(2.39)

“ Eqz
φ

«
log pθpY|X, zq ` log

ppzq

qφpzq

ff
(2.40)

“ Eqz
φ

“
log pθpY|X, zq

‰
´ KL

“
qz

φ||pz
‰

“ Ozpθ, φ; Y, Xq (2.41)

Analogous to eq. (1.68), the ELBO in eq. (2.41) consists of an expected log-likelihood

term and a KL term. Different from the standard form, given the tasks D from eq. (2.6),

it consists of a nested sum over tasks and observations within the task. That is, condi-

tioned on the task variable, the log-likelihood term consists of i.i.d. terms and decom-

poses into a sum

log pθpY|X, zq “
Nÿ

n“1

log pθpyn| f pxn, zqq, (2.42)

which mirrors the expected log-likelihood in eq. (1.70), with the addition of the task

representing tasks as conserved quantities 57

variable as input. The full objective consists of an additional sum over tasks,

log pθpDq ě
Pÿ

p“1

Ozpθ, φ; Yp, Xpq “ OITRpθ, φ; Dq. (2.43)

Since both the task prior (2.35) and the variational posterior (2.38) are Gaussian, the KL

term in (2.43) is available in closed form (1.77). The log-likelihood term can be estimated

with Monte Carlo sampling (1.78). Multi-task learning is then performed by stochastic

variational inference (SVI, section 1.4) to learn the model parameters θ and the varia-

tional parameters φ.

Predictions can then be made for a test input x‹ in a training task by approximately

integrating over the latent task variable,

pθpy‹|x‹q “ Eqz
φ

“
pθpy‹| f px‹, zqqs. (2.44)

Transfer Learning. Predictions on new tasks (transfer learning) fall into two scenarios.

If there is no data available, zero-shot transfer learning is done by replacing the expecta-

tion with the prior

pθpy‹|x‹q “ Epz

“
pθpy‹| f px‹, zqqs. (2.45)

Alternatively, if there is data available from the new task, the variational posterior over

the new task variable is inferred by optimising the corresponding variational parameters

with respect to (2.41). Since the model parameters θ are the reusable (global) compo-

nents of the model they are kept fixed. Having obtained a new variational posterior,

eq. (2.44) is used for prediction. In practice, both equations (2.44), (2.45) are approxi-

mated by sampling the latent task variable,

pθpy‹|x‹q «
1
S

Sÿ

s“1

pθpy‹| f px‹, zsqq, (2.46)

where zs is a sample from the prior pθpz‹q or approximate posterior qφpz‹q.

2.2.3 Meta-Learning Gaussian Processes

Having derived the general model, this subsection derives the meta-learning Gaussian

process (ML-GP) model used in the experiments in section 2.3. Using the generative task

model from (2.32) combined with the GP model from eq. (2.7), the generative model for

the ML-GP is defined as

pθpy, f px, zq, zq “ pθpy| f px, zqqpθp f px, zqqppzq, (2.47)

58

and the graphical model is given in fig. 2.2. The observation model takes the form

pθpy| f px, zqq “ N p f px, zq, σ21Dq, (2.48)

which is the Gaussian from eq. (1.21), and the GP model in (2.47) consists of indepen-

dent (zero-mean) GPs for each output dimension,

pθp f dpx, zqq “ GPp0, Σ
d
θprx, zs, rx1, z1sqq, (2.49)

where Σ
d is a covariance function, eq. (1.34), for the d-th output dimension. Finally, the

task prior is the standard Gaussian from (2.35).

For approximate inference of the ML-GP, we use the sparse variational GP from

(2.12). For the task variables, we use the mean-field family from (2.38). The full varia-

tional posterior is

q
f px,zqZ
φ “ qφp f px, zq, Zq “

Pź

p“1

qφpzpqqφp f px, zpqq “
Pź

p“1

˜
qφpzpq

Dź

d“1

qφp f dpx, zpqq

¸
, (2.50)

and is illustrated by the inference graph in fig. 2.4.

yrp,nsf rp,ns
xrp,nszp

f rp,ms
xrp,ms

f px, zq θφ

N

M

P

Figure 2.4: Graphical model
and inference graph for the
ML-GP (notation 6). The undi-
rected thick line denotes that
f rp,ns, f rp,ms P f px, zq and
xrp,ms P φ. The dashed arrows
denote dependence on varia-
tional parameters through the
variational distribution qφ.

Using eq. (2.14), the variational posterior over each GP is given by

qφp f dpx, zqq “ GPpµd
φprx, zsq, Σ

d
φprx, zs, rx1, z1sqq, (2.51)

where µφ, Σφ are given by equations (2.15)–(2.16) respectively.15 Using eq. (2.41), the 15 To be clear, µφ, Σφ

are functions of the
variational parameters
that define the SVGP
family (section 2.1.4).
The task variables have
variational parameters
µp, Σp P φ for each task.

ELBO term due to the task variable is given by

Ozpθ, φ; Yq “ Eqz
φ

“
log pθpY|zq

‰
´ KL

“
qz

φ||pz
‰
, (2.52)

and using eq. (2.21) for each of the GPs in the log-likelihood term, the ELBO for the

representing tasks as conserved quantities 59

ML-GP is given by

log pθpY|Xq ě Eqz
φ

“
log pθpY|X, zq

‰
´ KL

“
qz

φ||pz
‰

(2.53)

ě

˜
Nÿ

n“1

E
q

f pxn ,zqz
φ

“
log pθpyn| f pxn, zqq

‰
¸

´ KL
“
qz

φ||pz
‰

´ KL
“
q

f pmq

φ ||p
f pmq

θ

‰
(2.54)

“ O f px,zqzpθ, φ; Y, Xq, (2.55)

where the KL-term relating to f pmq appears due to SVGP approximation, as detailed in

section 2.1.4. The log-likelihood terms simplify into a sum over output dimensions,

E
q

f pxn ,zqz
φ

“
log pθpyn| f pxn, zqq

‰
“

Dÿ

d“1

E
q

f dpxn ,zqz
φ

“
log pθpyrn,ds| f dpxn, zqq

‰
, (2.56)

and similarly the KL term,

KL
“
q

f pmq

φ ||p
f pmq

θ

‰
“

Dÿ

d“1

KL
“
q

f d
pmq

φ ||p
f d

pmq

θ

‰
. (2.57)

The KL terms due to z and f pmq are given by eq. (1.77), since all relevant distributions

are Gaussian. For a collection of tasks (2.6), the objective is

log pθpDq ě
Pÿ

p“1

O f px,zpqzp
pθ, φ; Yp, Xpq “ OML-GPpθ, φ; Dq, (2.58)

which is optimised with respect to θ and φ using SVI (1.81).

2.2.4 Task Descriptors for Active Meta-Learning

This section extends the models from the previous sections (section 2.2.1–section 2.2.3)

to include task descriptors. This is done to facilitate active learning using invariant task

representations.

A task descriptor might comprise (partially) observed task parameterisations, which is

common for system configurations in robotics and molecular descriptors in drug design

[Ramsundar et al., 2015]. In other settings, task descriptors might only indirectly contain

information about the tasks, for example, a grasping robot that selects tasks based on

images of objects but learns to grasp each object through tactile sensors.

In general, task descriptors are any observations that enables discriminative inference

about the nature of different tasks. Importantly, from the perspective of the learning

algorithm, the task descriptors resolve to a new task when selected. We denote observed

task descriptors by

T “ pτrq, r “ 1, . . . , R, (2.59)

60

where T is a matrix collecting R vector valued task descriptors τ. Note that these R task

descriptors might correspond directly to observed tasks, or they might correspond to a

bigger set of available tasks. However, we assume that we have a task descriptor for each

observed task.

Generative Model. The assumed role of the task descriptors is to contain information

relevant to task-specific variation in the observations. To capture this, the generative task

model from eq. (2.32) is extended to include a likelihood term conditioned only on the

task variables. Using the ML-GP from (2.47) as a global model, the model is defined as

pθpτ, y, f px, zq, zq “ pθpτ|zqpθpy, f px, zq, zq. (2.60)

Note that, the only difference from eq. (2.47) is the task descriptor term pθpτ|zq. The

specific form of the task descriptor term depends on the experiment. In the first sets of

experiments, the task descriptors are modelled with a second GP model,

pθpτ, zq “ pθpτ|gpzqqpθpgpzqq. (2.61)

Different from the global model, this GP is not treated with variational inference.16 In- 16 If the number of
training tasks is large,
using the SVGP family
for the task descriptors
might be necessary.

stead, the likelihood is assumed Gaussian and the function is marginalised analytically,

as described in section 1.3.3, eq. (1.49). In the last set of active meta-learning experi-

ments, the task descriptors are images and a deep neural network is used to model the

task descriptors. In this case, the observation model is written

pθpτ|zq “ pθpτ|gpzqq. (2.62)

Note that marginalising over the latent variables is not analytically tractable in either

case. Instead they are sampled from the variational posterior.

Variational Inference. When the task descriptor term is modelled with a GP, we

choose the mean field variational posterior from (1.64). However, when the task descrip-

tors are high dimensional image observations, the variational posterior over the latent

variables is defined using an inference model (1.73). Specifically,

q
z|τ
φ “ qpz|hφpτqq « pθpz|τ, Yq, (2.63)

where hφ is an inference network used to approximate the task posterior.

For the collection of tasks D from (2.6), and the collection of task descriptors T from

(2.59), the contribution to the ELBO due the observations Y is a minor modification of

the MLGP objective in eq. (2.54). Specifically, the variational distribution is now poten-

representing tasks as conserved quantities 61

tially conditioned on the task descriptors,

log pθpDq ě
Pÿ

p“1

O f px,zpqzp|τp
pθ, φ; Yp, Xpq “ OA´ML-GPpθ, φ; Dq, (2.64)

where the term in the sum is given by

O f px,zqzp|τp
pθ, φ; Y, Xq (2.65)

“

˜
Nÿ

n“1

E
q

f pxn ,zqz|τp
φ

“
log pθpyn| f pxn, zqq

‰
¸

´ KL
“
q

z|τp

φ ||pz
‰

´ KL
“
q

f pmq

φ ||p
f pmq

θ

‰
, (2.66)

where all terms are identical to eq. (2.54), except the variational distribution over the task

variable is now given by q
z|τp

φ . The task descriptors only contribute a log-likelihood term

so that the full ELBO is given by

log pθpD, Tq ě OA´ML-GPpθ, φ; Dq `
Rÿ

r“1

E
q

zr |τr
φ

“
log pθpτr|zrq

‰
. (2.67)

For the case where the variational posterior is defined as a mean-field family, as in

eq. (2.50), the form of the ELBO is the same and obtained by replacing q
zr|τr
φ with qzr

φ .

2.2.5 Probabilistic Active Meta-Learning Algorithm (PAML)

Task selection using the model in eq. (2.60) is done by defining a utility function in the

latent task space. A general way of quantifying the utility of a new task, is by consid-

ering the amount of information associated with observing a particular task [Portelas

et al., 2020]. To rank candidates in latent space, we use the variational posterior over

(training) task representations as a mixture model with equal weights. The utility func-

tion is defined as the self-information (surprisal) [Jones, 1979] under the mixture model,

upz‹; φ, Tq “ ´ log
Pÿ

p“1

qφp|τp
pz‹q ` log P, (2.68)

where qφp|τp
denotes the variational distribution over zp. When the approximate pos-

terior qφp is an exponential family distribution, such as a Gaussian, eq. (2.68) is easy to

evaluate. We assign the same weight to each component because we assume the same

importance for each observed task.

Choosing A Task Descriptor. Since the ranking is done in the latent task space, the

algorithm needs to map the best point pz to a task descriptor pτ. Each task descriptor

resolves to a new task in the (meta) environment, denoted by Smeta. We consider two

different ways of mapping to a new task descriptor:

62

1. In the first, the algorithm is free to choose any value inside a bounded hypercube em-

bedded in the space of task descriptors. For example, if the task descriptor consisted

of a length parameter τ P R
`, then the algorithm selects a point pz that maximises

eq. (2.68), such that gppzq is within some bounds rτmin, τmaxs;

2. In the second, the observed task descriptors T define the entire set of available tasks.

In this case, the algorithm selects a point pz that maximises eq. (2.68), provided that pz
corresponds to some pτ P T.

Having selected a point pτ, the meta environment produces a system pS “ Smetappτq.

Algorithm 2 outlines the probabilistic active meta-learning (PAML) algorithm used in the

experiments.

1: function PAML(pθ , qφ, π,Smeta, T)

2: while learning task space do

3: pτ, pz “ arg max upz‹; qφq s.t. constrains on pτ Ź Active learning

4: pS “ Smetappτq Ź Get next task

5: Di “ pSpπq Ź Sample data from task

6: D “ D Y Di

7: θ, φ “ SVI(θ, φ, D, T) Ź Learn θ, φ using ELBO from eq. (2.41)

8: end while

9: end function

Algorithm 2: Probabilistic active
meta-learning algorithm (PAML).
The inputs are the model (pθ)
and variational distribution (qφ)
from section 2.2.4; a policy π and
task descriptors T. PAML selects
a point in latent space based on
a pre-defined utility funtion,
eq. (2.68) and the task descrip-
tors T [line 3.]. It then uses π to
sample data from the new system
[line 5.] and updates the model
and variational parameters [line
7.].

We refer to PAML as a meta-learning algorithm in the sense that it relies on the ability

of the ML-GP model to be able to capture relevant structure about unseen tasks through

the latent task space. That is, at any given iteration in algorithm 2, the ranking of new

points z˚ through the utility function eq. (2.68) encourages points far away from the

training tasks in the latent space. This requires the latent space to at least partially cap-

ture structure beyond the set of observed task descriptors. In other words, as discussed

in section 2.1, the active selection depends on the underlying multi-task and transfer-

learning properties of the ML-GP.

2.3 Modularity and Meta-Learning (Experiments)

The results in this section are reproduced from Sæmundsson et al. [2018]. The work

explores the use of the ML-GP from section 2.2.3 for learning predictive models of dy-

representing tasks as conserved quantities 63

namical systems. It looks at predictive performance in multi-task and transfer learning

settings and success at solving tasks in a model-based meta reinforcement learning (RL)

setting. The learning problem consists of a distribution over related dynamical sys-

tems, where each system is governed by a set of unknown physical parameters such as

lengths and masses of its components. In this problem setting, the task-specific sources

of variation are the system parameters and the global sources of variation are the laws

of physics that govern a particular physical system. The aim is to learn a model of the

dynamics for a set of training tasks and transfer this knowledge to a set of test tasks.

The model is then used to learn control policies for the systems. The experiments are

designed to explore four questions about invariant task representations:

1. Are the latent task spaces meaningful compared to the true task space? The latent

task space is captured by the approximate posterior distribution over task variables

qφpZq from eq. (2.38) and fig. 2.4. The true task space is the space of physical parame-

ters that govern each dynamical system (task). Meaningful implies that transitions in

the latent task space correspond to coherent transitions in the true task space.

2. Are the learned representations modular? The ML-GP from eq. (2.47) models global

sources of variation through the function f (and model parameters θ) and task-

specific sources through qφpZq. The model is modular by construction but the learned

representations are also required to map on to the true task structure.

3. Can invariant task representations be used for transfer- and meta-learning? If the

learned representations are modular then the global components should be reusable.

Given a new task, transfer learning is then achievable by learning only a new task

variable as described in eq. (2.44). Improved transfer should then enable improved

data efficiency in the context of model-based meta RL.

4. Can invariant task representations be used for active learning of task spaces? Given

the extended model from section 2.2.4, and assuming a sufficiently well behaved

latent task space, the task representations should enable improved data efficiency

using active meta-learning via the algorithm in algorithm 2.

The baseline models used in sections 2.3.1–2.3.2 are the standard GP from eq. (2.7) and

the SVGP from definition 9. A listing of the models and a detailed description of the

simulated systems, learning procedure and algorithms used in the experiments are given

in appendix A.1.

64

2.3.1 Multi-Task and Transfer Learning

Systems: 9x “ f px, c, ψpq

Multi-Task Learning Transfer Learning

ML-GP: pθpy, f px̃, zq, zq qφp f px̃, zqqqφpzq

ψ1 :
`
X1, Y1

˘

...

ψP :
`
XP, YP

˘
Ñ θ, pφ1, . . . , φPq ψ˚ :

`
X˚, Y˚

˘
Ñ φ˚

Figure 2.5: The multi-task and
transfer learning setup used in the
experiments. Given data from P

tasks, multi-task learning consists
of learning the model parameters θ

and the variational parameters φp

corresponding to the training tasks.
Transfer learning consists of learning
only the φ˚ given observations from
a test task.

Experimental setup. This section looks at multi-task and transfer learning on data

from the cart-pole system as illustrated in fig. 2.5. The ML-GP is compared to the SVGP

baseline, and a GP baseline to assess the effect of the sparse approximation. The models

are compared in terms of predictive performance, measured as the one-step prediction

quality in terms of root mean squared error (RMSE) and negative log likelihood (NLL).

The experiment is repeated for 10 different seeds, and the measurements are averaged.

Simulated data. The data is generated by executing the same sequence of control sig-

nals on different configurations of the cart-pole and sampling observations at 10Hz.

A detailed description of the systems and the simulation software used is given in ap-

pendix A.1. In order to produce trajectories that explore a larger portion of the state

space than sampling control signal at random, the control signals are given as a se-

quence (given by an oracle) that solved a configuration not included in either the train-

ing or test set. Although the control signals still fail to solve the tasks, they avoid getting

stuck around the initial state, and produce a more diverse dataset.

A set of 20 tasks are generated as all combinations of m P t0.4, 0.6, 0.7, 0.8, 0.9ukg,

and l P t0.4, 0.5, 0.6, 0.7um, where m and l denote the mass and length of the pen-

dulum in kilograms and meters, respectively. One 100-step (10 s) trajectory is gener-

ated for each task. A set of 6 training tasks are selected as all combinations pm, lq of

m P t0.4, 0.6, 0.8ukg, and l P t0.5, 0.7um, amounting to a total of 600 observations, or 60 s

of interaction time. The remaining 14 tasks are designated to the test set.

Evaluation. During evaluation, 10 time steps (1 s) are used for transfer learning using

the ML-GP model. Specifically, the data is used to infer the variational parameters for a

representing tasks as conserved quantities 65

new task representation z˚, while the global parameters θ are kept fixed. The ML-GP,

SVGP and GP models are then used for one-step predictions of the next 90 steps.

0.25

0.50

0.75

R
M
S
E

ML-GP SGP GP

25 50 75 100 125 150 175 200

Inducing Points

−10.0

−7.5

−5.0

N
L
L

Figure 2.6: Mean and two
standard deviation confidence
error-bars of the RMSE and
NLL for the ML-GP, SVGP
and the GP as a function of the
number of inducing points.
The ML-GP significantly out-
performs both baselines.

One-step predictive performance. Figure 2.6 shows the RMSE and NLL for the

ML-GP, SVGP and the GP. The ML-GP outperforms both the SVGP and GP baselines,

in terms of the accuracy of its mean predictions (as evident by the RMSE), as well as

capturing the data better under its predictive distribution as seen by the NLL. The NLL

accounts for both the mean prediction as well as the uncertainty of the model about the

prediction. Both baselines have comparable RMSEs to each other, assuming enough in-

ducing points for the SVGP. However, the GP slightly outperforms the SVGP in terms

of RMSE. Conversely, the SVGP does better than the GP in terms of NLL. Figure 2.7

illustrates predictions from a single test task chosen at random.

The baselines fail to generalise since they have no observations from the system with

this configuration. The ML-GP is able to use the task representations z˚ for transfer

learning. Using 10 observations from the test task, it is able to generalise well without

re-learning θ. Although the experiment only considers one-step predictions, multi-step

predictions are implicitly evaluated in the model-based RL experiments in section 2.3.2.

Qualitative properties of task representations. For interpretability and down-

stream use, such as meta-learning, it is desirable that the true task-specifications be a

relatively smooth function of the task representations. In particular, that similar task

66

representations correspond to similar task-specifications, and that moving around in the

latent space produces coherent transitions in the task-specifications. Note that the true

task-specifications are not observed by the model, so it is not obvious that the learned

task space need behave in this way.

−7
−4
−1
2

5

−7
−4
−1
2

5

A
n
g
u
la
r
V
el
o
ci
ty

50 55 60 65 70 75 80

Timestep

−7
−4
−1
2

5

Test data ML-GP SGP GP

Figure 2.7: One-step predic-
tions of the angular velocity
in the cart-pole system. The
figure shows the true data
points (discs), and the pre-
dictive distributions with a
two standard deviation confi-
dence interval for the ML-GP,
SVGP and the GP. The ML-GP
generalises well to the test
tasks, whereas both the SVGP
and GP baselines generalise
poorly in terms of RMSE. Each
timestep corresponds to 0.1s in
the simulation.

Figure 2.8 displays an example of learned task representations from one of the exper-

iments in fig. 2.6. The different colours of the discs denote the four different settings

of lengths, whereas the colours of the dotted lines connecting the discs denote the five

different settings of mass. The figure plots the mean of each qpzpq with two standard

deviation error bars in each dimension. Training tasks are represented by solid circles

and test tasks are given by empty circles. The representations are arranged in an intu-

itive structure, where changes in length or mass are disentangled (denoted by the black

arrows) into a length-mass coordinate system with the expected transitive properties, e.g.

the lengths are ordered as blue (l “ 0.4m), green (l “ 0.5m), red (l “ 0.6m) and orange

(l “ 0.7m). The uncertainty estimates also exhibit qualitatively the intuitive property of

being less uncertain about tasks which are similar to (closer to) the training tasks, e.g.

comparing the red and blue tasks in figure 2.8.

representing tasks as conserved quantities 67

Length

Mass

l =0.4

l =0.5

l =0.6

l =0.7

m=0.4

m=0.6

m=0.7

m=0.8

m=0.9

Figure 2.8: Invariant task rep-
resentations learned from the
cart-pole system. The figure
shows the mean (discs) of the
inferred task variables and
two standard deviation error
bars. Filled discs are training
tasks and empty discs are test
tasks. The colours of the discs
represent the length and the
colours of the dotted lines be-
tween discs represent the mass.
The arrows are lines indicating
directions of increasing mass
(kg) and length (m)—as con-
figured by the true system but
not observed by the model.

2.3.2 Meta-Learning in Model-Based RL

Experimental Setup. This section investigates the performance of the ML-GP model in

terms of data efficiency in RL settings. Specifically, we look at whether the meta learning

approach is a) at least as efficient at solving a set of training tasks, b) more efficient at

solving subsequent test tasks when compared to a non-meta learning baseline, and c)

whether the ML-GP model improves performance when compared to the SVGP model

trained with the meta learning approach. The models are compared in terms of success

rate as a function of the amount of training data. We assume a fixed number of tasks di-

vided into training and test tasks. All results are averaged over 20 independent random

initialisations.

§ Reinforcement learning tasks: Experiments are run on both the cart-pole swing-up

task and the double-pendulum swing-up task, see appendix A.1 for details about the

systems. In both scenarios, we use a sampling frequency of 10Hz, episodes of 30 steps

(3s) and a planning horizon of 10 steps. For the cart-pole swing-up, solving the task

means the pendulum is balanced closer than 8cm from the goal position for at least the

last 10 steps (1s). For the double-pendulum swing-up, it means the outer pendulum is

balanced closer than 22cm for at least the last 10 steps (1s). For policy learning we use

MPC, minimising the cost function in (2.25) using Algorithm 1.

68

§ Training: Training consists of iterating through the unsolved training tasks and at-

tempting to solve them with MPC, and learning the model parameters θ and variational

parameters φ. A detailed listing of the algorithm is given in appendix A.1, algorithm 4.

Each attempt at solving a task constitutes a trial, and the algorithm attempts to solve all

unsolved training tasks in a given trial before updating the model. The first trial for each

of the training tasks consists of executing a random policy. This is repeated until all the

tasks are solved, or all unsolved tasks have executed 15 trials.

§ Evaluation: Following the training phase, a test phase is initiated where the algorithm

iterates over the test tasks and attempts to solve them with MPC. The first iteration is

used to measure single-shot performance as described in Algorithm 5. For the ML-GP,

this involves online inference of the task variable zp after each observed time step. Fol-

lowing the first iteration, the test phase mirrors the training phase, where the algorithm

iterates over unsolved test tasks and re-learns the dynamics model given the additional

data. These iterations are used to measure the ability of the models to transfer to new

tasks given increasing amounts of data.

§ Baselines: For comparison with the ML-GP model, we use the SVGP model trained

in two different ways. To establish a lower-bound baseline, a separate SVGP model is

trained for each task on both the training and test sets. After each training task we ad-

ditionally attempt to solve each of the test tasks to evaluate single-shot performance

where we report the mean across the training tasks as the single shot success rate. We

refer to this baseline as SVGP-I, which is a sparse variant of the approach by Kamthe

and Deisenroth [2018b] that achieves state-of-the-art in data efficiency. Secondly, we train

a single SVGP model on all the training tasks simultaneously using the same training

approach as we do for the ML-GP. We refer to this baseline as SVGP-ML.

Cart-Pole Swing-Up Experiments. We train the models on six specifications of the

cart-pole dynamics, with m P t0.4, 0.6, 0.8ukg, and l P t0.6, 0.8um and evaluate its per-

formance on a set of four test tasks chosen as m P t0.7, 0.9ukg, and l “ t0.5, 0.7um. We

choose these settings to examine the performance on both interpolation and extrapola-

tion for differing lengths and masses. We choose the squared distance between the tip of

the pendulum and goal position as the cost.

Figure 2.9 shows the mean success rate (over initialisations and the four test tasks) of

the ML-GP, SVGP-I and SVGP-ML against the number of trials executed on the systems.

Note that horizontal axis gives the number of trials executed across all unsolved tasks.

representing tasks as conserved quantities 69

We observe that both the ML-GP model and the SVGP-ML display generalization to new

tasks as evident by the success rate in the first trial (see also Table 2.1).

However, whereas the ML-GP quickly improves with more observations in subse-

quent trials, the SVGP-ML model struggles to solve the remaining tasks. We attribute

this failure to the inability of the SVGP-ML model to explain variation in the dynamics

caused by differences in system specifications.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trials

0

20

40

60

80

100

S
u
cc
es
s
R
a
te
(%

)

ML-GP

SGP-I

SGP-ML

Figure 2.9: Cart-pole system: Mean
success rate with standard errors
over 10 random initialisations and
the four test tasks after training on
six tasks. The graph compares the
ML-GP with the SVGP-I (trained
independently) and SVGP-ML
(trained on all tasks). The ML-GP
and SVGP-ML models attempt to
solve all unsolved tasks in a given
trial before update the model. Since
each episode for each task consists of
30 steps (3s), and all unsolved tasks
are attempted in each trial, each tick
on the horizontal axis consists of up
to 4 ˆ 3 “ 12s.

When comparing with independent training of each system we see that the ML-GP com-

pares favourably, reaching 80% success rate after only three trials and 90% after six trials

compared to the SVGP-I, which reaches 80% after 7 trials and 90% after 8 trials. We fur-

ther analyse performance of ML-GP to identify the tasks that were additionally solved

between trials 3 and 6. We find that this is due to a consistently challenging system with

m “ 0.9kg, l “ 0.5m, which requires the learner to extrapolate beyond the range of values

seen during training. The mean number of trials required to solve this task is 4.3 ˘ 0.6

(12.9 ˘ 1.8s), compared to the task mean of 2.7 ˘ 0.2 trials (8.1 ˘ 0.6s). Table 2.1 shows the

Model Training Tasks (s) Test Tasks (s) Single Shot (%)

SVGP-I 16.1 ˘ 0.4 17.5 ˘ 0.4 0.08 ˘ 0.01

SVGP-ML 23.7 ˘ 1.4 20.8 ˘ 1.2 0.38 ˘ 0.04

ML-GP 15.1 ˘ 0.5 8.1 ˘ 0.6 0.35 ˘ 0.05

Table 2.1: Cart-pole
system: Mean (with
˘1 standard errors)
time spent solving
the cart-pole system
and the single-shot
success rate.

mean total time required to solve the training and test tasks. On average, ML-GP needs

less than half the amount of time to solve the test tasks compared to individually train-

ing on the tasks (SVGP-I). We also see an improvement in the total training time, which

70

suggests that ML-GP derives some transfer benefit during training despite training on

the systems on a concurrent trial basis, i.e. we do not update the model until all systems

have executed a given trial. Compared to the SVGP-ML, the ML-GP model can maintain

an accurate model while learning multiple systems and quickly adapts to new dynamics,

whereas the performance of SVGP-ML stagnates as reflected in the interaction time on

both the training and test systems.

Double-Pendulum Swing-Up Experiments. We repeat the same experimental set-

up on the double-pendulum task. We train on six systems with m1 P t0.5, 0.7ukg, and

l1 P t0.4, 0.5, 0.7um and evaluate on a set of four test tasks chosen as m1 P t0.6, 0.8ukg,

and l1 “ t0.6, 0.8um, where m1, l1 are the mass and length of the inner pendulum.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trials

0

20

40

60

80

100

S
u
cc
es
s
R
a
te
(%

)

ML-GP

SGP-I

SGP-ML

Figure 2.10: Double-pendulum
system: Mean success rate with
standard errors over 10 random ini-
tialisations and the four test tasks
after training on six tasks. The graph
compares the ML-GP against the
SVGP-I (trained independently on
each task) and the SVGP-ML (trained
using the meta learning procedure).
Since each episode for each task
consists of 30 steps (3s), and all un-
solved tasks are attempted in each
trial, each tick on the horizontal axis
consists of up to 4 ˆ 3 “ 12s.

The cost is the squared distance between the tip of the outer pendulum and the goal

position (with both pendulums standing straight up). Figure 2.10 plots the mean success

rate against the number of trials executed on the system.

Comparing the ML-GP model to the SVGP-ML we observe comparable single-shot

performance and a qualitatively similar learning curve for the test tasks. However, the

ML-GP reaches 90% success rate about four trials before the SVGP-ML, around trial

nine on average for each task, i.e. meta learning achieves a significantly higher data effi-

ciency. Compared to independent training of the tasks using SVGP-I, the ML-GP needs

significantly less (new) training data to solve the tasks. Table 2.2 reports the mean total

time required to solve the tasks. Compared to the SVGP-ML, the performance of the

two is similar, although arguably the ML-GP compares favorably in terms of average

time needed to solve the test tasks. Compared to the SVGP-I, we see improvement dur-

representing tasks as conserved quantities 71

Model Training Tasks (s) Test Tasks (s) Single Shot (%)

SVGP-I 18.9 ˘ 0.7 25.9 ˘ 1.5 0.07 ˘ 0.01

SVGP-ML 17.9 ˘ 1.3 13.7 ˘ 2.2 0.36 ˘ 0.06

ML-GP 16.6 ˘ 1.1 10.2 ˘ 1.6 0.43 ˘ 0.06

Table 2.2: Double-
pendulum system:
Mean (with ˘1 stan-
dard errors) time
spent solving the
double-pendulum
system and the
single-shot success
rate.ing training as well as at test time. The average time needed for ML-GP to solve the test

environments is reduced to around 40% to that of the SVGP-I.

2.3.3 Active Task Learning

The results in this section are reproduced from Kaddour et al. [2020]. The work explores

the use of invariant task representations for active learning of task spaces, and the re-

sulting algorithm is termed probabilistic active meta-learning (PAML), and is given

in algorithm 2. We find empirically that our approach improves data-efficiency when

compared to strong baselines, in the context of learning predictive models of simulated

robotic systems. Detailed descriptions of the simulated systems, learning procedure and

hyperparameters is given in appendix A.2.

Figure 2.11: The active task learning setup in
the experiments using PAML. T is the task de-
scriptor space, Z is the latent space of the ML-GP
model in eq. (2.60). Step 1 shows how when a
task descriptor τp is selected by the algorithm, it
resolves to a physical system with system param-
eters ψp (these need not be the same). Observa-
tions are generated from the system and added to
a dataset, and in step 2, the ML-GP model learns
an updated latent space. In step 3, points in the
latent space are ranked with the utility function
from eq. (2.68) and in step 4, the selected point z˚

is mapped to a new task descriptor τ˚ using the
observation model pθpτ|zq.

Experimental Setup. In our experiments, we assess whether PAML improves data

efficiency when learning task spaces consisting of the dynamics of simulated robotic

systems. The setup is illustrated in fig. 2.11. The experiments are designed to test its

performance on different types of task descriptors. Specifically, we generate tasks within

domains by varying configuration parameters of the simulator, such as the masses and

lengths of parts of the system. We then perform experiments where the learning algo-

72

rithm observes: (i) fully observed task parameters, (ii) partially observed task param-

eters, (iii) noisy task parameters and (iv) high-dimensional image descriptors. We use

control signals that alternate back and forth from one end of the range to the other to

generate trajectories. This policy resulted in better coverage of the state-space, compared

to a random walk. A detailed description of the systems is given in appendix A.1.

§ Baselines: We compare PAML to uniform sampling (UNI), commonly used in meta-

learning settings [Finn et al., 2017, Galashov et al., 2019] and equivalent to domain ran-

domization [Tobin et al., 2017]; Latin hypercube sampling (LHS) [Tang, 1993]; and an

oracle baseline that is trained on the test tasks. The oracle represents an upper bound

on the predictive performance. Fixed, evenly spaced grids of test task parameters are

chosen to reasonably cover the task domain. We start with four initial tasks and then

sequentially add 15 more tasks. As performance measures, we use the negative log-

likelihood (NLL) as well as the root mean squared error (RMSE) on the test tasks. The

NLL considers the full posterior predictive distribution at a test input, whereas the

RMSE takes only the predictive mean into account. In all plots, error bars denote ˘1

standard errors, across 10 randomly initialised trials.

Figure 2.12: NLL/RMSE for 100 test
tasks for the cart-pole, pendubot
and cart-double-pole with observed
task parameters as task-descriptors.
Error bars denote ˘1 standard errors
across 10 random initialised trials.
Across all environments, PAML per-
forms significantly better than the
baselines UNI and LHS. Since PAML
learns representation of the task
differences, it explores the task space
more efficienctly than the baselines,
despite the task parameters being
fully observed for all models.

Observed Task Parameters. In these experiments, the observed task descriptors match

the task configurations exactly. However, the nonlinear relationship between the param-

representing tasks as conserved quantities 73

eters and the dynamics means that efficient exploration of the configuration space itself

will, in general, not map directly to efficient exploration in terms of predictive perfor-

mance. Here we test whether or not PAML, using the generative task model in (2.60),

learns latent embeddings that are useful for active learning of the task domain.

The tasks are generated by varying masses of the attached pendulum and the cart,

pm P r0.5, 5.0s kg and pl P r0.5, 2.0s m, respectively. Pendubot and cart-double-pole

tasks have lengths of both pendulums in the ranges, pl1 , pl2 P r0.6, 3.0s m and pl1 , pl2 P

r0.5, 3.0s m, respectively.

Figure 2.12 shows the results of all methods in all three environments. Comparing

PAML to the baselines UNI & LHS, we see that PAML performs significantly better

than UNI and LHS in terms of performance on the test tasks. For all three systems, the

NLL and RMSE see a steep initial drop for PAML, whereas the performance of the base-

lines drops more slowly and exhibits higher variance across experimental trials. This is

because PAML consistently uses prior information to select the next task whereas the

baselines are more affected by chance. We note that the gap in performance obtained

by our approach over the baselines remains significant across the task horizon, which is

particularly noticeable in the RMSE plots (bottom row) of fig. 2.12.

Figure 2.13: NLL/RMSE for 100 test
tasks for the cart-pole system with
partially observed task parameters.
Error bars denote ˘1 standard errors
across 10 random initialised trials.
PAML is able to infer useful task
representations for active exploration
when the task parameters are only
partially observed.

Partially Observed Task Parameters. Partial observability is a typical challenge

when applying learning algorithms to real-world systems [Mankowitz et al., 2019].

In these experiments, we simulate the cart-pole system where the task descriptors

are chosen as the length of the pendulum, but we vary both its length and mass. The

74

length is varied between pl P r0.4, 3.0s m, and the (unobserved) pendulum’s mass

pm „ U r0.4, 3.0s kg. That is, each time a new task-descriptor is selected (i.e., length),

the mass is sampled. In contrast, the oracle observes all possible masses pm within the

test task grid.

Results are shown in fig. 2.13. PAML achieves lower prediction errors in fewer tri-

als than the baselines. The error after one added task of our methods is approximately

matched by the baselines after about five added tasks. It selects similar lengths multi-

ple times, which has the effect of exploring different values of the stochastic mass vari-

able. For example, in one trial, the first eight selected lengths of PAML lie in the range

r0.41, 0.58s m.

Intuitively, the reason for this is that the latent embedding represents the full task

parameterisation, and smaller values of the length make the effects of varying the mass

more apparent. We interpret these results as a demonstration of the PAML algorithm to

exploit information about unobserved task configuration parameters, using the learned

task representations.

Noisy Task Parameters. In this experiment, we explore the effects of adding a super-

fluous dimension to the task-descriptors. In particular, we simulate the cart-pole system

where we add one dimension ǫ P r0.5, 5.0s to the observations, which does not affect the

dynamics.

Figure 2.14: NLL/RMSE for 100 test
tasks for the cart-pole system with
noisy task parameters. Error bars
denote ˘1 standard errors across 10
random initialised trials. PAML is
able to explore the task space more
efficiently since it learns to ignore the
redundant dimension added to the
task parameters.

representing tasks as conserved quantities 75

Figure 2.15: Latent embeddings
from the cart-pole system with noisy
task parameter ǫ. Black discs de-
note training tasks, and colored
discs chosen by PAML (with two
standard deviation error bars). The
latent space dimensions are given
by z1, z2. The numbers above each
disc denotes the order in which it
was selected by PAML. The legend
shows the task configurations chosen
by PAML after ranking points in the
latent space pz1, z2q.

To select tasks efficiently, PAML needs to learn to ignore the superfluous dimension.

Results in fig. 2.15 illustrate this property. Here we show the latent embeddings cor-

responding to the initial training tasks (black) and the selection made by PAML. We

observe that it consistently picks a value for ǫ around 0.5, corresponding to a roughly

constant z2, while exploring informative values for pm and pl . Figure 2.14 shows how

predictive performance for PAML is better than the baselines in terms of both NLL and

RMSE.

Pixel Task Parameters. In this experiment, PAML does not have access to the task

parameters (e.g., length/mass), but observes indirect pixel task descriptors of a cart-pole

system, shown in fig. 2.16.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.16: Pixel task-
descriptors for the
cart-pole system with
different lengths. PAML
can infer latent em-
beddings from pixel
observations and exploit
these for faster learning
of a task domain.

We let PAML observe a single image of 100 tasks in their initial state (upright pole),

where the pole length is varied between pl P r0.5, 4.5s. PAML selects the next task by

choosing an image from this candidate set, after ranking the corresponding latent task

variable according to the utility function eq. (2.68). The baseline selects images uni-

formly at random and both methods start with one randomly chosen training task. Fig-

76

ure 2.17 shows that PAML consistently selects more informative cart-pole images, and

approaches the oracle performance significantly faster than UNI.

Figure 2.17: NLL/RMSE for 25 test
tasks of the cart-pole system using
pixel task-descriptors. Error bars
denote ˘1 standard errors across
10 random initialised trials. PAML
outperforms uniform sampling by
exploiting a learned latent represen-
tation of the task domain. The pixel
task descriptors, used for learning
the task representations, are shown
in fig. 2.16.

2.4 Related Work

Task Structured Learning Problems

Task structured learning problems have been explored in machine learning under a

number of different related names, such as multi-task learning [Caruana, 1997, Ruder,

2017], transfer learning [Pan and Yang, 2010, Weiss et al., 2016] and meta-learning

[Schmidhuber, 1987, Bengio et al., 1991, Baxter, 2000, Andrychowicz et al., 2016, Finn

et al., 2017].

Multi-task learning [Caruana, 1997, Ruder, 2017] generally deals with the situation

where there are a fixed number of tasks and the aim is to generalise to new examples

within those tasks. The definition of a task in this case can be blurry, since an expressive

model might simply model the joint distribution as a single task. The notion of a task

becomes sharper in the case of transfer learning [Pan and Yang, 2010, Weiss et al., 2016],

where the aim is to use data from one distribution (task) to generalise to a related task

having little or no data. Perhaps the most general formulation that deals with learning

from many related task distributions is meta-learning.

MAML is a relatively recent and popular meta learning approach that learns a set

of model parameters that are used to efficiently learn novel tasks [Finn et al., 2017].

Another interpretation of MAML is formulated in [Grant et al., 2018], which shares

representing tasks as conserved quantities 77

the hierarchical Bayesian formulation of the meta learning problem in this chapter. A

key difference between MAML and the work in this chapter is in how global and task-

specific sources of variation are represented. MAML assumes that each task is modelled

by a distinct set of parameters (e.g. neural network weights), derived from a global set of

parameters by gradient descent. The global parameters themselves are not used directly

to make predictions and the task-specific parameters are typically of the same size as

the global ones. In contrast, invariant task representations in section 2.2 use the global

parameters to model a global function and the task-specific parameters are latent inputs

into that function.

Meta-learning Gaussian Process

The ML-GP model resembles the GP latent variable model (GPLVM), which is typically

used in unsupervised settings [Lawrence, 2004]. In the GPLVM, the GP is used to map

a low-dimensional latent embedding to higher-dimensional observations. A Bayesian

extension (BGPLVM) was introduced in [Titsias and Lawrence, 2010] where inference

over the latent variable is performed using variational inference. To enable minibatch

training, and unlike BGPLVM, the work in this chapter takes the approach of [Hensman

et al., 2013] and does not marginalise out the inducing variables. The main difference

between the ML-GP and the GPLVM is that the former learns a mapping from both

observed and latent inputs to observations.

The combination of observed and latent inputs was investigated in [Wang and Neal,

2012] where the authors use Metropolis sampling for inference which does not scale to

larger datasets. A similar setup is found in [Damianou and Lawrence, 2015] where the

model is used for partially observed input data. The work also proposes uses in autore-

gressive settings similar to the work here. Different from this chapter, the distribution

over inducing variables is analytically optimised, making minibatch training infeasible.

A related and complimentary line of research are multi-output GPs (MOGPs) [Àlvarez

et al., 2012]. Recently, [Dai et al., 2017] proposed a latent variable extension to MOGPs

(LVMOGP) which is similar to the ML-GP, particularly in their missing data formulation

of the model. The crucial difference is that the ML-GP augments the input space by con-

catenating the latent variable to the input space while the LVMOGP uses the Kronecker

product of two separate kernels applied on the latent and input spaces respectively. No-

tably, the two models are equivalent for kernels that naturally decompose as a Kronecker

product (e.g. the SE kernel) but depart from there.

78

A similar model to the ML-GP is found in [Doshi-Velez and Konidaris, 2016], called

hidden parameter Markov decision processes (HiP-MDP), which parametrises a family

of related dynamics through a low dimensional latent embedding. The HiP-MDP as-

sumes a fixed latent variable within trajectories. Different from the ML-GP, the authors

use an infinite mixture of GP basis functions where the task-specific variation is obtained

through the weights of the basis functions [Doshi-Velez and Konidaris, 2016]. This work

was extended in [Killian et al., 2017], replacing the GP basis functions with a Bayesian

neural network. This enables non-linear interactions between the latent variables and

state variables and addresses scalability. In this chapter, the interactions between latent

and state variables are obtained through the non-linear SE kernel, and the scalability is

addressed through the variational sparse approach.

In [Deisenroth et al., 2014], an RL setting is considered that is closely related to the

ML-GP. The authors use a parametric policy that depends on a known deterministic

task variable and augment the policy function to include it as well. In [Deisenroth et al.,

2014], the authors consider the same dynamical system but solve different tasks by aug-

menting the policy with a task variable. In this chapter, different settings of the dynam-

ics are learned but the task remains the same. Additionally, the ML-GP generalise the

setting to latent task variables that are inferred from interaction data.

Active Learning of Task Spaces

A similar view to the active task selection model developed in section 2.2.5 is found in

Automatic curriculum learning (ACL) where, in general, a task selector is learned based

on past data by optimising it with respect to some performance and/or exploration met-

ric [Portelas et al., 2020]. For instance, the work in [Akkaya et al., 2019] uses automatic

domain randomisation to algorithmically generate task distributions of increasing dif-

ficulty, enabling generalization from simulation to real-life robots. Similarly motivated

work is found in [Gupta et al., 2018a], referred to as unsupervised meta-learning, and

extended to ACL in [Jabri et al., 2019]. Here, unsupervised pre-training is used to im-

prove downstream performance on related RL tasks. In comparison to ACL, the key

objective in section 2.2.5 is data-efficient exploration of a task space from scratch.

More closely related to this objective is active domain randomization in [Mehta et al.,

2020], which compares policy rollouts on potential reinforcement learning (RL) tasks

compared to a reference environment, dedicating more time to tasks that cause the agent

difficulties. PAML learns a representation of the space of tasks and makes comparisons

representing tasks as conserved quantities 79

directly in that space. This way it does not require a) rollouts on new potential tasks, b)

handpicked reference tasks and c) the task parameters to be observed directly.

Disentangled Representations

A central theme in this chapter is the separation of task-specific and global sources of

variation, referred to as modularity in the text. Importantly, this separation is assumed

in the form of an inductive bias, where latent task variables are used to represent un-

known system parameters in physical dynamical systems. A more general approach is

that of disentangled representation learning [Higgins et al., 2018, Achille and Soatto,

2018, Alemi et al., 2016, Anselmi et al., 2016]. There, the aim is to learn generative factors

(sources of variation) that are well aligned with the underlying data generative process

[Schmidhuber, 1992, Bengio et al., 2013]. For example, in the context of this chapter, this

might correspond to learning the task grouping from state observations of the physical

systems rather than assuming they are given beforehand.17 A ’well aligned’ representa- 17 Importantly, some
assumptions about the
model and data are still
required for learning
disentangled represen-
tations [Locatello et al.,
2019].

tion would then map coherently to the grouping of systems by their parameters. Thus,

extension of the work in this chapter where the assumptions about task grouping are

relaxed fits squarely within this work.

2.5 Summary & Discussion

This chapter introduced latent conserved quantities (invariant task representations, sec-

tion 2.2) as a modelling tool for multi-task, transfer and meta-learning predictive models

of physical dynamical systems. The motivation was to improve data efficiency by hav-

ing a single model share information between different but related prediction tasks. In

the context of this chapter, tasks were identified with system parameters such as the

length and mass of a pendulum. The idea behind invariant task representations is that

explicitly modelling task-specific sources of variation (system parameters) and global

sources of variation (the laws of physics) as distinct components; transfer learning can be

achieved by reusing the global and relearning only the task-specific for a new task.

Results. To explore this idea, the meta-learning Gaussian process (ML-GP) model was

defined in section 2.2.3, and the probabilistic active meta-learning (PAML) algorithm in

section 2.2.5. The ML-GP uses invariant task representations to learn a latent task space

representing unknown system parameters. The PAML algorithm uses this latent task

space to rank potential new tasks in terms of the expected information gain.

80

In section 2.3, the ML-GP model and the PAML algorithm were studied empirically in

terms of data efficiency when learning from simulated robotic systems. In fig. 2.6, invari-

ant task representations were demonstrated to enable the ML-GP to transfer knowledge

to unseen tasks, showing significant improvement in comparison to an otherwise equiv-

alent Gaussian process (GP) model. In fig. 2.8, the latent space learned by the ML-GP

was found to be well aligned with the ground truth system parameters. In figures 2.9–

2.10 and tables 2.1–2.2, the ML-GP model was shown to reduce the amount of trials

needed to solve tasks in a model-based meta reinforcement learning setting. Finally, in

section 2.3.3, the PAML algorithm was shown to enable more efficient exploration of task

spaces by taking advantage of the learned structure in the latent space of the ML-GP.

Limitations. The modelling choices made for invariant task representations and the

ML-GP have significant limitations. The biggest limitation of the task representations

is that it requires prior knowledge about task grouping. Although this distinction is

easy to make for simulated systems, this is not likely to be straightforward for practical

problems. The use of GP models is well justified for data efficiency reasons, however, for

larger systems (in dimension) the computational overhead may be become problematic.

Additionally, only the exponential quadratic kernel was explored in the chapter, which

may be unsuitable in practice.

The empirical results in section 2.3 also have limitations. The baselines that the

ML-GP model was compared against are only suggestive of the benefit of modelling

task-specific sources of variation, but not suggestive of how this might best be achieved.

See for instance the number of related works in section 2.4. Additionally, in the model-

based RL experiments, the results need to be interpreted with care due to the limited

number of test tasks used for measuring the performance. Similarly, the results for the

PAML algorithm only look at a single utility function, making the overall results weaker.

Future Research. Overall, the idea of using latent conserved quantities to capture

task-specific sources of variation may be practically useful for data constrained learning

problems where a natural task grouping is easy to define beforehand. To address prob-

lems where this is not the case, one might look at using approaches from disentangled

representations [Higgins et al., 2018, Achille and Soatto, 2018, Anselmi et al., 2016] for

meta-learning instead. To address the limitations of the GP in this chapter, it is possible

that combining ideas in this chapter with neural processes [Garnelo et al., 2018] might

produce more scalable learning algorithms.

variational integrator networks 81

3

Variational Integrator Networks

It is the pull of opposite poles that stretches souls. And only stretched souls make music.

—Eric Hoffer

The focus of this chapter is on geometric inductive biases for expressive function classes

that encode classical mechanics. Classical mechanics has a number of important geomet-

ric properties of interest (section 3.1): phenomena are described by compact representa-

tions (generalised coordinates) evolving on manifolds; a rich source of information about

the evolution is contained in conservation laws and corresponding conserved quantities;

and the evolution is characterised by scalar energy functions.

Learning these structures from data is difficult and failing to do so degrades predic-

tive performance, resulting in non-physical errors in the best case and erratic behaviour

in the worst. These structures are also naturally adapted to representation learning,

where the geometric structure (e.g. conserved quantities) can be related to the obser-

vations by arbitrarily complicated function approximators [Higgins et al., 2018]. The

core idea of the chapter is to parametrise the action principle (section 1.2.2) with neu-

ral networks, and discretise it using variational integrators. This results in variational

integrator networks (VINs).

The results from this chapter are reproduced from the work in [Saemundsson et al.,

2020]. We run experiments on simulated physical systems, exploring VINs encoded

with Newtonian physics in terms of data efficiency, generalisation and learning physical

representations from images (section 3.3). Our results demonstrate that VINs facilitate:

1. Accurate long-term predictions;

2. Data efficient learning;

3. Interpretability;

82

compared to a baseline that tries to learn the physical structure from data.

3.1 Background

The learning problems in this chapter assume that the observations come from a system

described by classical mechanics. From section 1.2, these systems are solutions of 2nd

order ordinary differential equations (ODEs) called the Euler-Lagrange (E-L) equations

of motion (EOM):
d

dt

´BL

B 9q

¯
´

BL

Bq
“ 0, (3.1)

where qptq is the generalised position, 9q is the generalised velocity and L is the La-

grangian of the system.1 1 Generalised coordi-
nate refer to the fact
that the E-L equations
are independent of the
choice of coordinate
system section 1.2.

The Lagrangian L is a scalar function consisting of energy terms. The one considered

in this chapter is the Newtonian Lagrangian from eq. (1.8),

Lpq, 9qq “ Tp 9qq ´ Upqq “
1
2

9qTM 9q ´ Upqq, (3.2)

where T is the kinetic energy, U is the potential energy, and M is a diagonal mass ma-

trix.2 Due to Noether’s theorem [Noether, 1918] and the explicit time independence of 2 For N particles in D
dimensions,

M “ diagpM1, . . . , MNq,

where

Mn “ mn, . . . , mnlooooomooooon
D times

,

and mn is the mass of
particle n.

the Lagrangian, the energy

Epq, 9qq “ Tp 9qq ` Upqq, (3.3)

is a conserved quantity of Newtonian systems described by eq. (3.2). This is a corollary

of the fact that the action (functional) from section 1.2,

Srqspa, bq “

ż b

a
Lpqptq, 9qptqqdt, (3.4)

is invariant with respect to transformations in time. The main aim of this chapter is to

build the physical structure of Newtonian systems into neural networks. This section

details the two main ingredients for the developments of the chapter: the dynamical

systems view of function approximation and variational integrators.

3.1.1 Learning Flow Maps

This subsection looks at the dynamical systems view of function approximation [E, 2017,

Chen et al., 2018, Scholkopf, 2019]. The key idea is to identify the function to be learned

with the solution of an ODE. One of the benefits of this framing is that global properties

of the function can be manipulated to define inductive biases, by considering global

variational integrator networks 83

properties of the ODE. From definition 1, an ODE is described by

dh

dt
“ f ph, tq, given hpt0q “ h0, (3.5)

where hptq P R
Q is the state of the system, f is the dynamics function, and h0 is the ini-

tial condition at time t0. Given the solution hpt; h0q, conditioned on the initial condition,

the flow map is defined as the function that takes as argument an initial condition and

evaluates the corresponding solution up to a fixed time horizon T,3 3 The semicolons in
eq. (3.6) are used to
differentiate between
what is treated as
argument (left) and
what is treated as a
parameter.

Fph0; Tq “ hpT; h0q. (3.6)

The key idea that connects nonlinear function approximation to dynamical systems of

the form (3.5) is to treat F as the function to be learned from data. Rather than learn

F directly, it is modelled implicitly through f . For example, a neural-ODE (NODE) is

defined as the family of dynamical systems given by [E, 2017, Haber and Ruthotto, 2017,

Chen et al., 2018]
dh

dt
“ fθph, tq, (3.7)

where fθ is modelled by a NN. Note that:

§ The inputs of the network are identified with the initial state h0;

§ The outputs are identified with the state hpT; h0q given by the flow map (3.6);

§ Evaluating the function, i.e. the flow map (3.6), requires solving the ODE.

This perspective can be used to define interesting inductive biases for expressive func-

tion classes by incorporating the desired structure in ODE form. However, the solution is

intractable in general and numerical approximations are required. As it relates to defin-

ing inductive biases, there are two general perspectives to consider:

1. The approach developed in [Chen et al., 2018] allows for the use of arbitrary ODE

solvers to learn continuous-time solutions. The advantages of this are memory effi-

ciency as a function of depth, the ability to use sophisticated ODE solvers, and the

ability to predict in continuous-time. The drawback of this approach is the computa-

tional cost of running the ODE solver each time the function is evaluated.

2. The second approach is to use an explicit discrete-time integrator which gives the

approximation analytically in terms of update equations. The primary advantage is

computational, since no optimisation is required for evaluating the function. This can

be particularly beneficial during learning, where the function is evaluated frequently.

Disadvantages include loss of accuracy and discrete-time (grid) solutions.

The developments in this chapter focus on explicit discrete-time solutions. Although

84

one of the motivations for this in the thesis is computational tractability, it is also worth

considering that the accuracy of the solution may not be of primary concern [E, 2017].

For example, if global properties of the ODE are preserved in the discrete system then

the inductive bias encoded by the ODE remain intact.

Euler Method. Perhaps the most well known explicit discrete-time approximation is

the forward Euler method [Euler, 1768]. In its simplest form, time is discretised uni-

formly with a constant step size η

0 ă η ď 1, (3.8)

tk “ t0 ` kη, (3.9)

and the true path hptq is approximated with a one-step update equation

hk`1 “ Fephk, ηq “ hk ` η f phk, tq “ hk ` η
dh

dt
, (3.10)

where hk « hptkq is the approximation to the true path at time tk. The one-step error of

the Euler method in (3.10) is proportional to η2, and the cumulative one-step error for an

arbitrary horizon is proportional to η [Atkinson et al., 2011].

Residual Networks. It is well known that residual networks (ResNets) [He et al., 2016]

hk`1 “ hk ` η f k
θ phkq, (3.11)

can be interpreted as an Euler discretised system of a NODE [E, 2017, Haber and Ruthotto,

2017, Chen et al., 2018], which is clear when comparing (3.10) to (3.11). Note that:

§ The discrete time index k is identified with the layer index of the NN;

§ The state hk is identified with the layers, as well as the input and output, which

means that in eq. (3.11) they all have the same width Q. However, the dynamical

system does not have to be defined in the same space as the data;

§ Alternatively, eq. (3.11) is interpreted as a different dynamical system for each layer.

A common NN architecture for modelling time series are recurrent NNs [Rumelhart

et al., 1986, Hochreiter and Schmidhuber, 1997]. Consider the time-invariant (autonomous)

NODE given by
dh

dt
“ fθphq, (3.12)

where fθ is not a function of t. Using the Euler method, the corresponding residual

block is given by

hk`1 “ hk ` η fθphkq, (3.13)

variational integrator networks 85

Note that fθ is the same across all time steps, in contrast to eq. (3.11) which is different at

each layer (corresponding to time). Equation (3.13) is used as a baseline in chapter 3.

3.1.2 Variational Integrators

This subsection introduces variational integrators, which approximately solve the E-

L EOM from eq. (3.1) while preserving the underlying geometry [West, 2004]. The

main idea is to discretise Hamilton’s principle from (1.5)—and therefore the action in

eq. (3.4)—instead of discretising the EOM directly.

The basic formulation discretises time with a uniform grid4 4 Adaptive and non-
uniform time grids
are possible but not
considered in this
chapter [Marsden and
West, 2001, West, 2004].

tk “ t0 ` kη, 0 ă η ď 1, k “ 0, . . . , K, (3.14)

such that the position in discrete-time is qk “ qptkq. Since the Lagrangian term in

eq. (3.4) depends on the position and velocity pq, 9qq, both terms need attention in the

discretisation. Variational integrators address this by defining the discrete state space

pqk, qk`1q P Q ˆ Q, (3.15)

where Q is the configuration manifold of the system. The intuition here is that the dis-

crete state space contains the same amount of information as the pair pq, 9qq since each

copy of Q can represent positions at different times on the path.5 The configuration 5 Formally, Q ˆ Q is
locally isomorphic to
the tangent bundle
pq, 9qq P T Q [Marsden
and West, 2001].

manifold Q is a reflection of the coordinate independent nature of geometric mechanics

(section 1.2). Using this fact, it is possible to implement constraints by choosing appro-

priate local coordinates. This is explored explicitly later in the chapter.

The main approximation of variational integrators is called the discrete Lagrangian,

which is an approximation to the action functional (3.4) over the time interval η,

Ldpqk, qk`1, ηq «

ż tk`η

tk

Lpqptq, 9qptq, tqdt, (3.16)

where Ld is the discrete Lagrangian. The discrete Lagrangian is then used to define a

discrete Hamilton’s principle [West, 2004]

δSd “ 0, (3.17)

where the discrete action sum is defined as

Sdpq0, . . . , qKq “
K´1ÿ

k“0

Ldpqk, qk`1q. (3.18)

Analogous the continuous-time theory, the discrete variational principle leads to the

86

discrete Euler-Lagrange (DEL) equations [West, 2004],

D2Ldpqk´1, qkq ` D1Ldpqk, qk`1q “ 0, (3.19)

where Di denotes the slot derivative, that is the partial derivative with respect to the

i´th argument

DiL
dpq1, . . . , qi, . . . , qNq “

BL

Bqi

. (3.20)

Directly analogous to the E-L equations, assuming regularity of the discrete Lagrangian

Ld, the DEL equations imply a discrete flow

FL : pqk´1, qkq ÞÑ pqk, qk`1q, (3.21)

which is the discrete-time flow corresponding to the solution of the DEL equations.

For the Newtonian Lagrangian considered in this chapter, given in eq. (3.2), it is pos-

sible to use a change of coordinates to define an alternative form of the DEL equations.6 6 Formally, the coordi-
nate transformation is a
discrete counterpart to
the Legendre transform
[Marsden and West,
2001].

Specifically, the generalised momentum coordinates pk are given by

pk “ ´D1Ldpqk, qk`1, hq, pk`1 “ D2Ldpqk, qk`1, hq, (3.22)

which define the implicit discrete Euler-Lagrange (IDEL) equations in terms of the mo-

mentum. The IDEL equations imply a discrete-time solution flow

FH : pqk, pkq Ñ pqk`1, pk`1q. (3.23)

The DEL equations eq. (3.19) and the IDEL equations eq. (3.22) are referred to as the

Lagrangian/Hamiltonian viewpoints, respectively.

Discrete Lagrangian. Both the Lagrangian viewpoint (DEL) and the Hamiltonian

viewpoint (IDEL) are given in terms of the discrete Lagrangian Ld (3.16). There are many

ways to approximate the integral, however, this chapter only considers two variants of

one general quadrature rule.7 The first is given by 7 See Marsden and
West [2001], section
3.6, for numerous
examples.

Ldpqk, qk`1, ηq “ ηLpqk, vkq, (3.24)

where the velocity is approximated with a midpoint rule

9qptkq «
qk`1 ´ qk

η
“ vk. (3.25)

The second approximation used is the symmetric variant of (3.24),

Ldpqk, qk`1, ηq “
η

2

˜
L

´
qk, vk

¯
` L

´
qk`1, vk

¯¸
, (3.26)

where vk is given by (3.25).

variational integrator networks 87

Discrete Conservation Laws. Variational integrators are useful since they preserve

global geometric structure automatically. In particular, for conservative systems [Lew

et al., 2003]:8 8 The general theory
works for forced and
dissipative systems
also. However, this
changes some of the
theoretical properties.

§ Variational integrators are symplectic: they conserve the phase-space volume form

exactly and approximately conserve the true energy of the system.

§ Variational integrators are momentum-preserving: For any symmetry in the discrete

system, there is a corresponding quantity that is exactly conserved. This is a discrete

counterpart to Noether’s theorem [Marsden and West, 2001].

In contrast, the Euler method used to define the basic residual network architectures and

given in eqs. 3.11–3.13 are not symplectic, even if the underlying ODE is, and do not

conserve energy or other conserved quantities due to an accumulation of approximation

errors [Cvitanović et al., 2016].

3.2 Variational Integrators as Function Classes

This section uses the theory of variational integrators to define expressive neural net-

works with inbuilt Newtonian physics defined by eq. (3.2), called variational integrator

networks (VINs). VINs are derived for Cartesian coordinates and polar coordinates with

fixed distance from the origin, corresponding to different configuration manifolds.

3.2.1 Variational Integrator Networks

A family of variational integrators is defined by parametrising the continuous-time La-

grangian appearing in the discrete Lagrangian given in eq. (3.16). Specifically,

Ld
θpqk, qk`1, ηq «

ż tk`1

tk

Lθpqptq, 9qptq, tqdt, (3.27)

where time is discretised uniformly with step size η, and tk`1 “ tk ` η. We also assume

that the Lagrangian Lθ is regular

det

˜
B2L

B 9q

¸
‰ 0, @pq, 9qq, (3.28)

since the theory of variational integrators generally require additional theory to handle

degenerate (non-regular) cases [Rowley and Marsden, 2002]. Equation (3.28) is made

explicit here since it suggests that modelling Lθpq, 9qq directly, for instance with a NN,

might require further consideration.9 The form of the Lagrangian used in the chapter 9 Lutter et al. [2019]
model the Hessian
directly with a neural
network by parametris-
ing it as via Cholesky
factors. However, the
work also enforces the
physics through the
loss function, which is
not the aim here.

is the Newtonian potential system given in (3.2), which is regular using both Cartesian

88

coordinates and radially fixed polar coordinates.

Using eq. (3.27), the discrete form of Hamilton’s principle (3.17) then implies the

existence of a pair of maps

FL
θ : pqk´1, qkq ÞÑ pqk, qk`1q, (3.29)

FH
θ : pqk, pkq ÞÑ pqk`1, pk`1q, (3.30)

corresponding to the discrete Lagrangian and Hamiltonian flow maps from (3.21) and

(3.23). In particular, the Lagrangian flow is the solution to the DEL equations from (3.19):

D2Ld
θpqk´1, qk, ηq ` D1Ld

θpqk, qk`1, ηq “ 0; (3.31)

and the Hamiltonian flow is the solution to the IDEL equations from (3.22):

pk “ ´D1Ld
θpqk, qk`1, ηq, pk`1 “ D2Ld

θpqk, qk`1, ηq. (3.32)

Equations (3.31)–(3.32) define the family of variational integrators, together with eq. (3.27).

In the following sections, we derive the VIN architectures used in the experiments in

section 3.3. The focus is on Newtonian physics and variational integrators with explicit

discrete update equations for the flow maps (3.29)–(3.30), since they result in network

architectures that do not require fixed-point algorithms to evolve the dynamics.10 10 This is discussed
in more detail in
section 3.5.

3.2.2 Newtonian VIN in Cartesian Coordinates

Consider the Newtonian Lagrangian in (3.2) for Q “ R
C, and parametrise the mass

matrix and potential function,

Lθpq, 9qq “ Tθp 9qq ´ Uθpqq “
1
2

9qTMθ 9q ´ Uθpqq, (3.33)

where Uθ is parametrised by a NN, and Mθ P R
CˆC is a symmetric, positive definite

mass matrix. The mass matrix is assumed to be independent of the generalised position

and is parametrised as

Mθ “ LθLT
θ , (3.34)

where Lθ is a lower-triangular matrix with CpC ` 1q{2 free parameters. The mass ma-

trix can also be taken to be the identity matrix Mθ “ 1C. Equation (3.33) describes a

separable Newtonian potential system, such as N particles in D dimensional space with

no constraints on the configuration manifold. Taking the mass matrix to be indepen-

dent of the position is required for explicit update equations. We now take the discrete

variational integrator networks 89

Lagrangian to be the one from (3.24), and apply the DEL equations (3.31),

D2Ld
θpqk´1, qk, ηq ` D1Ld

θpqk, qk`1, ηq “ 0,

η

˜
B

Bqk

Lθpqk´1, vk´1q `
B

Bqk

Lθpqk, vkq

¸
“ 0,

η

˜
1
η2 Mθ

`
qk ´ qk´1

˘
`

1
η2 Mθ

`
qk ´ qk`1

˘
´ ∇Uθpqkq

¸
“ 0,

where vk is the midpoint approximation to the velocity from eq. (3.25).11 After rearrang- 11 Given by:

9qptkq «
qk`1 ´ qk

η
“ vk

ing terms, this gives the Störmer-Verlet (SV) integrator [West, 2004]

qk`1 “ 2qk ´ qk´1 ´ η2M´1
θ ∇Uθpqkq. (3.35)

Alternatively, in flow map form, the VIN-SV is defined as:

h
q
k “ FL

θ ph
q
k´1, ηq “

»
—–

qk

2qk ´ qk´1 ´ η2M´1
θ ∇Uθpqkq

fi
ffifl . (3.36)

If instead the discrete Lagrangian from (3.26) is used in (3.22), the first momentum term

is given by

pk “ ´D1Ld
θpqk, qk`1, hq “ ´

η

2

˜
B

Bqk

Lθ

´
qk, vk

¯
`

B

Bqk

Lθ

´
qk`1, vk

¯¸

“
1
η

Mθ

`
qk`1 ´ qk

˘
`

1
2

η∇Uθpqkq,

and the second momentum term is given by

pk`1 “ D2Ld
θpqk, qk`1, hq “ pk`1 “

η

2

˜
B

Bqk`1
Lθ

´
qk, vk

¯
`

B

Bqk`1
Lθ

´
qk`1, vk

¯¸

“ pk`1 “
1
η

Mθ

`
qk`1 ´ qk

˘
´

1
2

η∇Uθpqk`1q.

After subtracting pk`1 ´ pk and solving for qk`1, the Velocity-Verlet (VV) integrator is

given as [West, 2004]

qk`1 “ qk ` M´1
θ

´
ηpk ´

1
2

η2∇Uθpqkq
¯

, (3.37)

pk`1 “ pk ´
1
2

η
´
∇Uθpqkq ` ∇Uθpqk`1q

¯
. (3.38)

Alternatively, in flow map form, the VIN-VV is defined as:

h
p
k`1 “ FH

θ ph
p
k , ηq “

»
—–

qk ` M´1
θ

´
ηpk ´ 1

2 η2∇Uθpqkq
¯

pk ´ 1
2 η

´
∇Uθpqkq ` ∇Uθpqk`1q

¯

fi
ffifl . (3.39)

90

3.2.3 Newtonian VIN for the Pendulum

Meyers [2011] describes a variational integrator for the pendulum system that automat-

ically evolves on a circle manifold. Formally, the underlying configuration manifold is

the Lie group manifold SOp2q and the integrator is an instance of a Lie group variational

integrator [Meyers, 2011, Lee et al., 2015].

From eq. (1.12), the Lagrangian of a single pendulum system is given by

Lppω, 9ωq “ Tpp 9ωq ´ Uppωq “
1
2

ml2
9ω2 ` mglp1 ´ cos ωq, ω P p0, 2πq, (3.40)

where ω is an angle measuring the displacement from vertical and 9ω is the angular

velocity; m is the point-mass and l is the length of the rod; and g is the magnitude of the

gravitational field.

The form of the integrator in Meyers [2011] is12 12 Page 148, equations
(23)-(24) in [Meyers,
2011]sinpωk`1 ´ ωkq “ sinpωk ´ ωk´1q ´ η2 1

ml2 ∇UPpωkq (3.41)

“ sinpωk ´ ωk´1q ´ η2 g

l
sinpωkq. (3.42)

To turn eq. (3.41) into a VIN, we parametrise the potential function

ωk`1 “ ωk ` sin´1
´

sinpωk ´ ωk´1q ´ η2 I´1
θ ∇Uθpωkq

¯
, (3.43)

where I´1
θ is an optional model parameter, and we call the network VIN-SOp2q. Alterna-

tively, in flow map form:

hω
k`1 “ FL

θ phω
k , ηq “

»
—–

ωk

ωk ` sin´1
´

sinpωk ´ ωk´1q ´ η2 I´1
θ ∇Uθpωkq

¯

fi
ffifl , (3.44)

where hω is used to distinguish the SOp2q integrator from the Euclidean integrators

above. Note that if the changes in angles ωk`1 ´ ωk and ωk ´ ωk´1 are assumed to be

small, then the flow in (3.44) reduces to the one in (3.36).13 However, for larger displace- 13 Under the small
angle approximation
sin ∆ω « ∆ω.ments, only the VIN-SOp2q accurately captures the underlying constraint on the circle.

variational integrator networks 91

3.2.4 Learning Variational Integrator Networks

Since section 3.3 models dynamic systems, it will be useful to frame the learning prob-

lem in terms of time-series. The observations will be assumed to be of the form

y “ pydq, d “ 1, . . . , D, (3.45)

Y “ pykq, k “ 1, . . . , K, (3.46)

D “ pYnq, n “ 1, . . . , N, (3.47)

where there are N time-series consisting of K steps, and each step is a D dimensional

observation. Implicit in this structure is the time discretisation defined for (3.27).

Generative Model. The physical system, i.e. the variational integrator, will be assumed

to live in a latent space corresponding to either the discrete velocity phase-space

h
q
k “ pqk, qk`1q, h

q
0 “ pq0, q1q, (3.48)

or the discrete momentum phase-space

h
p
k “ pqk, pkq, h

p
0 “ pq0, p0q, (3.49)

where (3.48) corresponds to the Lagrangian flow map in (3.29), and (3.49) corresponds to

the Hamiltonian flow map in (3.30). In this case, the flow maps are denoted as

h
q
k`1 “ FL

θ ph
q
k, ηq, (3.50)

h
p
k`1 “ FH

θ ph
p
k , ηq. (3.51)

To ease the notation, specific references to which phase-space or flow map is being used

are dropped when both are applicable. In this case, hk is used to denote the state space

and Fθ the flow map. The dimension of the configuration manifold is assumed to be C,

so that the phase-spaces are 2C-dimensional.

Since the phase-space is latent, a prior distribution over the states is required. Collect-

ing the states in a matrix, they are denoted by

H “ phkq, k “ 0, . . . , K. (3.52)

The approach taken in the thesis is to model only the distribution over the initial state

h0, and treat the dynamics as being part of the likelihood function. This is justified by

noting that geometric mechanics, and the relevant geometric structure is valid for deter-

ministic ODEs.14 Denoting the repeated composition of the flow map by 14 An intuitive example
is conservation of
energy, which clearly
does not hold if noise is
added into the system.

92

hk “ Fk
θ ph0, ηq “ pFθ ˝ . . . ˝ Fθlooooomooooon

k times

qph0, ηq, k ě 1, (3.53)

then the generative model over observations and the latent initial state is given by

pθpY, h0q “ pph0q
Kź

k“1

pθpyk| f phkqq, (3.54)

where f is an observation function that relates the state hk to the observation yk, and

pph0q is the isotropic Gaussian given in eq. (1.60),

pph0q “ N p0, 12Cq. (3.55)

For the problems considered in section 3.3 this prior is not found to be overly restrictive,

however, performance may be degraded if the posterior is highly correlated, as discussed

in section 1.4.15 15 Such a situation may
arise, for example,
when the observation
function is nonlinear,
since h0 represents
position and velocity/
momentum coordinates
which may not be
easily inferred from the
observations.

The observation function f plays the same role as the observation function in defini-

tion 2. However, due to the inherent structure of the phase-spaces, it is worth exploring

in more detail:

§ For noisy phase-space observations, the observation function will be the identity func-

tion and the observation model is given by the Gaussian in (1.21),

pθpyk| f phkqq “ N pyk|hk, σ21Dq. (3.56)

§ For pixel observations, the observation function will be neural network fθ and the

observation model is given by the Bernoulli in (1.22). The Bernoulli is chosen since the

pixel observations are greyscale. Specifically,

pθpyk| f pqkqq “ Bpyk| fθpqkqq, (3.57)

and only the position coordinate is used as input. This is important for two related

reasons. First, the observations are assumed to be single frames, and f should not use

future states (3.48) or momenta (3.49) to generate them. Second, the dimension of the

configuration space is typically much smaller than the observation space (C ! D), and

since f is agnostic to the physics it can use the extra dimensions to store non-physical

information about the frames that improves the log-likelihood (reconstruction error of

images).

The generative model in (3.54) is similar to the one presented in section 1.4. The main

difference is that the data is in the form of time-series. However, since only the initial

state is latent and the dynamics is taken to be part of the likelihood, the different steps of

the series could be thought of as extra output dimensions in eq. (1.56).

variational integrator networks 93

Variational Inference. To approximate the posterior distribution over the initial state,

a variational distribution parametrised by an inference network is used. Specifically, a

Gaussian family of the form given in (1.73) is specified where the input to the network is

a sequence of observations,

pθph0|Yq « qph0|hφpYqq “ N pµ, diag
`
σ

2qq, (3.58)

where Y denotes the full sequence for a single trajectory. In section 3.3, the sequence is

limited to the first K steps, with K being a hyperparameter. Since the distribution is only

over the initial state, it is reasonable for many problems to assume that only a truncated

sequence of steps are needed. However, as the observation function gets more complex

this gets harder to reason about.

The ELBO corresponding to the generative model in (3.54) and the variational poste-

rior in (3.58) follows directly from eq. (1.65). In particular, given a time-series from the

dataset in (3.47),

OELBOpθ, φ; Yq “ E
q

h0|Y
φ

”
log pθpY|h0q

ı
´ KL

“
q

h0|Y
φ ||ph0

‰
(3.59)

“ E
q

h0|Y
φ

«
Kÿ

k“1

log pθpyk| f ˝ Fk
θ ph0, ηqq

ff
´ KL

“
q

h0|Y
φ ||ph0

‰
, (3.60)

which is optimised with respect to the model parameters θ and variational parameters

φ using SVI (1.81). Specifically, the expected log-likelihood is computed by sampling

(eq. (1.78)) and the KL term is computed using eq. (1.77), from a batch of sequences.

3.3 Learning from Physical Systems (Experiments)

The results in this section extend the experiments from Saemundsson et al. [2020].

The work explores learning predictive models of physical dynamical systems using

VINs, and compares them to Neural-ODEs (N-ODEs) [E, 2017, Haber and Ruthotto,

2017, Chen et al., 2018], Hamiltonian neural networks (HNNs) [Greydanus et al., 2019]

and (recurrent) residual networks (ResNets) [He et al., 2016]. The learning problem

consists of time-series observations from eq. (3.47), originating from simulated La-

grangian/Hamiltonian ODEs. The aim is to learn the generative model in eq. (3.54),

including the dynamics Fθ and potentially nonlinear observation function fθ .

The first subsection (section 3.3.1) describes the problem setting in detail, including

the simulated systems and data generation. The next subsection (section 3.3.2) contains

experiments using noisy phase-space observations from physical systems. The final sub-

section (section 3.3.3) contains experiments using pixel (image) observations of physical

94

systems. The experiments study the following questions:

1. Do VINs preserve physical geometry? Variational integrators preserve physical

structure such as configuration manifolds, symplecticity and conservation laws (sec-

tion 3.1). The experiments evaluate the energy behaviour and the path of the learned

dynamics to assess these properties for VINs and the baselines.

2. Does the inductive bias improve data efficiency? To evaluate the quality of the in-

ductive bias imposed by VINs, we compare them to the baselines in terms of data-

efficiency.

3. Can VINs be used to learn physical representations from images? When the observa-

tion function in eq. (3.54) is nonlinear, the physical geometry can be used as a general-

purpose inductive bias in the latent space. As a proof-of-concept, section 3.3.3 looks at

learning VINs from pixel observations of physical systems.

Additional details about model architectures, hyperparameters, and data generation is

given in appendix B.

3.3.1 Problem Setting

Experimental Setup. To study the performance of VINs, data is generated from two

physical systems: (a) an ideal pendulum, and (b) an ideal mass-spring system. The La-

grangian/Hamiltonian for the pendulum system are given by

Lppq, 9qq “ Tpp 9qq ´ Uppqq “
1
2

mr2
9q2 ` mgp1 ´ cos qq, (3.61)

Hppq, pq “ Tpppq ` Uppqq “
1

2mr2 p2 ` mgpcos q ´ 1q, q P p´π, πq, (3.62)

where q, 9q, p are the angle (with respect to the vertical axis), angular velocity and angu-

lar momentum respectively; m is the mass of the pendulum bob, r is the length of the

pendulum and g is the acceleration due to gravity. The Lagrangian/Hamiltonian for the

mass-spring system are given by

Lmspq, 9qq “ Tmsp 9qq ´ Umspqq “
1
2

m 9q2 ´
1
2

kq2, (3.63)

Hmspq, pq “ Tmsppq ` Umspqq “
1

2m
p2 `

1
2

kq2, q P R, (3.64)

where q, 9q, p are the displacement, velocity and linear momentum respectively; m is the

mass, and k is the spring constant (stiffness of the spring). Since there is no friction and

no external forces, and neither Lagrangian (3.61)–(3.63) depends on time explicitly, the

path due to the equations of motion (EOM) from eq. (1.7) conserves the total energy of

variational integrator networks 95

the system from eq. (1.11), given by their Hamiltonians, eqs. (3.62), (3.64).

The systems are simulated using a 5th order Runge-Kutta method (RK45) [Dormand

and Prince, 1980], implemented in the SciPy package [Virtanen et al., 2020], to generate

trajectories of fixed length T,16 16 Note that T does
not have to equal K
from section 3.2.4.
The former denotes
the length of the data
trajectory whereas
the latter is a model
hyperparameter.

X “ pxtq, t “ 1, . . . , T, (3.65)

where xt “ pqt, ptq and the error tolerance is set at 10´9. The initial states were sampled

uniformly at random, bounded from above and below by energy to avoid pathological

behaviour. Details are given in appendix B. The sampling rate for the observations is set

at 0.1s{10Hz, which is typically larger than the step size of RK45 (which is adaptive).

Noise was added to the generated states to produce the observations used for learning,

yt “ xt ` ǫ d σx, (3.66)

where ǫ „ N p0, 12q, σx is an experimental parameter used to study noise-robustness and

d denotes element-wise multiplication.

Baselines. The baselines in section 3.3.2 are the N-ODE and HNN as described in

[Greydanus et al., 2019], and a recurrent ResNet as described in section 3.1.1. HNNs

are closely related to VINs since both function classes are restricted to Hamiltonian/

Lagrangian mechanics.17 The key difference between the two is that HNNs operate in

17 Technically, the HNN
presented in [Grey-
danus et al., 2019] is
formulated only in
terms of Hamiltonian
physics. The modifi-
cation of the same ap-
proach to Lagrangians
is explored in [Cranmer
et al., 2020b] but is
not included in the
experiments.

continuous-time like N-ODEs, eq. (3.7), whereas VINs operate in discrete-time. This is

similar to the relationship between N-ODEs and ResNets.

9h “ fθphq p 9q, 9pq “ pBp, ´BqqHθpq, pq

hk`1 “ hk ` η fθphtq pqk`1, pk`1q “ FH
θ pqk, pk, ηq

N-ODE HNN

ResNet VIN

δS “ 0PhysicalFree-form

Continuous-time

Discrete-time

Euler method

variational integrator

variational calculus

Figure 3.1: Relationship
between baselines and
VINs. N-ODE is a ODE
parametrised by a NN,
eq. (3.7). HNN adds
physical structure in
continuous-time. ResNet
is an Euler discretisation
of a N-ODE, eq. (3.13).
VIN is a discrete-time
counterpart to the HNN,
eq. (3.51).

Figure 3.1 illustrates the high-level relationships between the baselines and VINs. Note

96

that VINs are not a direct discretisation of HNNs but rather use variational integrators

which discretise Hamilton’s principle eq. (1.5), as described in section 3.2. However,

VINs are usefully thought of as the discrete-time counterpart to HNNs.18 18 Specifically, if one
assumes that the
Hamiltonian in the
HNN is separable and
given by a Newtonian
Hamiltonian, then a
VIN is obtained by
applying a suitable
discretisation. For
example the one given
in eq. (3.35).

3.3.2 Noisy Observations

This subsection compares VINs to N-ODEs, HNNs and ResNets in terms of data-efficiency

and qualitative forecasting behaviour. Data from the mass-spring system and pendulum

are generated according to eqs. (B.3)–(3.66). The VIN architecture used in this subsection

is the VIN-VV architecture from eq. (3.39). All the models use a single fully-connected

neural network FCNN eq. (1.30) with one hidden layer, consisting of 500 units, and soft-

plus activations [Zheng et al., 2015]. Softplus is chosen over the ReLU activation since

the HNN and VIN models require the gradients with respect to the inputs.19 19 The softplus can
be seen as a smooth
approximation to the
ReLU.Objective. The training objective is chosen as the squared error (L2) norm between pre-

dictions and observations to match the setup from [Greydanus et al., 2019]. However,

the N-ODE and HNN (continuous-time) differ from the ResNet and VIN (discrete-time)

models in terms of targets. Specifically, the continuous-time models are trained to pre-

dict the derivative observations,

LN-ODE “
ˇ̌
r 9q, 9ps ´ fθpq, pq

ˇ̌
2 , (3.67)

LHNN “
ˇ̌
r 9q, 9ps ´ rBp, BqsHθpq, pq

ˇ̌
2 , (3.68)

where | ¨ |2 is the L2 norm. In contrast, the discrete-time models predict a sequence of

states

LResNet “
Kÿ

k“1

ˇ̌
rqk`1, pk`1s ´

`
rqk, pks ` η fθpqk, pkq

˘ˇ̌
2 , (3.69)

LVIN “
Kÿ

k“1

ˇ̌
rqk`1, pk`1s ´ FH

θ pqk, pk, ηq
ˇ̌
2 . (3.70)

Note that in contrast to section 3.2.4, eq. (3.70) corresponds to assuming that the initial

condition is observed and that the noise variance in the likelihood from eq. (3.56) is

fixed. This is done to more closely match the setup for the continuous-time models. In

the experiments, K “ 9 is used for the VIN and ResNet models and the step size is

chosen as η “ 0.1, matching the sampling rate of the observations.20 The simulated 20 Preliminary experi-
ments were also run for
different values of K.
For K ě 20, the optimi-
sation during training
was found to get stuck
in bad local optima.
Values of K between
5 ´ ´10 were found
to work well in these
initial experiments.

sequences were generated in 10 step (1.0s) intervals to match the prediction horizon.

Training. The amount of training data is varied between T “ t40, 80, 120, 160, 200u steps

variational integrator networks 97

sampled at 10Hz. The amount of noise is varied between σx “ t0.1, 0.2, 0.3, 0.4u. For each

value of T and σx, the experiment is repeated for 10 different seeds producing differ-

ent training datasets. Equations (3.67)–(3.70) are then optimised using Adam [Kingma

and Ba, 2017], with a learning rate of 3ˆ10´4 and a batch size of 100. For each value of

T, a validation dataset of equal size to the training dataset is used for early stopping.

Specifically, training is stopped if no improvement is made on the validation dataset for

3 epochs or the maximum number of epochs 2ˆ104 is reached.

Evaluation. The models are compared quantitatively in terms of root-mean-squared-

error (RMSE) of predicted phase-space trajectories. Since the continuous- and discrete-

time models are trained on different observations and objectives, their comparisons

have confounding variables. However, the relative relationship between N-ODEs and

HNNs in contrast to ResNets and VINs is still informative, which is the main reason the

continuous-time baselines are included. The training, validation, and test datasets were

generated for each seed and kept fixed across the different models. No effort beyond

the random sampling of initial states was made to ensure that the test set did not have

significant overlap with the observed data. See appendix B.1 for more details about the

data.

For the continuous-time models, predictions are made by using the RK45 solver on

the learned models. For the discrete-time models, predictions are made by iteratively

using their respective update equations, (3.13) and eq. (3.39) respectively. All the mod-

els are evaluated on the same 25 trajectories, which are generated independently of the

training data and kept fixed across the random seeds also. The initial conditions for the

evaluation trajectories are given noise-free and the RMSE is computed for a 50´step{

5s prediction horizon. The qualitative evaluation is presented for 200´step{20s predic-

tion horizons. The difference is due to the erratic behaviour of the N-ODE and ResNet

models for longer prediction horizons which makes the RMSE diverge.

Data Efficiency. Figures 3.2 (a)–(b) summarise the quantitative results for the mass-

spring and pendulum system respectively. In the left column of the figures, each disc

corresponds to one experiment, across all noise levels, and the box-plot denotes the

minimum/maximum by the whiskers, and the 25´50´75th percentiles respectively. The

median (50th percentile) is the horizontal line in the middle of each box. In the right

column of the figures, each disc corresponds to the median of the highest and lowest

noise levels 0.1, 0.4 respectively. The models are differentiated by colour (and order on

the left), N-ODE (red), HNN (purple), ResNet (green) and VIN-VV (blue). Figure 3.2

98

shows that:

§ (a) Mass-spring system: The N-ODE performs best in terms of RMSE for low-noise

σx “ 0.1 and the VIN performs best for high-noise σx “ 0.4. This is seen by the

overall lowest median value for the N-ODE on the left and more explicitly by the

median plots on the right. Surprisingly, the N-ODE outperforms the HNN despite

its built-in physical structure (discussed below under Predictions and Energy). For the

lowest amount of training data (4s), the VIN model performs best overall, however

this performance is not robust to high noise levels σx “ 0.4. The ResNet performs

worst overall in terms of RMSE and also exhibits the highest variance.

§ (b) Pendulum system: As illustrated by the median plot on the right, the HNN per-

forms best in terms of RMSE for both low- and high-noise (σx “ 0.1, 0.4) experiments

given 12s of training data or more. For 4, 8s of training data, the HNN performs better

than the VIN in the low-noise experiments but worse in high-noise experiments. In

contrast to the mass-spring system, the N-ODE results are highly bi-modal, as seen in

the left column. At low-noise levels, the N-ODE performs on par with the VIN but at

high-noise levels it performs the worst as seen on the right. Excluding the high-noise

N-ODE results, the ResNet performs the worst and surprisingly exhibits an upwards

trend in RMSE with increasing data (discussed below under Predictions and Energy).

The key takeaway from fig. 3.2 comes from comparing the ResNet to the VIN. Clearly,

the introduction of physical structure improves data-efficiency in the discrete-time case.

This is evident at all data and noise amounts in fig. 3.2. Figure 3.2 also contains two

surprising results that are explored next: the N-ODE outperforms the HNN on the mass-

spring system and the ResNet performs worse with increasing amounts of data on the

pendulum system.

Predictions And Energy. To shed further light on the observations above, Figure 3.3

shows the predicted trajectories and associated energies for (a) the mass-spring system,

and (b) the pendulum system; for the experiments with 20s of training data and high

noise levels σx “ 0.4, and plotted in fig. 3.2. Each line for the model corresponds to one

of the 10 random seeds. The upper row shows the phase-space with the ground truth in

black and the model predictions in colour.

The initial state is given by a black disc and the final state by a cross (white for the

ground truth and in colour for the model). The lower row shows the energy, given by the

Hamiltonian in eq. (3.64) for the model (colour) and the ground truth (black). Compar-

ing the N-ODE (left-most) to the HNN (second-to-left) partly explains why the former

variational integrator networks 99

5

10

4.0 8.0 12.0 16.0 20.0
0

1

2

3

Training Data (s)

RMSE

4.0 8.0 12.0 16.0 20.0

0

1

2

3

Training Data (s)

RMSE

(a) Mass-spring system.

10

20

4.0 8.0 12.0 16.0 20.0
0

1

2

3

4

Training Data (s)

RMSE

4.0 8.0 12.0 16.0 20.0

0.5

1.0

1.5

2.0

2.5

Training Data (s)

RMSE

(b) Pendulum system.

M-Q-M

Exp.

N-ODE HNN ResNet VIN-VV

σx = 0.1

σx = 0.4

N-ODE HNN ResNet VIN-VV

Figure 3.2: RMSE across varying noise levels σx “ r0.1, 0.2, 0.3, 0.4s, amount of training data and 10 random seeds; on (a) the
mass-spring system and (b) the pendulum system. The left column shows each experiment as a coloured disc for the differ-
ent models: N-ODE (red), HNN (purple), ResNet (green), VIN (blue). The box-plots denotes the minimum/maximum by
the whiskers, and the 25´50´75th percentiles respectively. The median (50th percentile) is the horizontal line in the middle
of each box. The RMSE axis is broken to account for outliers in the scaling. The right column plots the median (trend) of
the highest and lowest noise levels (0.1, 0.4). Adding physical structure in the discrete-time case is clearly advantageous on
both systems, as seen by comparing ResNets (green) to VINs (blue) on both the left and right.

100

outperforms the latter in terms of RMSE. The N-ODE model evolves on paths pq, pq that

dissipate or add energy as seen in the lower row. In contrast, the HNN evolves on paths

that oscillate around the true energy.

Looking at the final state only, i.e. the crosses in the upper row, it is qualitatively

clear that the N-ODE can be closer in RMSE to the ground truth final state (white cross)

despite evolving on non-physical (energy diverging) trajectories.21 This is because the 21 The RMSE is aver-
aged across all states,
however, the final state
is easier to compare
visually.

the RMSE is computed in terms of Euclidean distance so that points off the manifold

can achieve lower error. The VIN model also oscillates around the true energy but per-

forms better in terms of RMSE in this setting. One of the key differences between the

two is that the VIN uses a sequence of steps for learning. Therefore it is reasonable to

think that the HNN would perform better if it were trained on sequences. Figure 3.3

(b) shows the predicted trajectories and associated energies for the pendulum system.

Since the pendulum has more complicated dynamics than the mass-spring system (non-

linear vs. linear forces), the diverging energy behaviour of the N-ODE can lead to highly

erratic predictions. This is clear from both the phase-space and the energy plots. In a

few experiments, it learns near-stable trajectories similar to the ones in the mass-spring

system. This is the reason for the bi-modal RMSE results for the N-ODE in fig. 3.2.

Looking at the ResNet plots in fig. 3.3 (b) it is evident that it exhibits the same dis-

sipating behaviour as in the mass-spring system. Since fig. 3.2 is given for a prediction

horizon of 5s, the dissipating behaviour explains the degraded performance with in-

creased data. Figure 3.4 makes this explicit. The columns show the energy behaviour

on the pendulum system for increasing amounts of training data (left-to-right), for the

ResNet and the VIN models (rows). As the training data increases, more experiments for

the ResNet converge to a model that quickly dissipates energy to zero.

One hypothesis for the dissipation behaviour of the ResNet is that multiple Euler steps

favour vector fields that dissipate energy on average over the training horizon. However,

as the prediction horizon goes beyond the training horizon, the dissipation errors then

accumulate.

variational integrator networks 101

−5 0 5

-5

0

5

−5 0 5 −5 0 5 −5 0 5

q

p

0 10 20

4

7

10

14

0 10 20 0 10 20 0 10 20

Time (s)

Energy (J)

(a) Mass-spring system.

−5 0 5

-5

0

5

−5 0 5 −5 0 5 −5 0 5

q

p

0 10 20

10

20

29

0 10 20 0 10 20 0 10 20

Time (s)

Energy (J)

(b) Pendulum system.

Figure 3.3: (Top) Phase space plots of predictions for a single test trajectory and 10 random seeds, given 20s of training data
corrupted with high levels of noise σx “ 0.4; for (a) the mass-spring and (b) pendulum systems. The true system is plotted
in black and the models are plotted in colour. The initial condition is given by a disc and the final state by a cross (white for
the true system and coloured for the models). (Bottom) The energy associated with the evolution given by the top row. The
HNN (purple) and VIN (blue) evolve on a symplectic trajectory like the true system. The N-ODE (red) and ResNet (green)
artificially add or remove energy. This can lead to significant failures, e.g. the N-ODE model on the pendulum system or
the ResNet on both systems.

102

6

19

32

0 10 20

6

19

32

0 10 200 10 200 10 200 10 20
Time (s)

Energy (J)
4.0s 8.0s 12.0s 16.0s 20.0s

True Sys. ResNet VIN-VV

Figure 3.4: Energy be-
haviour of the ResNet
(top, green) and the VIN
(bottom, blue) models
with increasing amounts
of training data, from
left-to-right, for each of
the 10 random seeds.
With increasing data, the
ResNet is more likely
to converge to a model
that quickly dissipates
energy to 0. The VIN
model oscillates around
the true energy with
decreasing variance.

The key takeaway from figures 3.3–3.4 is that VINs approximately conserve energy and

avoid the diverging energy problem exhibited by the ResNet. As shown in fig. 3.2, the

dissipation of energy for the ResNet model means that predictions for a 5s horizon get

worse with increasing data when the model is trained on a 0.9s horizon.

3.3.3 Pixel Observations

This subsection studies VINs in a variational auto-encoder (VAE) setting, which adds an

auxiliary image processing task to prediction. The motivation is an interest in explor-

ing the use of VINs for more general-purpose representation learning. The observations

consist of 28 ˆ 28 ˆ 1 greyscale pixel images depicting the mass-spring and pendulum

systems (fig. 3.5). A detailed description of the data generation process is given in ap-

pendix B.2.

Figure 3.5: Illustration of pen-
dulum pixel observations at
different times t1, t2, t3. The
faded pendulums are shown
only to indicate the dynamic
nature of the system. The
actual observations are also
greyscale.

Learning physically structured representations from images is a challenging task [Grey-

danus et al., 2019, Toth et al., 2019]. In the experiments, we mainly compare VINs to

variational integrator networks 103

ResNets and do not implement the Pixel-HNN from Greydanus et al. [2019]. The reason

for this is that the authors rely on an Euler discretisation and an auxiliary loss term to

enforce the phase-space structure in latent space, which does not easily extend to the

multi-step training setup considered here. This is one of the benefits of working with

discrete-time formulations that preserve the physical structure automatically.

Another potential baseline would be Hamiltonian generative networks (HGNs) from

Toth et al. [2019], since the authors also use explicit (symplectic) integrators for Hamilto-

nian systems in a VAE setup. However, for the hyperregular systems considered in the

thesis, the latent dynamics defined by VINs and HGNs are practically equivalent. Since

HGNs are more readily applied to non-separable systems (in this case the dynamics are

not explicit), it can also be seen as a more general approach than the one taken here.22 22 One key difference
between the two is
that VINs preserve
momentum maps
in addition to being
symplectic. However,
momentum maps are
not explored in the
experiments.

To study VINs, we implement all three network architectures from section 3.2. For the

mass-spring system, the VIN-SV from eq. (3.36) is used for the dynamics. For the pen-

dulum, both the VIN-VV from eq. (3.39) and the VIN-SOp2q are used. The main baseline

is a recurrent residual network (3.13) (ResNet), having the same number of layers as

the VINs. For qualitative results, the results also include a standard VAE [Kingma and

Welling, 2014, Jimenez Rezende et al., 2014], and a VAE with the SOp2q constraint given

in eq. (B.11) (VAE-SOp2q). The latent configuration space for the VIN models is chosen as

1D, so that the discrete phase spaces are 2D. The latent space for the ResNet is chosen as

2D to match the size of the discrete phase spaces. The training (and inference) horizon K

is chosen as 9 in all the experiments.

A detailed description of the baseline models is given in appendix B.2.

§ Training: The VIN and ResNet are trained using the ELBO from eq. (3.60). The VAE

and VAE-SOp2q are trained using the ELBO from eq. (1.70). All models are optimised

using Adam [Kingma and Ba, 2017] with a learning rate of 3 ˆ 10´4 and a batch size of

200. For quantitative results, the experiments are repeated for 10 random seeds and the

results are averaged. No validation data is used for early stopping. Training is stopped if

no improvement is made on the training data for 10 epochs or the maximum number of

epochs 5ˆ104 is reached.

Qualitative Intuition. The structure of the latent space learned by the VIN models

is compared qualitatively to a standard VAE, a VAE with the SOp2q constraint given in

eq. (B.11) (VAE-SOp2q) and the ResNet. For the VAE and VAE-SOp2q, the models consist

only of the first inference network h1
φ and the observation model fθ from fig. B.1.

Figure 3.6 visualises the latent spaces after training on 25s (250 observations), consist-

104

ing of 5 simulated trajectories of the pendulum system with 5s of data (50 observations)

each. After learning the models, the observations from 5 test trajectories with 10s (100

observations) each are mapped into latent space using the inference network hφ. For the

ResNet and VIN models, 1s (10 observations) from the test trajectories are used for ap-

proximate inference of the initial condition and the sequence is predicted by the dynam-

ics model. For the VAE and VAE-SOp2q, the inference network is used for prediction for

observations. The black discs denote mean values of the training data and the coloured

triangles denote mean values of the test data. The grey lines show the dynamics as they

evolve in pixel space. The main points from fig. 3.6 are:

§ The ResNet (top-left) exhibits diverging energy/phase space behaviour, analogous to

the experiments from section 3.3.2. This is evident from the scale of the axes.

§ The VAE (top-middle) captures local structure: observations close together in image

space are mapped to points close together in latent space. However, it fails to cap-

ture the global structure of the state space and has discontinuities with respect to the

sequential nature of the dataset.

§ The VAE-SOp2q (top-right) captures the correct global structure for the pendulum

by restricting the manifold, but still exhibits discontinuities with respect to the time

dimension, since it does not model the dynamics.

§ The VIN models (bottom row) all learn latent representations consisting of elliptical

or circular trajectories without discontinuities or diverging energy behaviour in the

dynamics. The fact that the circles/ellipses are of different size reflects the fact that

the true model is not uniquely identified.

Forecasting. To assess the models quantitatively, experiments are run on the mass-

spring and pendulum systems and the predictive performance is measured in pixel-

space, in terms of RMSE and log-likelihood. For both systems, 6s of training data (60

observations) from a single simulated trajectory is used to learn the models. Evaluation

is then performed by measuring extrapolation performance (in time) on the same tra-

jectory. Specifically, the models are trained using a 0.9s (9-step) prediction horizon—i.e.

the 6s is broken up into 0.9s batches—but the quantitative evaluation is performed on

5s (50-step) predictions on the same trajectory. This is done to isolate properties of the

dynamics model, rather than evaluate the generalisation performance of the full model,

i.e. including the observation and inference models fθ , hφ. A qualitative analysis of 20s

predictions is also included to explore the long-term behaviour of the latent dynamics.

Table 3.1 shows the quantitative results with standard errors from 10 random seeds.

variational integrator networks 105

0.0 2.5 5.0 7.5

×10
21

−1.5

−1.0

−0.5

0.0

×10
22

−2 0 2

−2

−1

0

1

2

−1 0 1

−1.0

−0.5

0.0

0.5

1.0

−5 0 5

−5

0

5

−2 0 2

−0.4

−0.2

0.0

0.2

0.4

−1 0 1

−1.0

−0.5

0.0

0.5

1.0

ResNet

VIN-SV

VAE

VIN-VV

VAE-SO(2)

VIN-SO(2)

Figure 3.6: The structure of the learned latent space (2D), given 28 ˆ 28 images of a pendulum in motion; for the ResNet
(top-left), VAE (top-middle), VAE-SOp2q (top-right), VIN-SV (bottom-left), VIN-VV (bottom-middle), VIN-SOp2q (bottom-
right). The black discs denote the mean of training observations encoded into latent space, and the coloured triangles de-
note the mean of observations from test trajectories. The grey lines plot the dynamics in pixel space, i.e. they connect points
in latent space corresponding to neighbouring points in time. In the top row, the two axes represent the 2D Euclidean latent
spaces. In the bottom row, the VIN-SV (left) plots the position coordinate on the horizontal axis, and the change in position
on the vertical axis. The VIN-VV (middle) plots the position on the horizontal axis and the momentum on the vertical axis.
The VIN-SOp2q (right) plots the sin, cos of the position on the horizontal/vertical axis respectively, representing eq. (B.11).
(Top) The ResNet trajectory diverges due to the form of the Euler method. The VAE does not capture the underlying circle
manifold, whereas the VAE-SOp2q captures the circle by construction. However, neither models the underlying dynamics.
(Bottom) The VIN models all capture physically structured manifolds due to their inductive bias. The VIN-SV traverses
elliptical paths in latent space, whereas the VIN-VV and VIN-SOp2q are both circular. The VIN-VV maps to circles with a
different radius for each trajectory but the VIN-SOp2q maps all trajectories to the unit length circle by construction.

106

The VIN models perform significantly better than the ResNet in terms of both RMSE

and log-likelihood. The VIN-SOp2q shows a meaningful improvement in terms of log-

likelihood when compared to the VIN-VV on the pendulum system, whereas the RMSE

is inconclusive.

To explore the results in more detail we look at examples of the predictions in pixel

space and the corresponding evolution in latent space. Figure 3.7 plots example predic-

tions from the ResNet (green), VIN-VV (blue), VIN-SOp2q (yellow) and VIN-SV (orange)

on the pendulum system (left), and the corresponding latent space evolution (right). The

System Model RMSE log ppy|xq ˆ 102

ResRNN 6.1 ˘ 0.2 ´246.7 ˘ 79.2
Pendulum VIN-VV 4.3 ˘ 0.6 ´13.4 ˘ 5.8

VIN-SOp2q 3.4 ˘ 0.6 ´3.2 ˘ 1.9
Mass- ResRNN 6.1 ˘ 0.1 ´4.7 ˘ 2.4
spring VIN-SV 3.2 ˘ 0.2 ´0.2 ˘ 0.0

Table 3.1: RMSE and
log-likelihood (with
˘1 standard errors)
for the pendulum
and mass-spring
systems over 5s

forecasts on pixel
observations.

ResNet does not learn dynamics that match the geometric properties of the true system

(i.e. symplectic) but instead spirals away from the initial condition (denoted by the large

circle). This is because the Euler discretisation scheme used by residual networks ignores

the underlying geometry. On the other hand, both the VIN-VV and the VIN-SOp2q mod-

els automatically preserve symplectic structure and evolve strictly on a sub-manifold

in their respective latent phase-spaces. Importantly, while the flexibility afforded by the

decoder allows the ResNet setup to generate plausible observations up to some fixed

horizon, the unbounded behaviour of the evolution eventually causes significant failures.

Conversely, the VINs do not exhibit such non-physical behaviour, since the latent path

remains bounded on the data manifold despite forecasting for effectively arbitrary long

horizons. The VIN-VV does display signs of going out of phase with the ground truth

around 15s in fig. 3.7, becoming more pronounced around the 20s mark. One explana-

tion is that we only consider the path traversed by the mean of the variational posterior,

and ignore the build-up in uncertainty as the prediction horizon increases. However,

looking at the same reconstructions from the VIN-SOp2q model, we see that it does not

suffer from this problem within the 20s prediction horizon. Therefore, another potential

explanation for the error comes from assuming an Euclidean manifold.

variational integrator networks 107

Figure 3.7: Example predictions in pixel space for the pendulum (left) and the associated paths in latent space for each
model (right). Due to the diverging behaviour of the ResNet (green), the predictions in pixel space exhibit discontinuous
and otherwise erratic behaviour such as disappearing. The VIN-VV (blue) evolves on a physically structured manifold in
latent space, producing coherent predictions in pixel space. However, after 15s, it is out of phase with the true system. The
VIN-SOp2q remains faithful to the true system after 20s due to the additional constraint to the SOp2q manifold.

3.4 Related Work

The work in this chapter can be seen as part of a growing body of research on structural

or scientific machine learning [Battaglia et al., 2016, 2018, Rahaman et al., 2020, Willard

et al., 2020, Rackauckas et al., 2020]. In particular, it combines the perspective of neural

ODEs [Haber and Ruthotto, 2017, E, 2017, Chen et al., 2018, Chang et al., 2018, Ruthotto

and Haber, 2018], learning physical ODEs [Solin et al., 2018, Bapst et al., 2019, Lutter

et al., 2019, Raissi et al., 2019, Greydanus et al., 2019, Ehrhardt et al., 2018, Champion

et al., 2019], and learning geometric embeddings [Chamberlain et al., 2017, Nickel and

Kiela, 2017, Ganea et al., 2018, Davidson et al., 2018].

Closely related to VINs are Hamiltonian neural networks (HNNs) by Greydanus et al.

[2019], and later Lagrangian neural networks (LNNs) [Cranmer et al., 2020b], which

can be seen as the continuous-time counterparts to VINs, see fig. 3.1. In Greydanus

et al. [2019], the authors learn a Hamiltonian from noise-free derivative observations

and noisy phase-space observations of physical systems. In contrast, VINs are explicitly

discrete-time systems. However, both approaches preserve physical structure as demon-

strated empirically in section 3.3.2.

108

A benefit of using the continuous-time formulation is that sophisticated ODE solvers

can be used to evolve the dynamics once they are learned. Conversely, requiring that

derivative observations are available is a limitation. For example, to learn HNNs from

images, the authors introduce an auxiliary loss term to enforce that the latent space

approximately take the shape of a phase-space. Practically, this involves evolving the

dynamics by one-step in the latent space in discrete-time.23 23 In the current (Au-
gust, 2021) implemen-
tation found online at:
github.com/greydanus

/hamiltonian-nn, this
is achieved by an Euler
step.

Discretisation is considered more explicitly by Toth et al. [2019] in developing Hamil-

tonian generative networks (HGNs). In this work Hamilton’s EOM are used to construct

flexible generative models, similar to the image setup in [Greydanus et al., 2019] and the

VIN models in section 3.3.3. Crucially, the authors use a symplectic integrator to evolve

the dynamics to ensure that the latent space corresponds to a phase-space. By replac-

ing the symplectic integrator used in [Toth et al., 2019] with a variational integrator, the

models are very similar for separable Lagrangian/Hamiltonian systems.24 However, 24 This refers to the
model in section 3.2 in
Toth et al. [2019] The
work also considers
generative flows which
are not considered in
this chapter.

Toth et al. [2019] also consider generative flows, and the authors propose methods for

dealing non-separable systems. Thus, the work is relevant to much more general sys-

tems. Other interesting works using symplectic integrators are found in [Chen et al.,

2019, Mattheakis et al., 2019].

The work in [Zhong and Leonard, 2020] also considers learning Lagrangian systems

from images in an unsupervised manner, where the systems are both non-separable and

include control forces. Similarly, the work in [Allen-Blanchette et al., 2020] develops a

video prediction model based on a non-separable Lagrangian system. Clearly, both ap-

proaches are applicable to more general systems than the developments in this chapter.

An overview of related approaches is also given in a recent paper by Botev et al. [2021].

Another related approach is found in Lutter et al. [2019], which proposes an archi-

tecture that imposes Lagrangian mechanics, and is optimised to minimize the deviation

from the of the Euler-Lagrange EOM. A similar idea is also used in [Raissi et al., 2019]

to learn general non-linear differential equations from physics. A potential drawback of

encoding physical plausibility through the loss function is the need for training data that

reasonably covers the configuration space. In other words, physical structure is only pre-

served in areas of phase space where the loss is equal to zero. In contrast, VINs preserve

physical structure automatically. Conversely, both approaches [Lutter et al., 2019, Raissi

et al., 2019] apply to a more general class of physical systems.

variational integrator networks 109

3.5 Summary & Discussion

The work in this chapter connects the theory of variational integrators to the design

of physically structured NNs. The resulting network architectures are called varia-

tional integrator networks (VINs). Analogous to the view of ResNets as Euler discre-

tised N-ODEs, VINs are derived by parametrising Hamilton’s principle through the

Lagrangian and discretising the system with a variational integrator (section 3.2). Varia-

tional integrators, and therefore VINs, preserve important physical structures:

§ Symplecticity, a measure of signed area which also implies conserved phase-space

volume. Hamiltonian/Lagrangian flows are symplectic;

§ Momentum maps, that correspond to conservation laws and conserved quantities;

§ Lie group structure (when defined on Lie groups) of the configuration manifold.

Results. To explore this idea, section 3.2.1 derives VINs for Newtonian physics and

section 3.2.4 proposes a framework for learning them from observations. Three vari-

ants of Newtonian networks are derived: one from a Lagrangian perspective (VIN-SV),

one from a Hamiltonian perspective (VIN-VV) and one that is constrained to the SOp2q

manifold (VIN-SOp2q).

Figure 3.2 demonstrates clearly that VIN-VV improves data efficiency in compari-

son to the unstructured ResNet baseline; in terms of RMSE generalisation performance

across varying levels of noise for the mass-spring and pendulum systems. Figure 3.3

shows how the VIN-VV is symplectic and approximately conserves energy. Finally, fig-

ures 3.6–3.7 and table 3.1 give indicative results that VINs can be used to learn physical

latent spaces from pixel observations.

Limitations. The main limitation of VINs, as presented in section 3.2, is that the under-

lying integrator is required to be explicit. For example, if the Lagrangian/Hamiltonian

is not separable, then it is not possible to derive an explicit update equation. In contrast,

several related works [Toth et al., 2019, Zhong and Leonard, 2020, Allen-Blanchette et al.,

2020] are more readily adapted to more general settings. However, it should be noted

that this is not a limitation of variational integrators in general.

The experiments in section 3.3 are also limited. In particular, only the ResNet model

is evaluated as a discrete-time baseline, when many interesting physically structured

neural networks have been proposed in the literature [Botev et al., 2021]. From this point

of view, the results only validate that having physical structure is more data efficient

110

than not, assuming it is present in the true system. Similarly, the experiments on pixel

observations are only performed with the correct latent dimension given to the model,

so no indication of whether or not VINs can discover the true dimension is uncovered.

Further, the experiments do not measure generalisation of the full model, but only the

properties of the dynamics in data-scarce regimes.

Future Research. VINs give a theoretically principled approached to deriving phys-

ically structured network architectures from continuous-time systems. However, the

theory in this chapter is limited to simple systems. One way to extend VINs would be

to use implicit integrators. When the integrator is not explicit, evolving the dynamics

requires fixed-point algorithms. However, commonly, only a few iterations of Newton’s

algorithm are required to solve for the next step [West, 2004] and highly efficient solu-

tions have been developed in terms of the number of bodies/particles [Lee et al., 2020].25

25 This means that a
naive but perhaps
practically viable ap-
proach to extending the
work in this chapter is
simply to implement a
few steps of Newton’s
algorithm as part of the
model.

This chapter only considered learning from physical systems. However, the structure

of conservation laws and configuration manifolds might also be useful for more general-

purpose representation learning [Higgins et al., 2018]. This is explored by Toth et al.

[2019], for example, the symplectic nature of the flow is used to define efficient26 flow- 26 Since phase-space
volume is conserved,
the distribution does
not have to be nor-
malised despite being
transformed by po-
tentially nonlinear
dynamics. This re-
quires that the discrete
flow be reversible, e.g.
the VIN-SV model
which can trivially
be rearranged for the
reverse flow.

based generative models with added interpretability.

conclusion 111

4

Conclusion

Life can only be understood backwards; but it must be lived forwards.

—Søren Kierkegaard.

This thesis explored conservation laws as inductive biases in the context of learning

predictive models of physical dynamical systems. The main aim was to improve data

efficiency by encoding relevant assumptions into the learning algorithm.

Chapter 2 identified conserved quantities that explicitly parametrise physical systems

(e.g. length, mass) with a latent task variable. By combining these with a global model

shared across many tasks, the derived models can be used for multi-task, transfer and

meta-learning of physical dynamical systems–thereby improving data efficiency.

Chapter 3 considered conservation laws and conserved quantities more generally in

the form encoding geometric mechanics into neural networks. The resulting variational

integrator networks (VINs) are shown to improve data efficiency when learning noisy

data, and limited results are presented that show that they can be used to learn physical

latent spaces from image observations.

Is the theory developed in the thesis practically relevant? Without further work—no.

However, learning accurate predictive models of physical dynamical systems has a large

number of application areas in the general case, a prime example being model-based

reinforcement learning (RL) for robotics [Polydoros and Nalpantidis, 2017]. From this

perspective, an interesting idea might be to combine the ideas from the two chapters.

Generally speaking, extending the ideas to practically relevant settings would require

addressing some fundamental limitations.

112

Task Representations and Physical Geometry

One aspiration for combining the ideas from chapters 2–3 would be to achieve data

efficiency gains from both. The general aim being to use multi-task and transfer learning

to share information between predictive models with inbuilt physical structure. Since

VINs explicitly contain system parameters such as mass and length, these can naturally

be treated as the dimensions of a latent task variable. Similarly, the global model can be

identified with the laws of physics, as specified by the VIN.1 1 For example, the mass
parameters in eq. (3.36)
could be treated as the
latent task variable and
the global parameters
would model the
potential function.

The methods developed in chapter 2 for multi-task and transfer learning then apply

directly to the models developed in chapter 3—with the exception that the global model

is not treated probabilistically. Theoretically, however, using the task variable for multi-

task and transfer learning does not require a probabilistic global model.2 This combina-

2 One could also con-
sider using variational
integrators with Gaus-
sian processes.

tion would then allow for transfer learning by inferring only the physical parameters of

a new system, and reusing the rest of the model.

In order to apply the combination of ideas to RL problems, it is necessary to consider

how control forces affect the form of the VINs.3 Since the VINs considered in chap-

3 Since the models in
chapter 2 are not ex-
plicitly physical, the
control forces could
simply be added as
additional input di-
mensions, see eq. (2.2).

ter 3 do not account for dissipative forces (e.g. control forces), it is not possible to di-

rectly apply them to the RL setting considered in chapter 2. However, follow up work by

Hochlehnert et al. [2021] addresses the question of how to introduce dissipative forces.4

4 As well as contact
forces/collisions.

Overall, the work in chapters 2–3 is only applicable to relatively simple physical sys-

tems. In chapter 2, this is exemplified by the use of low dimensional latent spaces, repre-

senting only a few system parameters. Additionally, the use of Gaussian processes poses

potential scalability issues. In chapter 3, a key limitation is the requirement for explicit

variational integrators, representing separable Lagrangian/Hamiltonian systems. In light

of these, some suggestions for potential future work are outlined below.

Limitations

Scalability. The Gaussian process (GP) model used in chapter 2 makes strong indepen-

dence assumptions about the output dimensions for reasons of computational tractabil-

ity. Scaling GPs to large dimensional systems is non-trivial, however, many potential

approaches are available [Eriksson et al., 2018, Zhe et al., 2019, Pandita et al., 2019, Liu

et al., 2020, Padidar et al., 2021]. Alternatively, neural processes [Garnelo et al., 2018]

give a more scalable alternative that retains the probabilistic framework.

Dimension of Latent Task Space. The latent task spaces considered in chapter 2

conclusion 113

were only 2-dimensional. Since these represent the system parameters, it is reasonable to

assume that higher dimensional latent spaces would be required. At the same time, the

approach requires that the latent task space be meaningfully aligned with the true task

space. From this perspective, approaches from disentangled representations [Higgins

et al., 2018, Achille and Soatto, 2018, Anselmi et al., 2016] offer a potential way forward.

Simple Physics. The physics modelled by the VINs in chapter 3, is not general enough

to be practically relevant. However, VINs have already been extended to physics beyond

the work in this chapter. Desai and Roberts [2020] propose variational integrator graph

networks (VIGNs), i.e. a combination of VINs and graph NNs. Hochlehnert et al. [2021]

add dissipation and contact forces to VINs. Havens and Chowdhary [2021] propose

forced VINs (FVINs) to learn predictive modelling and control of mechanical systems.

Many options have not been explored at the time of writing.5 For example, variational 5 August, 2021

integrators exist for highly complicated rigid-body robotic systems defined on Lie group

product manifolds [Lee et al., 2020], for Maxwell’s equations [Stern et al., 2008], for par-

tial differential equations [Kraus and Maj, 2015] and fluids [Liu et al., 2015] and for

stochastic physical systems [Bou-Rabee and Owhadi, 2009], to name a few.

114

Bibliography

Alessandro Achille and Stefano Soatto. Emergence of invariance and disentanglement in

deep representations. The Journal of Machine Learning Research, 19(1):1947–1980, 2018.

Amina Adadi. A survey on data-efficient algorithms in big data era. Journal of Big Data, 8

(1):24, January 2021. ISSN 2196-1115. doi: 10.1186/s40537-021-00419-9.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,

Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al.

Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational

information bottleneck. arXiv preprint arXiv:1612.00410, 2016.

Christine Allen-Blanchette, Sushant Veer, Anirudha Majumdar, and Naomi Ehrich

Leonard. Lagnetvip: A lagrangian neural network for video prediction. arXiv preprint

arXiv:2010.12932, 2020.

Mauricio A. Àlvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for vector-valued

functions: A review. Foundations and Trends in Machine Learning (FTML), 4(3):195, 2012.

James R Anderson and Carsten Peterson. A mean field theory learning algorithm for

neural networks. Complex Systems, 1:995–1019, 1987.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau,

Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gra-

dient descent by gradient descent. In Advances in neural information processing systems,

pages 3981–3989, 2016.

Fabio Anselmi, Lorenzo Rosasco, and Tomaso Poggio. On invariance and selectivity in

representation learning. Information and Inference: A Journal of the IMA, 5(2):134–158,

2016.

bibliography 115

Kendall Atkinson, Weimin Han, and David E. Stewart. Numerical Solution of Ordinary

Differential Equations. John Wiley & Sons, October 2011. ISBN 978-1-118-16452-5.

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston.

Variational image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436,

2018.

Victor Bapst, Alvaro Sanchez-Gonzalez, Carl Doersch, Kimberly Stachenfeld, Pushmeet

Kohli, Peter Battaglia, and Jessica Hamrick. Structured agents for physical construc-

tion. In International Conference on Machine Learning, pages 464–474. PMLR, 2019.

Peter W Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray

Kavukcuoglu. Interaction networks for learning about objects, relations and physics.

arXiv preprint arXiv:1612.00222, 2016.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius

Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro,

Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph networks.

arXiv preprint arXiv:1806.01261, 2018.

J. Baxter. A Model of Inductive Bias Learning. Journal of Artificial Intelligence Research, 12:

149–198, March 2000. ISSN 1076-9757. doi: 10.1613/jair.731.

FRS Bayes. An essay towards solving a problem in the doctrine of chances. Biometrika, 45

(3-4):296–315, 1958.

Y. Bengio, S. Bengio, and J. Cloutier. Learning a synaptic learning rule. In IJCNN-91-

Seattle International Joint Conference on Neural Networks, volume ii, pages 969 vol.2–, July

1991. doi: 10.1109/IJCNN.1991.155621.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review

and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35

(8):1798–1828, 2013.

CM Berners-Lee. Cybernetics and forecasting. Nature, 219(5150):202–203, 1968.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for

statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

Aleksandar Botev, Andrew Jaegle, Peter Wirnsberger, Daniel Hennes, and Irina Higgins.

Which priors matter? benchmarking models for learning latent dynamics. 2021.

116

Nawaf Bou-Rabee and Houman Owhadi. Stochastic variational integrators. IMA Journal

of Numerical Analysis, 29(2):421–443, 2009.

George EP Box. Science and statistics. Journal of the American Statistical Association, 71

(356):791–799, 1976.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geomet-

ric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint

arXiv:2104.13478, 2021.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoen-

coders. arXiv preprint arXiv:1509.00519, 2015.

Joaquin Quinonero Candela, Agathe Girard, Jan Larsen, and Carl Edward Rasmussen.

Propagation of uncertainty in bayesian kernel models-application to multiple-step

ahead forecasting. In 2003 IEEE International Conference on Acoustics, Speech, and Signal

Processing, 2003. Proceedings.(ICASSP’03)., volume 2, pages II–701. IEEE, 2003.

Rich Caruana. Multitask Learning. Machine Learning, 28(1):41–75, July 1997. ISSN 1573-

0565. doi: 10.1023/A:1007379606734.

Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. Neural embed-

dings of graphs in hyperbolic space. arXiv preprint arXiv:1705.10359, 2017.

Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Data-driven

discovery of coordinates and governing equations. Proceedings of the National Academy

of Sciences, 116(45):22445–22451, November 2019. ISSN 0027-8424, 1091-6490. doi:

10.1073/pnas.1906995116.

Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Re-

versible architectures for arbitrarily deep residual neural networks. In AAAI Conference

on Artificial Intelligence, 2018.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordi-

nary differential equations. arXiv preprint arXiv:1806.07366, 2018.

Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schul-

man, Ilya Sutskever, and Pieter Abbeel. Variational lossy autoencoder. arXiv preprint

arXiv:1611.02731, 2016.

Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent

neural networks. arXiv preprint arXiv:1909.13334, 2019.

bibliography 117

Ronan Collobert and Jason Weston. A unified architecture for natural language pro-

cessing: Deep neural networks with multitask learning. In Proceedings of the 25th

International Conference on Machine Learning, ICML ’08, pages 160–167, New York, NY,

USA, July 2008. Association for Computing Machinery. ISBN 978-1-60558-205-4. doi:

10.1145/1390156.1390177.

National Research Council, Physics Survey Overview Committee, et al. Physics in a new

era: An overview. 2001.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based in-

ference. Proceedings of the National Academy of Sciences, 117(48):30055–30062, December

2020a.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and

Shirley Ho. Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020b.

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational

autoencoders. In International Conference on Machine Learning, pages 1078–1086. PMLR,

2018.

Imre Csiszár. I-divergence geometry of probability distributions and minimization

problems. The annals of probability, pages 146–158, 1975.

P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay. Chaos: Classical and Quan-

tum. Niels Bohr Inst., Copenhagen, 2016.

Zhenwen Dai, Mauricio A. Álvarez, and Neil D. Lawrence. Efficient modeling of latent

information in supervised learning using Gaussian processes. In Neural Information

Processing Systems (NIPS). 2017.

Andreas Damianou and Neil D. Lawrence. Semi-described and semi-supervised learning

with Gaussian processes. Uncertainty in Artificial Intelligence (UAI), 2015.

Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M. Tomczak.

Hyperspherical variational auto-encoders. In Uncertainty in Artificial Intelligence, 2018.

M. Deisenroth, D. Fox, and C. Rasmussen. Gaussian Processes for Data-Efficient Learn-

ing in Robotics and Control. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 2015. doi: 10.1109/TPAMI.2013.218.

118

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient ap-

proach to policy search. In Proceedings of the 28th International Conference on machine

learning (ICML-11), pages 465–472. Citeseer, 2011.

Marc P. Deisenroth, Peter Englert, Jan Peters, and Dieter Fox. Multi-task policy search

for robotics. In IEEE International Conference on Robotics and Automation (ICRA), 2014.

Marc Peter Deisenroth. Efficient reinforcement learning using Gaussian processes, volume 9.

KIT Scientific Publishing, 2010.

Shaan Desai and Stephen Roberts. Vign: Variational integrator graph networks. arXiv

preprint arXiv:2004.13688, 2020.

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain markov process

expectations for large time. IV. Communications on Pure and Applied Mathematics, 36(2):

183–212, 1983. ISSN 1097-0312. doi: 10.1002/cpa.3160360204.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae.

Journal of computational and applied mathematics, 6(1):19–26, 1980.

Finale Doshi-Velez and George Konidaris. Hidden parameter Markov decision processes:

A semiparametric regression approach for discovering latent task parametrizations. In

International Joint Conference on Artificial Intelligence (IJCAI), 2016.

Weinan E. A Proposal on Machine Learning via Dynamical Systems. Communications in

Mathematics and Statistics, 5(1):1–11, March 2017. ISSN 2194-671X. doi: 10.1007/s40304-

017-0103-z.

Sebastien Ehrhardt, Aron Monszpart, Niloy Mitra, and Andrea Vedaldi. Unsupervised

intuitive physics from visual observations. In Asian Conference on Computer Vision,

pages 700–716. Springer, 2018.

David Eriksson, Kun Dong, Eric Hans Lee, David Bindel, and Andrew Gordon Wilson.

Scaling gaussian process regression with derivatives. arXiv preprint arXiv:1810.12283,

2018.

Andre Esteva, Katherine Chou, Serena Yeung, Nikhil Naik, Ali Madani, Ali Mottaghi,

Yun Liu, Eric Topol, Jeff Dean, and Richard Socher. Deep learning-enabled medical

computer vision. npj Digital Medicine, 4(1):1–9, January 2021. ISSN 2398-6352. doi:

10.1038/s41746-020-00376-2.

Leonhard Euler. Institutiones calculi integralis. Acad. Imper. scientiarum, 1768.

bibliography 119

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast

adaptation of deep networks. In Proceedings of the International Conference on Machine

Learning, 2017.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics,

36(4):193–202, April 1980. ISSN 1432-0770. doi: 10.1007/BF00344251.

Alexandre Galashov, Jonathan Schwarz, Hyunjik Kim, Marta Garnelo, David Saxton,

Pushmeet Kohli, S. M. Ali Eslami, and Yee Whye Teh. Meta-learning surrogate models

for sequential decision making. arXiv:1903.11907, 2019.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks.

Advances in Neural Information Processing Systems, 2018.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende,

SM Eslami, and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

Izrail Moiseevitch Gelfand, Richard A Silverman, et al. Calculus of variations. Courier

Corporation, 2000.

Andrew Gelman and Yuling Yao. Holes in Bayesian Statistics. Journal of Physics G:

Nuclear and Particle Physics, 48(1):014002, January 2021. ISSN 0954-3899, 1361-6471.

doi: 10.1088/1361-6471/abc3a5.

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature,

521(7553):452–459, May 2015. ISSN 1476-4687. doi: 10.1038/nature14541.

Ryan Giordano, Tamara Broderick, and Michael I Jordan. Covariances, Robustness, and

Variational Bayes. page 49, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Commu-

nications of the ACM, 63(11):139–144, 2020.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting

gradient-based meta-learning as hierarchical Bayes. In International Conference on

Learning Representations (ICLR), 2018.

Samuel J Greydanus, Misko Dzumba, and Jason Yosinski. Hamiltonian neural networks.

2019.

120

Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised

meta-learning for reinforcement learning. arXiv:1806.04640, 2018a.

Anvita Gupta, Alex T Müller, Berend JH Huisman, Jens A Fuchs, Petra Schneider, and

Gisbert Schneider. Generative recurrent networks for de novo drug design. Molecular

informatics, 37(1-2):1700111, 2018b.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse

Problems, 34(1):014004, 2017.

William Rowan Hamilton. On a general method in dynamics, by which the study of the

motions of all free systems of attracting or repelling points is reduced to the search

and differenciation of one central relation, or characteristic function. In Abstracts of the

Papers Printed in the Philosophical Transactions of the Royal Society of London, number 3,

pages 275–276. The Royal Society London, 1837.

Aaron Havens and Girish Chowdhary. Forced variational integrator networks for pre-

diction and control of mechanical systems. In Learning for Dynamics and Control, pages

1142–1153. PMLR, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages

770–778, 2016.

James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data.

arXiv preprint arXiv:1309.6835, 2013.

James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scalable variational

gaussian process classification. In Artificial Intelligence and Statistics, pages 351–360.

PMLR, 2015.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo

Rezende, and Alexander Lerchner. Towards a definition of disentangled represen-

tations. arXiv preprint arXiv:1812.02230, 2018.

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by mini-

mizing the description length of the weights. In Proceedings of the sixth annual conference

on Computational learning theory, pages 5–13, 1993.

Andreas Hochlehnert, Alexander Terenin, Steindór Sæmundsson, and Marc Deisenroth.

Learning contact dynamics using physically structured neural networks. In Interna-

tional Conference on Artificial Intelligence and Statistics, pages 2152–2160. PMLR, 2021.

bibliography 121

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):

1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

Matthew D Hoffman and Matthew J Johnson. ELBO surgery: Yet another way to carve

up the variational evidence lower bound. page 4, 2018.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic varia-

tional inference. Journal of Machine Learning Research, 14(5), 2013.

Darryl D Holm, Tanya Schmah, and Cristina Stoica. Geometric mechanics and symmetry:

from finite to infinite dimensions, volume 12. Oxford University Press, 2009.

Antti Honkela and Harri Valpola. On-line variational bayesian learning. In 4th Interna-

tional Symposium on Independent Component Analysis and Blind Signal Separation, pages

803–808, 2003.

Eyke Hullermeier, Thomas Fober, and Marco Mernberger. Inductive Bias. 2013.

John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineer-

ing, 9(03):90–95, 2007.

Aleksei Grigorevich Ivakhnenko and Valentin Grigorevich Lapa. Cybernetic predicting

devices. Technical report, PURDUE UNIV LAFAYETTE IND SCHOOL OF ELECTRI-

CAL ENGINEERING, 1966.

Tommi S Jaakkola and Michael I Jordan. Variational probabilistic inference and the

qmr-dt network. Journal of artificial intelligence research, 10:291–322, 1999.

Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, and Chelsea

Finn. Unsupervised curricula for visual meta-reinforcement learning. In Advances in

Neural Information Processing Systems, 2019.

Johan Ludwig William Valdemar Jensen. Sur les fonctions convexes et les inégalités entre

les valeurs moyennes. Acta mathematica, 30(1):175–193, 1906.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing

flows. In Proceedings of the International Conference on Machine Learning, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backprop-

agation and approximate inference in deep generative models. In Proceedings of the

International Conference on Machine Learning, 2014.

Douglas S. Jones. Elementary Information Theory. Clarendon Press, 1979.

122

Jean Kaddour, Steindor Saemundsson, and Marc Deisenroth (he/him). Probabilistic

active meta-learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and

H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages

20813–20822. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/

paper/2020/file/ef0d17b3bdb4ee2aa741ba28c7255c53-Paper.pdf.

Sanket Kamthe and Marc Deisenroth. Data-efficient reinforcement learning with prob-

abilistic model predictive control. In International conference on artificial intelligence and

statistics, pages 1701–1710. PMLR, 2018a.

Sanket Kamthe and Marc P. Deisenroth. Data-efficient reinforcement learning with

probabilistic model predictive control. In International Conference on Artificial Intelligence

and Statistics (AISTATS), 2018b.

Taylor Killian, Samuel Daulton, George Konidaris, and Finale Doshi-Velez. Robust and

efficient transfer learning with hidden parameter Markov decision processes. In Neural

Information Processing Systems (NIPS), Long Beach, CA, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs], January 2017.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In Proceedings of

the International Conference on Learning Representations, 2014.

Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. Generalized Variational

Inference: Three arguments for deriving new Posteriors. arXiv:1904.02063 [cs, stat],

December 2019.

Michael Kraus and Omar Maj. Variational integrators for nonvariational partial differen-

tial equations. Physica D: Nonlinear Phenomena, 310:37–71, 2015.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate Uncertainties for

Deep Learning Using Calibrated Regression. arXiv:1807.00263 [cs, stat], June 2018.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of

mathematical statistics, 22(1):79–86, 1951.

Frantzeska Lavda, Magda Gregorová, and Alexandros Kalousis. Data-Dependent Con-

ditional Priors for Unsupervised Learning of Multimodal Data. Entropy, 22(8):888,

August 2020. ISSN 1099-4300. doi: 10.3390/e22080888.

https://proceedings.neurips.cc/paper/2020/file/ef0d17b3bdb4ee2aa741ba28c7255c53-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ef0d17b3bdb4ee2aa741ba28c7255c53-Paper.pdf

bibliography 123

Neil D. Lawrence. Gaussian process latent variable models for visualisation of high

dimensional data. In Neural Information Processing Systems (NIPS). 2004.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object Recognition with

Gradient-Based Learning. In Shape, Contour and Grouping in Computer Vision, page 319,

Berlin, Heidelberg, January 1999. Springer-Verlag. ISBN 978-3-540-66722-3.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington,

and Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint

arXiv:1711.00165, 2017.

Jeongseok Lee, Michael X Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Sid-

dhartha S Srinivasa, Mike Stilman, and C Karen Liu. Dart: Dynamic animation and

robotics toolkit. Journal of Open Source Software, 3(22):500, 2018.

Jeongseok Lee, C Karen Liu, Frank C Park, and Siddhartha S Srinivasa. A linear-time

variational integrator for multibody systems. Algorithmic Foundations of Robotics XII.

Springer, pages 352–367, 2020.

Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Global formulations of la-

grangian and hamiltonian mechanics on two-spheres. In 2015 54th IEEE Conference on

Decision and Control (CDC), pages 6010–6015. IEEE, 2015.

Christiane Lemke, Marcin Budka, and Bogdan Gabrys. Metalearning: A survey of trends

and technologies. Artificial Intelligence Review, 44(1):117–130, 2015. ISSN 0269-2821.

doi: 10.1007/s10462-013-9406-y.

Adrian Lew, Jerrold E Marsden, Michael Ortiz, and Matthew West. AN OVERVIEW OF

VARIATIONAL INTEGRATORS. Finite Element Methods, page 18, 2003.

Henry W. Lin, Max Tegmark, and David Rolnick. Why does deep and cheap learning

work so well? Journal of Statistical Physics, 168(6):1223–1247, September 2017. ISSN

0022-4715, 1572-9613. doi: 10.1007/s10955-017-1836-5.

Beibei Liu, Gemma Mason, Julian Hodgson, Yiying Tong, and Mathieu Desbrun. Model-

reduced variational fluid simulation. ACM Transactions on Graphics (TOG), 34(6):1–12,

2015.

Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When gaussian process meets

big data: A review of scalable gps. IEEE transactions on neural networks and learning

systems, 31(11):4405–4423, 2020.

124

Xuhan Liu, Adriaan P IJzerman, and Gerard JP van Westen. Computational approaches

for de novo drug design: Past, present, and future. In Artificial Neural Networks, pages

139–165. Springer, 2021.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard

Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsuper-

vised learning of disentangled representations. In international conference on machine

learning, pages 4114–4124. PMLR, 2019.

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are

GANs Created Equal? A Large-Scale Study. arXiv:1711.10337 [cs, stat], October 2018.

Michael Lutter, Christian Ritter, and Jan Peters. Deep Lagrangian Networks: Using

Physics as Model Prior for Deep Learning. arXiv:1907.04490 [cs, eess, stat], July 2019.

David JC MacKay. Bayesian neural networks and density networks. Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Asso-

ciated Equipment, 354(1):73–80, 1995.

Daniel J. Mankowitz, Gabriel Dulac-Arnold, and Todd Hester. Challenges of real-world

reinforcement learning. In ICML Workshop on Real-Life Reinforcement Learning, 2019.

J. E. Marsden and M. West. Discrete mechanics and variational integrators.

Acta Numerica, 10:357–514, May 2001. ISSN 0962-4929, 1474-0508. doi:

10.1017/S096249290100006X.

Marios Mattheakis, Pavlos Protopapas, David Sondak, Marco Di Giovanni, and

Efthimios Kaxiras. Physical symmetries embedded in neural networks. arXiv preprint

arXiv:1904.08991, 2019.

Alexander G de G Matthews, James Hensman, Richard Turner, and Zoubin Ghahramani.

On sparse variational methods and the kullback-leibler divergence between stochastic

processes. In Artificial Intelligence and Statistics, pages 231–239. PMLR, 2016.

Alexander Graeme de Garis Matthews. Scalable Gaussian process inference using variational

methods. PhD thesis, University of Cambridge, 2017.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J. Pal, and Liam Paull. Ac-

tive domain randomization. In Conference on Robot Learning, 2020.

Robert A Meyers. Mathematics of complexity and dynamical systems. Springer Science &

Business Media, 2011.

bibliography 125

M.L. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. MIT

Press, 1972.

Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2021. URL

probml.ai.

Devang K. Naik and R. Mammone. Meta-neural networks that learn by learning. [Pro-

ceedings 1992] IJCNN International Joint Conference on Neural Networks, 1992. doi:

10.1109/IJCNN.1992.287172.

Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve Restricted Boltzmann

Machines. ICML, page 8, 2010.

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks,

pages 29–53. Springer, 1996.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical

representations. In Advances in Neural Information Processing Systems, 2017.

E. Noether. Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wis-

senschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918:235–257, 1918. URL

http://eudml.org/doc/59024.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A

generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

Manfred Opper and David Saad. Advanced mean field methods: Theory and practice. MIT

press, 2001.

Misha Padidar, Xinran Zhu, Leo Huang, Jacob Gardner, and David Bindel. Scaling

gaussian processes with derivative information using variational inference. Advances in

Neural Information Processing Systems, 34, 2021.

Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. IEEE Transactions on

Knowledge and Data Engineering, 22(10):1345–1359, October 2010. ISSN 1558-2191. doi:

10.1109/TKDE.2009.191.

Piyush Pandita, Jesper Kristensen, and Liping Wang. Towards scalable gaussian process

modeling. In International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, volume 59193, page V02BT03A032. American

Society of Mechanical Engineers, 2019.

probml.ai
http://eudml.org/doc/59024

126

Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforcement

learning: Applications on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–

173, 2017.

Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer.

Automatic curriculum learning for deep RL: A short survey. arXiv:2003.04664, 2020.

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Kirill Zubov, Rohit Supekar,

Dominic Skinner, and Alan Edelman. Universal Differential Equations for Scientific

Machine Learning. page 45, 2020.

Nasim Rahaman, Anirudh Goyal, Muhammad Waleed Gondal, Manuel Wuthrich, Ste-

fan Bauer, Yash Sharma, Yoshua Bengio, and Bernhard Schölkopf. S2RMs: Spatially

Structured Recurrent Modules. arXiv:2007.06533 [cs, stat], July 2020.

Tom Rainforth, Adam R Kosiorek, Tuan Anh Le, Chris J Maddison, Maximilian Igl,

Frank Wood, and Yee Whye Teh. Tighter Variational Bounds are Not Necessarily

Better. page 9.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A

deep learning framework for solving forward and inverse problems involving non-

linear partial differential equations. Journal of Computational Physics, 378:686–707,

February 2019. ISSN 0021-9991. doi: 10.1016/j.jcp.2018.10.045.

Bharath Ramsundar, Steven Kearnes, Patrick Riley, Dale Webster, David Konerding, and

Vijay Pande. Massively multitask networks for drug discovery. arXiv:1502.02072, 2015.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learn-

ing. The MIT Press, 2006.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural

reinforcement learning method. In European conference on machine learning, pages 317–

328. Springer, 2005.

Clarence W Rowley and Jerrold E Marsden. Variational integrators for degenerate la-

grangians, with application to point vortices. In Proceedings of the 41st IEEE Conference

on Decision and Control, 2002., volume 2, pages 1521–1527. IEEE, 2002.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.

bibliography 127

Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Networks.

arXiv:1706.05098 [cs, stat], June 2017.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning represen-

tations by back-propagating errors. Nature, 323(6088):533–536, October 1986. ISSN

1476-4687. doi: 10.1038/323533a0.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential

equations. arXiv:1804.04272, 2018.

Steindór Sæmundsson, Katja Hofmann, and Marc Peter Deisenroth. Meta Reinforcement

Learning with Latent Variable Gaussian Processes. arXiv:1803.07551 [cs, stat], July 2018.

Steindor Saemundsson, Alexander Terenin, Katja Hofmann, and Marc Peter Deisen-

roth. Variational Integrator Networks for Physically Structured Embeddings.

arXiv:1910.09349 [cs, stat], March 2020.

Hugh Salimbeni. Deep Gaussian Processes: Advances in Models and Inference. July

2019. doi: 10.25560/81669.

Masa-Aki Sato. Online model selection based on the variational bayes. Neural computa-

tion, 13(7):1649–1681, 2001.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The Graph Neural

Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, January 2009. ISSN

1941-0093. doi: 10.1109/TNN.2008.2005605.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning

how to learn: The meta-meta-... hook. Diploma thesis, Institut für Informatik, Technische

Universität München, 1987.

Jürgen Schmidhuber. Learning factorial codes by predictability minimization. Neural

computation, 4(6):863–879, 1992.

Jurgen Schmidhuber. Deep Learning in Neural Networks: An Overview. page 88, 2014.

Jürgen Schmidhuber. Metalearning Machines Learn to Learn (1987-), 2020.

Urgen Schmidhuber. On Learning How to Learn Learning Strategies Technical Report

Fki-198-94 (revised). /paper/On-Learning-How-to-Learn-Learning-Strategies-Report-

Schmidhuber/81dcd9f8b2e553dfe6754ddca09a2f09af26fb27, 1995.

128

Bernhard Scholkopf. Causality for machine learning. arXiv preprint arXiv:1911.10500,

2019.

Burr Settles. Active learning literature survey. 2009.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-

inputs. Advances in neural information processing systems, 18:1257, 2006.

Hamdy S Soliman and Mohammed Omari. A neural networks approach to image data

compression. Applied Soft Computing, 6(3):258–271, 2006.

Arno Solin, Manon Kok, Niklas Wahlstrom, Thomas B Schon, and Simo Sarkka. Model-

ing and Interpolation of the Ambient Magnetic Field by Gaussian Processes. page 17,

2018.

Ari Stern, Yiying Tong, Mathieu Desbrun, and Jerrold E Marsden. Variational integrators

for maxwell’s equations with sources. arXiv preprint arXiv:0803.2070, 2008.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT

Press, 1998.

Boxin Tang. Orthogonal array-based latin hypercubes. Journal of the American Statistical

Association, 88(424):1392–1397, 1993.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes.

In Artificial intelligence and statistics, pages 567–574. PMLR, 2009.

Michalis Titsias and Neil D. Lawrence. Bayesian Gaussian process latent variable model.

In International Conference on Artificial Intelligence and Statistics (AISTATS), 2010.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter

Abbeel. Domain randomization for transferring deep neural networks from simu-

lation to the real world. In Proceedings of the International Conference on Intelligent Robots

and Systems, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-

based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, pages 5026–5033. IEEE, 2012.

Peter Toth, Danilo Jimenez Rezende, Andrew Jaegle, Sébastien Racanière, Aleksan-

dar Botev, and Irina Higgins. Hamiltonian generative networks. arXiv preprint

arXiv:1909.13789, 2019.

bibliography 129

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David

Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,

Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay

Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan

Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert

Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, An-

tônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.

SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Meth-

ods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

C. Wang and R. M. Neal. Gaussian Process Regression with Heteroscedastic or Non-

Gaussian Residuals. ArXiv e-prints, December 2012.

Karl Weiss, Taghi M. Khoshgoftaar, and DingDing Wang. A survey of transfer learning.

Journal of Big Data, 3(1):9, May 2016. ISSN 2196-1115. doi: 10.1186/s40537-016-0043-6.

Matthew West. Variational Integrators. PhD thesis, California Institute of Technology,

2004.

Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. Inte-

grating Physics-Based Modeling with Machine Learning: A Survey. arXiv:2003.04919

[physics, stat], July 2020.

David Wolpert and William Macready. No Free Lunch Theorems for Search. March 1996.

Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman. Yes, but Did It Work?:

Evaluating Variational Inference. arXiv:1802.02538 [stat], July 2018.

Cheng Zhang, Judith Butepage, Hedvig Kjellstrom, and Stephan Mandt. Advances in

Variational Inference. arXiv:1711.05597 [cs, stat], October 2018.

Shandian Zhe, Wei Xing, and Robert M Kirby. Scalable high-order gaussian process

regression. In The 22nd International Conference on Artificial Intelligence and Statistics,

pages 2611–2620. PMLR, 2019.

Hao Zheng, Zhanlei Yang, Wenju Liu, Jizhong Liang, and Yanpeng Li. Improving deep

neural networks using softplus units. In 2015 International Joint Conference on Neural

Networks (IJCNN), pages 1–4. IEEE, 2015.

Yaofeng Desmond Zhong and Naomi Leonard. Unsupervised learning of lagrangian

dynamics from images for prediction and control. Advances in Neural Information

Processing Systems, 33, 2020.

130

A

Representing Tasks as Conserved Quantities

A.1 Multi-Task and Transfer Learning, Meta-Learning in Model-Based RL

Model and Baselines

The core model being studied in the experiments is the ML-GP from eq. (2.47),

pθpy, f px̃, zq, zq “ pθpy| f px̃, zqqpθp f px̃, zqqppzq (A.1)

where x̃ denotes the state-control pair from eq. (2.2). The corresponding variational

approximation is given in eq. (2.51),

qφp f px̃, zq, zq “ qφp f px̃, zqqqφpzq. (A.2)

The baseline models are the standard GP model from eq. (2.7),

pθpy, f px̃qq “ pθpy| f px̃qqpθp f px̃qq, (A.3)

and the SVGP model from definition 9, which approximates the posterior of the stan-

dard GP model in eq. (A.3) with a variational family qφp f px̃qq. All models use the EQ

kernel from eq. (2.8). For the baselines:

Σθpx̃, x̃1q “ σ2
k exp

˜
´

1
2

px̃ ´ x̃1qTL´1px̃ ´ x̃1q

¸
. (A.4)

For the ML-GP:

Σθprx̃, zs, rx̃1, z1sq “ σ2
k exp

˜
´

1
2

prx̃, zs ´ rx̃1, z1sqTL´1prx̃, zs ´ rx̃1, z1sq

¸
(A.5)

“ σ2
k exp

˜
´

1
2

px̃ ´ x̃1qTL´1
x̃ px̃ ´ x̃1q

¸
exp

˜
´

1
2

pz ´ z1qTL´1
z pz ´ z1q

¸
, (A.6)

Representing Tasks as Conserved Quantities 131

where Lx̃, Lz denote the characteristic lengthscales corresponding the state-control di-

mensions and latent task dimensions, respectively. The outputs are assumed to be the

one step difference model from eq. (2.9),

yrp,ts “ pxrp,t`1s ´ xrp,tsq ` ǫ “ f rp,ts ` ǫ, (A.7)

where ǫ „ N p0, σ21Dq is independent Gaussian noise.

In order to approximate the expected long term cost for MPC given in eq. (2.30), using

the ML-GP model, the integral over the task variable needs to be additionally consid-

ered. Since it is required that the input distribution is Gaussian in eq. (2.28), we assume

that the distribution over the concatenated state rx̃, zs is given by

qpx̃t, z|ct, θ, φq “ pθpxt|ctqqφpzq “ N prµx̃
t , µ

z
t s, blockdiagpΣ

x̃
t , Σ

z
t qq, (A.8)

where µx̃
t , Σ

x̃
t are obtained according to eq. (2.29) and µz

t , Σ
z
t are given by the variational

parameters over the latent task variables φ. The rest of the steps follow the SVGP results

from section 2.1.5.

Learning and Inference

To train the model parameters θ and variational parameters φ we jointly optimise them

with respect to the ELBO. For the ML-GP this is given in eq. (2.54), for the SVGP this

is given in eq. (2.21). The standard GP has no variational parameters but the model

parameters are optimised with respect to the log-marginal likelihood in eq. (1.53).

The Adam algorithm [Kingma and Ba, 2017] is used to update the parameters, with

default hyperparameters: α “ 1 ˆ 10´2, β1 “ 0.9, β2 “ 0.999, ǫ “ 10´8, and a single sam-

ple of the latent task variable zp is drawn at each iteration to approximate expectation of

the log likelihood in eq. (2.54). In particular, stochastic variational inference with mini-

batches is used to estimate the gradient [Hensman et al., 2013, Jimenez Rezende et al.,

2014, Kingma and Welling, 2014]. The size of the minibatches was chosen as 5 episodes,

each containing 30 steps for a total size of 150. The number of inducing points used for

the ML-GP and SVGP models in section 2.3.2 was 180. Learning is continued for 10000

epochs of the data or until the ELBO stops increasing.

We use L-BFGS-B to minimise the cost in the MPC algorithm, as implemented in the

SciPy package [Virtanen et al., 2020].

132

Systems

In sections 2.3.1–2.3.2, two systems of the form (2.1) are studied in the experiments. The

systems are simulated using numerical methods implemented in the physics simulator

DART [Lee et al., 2018].

• Cart-pole swing-up: The cart-pole system consists of a cart that moves horizontally

on a track with a freely swinging pendulum attached to it. The state of this nonlin-

ear system is the position x and velocity 9x of the cart, and the angle ω and angular

velocity 9ω of the pendulum, that is,

x “ rx, ω, 9x, 9ωs.

The control signals act as a horizontal force on the cart limited to the range

c P r´15, 15s N, c “ r0, 0, c, 0s.

The mean of the initial state distribution is the state where the pendulum is hanging

downward ω “ 0. The control task is to learn to swing up and balance the pendulum

in the inverted position in the middle of the track.

• Double-pendulum swing-up: The double-pendulum system is a two-link robotic arm

with two motors, one in the shoulder and one in the elbow. The state of the system

comprises the angles ω1, ω2, and angular velocities 9ω1, 9ω2 of the inner and outer

pendulums,

x “ rω1, ω2, 9ω1, 9ω2s.

The control signals are the torques

c1,2 P r´4, 4s Nm, c “ r0, 0, c1, c2s.

applied to the two motors. The mean of the initial state distribution is the position

where both pendulums are hanging downward. The RL task is to find a strategy that

swings the double pendulum up and balances it in the inverted position.

Meta-Learning Algorithms

Algorithm 3 gives a top-level view of the two main steps, multi-task learning on the

training tasks in line 2 and transfer learning to test tasks in line 4. They key variables are

the model parameters θ, variational parameters φ, the policy parameters π and the tasks

(systems) S . The first two (θ, φ) are defined by the latent variable model from eq. (2.32)

and variational posterior from eq. (2.38). The specific model used in the experiments

Representing Tasks as Conserved Quantities 133

is the ML-GP from eq. (2.47) with variational posterior given in eq. (2.50). The policy

parameters π represent control parameters in MPC and are detailed after a description

of the systems.

Algorithm 4 outlines the multi-task learning function from Algorithm 3. It loops

over the training tasks in S and tries to solve them with model predictive control algo-

rithm 1. Each attempt produces observations from the systems which are added to the

full dataset. The full dataset is then used to update the model parameters θ and vari-

ational parameters φ. The transfer learning procedure in the experiments is built on

eq. (2.44), accounting for the model-based RL setting. Specifically, since each step of the

MPC algorithm produces an observation, the algorithm can do online inference of the la-

tent task variable after each step. The function is outlined in Algorithm 5 for one system

(for ease of notation).

Require: pθ , qφ Ź Section 2.2

Require: S , Π Ź This section

1: Initialise θ, φ, π

2: pθ, pφ, pπ, D “ MultiTaskLearning(pθ , qφ, π, S)

3: Initialise φ‹, π‹

4: pφ‹, pπ‹, D‹ “ TransferLearning(pθ , qφ, π‹, S‹)

Algorithm 3: A birds eye view of a meta-learning algo-
rithm using invariant task representations. It starts with a
model pθ and a variational distribution qφ from section 2.2.
S contains training and test systems S, S‹ which are sub-
jected to controls according to policies in Π, producing
observations that are collected in D. These observations
are used to learn new parameters, denoted by the hat
symbol p̈. The subscript ‹ denotes parameters and data
corresponding to test systems. These are systems that are
used in the transfer learning function [line 4].

1: function MultiTaskLearning(pθ , qφ, π, S, D“H)

2: while tasks are not solved do

3: Di, π “ MPC(pθ , qφ, S, π) Ź Algorithm 1

4: D “ D Y Di

5: θ, φ “ SVI(θ, φ, D) Ź Learn θ, φ using ELBO from eq. (2.41).

6: end while

7: return θ, φ, π, D

8: end function

Algorithm 4: Multi-task learning
with model predictive control
(MPC). The function loops over
the tasks in S, applying control
signals based on MPC and pro-
ducing observations Di [line 3].
In each iteration, the observa-
tions are added to the full dataset
which is used to update the
model and variational parame-
ters θ, φ [line 5] using SVI from
eq. (1.81).

134

1: function TransferLearning(pθ , qφ, π, S)

2: D “ H

3: for t “ 1, . . . , T ´ 1 do

4: Dt`1, π “ MPC(pθ , qφ, π, S; T“1, xt, . . .) Ź MPC for one-step, alg. 1.

5: D “ D Y Dt`1

6: φ “ SVI(φ, D) Ź Learn φ using ELBO from eq. (2.41).

7: end for

8: return φ, π, D

9: end function

Algorithm 5: Transfer learning
with MPC. After each step of
MPC [line 4], the new observa-
tion is added to the dataset and
the variational parameters for
the ongoing task is updated us-
ing SVI [line 6]. Since the model
parameters are global across all
tasks, these are not updated. The
algorithm can be thought of as
doing online inference of the task
variables.

A.2 Active Task Learning

Model and Baselines

The core model being studied in the experiments is the ML-GP with additional descrip-

tors given in eq. (2.60),

pθpτ, y, f px, zq, zq “ pθpτ|zqpθpy, f px, zq, zq, (A.9)

using either a GP observation model for the task descriptors, as given in eq. (2.61),

pθpτ, zq “ pθpτ|gpzqqpθpgpzqq, (A.10)

or a neural network observations model as given in eq. (2.62),

pθpτ|zq “ pθpτ|gpzqq. (A.11)

The variational posterior is for the task variables is given by eq. (2.63)

q
z|τ
φ “ qpz|hφpτqq « pθpz|τ, Yq, (A.12)

when an inference network is used. Otherwise it is given by a Gaussian qz
φ whose pa-

rameters are optimised directly. Both the ML-GP and the GP for the task descriptors

in eq. (A.10) use the EQ kernel from eq. (1.40), and repeated in eq. (A.4) and eq. (A.5).

The neural network observation model in eq. (A.11) is given by a fully-connected NN

(FCNN) eq. (1.30) with two hidden layers consisting of 200 units each and ReLU activa-

tions. The inference network in eq. (A.12) mirrors the observation network, i.e. a FCNN

with two hidden layers consisting of 200 units each and ReLU activations.

The ML-GP model in eq. (A.9), using the PAML algorithm algorithm 2 for task selec-

tion, is compared to uniform sampling (UNI), commonly used in meta-learning settings

Representing Tasks as Conserved Quantities 135

[Finn et al., 2017, Galashov et al., 2019] and equivalent to domain randomization [To-

bin et al., 2017]; Latin hypercube sampling (LHS) [Tang, 1993]; and an oracle baseline

that is trained on the test tasks. The oracle represents an upper bound on the predictive

performance. The first two baselines use the ML-GP model from eq. (2.47)—i.e. without

task descriptor observations in the model—but select tasks in the true task configuration

space. Conversely, PAML ranks tasks in latent space and proposes the next task using

the observation model over task descriptors.

Learning and Inference

To train the model parameters θ and variational parameters φ we jointly optimise them

with respect to the ELBO. For the baseline ML-GP this is given in eq. (2.54). For the

ML-GP with task descriptors this is given in eq. (2.67).

The Adam algorithm [Kingma and Ba, 2017] is used to update the parameters, with

an initial learning rate of 10´2, and a single sample of the latent task variable zp is

drawn at each iteration to approximate expectation of the log likelihood in the ELBO

objectives. In particular, stochastic variational inference with minibatches is used to es-

timate the gradient [Hensman et al., 2013, Jimenez Rezende et al., 2014, Kingma and

Welling, 2014]. The size of the minibatches was chosen as 1000 and the number of in-

ducing points for all models was 300. Learning was continued for 5000 steps at each

iteration or until the ELBO stopped increasing.

Systems

In section 2.3.3, three robotic systems of the form (2.1) were simulated in the experi-

ments. The systems are simulated using numerical methods implemented in the Mujoco

physics simulator [Todorov et al., 2012].

• Cart-pole: The cart-pole system consists of a cart that moves horizontally on a track

with a freely swinging pendulum attached to it. The state of this nonlinear system

comprises the position and velocity of the cart as well as the angle and angular veloc-

ity of the pendulum. The control signals c P r´25, 25s N act as a horizontal force on

the cart.

• Pendubot: The pendubot system is an underactuated two-link robotic arm. The inner

link exerts a torque c P r´10, 10s Nm, but the outer joint cannot. The uncontrolled

system is chaotic, so that modelling the dynamics is challenging. The system has four

136

continuous state variables that consist of two joint angles and their corresponding

joint velocities.

• Cart-double-pole: The cart-double-pole consists of a cart running on a horizontal

track with a freely swinging double-pendulum attached to it. As in the cart-pole

system, a horizontal force c P r´25, 25s N can be applied to the cart. The state of

the system is the position and velocity of the cart as well as the angles and angular

velocities of both attached pendulums.

Variational Integrator Networks 137

B

Variational Integrator Networks

B.1 Noisy Observations

The pendulum and mass-spring systems from eq. (3.62) and eq. (3.64) respectively, given

by the Hamiltonians

Hppq, pq “ Tpppq ` Uppqq “
1

2mr2 p2 ` mgpcos q ´ 1q, q P p´π, πq, (B.1)

Hmspq, pq “ Tmsppq ` Umspqq “
1

2m
p2 `

1
2

kq2, q P R, (B.2)

were simulated using a 5th order Runge-Kutta method (RK45) [Dormand and Prince,

1980], implemented in the SciPy package [Virtanen et al., 2020], to generate trajectories of

fixed length T,

X “ pxtq, t “ 1, . . . , T, (B.3)

where xt “ pqt, ptq and the error tolerance is set at 10´9. The initial states were sampled

uniformly at random, bounded from above and below by energy to avoid pathologi-

cal behaviour. For the pendulum systems, the mass m was fixed at 1kg, the length r at

1m and the gravitational acceleration at 9.81m{s2. The energy of the initial state was

bounded such that the pendulum did not swing over the top. To do so, we restrict the

initial angle to

q0 P
“

´
7
8

π,
7
8

π
‰

“ r´qlimit, qlimits, (B.4)

which has energy (assuming no momentum p0 “ 0)

Upp´qlimitq “ Uppqlimitq “ gpcos qlimit ´ 1q « ´18.9J. (B.5)

To sample initial states, we sample the initial angle uniformly from eq. (B.4) and sample

the initial momentum uniformly with rejection such that the total energy does not go

138

under ´18.9J. Since the total energy is conserved, this ensures that the pendulum does

not start with enough initial momentum to swing over the top.

For the mass-spring system in eq. (B.2), the mass was fixed at 1kg and the spring

constant at 0.75Nm. We sample the initial state uniformly from

q0 „ r´2, 2sm, p0 „ r´1, 1sm{s. (B.6)

B.2 Pixel Observations

Model and Baselines

The core models studied in the experiments are given by eq. (3.54)

pθpY, h0q “ pph0q
Kź

k“1

pθpyk| f phkqq, (B.7)

where f is an observation function that relates the state hk to the observation yk, and

pph0q is the isotropic Gaussian given in eq. (3.55). The dynamic states hk are given by a

repeated composition of a discrete flow map

hk “ Fk
θ ph0, ηq “ pFθ ˝ . . . ˝ Fθlooooomooooon

k times

qph0, ηq, k ě 1, (B.8)

where Fk
θ is given by one of VIN-SV eq. (3.36), VIN-VV eq. (3.39), VIN-SOp2q eq. (3.44)

or the recurrent ResNet from eq. (3.13). All models are trained using the ELBO from

eq. (3.60).

The Bernoulli observation model is given by eq. (3.57),

pθpyk| f pqkqq “ Bpyk| fθpqkqq, (B.9)

and only the position coordinate is used as input. The variational posterior over the

initial state is given by eq. (3.58),

pθph0|Yq « qph0|hφpYqq “ N pµ, diag
`
σ

2qq. (B.10)

The individual networks in the VIN and ResNet VAE models have identical archi-

tectures, with the exception of the input to the observation function fθ which maps the

latent representations to images. The VIN models use only the position coordinate q as

input, as described in eq. (3.57), whereas the ResNet uses both dimensions of the latent

space. Figure B.1 illustrates the full model.

§ The observation function fθ consists of a FCNN, eq. (1.30) with two hidden layers,

Variational Integrator Networks 139

consisting of 1000 hidden units each, and ReLU activations eq. (1.31). The output layer is

a linear layer with no activation function.

§ The first part of the inference network h1
φ, from eq. (B.10), consists of a FCNN with

two hidden layers, with 1000 hidden units each and ReLU activations, followed by a

linear layer with 4 hidden units (twice the dimension of the latent space) and no activa-

tion function. Following the FCNN, the output (denoted by zk in fig. B.1) is processed

(in reverse) by a single layer recurrent long short-term memory NN [Hochreiter and

Schmidhuber, 1997] (LSTM) with 50 hidden units and ReLU activations, denoted by h2
φ.

The LSTM is included to enable the model to infer velocity/momentum information

about the initial condition from sequences.1 1 Alternatively, one
could stack observa-
tions to avoid using an
LSTM.§ The base neural network for the dynamics is a FCNN with a single hidden layer with

1000 hidden units and softplus activations.

y0 ¨ ¨ ¨ yK

z0 ¨ ¨ ¨ zK

h0 ¨ ¨ ¨ hK

py0 ¨ ¨ ¨ pyK

h1
φpykq: FFNN [2 ˆ 1000, ReLU; 1 ˆ 4]

h2
φpZq: LSTM [1 ˆ 50, ReLU]

Fθphk, ηq: VIN/ResNet: [1 ˆ 1000, Softplus]

fθphkq/ fθpqkq: FFNN [2 ˆ 1000, ReLU] Figure B.1: Model architecture
for pixel experiments. The
images yk are processed by
a FFNN to give a sequence
zk. This sequence is given in
reverse to a LSTM, producing
the distribution qφph0q. The
sequence hk is generated by a
ResNet or VIN, which is pro-
cessed by a FFNN to generate
reconstructions pyk.

Additional baselines in section 3.3.3 are the standard variational auto-encoder (VAE) as

described in definition 8, and a VAE constrained to the SOp2q manifold (VAE-SOp2q).

These are used only for qualitative evaluation of the latent embeddings since they do not

model the dynamics. The SOp2q constraint for the VAE-SOp2q and the VIN-SOp2q from

eq. (3.44) is achieved by a mapping

fSOp2qpxq “ Concatprsin x, cos xsq, (B.11)

which is used as input to the observation function fθ .

140

Generating Pixel Observations

To generate greyscale pixel images of the pendulum and the mass-spring systems, tra-

jectories were first generated as described in appendix B.1. The position states were then

turned into images using the Python plotting package Matplotlib [Hunter, 2007]. For the

pendulum, a line from the origin p0, 0q and up to the px, yq coordinates specified by the

angle q2 was plotted on a 28 ˆ 28 ˆ 3 RGB pixel canvas. For the mass-spring system, the 2

x “ r sin q,

y “ ´rcosq.
mass was plotted as a single point,with position given by the x coordinate directly from

the system, on a 28 ˆ 28 ˆ 3 RGB pixel canvas. The canvas was then converted into a

binary 28 ˆ 28 ˆ 1 array by taking the R channel and setting any pixel with R-value over

0 to 1; and conversely the other pixels to 0.

	Introduction
	Motivation: Data Efficiency
	Problem Setting: Physical Dynamical Systems
	Function Approximation
	Latent Variable Models

	Representing Tasks as Conserved Quantities
	Background
	Invariant Task Representations
	Modularity and Meta-Learning (Experiments)
	Related Work
	Summary & Discussion

	Variational Integrator Networks
	Background
	Variational Integrators as Function Classes
	Learning from Physical Systems (Experiments)
	Related Work
	Summary & Discussion

	Conclusion
	Bibliography
	Representing Tasks as Conserved Quantities
	Multi-Task and Transfer Learning, Meta-Learning in Model-Based RL
	Active Task Learning

	Variational Integrator Networks
	Noisy Observations
	Pixel Observations

