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Abstract

Ultrasound imaging is a front-line clinical modality with a wide range of applica-

tions. However, there are limitations to conventional methods for some medical

imaging problems, including the imaging of the intact brain. The goal of this

thesis is to explore and build on recent technological advances in ultrasonics

and related areas such as geophysics, including the ultrasound data parallel

acquisition hardware, advanced computational techniques for field modelling and

for inverse problem solving. With the significant increase in the computational

power now available, a particular focus will be put on exploring the potential of

full-waveform inversion (FWI), a high-resolution image reconstruction technique

which has shown significant success in seismic exploration, for medical imaging

applications. In this thesis a range of technologies and systems have been devel-

oped in order to improve ultrasound imaging by taking advantage of these recent

advances.

In the first part of this thesis the application of dual frequency ultrasound for

contrast enhanced imaging of neurovasculature in the mouse brain is investigated.

Here we demonstrated a significant improvement in the contrast-to-tissue ratio

that could be achieved by using a multi-probe, dual frequency imaging system

when compared to a conventional approach using a single high frequency probe.

However, without a sufficiently accurate calibration method to determine the

positioning of these probes the image resolution was found to be significantly

reduced. To mitigate the impact of these positioning errors, a second study

was carried out to develop a sophisticated dual probe ultrasound tomography
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acquisition system with a robust methodology for the calibration of transducer

positions. This led to a greater focus on the development of ultrasound tomog-

raphy applications in medical imaging using FWI. A 2.5D brain phantom was

designed that consisted of a soft tissue brain model surrounded by a hard skull

mimicking material to simulate a transcranial imaging problem. This was used to

demonstrate for the first time, as far as we are aware, the experimental feasibility

of imaging the brain through skull using FWI. Furthermore, to address the lack of

broadband sensors available for medical FWI reconstruction applications, a deep

learning neural network was proposed for the bandwidth extension of observed

narrowband data. A demonstration of this proposed technique was then carried

out by improving the FWI image reconstruction of experimentally acquired breast

phantom imaging data. Finally, the FWI imaging method was expanded for 3D

neuroimaging applications and an in silico feasibility of reconstructing the mouse

brain with commercial transducers is demonstrated.
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Chapter 1

Introduction

1.1 Motivation

Ultrasound imaging is an invaluable modality used in a wide range of clinical

applications including obstetrics, cardiovascular diseases and cancer. It has been

used throughout patient pathways from disease screening, detection and diagnosis

to treatment planning, treatment monitoring and evaluation. Compared to other

modalities, ultrasound imaging has the advantages of being real-time, non-ionizing,

highly affordable and accessible. While ultrasound has been widely used in both

clinical imaging and in pre-clinical research, there are still significant challenges to

the existing technology. Currently in a typical ultrasound imaging setup, a short

pulse with a central frequency at MHz range, a frequency far beyond what human

ears can detect, is transmitted, and echoes received based on which an image can

be formed by e.g. delay and sum in the so-called pulse echo imaging. While such

methods can work well for imaging soft tissues, it has difficulties in imaging intact

brain through the skull, even in small animals when the skull is thin. This is

partly due to the significant attenuation, aberration and reflection of ultrasound

signal by the skull, and partly due to the assumption of a constant speed of sound

in image formation. A number of recent advances in ultrasound imaging and

allied areas offer opportunities to address some of the challenges particularly when

1



1. Introduction 2

imaging the brain. Ultrafast data acquisition at very high frame rate, as well as

microbubble contrast agents, can significantly improve the signal to noise ratio

obtained. Furthermore, recent advances in exploring tomographic imaging using

transmission measurements and advanced computational techniques, in particular

the full waveform inversion (FWI), have shown great promise to generate high

resolution deep tissue brain imaging even in the presence of bone tissue. In this

thesis a number of technological developments were made, taking advantage of

the recent advances in ultrasonics and high performance computing, in order to

achieve high resolution high tissue contrast imaging in vivo.

1.2 Thesis Structure

This thesis is organised as follows:

• Chapter 2 describes background and literature on a number of current

imaging technologies, including pulse echo imaging, functional imaging,

dual-frequency imaging, and ultrasound tomography, in order to provide

a technological context for the engineering developments reported in this

thesis.

• Chapter 3 will introduce the work, done at the early stage of the PhD, on

using ultrafast, dual-frequency, contrast enhanced ultrasound to achieve

functional imaging of mouse brain.

• Chapter 4 describes the development of an imaging data acquisition system

using two independently translated clinical ultrasound probes.

• Chapter 5 reports the development of a 2.5D brain mimicking phantom, and

the first experimental demonstration of brain tomography on the phantom

using FWI and the data acquisition setup developed in Chapter 4.

• Chapter 6 reports a deep learning based method for improving 2D FWI

imaging by expanding the bandwidth of the measurement data.
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• Chapter 7 describes the initial demonstration of expanding FWI application

to 3D small animal brain imaging.

• Chapter 8 concludes the thesis.



Chapter 2

Background

2.1 Pulse Echo Ultrasound Imaging

This section provides information on the fundamentals of pulse echo ultrasound

imaging. It will provide context for the first part of this thesis, which involves

an investigation of ultrasound methods in transcranial neurovascular imaging for

functional ultrasound applications.

Pulse echo ultrasound imaging involves the use of ultrasound transducer ar-

rays, each typically consisting of 1D or 2D arrays of piezoelectric elements, to

image tissue [Manbachi and Cobbold, 2011]. These arrays are used to both

transmit wideband pulses into a medium and detect the resulting backscattered

echoes. The goal of pulse echo ultrasound is to reconstruct features in the sonified

region using the travel time for reflected ultrasound signals to be received relative

to the transmission of ultrasound waves [Szabo, 2014]. This image reconstruction

method is referred to as beamforming [Van Veen and Buckley, 1988]. Pulse echo

ultrasound is by far the most widely used ultrasound modality, both for medical

imaging and in non-destructive testing (NDT) applications [Zhang, 2016], due to

being safe, low cost and computational cheap enough for real-time imaging to be

performed.

4
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2.1.1 Conventional Focused Ultrasound

For a linear array of transducers parallel to the positive x-axis and facing tissue

in the positive z-axis, conventional focused ultrasound uses dynamic focusing to

form the output image line by line. This is done by insonifying tissue with a

narrow beam at the lateral position of each line, xf , using cylindrical transmit

delays to focus on a given point (xf , zf). For a line produced at xf , the transmit

and receive delay of the transmitted wave to a point on the aperture x1 can be

described as:

τ(x1, xf , zf) =
(z +

√
z2 + (xf − x1)2))

c
(2.1)

However, the resulting image is only at optimal contrast and resolution at the

focusing depth, and the resulting image tends to degrade away from this focal

area. A multifocus image can be produced through the recombination of partial

images using different focal depths, can dramatically reduce the frame rate and

so in practice no more than four focusing depths are used.

2.1.2 Ultrafast Ultrasound

When compared to the other major imaging modalities, including magnetic

resonance imaging (MRI) and computed tomography (CT), ultrasound benefits

from being able to perform high frame rate imaging in real-time. For this reason,

ultrasound has been applied widely for imaging blood flow dynamics. However,

while the acquisition rate for medical ultrasound devices is only limited by the

velocity of ultrasound waves through tissue, conventional focused ultrasound

requires several sequential transmit events to generate images line by line, giving

a practical frame rate of 30-40 frames per second (fps).

To overcome this limitation, a method was proposed by Delannoy et al. in 1979 to

produce a full frame from a single acoustic pulse using the parallel processing of

plane waves [Delannoy et al., 1979]. However, due to the technical limitations in

parallel computing at that time this approach would only be fully realised in 1999
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by Sandrin et al. [Sandrin et al., 1999] in their work on transient elastography.

In this work, they demonstrated ultrasound frame rates higher than 5000 fps

[Sandrin et al., 1999], albeit of low quality in terms of contrast and resolution

compared to conventional focused ultrasound. This reduction in image quality was

addressed using coherent plane wave compounding to recover high quality images

comparable in terms of contrast, resolution and signal-to-noise ratio (SNR) of

the optimal results of conventional multifocus ultrasound without compromising

the signal penetration or frame rate [Montaldo et al., 2009]. The results of this

work have since been applied to other fields beyond ultrasound electrography,

including ultrafast contrast enhanced imaging, high sensitivity ultrafast Doppler

imaging and functional Ultrasound (fUS) imaging of the brain [Tanter and Fink,

2014]. The proposed method does, however, assume that the imaged object is

not moving as the compounding takes place. This is an acceptable assumption

for this application as the head can be fixed relative to the transducer.

2.1.3 Coherent Plane-Wave Compounding

For a linear array consisting of nt transducer elements with the same orientation

described in Section 2.1.1, ultrafast ultrasound is used to form a frame using a

single wave. By transmitting a unique pulse wave from each of the transducers in

the array simultaneously, a single large beam is formed from the combined wave

front of these pulses, insonifying the tissue as it propagates in the z-direction.

Backscatter of this wave is then received as the echo signal RF(x1, t).

τ(x1, x, z) =
(z +

√
z2 + (x− x1)2))

c
(2.2)

Where the speed of sound c is assumed to be constant in the medium.

When the transmit beam is not focused, the image resolution is obtained through

the coherent addition of RF(x1, t) signals at each point (x, z) by applying a delay

of τ(x1, x, z) while summing along the array. This calculation is shown in the
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Figure 2.1: (a) Example of transducer orientation (b) time delays for a plane wave
propagation with angle 0o (c) time delays for a plane wave propagation with angle α.
Modified after [Montaldo et al., 2009]

following equation:

s(x, z) =

∫ x+a

x−a

RF(x1, τ(x1, x, z)) dx1 (2.3)

The low resolution and contrast of the resulting image can be overcome through

the compounding of plane wave acquisitions, each produced by applying an angle

α in transmission. In this case the transmit time can be found using equation:

τec(α, x, z) =
(zcosα + xsinα)

c
(2.4)

While the time to return to point x1 on the transducer can be found by the

following calculation:

τrec(x1, x, z) =

√
z2 + (x− x1)2

c
(2.5)

The sum of these two time delays, τ(a, x1, x, z) = τec + τrec, can then be used in

Equation (2.3) to generate the ultrasound image. The time delays for the plane

wave in this case can be seen in Figure 2.1(c).

By compounding coherently, the images obtained over a range of angles (prior

to taking the envelope of the beamformed data) undergo a synthetic focusing,

providing a focus in the lateral and axial directions. The angles are chosen such
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that the focusing is equivalent to that of the optimal results of conventional

multi-focus. This results in producing images of comparable quality to those

generated using multi-focus imaging but at significantly higher frame rates.

2.2 Functional Imaging Modalities

Functional imaging is an area of medical imaging concerned with changes in

metabolism and blood flow but it is most closely associated with the study

of brain functionality. The imaging modalities used for this task may take

the direct detection route, which involves measuring action potentials as the

propagation of electrical currents (this includes electroencephalography (EEG),

micro-electrode arrays [Miller and Wilson, 2008]) and optical methods (such as

light-sheet microscopy [Ahrens et al., 2013]). Alternatively, there are methods

which instead measure localised haemodynamic changes in cerebral blood flow to

detect brain activation, including positron emission tomography (PET) [Schulz

et al., 2011], functional magnetic resonance imaging (fMRI) [Lahti et al., 1998]

and photoacoustic microscopy [Yao et al., 2015]. In this section, the advantages

and disadvantages of these different modalities will be briefly discussed in terms

of their suitability for functional imaging in moving subjects.

2.2.1 Electroencephalography and Micro-Electrode Arrays

EEG and micro-electrode arrays offer the highest temporal sampling rates of

functional imaging techniques and as such are best suited for the measurement

of action potentials, which can propagate along neurons at speeds within the

range of 0.50-130 m/s [Anderson, 2010]. There has already been extensive

use of both EEG and micro-electrode arrays in freely moving subjects in both

clinical and animal model applications, including nanofabricated polyimide-based

microelectrodes proposed by Choi et al. [Choi et al., 2010]. This puts these

modalities at an advantage compared to existing indirect functional imaging
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modalities such as fMRI and PET, which have temporal resolutions in the order

of seconds and require immobilised subjects. One limitation of EEG and micro-

electrode arrays is that spatial resolution in full brain imaging is directly limited

by the number of electrodes that can be applied. This disadvantage is not

present using the aforementioned indirect methods [Kondylis et al., 2014]. The

high-temporal resolution EEG may be acquired simultaneously with other higher-

spatial resolution imaging modalities, such as fMRI and functional near-infrared

spectroscopy. However, recording from several such devices simultaneously can

make matching brain activity challenging, and in the case of fMRI, induction can

occur in EEG electrodes due to the large magnetic field of MRI devices. This

would not be a problem for imaging modalities such as ultrasound which do not

require large magnetic fields [Robins, 2016].

2.2.2 Functional Magnetic Resonance Imaging

PET and fMRI are among the most widely used functional imaging modalities

whenever a noninvasive method is required for studying brain activation. As indi-

rect methods they are able to image brain activation by detecting haemodynamic

changes in the neurovasculature supporting the neurons of the brain. As neuronal

activity exceeds immediate oxygen and nutrient supplies, blood vessels need to

adapt in order to increase blood flow to these regions and meet the demand. fMRI

is able to measure the blood-oxygen-level dependent signal (BOLD) to detect

these haemodynamic changes deep into the brain. fMRI is often considered the

gold standard for functional imaging and remains one of the most popular of

the existing methods, both clinically and when researching small-animal models.

It does, however, have limitations. Due to the small size of the animal models,

high magnetic fields are required to achieve sufficient spatial resolution (150/350

ms−1) [Yu et al., 2010, Yu et al., 2012]. As a result, this provides poor temporal

resolution. Furthermore, subjects being imaged using fMRI need to be sedated

and secured due to the degradation in image quality brought about by motion

(for rodents this could involve the use of anaesthesia, a bite bar and a heated
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water pad to maintain rectal temperature [Logothetis, 2008]). These limitations

make it difficult to image transient events using fMRI and makes the method

unsuitable for in-vivo studies of freely moving animals [Robins, 2016].

2.2.3 Photoacoustics

Imaging using the photoacoustic effect involves the delivery of laser pulses to tissue

in order to produce broadband ultrasonic waves from thermoelastic expansion of

the optical absorption. These ultrasonic waves are then detected using ultrasound

transducers and can be used to measure haemodynamic activity in soft tissue

at a microvascular level. Fast, functional photoacoustic imagery through animal

skull tissue has been proposed by Yao et al. using their photoacoustic microscopy

(PAM) method for 3D high resolution [Yao et al., 2015]. However, like other

optical techniques, this method performs poorly with depth and is not suitable

for full brain imaging for penetrations greater that 1 mm.

2.2.4 Functional Ultrasound

With the advent of ultrafast plane wave ultrasound, the ability to image at higher

frame rates has enabled the measurement of blood dynamics in smaller vessels

and at slower flow rates than previously possible using conventional medical

ultrasound devices [Bercoff et al., 2011]. This improved sensitivity has allowed for

the functional ultrasound imaging of the brain using ultrafast Doppler, a method

first proposed by Macé et al. in 2011 [Macé et al., 2011]. This power Doppler

approach then allows for the measurement of haemodynamic changes in cerebral

blood volume for the detection of brain activity at high spatiotemporal resolution.

Ultrasound has several advantages over other imaging modalities, such as being

low cost, safe and portable. Furthermore, there is evidence that it can provide

greater spatiotemporal resolution over existing gold standard functional imaging

technologies, such as fMRI and PET in small animal models [Macé et al., 2013].

All of these factors combined indicate that fUS may be a potentially disruptive



2. Background 11

functional imaging technology that can applied to areas of neurological research

of complex transient behaviour that could not previously be investigated.

Figure 2.2: Functional imaging of the brain using a) conventional focused ultrasound,
b) ultrafast Doppler c) fUS imaging with notable increasing in cerebral blood volume
in regions as a response to whisker stimulation

While conventional ultrasound technology is the most widely used image modality

for measuring blood flow, the image quality and frame rate trade-offs required

for duplex/triplex Doppler modes (where B-mode and Doppler signals are si-

multaneously processed and displayed) have limited the acquisition of temporal

samples in large-field images to below kilohertz frame rates. As a result, this poor

sensitivity has limited applications to only imaging the major vessels. By using

ultrafast imaging instead of focused ultrasound, a significantly greater number of

temporal samples can be acquired per pixel for Doppler processing over a given

acquisition time for the whole field of view. Furthermore, by performing coherent

compounding on these acquisitions it is also possible to produce images with

greater resolution and noise suppression. This gain in sensitivity when using

ultrafast Doppler in place of conventional colour flow imaging (CFI) due to these

factors can be calculated for a given depth z as:

GUD(z) =
SUD

SCFI

= Nangles

√
λz

D

√
nUD

eff

|nCFI
eff |

(2.6)

Here the signal intensities for ultrafast and conventional CFI Doppler are given

by SUD and SCFI respectively, the number of plane wave angles used in the plane

wave imaging is Nangles, the wavelength is given by NLambda, D is the transmit

focus aperture used in the conventional CFI Doppler, and the respective time

samples available for each method are denoted by nUD
eff and nCFI

eff .
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The original method showed great promise in terms of sensitivity and was shown

to achieve excellent spatiotemporal resolutions of (∼100 µm, 50 ms) when using

a high frequency probe (∼15 MHz) when imaging brain activation in vivo [Macé

et al., 2013] (compared to the poor temporal resolution and spatial resolution

limit of fMRI when studying small animal models [Yu et al., 2010, Yu et al.,

2012]). However, a craniotomy was required in order to overcome the strong beam

attenuation of skull tissue when imaging signal of cerebral blood flow [Droste and

Metz, 2004]. This removal of tissue could affect the outcome of neurological studies

requiring the natural behaviour of healthy animals and introduces increased risk

of infection and brain tissue damage that could negatively affect results. This was

recently addressed by Errico et al. through the bolus injection of microbubble

contrast agent into the circulatory system to improve the SNR of signal traversing

the skull, demonstrating that transcranial fUS was feasible at a spatiotemporal

resolution of (100 µm, 1 ms) while claiming imaging was possible up to a depth

of 12.5 mm [Errico et al., 2015]. By finding the vascular map produced in these

results comparable to those acquired in the thinned skull acquisitions, it was

concluded that no aberration correction was required for transcranial fUS through

the rat skull. Therefore, contrast enhanced transcranial fUS imaging of the

brain shows potential as an imaging modality for use in studies requiring the

measurement of transient brain activity of freely-moving subjects.

2.3 Dual Frequency

While transcranial fUS has been demonstrated to overcome the attenuation

of the skull, the use of a high-frequency probe still places constraints on the

imaging depth when skull tissue is present and produces sub-optimal resonance

for the microbubble contrast agents. By decreasing the transmit frequency this

attenuation can be reduced, allowing for greater penetration depths when imaging

[O’Reilly and Hynynen, 2013]. Furthermore, the response from microbubbles is

greatest when excitation occurs near the resonant frequency, which tends to be



2. Background 13

in the 1-4 MHz range for most commercially available lipid shell microbubbles.

This is much lower than the frequencies used in high frequency imaging systems,

making it challenging to use these systems for non-linear imaging [Doinikov and

Dayton, 2007, Gessner et al., 2010]. Reducing the transmit frequency, however,

will also reduce the spatial resolution of the ultrasonic images, preventing the

imaging of small blood vessels required for studying the brain. For contrast

enhanced imaging, it has been proposed that optimal results could be achieved

using a dual frequency system with separate confocal transducer components

for transmitting and receiving in different frequency ranges: a low frequency

transducer array dedicated to producing transmissions for optimal microbubble

excitation and a high frequency transducer array for receiving the high frequency

of the broadband ultrasound energy produced by the non-linear behaviour of the

microbubbles.

Figure 2.3: Demonstrates the broadband range of microbubble response

The proof of concept for this method was first demonstrated by Kruse et al.

[Kruse and Ferrara, 2005] using two different transducers to excite and receive

signal from microbubbles simultaneously. The results of their dual frequency

system showed similar resolution, higher echo signal amplitude and reduced prop-

agation attenuation when compared to that of a single high frequency transducer

acquisition. It was also found that the excitation of the contrast agent with pulses
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at 2.25 MHz produced broadband energies that exceeded 45 MHz (see Figure 2.3).

In more recent work, specialised dual frequency prototypes have been developed

and tested in vivo, including work by Gessner et al. which demonstrated the high

resolution, significant tissue suppression and low susceptibility to degradation

by tissue motion when using the confocal dual frequency system in their novel

acoustic angiography image modality [Gessner et al., 2013]. This confocal system

consists of an element made up of two components: a centre 30 MHz transducer

element for high frequency reception and a surrounding low frequency annulus

transducer element of 4 MHz.

2.4 Ultrasound Tomography

2.4.1 Full-Waveform Inversion

Full-waveform inversion is an iterative image-reconstruction technique originally

developed for imaging the subsurface in seismic exploration applications [Taran-

tola, 1984].

In conventional FWI the goal is to find a model m of physical properties that

impact the propagation of acoustic waves to explain the observed real-world data

d being inverted. A synthetic predicted dataset p corresponding to d can then

be defined numerically by solving the forward problem:

G(m) = p (2.7)

Where G is the acoustic wave equation solved using a high-order finite-difference

time-stepping algorithm. The solution to when running FWI is then to find m′

such that:

G−1(d) = m′ (2.8)

As G is a non-linear function and cannot be directly inverted [Warner et al.,
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Figure 2.4: A comparison between travel time tomography and full-waveform
inversion in geophysical and medical imaging applications. (a) & (b) 3D travel
time tomography and FWI results when applied to a seismic exploration dataset of
petroleum reservoirs in the Western Black Sea. (c) & (c) 2D travel time tomography
and FWI results when applied to an in vivo ultrasound tomography dataset of a breast.

2013], FWI is instead performed by approximating the Equation (2.8) by solving

a non-linear least-squares local optimisation problem with respect to m, giving

the objective function:

f(m) =
1

2
‖δd‖2

2 =
1

2

ns∑ nr∑ nt∑
|d− p|22 (2.9)

where ns, nr and nt are the numbers of sources, receivers and time samples

in the data and f(m) is the functional that needs to be minimised. Due to

the non-linearity of the problem, the misfit function does not reach the global

minimum in one step. Instead the model is updated over several iterations until

either the global minimum is reached or a maximum number of iterations is
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reached [Virieux and Operto, 2009]. Given m0 as the model at the start of an

iteration, the assumption is made that there is a linear relationship between a

small change in the residual between observed and modelled data δd and a small

perturbation in the model δm that minimises the objective function given in

(2.9), giving the updated model for the next iteration as m = m0 + δm. This

model update term can be defined as:

δm = −H−1 ∂f

∂m
(2.10)

Here H is the square symmetric Hessian matrix, which contains all second-

order differentials of the functional f given in Equation (2.9) with respect to a

combination of the model parameters. In practice, inverting the full Hessian is

too computationally expensive for this task, so an approximation of only the

diagonal values of H are used instead. Here ∂f/∂m is the gradient, which is

calculated through an adjoint method [Tarantola, 1984] by performing a forward

propagation for each source being modelled and a backward propagation of

residual between the observed and modelled data for all receivers. The gradient

is found by cross-correlating these two wavefields at every point in the model.

Using the gradient it is possible to determine in which direction to update the

model, however it does not provide the magnitude in which the model parameters

should be updated. This magnitude is called the step length a. This can be

computed by perturbing the starting model m0 (which was used to generate

the dataset d0 and residuals δd0) in the opposite direction to that given by the

gradient by a small change δm. This gives the model m1 = m0 + δm which can

be used to generate the dataset d1 and residuals δd1. The step length can then

be optimised by assuming a linear relationship between changes in the residuals

and changes in the model ma = m0 + aδm where a minimises:

1

2
‖da‖ (2.11)
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such that:

δda = δd0 + a(d1 − d0) = δd0 + a(δd1 − δd0)

By then differentiating Equation (2.11), setting the differential to zero, a is given

by:

a =
δdT

0 q

qTq
where q = (δd0 − δd1) (2.12)

Finally, once the step length has been calculated, the model update for each

model parameter mi is given by:

δmi =
a

hii

∂f

∂mi

(2.13)

where hii is the approximate magnitude of corresponding diagonal element for

the model parameter mi in the Hessian.

Within the scope of this thesis the acoustic wave equation will be solved while

assuming that media can be considered isotropic. Further applications of this

FWI method will be discussed in more detail in Chapters 4 to 7.

2.4.2 Ultrasound Tomography in Medical Imaging

Breast cancer is globally the most frequently diagnosed cancer in women, and

the most frequent cause of death due to cancer [Ferlay et al., 2019]. In recent

decades, the introduction of screening programmes to improve early detection and

diagnosis of breast cancer has lead to a reduction in the rates of advanced breast

cancer and mortality rates [Broeders et al., 2018, Duffy et al., 2020]. Typically,

breast-cancer screenings are performed using X-ray mammography due to their

high resolution, short acquisition time, and low cost. However, as this modality

uses ionising radiation, it poses a non-negligible risk of inducing breast cancer

[Miglioretti et al., 2016]. Additionally, it is not recommended for pregnant women.

Furthermore, despite women with dense breast tissue being more likely to be

diagnosed with breast cancer than those with less dense breasts, the sensitivity of
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mammograms decreases with breast-tissue density, as lesions are more likely to be

obscured [Razimi et al., 2019, Harvey et al., 2013]. This has led to a significantly

high rate of false negatives in younger women and women with dense breast tissue

[Kolb et al., 2002].

In cases where it is not possible to distinguish between cancerous and dense

breast tissue, high-frequency US is used to complement mammograms and better

characterise lesions [Madjar, 2010]. In addition to being better suited for imaging

dense breast tissue, ultrasound-imaging devices are less expensive than the

hardware and infrastructure costs required to safely perform X-ray mammography.

Furthermore, as ionising radiation is not required, this modality is also significantly

safer. However, the conventional pulse-echo ultrasound imaging of the whole

breast is currently a time-consuming procedure that needs to be carried out by

specialized physicians using hand-held probes, making this approach more costly

to perform compared to mammography. Evaluating lesions using ultrasound

breast imaging is also highly dependent on the expertise of the clinician, and

does not generate high-quality images that can be assessed at a later date. For

these reasons, conventional pulse-echo ultrasound is not considered to be suitable

as the sole imaging modality for screening programs.

To overcome the limitations of conventional ultrasound in breast imaging, ultra-

sound computed tomography (USCT) was proposed as a safer and more affordable

alternative to mammography. With this approach, hand-held imaging is replaced

with arrays of ultrasound transducers that completely surround imaging targets,

allowing for the recording of both reflection and transmission data. With these

data, tomographic algorithms can be used to reconstruct quantitative models of

acoustic breast-tissue properties such as speed of sound (SoS), density, and sound

attenuation, allowing for the classification of different breast tissue types and the

detection of cancerous masses [Li et al., 2009].

Research into the application of USCT for medical imaging has been ongoing

since the 1970s [Greenleaf et al., 1974] and has primarily been applied to breast

tissue imaging for cancer detection using time-of-flight (TOF) tomography. In
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this approach, the X-ray CT ray approximation is used to model the propagation

of acoustic waves and can be considered equivalent to the travel-time tomography

method developed for seismic exploration in the infrasound range [Williamson,

1991]. Instead of using the attenuation of signal along these rays like in CT

imaging, in USCT TOF tomography models of acoustic properties are recon-

structed from travel-time delays of acoustic waves between sources and receivers.

These delays are brought about by changes in velocity along the trajectory of

ray paths and are typically used to reconstruct speed-of-sound maps [Huthwaite

et al., 2010]. This approximation provides a computationally inexpensive method

for producing tomograms of the breast [Pérez-Liva et al., 2017] which, like in

mammography, can be performed using data acquired quickly by technicians.

This allows for clinicians to analyse the resulting quantitative models at a later

date using diagnostic imaging software, allowing for this procedure to be more

cost effective compared to conventional ultrasound breast imaging. However, as

the influence of structures near ray paths are not accounted for when considering

this oversimplified model of wave behavior, it has been shown that the maximum

theoretical spatial resolution that can be achieved using TOF tomography is

limited by the order of the diameter of the first Fresnel zone [Williamson and

Worthington, 1993]. Given that many USCT protoypes for breast imaging will

consist of transducers transmitting at frequencies around 2 MHz (λ = 0.75 mm)

to ensure the full penetration of the breast, and that the maximum resolution that

can be achieved using TOF tomography is
√
λD where D is the distance between

source and receiver elements (which typically range from 200-400 mm), this gives

an expected resolution range of 10-15 mm when using these TOF tomography

with these devices [Dahlen, 2004]. This prevents this reconstruction approach

from being diagnostically useful when screening for breast cancer. Examples for

both travel-time tomography reconstruction of petroleum reservoirs and TOF

tomography when applied to in vivo breast imaging can be seen in Figures 2.4a

and 2.4c respectively.

Improvements in available computing power for medical-imaging applications
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recently allowed for more computationally expensive USCT techniques to be

considered for breast imaging, such as full-waveform inversion (FWI), an iterative

data-fitting method that was originally developed for seismic exploration. FWI

can be used to produce high-quality, high-resolution reconstructions of 3D breast

tissue compared to ray-based USCT methods [Calderon Agudo et al., 2018, Perez-

Liva et al., 2020]. To perform FWI, a forward model with a numerical wave

equation is used to simulate wave propagation through an acoustic model of

the breast being imaged that, when sampled at receiver positions, provides a

corresponding synthetic dataset for all source–receiver pairs observed in real data.

This acoustic breast model is then updated at each iteration, such that the misfit

between observed and synthetic data is minimised. As the full propagation of

the wave is modelled, this approach is able to account for multiple scattering

in the wavefield, and resolve features at subwavelength resolutions, significantly

improving the spatial resolution that can be achieved using ray-based methods.

2.4.3 Transducer Positioning Calibration

Given that USCT methods such as TOF tomography and FWI derive acoustic

models by modeling the transmission between source-receiver transducer element

pairs, the precise positioning of these elements are required to successfully run

these algorithms. For data acquired using USCT imaging systems, such as the 3D

USCT system being developed for breast imaging at the Karlsruhe Institute of

Technology (KIT) [Hopp et al., 2014], the maximum travel-time error that can be

tolerated to ensure successfully tomographic reconstructions has been shown to

be one fourth of the wavelength used (λ/4) [Tan et al., 2015]. In the second part

of this thesis I will investigate FWI applications in USCT for medical imaging

problems using data acquired experimentally using the novel imaging system

described in Chapter 4. Due to the nature of this system, which uses rotary

and 3D linear motors to provide a high degree of flexibility when positioning

the ultrasound probes, the transducer positions are assumed to be unknown for

any given experiment. A robust transducer calibration method to estimate these
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positions was therefore required without any a-priori information in order to

achieve high quality USCT reconstructions. In this section I will review existing

transducer position calibration techniques to achieve this. A further discussion

about how this USCT data was acquired can be found in Chapter 4. .

Figure 2.5: A synthetic example of microseismic source inversion. (a) Velocity
model with microseismic source positions. Receiver positions are indicated by the
yellow triangles. (b) Received acoustic data acquired from the two microseismic sources.
(c) Back propagation source image. (d) Sparsity-promoting of the microseismic sources
(with true positions plotted by white crosses) following 10 preconditioned iterations
using the dual formulation of the linearized Bregman algorithm proposed by Sharan et
al.. Modified after [Sharan et al., 2018]

Source inversion

FWI has been proposed as a method for source estimation of microseismic events.

Here the gradient of the model update used in conventional FWI, as described

in Section 2.4.1, is computed using the adjoint state method to model both
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the wavelet and spatial radiation of multiple sources simultaneously, allowing

for their locations and transmission origin times to be predicted [Kaderli et al.,

2015]. However, while the back propagation - also known as time-reversal in

photoacoustic applications - of the observed data has been shown to be an

effective approach for modelling the wavefield of a given source, blurring in the

recovered wavefield can be observed from a lack of aperture and noise, resulting

in uncertainties that prevent the precise recovery of source positions. This can be

seen in the synthetic microseismic source inversion example shown in Figure 2.5c.

To address this problem, sparsity-promoting solutions have been proposed to

achieve higher resolution source estimates of sources in both microseismic and

photosacoustic imaging problems [Sharan et al., 2018][Sharan et al., 2019]. As

these methods allow for the sparse estimation of multiple sources to be performed

simultaneously, one exciting application of this approach would be to recover

multiple finite point source positions and source wavelet estimates that collectively

model the behaviour of larger sources of any given dimension using the Huygens

principle [Pinto, 2010]. This could potentially allow for precise modelling of

source arrays for 3D USCT applications that cannot be modelled as point sources.

However, these methods rely on the relative positions of receivers being known

when recovering these sources. When using the experimental setup discussed in

Chapter 4, the relative positions of receiving elements within the fixed transducer

array of an ultrasound probe can be assumed to be known to a high degree of

precision for this task. However, we can not assume to know the true relative

positions of multiple transducer arrays for a given scan. The proposed source

inversion methods are therefore not ideal for the USCT calibration problem posed

in this thesis as both the receiving and source transducer array positions are

considered to be unknowns to be solved by calibration.

Time-of-Flight Based Transducer Calibration

A TOF based auto-calibration method comparable to global positioning systems

(GPS) was proposed by Filipik et al. to calibrate the positions of source and
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Figure 2.6: (a) The 48 mounted array 3D USCT prototype system developed by KIT.
(b) A comparison of co-ordinate systems when solving for the positions in a system of
individual element position (left) and a system of transducer arrays (right) using the
time-of-flight calibration approach proposed by Filipik et al.. Modified after [Filiṕık
et al., 2012]

receiver transducer elements of the 48 mounted array 3D USCT system developed

by KIT, as shown in Figure 2.6a. This method was designed while considering

all positions and delays to be unknown, which sets it apart from GPS navigation

where the orbit of satellites are used as a reference system [Filiṕık et al., 2012].

In this method, data is first acquired when only water is present to provide

watershot data for all source-receiver transducer element pairs. Here we assume

the water to be homogeneous with a measured water velocity of c. The travel

time of a received trace for such a source-receiver pair is given as the measured

time-of-flight MTOFp for that pair.

Let xs = [xs, ys, zs, τ ] and xr = [xr, yr, zr, τ ] be vectors for the unknown source

and receiver transducer elements and time delays, which are considered to be-

have as point sources and receivers. The corresponding computed time-of-flight

CTOFp can then be found as a function dependent on a pair of these element

position vectors:

CTOF p(xs,xr) =

√
(xs − xr)2 + (ys − yr)2 + (zs − zr)2

c
+ τs + τr (2.14)

This then gives MTOFp and CTOFp, two comparable vectors for measured and

computed travel-times for all source-receiver pairs. The task can then be defined
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as finding a set of x such that the difference between these two vector sets is

minimised, giving:

minFp(x) =

{
1

2
‖CTOFp −MTOFp‖2

}
(2.15)

where Fp is the residual to be minimised.

The task can then be considered a non-linear least-squares problem where the

functional F is minimized iteratively by applying the Gauss-Newton method. For

the kth iteration this gives the linear system:

J(xk)TJ(xk)∆(xk) = −J(xk)T f(xk) (2.16)

where J(xk) is the Jacobian matrix of the functional F at xk and fk is the actual

value of the residual. fk can therefore be given as:

fkp = [fk
p ] = MTOFp −CTOFk

p (2.17)

Finally, ∆(xk) is given as the correction vector to find a new estimate of x such

that the functional is minimized, which is given as:

xk+1 = [xk] + ∆xk (2.18)

This approach is well suited for the calibration problems as presented in this

thesis as both the full set of sources and receivers are considered to be unknowns.

Likewise, Filipik et al. demonstrates that the problem can be simplified by

positioning arrays of elements instead of individual elements [Filiṕık et al., 2012],

which is applicable to the dual probe imaging system being developed.



Chapter 3

Transcranial Dual Frequency

Ultrasound

To develop fUS as a functional imaging modality, in this chapter I explore the

application of dual frequency ultrasound to improve the detection of microbubble

contrast agents in the brain when imaging through the skull. This work was

presented at the iUS 2017 conference in Washington DC (US):

T. Robins, C. H. Leow, G. Chapuis, P. Chadderton and M. Tang,

”Dual frequency transcranial ultrasound for contrast enhanced ultra-

fast brain functional imaging,” 2017 IEEE International Ultrasonics

Symposium (IUS), Washington, DC, 2017, pp. 1-4

The material presented at this conferences covers the final parts of this study

pertaining to the ex vivo 1 and in vivo 2 experiments for dual frequency imaging.

For this work I would like to acknowledge the contributions of Gaëlle Chapuis,

Sophie Morse and Tiffany Chan for their invaluable help during the in vivo

1ex vivo : ”out of the living”. In this context this refers to studies involving biological
material that has been removed from an organism. In this work this refers to the use of skull
tissue samples for transcranial imaging

2in vivo : ”within the living”. Here this is used to refer to studies of whole, living organisms.
This work this involved transcranial imaging of a mouse under anaesthesia

25
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portion of this study.

3.1 Introduction

Ultrafast, high sensitivity Doppler imaging has enabled the development of fUS,

a novel functional imaging modality that is able to detect haemodynamic changes

in small blood vessels at high spatialtemporal resolution (∼100 µm, ∼1 ms). This

is sufficient for imaging the neurovasculature of small animals to study complex

brain activity. Furthermore, through the introduction of a microbubble contrast

agent by bolus injection, it was shown that the attenuation of the skull can be

overcome while maintaining a high spatiotemporal resolution, allowing fUS to

be performed transcranially without requiring a craniotomy (either by thinning

or removing sections of skull). However, the use of high frequency ultrasound

probes for high resolution imaging of small blood vessels is not well suited for

transcranial ultrasound as the attenuation by the skull is proportional to fre-

quency. Furthermore, these high frequency transmissions can also be considered

suboptimal for contrast enhanced ultrasound in that they cannot be used to

excite microbubbles close to their resonant frequencies. However, imaging at lower

frequencies would in turn decrease the spatial resolution of the images acquired.

This would prevent small blood vessels from being imaged which would limit

the potential applications of fUS. Alternatively, a dual frequency approach can

be considered by transmitting with a low frequency transducer while sampling

reflected signals with a high frequency probe. This is based on the observation

that microbubbles behave in a non-linear fashion when stimulated, resulting in

the emission of broadband ultrasound energy. This behaviour means that when

these microbubbles are driven at low frequencies (close to their optimal resonance

frequencies) the response will also contain higher frequency harmonics not seen in

the transmitted signal. These can be used to resolve microbubbles at high spatial

resolutions by filtering for superharmonic signal content. This dual frequency

approach could be used to increase the signal strength from contrast agents for
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functional imaging while also providing improved tissue suppression and reduced

signal attenuation.

To investigate the application of dual frequency for ultrafast fUS, a multi-probe,

dual frequency system was designed with a central frequency of 15.63 MHz and

transmit frequencies in the 1.50-3.50 MHz range. An in vitro flow phantom was

assembled to test this system and a method for beamforming dual frequency

when imaging using multiple ultrasound transducers was developed. To simulate

transcranial imaging, ex vivo skull tissue was introduced into these flow phantom

imaging problems. Finally, an in vivo experiment was carried out to demonstrate

dual frequency imaging in mice after microbubbles were introduced into their

systems by bolus injection.

3.2 Contrast enhanced ex vivo transcranial dual

frequency ultrasound

For ex vivo experiments, perfluorobutane lipid shell microbubbles were used as an

ultrasound contrast agent (UCA). These were made in the lab using the procedure

described by Sheeran et al [Sheeran et al., 2011]. An 8 mm length of 200 µm

diameter cellulose tubing was placed in the cavity of a macerated mouse skull

(female C57BL/6 mouse) to simulate cerebral blood vessel flow. This can be

considered to be comparable to an intracerebral artery found in C57BL/6 mice,

which range from 100 to 250 µm [Schambach et al., 2009]. The flow phantom

was submerged in a tank of degassed water and received a continuous contrast

enhanced flow of 106 Mb ml−1 at ∼ 0.09 cm s−1.

To compare the UCA response for these different methods, a range of peak neg-

ative pressures (PNP) were measured for a number of different parameters. This

included having the skull present and removed, changing the signal amplitude,

using different clincal probes, imaging at different depths and transmitting at
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different frequencies. Measurements were acquired using a 0.2 mm needle hy-

drophone (SN2344, Precision acoustic, Dorset, UK). During the data acquisition,

contrast enhanced flow was imaged at 2000 frames/s, both with and without the

skull, for 5 different PNPs when driving using the dual frequency or conventional

transmit systems. Furthermore, the dual frequency acquisitions were repeated

for 3 different transmit frequencies (1.50, 2.00 and 2.50 MHz). Only single angle

transmissions were used in this study (θ = 0).

3.3 Transcranial Dual Frequency In Vivo

Figure 3.1: Experimental in vivo dual frequency imaging setup. (a) The
implant was designed with a 45o incline to avoid obstructing the high frequency probe
casing. The blue arrow indicates low frequency pulse transmission and superharmonic
reflection in receive. (b) Photo of the in vivo acquisition system.
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3.3.1 Animal Preparation

For the in vivo portion of this study, adult (9 weeks) female BALB/c mice

weighing 15-17 g were imaged. Anaesthesia was induced using an intraperitoneal

(IP) injection of a fentanyl/midazolam/medetomidine mixture (0.05, 5.00, and

0.50 mg/kg) was maintained by hourly subcutaneous injections of 1/5 of the

original dose [Sollini and Chadderton, 2016]. The scalp of the anesthetized mice

were then shaved, sterilized and surgically removed to expose the top of the skull.

A 3D printed head implant designed for securing the head while imaging was

then secured to the frontal bone segment of the mouse skull using a skin adhesive

(Histoacryl, Braun, Kronberg, Germany) before being more securely fastened

using acrylic dental cement. The head implant and complementary head plate

can be seen in Figure 3.1. The care and handling of animals used for this study

were performed in accordance with the United Kingdom Home Office guidelines

[ASP, 2014].

3.3.2 Experimental Setup and Data Acquisition

As shown in Figure 3.1a, to create a large shared imaging region for the dual

frequency system, both probes were positioned so that their apertures lie on the

same plane while fixed at 900 to each other. As a result, all scattered echoes

detected by the high frequency probe are received perpendicular to the direction

of the low frequency transmission. This can be used to receive scatterers that

produce omnidirectional reflections, such as oscillating microbubbles. Cardiac

phase array probes P4-1 (ex vivo study, elements: 96, element width: 0.050 mm,

pitch: 0.295 mm, ATL, Bothell, WA, US) and P4-2v (in vivo study, elements:

64, element width: 0.2500 mm, pitch: 0.300 mm, Verasonics, WA, US) were

used to transmit and receive at low frequencies, ranging from 1.5-3 MHz. As the

imaging depth of the low frequency probe is small (∼ 20 mm), these transducers
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are used to generate linear plane waves when performing dual frequency. For

all experiments, an L22-14v small animal probe (centre frequency: 15.625 MHz)

was used as the high frequency receive transducer (elements: 128, element width:

0.098 mm, pitch: 0.100 mm, Verasonics, WA, US). This probe was placed above

the skull during each experiment to image in the coronal plane. The position

of each transducer could be adjusted in 3 axes by manual stages and motorized

actuators (Thorlabs Inc., Newton, NJ, US).

The transmission and acquisition of ultrasound signal using both probes was

controlled as a single custom 256 element transducer by an ultrafast ultrasound

research scanner (256 Verasonics Vantage system, WA, US) using scripts run in

Matlab (MathWorks, Natick, MA, US).

3.3.3 In vivo pilot study

A bolus of 200 µl of 100% Sonovue microbbuble UCA was intravenously injected

into a mouse through the tail vein, allowing for approximately 5 minutes of con-

trast enhanced brain imaging before the UCA are removed from the circulation.

During this 5 minutes, the single frequency system was used to acquired cerebral

blood flow imaging for 5 of the highest PNP it can achieve through mouse skull

(70, 80, 90, 100 & 110 kPa), over 3 compounding angles, (max 3o). The decreased

attenuation experienced in transmit meant the dual frequency system was less

constrained in terms of achievable PNP and instead had a PNP range of (110,

170, 230, 290 & 350 kPa), which was repeated for transmit frequencies 2.00, 2.50

and 3.00 MHz.

To provide a transmit medium, ultrasound gel was applied to the heads of

the mice. This gel had been centrifuged to ensure that is was degassed before

being applied. A heat mat at 31oC was placed under the mouse to reduce the

risk of hypothermia.
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Figure 3.2: Ex vivo single and dual frequency vascular imaging through a
mouse skull. (Top Left) Flow phantom without mouse skull. (Top Right) Flow
phantom with mouse skull. (a-b) Vascular imaging with a single L22-14v transducer,
with and without the mouse skull. (c-d) Vascular imaging with a dual frequency
setup (P4-1 in transmit, L22-14v in receive), with and without the mouse skull. (e)
Signal-to-noise ratio comparison for single frequency (15 MHz) and dual frequency
(1.5-2.5 MHz) for a range of peak negative pressures, without the mouse skull. (f)
Contrast-to-Tissue ratio comparison for single frequency (15 MHz) and dual frequency
(1.5-2.5 MHz) for a range of peak negative pressures, with mouse skull.
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3.3.4 Image processing

As described in [Demené et al., 2015], spatiotemporal clutter filtering by singular

value decomposition was used alongside power Doppler processing to detect the

blood flow signal.

3.4 Results

From the ex vivo results shown in Figure 3.2e, a stronger UCA response can be

seen as PNP is increased, as indicated by the higher SNR values for all transmit

frequency cases. These SNR values were measured by sampling regions of flow

signal and noise values at equal depths. For PNP values at 180 kPa and greater, it

can also be seen that the dual frequency system produced a greater UCA response

compared to the single frequency system. This supports the observations by

Kruse et al. who suggested that a strong microbubble response can be detected

by driving the microbubbles at their resonant frequency while receiving with a

high-frequency probe (centered at 15 MHz). This was observed to be greater

than the signal acquired when transmitting and receiving with the same high

frequency probe (for a given range of PNP values) [Kruse et al., 2003]. Despite

the resonant frequency range of microbubbles being significantly lower than 15

MHz (resonance is microbubble dependent, but they are typically within the

1.5-4.0 MHz range), a high-power, high-frequency response can be detected at

frequencies higher than 12 MHz due to the superharmonic response generated

by oscillating microbubbles. A high pass filter with a cutt-off frequency at 10

MHz can then be used to isolate this high frequency superharmonic signal from

the other, linear microbubble reflections at lower frequencies and those linear

reflections from the surrounding tissue. This results in ultrasound data that

effectively only contains reflections from microbubbles.

As shown in Figure 3.3f, in addition to increasing SNR (after exceeding the
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Figure 3.3: In Vivo results. (Top) Maximum intensity projection for single frequency
(PNP = 110 kPA) coronal acquisition at P56. (Bottom) Maximum intensity projection
for dual frequency (3MHz transmit, PNP = 350 kPA) coronal acquisition at P56 during
microbubble destruction.
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180 kPa PNP threshold), the dual frequency system demonstrated excellent tissue

suppression when imaging through the macerated mouse skull. A +12 dB gain

in CTR can be observed when comparing the highest CTR measured in the

single frequency system and the dual frequency system. This is due to the linear

reflections of the skull being filtered out when selecting for the high frequency

superharmonic signal. Here it is worth noting that due to the attenuation of

the skull, the effective PNP within the skull is severally reduced when trying to

transmit through the skull with a high frequency signal using the single frequency

system. Conversely, the low frequency transmission when using the dual frequency

system was less affected by attenuation and was able to penetrate the skull to

stimulate microbubbles at PNP greater than 110 kPa (little microbubble response

was detected when driving microbubbles below this value).

When comparing the SNR and CTR values in Figure 3.3 for the different dual

frequency transmission frequencies (1.5-2.5 MHz), the highest SNR and CTR

values detected was found when transmitting with a signal with a 2.5 MHz centre

frequency for PNP values greater than 200 kPa. This suggests that the resonant

frequency of the microbubbles being imaged was likely close to or greater than 2.5

MHz. Images acquired from in vivo experiments where a mouse brain was imaged

using with both the single and dual frequency imaging systems can be seen in

Figure 3.3. The single frequency system performed well and acquired images

comparable to the initial transcranial functional ultrasound paper by Errico et

al [Errico et al., 2016]. Contrast enhanced flow allowed for the flow through the

neurovasculature of the mouse brain to be detected through the mouse skull,

allowing for structures of the brain to be observed. While the ex vitro results

demonstrated the feasibility of using the dual frequency system for transcranial

imaging of flow through a mouse skull, this was not observed when imaging the

mouse brain using the dual frequency system in vivo. While some microbubble

signal was observed, they could not be resolved into individual microbubbles be

used to image neurovasculature due to uncertainties in the relative positions of

the dual probe. This created travel time errors to resulted in the distorted dual
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frequency image seen in Figure 3.3. Furthermore, while the microbubble signal

using the single frequency system lasted the duration of the image acquisition,

in the dual frequency experiment only a short burst of microbubble signal was

observed. This suggests that the signal from the low frequency probe resulted in

the destruction of microbubbles that was not observed in the ex vivo study.

Conclusion

To summarise, this study has demonstrated that dual frequency imaging can

produce a stronger microbubble response and has excellent tissue suppression com-

pared to using a single high frequency probe and conventional pulse-echo imaging.

To investigate the application of this phenomena for transcranial imaging in small

animals, a novel neuroimaging acquisition system was designed to allow dual

frequency neuroimaging to be performed without transducers being obstructed

by a stereotaxic frame. Using this imaging system, ex vivo experiments were

performed to demonstrate the feasibility of dual frequency when imaging through

mouse skull tissue and to optimise imaging parameters to generate the strongest

microbubble response and acheive the greatest suppression of tissue signal relative

to the microbubble UCAs being imaged. From the ex vivo experiments discussed

in Section 3.4 it was determined that the highest CTR was observed when imaging

through the mouse skull while using a PnP of at least 200 kPa while transmitting

in a frequency range close to 2.5 MHz. In addition to this, to perform the in

vivo imaging experiments, the state of art for contrast enhanced transcranial

neurovascular imaging as proposed by [Errico et al., 2015] was achieved. However,

it can also be seen in Figures 3.2 and 3.3 that there is poor resolution and

erroneous reconstructions in the dual frequency results when compared to the

single frequency system. This is most likely due to the misalignment between

the transmitting and receiving transducer arrays, resulting in travel time related

errors when beamforming. Further work is therefore required to calibrate the

positions of these ultrasound probes.
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An additional area of investigation would be to improve the performance of

the dual frequency imaging by exploring alternative configurations of the two

ultrasound probes. A demonstration of one such alternative configuration can be

seen in Figure 3.4. Both transducers were aligned along the length of their arrays

while the P4-1 transmitted down at a 45 o angle and the high frequency probe

was aligned vertically above the imaging target. This configuration was designed

to more closely represent imaging with a single transducer probe capable of dual

frequency imaging. Preliminary results from using this configuration to image

contrast enhanced flow in a 300 µm were promising, as shown when comparing

the single frequency and dual frequency Bmode images shown in Figure 3.4b and

Figure 3.4c. By filtering for only the non-linear microbubble signal, the latex

tubing seen in the single frequency Bmode image is no longer visible in the dual

frequency image, allowing for the positions of microbubbles in the flow to be

clearly seen.

Despite the focus on non-linear, vascular flow being investigated in this chapter

being in contrast with the more ultrasound tomography focused research dis-

cussed in the remainder of this thesis, solving for this multi-probe, dual frequency

system was the original inspiration for the dual probe imaging approach that

was developed following this work. Likewise, the dual frequency imaging system

described here was the precursor to what became the dual probe imaging system

system discussed in Chapter 4.

Inspired by the multifunctional capabilities of MRI scanners, which are capable

of performing both structural imaging using conventional MRI and functional

imaging using fMRI, the ability to acquire both high resolution structural and

temporal information from acoustic dataset suggests that there may also be great

potential for tomographic ultrasound imaging systems that can simultaneously

perform these tasks. For this reason, returning to functional ultrasound imaging

methods, such as the one discussed in this chapter, to explore how they may

be applied alongside transcranial ultrasound tomography methods remains an
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Figure 3.4: Small angle multi-probe. (a) High frequency probe held in place to
receive signal from the contrast enhanced flow, (b) Angled low frequency transmit probe
driving UCA in the 300 µm latex tube, (c) Individual/ small clusters of microbubbles
can be clearly distinguished while little signal from the vessel is received. Bottom Left:
B-mode results for single frequency acquisition, Bottom Right: B-mode results for dual
frequency acquisition after correcting for different transducer positions.

exciting area of research for future work.



Chapter 4

Dual Probe Imaging System for

Ultrasound Tomography

In this chapter I will cover the hardware and software solutions related to the

development of the dual clinical probe imaging system that was used to acquire

ultrasound computed tomography (USCT) data for the ultrasound tomography

applications discussed in Chapters 5 to 7.

I would like to acknowledge the contributions of researchers who I worked alongside

in the development of this imaging system as part of the Transmission and

Reflection Ultrasound Tomography (TRUST) team, including: Javier Cudeiro

(Department of Earth Science and Engineering, Imperial College London) who

designed the perspex water tank and support structures of the imaging rig, and

Carlos Cueto (Department of Bioengineering, Imperial College London), who

contributed towards the development of the VerasonicsControl software used to

control the dual probe imaging system. I would also like to acknowledge Oscar

Calderon Agudo for providing software solutions for computing the wiener filter

source matching used to calibrate source wavelets for use in FWI. Components

for this imaging rig were acquired using a combination of funding allocated to

the TRUST research project and from EPRSC for this PhD studentship.

38
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4.1 Introduction

While originally setting out to explore the potential of using multiple probes to

perform transcranial dual frequency imaging, while investigating solutions for

calibrating multiple probe positions the direction of this PhD research project

became increasingly focused on the field of ultrasound tomography. In these appli-

cations much larger arrays of transducers are typically used to fully image targets

and acquire data in both transmission and reflection. These ultrasound datasets

could then be used to solve inverse problems using tomographic algorithms to

reconstruct models of acoustic properties, including acoustic velocity, density,

echogenicity and attenuation [Li et al., 2009]. This field therefore provided a rich

source of literature for the calibration of transducer positions and for modelling

source transmissions within multi-transducer systems [Filiṕık et al., 2012]. It also

became apparent that acoustic tomography was by no means an area of interest

exclusive to medical imaging and there existed extensive literature of acoustic

tomography in geophysics for seismic exploration and the study of earthquakes

at the infrasound scale [Thurber and Ritsema, 2018].

It was at this time that I was invited to join the transmission and reflection

ultrasound tomography (TRUST) cross-disciplinary research group created by

Professor Mengxing Tang and Professor Mike Warner as a collaboration between

the Bioengineering and Earth Science and Engineering Departments at Imperial

College London. The original goal of this collaboration was to explore the potential

of translating tomographic techniques developed in geophysics to medical imaging

problems. This followed the recent demonstration of applying full-waveform

inversion (FWI) for 3D imaging of a simulated human head in silico using

Fullwave3D [Warner et al., 2013], a sophisticated FWI software package developed

by the FULLWAVE imaging team.

To demonstrate the feasibility of applying FWI to medical imaging problems with

real-world data, I designed a low cost and versatile dual probe USCT acquisition

system using off-the-shelf and readily available imaging hardware. Here I will
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discuss the assembly of this experimental acquisition system, the selection of

ultrasound clinical probes used for imaging and finally the calibration methods

used to allow FWI reconstructions to be performed using data acquired using

this system.

4.2 Dual Probe USCT Acquisition System

As shown in the overview of the dual probe imaging system provided by Figure 4.1,

this system consists of a pair of 3-axis linear motors ( BiSlide, Velmex, NY, US),

placed either side of a large perspex water tank. These allow for the precise

computer controlled 3D positioning of ultrasound probes and sensors within the

tank. When rotary imaging sequences are used, a primary large aperture rotary

motor (Standa, Lithuania) and smaller, secondary rotary motor (PRMTZ8/M,

Thorlabs, Inc., NJ, US) can be introduced into the experimental setup, as discussed

in Section 4.2.

Imaging tasks were performed in the centre of this water tank, as shown in the

photo of the experimental setup provided in Figure 4.1b. This was to mitigate

against the detection of signal from any reflective surfaces outside of the imaging

region of interest, such as the surface of the water, the walls of the tank and any

submerged support structures.

As demonstrated by the overhead shot seen in Figure 4.1c, imaging was performed

using a pair of conventional ultrasound probes positioned to transmit and receive

to one another while also being able to receive any potential reflections. These

probes were connected to the two 128 channel ports of an ultrafast 256 Vantage

acquisition system (Verasonics, WA, US) to control the transmission of sources

across both probes while acquiring USCT data across all transducer elements

acting as receivers. However, given the limited aperture of conventional medical

transducers, the imaging region that can be sonified by only one set of stationary

probe positions is limited.
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Figure 4.1: Overview of the dual probe ultrasound imaging system in the
rotary configuration. (a) 3D Render providing an overview of motors used in the
system. (b) Front facing photo of the system (c) Top down photo of the dual P4-1
probes in initialised positions.
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Figure 4.2: Plane array imaging with the dual probe acquisition system (a)
A render of plane array configuration. Here the receiver could be a second clinical
probe or a hydrophone depending on the imaging task. (b) The resulting linear array
configuration for 2D USCT imaging using 5 transducer arrays either of the imaging
region. (c) The resulting hydrophone plane of [113 101] hydrophone positions used to
image the wavefield produced by transducer elements.

Therefore, to simulate much larger transducer arrays, these probes were indepen-

dently translated using the acquisition system motors using commands provided

by an input imaging sequences.

In this chapter we will discuss two such imaging sequences and the resulting

configuration of transducer arrays they produce: (1) plane array translations,

where each probe is translated using the linear motors, and (2) rotary array

configuration, where both probes are rotated about an imaging target to provide

full 360o acquisitions.

Plane Array Configuration

A simple method for extending the imaging range using the dual probe system

was achieved by using imaging sequence that applies linear translation steps using

the 3-axis linear motors. By translating each probe along a 1D trajectory parallel

to the image regions, the effective aperture of each transducer can be extended

by introducing new source and receiver positions into the system for imaging

problems. An example of this can be seen in Figure 4.2b where linear arrays

consisting of five probe position either side of the imaging region are formed to
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allow the probes to image objects much larger then themselves. To acquire a full

USCT dataset using this approach, an imaging sequence can be given to acquire

data for all unique probe position combinations. For this application we assume

that the imaging target is invariant in time for the duration of the scan, nor

would we expect there to be a significant change in water velocity (which can be

measured before and after imaging experiments).

Alternatively the linear motors can also be used to image over a 2D grid of receiving

positions by also including vertical motor steps into the imaging sequence. This

can be used to create a grid of hydrophone receiving positions to form a large

receiving plane array, as shown in Figure 4.2c, which can be used to characterise the

full 3D transmission of clinical probe source elements. To allow for a hydrophone

to be passed into the Vantage 256 system as part of an imaging sequence, a

simple printed circuit board (PCB) was designed and fabricated for use as a

custom BNC-Verasonics interface. This was to allow for individual single channel

ultrasound sensors to be passed as inputs into individual channels of a Vantage

system cannon plugs. To achieve this, the plug and cable of a decommissioned

ultrasound probe was repurposed so that the individual micro coaxial cables could

be isolated and soldered to single channel BNC plug connectors.

Figure 4.3: BNC-Verasonics custom interface. (a) PCB layout for the BNC-
Verasonics interface. (b) Photo of the BNC-Verasonics interface with micro-coaxial
cables and PCB mounted BNC connectors soldered in place.



4. Dual Probe Imaging System for Ultrasound Tomography 44

Rotary Array Configuration

To allow for full 360o Deg scans to be performed, the dual probe system can be

setup in the rotary array configuration by introducing rotary motors, as shown in

Figure 4.4. The size of the imaging region could then be adjusted by changing

the radius of the resulting ring array formed by these rotated transducer array

positions.

Figure 4.4: Rotary array imaging with the dual probe acquisition system

An example of such a ring array can be seen in Figure 4.4b. Here one probe

can be designated as a source array while the second probe acts a receiver. For

a given source array position, to resulting wavefields generated by the source

elements can then be sampled by the receiving array at all possible receiver array

positions. In practice, to avoid collisions between these probes a buffer regions

of 2 array positions was created either side of the source array, (given a ring

array of N positions, roughly 68% of transducer array positions can then used

as as receiving positions). However, by setting the source array to also receive,

directly reflected signal can also be received (this is also indicated in Figure 4.4b

by the blue receiving positions along the aperture of the source array). Full USCT

datasets can then be acquired by repeating this imaging sequence for all possible

source array positions. This data can then be considered comparable to the data

acquired across the elements of a fixed ring array.
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Figure 4.5: Amplitude spectra for commonly found clinical ultrasound probes

4.3 Ultrasound Probe Selection

To accommodate the diversity of the different applications of ultrasound imaging,

there are a range of different clinical probe designs with varying aperture dimen-

sions, bandwidths and centre frequencies. Here a number of these probes are

compared in Table 4.1 as potential candidates for the dual probe imaging system.

The number of elements within the transducer array is significant as the ul-

trafast Vantage acquisiton system is able to transmit and receive data faster

than it takes for probes to be translated by motors before imaging can take place

again. Larger arrays could therefore mean fewer motor steps to improve the

efficiency of imaging sequences, making long, multiplexing probes such as the

L12-3v well suited to such tasks. As discussed in Section 2.4.3, many calibration

and reconstructions rely on the assumption that transducer elements can be
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assumed to be point sources. This can be assumed for transducers with small

elements, such as the L22-14v.

However, the main deciding factor for selecting probes for this task will be

on the ability to transmit and receive at low frequencies. This reasoning can be

seen when noting that the design of USCT systems for breast imaging tend to have

lower frequency transducers around 2 MHz to ensure there is sufficient penetration

of the whole breast [Huthwaite et al., 2010]. For transcranial applications even

lower frequencies tending towards the sub MHz range are required to overcome

the strong attenuating effects of skull tissue [Smith et al., 1978]. From in silico

FWI breast and transcranial imaging studies, even lower frequencies are sought

after as inversions can fail due to cycle skipping, which occurs when the initial

synthetic and real data are found to have a phase difference of more than 90o

[Calderon Agudo et al., 2018].

As can be seen in the comparison of ultrasound probes in Figure 4.5, it’s clear

that the P4-1 probe has the lowest frequency imaging capabilities. This is because

these probes are designed to penetrate deep into the chest for cardiac imaging.

This can also be said to be true for the P4-2v, another cardiac probe that also

images in a similar range of frequencies. However, as the P4-2v only has 64

elements and the P4-1 has 96, the latter is still a better selection for the dual

probe imaging system. The amplitude spectra for the C5-2v, L12-3v and L22-14v

seen plotted in Figure 4.5 were all provided by the datasheets for these sheets by

their manufacturer (Verasonics, WA, US). The amplitude spectra for the P4-1

was collected in the lab using hypdrophone measurements.

Table 4.1: A comparison of commonly found clinical ultrasound probes

Clinical Probe Number of elements Pitch (mm)
Height (mm)

L22-14v 128 0.10
L12-3v 192 0.2
C5-2v 128 0.506-0.510
P4-2v 64 0.298-0.0302
P4-1 96 0.295



4. Dual Probe Imaging System for Ultrasound Tomography 47

Figure 4.6: Changes in received signal between two P4-1 elements with source
rotation and shift in the y-direction

4.4 Dual Probe Alignment

A challenging aspect of the P4-1 probe, however, is that while it has thin transducer

elements when measured in the lateral direction (width = 2.45 x 10−1), which

is ideal for modelling each element as a simple point source and receiver, they

are also very long along their height (height'13 mm). This was not a significant
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Figure 4.7: Probe clamping solutions. (a) Retort clamp holding the P4-1 probe
level with padding for protection. (b) Front facing photo of the system. (c) Top down
photo of the dual P4-1 probes in initialised positions.

problem for the FWI applications discussed in Chapters 5 and 6, however, as for

these studies 2D FWI was used. For 2D applications the cylindrical sources can

instead be modelled as points in the 2D plane. However, for this assumption to be

valid it is vital for these probes to be positioned so that their elements are aligned

with the vertical axis. This can be seen in Figure 4.6 which shows the received
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signals of a P4-1 element transmitting to another P4-1 element as rotation and

translation errors are introduced. As seen in the top view, when a cross-section

is taken of the resulting wavefield, the P4-1 element appears to behave as a point

source with a spherical wavefront. In reality, as can be seen in combination

with the side view, this transmission is really a cylindrical wave. Should the

source element be aligned vertically while both P4-1 elements are aligned with

the vertical axis, the received (plotted in black) for this source-receiver can

be considered comparable to the received signal of a true source-receiver point

element pair, as seen plotted in red. As shown by the other plots, this results in

a significant loss of amplitude in the received signals and the assumption that

these elements can be modelled as points can no longer be considered valid.

To ensure that these probe elements remained vertically aligned throughout

imaging sequences, custom 3D printed probe clamps, as shown in Figure 4.7, were

designed. These were created by acquiring a high resolution micro-CT scan of a

P4-1 probe so that a precise surface model of the probe could be extracted. Once

the basic clamp had been designed as a CAD model, the P4-1 surface model was

used to create a precisely matched mould of the probe, as seen in the FDM 3D

printed clamp prototype seen in Figure 4.7b and the final SLA clamp design 3D

printed in resin seen in Figure 4.7c.

Finally, prior to every imaging experiment, the linear motors are used to ensure

that the dual probes are level and facing. This can be achieved by acquiring USCT

for different travel times between probes by applying a stepping sequence of fine

motor steps in the vertical and horizontal directions over 100 steps (typically with

step sizes of 0.30 mm). By sampling traces of directly opposing source-receiver

element pair, a vertical and horizontal correction is applied until the amplitude

for the received signal for this element pair is maximised. Once this had been

achieved, it would then be possible to model the elements of these dual probes as

point sources and receivers for 2D USCT imaging applications.
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4.5 Dual Probe System Calibration

4.5.1 Transducer position calibration

Due to the nature of the data acquisition, which involves the translation of

the imaging probes, differences are likely to arise between expected and real

transducer positions. Likewise, the SoS of water and source wavelets may also

change between experiments due to environmental conditions such as temperature.

An example of this can be seen in Figure 4.8, which shows a watershot USCT

acquisition for a single element transmitting to a set of receiving transducer array

positions. If we were to assume that all receiver array positions were at the

provided nominal receiver positions, we would expect to observe the nominal

travel times plotted in black. However, in practise this assumption would result in

the travel time errors observed when comparing this set of nominal TOF values to

the true TOF of each trace plotted in blue. Travel time errors would likewise arise

should the water velocity value be significantly different to the true water velocity.

For this reason, we initially consider the water velocity, transducer positions and

source wavelets to be unknown parameters that need to be estimated. These are

required to accurately reproduce the transmitted wavefields when modelling the

experimental acquisitions.

An estimate for water velocity was found by measuring the travel time through

water between the probes over a range of distances using a linear stepper motor.

Using these acquisitions, the water velocity was found as the rate of change of

travel time between source-receiver pairs as a function of distance. Given that the

probes were aligned and facing each other, let t0 be the initial travel time between

two opposing probe elements, tn be the travel time for the same source-receiver

pair after n linear motor steps of size x in the axial direction and N the total

number of steps. An estimate for water velocity c is then given by:
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c =

∑N
n=1

(
nx

tn−t0

)
N

In practice, the travel time differences were found by cross-correlating each new

trace with the initial watershot trace and taking the position of the resulting

maxima.

To estimate the position of transducer elements we developed a and time-of-

flight (TOF)-based element-localisation method based on the USCT calibration

approach proposed by Filipik et al [Filiṕık et al., 2012]. As discussed in Section

5.2.2, for each experiment a corresponding watershot dataset was acquired for

calibration purposes. Using the measured water velocity value c, the TOF value

of a given watershot trace can be considered to be the sum of the time required

to traverse the distance d from a source to a receiver (with coordinates [xs, ys, zs]

and [xr, yr, zr] respectively), plus a system delay τ that is introduced by the

acquisition system. This TOF value can be defined as:

TOF sr =
dsr
c

+ τ (4.1)

where:

dsr =
√

(xs − xr)2 + (ys − yr)2 + (zs − zr)2 (4.2)

The value for τ is considered to be constant across all traces as all data were

acquired using a pair of identical P4-1 probes. For a given experimental wa-

tershot dataset, the TOF for each trace was measured to give the set TOFm.

While there is the potential here to introduce a systematic error in TOFm by

incorrectly selecting the starting time of the matched filter, any constant error

can be absorbed by τ when optimising for a constant delay across all traces.

Several methods can be used to measure the TOF of a trace, including by using

a wavelet based Akaike information criterion (AIC) travel time picker [Zhang

et al., 2003], by applying a matched filtering and by taking the position of the
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Figure 4.8: Watershot USCT acquisition for a single element transmit event.

maximum peak in the trace. AIC is an automatic method for detecting the first

arrival of signal in traces by minimising the AIC, which corresponds to the point

where signal can be distinguished from noise. Alternatively, given that we are

searching for the arrival of a received wavelet seen across all traces, the TOF

also be measured by searching for the position of this wavelet in each trace using
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a matched filter. This matched filter is simply a sample of this wavelet taken

from an ideal, directly transmitted trace (as seen by the sample trace plotted in

Figure 5.8a). By cross-correlating each trace with this matched filter, the TOF

is taken as the position of the resulting maximum peaks, which corresponds to

the positions of greatest agreement between the matched filter and the wavelet

contained in the traces. Finally, the simplest method for measuring travel time

is to take the position of the maximum peak in each trace. While this will not

correspond to the actual time point the signal was detected, for large sets of

traces this can be used to quickly provide valuable information on the relative

difference between arrival times across different traces.

Examples of the AIC, match filter and maximum peak TOF picking methods

applied to a typical watershot trace can be seen in Figure 4.9. To compare each

TOF method, we could consider the TOF picking error for each trace of a dataset,

which is given by the difference between a measured TOF value and the true

TOF value. However, as each method assigns the TOF position to a different

part of the signal, the relative TOF picking error was considered instead. This

was found by removing the mean offset between mean of the measured TOF error

values for each method. This then allows for the performance of each method to

be compared despite the different systematic errors of each method. An example

of these realtive TOF picking errors can be seen plotted in and across a set of

traces sampled from watershot USCT data in Figure 4.10. At first glance, this

shows that the matched filter and max peak TOF both seem to remain within

0.02 µs of the true TOF values and both seem to give comparable results. Of

the three methods the AIC TOF picking method seemed to show the greatest

realtive TOF picking error. This is taken one step further in Figure 4.11 where

the relative error was found and plotted across a full 115200 trace USCT dataset.

Once again, the max peak and matched filter methods gave similar results while

the AIC TOF method appears to show greater TOF picking error. Furthermore,

the the AIC TOF picking method was the only method of the three that gave

a set of outlier TOF values (a subset of 7885 measured TOF values), as seen
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by the data points plotted in Figure 4.11 with relative error values greater than

0.2 µs. These observations are supported by the box plot for each method given

in Figure 4.11. The max peak TOF picking method gave the smallest range of

error values and the median closest to zero (range = [-0.0373,0.0482], median =

-0.0049). The second smallest range and median were observed when using the

match filter TOF picking method (range = [-0.0453,0.0565], median = -0.0057).

Finally the AIC TOF picker performed the worst of the three methods, even after

disregarding the outliers (range = [-0.3048,0.0741], median = -0.0110). From

these observations, the TOFm set for each dataset was acquired using the max

peak picking method. It is worth noting that this is a specific application of TOF

pickers in which the max peak method is well suited. The signal has high SNR

and contains only one wavelet from measuring a single spherical transmission of

a point source. Likewise, the element calibration method used favours methods

which determines the most accurate a realtive difference of TOF between traces

rather than the best method for detecting a value closest to the true TOF of each

trace. This is because the element calibration relies on the TOFm to provide

information about the distance between sets of transducers. If the relative error

between travel times is reliable and each TOF measurement shares the same

constant systematic TOF error, this can be absorbed by τ during the element

localisation. However, in other applications simply taking the max peak of a trace

would not necessarily be the most reliable method for determineng the travel

time of a signal.

Prior to starting the localisation optimisation, the set of modelled transducer-

element positions p was initialised to estimated starting positions and τ was set

to zero. These parameters were used to calculate a set of computed TOF values

TOFc using Equation (4.1). Calibrating these transducer positions could then

be defined as a non-linear least-squares problem where the goal is to find a set of

element positions and τ , such that the difference between TOFm and TOFc is

minimised. This can be defined by the objective function:
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Figure 4.9: A synthetic watershot trace with time-of-flight positions acquired
using the AIC, matched filtering and maximum peak picking methods plot-
ted alongside the true trace travel time. This watershot trace was sampled from
the example watershot acquisition given in Figure 4.8

minF p(p, τ) =

{
1

2
‖TOFm −TOFc‖2

}
(4.3)

by cross-correlating each trace with a matched filter and taking the position of

the resulting maximum peaks. This matched filter was found by sampling the

wavelet of an ideal, directly transmitted trace (as seen by the sample trace plotted

in Figure 5.8a). where F p is the residual between the measured and computed

TOF sets. A Gauss-Newton algorithm was applied to minimise F p iteratively

until a sufficiently low error between these TOF vectors was achieved.

As each transducer element can be considered a point on the 2D imaging plane,

the y-coordinate of each element can be set to zero. Therefore, for a localisa-

tion problem consisting of Pe transducer elements, there are a total of 2Pe + 1

unknowns to be solved for. When using the 3072 element ring array system

discussed in Section 4.2, this gives 6,145 variables to be estimated. However,

because these elements are translated as rigid transducer arrays (much like the

transducer array system (TAS) discussed by Filipik et al [Filiṕık et al., 2012]), the

number of unknowns can be significantly reduced by solving for the position and

orientation of the probes instead of the elements. These transducer arrays can be

modelled as having a position given by x,y,z-coordinates and an orientation given



4. Dual Probe Imaging System for Ultrasound Tomography 56

Figure 4.10: TOF picking methods applied to a subset of watershot traces

by the angles α, β, γ about the x,y,z-axes respectively. When modelling each

array as a line of points (element pitch = 2.95× 10−1 mm) lying on a 2D plane,

however, the α, γ and the y-coordinate for each array can be set to zero. For a

total of Pa probe positions, this gives 3Pa + 1 unknowns. When considering the

32 unknown probe positions in the ring array configuration (given that each probe

will have its own unique set of 16 positions), this results in only 97 variables to be

estimated. The objective function defined by Equation (4.3) remains unchanged

when solving for these array positions instead of individual elements. As the

goal of this optimisation method is to solve for relative positions and orientations

between arrays, to anchor the solution to global coordinates the first array is
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Figure 4.11: Relative TOF picking error of the AIC, matched filter and max
peak TOF picking methods. Each method applied to 115200 of a complete USCT
dataset. On the left is a box plot showing the distribution of relative errors across the
set of values for each method.

fixed to the origin with a β rotation set to zero.

4.5.2 Source Wavelet Calibration

To find source wavelets to be used as inputs for our 2D FWI algorithm we first

assume that the received signals for each source seen in the watershot data can

be considered the transmitted source wavelets shifted in time by an offset given

by TOFm. For a set of received signals acquired for a given source, an estimate

for the wavelet of that source can be extracted by applying the normal move out

(NMO) correction method [Zhou, 2014]. Using this method the trace offsets are

removed from all traces and the received wavelets are coherently aligned as a

stack at t = 0. An initial guess for the wavelet for that source can then be found

by taking the mean of this stack of corrected traces.

To ensure that the source wavelets used for running FWI are able to repro-

duce the true transmission of the sources, we first test our initial set of estimated

source wavelets by passing them as inputs to our 2D forward model to generate a
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corresponding synthetic watershot dataset. Using this synthetic watershot data,

a Wiener filter [Vaseghi, 2008] could then be computed to match the resulting

synthetic wavelets to the extract real wavelets seen in the observed watershot

data. This allows for a corrected set of source wavelets estimates to be generated

that accounts for any discrepancies seen between the 2D synthetic and observed

watershot data. As these corrected source wavelets estimates are then sufficiently

calibrated to produce synthetic watershot data that closely matches what was ob-

served experimentally they can then be used to as inputs for imaging applications

using our 2D FWI algorithm.

4.5.3 Evaluating Full-Waveform Inversion Parameters

In the case where FWI is run using the true water velocity, transducer positions

and source wavelets, we would expect a reconstruction from watershot data to

converge to a velocity model populated with values close to the true water velocity.

This is due because the synthetic traces should already match well with the the

observed traces. Therefore, to assess whether our calibrated array positions

and source wavelets are sufficiently accurate for solving imaging problems our

calibrated set of FWI parameters were tested by attempting to recover a water

velocity model from the observed watershot data (for this example the rotary

configuration was used). To show the impact of the calibration methods, FWI

was run with the following inputs: (a) while using the calibrated water source

wavelets and the uncalibrated nominal transducer array positions, (b) while using

the initial source wavelets estimates and the calibrated transducer array positions

(c) while using both the calibrated source wavelets and transducer array positions.

These FWI runs were performed with a maximum frequency of 0.5 MHz while

using a homogeneous water starting model set to 1481.40 m/s, the measured

water velocity for this experiment. In each case the 15th iteration was taken for

comparison, as shown in Figure 4.12.

When comparing the nominal and calibrated transducer array positions, as
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Figure 4.12: Full-waveform watershot reconstructions to assess calibrated
positioning and source wavelet parameters. Reconstructions and corresponding
histograms of recovered water velocity values are given for (a) Nominal, uncalibrated
transducer positions and calibrated source wavelets. (b) Calibrated transducer positions
and uncalibrated source wavelets. (c) Calibrated transducer positions and source
wavelets.

shown plotted in Figures 4.12a and 4.12c respectively, the ring arrays appear to

match closely. Despite this, the small differences between these sets of positions

is enough to produce significantly different reconstructions, with strong artefacts

appearing in the result for uncalibrated positions that were not present in the
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calibrated case. As seen in the histogram of recovered velocity values for case

(a), the population of recovered velocities can be seen to be highly heterogeneous

with a mean velocity of 1466.20 ± 15.48 m/s, a value significantly lower than

the measured water velocity for this experiment. Likewise, in the result for case

(b) for when uncalibrated source wavelets are used, as shown in Figure 4.12b,

we can also see a population of recovered water velocities based around a value

significantly lower than the measured water velocity, this time for a mean velocity

of 1445.14±15.07 m/s. In both of cases these lower values are introduced because

of phase differences between the real observed watershot traces and the synthetic

traces. These are caused by the errors in the relative distances between elements

or by having a poorly matched source wavelets. These artefacts are created are

then produced as the FWI sequence attempts to correct these phase differences

by changing values in the velocity model.

Contrary to these results, the FWI watershot reconstruction for case (c), when

both calibrated transducer array positions and source wavelets were used, was

found to have a mean water velocity of 1481.28± 1.54 m/s that matched closely

with the measured water velocity. Furthermore, the population of recovered

velocity values was found to have little variance, as seen in the histogram of

Figure 4.12c, supporting the observation that the recovered velocity model was

mostly homogeneous. This can be attributed to the minimal mismatch between

observed and synthetic traces once these when using these calibrated FWI pa-

rameters. From this result we would we then consider these FWI parameters to

suitable for solving imaging data using data acquired by the dual probe USCT

system.



Chapter 5

Full-Waveform Inversion Brain

Phantom Feasibility Study

5.1 Introduction

The accessibility, portability, inherent safety and low cost of ultrasound imaging

devices has made medical ultrasound one of the most widely used non-invasive

imaging modalities. For these reasons, transcranial sonography has become an

indispensable imaging modality for the routine care of newborns. Despite these

benefits, high-resolution ultrasound imaging can not be performed to image adult

human brains using this approach. This is due to the severe degradation of high

frequency ultrasound signals used in conventional transcranial sonography (5-12

MHz) when developed skulls are present (this is typically observed in patients

older than 6 months) [Gupta et al., 2016]. Some structural imaging of the brain

has be demonstrated by using low frequency ultrasound (below 1.00 MHz) and

conventional ultrasound imaging techniques, such as pulse echo B-mode [Smith

et al., 1978]. Unfortunately, sonifying at these lower frequencies comes at the

expense of spatial resolution. Furthermore, the presence of skull tissue can result

in the distortion and scattering of ultrasonic waves [?]. This prevents high resolu-

tion, diagnostically useful images of the brain from being acquired when imaging

61
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Figure 5.1: Dual probe ultrasound tomography experimental setup. A pair of
medical probes are translated independently about a 2.5D brain and skull mimicking
phantom to acquire transcranial ultrasound tomography data

at these lower frequencies. However, imaging the brain through thin sections of

skull at these lower frequencies has been shown to be useful for measuring blood

flow in major intracranial arteries [Naqvi et al., 2013].

In this chapter, I demonstrate in vitro for the first time the feasibility of applying

FWI to reconstruct a brain-tissue phantom surrounded by a skull-mimicking

layer. To achieve this, we designed a novel ultrasound computed tomography

(USCT) acquisition system using a pair of translated off-the-shelf clinical cardiac

probes (P4-1, ATL, USA) to image both reflections and transmissions. While it

has been shown that 3D FWI is required for imaging complex geometries such as

the head due to out-of-plane effects [Calderon Agudo et al., 2018]. However, a 3D

FWI imaging problem would require a USCT acquisition that encompasses an
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imaging target in 3D (using either a cylindrical, spherical or hemispherical array

of ultrasound transducers), which would be time consuming to acquire using

conventional ultrasound probes compared to a 2D scan. Furthermore, significantly

higher computational costs and run times are required to run 3D FWI compared

to 2D FWI. We therefore chose to constrain the dimensionality of the problem to

2D for this feasibility study. This was to minimise the run time when completing

USCT acquisitions and to run FWI as many different transducer configurations

and FWI parameters were investigated. For this reason, the dimensionality of the

imaging models considered in this study were constrained to 2D images. This

was done to simplify the acquisition of USCT data and to reduce computational

costs when running FWI. Therefore, we designed a brain and skull mimicking

phantom that consisted of a 2D brain and skull image extended along the vertical

axis to provide a 2.5D imaging phantom. A render of this phantom can be seen

in Figure 5.4c. This phantom was designed to provide an imaging target that

mimics the skull and brain tissue we would expect to encounter when imaging

patients in a clinical setting.

5.2 Methods

5.2.1 2.5D Brain Mimicking Phantom

A cross-section of the realistic numerical MIDA head model [Iacono et al., 2015]

was used to design a 2.5D brain and skull phantom. The skull 3D printed resin

skull layer (acoustic velocity ' 2500 m/s) and polyvinyl alcohol (PVA) cryo-

gel brain tissue mimicking material (acoustic velocities ranging from 1500-1520

m/s). As seen in the 2D numerical brain and skull model of this phantom in

the Figure 5.2a, the brain model was given a simplified, easy to fabricate design

consisting of an outer white matter layer (∼1500 m/s), an inner grey matter

layer (∼1520 m/s) and a large water filled cavity to form three distinct regions of

contrasting acoustic velocities.
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Figure 5.2: Axial view of the numerical and fabricated 2.5D Brain Phantom:
(a) The numerical brain phantom consisting of a skull, a simplified brain structure and
water filled cavity. (b) A photo of the final fabricated brain phantom with a 3D printed
resin skull and a a PVA cyrogel tissue mimmiciking material.

Acquiring USCT data with sufficiently low frequency can be used to mitigate

cycle-skipping. This is a well documented phenomenon in geophysical FWI

applications that occurs when the predicted and observed wavefield data are

found to be more than 90o out-of-phase [Bunks et al., 1995]. This can be seen

demonstrated in Figure 5.3 which shows the inversion solution for two starting

models from the same imaging problem while starting at different frequency

bands. The starting model wavefield results given in Figure 5.3a represents the

broadband case where the USCT dataset has sufficiently low frequency content

for the starting wavefield dataset to be within the half wave cycle. Model updates

from the inversion solution would then tend towards the global minimum, as

shown in Figure 5.3c. However, when starting in a higher frequency band as seen

in Figure 5.3b, the lag is now greater than the half wave cycle. Consequently,

the inversion solution still moves to minimise the observed and synthetic data
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Figure 5.3: Demonstration of cycle-skipping when running full-waveform
inversion. (a) Starting wavefield data and observed data when starting from a lower
frequency band such that the lag is less than the half cycle. (b) Starting wavefield data
and observed data when starting from a higher frequency band such that the lag is
greater than the half cycle. (c) As the lag was less than the half cycle the inversion
solution tended towards the global minimum. (d) As the lag was greater than the half
cycle the inversion solution tended towards local minima.

but while converging to a local minima instead. In this case cycle-skipping

has occurred, resulting in reconstructions with erroneous information. In the

in silico FWI brain imaging study discussed by Guasch et al [Guasch et al.,

2020], USCT with a bandwidth of 0.10-0.85 MHz was selected to mitigate the

effects of cycle-skipping due to the traveling time differences observed in received
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signals when imaging through high speed of sound (SoS) skull tissue. However,

medical ultrasound probes are typically not designed to image at sub-megahertz

frequencies, making them poorly suited for acquiring data in this frequency range.

In this study we have selected a pair of cardiac probes (P4-1, ATL, WA, US), with

a frequency range of 0.50-3.50 MHz measured at −40 dB, making them among

the lowest frequency medical transducers currently available. To account for the

difference in bandwidth between these cardiac probes and the ideal bandwidth

found for FWI brain imaging in silico, the brain phantom was proportionally

reduced to a 2:5 scale relative to the original MIDA model. This gave a skull

model with a width of 60.54 mm, a length of 78.87 mm, a height of 130.00 mm

and a mean thickness of 2.24 ± 0.48 mm, which can be seen in Figure 5.4d.

To create the PVA cryogel brain tissue mimicking material a similar approach

was taken to the tissue fabrication protocol proposed by Chee et al [Chee et al.,

2016]. Here the brain tissue was prepared using a 10% PVA powder (341584;

Sigma-Aldrich, St. Louis, MO, USA), 90% distill water solution heated at 90oC

with a magnetic stirrer for 1 hour while covered with clingfilm to reduce water

loss by evaporation.The solution was then left to cool to 40oC where it can be

handled while still being in a liquid state for pouring. The PVA cyrogel was

formed over several 24 hour freezing-thawing cycles (12 hours stored in a freezer

at -20oC followed by 12 hours left at room temperature): increasing the number

of these cycles increases the amount of polymerisation of the PVA, resulting in

higher acoustic velocities as the density of the material increases. By selecting

for these freeze-thaw cycles the two brain layers could be set with contrasting

acoustic velocities.

To ensure that the complex, irregular structures seen in Figure 5.2a remain

consistent along the length of the 2.5D phantom, a pair of 3D printed resin moulds

were created: (1) an inner mould to form the irregular boundary between the two

brain layers, as shown in Figure 5.4a, and (2) a cavity mould to shape the inner

brain layer and water cavity boundary, as shown in Figure 5.4c. To create these
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Figure 5.4: 2.5D brain and skull phantom fabrication: (a) A 3D printed resin
mould providing the irregular boundary between the inner and outer brain layers.
(b) The 2.5 phantom and outer brain tissue mimic sample during the first cryogel
conditioning step. (c) A 3D printed resin mould providing the boundary of the central
cavity of the brain model. (d) The 2.5 phantom and brain tissue mimic samples during
the second cryogel conditioning step. (e) The final skull and brain 2.5D phantom
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brain layers, the PVA solution was first poured into the space created between the

inside of the skull wall and the outer surface of the inner brain mould place before

the phantom was left to undergo 2 freeze-thaw cycles, as shown in Figure 5.4b.

Once completed, the inner mould was removed, leaving only the outer brain

layer within the phantom. To create the inner brain layer the cavity mould was

inserted and new batch of PVA solution was poured into the remaining space

(in this new PVA batch a single drop of food colouring was added to provide a

visual indicator of the contrasting brain layers). The phantom was then left for 1

additional freeze-thaw cycle, as shown in Figure 5.4d. In this procedure the outer

layer therefore underwent a total of 3 cycles while the inner layer only underwent

a single cycle. Samples from each PVA pour stages were used to create cylindrical

testing samples of their corresponding PVA cryogel brain layers, both of which

underwent the same freeze-thaw treatment as their respective tissue mimics. The

velocities of these samples could then be measured to provide velocity values for

these brain layers, as seen in Table 5.1.

The final brain model within the resin skull can be seen in Figure 5.2b. The end

result closely matches the original numerical brain and skull model, however small

differences can be seen in the brain model due to the expansion of the PVA tissue

mimic during the freeze-thaw cycles, which is most noticeable when observing

the reduced size of the central water cavity feature.

Table 5.1: Acoustic velocities of features seen when imaging the acoustic brain and
skull phantom.

Phantom Layer Acoustic speed, co (m/s)
Resin Skull 2550

Outer Brain Layer 1520
Inner Brain Layer 1500

Water 1480
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5.2.2 Data Acquisition

USCT data was acquired using an ultrafast ultrasound research acquisition system

with two 128 channel ports (256 Verasonics Vantage system, USA, WA), allowing

for two P4-1 cardiac probes to be connected at once (96 element phased array,

ATL, USA, WA). Once connected the two probes can be considered a single

system which can simultaneously transmit and receive ultrasound signal. All

imaging was performed in the centre of a large 1 m3 water tank to prevent strong

reflections from the water surface and the sides of the tank from being detected.

As we are running FWI in 2D for this study, we define our imaging regions

as lying on the x-z plane, this means all space-dependent fields are considered

invariant with respect to y, and any point source in this x-z plane can thought

of as an infinitely long cylindrical source orthogonal to the plane [Igel, 2017].

The height of these transducer elements were found to be much greater in height

than in length (width = 2.45 x 10−1 mm, height ≈ 13.00 mm), so we can

consider these elements as infinitely long sources relative to the 2D imaging

plane (assuming both probes are positioned so they are facing, co-planar and

their elements are aligned with the vertical y-axis). Furthermore, as the width

of the P4-1 elements are less than the smallest wavelength considered when

running FWI (while imaging up to a maximum frequency of 1.6 MHz), these el-

ements can be considered as point sources and receivers within this imaging plane.

Once in position, the ultrafast ultrasound imaging system allows for the fast

acquisition of USCT data for all selected source and receiving elements. However,

given that the aperture of a P4-1 probe is only 28.32 mm in length, the imaging

region that can be sonified by stationary probes is limited. We therefore decided to

translate the dual probes to effectively extend our ultrasound apertures, allowing

for larger objects to be imaged. We investigated two different configurations to

achieve this: (1) Linear array translations, where each probe is translated in 1D

to create two facing sets of transducer array positions to increase the imaging
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region, (2) Rotary array rotations, where both probes are rotated about a ring

of array to surround the imaging target.

Linear Array Configuration

We first considered the simple method for extending the imaging range of the

dual probe system by applying 1D linear translations using the plane array

configuration discussed in Section 4.2. Using the linear motors of the dual

probe acquisition five transducer array positions were set either side of the 2.5D

phantom over motor steps equal to the length of a P4-1 aperture. This created

two parallel 480 element, 141.60 mm long transducer arrays either side of the

imaging target, as illustrated in Figure 5.5a. A USCT acquisition sequence was

applied to translate and acquire data over all unique 25 source-receiver array

positions. All 96 elements of each array position were set as receivers while a

subset of equally spaced 24 elements were selected as sources, providing a total

of 240 sources and 960 receivers. Using this configuration, USCT data can be

acquired in transmission by all receiving elements of the opposing transducer

array positions while reflected signal could only by acquired using elements of

the transmitting array (as shown by elements highlighted in blue either side of

the source in Figure 5.5a).

Ring Array Configuration

To provide a full 360o Deg scan of the 2.5D phantom, the rotary array configuration

described in Section 4.2 was used to define a ring array of 16 rotated probe

positions with a step size of 22.5o Deg. USCT data was acquired using this setup

by transmitting with one probe set over these 16 array positions while the second

probe was rotated about all possible receiving array positions in the ring for all

transmissions. To achieve this the receiving probe was rotated about the imaging

region using a large aperture rotary table (Standa, Lithuania), while the source

probe was connected to smaller, centrally positioned rotary motor (PRMTZ8/M,
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Figure 5.5: Linear array full-waveform inversion results of the brain phan-
tom. (c)(d) Synthetic and experimental full-waveform reconstructions of the brain
model for water starting model (b). (f)(g) Synthetic and experimental full-waveform
reconstructions of the brain model for smooth brain starting model (e).
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Thorlabs, Inc., USA, NJ). The size of the imaging region could then be adjusted

by changing the radius of the ring array created when rotating these probes. For

imaging the 2.5D phantom a radius of 75.00 was chosen. An example for the

opposing receiving positions selected for a given source can be seen in Figure 5.7a.

To avoid collisions a buffer regions of 2 array positions either side of the source

array are not included in this set of receiving positions to prevent the probes

from colliding, meaning each source array transmits to 11 receiving arrays (given

a ring array of N positions, roughly 68% can be used as sources). However, by

setting the source array to receive as well as transmit this setup still allows for

good coverage of reflected signal data to be received (this can also indicated in

Figure 5.7a by the blue receiving positions along the aperture of the source array).

Phantom Positioning

For each configuration three USCT scans were performed: (1) imaging the 2.5D

pahntom without the skull, (2) imaging the 2.5D phantom with the skull and

(3) imaging when there is only water to provide a watershot dataset. Dataset (1)

was acquired to first assess the performance of each configuration when applied

to a soft tissue mimic imaging problem before attempting the more challenging

inversion using dataset (2) due to the introduction of relatively high velocity

material. Dataset (2) provides the watershot data that will be used to calibrated

the dual USCT imaging system, as described in Section 4.5.1

As shown in Figure 5.8, by using the linear motors these three acquisitions could

be performed by simply adjusting the vertical position of the 2.5D phantom and

placing the brain model to be either fully or partially inserted into the skull casing.

This approach was used to minimise the need to manually performed adjustments

to the imaging rig during experiments where possible to avoid any possible

misalignment between the transducer positions while imaging their positions

during the watershot acquisition.
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(a) Brain imaging mode

(b) Brain with skull imaging mode (c) Watershot mode

Figure 5.6: Phantom positioning modes

(a) Imaging the brain without the skull. (b) Imaging the brain with the skull. (c)
Watershot acquisition.
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Figure 5.7: Rotary array full waveform inversion results of the brain phantom.
(a) Dual probe rotary array configuration of 16 transducer array positions with the
synthetic numerical brain model placed in a central position. (b) Full waveform inversion
reconstruction of generated synthetic data for use as a reference. (c) Full waveform
inversion reconstruction of data acquired experimentally

5.3 Results

In this section, results from the application of the FWI algorithm to recover

velocity models using data acquired by linear and rotary dual probe acquisition

configurations are presented, as discussed in section 5.2.2. As the true velocity

and morphology of the fabricated 2.5D phantom are unknown, we would the
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Figure 5.8: Synthetic full-waveform inversion results when imaging the 2.5D
phantom using the rotary array configuration. (a) Experimental setup of the
rotary acquisition showing the transducer positions for the shot gathers of the first
source array; (b)-(e) Sample trace taken when transmitting through water, the 2.5D
phantom, the predicted skull starting model and the fitted skull starting model; (f)-(h)
Water, predicted skull and fitted skull starting models; (i)-(k) Full-waveform inversion
reconstructions for the different starting models using synthetic USCT data; (j)-(n) Full-
waveform inversion reconstructions for the different starting models using experimental
USCT data.

expect the veloicty map of a 2D cross section of this phantom to be similar

to the numerical brain phantom seen in Figure 5.2a. We therefore used this

numerical phantom to create a corresponding synthetic reference model for each

experiment while using injecting velocity values found experimentally for each of

the different tissue mimicking layers. By then imaging this synthetic reference

using the calibrated array positions and source wavelets an equivalent in silico

dataset could be created for each experimental acquisition, allowing us to compare

each experimental FWI reconstructions with a comparable, ideal synthetic FWI

reconstruction for use as a reference.
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5.3.1 Linear Array Brain Phantom Results

To test the feasibility of the dual probe linear array system described in Sec-

tion 5.2.2, experimental USCT data was acquired by imaging the 2.5D phantom.

As shown in Figure 5.5a, the phantom was placed in the centre of the imaging

region formed by the two sets of transducer arrays. To provide a less challenging

imaging problem to test this configuration, the phantom was scanned without

the skull layer in place. Using the optimised FWI parameters found for this

experiment and the brain model of the numerical phantom, a corresponding

synthetic USCT dataset for this imaging problem was also generated.

As only a small difference in acoustic velocity was expected between water (∼1484

ms−1) and the highest velocity brain model layer (∼1520 ms−1), we first attempted

to recover the brain phantom by FWI using a homogeneous water starting model,

as seen in Figure 5.5b. A frequency stepping FWI sequence was applied starting

from the lowest frequencies of signals seen when using P4-1 probes (0.55MHz

to 1.05MHz, iterations = 114). The resulting reconstructions using synthetic

and experimental USCT data both showed comparable partial recoveries of the

phantom brain model, as shown in Figures 5.5c and 5.5d respectively. In both

cases the irregular boundary between the brain layers were clearly visible, as

were the central internal water cavities, while the top of the bottom surfaces

of the phantom were recovered well with a strong contrast to the surrounding

water. However, surfaces facing the two transducer apertures were not successfully

recovered and, despite the numerical brain model consisting of homogeneous layers,

the recovered values seen in the synthetic result are both lower than expected

and heterogeneous within these layers (in both reconstructions recovered velocity

values can be seen to be highest in the centre of the brain model and decrease when

moving towards each transducer aperture). These results were most likely due to

the limited distribution of receiving elements when receiving reflected signal from

different locations in the imaging region created by this transducer configuration.

This means more imaging data was acquired for centrally positioned features than

those to the sides, forming blind spots. The root mean square (rms) error between
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the synthetic reconstruction and the true synthetic numerical brain model was

found to be 13.56 ms−1.

We attempted to improve on these poor reconstructions by repeating the FWI

sequence for both datasets while replacing the homogeneous water starting model

with a smoothed brain starting model, as shown in Figure 5.5e, which was

created by applying a 2D Gaussian filter to the numerical brain model. Despite

providing little structural information, this starting model significantly improved

the reconstruction of both the synthetic and experimental reconstructions, as

can be seen in Figures 5.5f and 5.5g. In both cases the brain phantom can be

easily distinguished form the surrounding water and the brain layers were found

to contain higher velocities which are more consistent with values measured from

samples. However, the same uneven distribution of velocities observed in the

previous reconstructions can also be seen in these results. Likewise the sides of

the phantom within the blind spots of this configuration change little from the

smoothed edges of the starting model, supporting the previous observation that

there seems to be insufficient information to successfully reconstruct features in

these regions. This suggests this configuration is poorly suited for imaging the

whole brain phantom. The rms error between this new synthetic reconstruction

and the true synthetic numerical brain model was found to be 9.250 ms−1,

supporting the observation that a more accurate reconstruction was achieved by

using this starting model. It’s worth noting, however, that starting model made

while already knowing the true synthetic model; for experimental applications

this would need to be either predicted using prior information or found by used a

less computationally demanding tomographic method, such as TOF tomography,

which could introduce additional uncertainties and running costs.

5.3.2 Rotary array Brain Phantom Results

Like with the linear array case, we initially decided to assess the performance of

the dual probe rotary array system, as described in Section 4.2, by first imaging
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only the brain model layers of the 2.5D phantom with this configuration. As can

be seen in Figure 5.7a, the brain model was placed in centre of the ring array

which was formed by rotating both probes about the 16 transducer array positions.

Once again the optimised transducer positions and transmitted wavelets from

this experiment were used to image the numerical brain phantom to generate a

corresponding reference synthetic dataset of this imaging problem.

Using this configuration we were able to recover high quality FWI reconstructions

of the brain phantom for both the synthetic and experimental USCT datasets,

as shown in Figures 5.7b and 5.7c respectively. Unlike in the linear array re-

sults, the increased number and distribution of receiving transducer positions

for each source prevents any blind spots from forming in our imaging region of

interest. As a result the full outer surface, inner brain layer boundary and central

water cavity of the brain phantom can be seen clearly in both reconstructions.

Furthermore, in the synthetic reconstruction the different velocity regions are

shown to be homogeneous with closely matching values to the true velocity model

for that problem. This can also be said for the experimental FWI result, albeit

with greater variation in velocity values in the outer brain layer, however these

differences likely reflect small variations in the acoustic velocity of the real PVA

cryogel as the material set. The rms error between the synthetic FWI result and

the true synthetic numerical brain model for this imaging problem was found to

be 2.14 ms−1, a significant improvement to the rms error seen in the linear array

configuration results. As these reconstructions closely matched the expected

velocity model of this brain phantom no follow up experiment using a smooth

starting model was considered necessary.

5.3.3 Rotary Array Brain and Skull phantom results

After achieving promising results from the brain model withpout the skull, we

then repeated the acquisition while including the 3D printed resin skull layer of

the 2.5D phantom to provide a brain and skull imaging problem, as shown in
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Figure 5.9: Reverse time migration of the skull and brain phantom was used
to image the surface of the skull (as shown plotted here in red) to provide a prediction
for its position relative to the dual probe imaging array.

Figure 5.8a. By introducing this high velocity skull layer (2500 ms−1) a phase

shift traces travelling through the phantom can be seen, as seen when comparing

weastershot and phantom sample plots seen in Figures 5.8b and 5.8c. Here the

the higher velocity material can be shown to reduce the travel time by 1.8480

µs. This time difference is sufficiently large that cycle skipping is likely when

attempting to perform an inversion from a water start as there is insufficient

low frequency content in the imaging data to mitigate this effect. This can be

seen after attempting to reconstruct the 2.5D phantom from a water starting

model when using both the synthetic and experimental USCT data, as shown in

Figures 5.8i and 5.8l respectively.

However, while the 2.5D phantom was not successfully recovered in these in-

versions it’s worth noting that the outer layer of the skull can be seen in both

reconstructions. This is due to the strong reflections of the outer surface of

the skull which can be used to provide useful information about position and

morphology the skull. For this reason we applied reverse time migration (RTM)

[Levin, 1984], a seismic imaging technique used to localise structures in the

subsurface. This allowed us to provide a high resolution image of the surface of

the 2.5D phantom using the USCT dataset, as shown in Figure 5.9, by tracing
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the strong reflections of the skull layer from the RTM result. This provided us

with prior information about the position of the 2.5D phanton and shape of the

skull layer, allowing for starting models closer to the true case to be developed.

Predicted Skull Starting Model

Initially we attempted to design a starting model containing a predicted skull

layer using the least amount of prior information possible. This included the

position of the outer skull layer extracted from the RTM result, velocity estimates

of the skull and smooth brain layers, which were given as 2500 and 1505 ms−1

respectively, and a reasonable estimate for the mean skull thickness which we

set as 2.00 mm (the true mean thickness was found to be 2.20 ± 0.26 mm).

As shown in Figure 5.8g, this predicted skull was made the found outer layer

of the skull inwards to create a skull with a constant thickness of 2 mm set

to a velocity of 2500 mms−1. The interior of the skull was then filled with a

smooth brain model to account for the change in travel time due to the brain layers.

As shown in Figure 5.8d, the resulting sample trace through this starting model

has a travel time that closely matches that of observed trace passing through the

real phantiom shown plotted in Figure 5.8c. This suggests that this starting model

can be used to reduce the initial mismatch between synthetic and observed data

when running FWI to mitigate cycle skipping effects. This was confirmed to be

true in both the synthetic and experimental FWI reconstructions of this imaging

problem when using this starting model, as shown in Figures 5.8j and 5.8m

respectively. In both results we can see the brain layers being reconstructed and

the central water cavity in both reconstructions are clearly visible. However,

without sufficiently low frequency signal content we can see only limited model

updates to the predicted skulls themselves. To compensate for these skull layers

from matching poorly with their true skull skull models, instead high velocity

artefacts are can bee seen developing in the brain model layer, making it difficult

to see fine features, such as the the irregular boundary between the outer and
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inner brain layers. This would suggest that more closely matching skull starting

models would be required for successful FWI reconstructions using this USCT

dataset.

Fitted Skull Starting Model

To improve on the FWI reconstruction results achieved whne using the predicted

skull, a new starting model was designed by fitting the true synthetic skull seen

in Figure 5.2a to the skull position providing by the RTM result. Like in the

previous starting model, the interior of the skull is filled with a smooth brain

model, as shown in Figure 5.8h. As the 3D printed resin skull was designed using

this synthetic skull model, this skull model can be considered similar to the true

skull layer being imaged in the experimentally acquired dataset. Once in position,

the travel time seen in ou r sample trace for this starting model can again be seen

to match closely to that seen in the sample trace through the real phantom found

experimentally. FWI reconstructions from repeating the FWI sequence while

using this starting model showed a significant improvement. The synthetic result

can be seen to match closely to the true velocity model with a reduced rms error

of 6.848 ms−1 while the irregular structure can be seen to be recovered clearly

in both synthetic and experimental reconstructions. When these sampling the

recovered values from the experimental reconstruction, mean velocities 1478.45

± 1.01 ms−1, 1501.79 ± 1.01 ms−1 and 1521.85 ± 4.29 ms−1 were found for the

water filled central cavity, inner brain layer and outer brain layer respectively.

These match closely with the measured brain tissue mimic velocities and the

water velocity measured for this experiment, suggesting this we have successfully

reconstructed the inner brain model when imaging through our skull model. The

outer brain layer does appear to be have some high velocity artefacts that are

not seen in the synthetic reconstruction or in the experimental reconstruction of

the brain model without the skull seen in Figure 5.7c. These are most likely a

result of there still be some differences between this fitted skull model and the

true skull.
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Figure 5.10: An ideal synthetic full-waveform inversion reconstruction with
broadband data (a) Starting model of homogeneous water. (b) Ideal broadband
full-waveform Reconstruction. (c) The real and ideal broadband source signals. (d)
Amplitude spectrum of the real and ideal broadband source signal. Highlighted in red
can be seen the low frequency content difference between these spectrums.

5.4 Discussion

Building on the in silico feasibility study for applying FWI to transcranial ultra-

sound imaging, in this work we take the first steps into translating what has been

demonstrated through simulations into the real world and have shown that high

resolution ultrasound imaging through dense, high velocity material such as the

skull can be achieved when real data acquired experimentally. Furthermore, this

was also achieved using a simple acquisition system comprised of low cost and

readily available off-the-shelf equipment, suggesting that FWI could potentially

have a significant impact as a medical imaging modality using existing hardware.

This demonstrates the potential of using this methodology as a research tool
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to explore the applications FWI in other fields with minimal investment; our

experimental results for without the skull in place in particular demonstrate that

this method would be well suited to imaging problems concerning soft tissue as

in this application no prior information was required in order to achieve high

quality, high resolution images. Due to the P4-1 probes used in this study having

relatively limited lower frequency limit of ∼0.50 Mhz while having a relatively

high upper frequency limit of ∼4.0 MHz, another potentially exciting direction

for this research may be to apply this method on imaging targets on the smaller

scale that are better suited to the bandwidth of these transducers. This could

include high resolution neuroimaging in small animal as a potential non-invasive

imaging tool.

Despite being able to successfully image our brain model through the skull

layer, to achieve this using our method we has to provide a significant amount

of prior information of the skull layer in order to acquire high quality images.

This included the location, morphology and velocity of this skull layer in the

starting model. Furthermore, we also showed that while providing a reasonable

prediction of this skull model was able to mitigate cycle skipping and allow for the

partial reconstruction of the brain model, discrepancies between this predicted

skull and the real skull model were found to produce artefacts in the soft tissue

layers of the phantom. This may present a limitation for applying FWI in a

clinical setting as it would suggest that the skull model would either need to be

found using a different imaging modality beforehand or more accurate methods

for predicting hard tissue structures such as the skull need to be found. This

would potentially increase the running costs and reduce the impact of method as

an medical imaging tool. There is evidence, however, that this may be problem

may be overcome in part by extending the bandwidth of the transducers used.

To demonstrate this we repeated the synthetic FWI experiment discussed in

Section 5.3.3 where we attempted to image 2.5D phantom with the skull in place

with the rotary array configuration, though this time we replaced our real signal

P4-1 source signal with a broadband source with a lower -40dB limit at 0.07 MHz,
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as shown in Figures 5.10c and 5.10d. Using this new broadbad dataset, the FWI

reconstruction was repeated using a frequency stepping approach from 0.1 to

1.0 MHz with a water starting model. Unlike the inversion run that failed when

using a water starting model and the real P4-1 signal, as shown in Figure 5.8i,

we instead saw a successful FWI reconstruction of both the skull and brain when

using this synthetic broadband dataset and signal, as shown in Figure 5.10b. This

suggests that if we replaced our P4-1 probes with transducer arrays with greater

low frequency content we may be able to recover whole 2.5D phantom without

any prior information. Further experimental work would be required to confirm

this.

5.5 Conclusions

In this study we have successfully demonstrated the feasibility of applying our

2D FWI algorithm to acquire high quality, high resolution images of a skull

and brain mimicking phantom using data acquired experimentally. Imaging

data was acquired using a novel USCT acquisition system consisting of a pair

of independently translated medical cardiac probes. It was found that the best

approach for imaging this phantom was to rotate both probes about the imaging

target. Transducer positions were successfully calibrated for by developing a TOF

localisation method using watershot data. Reconstructions of the soft brain tissue

phantom were achieved without any prior information while it prior information

about the morphology and velocity of the skull layer were required to successfully

perform transcranial reconstruction of the brain phantom.
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6.1 Introduction

Successful reconstructions using conventional FWI are dependent on how close

the initial acoustic model is to the true solution and whether the low-frequency

content of the signal is sufficiently low enough to mitigate cycle skipping, a

well-documented problem in applications of FWI in geophysics. This occurs

when the misfit between the lowest-frequency signal content of the observed and

synthetic data exceeds a half-cycle difference in time, causing the inversion to

converge to the local minima [Bunks et al., 1995]. This makes it challenging

to invert band-limited acquisitions with insufficient low-frequency content. As

demonstrated by an in silico FWI breast imaging study by Calderon Agudo

et al. [Calderon Agudo et al., 2018], USCT data with frequencies below 0.50

MHz were required to mitigate cycle skipping when using a conventional FWI

algorithm. However, medical ultrasound-imaging probes are not typically de-

signed to image sub-1.00 MHz frequencies, making them poorly suited to this task.

Mathematical low-frequency extrapolation methods were investigated to gen-

erate low-frequency signal content that may be missing from acquired data (Li

and Demanet et al. [Li and Demanet, 2016]). However, these bandwidth exten-

sion approaches are recognised as nonlinear operations that add additional costs

and are only able to estimate low-frequency content in controlled situations. An

alternative approach to using a physics-based bandwidth extension algorithm is to

instead pose this task as a machine-learning problem. This concept is supported

by the universal-approximation theorem that states that a deep neural network

(DNN) with a sufficient number of hidden layers can be used to approximate
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any nonlinear function [Hornik et al., 1989]. For this application, this DNN

would be used to approximate an operation that directly extrapolates the true

low-frequency signal phase and amplitude values from band-limited signal data.

This was demonstrated for geophysical applications by Sun et al. using a 1D

convolutional neural network (CNN) that was trained to perform this task using

synthetic data of a signal transmitted through acoustic subsurface models [Sun

and Demanet, 2020].

In this study, I further explore this approach for bandwidth extension by imple-

menting a U-Net-based 2D CNN architecture to preserve the signal structure along

the time axis and across transducer channels when extrapolating low-frequency

signal content. In Section 6.2, I describe the architecture of this proposed band-

width extension CNN, and the methodology for generating realistic in silico USCT

breast imaging data for training and evaluating the CNN solutions. Further-

more, I provide an overview of the USCT acquisition systems used to provide

experimental USCT data of a realistic breast phantom. In Section 6.3, I discuss

the results from applying the CNN solutions to both in silico and experimental

band-limited FWI breast imaging problems. Lastly, in Section 6.4, I discuss the

impact of the proposed bandwidth-extension solution to overcome the inherent

limitations of band-limited ultrasound hardware when imaging the breast with

FWI.

6.2 Materials and Methods

Here, I discuss the methodology used for training and testing the bandwidth

extension CNN solutions for the low-frequency extrapolation of band-limited

USCT data. These include PyTorch implementations of both a proposed U-Net

based 2D CNN solution and the 1D CNN model described by Sun et al. [Sun and

Demanet, 2020]. Both CNNs were run on a GTX 2080 Ti GPU (Nvidia, Santa

Clara, CA, US) using the same training and testing datasets, allowing for the
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performance of both bandwidth-extension methods to be compared. I then discuss

the method used to generate synthetic USCT training, validation, and testing

datasets using numerical SoS breast models provided by the OA-Breast database

[Lou et al., 2017]. Lastly, I provide an overview of the experimental acquisition

system used to image a CIRS 073 acoustic breast phantom [CIRS, 2014] to provide

real-world USCT testing data. This system consisted of a pair of translated P4-1

cardiac probes (ATL, Bothell, WA, US) commonly found in clinical settings, and

they were selected for being among the lowest-frequency transducers available

in medical ultrasound. Despite these selection criteria, I demonstrate that these

probes were still unable to image at sufficiently low frequencies to mitigate cycle

skipping when using a conventional FWI algorithm without prior information

about the breast phantom. Experimental USCT data were, therefore, band-

limited, providing an ideal case study for testing the bandwidth-extension CNN

solutions. The resulting SoS reconstructions from these tests were validated using

a micro-CT scan (using a XT H 225 CT scanner, Nikon, Tokyo, Japan) and

ultrasound reflectivity images (performed using a full-angle spatial-compound

technique [Salido et al., 2016] of the CIRS breast phantom.

6.2.1 Bandwidth-Extension Network Architecture

The low-frequency extrapolation method proposed by Sun et al. [Sun and De-

manet, 2019] used a feed-forward CNN model design with an architecture that

consisted of five convolutional steps, each with parametric ReLU (PReLU) and

batch-normalisation layers, to extrapolate broadband data from 1D trace inputs.

This neural network was trained with a supervised-learning approach, where simu-

lated infrasound transmissions (sub-20 Hz) through numerical acoustic subsurface

models were used to generate paired band-limited and broadband infrasound

acquisitions. These were used as the input and target data, respectively. Once

trained, this CNN was sufficiently robust enough to extrapolate low-frequency

content in a blind band-limited numerical dataset, resulting in improved FWI

reconstructions [Sun and Demanet, 2020].
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In this study, I investigate the impact of using a 2D CNN architecture to perform

low-frequency extrapolation on 2D samples of signal data. The rationale for

this approach was from the observation that sequential traces acquired across

the elements of transducer arrays provide spatial context to the received data

that could complement the time-variation information available in individual

traces. For this reason, it may be beneficial for a CNN to be trained to preserve

wavefront structure along both the time axis and these consecutive traces. For

this task, a U-Net architecture, a CNN originally developed for biomedical-image

segmentation [Ronneberger et al., 2015], was used. It is now widely used as an

image-transformation tool, including for image-completion and image-sharpening

tasks [Chen et al., 2018, Yao et al., 2018].

The U-Net consists of a contracting path where successive convolutional, ReLU,

and max-pooling operations are applied to extract greater amounts of feature in-

formation as spatial information is reduced. This is followed by an expansive path

where successive upsampling is applied to increase spatial resolution, allowing for

the network to produce an output with the same image dimensions as those of

the input (Figure 6.1). A notable feature of a U-Net is the use of concatenated

skip connections, whereby feature maps from the contracting path are reused

by concatenating them with feature maps of the expansive path. This allows

for the network to preserve spatial information when forming the output image

that would otherwise be lost. Input images were defined as 256× 96 samples of

ultrasound data (this corresponds to a window of 256 times samples taken across

the 96 elements of a P4-1 probe shot gather for a given source).
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6.2.2 Bandwidth-Extension Network Training

Synthetic USCT training data were generated by solving a numerical wave equa-

tion to simulate the propagation of acoustic waves through realistic SoS breast

models. This allowed for corresponding band-limited and broadband USCT

datasets to be generated for a range of different breast imaging problems, provid-

ing both the input and target data required to train the bandwidth extension

CNNs by supervised learning. To avoid data overfitting, these datasets were

created by imaging 8 randomly selected 2D slices from the OA-Breast database

models. From the 8 sets of generated data, 4 were selected for training data, 2

were selected for use as validation data during training, and the remaining 2 were

selected for testing. The set of transducer-element positions used to generate

these datasets was modelled after the experimental acquisition system discussed

in Section 6.2.5, which consists of a ring of 16 P4-1 probe positions around the

breast models being imaged. Each of the resulting datasets provided 294,912

unique traces that could be randomly sampled for training the 1D CNN model,

or 3072 unique sets of 96 element shot gathers for training the 2D CNN model.

The augmentation of these data was performed by applying a random shift to the

256 time sampling window for each selected input datum (±144 time steps) and

by applying a random flip to the order of the traces being sampled. By applying

these augmentation steps, a total of ∼40 million unique 1D traces and 7,077,888

unique 96 trace shot gathers could be sampled for training the low-frequency

extrapolation CNN models.

To ensure that the synthetic input data realistically represented real-world band-

limited data, these datasets were generated using an input signal sampled from

transmissions of the P4-1 probes. An example of the recovered P4-1 signal can

be seen plotted in Figure 6.2b, which had a lower frequency limit at −40 dB of

0.52 MHz (as seen in the amplitude-spectrum plot for this signal in Figure 6.2d).

According to the findings of the synthetic FWI study by Calderon Agudo et al.

[Calderon Agudo et al., 2018], this suggests that the resulting datasets gener-
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ated with this signal would have insufficient low-frequency content to mitigate

cycle-skipping effects when running FWI. To demonstrate this, FWI was run

(frequency stepping sequence, 0.50 to 1.20 MHz, 208 iterations) using a synthetic

band-limited dataset generated by imaging the SoS breast model seen in Fig-

ure 6.2a using the P4-1 input signal. To perform this inversion without using

any prior information about the breast model, a homogeneous water starting

model set to 1484 ms−1 was used. As shown in Figure 6.2f, this inversion was not

able to successfully recover the true breast SoS model from this starting model,

supporting the assumption that these datasets are not suitable for breast imaging

using conventional FWI.

To generate the corresponding broadband target data, each simulated breast-

model acquisition was repeated while instead using an ideal broadband source.

This signal was designed to be both in-phase and morphologically similar to the

observed P4-1 signal, but with greater signal content at lower frequencies. To

create this signal, the high-frequency content of the P4-1 signal in the frequency

domain (for amplitudes greater than 1.00 MHz) was combined with the lower-

frequency signal content of an ideal 3-cycle broadband pulse. The resulting hybrid

spectrum of these two signals had greater amplitudes at lower frequencies in

Figure 6.2e than the original P4-1 signal did with a new lower −40 dB frequency

limit of 0.07 MHz. An inverse fast Fourier transform of this hybrid frequency

spectrum was then used to produce the ideal broadband signal seen plotted in

the time domain in Figure 6.2e. To demonstrate the impact of using USCT data

with this additional lower-frequency content, the breast model in Figure 6.2a was

once again imaged, this time while using the ideal broadband source signal or

generated broadband testing data. By running FWI with these broadband data

(frequency-stepping sequence, 0.20 to 1.20 MHz, 208 iterations), a high-quality

reconstruction of the breast model was recovered from a water starting model, as

shown in the final iteration of this inversion in Figure 6.2e.

In addition to using an input signal sampled from real data, realistic noise designed

to be similar noise to that observed when imaging with P4-1 probes was also
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Figure 6.2: Performance of the 2D U-Net low-frequency extrapolation in
FWI. (a) Coronal slice of a realistic numerical breast model. (b) Band-limited source
signal extracted from real P4-1 transmission data and (c) Corresponding ideal broadband
source signal. (d) Amplitude spectrum of real and ideal source signals. (e) Full-waveform
inversion of broadband ultrasound data using ideal source signal. (f) Full-waveform
inversion of bandlimited ultrasound data using real source signal. (g) Full-waveform
inversion of narrow-band ultrasound data after being fed through a low-frequency
extrapolation CNN.

added to the input datasets so that they would closely match real experimental

data. This was achieved by training a simple Pix2Pix generative adversarial

network (GAN) to produce noise maps until it was unable to distinguish between

generated and real noise sampled from P4-1 imaging data. The target broadband

data, however, did not receive this additional noise to encourage the network to

suppress noise present in the input data, and to attempt to only preserve useful

ultrasound signal content. These dataset pairs were then downsampled to reduce

the computational load on GPUs.
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6.2.3 Bandwidth-Extension Network Evaluation

Once trained, both the 1D and 2D bandwidth extension CNNs were evaluated

by applying them to the band-limited input data of 15 additional synthetic

breast imaging USCT testing datasets. These were generated using the same

method as that described in Section 6.2.2 while only sampling breast models from

OA-Breast data that had not already been used to create training data. For

each of these cases, the resulting band-limited input dataset were passed to both

CNNs to generate the extrapolated broadband data. For each test case, FWI was

then performed across the different USCT datasets, including band-limited input

data, ideal broadband data, and two extrapolated broadband datasets generated

using the 1D CNN and U-Net-based 2D CNNs. All inversions were run using a

homogeneous water starting model with a water velocity value of 1484 ms−1.

As expected, none of the FWI reconstructions using band-limited data (frequency-

stepping sequence, 0.50 to 1.20 MHz, iterations = 208) was able to successfully

recover the true breast SoS models, and evidence of cycle-skipping artefacts was

seen in all cases (as demonstrated by Figure 6.2f). Conversely, FWI reconstruc-

tions performed with ideal broadband data sets (frequency-stepping sequence,

0.20 to 1.20 MHz, iterations = 208) were all found to successfully recover the

true numerical breast models for each test case (as demonstrated by Figure 6.2e).

Lastly, FWI reconstructions using all extrapolated broadband datasets were also

found to successfully recover the true SoS breast models for each test case. This

suggests that both CNN solutions were able to both recover missing low-frequency

content in the input data and, after performing this operation, to preserve the

high-resolution imaging data of the input signal. An example of one of these

successful FWI reconstructions using extrapolated broadband generated with the

2D CNN solution is shown in Figure 6.2g.

To compare the performance of the 1D CNN and 2D CNN bandwidth-extension

models, the rms error between FWI reconstructions using extrapolated datasets
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generated using both methods and the true SoS models was computed for each

of the 15 test-case slices. The rms error found for all 1D CNN reconstructions

was 5.287 ± 0.448 ms−1, whereas the rms error for 2D CNN reconstructions was

4.530 ± 0.485 ms−1. These results show that there were significantly smaller

rms values when using the 2D CNN architecture then when using the 1D CNN

method, confirming the hypothesis that including spatial information in the

network results in more accurate predictions of low-frequency content in USCT

data.

A closer look at the impact of the low-frequency extrapolation CNN models

on ultrasound-signal data is shown in Figure 6.3, which shows collected data using

one of the 15 in silico testing breast models. This includes traces plotted from

the input band-limited data, ideal target broadband data, and the extrapolated

broadband data generated by the CNNs. Each block of 96 traces represents the 96

receiving elements for probes moving clockwise in the ring array. To highlight the

effect of the extrapolating low frequencies, a 0.10–0.25 MHz band-pass filter was

applied to all datasets. Transmitted and reflected ultrasound signals were clearly

present in the original broadband panel (Figure 6.3d), but this information was

mostly lost in the band-limited data (Figure 6.3a). As shown in Figure 6.3b,c,

this missing low-frequency signal was successfully recovered after applying the

CNNs. However, in the 1D CNN traces, there were notable noisy artefacts

that were not present in the true broadband traces or 2D CNN output traces.

Again, this is evidence that it is beneficial to include spatial information during

low-frequency extrapolation, as the network learnt that, while the noise did not

have good lateral continuity, the USCT signal did.

Despite the successfully reconstruction of SoS breast models when using con-

ventional FWI for all generated extrapolated datasets, there were notable limits

as to how closely the CNNs were able to transform the input USCT signal into

the corresponding ideal broadband target signal. This can be observed by calcu-

lating the rms error of each USCT dataset with respect to the ideal broadband
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Figure 6.3: Testing USCT data generated by imaging numerical breast mod-
els provided by the OA-Breast database. Each set of 96 traces represents the
received signal by the 96 elements of a P4-1 probe at 1 of the positions in the ring
array. (a) Shot gather simulated using a realistic narrow-band P4-1 source signal and
noise. (b) Shot gather after feeding band-limited signal data into the 1D CNN proposed
by Sun et al. (c) Shot gather after feeding the band-limited signal data through the
U-Net-based 2D CNN. (d) Shot gather simulated using a ideal broadband source signal
without noise. (e) Shot gather after feeding band-limited signal data into the 2D CNN
when trained to only perform a denoising operation. (f) Root-mean-square (rms) error
of synthetic breast USCT data with respect to ideal broadband data with frequency.

case for different frequency bands, as seen plotted in Figure 6.3f. As expected,

the rms error of the input USCT data for frequencies below the −40 dB data

lower-frequency limit (0.52 MHz, as shown in Figure 6.2d) was significantly lower

for the extrapolated data. This supports the observation that these extrapolated

datasets match more closely with their ideal broadband cases compared to the in-

put data. However, despite the ideal broadband having a −40 dB lower frequency

limit of 0.07 MHz (as seen in Figure 6.2d) this error can be seen to increase

for both extrapolated data cases for frequencies less than 0.2 MHz. This is due

to the recovered signal content becoming gradually less coherent with the true
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broadband low frequency signal for frequencies tending towards 0 Hz. Likewise,

an upper limit of frequencies with low rms error values is visible around 1.20

MHz; after that, the rms error increased when moving towards higher frequencies.

The extrapolated and ideal broadband datasets appeared to most closely match

within the 0.2–1.2 MHz frequency range for all 15 testing breast model cases. For

this reason, a starting frequency of 0.20 MHz and a stopping frequency of 1.20

MHz were chosen when running FWI with both the ideal broadband and the

extrapolated broadband datasets.

6.2.4 Comparison with a Denoising U-Net Network

In addition to performing the bandwidth-extension operation, it can be observed

that the investigated CNNs also denoise the input signal data. This can be

attributed to training these CNNs using synthetic input training data with

realistic noise while using ideal noise-free synthetic broadband target data. This

encouraged the CNNs to not only predict missing frequency content, but to also

filter out noise present in the input signal data. This can seen by comparing

the noisy input signal data plotted in Figure 6.3a to the two output datasets in

Figures 6.3b and 6.3c which have significantly reduced noise. Numerous other

examples of denoising using CNNs with U-Net architectures like this can be

found in the literature, such as those compared for denoising colour images in the

review paper by Komatsu et al. [Komatsu and Gonsalves, 2020]. In this section I

will discuss the contribution of this denoising application to improving the FWI

breast reconstruction when using a water starting model.

For this study, a 2D U-Net denoising CNN was created by reppurposing the same

CNN architecture described in Section 6.2.1. To train this CNN to only denoise

input signal data, the target data consisted of the input of the data prior to

applying the realistic P4-1 noise. This was to encourage the CNN to preserve the

same band-limited input signal data while removing the added noise. Besides this

change, the same training methodology discussed in Section 6.2.2 was applied. An
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example of denoised output signal data can be seen in Figure 6.3e after passing

through the noisy band-limited input data plotted in Figure 6.3a through the

denoising CNN. While both sets of input and output data were found to share

the same frequency spectra, the mean SNR of the input data was found to be

42.160 ± 4.917 dB, while a mean SNR of 67.258 ± 5.0133 dB was found for the

denoiosed output data. This shows a significant increase in SNR compared to

the input signal data, suggesting that this CNN has successfully performed the

denoising operation.

To determine whether applying this denoising operation is sufficient to over-

come cycle skipping, FWI was run using noisy band-limited input data, denoised

band-limited output data (using the 2D denoising CNN) and extrapolated broad-

band output data (using the 2D bandwidth-extension CNN) for each of the USCT

testing datasets discussed in Section 6.2.2. Example FWI reconstructions for

of these breast model test cases can be seen in Figure 6.4. As demonstrated

previously in Figure 6.2g, the 2D bandwidth-extension CNN can be applied to

overcome cycle skipping and allow for a successful acoustic reconstruction of the

breast to be recovered without prior information. This is again demonstrated

in Figure 6.4d, which shows that the FWI reconstruction using extrapolated

broadband data for this breast imaging problem closely matches the true SoS

breast model seen in Figure 6.4a. However, the FWI reconstruction using both

band-limited datasets, as seen plotted Figure 6.4b and Figure 6.4c for the denoised

and noisy input cases respectively, clearly show very similar unsuccessful FWI

reconstructions. This suggests that reducing the noise in the input signal data

alone is insufficient to overcome cycle skipping when recovering acoustic breast

models with band-limited input data.

6.2.5 Ultrasound-Tomography Acquisition

Two ultrasound imaging systems where used to acquire the experimental data.

These were the Dual-Probe USCT Acquisition system developed at Imperial
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Figure 6.4: Full-waveform inversion breast reconstruction using a 2D U-Net
low-frequency extrapolation CNN compared to the 2D U-Net denoising
CNN. (a) Coronal slice of a realistic numerical breast model. (b) Full-waveform
inversion using output denoised bandlimited ultrasound data generated using a 2D
U-Net denoising CNN. (c) Full-waveform inversion using input bandlimited ultrasound
data with noise. (d) Full-waveform inversion using output extrapolated broadband
ultrasound data generated using a 2D U-Net bandwidth-extension CNN.

College London by the Transmission and Reflection Ultrasound Tomography

(TRUST) research group, which was used to acquire USCT data for running FWI;

and the Multi-Modal Ultrasound Breast Imaging platform (MUBI) developed

at the Spanish National Research Council [Camacho et al., 2012], which was

used to obtain reflectivity images. Both systems used pairs of independently

rotated cardiac probes that could be positioned to allow for ultrasound data to be

acquired for different source and receiver configurations. A 3D rendering of how

a receiving probe (shown in blue) could be positioned relative to a transmitting

probe (shown in yellow) while imaging the CIRS breast phantom is shown in

Figure 6.5b. These acquisitions were performed in water tanks to provide a

transmission medium between probes and breast phantom. The full volume of

the phantom was acquired by adjusting its position in the vertical direction so

that it could be imaged over several slices.

Dual-Probe USCT Acquisition System

USCT was acquired using a system using dual 96-element P4-1 cardiac probes

and a 256 channel Vantage ultrasound-imaging system (Verasonics, WA, USA).
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Figure 6.5: Dual-probe ultrasound tomography acquisition system. (a) Top-
side view of acquisition ring formed by rotating receiving probe (blue) to acquire the
signal at 11 opposing probe positions for all 16 source probe positions (yellow). Direct
ray paths between a given source element shot to all receiving elements plotted in light
blue. (b) 3D rendering of transmitting and receiving ultrasound probes relative to
breast phantom.

Motors to control the rotation of these probes were a large aperture rotary motor

(Standa, Vilnius, Lithuania) and a PRMTZ8/M motor (Thorlabs Inc.,Newton,

NJ, US). To acquire the full USCT datasets for 2D slices of the breast phantom in

both reflection and transmission, an imaging sequence was designed to simulate

the data that could be acquired with a fixed ring array of ultrasound transducers.

This resulting dataset then consisted of the acquired ultrasound signal for all

possible source–receiver transducer element pairs. As illustrated in Figure 6.5a,

this was achieved by rotating these probes to 16 possible source and receiver posi-

tions around the breast phantom to form a ring ∼200 mm in diameter. When the

transmitting probe was placed at any one of these positions, the receiving prove

could then be rotated to acquire data over the 11 opposing receiving positions

(as indicated by the blue probe arrays for the single yellow transmitting element

shown in Figure 6.5a). The full sequence consisted of repeating this acquisition

for all 16 transmitting positions of the ring array.

Due to the nature of the scanning method used in this system, both the relative

transducer positions and transmitted source wavelets were initially considered
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to be unknown. These values were, therefore, estimated by extracting TOF

information from a calibration USCT dataset acquired prior to placing the CIRS

phantom for imaging. As the width of a P4-1 transducer element (width = 2.45

× 10−1 mm) was less than the minimal wavelength found in the observed data

(λmin = 9.25 × 10−1 mm), these elements were considered to be point sources and

receivers in a 2D imaging plane. Element localisation was, therefore, performed

by minimising the misfit between the computed travel of these modelled element

points and the travel times experimentally found for all source–receiver element

pairs. This was achieved by posing the problem as a nonlinear least-squares

optimisation that could be iteratively solved using a Gauss–Newton algorithm

[Filiṕık et al., 2012]. These optimised transducer positions could then be used to

provide a wavelet estimate for each source. This was achieved by first applying a

normal move-out (NMO) correction [Zhou, 2014] to all received signals for a given

source, and then taking the mean signal across the resulting stack of coherently

aligned traces. An example of a recovered source wavelet from these P4-1 probes

is shown in Figure 6.2b.

Reflectivity-Acquisition System

Reflectivity images were acquired with the Multi-Modal Ultrasound Breast Imag-

ing (MUBI) platform developed by CSIC [Camacho et al., 2012]. A single probe of

3.20 MHz, 128 elements, and 0.22 mm pitch (Prosonic, South Korea) was rotated

around the phantom to the 16 positions of the probe ring array used by the

Imperial College USCT system. At each probe position, a sector-scan reflectivity

image was obtained, with 256 scan lines equally spaced between −60 and 60º,

emission focus at 100 mm depth, and dynamic depth focusing on reception. The

resulting images were formed in real time by a SITAU-112 ultrasound system

with 128 parallel channels (Dasel SL, Madrid, Spain).

These 16 images were combined using the full-angle spatial-compound tech-

nique [Salido et al., 2016]. For each sector image, the interface between water and
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phantom was automatically detected from ultrasound data, and the propagation

direction of each scan line inside the phantom was corrected to account for the

beam refraction. This process was repeated by changing the assumed average

SoS of the tissue (unknown) between 1400 and 1600 ms−1 with an optimization

process that uses image sharpness as a beamforming quality measure to find the

optimal SoS value [Medina et al., 2016]. Then, the 16 refraction-corrected images

were converted into a common rectangular grid by bilinear interpolation and

accumulated to obtain the full-angle spatially compounded image.

6.3 Results

In this section, I present results from applying a FWI algorithm and 2D CNN

low-frequency extrapolation solution to two breast imaging problems with band-

limited USCT data: (1) a 2D in silico dataset where the ground-truth breast

phantom model was unknown, and (2) experimentally acquired 2D data by imag-

ing a realistic CIRS breast phantom using the dual-probe acquisition system.

Extrapolated broadband data were approximated for each problem set by feeding

band-limited input data into a trained network, allowing for the study of the

impact of extrapolating low-frequency signal content on the FWI reconstructions.

To validate these results, the CIRS acoustic breast phantom was also imaged

using reflection ultrasound tomography and X-ray computed tomography (CT).

6.3.1 in Silico Breast Phantom Experiment

An in silico breast phantom was used to provide both band-limited and broad-

band USCT data to test the 2D CNN bandwidth-extension solution. This was

provided by the MUST 2019 Data Challenge and consisted of an SoS breast

model that had been imaged using a ring array of 248 transducers acting as both



6. Deep learning Driven Full-Waveform Inversion Breast Imaging 103

sources and receivers. FWI parameters, including true source signals, transducer

positions, and water SoS were provided alongside this USCT challenge dataset.

However, given that the aim of this challenge was to achieve the most accurate

reconstruction of the numerical breast model, the true used SoS breast model

was not released. This, therefore, provided an ideal blind imaging problem for

this study.

The initial USCT dataset was found to be suitably broadband to overcome cycle

skipping (0.20–4.00 MHz above −40 dB), allowing for a successful reconstruction

of the numerical breast phantom to be recovered using FWI (frequency-stepping

sequence, 0.20 to 1.20 MHz, 208 iterations), as shown in Figure 6.6a. This

dataset was, therefore, used as a broadband reference. To provide a more re-

alistic band-limited dataset, a high-pass filter (FIR, order = 40, cutoff = 0.55

MHz) was applied to the broadband dataset to remove frequency content be-

low 0.50 MHz (this was to reflect the observed bandwidth when imaging with

the P4-1 cardiac probes). As shown in Figure 6.6b, the FWI reconstruction

using this filtered dataset resulted in cycle-skipping artefacts (frequency-stepping

sequence, 0.50 to 1.20 MHz, 208 iterations). This prevented breast-tissue struc-

tures from being correctly recovered. A root mean square (rms) error of 36.593

ms−1 was found between these band-limited and broadband (ground-truth) FWI

reconstructions.

The 2D CNN bandwidth extension solution was then applied to produce an

extrapolated broadband dataset. Rerunning the same FWI sequence used for

the broadband ground-truth data resulted in an accurate reconstruction of the

breast model that was comparable to the original broadband result (Figure 6.6c).

High-resolution breast-tissue structures were also visible in the broadband ground-

truth reconstruction, and a significantly reduced rms error of 6.965 ms−1 was

found between the extrapolated and ground-truth results, suggesting that the

extrapolated dataset had sufficient low-frequency content to overcome cycle
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Figure 6.6: Inversion results for in silico breast imaging data provided by
MUST 2019 Data Challenge. (a) Full-waveform inversion result using broadband
signal data provided for the challenge. (b) full-waveform inversion result using narrow-
band data acquired by high-pass filtering original broadband dataset. (c) Full-waveform
inversion result using extrapolated broadband data generated using a U-Net CNN to
recover missing low-frequency content removed from narrow-band data.

skipping. Inconsistencies in breast-tissue SoS values could be observed in some

regions, but most notably along the lower boundary of the phantom. These may

have been due discrepancies between how different output traces were encoded

with information pertaining to the same model features within the extrapolated

low-frequency signal.

6.3.2 CIRS Breast Phantom Experiment

Experimental USCT data were acquired by imaging the CIRS 073 breast phantom

that had been designed to realistically reproduce breast morphology and acous-

tic SoS. This was performed using the dual-probe USCT acquisition illustrated

in Figure 6.5 and discussed in Section 6.2.5 to image the phantom over 25 coronal

slices, each separated by a step size of 2.00 mm.

FWI reconstructions of the CIRS breast phantom using USCT data acquired

by the P4-1 probes did not appear to have sufficient low-frequency content to

overcome cycle skipping. This resulted in numerous imaging artefacts and poorly

reconstructed breast structures, as shown in Figure 6.7b. These results were
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similar to those of the unsuccessful reconstructions discussed in Section 6.2.1,

where cycle skipping was also observed when inverting the synthetic band-limited

USCT data Figure 6.2f. When running FWI using the extrapolated data, however,

the resulting reconstructions provided realistic breast phantom structures that

were in good agreement with the micro-CT ground-truth model of the CIRS

phantom, as shown in Figure 6.7d. In both extrapolated FWI and CT images, the

phantom consisted of two distinct layers of breast-tissue mimicking material with

contrasting density and SoS values to replicate the glandular and subcutaneous

fat tissue layers of breasts in vivo. Furthermore, several small closely matching

features were seen in both results including scatterers, cavities, and regions of

higher density and SoS. However, the small cavities in the CT scan (outlined

in cyan in Figure 6.7d) appeared to contain attenuation values similar to those

of the air surrounding the phantom. This suggests that the phantom contained

gas-filled cavities that I would not expect to see in real breast tissue. This appears

to be a manufacturing defect in the CIRS 073 breast phantom, which was also

reported in other publications [Kousaka et al., 2016]. Due to the limitations of the

numerical-wave-equation solver in the presence of the large contrast between the

acoustic properties of air (SoS ≈ 343 ms−1, ρ = 1204 kg m3) and breast tissue

(SoS ≈ 1400–1700 ms−1, ρ = 900–1057 kg m3), the presence of these gas cavities

had a detrimental effect on the quality of FWI reconstructions, resulting in

reconstruction artefacts at positions that corresponded to these gas cavities.

6.3.3 Reflection Tomography

Figure 6.7a shows the reflectivity image for a slice of the CIRS phantom. The

outer low-velocity layer present in the FWI image and the CT was also observed in

the reflectivity image. In this case, it was a hypoechoic region of similar thickness,

probably generated by less scattering material used for mimicking fat tissue. In

the interior of the phantom, quite a different texture was observed. Filament-like

structures were present in the reflectivity images, which could be explained by

the nonuniform concentration of scatterers that locally affect material reflectivity



6. Deep learning Driven Full-Waveform Inversion Breast Imaging 106

Figure 6.7: Results from imaging a cross-sectional slice of the CIRS breast
phantom. (a) Reflectivity image with full-angle spatial-compound technique with
refraction correction and 65 dB dynamic range. (b) Full-waveform inversion reconstruc-
tion using using narrow-band data. (c) Full-waveform inversion reconstruction using
using low-frequency extrapolated data. (d) CT with gas-filled cavities highlighted in
cyan. (e) Profile of CT and FWI USCT along the phantom in a region with a uniform
background and a central area with higher density.

but do not significantly change the SoS, at least at the resolution range of the

FWI reconstruction. This pattern was also observed in the CT by restricting the

greyscale palette for observing subtle density changes (see Figure 6.7d), which

confirmed its presence and discarded a possible reflectivity reconstruction artefact.

On the other hand, not all cysts and masses seen in the FWI reconstruction (see

Figure 6.7c) were seen in the reflectivity image. This was expected because some

of the simulated lesions had different stiffness than, but similar reflectivity to,

those of the background material. This observation reinforces the hypothesis

that multimodal ultrasound imaging, combining reflectivity and SoS modalities,

provides complementary information that could improve cancer diagnosis.
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6.3.4 Quantitative-Analysis Results

In order to evaluate the accuracy of the reconstructed images with the proposed

method, quantitative analysis was performed. First, the reconstructed FWI

USCT images of the CIRS-073 breast phantom were coregistered with the CT

acquisition by using a set of landmarks that could be easily identified in both

image modalities, as is shown in Figure 6.7. Then, three different sets of regions

of interest (ROI) were identified that were visible in both the CT and FWI images.

These corresponded to a background with similar density to that of soft tissue

(CT number between 0 and 50), regions with slightly higher density (CT number

between 50 and 100), and ROIs with the highest density (CT number higher than

100). As the identified gas-filled cavities in the CT images were not realistic, they

were omitted from quantitative analysis.

The analytical results of the values of these regions are summarized in Fig-

ure 6.8. SoS values were significantly higher for regions in Set 2 (moderate high

density), while Set 3 (high density) had similar SoS to that of the background

(Set 1). This agreed with the available information from the CIRS-073 phantom

brochure [CIRS, 2014]. A profile along the CT and FWI USCT images (Fig-

ure 6.7e) confirmed that there was good agreement between the results of the two

independent reconstructions. The region with HU around 100 had a significantly

higher SoS (around 1550 ms−1).

6.4 Discussion

FWI could transform ultrasound breast imaging. It can produce images at a com-

parable resolution to that in mammography but while using a safe, painfree, and

more universally applicable solution. However, practical implementations require

frequencies below 1.00 MHz to avoid cycle skipping and to reduce computational

costs. The lack of sub-megahertz energy with sufficient SNR is common in USCT
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Figure 6.8: Values of speed of sound of different obtained regions from the FWI USCT
images, and their corresponding Hounsfield units from CT.

acquisition devices, as they are often designed to generate data for ray-based

imaging methods that require high frequencies to produce images with adequate

resolution to be diagnostically useful.

To circumvent the deficit of low-frequency data, I implemented a solution based

on a U-Net-based 2D CNN that could successfully extend the bandwidth of

ultrasound datasets towards the low end of the amplitude spectrum. The output

datasets from the network contained an accurate estimation of what this low-

frequency information would be if broader-band transducers were available, and

they could produce accurate FWI reconstructions where the original data with

missing low-frequency information failed. I demonstrated that it is possible to

train the network with in silico datasets, and that the trained network performed

well when exposed to data acquired in the laboratory. This suggests that the

method is robust against noise present in real data, and that it could learn the

mapping between high and low frequencies purely from numerical simulations of

ultrasound wave propagation.

The validation on laboratory data resulted in SoS images that were morphologi-

cally consistent with X-ray CT and ultrasound reflection tomography, with added

quantitative information of physical properties. Nonetheless, the reconstructed

images contained artefacts due to the geometry of the acquisition system: trans-
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ducers were distributed in a ring that moved along its normal axis. Despite the

relatively focused illumination on the ring plane, there was significant energy that

propagated outside this plane that interacted with the acoustic heterogeneities

that existed there. These interactions wre inevitably mapped onto the data,

and the final images thereby suffered from a lack of resolution along the axis

perpendicular to the ring plane. This problem could be solved by simply using

data acquired with a 3D system that could capture ultrasound energy at all

angles. The extension of the method to 3D datasets is straightforward. Compar-

isons of the performance of 1D and 2D CNNs on the 2D datasets showed some

differences between the outputs of the two networks, but most of the performance

gains that I observed in the 2D case could have been due to the presence of the

spatial-distribution context. Extending the network inputs from 2D to 3D did not

benefit as much from this extra information because the third added dimension

contained already captured information in the addition of the second dimension.

In other words, the difference between 1D and 2D was that the data transformed

from a pure time series of values into a collection of spatially ordered time series;

the third dimension only added a relatively redundant spatial dimension.

The continuous increase in computational capabilities is creating a shift in ul-

trasound imaging. Wave-equation-based reconstruction methods such as FWI

continue to reconstruct images with better resolution and accuracy than those of

ray-based alternatives. However, there is still a large computational cost to jump

between the two that limits the applicability of wave-based methods to lower

frequencies than those used in ray-tracing methods. The proposed method offers

a solution that allows for both ray-tracing and wave-based ultrasound imaging

on the same data by extending the original bandwidth. With further research

into DNN USCT applications, it may be possible reduce this cost significantly by

directly predicting SoS models of breast models from signal data. This could be

achieved by providing a sufficiently large synthetic training data of USCT signal

data as input and corresponding true SoS maps as target outputs. However,

using this study as an example, a given input dataset can be more than 4 GB
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to generate a high quality FWI reconstruction. Even with downsampling and

small batch sizes, generating and loading a sufficiently large training dataset to

train such a DNN would be computationally challenging. For this reason it may

even be computationally infeasible to train a DNN to perform 3D FWI using

conventional and affordable hardware. This training dataset would also need

to contain a sufficiently diverse set of imaging problems to account for a large

population of patients and the large number of potential pathologies to avoid

overfitting. By training our CNN solution to instead perform a signal processing

operations prior to running conventional FWI, we were able to ensure that our

SoS reconstructions were instead acquired using a reliable, wave-equation-based

solution. Alternatively, integrated DNN and FWI solutions have recently been

proposed for FWI applications in geophysics, such as the approach discussed by

Zhu et al. [Zhu et al., 2021], and this will no doubt be an exciting area of research

when exploring further applications of FWI in medical imaging.

Lastly, the proposed method can not only be used for improving FWI. A reliable

method to extend the frequency content of band-limited ultrasound signals can

also be used to overcome the physical limitations of PZT crystals, extending the

use of existing US hardware for other frequency ranges or predicting produced

data by an ideal US hardware system.

6.5 Conclusions

In this work, I showed how a 2D CNN such as U-Net can be used to extend

the frequency content of USCT data for FWI breast imaging. Realistic in silico

USCT data were generated to provide input and target data to train a CNN to

perform this bandwidth-extension operation. The performance of the CNN was

then evaluated using simulated and experimental FWI breast phantom imaging

problems with band-limited input data. I demonstrated how applying the CNN

as a prepossessing step to the input data could be used to recover missing low

frequencies, allowing for FWI to be run without cycle skipping. By doing so, I was
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able to recover high-resolution quantitative SoS models of the breast phantoms

despite starting with input data that were not suitable for FWI breast imaging.

The preprocessing of acquired USCT data with trained bandwidth-extension

CNN solutions may become a standard procedure prior to running FWI, similar

to the application of some currently used filters. Lastly, this approach could be

used to overcome the physical limitations of ultrasound hardware that images

with suboptimal bandwidths.



Chapter 7

Towards 3D Full-Waveform

Inversion in Small Animals

As previously discussed in Chapter 5, it has been shown that to successfully image

complex three dimensional (3D) geometries like the brain with FWI, a 3D FWI

algorithm is required to overcome out of plane effects. Furthermore, despite being

among the lowest frequency medical transducers available, the P4-1 cardiac probes

(ATL, USA) used in this study were found to have insufficient low frequency

content to image the ultrasound breast phantoms discussed in Chapter 6 without

the application of a deep learning low frequency extrapolation solution. However,

given that the maximum resolution that can be achieved using FWI was found

to be the resolution of half a wavelength, the upper bandwidth limit of in P4-1

data would allow for FWI to be run at higher frequencies than those previously

considered in this thesis, potentially allowing for high resolution FWI applications

of smaller imaging targets. This is assuming that the amplitudes and frequencies

being considered would remain sufficiently low that the ultrasound propagation

can still be assumed to be linear [Zhou, 2014]. From these observations I decided

to investigate the application of dual probe 3D FWI tomography as a novel

non-invasive neuroimaging technique for small animal subjects.

I have presented findings from this research at the International Ultrasonics

112



7. Towards 3D Full-Waveform Inversion in Small Animals 113

Symposium (Kobe, Japan):

Robins, T., Cueto, C., Agudo, O. C., Guasch, L., Warner, M., Tang

M. (2018). 3D Transcranial Ultrasound Tomography of the Brain in

Small Animals using Full-Waveform Inversion – an Initial Feasibility

Study. In: International Ultrasonics Symposium, Kobe, Japan, 22-25

October 2018.

and at the International Medical Ultrasound Tomography (MUST) conference in

Detroit (MI,USA):

Robins, T., Cueto, C., Agudo, O. C., Guasch, L., Warner, M., Tang

M. (2019). Towards 3D Brain Imaging in Small Animals using Full-

Waveform Inversion. In: International Workshop on Medical Ultra-

sound Tomography, Detroit, MI, 14-15 October 2019.

In this chapter I will cover both the in silico results presented at these conferences

and the most recent findings in this work. This chapter also serves as a discussion

about future work of the novel FWI imaging methods discussed in this thesis

and the steps to be taken to further explore this imaging modality as a potential

neuroimaging technique for animal research.

7.1 Introduction

Non-invasive neuroimaging is considered to be highly valued in translational

animal model research, a field which aims to bridge the gap between observations

made in animal subjects and humans to improve our understanding of neurological

diseases and for the development of pharmacotherapeutic treatments [Belzung

and Lemoine, 2011] [Hoyer et al., 2014]. These methods provide an ideal way of

investigating the brain with minimal impact to the animal subjects and, by allow-

ing for repeated measurements, the size of experimental groups can be reduced
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(adhering to the first of the 3Rs for humane experimental approach proposed by

Russel and Burch [Russell and Burch, 1959]) and allow for studies investigating

changes in brain tissue and behaviour over time to be carried out. Furthermore,

the use of non-invasive imaging also allows for multimodal investigations to be

carried out on the same animal subject so that structural and functional imaging

can be performed simultaneously [Walter et al., 2009][Waerzeggers et al., 2010].

Magnetic resonance imaging (MRI) is currently the gold standard for structural

imaging of the brain in humans due to the high soft tissue contrast. While this

is also true for neuroimaging small animals such as mice, the limited resolution

presents a number of challenges when using this modality. With an average

human brain volume of ∼1260 mm3 [Peters et al., 1998][Allen et al., 2002] ∼440

mm3 [Vincent et al., 2010], stronger magnetic fields are required to successfully

image the mouse brain. To achieve comparable performance found when imaging

the human brain with a 3-Tesla scanners a 9.4-Tesla scanner is required for mouse

brain imaging. Even at this field strength repeated signal acquisitions are also

required.
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Figure 7.1: Cylindrical 3D dual probe acquisition configuration for imaging
a mouse head. Here the cylindrical volume can be imaged in 3D by performing a
rotary imaging sequence while the probes are placed vertically.

Compared to the high cost and limited availability of MRI, ultrasound could offer

an alternative technology for non-invasive imaging of the brain in small animals.

In this chapter I will demonstrate the feasibility of an novel neuroimaging method

for small animals in silico using 3D FWI to perform transcranial tomography

towards the development an alternative acoustic tomography based neuroimaging

modality for animal research.

7.2 Materials and Methods

7.2.1 In Silico Mouse Head Phantom

To create a realistic mouse skull and brain acoustic model to image in silico, high

resolution 3D CT and MRI models of the adult murine head for strains C57Bl/6j
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Figure 7.2: 3D mouse skull and brain imaging phantom

were provided by the Henderson Laboratory at the University of Toronto [Chan

et al., 2007]. Here a linear empirical relation between Hounsfield units (HU),

density and acoustic velocity was used to estimate the sound speed of the skull

from this CT model [Mast, 2000] while a scaling to estimate realistic acoustic

velocity of the brain was achieved using the tissue properties datasbase V4.0

provided by the IT’IS Foundation [Hasgall et al., 2012]. Renders of the original

CT and MRI models of this mouse head can be seen in Figure 7.2 alongside the

generated in silico mouse brain and skull phantom.

7.2.2 Transcranial USCT Data Acquisition

3D USCT data of transcranial imaging problems were acquired by simulating scans

of acoustic models using the 3D cylindrical configuration of the dual P4-1 probes

shown in Figure 7.1. This is a variation of the 2D dual probe acquisition system

discussed in Chapter 4. In this configuration, the P4-1 probes are orientated

vertically to create the 3D cylindrical imaging volume. As these probes are

rotated, each of the 96 probe element can transmit and receive ultrasound signal

data across to the 96 elements of the other probe. This can be used to simulate a

fixed cylindrical array consisting of a maximum of 96 stacked ring arrays formed

the rotated P4-1 transducer elements. An illustration of this configuration when

applied to image a mouse head can be seen in Figure 7.3.
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Figure 7.3: Cylindrical transmission of P4-1 probe element in 3D. By transmit-
ting multiple finite point sources simultaneously it is possible to model to transmission
of a P4-1 element in 3D in silico acoustic simulations.

7.2.3 Modelling Ultrasound Transducers

When attempting to use the dual probes to image in 3D, the elements of the

P4-1 probe can no longer be modelled as point receivers and sources transmitting

spherical waves. As the true P4-1 elements are long (height'13 mm) and thin

(element width = 2.45 x 10−1 mm), their transmission more closely resembles

a cylindrical wave source. The simplest way to represent these elements in 3D

imaging problems would be to model them as lines of finite points. The combined

wavefront of these individual point sources allows for a cylindrical source to be

modelled using the Huygens principle [Pinto, 2010], as demonstrated in Figure 7.3.

The resulting wavefield is comparable to the real P4-1 seen in transmission when

measured with the plane of hydrophone receivers described in Section 4.2.

7.2.4 Imaging Array Parameters Selection

In this section I will discuss the methodology for designing the configuration

of the cylindrical array composed of the rotated dual probe positions. For the

3D dual probe system to be feasible, the cylindrical array would need to have a

sufficiently high number of transducer elements distributed over a large enough

cylindrical surface area to completely surround the imaging target. However,
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for this method to be performed experimentally a low run-time is required to

complete the imaging sequence for this method to be feasible. This is because the

assumption that the water velocity remains constant and that the imaging target

remains stationary throughout the scan becomes less likely to be true as the

acquisition run-time becomes longer. For this reason, scan times should ideally

be kept to less than 2 hours long. In addition to demonstrating the feasibility of

3D FWI for the transcranial imaging of small animals, this in silico study was

also designed determine any potential imaging array configurations that would

allow sufficiently large 3D USCT datasets to be acquired for the shortest possible

USCT data acquisition run-time. To achieve this, a grid search using a simple

transcranial imaging problem was performed to optimise across different source

and receiver array configurations. This grid search was repeated while using

both point and cylindrical transducer elements so that the performance of both

transducer element types could be compared.

The benefit of imaging a target as small as a mouse head using the 3D dual probe

system is that, unlike in previous dual probe FWI applications discussed in this

thesis, the mouse head is smaller than the aperture of the probe, meaning that

it’s likely that linear translations of the probes in the transducer lateral direction

will not be necessary. When used in tge 2D dual probe imaging configuration, it

was possible complete a ring array with a large number of transducer elements

quickly as a maximum of 96 element positions could be added to the ring array

for every transducer array position, as seen in Chapters 5 and 6. However, when

these probes are positioned vertically a significantly greater number of rotary

steps is required to create ring arrays with many transducer elements. This makes

experimental acquisitions with this method infeasible for a large number of source

and receiver ring array positions. As transmitting and receiving wavefield signal

data using stationary probes can be performed quickly, the rate determining step

in each acquisition was determined to be the motor translation step in addition

to the time required for the translated probe to come to rest. Given N as the

number of transmitting source array positions within a ring array and M as the

number of receiving array positions per source array position, the run-time of an
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imaging sequence is largely determined by the time taken to perform 4MN + 2

motor steps (when including initialising and resetting motor steps). From time

measurements taken in the lab, the time taken to complete a motor step, allow

for the probes to come to a complete stop and acquire USCT data was found to

be 2.89 s when using this configuration. To minimise the time taken to complete

a 3D USCT acquisition, the lowest possible values for M and N need determined

to be while the acquired data is still sufficiently able to recover clinically useful

acoustic models.

To perform the imaging array grid search, 2D FWI reconstructions were acquired

using USCT data generated from imaging the in silico mouse head cross-section

seen in Figure 7.4 for all combinations of N and M where N is a set of values denot-

ing the number of source elements in the ring array (N = {8, 16, 32, 64, 128, 256})

and M is a set of values denoting the number of receiving elements per source

(M = {20, 38, 74, 146}). This grid search was performed for a single ring array 2D

imaging problem as running these grid searches using 3D FWI would have been

computationally expensive and have required long run-times. Given that the

mouse head is approximately 11.97 mm wide, the ring array was given a diameter

of 20.00 mm. For each imaging problem, all sources were equally distributed

about the ring array. As discussed in Section 4.2 for the 2D ring array USCT

acquisition system, no receiver element positions were placed either side of the

source array to prevent the probes from colliding during real acquisitions (in

this case only the the furthest 57% of receiver positions from a set of equally

spaced ring array positions were considered for any given source). All. receiver

positions were equally distributed outside of this collision zone. This grid search

was repeated when modelling with both point and cylindrical P4-1 elements to

measure the impact of using more realistic P4-1 wavefield data. Each FWI image

reconstruction was run for 160 iterations using a frequency stepping method

from 0.60-2.50 MHz. The transmitted signals used for this were experimentally

obtained from the P4-1 probes watershot data.
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Figure 7.4: Full-waveform inversion grid search results for evaluating the
impact of the number of point sources and receivers on the reconstruction
of a mouse head cross-section.
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Figure 7.5: Full-waveform inversion grid search results for evaluating the
impact of the number of cylindrical element sources and receivers on the
reconstruction of a mouse head cross-section.
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7.3 Results

7.3.1 Imaging Array Grid Search

In Figures 7.4 and 7.5, 2D FWI reconstructions of a mouse head can be seen for

different combinations of source and receiver arrays while using both point and

cylindrical elements respectively. Each reconstruction provides a grid point for

the grid search discussed in Section 7.2.4 in order to determine the impact of

using N sources and M receivers per source on the quality of FWI reconstructions.

In both figures, the impact of having insufficient source and receiver positions

can clearly been seen by how the reconstructions tend to more closely resemble

the true model as N and M values were increased and by how the reconstructions

tend to fail as fewer total transducer elements were used.

To evaluate each SoS reconstruction, the rms error relative to the true velocity

model shown in Figure 7.4 were calculated and plotted in corresponding grids

for each grid search in Figure 7.6 alongside the run time for each configuration.

When comparing the set of rms values found when using point elements to those

seen when using cylindrical elements, we can see that using cylindrical P4-1

elements results in reconstructions with a slightly higher error in the highest

quality reconstructions (which in both cases can be considered to be those with 32

or more sources and 38 or more receivers per source). This is understandable due

to the lost resolution that would be expected when transmitting and receiving

with elements with greater surface areas. This effect is most obvious in the cases

where fewer sources are used as this can be shown to result in significantly greater

errors when using cylindrical elements. However, the difference between these

error values becomes negligible as more sources are introduced. This suggests that

the effect of running FWI using cylindrical elements can be mitigated to allow

for high quality SoS maps to be recovered when compounding with a sufficiently

high number of cylindrical sources. As shown in Figure 7.6, the lowest rms values

measured for configurations with predicted run times less than 2 hours when
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Figure 7.6: Root mean square error and acquisition time plots for the result-
ing 2D FWI mouse head reconstructions for both point and cylindrical P4-1
elements. Configurations which had run times greater than 2 hours are indicated by
being below the white line. The configurations which were found to have the lowest
rms values with run times less than 2 hours are labelled with white asterisks.

point elements were used was 4.21 ms−1 for a run time of 1 hour and 54 minutes.

This was observed when a ring array consisting of 32 source elements and 74

receiving elements per source were used. Likewise, the same imaging sequence of

32 sources and 74 receivers per source gave the lowest rms error detected using

cylindrical elements and selecting for run times less than 2 hours, which as shown

in Figure 7.6 was found to be 5.29 ms−1. For this reason, the cylindrical array

configuration selected for imaging the mouse head in 3D in silico was designed to

simulate the rotation of 32 source array positions around the imaging target, each

with 74 receiver positions. In practise this would be comparable to a fixed ring of

96 array positions, of which a set of 32 equally distributed arrays would be set as

source arrays. As each array position in this ring consists of 96 elements along the

vertical axis, the full cylindrical array would have a maximum of 9,216 transducer

elements (or 96 stacked ring arrays of 96 elements, each separated by a vertical
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spacing of 2.95 x 10−4). By applying the same density of source and receiver

elements determined from the grid search (i.e. the distance between adjacent

source elements and between adjacent receiver elements), the total number of

elements can be further reduced by applying the same spacing to select for subsets

of elements in each array. This significantly reduces the memory required to store

the 3D USCT data. Likewise this also significantly reduces the computational

expense of both the numerical simulation to generate the tomographic data and

when running 3D FWI to reconstruct the head model. Given that in the 2D plane

each of the 32 sources element positions would have an approximate distance

of 2.00 mm from each neighbouring source element, a subset of 15 of the 96

elements from each array could be selected as sources to ensure the same spacing

between elements vertically. Likewise, given that each receiving element would be

separated by a distance of 0.98 mm, a subset of 28 elements from each 96 element

array can be selected as receivers. In total this gives a transducer array of 2688

elements equally distributed over the surface of a 20.00 mm wide, 28.32 mm long

cylinder, of which a subset of 480 of these elements were selected as sources.

7.3.2 Small Animal 3D FWI Reconstructions

3D FWI Reconstruction of a Mouse Skull

Given the optimised configuration for the cylindrical transducer array discussed in

Section 7.3.1, simulations of small animal imaging problems could be performed

to generate the 3D USCT data required to test the feasibility of the proposed

imaging modality. When imaging the 2.5D phantom in Chapter 5, it was found

that the P4-1 did not have sufficient low frequency signal to reconstruct the high

velocity skull mimicking material. While mouse skull tissue is also known to

be high relative to soft tissue (a longitudinal wave speed of 2425 ms−1 [Liang

et al., 2019]), mice skulls are significantly thinner than human skills and so have a

smaller impact on the travel time of propagating ultrasound waves. It is therefore

possible that FWI reconstructions will not be susceptible to cycle skipping when
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Figure 7.7: Macerated mouse skull used to test the feasibility of reconstruct-
ing mouse skull tissue with full-waveform inversion. (a) Photograph of macer-
ated mouse skull. (b) CT acquisition of macerated skull (surface render). (c) Predicted
acoustic model of skull derived from the CT acquisition. (d) Full-waveform inversion
reconstruction of the mouse skull.

imaging without prior information about the mouse head (i.e. when running FWI

using a starting model of homogeneous water SoS values) as the resulting lag after

transmitting through the mouse head woudl be less than the half cycle of the

lowest frequency band when imaging with P4-1 probes. To test this assumption,

3D FWI was first applied to reconstruct a full mouse skull in silico. To perform

this inversion, a macerated mouse skull was imaged using a high resolution micro-

CT scanner (XT H 225 CT scanner, Nikon, Tokyo, Japan) to provide an in silico

imaging target. This skull can be seen in Figure 7.7a alongside the surface render

of the CT mouse skull scan Figure 7.7b. Using the same method for deriving an

acoustic SoS skull model using HU provided by CT acquisitions that was described
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Figure 7.8: Sagittal and coronal cross-sections of a synthetic full-waveform
inversion reconstruction of an acoustic mouse skull model. Alongside the
reconstruction results are given the mouse skull true model and the starting model,
which for this experiment was a homogeneous water starting model. Speed-of-sound
value plots are shown to compare the true and reconstructed models using values
sampled along the red line plots in each cross-section.

in Section 7.2.1, a acoustic SoS model of the ex vivo skull was calculated, as shown

by the volume render in Figure 7.7c. Synthetic 3D USCT data from imaging this

acoustic skull model was then generated by simulating a tomographic acquisition

using the dual probe cylindrical array. The imaged acoustic skull model could

then be used as the ground truth, or true model, in which reconstructed acoustic

skull models can be compared. Finally, the FWI reconstruction of the skull can

be seen in Figure 7.7d. This was acquired by running 3D FWI algorithm using

the synthetic skull USCT dataset (frequency-stepping sequence, 0.55 to 2.50 MHz,

iterations = 192). This in silico reconstruction was promising as it can be seen

to match the true model of the skull closely. This suggests that the dual probe

cylindrical array has a sufficient coverage of transducer elements to acquire data

for fully recovering an imaging target the size of a mouse head. As the recovered

model can be seen to closely match the geometry and SoS values of the true
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model, this also suggests that cycle-skipping did not occur when recovering the

mouse skull from water values, despite starting from a lower frequency band

around 0.55 MHz.

A closer comparison between the true and the reconstructed skull models can be

seen in Figure 7.8, which shows cross-sections of both models in the sagittal and

coronal planes. Also seen are plots comparing SoS values using samples taken

from the red line plot from each cross-section. The recovered skull can be seen

to closely match the location, geometry and velocity values of the true model.

However, the resolution of the recovered skull seems to be low, as indicated by

the smooth gradient of high SoS tissue to the surrounding water SoS values.

This is in contrast to the strong boundary between the true skull model and the

surrounding water. This also means that the peak SoS values measured across

the skull tissue are slightly lower in the recovered skull tissue compared to the

true model, as can be seen in the SoS value sample plots. The effective change in

travel time of waves moving directly through layers of skull may be similar in

both models despite this smoothing. In which case it may be that model values

in the centre of the skull will not be greatly affected. However, the impact of

this smoothing and loss of the finer details of the skull will likely be greater for

voxels as they get closer to skull and the uncertainty between skull tissue and

the surrounding brain and water values increases. To determine the impact of

this smoothed skull on the reconstruction of brain tissue, the acoustic mouse

head model will be reconstructed by running FWI when the true skull is given in

the FWI starting model and when no prior information of the skull is given (i.e.

when the starting model only consists of water values).

3D FWI Reconstruction of a Mouse Brain and Skull

By using the cylindrical dual probe array to image the in silico mouse head model

discussed in Section 7.2.1, a synthetic 3D USCT dataset of an acoustic mouse skull

and brain imaging problem was generated by simulating a transcranial ultrasound

tomography acquisition. Using the same approach used in Section 7.3.2, FWI
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Figure 7.9: FWI reconstruction of an acousticin silico mouse skull model
derived from a high resolution CT model, without surrounding tissue

reconstructions of this skull and brain model were run using a 3D FWI algorithm

(frequency-stepping sequence, 0.55 to 2.50 MHz, iterations = 192).

Reconstructions of the mouse skull and brain model were performed while using

both a starting model containing the true mouse skull and a starting model

containing only water SoS values and no prior information about the imaging

target. By including the true skull in the starting, the inversion problem starts

closer to the true velocity map of the problem, leaving only the brain model to be

recovered. This inversion would therefore be expected to have a greater chance

of tending towards the vicinity of the global minimum. When the water starting

model is used, however, the imaging problem needs to recover both the brain and

skull tissue, increasing the number of possible solutions in which the inversion

problem could converge to.
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As shown in Figure 7.11a, when FWI was run using the skull starting model,

the brain model can be seen to have been successfully recovered when compared

to the true model ground truth. High resolution features and accurate brain

tissue SoS values can be seen in both sagittal and coronal cross-sections of this

result and the sampled SoS value plots show that the recovered FWI matches

well with the true model samples, albeit with some smoothing. When using the

water starting model, distinct skull and brain tissues can be seen to have been

recovered. However, while the position and geometry of the recovered FWI result

are comparable to the True model, the recovered tissues are low resolution and it

is not possible to clearly distinguish features of the brain. As shown in the SoS

sample plots, even though the recovered SoS values of this FWI reconstruction

do not closely match the features of the true model, the recovered SoS values

do closely match the true model SoS values in the centre of the brain. However,

the matching gets worse as the samples tend to decrease relative to the true

model when moving towards the skull. Like in the results shown in Figure 7.7,

the recovered skull model is smoothed relative to the true skull model. Together

these results suggest that this imaging method is sufficient for recovering high

resolution models of soft tissue such as the brain, but that the method is not

able to sufficiently recover high resolutions of thin, high velocity material such

as the skull which has strong boundaries to surrounding water and tissue. The

smoothing error when reconstructing the skull then has a detrimental effect on

the brain, resulting in lower velocity values in brain tissue near the skull and

poor definition of brain features.

3D FWI Reconstruction of a Mouse Head

When attempting to recover the mouse skull and brain model described in

Section 7.2.1, the only soft tissue included in the acoustic model was the brain.

However, a real mouse head would be a more complex imaging target. This is

because a real mouse head is composed of many other tissue besides the those
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Figure 7.10: Computed tomography scan of an ex vivo mouse head. (a) Surface
render of the mouse head. (b) Volume render of the mosue head.

Figure 7.11: FWI reconstruction of an acoustic in silico mouse skull model
derived from a high resolution CT model, with surrounding tissue

of the skull and brain, such as the surrounding muscle, skin, fat and sensory

organs. To create a more anatomically correct mouse head model, an ex-vivo
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mouse was scanned using a high resolution micro-CT scanner (XT H 225 CT

scanner, Nikon, Tokyo, Japan) to acquire the density model of the mouse head,

as shown by the surface and volume renders in Figure 7.10. Using the method for

deriving acoustic models from CT data that was described in Section 7.2.1, this

CT acquisition was used to generate a ground truth acoustic mouse head model

to image using a simulation of the cylindrical dual probe array. However, CT is

not well suited for imaging fine details in soft tissue. As a result the CT brain

model was found to have limited high resolution detail. To correct this problem

this mouse brain was replaced with the acoustic brain model derived from the

MRI brain image discussed in Section 7.2.1 instead.

Using the same approach used in Section 7.3.2, FWI reconstructions using 3D

USCT of the mouse head were run when using both starting models containing

the true skull and a starting model containing only water SoS values, as shown

in Figure 7.11. Much like the results seen in the mouse skull and brain case,

the use of the skull starting model significantly improved the recovery of the

mouse brain brain and once again some fine details of the brain can be observed.

Likewise, when a water starting model was used a smoothed skull and brain

model was recovered with little brain structure visible. However, even when the

skull starting model was used the results are slightly further degraded compared

to when only the brain and skull was present. This suggests that the impact of

including the surrounding tissues and structure in the inversion problem may be

detrimental to the recovery of the brain.

7.4 Conclusion

In this chapter, I have demonstrated through in silico imaging problems that it

is feasible to generate a 3D ultrasound image of a mouse brain using FWI and a

pair of low frequency clinical probes. It was shown that when a starting model

containing the true skull was used that a high resolution 3D brain model can

be recovered that closely matches the true mouse brain model. Unlike in the
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previous FWI brain imaging problems considered in this thesis, it was also shown

that this imaging modality could recover the complete skull and brain despite

the limited frequency range of the P4-1 probes. However, as the recovered skull

models tended to be smoothed compared to the true skull models, these recon-

structions contained smoothed brain models without any visible high resolution

brain structure. This suggests that for this method to be clinically useful, an

inversion method which produces high resolution reconstructions of thin skull is

required.

As only the first step in exploring the potential of this imaging modality, further

studies with experimental validation is required.



Chapter 8

Conclusions and future work

8.1 Conclusions

The aim of this thesis was to develop technologies to overcome existing limitations

of conventional ultrasound methods, particularly in transcranial imaging, by

taking advantage of the recent advances in ultrasonics and computing.

In this thesis, a range of technologies and systems have been developed and

studied. Firstly, techniques are developed and initially evaluated to image the

mouse brain vasculature using a dual-frequency, ultrafast, contrast enhanced

ultrasound imaging technique. Next, the focus of the research was moved to

computed tomography using FWI. A sophisticated tomographic ultrasound data

acquisition system was developed using computerised positioning system and two

commercially available clinical low frequency imaging probes. A robust calibration

methodology was applied to ensure that this system had precise positioning of the

two probes and accurate models of the ultrasound wave-fields they generated for

any given imaging experiment. A 2.5D brain phantom consisting of a soft brain

tissue mimic surrounded by a hard, bone like skull mimic was developed. Having

then devised a method for imaging this phantom using the dual probe acquisition

system, I then demonstrated that it is feasible to image the brain through skull

using FWI in an experimental phantom study. Furthermore, a deep learning

133
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neural network was proposed to expand the bandwidth of the measurement data

and improve the FWI image reconstruction. Finally, the FWI imaging is expanded

to 3D on digital 3D mouse brain phantoms, and the feasibility of generating a

3D mouse brain image using FWI and existing commercial transducer is initially

demonstrated.

The main contributions of this thesis include:

1. The first experimental demonstration of the feasibility of imaging brain

through skull using FWI.

2. A novel method is developed based on deep learning using 2D CNN to

expand the bandwidth of measurement data which is demonstrated to be

able to improve FWI image reconstruction on experimental data.

3. The first demonstration of the feasibility of 3D FWI imaging of intact mouse

brain through simulation.

4. The development of a 2.5D brain and skull mimicking phantom.

5. The development of the dual-transducer setup, and the demonstration of

the importance of accurate transducer position calibration in ultrasound

image reconstruction.

6. The development of a novel USCT acquisition system consisting of a pair

of independently translated medical cardiac probes.

8.2 Future Work

Future work can expand in various directions. Firstly, 3D in vivo studies on

imaging mouse brain using the technologies described in Chapter 7 would sig-

nificantly strengthen conclusion of the study. Secondly, a clear direction is to

develop a human helmet with distributed transducers so that a proper 3D FWI
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reconstruction of human brain can be realised. Thirdly, the deep learning method

proposed in this thesis could also be studied to investigate whether it can be used

to fill any data acquisition gap in USCT datasets as it would be impossible to

acquire, 360 data with a spherical acquisition system in practice.
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