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Abstract

MAX phases have garnered considerable research attention due to their unusual combination of

metallic and ceramic properties that make them desirable materials especially in applications

requiring extreme operating conditions. Zr-Al-C MAX phases specifically, are of particular

interest in the nuclear industry where their low neutron absorption make them compelling

candidates for fuel cladding materials. The synthesis of Zr-Al-C MAX phases, however, has

been challenging, with the presence of impurities suggested as necessary to stabilise them [1, 2, 3]

and secondary phases considered unavoidable in the reported successful synthesis of Zr2AlC [4]

and Zr3AlC2 [5]. This has led to questions as to whether the composition of MAX phases in

this system is likely to change when in service.

Addressing these uncertainties has been the main objective of this thesis, making the theoretical

study of the thermodynamic stability of Zrn+1AlCn of central importance. The stability of the

Zrn+1AlCn and closely related Tin+1AlCn MAX phases in the context of the M-A-X ternary

phase diagrams and competing binary and ternary compounds, as a function of temperature,

was calculated by applying density functional theory (DFT) within the quasiharmonic approx-

imation. We found that the Zr-based MAX phases are thermodynamically unstable at room

temperature, although Zr3AlC2 becomes stable above 500K. Ti-based MAX phases on the

other hand, show higher thermodynamic stability, with Ti2AlC in particular, having the lowest

formation energy of the MAX phases on the Ti-Al-C convex hull and appearing stable at all

temperatures, in agreement with its reported success in synthesis. In the course of this work we

also attempted to identify trends and similarities in predicted structural, elastic, thermophys-

ical and electronic properties as well as the chemical bonding within the MAX phases in the

two systems. Chemical bonding differences between the two systems, though, were not found

to explain their differences in stability. Based on phonon calculations, Raman-active mode

frequencies of Zr-based MAX phases and their most competing phases were also predicted, to

assist in identifying phases present in a Zr3AlC2 synthesised sample [6]. Our predicted Zr3AlC2

frequencies of Raman-active modes were within 2% of peaks in the experimental Raman spectra

recently measured by Lyons [6].
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Chapter 1

Introduction

MAX phases are a class of compounds that follow the formula Mn+1AXn, with ‘M’ being an

early transition metal, ‘A’ an element in groups 13–16 of the periodic table, ‘X’ being either C or

N and with n = 1, 2 or 3 resulting in MAX phase subgroups with stoichiometries of 211, 312 and

413 respectively. They are characterised by their layered hexagonal structure belonging to space

group P63/mmc, with two formula units per unit cell. In the unit cell, thin layers of rock-salt

structured MX forming [M6X] M-atom octahedra, with both faces M-terminated, alternate with

single atomic layers of graphene-structured A in [M6A] trigonal triangular prisms. The stacks

of [M6X] octahedra between the layers of A-elements increase according to the stoichiometries

denoted by n as shown in Fig. 1.1. In this structure a combination of anisotropic bonding types

exist, such as strong directional covalent bonds, or ionic bonds, between M-X and M-A atoms,

and metallic bonding along the basal axis in the A-layer [25, 26].

Many of the MAX phases known of today were experimentally discovered quite soon after the

first MAX phase was synthesised in the 60s, with a large number of them being reported in

the review by Nowotny in 1970 [27]. Around this time some of the most studied phases, and

some of particular interest to this study, were also synthesised. These include 211 phases such

as Ti2AlC [28], Ti2AlN [29] and Cr2AlC [30] as well as some 312 phases such as Ti3SiC2 [31],

Ti3GeC2 [32] and Ti3AlC2 [33]. The synthesis of the first 413 MAX phase, Ti4AlN3 [34],

was also soon followed by more phases of this type including Ta4AlC3 [35] and Nb4AlC3 [36].

23
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Figure 1.1: The crystal structure for MAX phases with n = 1, 2 and 3.

Particular research attention was drawn to these types of materials after the phases Ti3SiC2,

Ti3AlC2 and Ti2AlC were investigated, finding promising combinations of properties [37, 38].

As a result, many studies focused on the synthesis of new MAX phases, with a large number

of Ti, V, Ta and Nb based phases being synthesised since 2004 [39]. Regarding the Zr-Al-C

system, which is of central interest in this study, the first MAX phases synthesised were by

Lapauw et al. with Zr3AlC2 [5] and Zr2AlC [4], though not in pure form. The synthesis of such

materials has however been a challenge, with many attempts having been reported [1, 2]. Other

relatively recent efforts at MAX phase synthesis have focused on higher values of n and on ways

of tailoring the properties of existing phases, e.g. by partial substitutions of M and A sites, thus

expanding the possible combinations significantly. For example, quaternary phases have been

explored such as in the V-Cr-Al-C system [40], in (Zr,M)2AlC and Zr2(Al,A)C with M being Cr,

Ti or Mo and A being S, As, Sn, Sb or Pb [2], in (Zr1−xTix)3AlC2 [1] or double solutions such as

(Zr, Ti)2(Al, Sn)C [3] and (Zr, Nb)2(Al, Sn)C [41]. Other systems that were explored by fine-

tuning their stoichiometry by modifying their stacking sequences were MAX-like phases with

layered structures, such as Ti5Al2C3, which was studied by Lane et al. [42] and composed with
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a structure of alternating layers of Ti2AlC and Ti3AlC2. Aside from the experimental efforts,

theoretical research such as density functional theory (DFT) calculations has also considerably

assisted the discovery of new phases [43, 44, 45]. This significant research interest in the

synthesis and discovery of new MAX phases is due to the interesting combination of properties

of both metals and ceramics that these materials were predicted and found to exhibit, which

make them very compelling for a range of applications, especially those requiring extreme

operating conditions such as in the nuclear industry.

The development of efficient and safe nuclear reactor components, such as fuel cladding mate-

rials, has been a great challenge in nuclear reactor engineering. Materials in such applications

need to withstand oxidising environments, high operating temperatures and high levels of ir-

radiation, without sustaining enough damage to compromise the safety and efficiency of the

reactor. For the last few decades Zr-based alloys have had the monopoly as materials used in

key components of nuclear reactors and especially in Light Water Reactor (LWR) fuel cladding.

The focus on Zr-based alloys is due to their low neutron absorption, balanced with adequate

mechanical properties. Extensive research has been conducted toward the improvement of their

performance and especially their oxidation resistance at high temperatures. This research fo-

cused on modifying their composition by substituting elements such as Fe, Cr, Ni, and U into

the alloy. Alloys based on the UO2/Zr system (e.g. Zircaloy-4) have been optimised for per-

formance under normal operating conditions, characterised by temperatures of approximately

300℃ [46]. However, these cladding materials suffer from corrosion which becomes very relevant

in accident scenarios such as loss-of-coolant accidents (LOCA), which involve coolant leaking

from the reactor making the cladding and fuel vulnerable to overheating. In such accidents,

Zr oxidation becomes significant at temperatures above 1200℃ leading to release of hydrogen

that can be absorbed in the cladding material potentially resulting in the production of hydride

precipitates in the alloys which can cause embrittlement of the cladding material and eventual

material rupture [46].

As a result of these problems there is a need for nuclear fuel systems with enhanced accident

tolerance [47]. Such systems, compared with the currently used alloys, are characterised by

their ability to sustain reactor function for long periods during loss of active cooling while at
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the same time maintaining, or even improving, general reactor performance. Basic features

required for the sustainability of such nuclear systems are increased oxidation resistance at

elevated temperatures and decreased H production —which limit the core’s lifetime. To support

efficient fission product behaviour, improved thermodynamic and mechanical properties are also

required. An approach for enhanced accident tolerance is the use of coated cladding materials

based on nanolaminated ternary carbides such as MAX phases. This approach is considered

promising due to the available near-term technology, as it is based on a Zr-alloy coating with

years of development and optimisation already available on the base material.

Research in MAX phases in the Ti-Al-C and Ti-Si-C systems has also shown features that make

such phases viable for nuclear applications, such as their ability to self-annihilate radiation-

induced defects at elevated temperatures and to self-heal cracks in oxidising environments

representative of accident scenarios. Examples such as Ti3SiC2 and Ti2AlC exhibit good creep

and fatigue resistance as well as sustaining their strength at high temperatures. Additionally,

studies on Ti3SiC2 also verified the enhanced irradiation resistance compared to the highly

damaged binary TiC secondary phases in the material. This is attributed to the existence of

the A-layers in the MAX phases which accommodate or annihilate point defects produced during

irradiation, as they act as defect sinks due to the low defect formation energy requirements in

the A-layers [48]. Phases in these systems were found to be light-weight and oxidation resistant

as well as self-healing in oxidising environments [49]. Formation of layers of Al2O3 and SiO2

were found to be beneficial for resistance against oxidation, as these dense, protective layers

result in lower oxidation kinetics at the material’s grains. Such layers also support an oxidation

based healing process as Al near the cracking area can react with oxygen to form Al2O3, which

fills the crack space, especially in the case of Ti2AlC whose fracture strength was found to

recover almost completely [50]. Moreover, compared with their corresponding binary phases,

such as TiC, Ti2AlC and Ti3AlC2 exhibit enhancement in properties like electrical and thermal

conductivity, oxidation resistance, and fracture toughness [49].

Building on the above, an important part of the motivation behind considering phases in the

Zr-Al-C system originates from the low neutron cross section of Zr which contributes to im-

provements over the other systems in reactor performance and cost-effectiveness. Furthermore,
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Zr-based phases are expected to benefit from the compatibility with the Zr-alloy cladding ma-

terials that are currently widely used. For the A layer, Al and Si could be considered natural

choices for oxidation resistance enhancement, as they would typically be expected to form the

previously noted passivating layers of Al2O3 and SiO2 oxides around the grains. Additionally, in

two recently reported MAX phases Zr2AlC and Zr3AlC2 [4, 5], oxidation resistance is suspected

to be higher in the case of the 211 compared to the 312 phase, as Al could have an increased

likelihood to diffuse out to form the Al2O3 protective layer at high temperatures due to the

211 phase’s higher content in A-layers per unit cell. Regarding the choice of the X atom in the

MAX phase formula, C is preferred over N as it does not lead to radiotoxic oxidation products

in the same way that N does.

Therefore, MAX phases in the Zr-Al-C system, especially the Zr2AlC phase, have represented a

potentially fundamental step towards further improvement in accident tolerance and efficiency

in nuclear reactors. However, the synthesis of such materials has been a challenge, as also

mentioned previously, with the purity of the produced phases being difficult to efficiently im-

prove and impurities having non-negligible effects on the properties of the alloy. In the case of

Zr3AlC2, two other phases, ZrC and ZrAl2, where found to be present in 31 mol% and 8 mol%

amounts respectively [5], whereas in the Zr2AlC system, the final material was composed of 72

vol% Zr2AlC and 28 vol% ZrC phases [4]. Secondary phases can result in early degradation

of the cladding material under neutron irradiation as the alloys are more prone to differential

swelling and cracking along the grain boundaries, while in the Ti-Al-C or Ti-Si-C systems the

presence of secondary phases has been linked to problematic behavior of the materials [48].

Studies of the Ti3SiC2 phase revealed the appearance of irradiation-induced defects in the form

of denuded zones on the grain boundaries of the MAX phase [48]. Additionally, an increased

proportion of secondary phases, like TiC, were found to be detrimental to the overall irradiation

resistance of the material as a higher number of defects and dislocations are produced in them

compared to the MAX phase grains.

An important aspect of MAX phases is that they enable tailoring their properties by applying

partial substitutions at A and M sites at different compositions, which can help them effectively

fit the requirements of nuclear cladding applications. Recent studies on Zr-based MAX phases
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focus on tailoring their thermal stability and oxidation resistance while preserving the neu-

tron absorption levels of Zr. Investigations of (Nb, Zr)4AlC3, confirmed an improved thermal

stability examined with respect to the temperature-dependent elastic constants and Young’s

modulus, compared to the Nb4AlC3 phase [51]. Additionally, in the case of Zr2AlC, partial sub-

stitution of the M-sites with Ti is suspected to improve the oxidation resistance [52]. For the

same parent MAX phase oxidation resistance is suspected to improve with partial substitutions

of the A-site with Si as is indicated by studies in the Zr-Al-C system where high oxidation re-

sistance for solid solutions Zr2(Al,Si)4C5, as well as Ti-doped Zr2[Al(Si)]4C5 and Zr3[Al(Si)]4C6

was observed [53, 54]. In the reverse case, partial substitution of Zr in the Ti3(Al,Si)C2 solid

solution, was found to improve stiffness at high temperatures [55], up to 1200℃, as the presence

of Zr can strengthen the bonding between the Si and Ti–C layers at elevated temperatures.

Regarding phase purity issues reported for the Zr-Al-C MAX phase synthesis, experimental

studies suggest improvement to the stability of such phases through the inclusion of impurities

in the form of partial substitutions. Such suggestions are based on studies that show the purity

of the final MAX phase was improved by Si additions to the initial reaction powder mixes

in Ti3AlC2 synthesis. The synthesis of Zr3(Al1−xSix)C2 MAX phases that has been reported,

suggests further investigation for quality improvement based on the same mechanism applied

in the Ti-Al-C system [55]. Additionally to this composition-based approach, the final purity

of the material has been experimentally reported to considerably depend on the selection of the

appropriate starting powder mixtures [51] as well as the synthesis methodology, as alternatively

to hot-pressing, pressureless sintering resulted in higher purity MAX phases [52].

It is worth noting that although the main application of MAX phases discussed so far has been

in the nuclear industry, MAX phases are, as mentioned previously, also considered promising

for a wide range of other applications that require similarly high temperature operating condi-

tions, high mechanical strength, while at the same time, machinability, high fracture toughness

and oxidation tolerance. Such applications can be in the form of protective coatings for high

temperature turbine components such as turbine disks, used in jet aircraft, oil and gas drilling

tools, and high-efficiency engines indicatively used in ships, trains, and tanks. In aerospace

applications, high stresses during operation lead to turbine disk failure which poses a signifi-
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cant threat to engine safety. Under normal operating conditions the disks and blades must also

tolerate corrosive gases and temperatures exceeding 700℃. In the case of turbine environments,

with such high temperature and high load requirements, MAX phases, such as Ti2AlC [56] show

potential. Tailoring the properties and optimising the production for high-purity MAX phases

is therefore not only significant to improving the safety and efficiency of nuclear reactors, but

could have wider utility in other oxidising, high temperature environments.

Given everything we have discussed so far, undoubtedly, Zr-based MAX phases have a strong

potential to be valuable materials for industrial applications, especially in the nuclear indus-

try. The difficulties faced in their synthesis and the importance of their higher quality pure

form, however, raise concerns as to whether their composition would be stable in service. The

main objective of this thesis therefore, was to address these concerns by providing an improved

understanding of the MAX phases in the Zr-Al-C system with a specific focus on their ther-

modynamic stability. Thus this research focused on the understanding of their mechanical,

elastic and thermodynamic properties at high temperatures as well as predicting their ther-

modynamic stability and comparing them with the closely resembling phases in the Ti-Al-C

system, to better explain their stability differences and the very different options necessitated

for their synthesis despite their very close chemical and structural resemblance. Given this

main objective, this thesis is structured as follows:

Chapter 2 presents the primary concepts underlying the theoretical background applied in our

computational study. This includes the description of first principle calculations, particularly

Density Functional Theory (DFT), bonding analysis methodologies, harmonic lattice dynamics,

thermodynamic concepts and free energy calculations to derive the thermophysical properties

of interest in this study.

Chapters 3–6 present the main results:

Chapter 3 includes the prediction of the thermophysical and structural properties of the Zrn+1AlCn

and Tin+1AlCn MAX phases, with a focus on Zr2AlC, within the DFT framework with the lat-

tice vibrations being treated within the quasiharmonic approximation and contributions of

electron excitations also being accounted for for Zr2AlC. Investigation of anisotropy and the
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approximation of the introduced c/a ratio constraint to the energy and thermal expansion is

also included.

Chapter 4 presents the predictions of the thermodynamic stability of MAX phases in the Zr-

Al-C system against the formation of other secondary phases in the system. Thermodynamic

stability was calculated via convex hull construction and the effect of temperature on stability

was evaluated within the quasiharmonic approximation. Part of the results presented are

concerned with the comparison of this system with the Ti-Al-C system, with similar convex

hull calculations for the known stoichiometric phases in that system being performed as well.

An investigation of geometric distortions in the MAX phases in both systems is included at the

end of the chapter.

Chapter 5 is focused on the understanding of the electronic structure and type of chemical

bonding in the two closely related Zrn+1AlCn and Tin+1AlCn phases and draws comparisons

between the chemical environments of the two systems with the aim to provide a probable

explanation for their difference in thermodynamic stability. Different methodologies of bonding

analysis and charge partitioning were applied and their different trends were also discussed.

Chapter 6 is focused on harmonic phonon calculations for the Zrn+1AlCn and Tin+1AlCn MAX

phases, with the main characteristics of the phonon band structure and DOS of these phases

being identified. A particular aim was to identify phases present in experimental samples of

Zr3AlC2 with a focus on the non-stoichiometric Zr carbides. For this reason the frequencies of

the Raman-active modes of Zr-based MAX phases and their possibly competing phases in the

system were predicted and their corresponding mode symmetries were identified.

Chapter 7 summarises the main conclusions drawn from each chapter in this thesis and proposes

areas of potential future research.

Before moving on to the Chapters defined in the outline above, the rest of this introductory

chapter aims to provide some further context regarding relevant research, by providing a more

detailed review of the available literature on experimental and theoretical studies on the prop-

erties of MAX phases, with a specific focus on the MAX phases in the two systems of interest,
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Zr-Al-C and Ti-Al-C.

1.1 Overview of MAX phase properties

It is the aforementioned, unusual, often unique, combination of ceramic and metallic properties

characterising MAX phases that initially sparked and continues to drive the particular research

interest in these materials [57]. In common with the closely-related and more familiar MX

binary compounds, MAX phases are elastically stiff, good thermal and electrical conductors

and corrosion resistant, while in contrast, MAX phases are more easily deformed plastically,

resistant to thermal shock and more tolerant to radiation damage. Many specific examples

and trends of MAX phases have been reported in reviews by Barsoum et al. [57, 58, 59] that

considered measured properties from a large number of the to date synthesised MAX phases. For

example, MAX phases have demonstrated lower hardness values than their MX counterparts

though higher values than metals, with their Vickers hardness noted within the range of 2–

8 GPa [57]. The MAX phase Ti3SiC2 was reportedly able to recover its form from being

compressed with up to 1 GPa stress at room temperature, while absorbing roughly 25% of the

applied mechanical energy [58]. In terms of room temperature elastic stiffness, MAX phases

have also been found to have shear and Young’s moduli in the ranges of 80–142 GPa and

178–362 GPa respectively. These are combined with low densities of around 4–5 g/cm which

in some cases can result in specific stiffness values up to three times larger than titanium [57].

Thermal and electrical conductivity at room temperature in MAX phases has also been found

to be in the ranges of 12–60 W/(m·K) and 1.4 × 109–5.0 × 109 mS/m respectively, which are

comparable ranges to metals such as titanium, with the Ti3SiC2 and Ti3AlC2 MAX phases even

reported to be better conductors than titanium [59] whose thermal and electrical conductivity

is 16 (W/mK) and 1.9× 109–2.4× 109 mS/m respectively [60]. Additionally, MAX phases have

a relatively low thermal expansion coefficient, within the range of 5–10 µK−1 [59]. MAX phases

with magnetic properties have also been reported and are mainly based on Cr or Mn [61].

Another important aspect of the usefulness of MAX phases in industrial applications is their

resilience to oxidation. Reports have shown that the Ti3AlC2, Ti2AlC and Cr2AlC phases are
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particularly resistant [62]. Cr2AlC in particular, was found to begin oxidation resistance 400oC

higher than other Al-containing carbides at 800oC [63], while the Ti2AlC phase showed the

highest oxidation resistance overall with high resilience to thermal cycling at 1350oC [59]. The

mechanism that results in this high tolerance in Al-containing MAX phases is the protective

Al2O3-rich layer, noted previously, that develops under both high-temperature oxidation and

hot corrosion [63, 62]. However, it is worth noting that although enhanced corrosion resistance

due to the above mechanism is observed in some Al-containing MAX phases and had been

suspected to also apply for Zr-based MAX phases, recent experimental studies considering

their potential in nuclear fuel cladding applications have shown that MAX phases in the Zr-

Al-C system in fact suffer from poor corrosion resistance, specifically assessed when in contact

with advanced nuclear reactor coolants, such as heavy liquid metals (e.g. LBE=lead-bismuth

eutectic) [64, 65]. Despite Zr-based MAX phases showing greater interaction with liquid LBE

compared to other assessed MAX phases, such as Ti-based ones [64, 65], they have still been

found to outperform stainless steels in liquid LBE environments [66].

1.2 Elastic and thermal properties

Numerous studies of MAX phases based on DFT calculations at T = 0K have been performed to

investigate ground-state properties such as mechanical and elastic properties as well as stability

and electronic structure that give a good predictive picture of the MAX phases’ thermodynam-

ics. In particular, several high throughput surveys have covered a wide range of structures

with the aim of capturing trends in the properties. The DFT framework was selected in these

studies for its combination of sufficiently accurate and robust calculations, uniformly applied

for all phases, with the required computational efficiency to support the large number of phases

screened. Sufficient accuracy in this case might not be enough to capture subtleties in the prop-

erties, however this can be an acceptable trade-off given the large number of phases [67, 68, 69].

In the study by Cover et al. [67], such a computational survey was conducted for 240 elemental

combinations of M2AX phases with an aim to understand trends in elastic properties between

those materials. In the same study [67] calculation errors and uncertainties were investigated
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and the impact of the choice between the stress-strain relationship approach and the energy

method to calculate the elastic constants was discussed; with the energy method being applied

by Taylor expanding the free energy up to the second order in terms of the two strains ϵ1 and

ϵ3 along the a and c lattice constants as expressed later in Eq. 2.68. In the same study the role

of M and A elements was highlighted as affecting the compressibility in the c axis. Another

DFT study that considered a large number of MAX phases [68] focused on M3AlC2 phases,

with M being an early transition metal from 3d to 5d, and examined the effect of the choice

of M on elastic and structural properties. The same study also noted that the bulk modulus

increases with n, which is a trend that is also indicated by experimental evidence [70, 71]. An-

other systematic study [69] examined a large number of Al-containing MAX phases, Mn+1AlCn

with n = 1–3, with a focus on compressibility and, in particular, the effect of varying levels of

pressure on the bond stiffness and c/a ratio. Apart from these studies that consider wide ranges

of phases, most studies focus on specific systems or sub-groups of the MAX phase family. For

the Zrn+1AlCn and Tin+1AlCn MAX phases in particular, an extensive number of studies of

elastic and mechanical properties at T = 0K [69, 68, 72, 7, 73, 74, 75, 19, 76, 77, 67, 78, 79, 80]

exist. For the Zr2AlC phase the pressure effect on the elastic constants has been investigated

[18, 80] but predictions at finite temperature have not yet been reported nor experimental

measurements of the elastic constants been found.

Thermal properties are simulated by taking into account lattice vibrations with the lowest level

of approximation being the quasiharmonic approximation (QHA) in which the vibrational free

energy, Fvib, is described by the harmonic expression 2.57, where the phonon normal modes

are functions of the unit cell volume and the total free energy is calculated by adding the

ground state DFT enthalpy to Fvib. As explained in the following chapter, for structures

with hexagonal symmetry, like the MAX phases, the free energy surface is minimised on a

2D strain mesh corresponding to the a and c lattice parameters in order to take into account

their anisotropy. Reported studies on MAX phases that treated the lattice vibrations within

the QHA assumed that the c/a ratio is kept fixed, therefore the free energy was minimised in

only one dimension, indicating an isotropic change in volume. Such examples include studies

of Sc2AlC [81] and Cr3AlB4 [82] that calculated the phonon dispersion curve and predicted
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the dynamical stability of the phases. For the Zrn+1AlCn and Tin+1AlCn MAX phases studies

using QHA exist [83, 84, 73, 85, 86] that predict the thermal expansion, heat capacities and

temperature dependent bulk moduli of the phases.

A higher level of lattice vibration approximation that has been extensively used in the liter-

ature to predict thermal properties is the quasiharmonic Debye model which only takes into

account acoustic modes with linear dispersion from the Γ point up to a Debye frequency, ΘD,

thus treating the crystal as an isotropic elastic medium. Studies using this approximation have

been conducted for phases such as Sc3SnX (X = B, C) [87] and Cr2AlB2 [88] as well as for the

Zrn+1AlCn and Tin+1AlCn MAX phases [82, 7, 18, 89, 90, 91, 19]. The quasiharmonic Debye

model can be considered one of the simplest approximations [92] and it can often show a good

accuracy for chemically and structurally simple materials such as some metals. However, it gen-

erally has good reliability for temperatures up to a few hundreds of degrees Kelvin, after which

its accuracy is noticeably reduced. Relatively large discrepancies have been noted between

predicted properties using the quasiharmonic Debye model and experimental measurements,

which are improved when QHA is applied instead, as also noted in the study by Wang et al. [83]

particularly for the thermal expansion in Ti2AlC. This can be explained by the fact that, unlike

QHA, the Debye approach takes no account of zero-point energy, nor of the higher frequency

optical phonons associated e.g. with carbon atoms in the structure of MAX phases.

Further corrections to the free energy were applied by a number of studies by taking into

account electronic excitations [73, 83] and anharmonic effects [85]. At high temperature the

electronic corrections were found to increase the heat capacity by almost the same amount as

the quasiharmonic contribution, resulting in a better agreement with experiment for Ti2AX

(A = Al or Ga and X = C or N) phases [73].

Although a number of experimental studies in the literature focus on the anisotropic thermal

expansion of MAX phases, there are fewer theoretical studies investigating the topic, with pre-

dictions usually considering MAX phases as isotropic mediums. The study by Wang et al. [83]

conducted experimental measurements and DFT calculations to understand the isotropic ther-

mal expansion in Ti2AlC and Cr2AlC. Although there is a lack of relevant experimental research
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on Zr-based MAX phases, for the Ti-based MAX phases such as Ti2AlC and Ti3AlC2, a num-

ber of experimental studies have been reported focusing on thermal expansion and anisotropy

[93, 94, 95, 96, 97, 83, 98].

1.3 Chemical bonding

The large interest in MAX phases is mainly driven by their combination of metallic and ceramic

characteristics, which is closely related to their structural and electronic properties. Their un-

usual features mostly stem from their layered structure where strong directional covalent M-X

bonding exists in the carbide layers alternating with weaker M-A bonds between the carbide

slabs. The metallic nature of MAX phases can be explained by their non-vanishing electron

density at the Fermi level governed by the M atoms. These general chemical bonding charac-

teristics are found to be consistent for all studied MAX phases, as a recent review on electronic

structure and bonding analysis suggests [99], indicating that a combination of metallic-covalent

and ionic bonding exists. These main features have also been confirmed experimentally for a

number of MAX phases as noted in the review by Magnuson et al. [100]. As an example, for

Ti-based 312 MAX phases [99] a very good agreement was found between experiment, using

X-ray emission spectroscopy, and theory, where the full potential linearised augmented plane

wave (FPLAPW) method was used. Due to the importance of understanding the electronic

structure of such materials, extensive theoretical research has focused on the topic, with many

studies specifically focused on the Zr and Ti based MAX phases [78, 76, 77, 74, 75, 101, 100, 102]

which are of particular interest in this study. Many studies focused on the electronic structure

and bonding analysis to draw conclusions on how M elements affect the bond strength in MAX

phases and how their stability and mechanical property trends could be explained from an elec-

tronic point of view. A connection between mechanical properties and electronic structure was

made, linking the relatively weak M-Al interaction to properties such as high thermal shock

resistance, high fracture toughness, elasticity and bulk modulus [68, 103, 72, 104, 105]. Site

substitutions on M or A sites could be used to tailor MAX phase properties such as conduc-

tivity, mechanical properties and elastic anisotropy [77, 74]. Indicatively, the inclusion of Ti
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in Zr sites was found to increase the strength of covalent bonding, thus improving mechanical

properties [74]. In the study by Dahlqvist et al. [43] a trend was noted for the Mn+1AXn phases

with M = Sc, Ti, V, Cr, or Mn, A = Al, and X = C or N, between the M transition metal as

it varied across the 3d series in the periodic table and the stability of the MAX phases. In the

study by Bai et al. [102], where a number of Mn+1AlCn phases with n = 1–3 and M including Zr

and Ti were studied, increasing valence electron concentration (VEC) was found to lower the

energy range of M-Al and M-C bond hybridisation states. Apart from the effect of the VEC

number on stability, the effect of varying the d-electron shell number when VEC = 4 on the

energy range of hybridisation states of M-C and M-A was also studied in [102], finding however

no indication or link between thermodynamic stability and M atoms with different numbers of

d-electron shells while keeping the VEC number fixed.

1.4 Thermodynamic stability

A useful approach to the study and prediction of stable crystalline materials is to generate a

high-throughput set of calculations, wide-ranging and automated, to create a database in which

several properties are calculated for hundreds or even many thousands of different materials,

many of which will turn out to be unstable, either thermodynamically or mechanically. Such a

database can then be used to reject hypothetical materials or to identify candidates for possible

synthesis and testing, which can save the time and cost of experimental attempts at synthesis.

One might also seek correlations of desired properties with simple quantitative characteristics

of the elements, either by inspection or with more sophisticated machine-learning approaches.

Studies of this kind have been made on the MAX phase structures by Aryal et al. [44] and

Ohmer et al. [45]. Ref. [44] included density functional theory (DFT) calculations of elastic con-

stants and electronic structure for 792 real or hypothetical MAX phase materials, eliminating

those that were mechanically unstable and of the remainder retaining only those whose heats

of formation were negative or at the most +53meV/atom. The small positive value was to

admit borderline cases, that might actually prove to be thermodynamically stable in a more

exact theory than DFT. For example they might have been incorrectly filtered out because



the calculations assumed temperature T = 0K, with no contributions to the free energy from

phonons or electronic excitations. This left 665 candidates, for which the data was mined

to discover correlations that might predict the stability and properties of potential new com-

pounds. Several correlations were documented [44], but the difference in stability between Zr

and Ti MAX phases could not be distinguished. Ref. [45] also reports a set of high-throughput

calculations, which again serve well to highlight the contrasting and complementary findings of

our more detailed comparison of the Zr-Al-C and Ti-Al-C systems. Whereas in ref. [44], heats

of formation were calculated, ref. [45] included the more relevant criterion of thermodynamic

stability against decomposition into competing phases, which requires calculation of a convex

hull.

As mentioned earlier in the chapter, while two particular MAX phases in the Tin+1AlCn family

have been known since the mid seventies, namely Ti2AlC [28] and Ti3AlC2 [33], their cousins

in the Zrn+1AlCn family are a relatively recent discovery, and have not yet been synthesised

in such a pure phase. Successful synthesis was achieved in recent studies by Lapauw et al. [3]

and Tunca et al. [41], by using Zr-hydrides as precursor materials. These authors introduced

techniques to improve the phase purity by means of partial site-substitutions, achieving purity

above 98wt%. This relative difficulty in synthesising the Zr-based compared to the Ti-based

MAX phases could not have been foreseen from the reported high-throughput studies.

DFT calculations for some selected M-Al-C phases have been published by several authors.

Music et al. [106] studied the 0K energy of the Tan+1AlCn series for n = 1–3 as a function of

pressure, and the free energy as a function of temperature, within the harmonic approximation.

They observed a structural phase transition to occur in MAX phase α-Ta3AlC2 to β-Ta3AlC2

at above ∼1000K. Dahlqvist et al. [43] studied a wide range of M-Al-X compounds with DFT,

and compared their energies with competing binary compounds. They used a simple linear

optimisation technique, which in effect, although they did not refer explicitly to convex hulls,

discovered whether the MAX phase was on or above the hull, with a quantitative estimate of its

relative stability or instability at 0K. These studies did not include the Zr-Al-C MAX phases,

which are the focus of our study. Besides the aforementioned high-throughput study [44], DFT

calculations of MAX phases in Zr-Al-C have been reported by several other groups.
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Chapter 2

Theoretical background

This Chapter contains a brief description of the theoretical concepts that are behind the cal-

culation of the free energies of crystals.

2.1 Density Functional Theory

In this section I describe the basis of all the calculations of total energy and forces on atoms on

which my free-energy calculations are based. It is also the basis for evaluating the properties

of chemical bonds.

2.1.1 Born–Oppenheimer approximation

Given a system of N nuclei and M electrons, an electronic state is entirely described by the

many-body wavefunction which is an exact solution of the time-independent Schrödinger equa-

tion:

ĤΨ(R, r) = EΨ(R, r) (2.1)

where Ĥ is the Hamiltonian in the Hilbert space where the many-body wavefunction Ψ(R, r)

is defined, which describes the probability of possible configurations of electrons, at coordinates

39
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{r} and of nuclei, at coordinates {R}. Due to the considerably larger mass of the atomic

nuclei compared to the electrons, we can assume that any displacements of the nuclei would

result in instant relaxation of the electrons. Therefore, by treating the electrons in a static

ionic potential (Born-Oppenheimer approximation), the solution of Eq. 2.1 can be made more

tractable by decoupling the sets of electron and nuclei coordinates:

ĤΨ(r) = EΨ(r) (2.2)

The Hamiltonian Ĥ in the above equation consists of the sum of the kinetic T̂ = −
∑

i
1
2
∇2

i and

potential V̂ energy operators. The nucleus-nucleus potential energy and the kinetic energies

of the nuclei, which were included in Eq. 2.1, are omitted in 2.2 and 2.3, because they can

be included in the total energy as required after the electronic part of the total energy has

been dealt with. The potential energy operator V̂ consists of electrostatic terms involving the

Coulomb interactions between the electrons and the interactions between the electrons and the

nuclei Vext. In atomic units, the Hamiltonian Ĥ is therefore given as:

Ĥ = −
∑
i

1

2
∇2

i +
1

2

∑
j ̸=i

1

|ri − rj|
+
∑
i

Vext(ri;R1,R2, ...,RN) (2.3)

Although the degrees of freedom of the solution under the Born-Oppenheimer approximation

have been reduced, solving this for the majority of systems remains too computationally de-

manding due to the 3M dimensions involved.

2.1.2 Hohenberg–Kohn theorems

The core concept behind the Kohn and Sham (KS) DFT method is based on the two Ho-

henberg–Kohn (HK) theorems [107]. The first HK theorem proves there is a unique external

potential Vext(r) corresponding to the ground state electron density ρ0(r). The second HK

theorem describes the variational principle, stating that the ground state energy for a given

external potential can be found variationally by minimising the total energy with respect to

the electron density. The ground state energy of the system can therefore be obtained based
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on the expression:

E0 = F [ρ0(r)] = min
ρ
F [ρ(r)] (2.4)

The total energy functional, F [ρ(r)], can be expressed as the expectation value of the Hamil-

tonian Ĥ based on Eq. 2.3, with T and W below corresponding to the kinetic energy and the

Coulomb interactions between electrons respectively:

F [ρ(r)] = ⟨Ψ| −
∑
i

1

2
∇2

i |Ψ⟩+ ⟨Ψ| 1
2

∑
j ̸=i

1

|ri − rj|
|Ψ⟩+

∫
ρ(r)Vextdr

= T +W +

∫
ρ(r)Vextdr

(2.5)

Expressing the energy functional of the electronic density ρ0(r) does not however reduce the

complexity of the many-body wavefunction corresponding to Eq. 2.2 and the dimensions of the

problem remain 3M . Kohn and Sham subsequently published an ingenious way of reducing

the dimensionality of the problem, using ideas familiar from the simple mean-field Hartree

model of electronic structure, in which the electronic wavefunction is a determinant constructed

from single-electron wavefunctions. The determinant function ensures antisymmetry of the

wavefunction with respect to exchange of a pair of electrons. To appreciate how Kohn and

Sham could achieve this, I first summarise the Hartree model and the ideas of antisymmetry,

exchange and correlation.

2.1.3 Hartree model and Hartree–Fock theory

Considering the complexity of solving a many-body problem, one approach to its simplification

could be to represent the system based on a set of single-electron equations. One of the earliest

and simplest such approximations, to separate the electronic variables based on approximating

the electron-electron interactions within the system, was the Hartree approximation (mean field

approximation). Within the Hartree method each electron in the system is treated indepen-

dently and their only interaction with one another considered, is through a mean field Coulomb

potential produced by all of the electrons in the system. In the Hartree model, the many-body
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wavefunction could initially be described by the product of single-particle wavefunctions:

Ψ(r1, r2, ..., rN) = ψ1(r1)ψ2(r2)..ψN(rN) (2.6)

and the Hamiltonian is expressed as the sum of the system’s single-electron Hamiltonians Ĥi:(∑
i

Ĥi

)
Ψ = EΨ (2.7)

with each Hamiltonian Ĥi being defined as:

[
−∇2

i

2
+ VH(r) + Vext(r)

]
ψH
i (r) = ϵHi ψ

H
i (r) (2.8)

where the VH term corresponds to the Hartree potential that accounts for the effect of the mean

field of all electrons in the system on each electron i. Within the Hartree approximation the

total energy functional F S[ρ(r)] is then expressed as:

F S[ρ(r)] = TS +WS +

∫
ρ(r)Vext(r)dr

=
∑
i

⟨ψi| −
∇2

i

2
|ψi⟩+

1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
drdr′ +

∫
ρ(r)Vext(r)dr

(2.9)

with the second term, WS corresponding to the classical electrostatic self-energy of the charge

density ρ, now called the Hartree energy.

Therefore through this mean field approximation, the 3M many-body problem is reduced to a

series of coupled 3D equations. However, the main drawback of the Hartree model is that it

relies on an incomplete picture of the real system that does not capture exchange and correla-

tion effects. In particular, the original Hartree method does not factor in the Pauli exclusion

principle which requires an anti-symmetric many-body wavefunction when two electrons are

interchanged. The Hartree-Fock method [108] improves on the Hartree method by expressing

the multi-electron wavefunction as a Slater determinant and thus approximates the exchange

between the electrons with the simplest possible antisymmetrised wavefunction. However, the

main drawback of the Hartree-Fock model is that the exchange potential is non-local and cor-
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relation, a shorthand term for the effect on the wavefunction of Coulomb repulsion between

electrons, is not accounted for. Overall Hartree-Fock is computationally more expensive than

Kohn–Sham DFT, given the non-local expression of the exchange energy, usually gives results

with lower accuracy and is inapplicable for metallic systems. For example for jellium, Hartree-

Fock predicts zero density of states at the Fermi level, so that simplest of model metals appears

to be insulating.

As we shall see in the next section, Kohn–Sham DFT differs from Hartree-Fock in that the

exchange potential is local, depending explicitly on the charge density, and that it accounts for

the correlation energy of the system.

2.1.4 Kohn–Sham DFT

Kohn and Sham made use of the Hartree model referring to a system of non-interacting elec-

trons, with a single-determinant wavefunction, moving in a mean-field potential, which com-

prises the Hartree potential, just as described in Eq. 2.9, but including an additional local

potential to represent the exchange and correlation energies. They had the insight that such an

effective potential exists, which uniquely determines the exact ground-state charge density. The

only change required to the functional (2.9) is the addition of a so-called exchange-correlation

functional. Besides the direct Coulomb energy of exchange and correlation effects, the func-

tional implicitly includes the deviation of the kinetic energy, which is induced by exchange and

correlation, from its value TS:

F [ρ(r)] = TS +WS +

∫
ρ(r)Vext(r)dr + EXC[ρ(r)]

= F S[ρ(r)] + EXC[ρ(r)]

(2.10)

Therefore the exchange correlation term includes the discrepancies occurring between the real

system of electrons and the Hartree model. The minimisation of this energy functional F [ρ(r)]
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by varying the electronic density of the system is performed under the constraint:

∫
ρ(r)dr =M (2.11)

and can be formulated as the following differential equation:

δ

δρ(r)

[
F [ρ(r)]− µ

(∫
ρ(r)dr −M

)]
= 0 (2.12)

resulting in the Euler-Lagrange equality with µ representing the Lagrange multiplier:

δF [ρ(r)]

δρ(r)

∣∣∣∣∣
ρ0

=
δF S[ρ(r)]

δρ(r)
+
δEXC[ρ(r)]

δρ(r)
= µ (2.13)

The Kohn and Sham effective potential VKS = VH+VXC+Vext is the mean field potential in the

assumed system of nuclei and non-interacting electrons. The single-electron equation describing

this system as defined by Kohn and Sham is then:

[
−∇2

i

2
+ VH[ρ(r)](r) + Vext(r) + VXC[ρ(r)](r)

]
ψKS(r) = ϵKS

i ψKS
i (r) (2.14)

the total ground state energy can then be expressed as the sum over the KS eigenvalues of the

occupied states resulting from Eq. 2.14 with the second and third terms subtracted to correct

for the double counting of the electron-electron interaction since the Hartree and exchange-

correlation potentials already appear in the Hamiltonian term and the exchange-correlation

energy, EXC, is added in the forth term.

E0 =
∑
i

ϵKS
i −WS −

∫
ρ(r)VXC(r)dr + EXC (2.15)

The solution of this single-particle Kohn-Sham equation is based on a self-consistent scheme.

The initial step in this process is to determine a starting value for the charge density, which can

usually be chosen to be the superposition of the charge densities of each atom in the system.

The Hartree potential VH can then be calculated from this initial charge density, as can VXC

via exchange-correlation approximations (e.g. GGA, LDA, etc). The Kohn-Sham effective
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potential is then constructed by adding these calculated VH and VXC potentials to the external

potential and is used to solve Eq. 2.14 to produce a set of eigenstates {ψKS
i (r)} based on which

the Kohn-Sham energy is evaluated (Eq. 2.15). The aforementioned steps are then repeated

using the output charge density mixed with the input density to provide an input for the next

iteration until a reasonable level of convergence has been reached. The converged eigenfunctions

{ψKS
i (r)} are called the Kohn–Sham eigenstates and the corresponding energy is the ground

state energy of the system.

2.1.5 Exchange–Correlation Functionals

The Kohn–Sham eigenstates from Eq. 2.10 correspond, in principle, to the ground state energy

of the real system providing that the form of the exchange and correlation (XC) functional

EXC[ρ] is known. However, EXC[ρ] can, so far, only be approximated although many such

approaches have been developed since KS DFT was first introduced involving various levels of

theory and empirical adjustments often made for different classes of materials. The exchange

and correlation approximation is one of the most important in the DFT framework as it can

determine the overall level of accuracy of the DFT calculations.

One of the first and simplest XC approximations is the Local Density Approximation (LDA)

[109], whose main concept is based on the idealised case of free electron gas (FEG). LDA treats

the electron density locally by subdividing the 3D space into small volumes wherein electron

density is assumed to be approximately constant, as in FEG. The XC energy within LDA,

expressed based on the local electron density at r, ρ(r), and the energy eigenvalues of the

homogeneous electron gas system is given by:

ELDA
XC [ρ(r)] =

∫
drρ(r)ϵFEG

XC [ρ(r)] (2.16)

The energy of a FEG at density ρ has been obtained by Ceperley and Alder [110] using accurate

quantum Monte Carlo simulations.

The LDA approximation is one of the most widely used exchange correlation functionals in
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first-principle studies with surprisingly good accuracy given the degree of inhomogeneity of the

electron densities in real systems. Many attempts to improve on the LDA functional have been

made with one such being the Generalised Gradient Approximation (GGA) functionals that

add correlations to the FEG eigenstates that depend on the gradient of the electron density

ϵFEG
XC [ρ(r),∇ρ]. The default functional used in this study is PBESol [111], which belongs to the

GGA functional family.

2.1.6 Periodic boundary conditions - Plane wave basis

In crystalline materials whose structure is characterised by unit cells, the application of periodic

boundary conditions on the electronic wavefunction becomes necessary. The expression of a

single-electron wavefunction for such systems can be based on Bloch’s theorem and thus be

written as:

ψnk(r) = eik·runk(r) (2.17)

where the unk(r) function shares the lattice’s periodicity and n is the band index used to

specify the wavefunctions, ψk, denoted by the same wavevector k within the first Brillouin

zone. Computationally it can be beneficial to express the wavefunction in a basis of plane

waves by writing unk(r) as a Fourier series:

unk(r) =
∑
G

cnkG eiG·r (2.18)

and then the wavefunction from the Eq. 2.17 can be rewritten as:

ψnk(r) =
∑
G

cnkG ei(G+k)·r (2.19)

where reciprocal space lattice vectors are denoted G.

Expression 2.19 consists of an unlimited number of plane waves. To make it computationally

feasible, the expression can be approximated by considering only a finite number of plane waves,

leading to the idea of the plane wave cut-off energy, Ecut. This cut-off energy sets a limit on
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the highest frequency plane waves in the basis set, resulting in the greatest G being used to

set the Ecut.

Ecut =
G2

max

2
(2.20)

Considering that a basis set with missing plane waves will introduce errors in the calculations

(e.g. Pulay stresses), it is important to establish a sufficient description of the system balanced

against the processing cost introduced by raising the cut-off energy.

From Bloch’s theorem and the resulting equation, Eq. 2.19, the dependence of the wavefunctions

on the wavevector k is shown. In practice, apart from the need to determine a finite number of

plane waves, k -point sampling within the Brillouin zone is also required. This is implemented

based on schemes like Monkhorst-Pack [112], wherein the sampling provides an effective basis

for integrating the periodic functions in the first Brillouin zone. Similarly with the case of Ecut,

it is important that the k -point sampling is sufficiently converged, particularly for electron

density of states calculations.

2.1.7 Pseudopotentials

In the Kohn-Sham DFT framework the number of electrons in the system significantly affects

the calculation’s cost. It is known that it is mainly the valence electrons that are involved

in chemical bonding and that contribute to the chemical environment of a system, since the

electron densities associated with the core electrons are strongly confined near the nucleus,

in contrast with the valence electrons. This gives rise to the development of pseudopotential

methods which keep the core electrons frozen compared to the valence ones which are accounted

for explicitly within the Kohn-Sham scheme. Different schemes to produce pseudopotentials

have been developed, with an important aspect of their applicability depending on how soft or

hard they are. A hard pseudopotential depends on many Fourier terms to sufficiently describe

it, whereas a soft one requires fewer terms, resulting in quicker convergence but at the cost of

transferability between different chemical systems.
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2.2 Chemical bonding

This section is mainly concerned with the description of different calculation approaches to

chemical bonding and the distribution of charges on atoms. As is known, the amount of charge

associated with an atom in a solid is not a measurable quantity in the sense of quantum me-

chanics, therefore there is no unique way to partition the charge and allocate it to particular

atoms. This has led to the development of several partitioning schemes to express the charge

transfer, bond orders and bond energies, which may be used to show trends in charge transfer

within a class of compounds or elements. Some such approaches that were applied in this

work and will be described in the following sections are the Bader analysis [113], the Mulliken

analysis [114], the Crystal Orbital Overlap Population (COOP), the Crystal Orbital Hamil-

ton Population (COHP) [115] and the Density Derived Electrostatic and Chemical (DDEC)

method [15]. In this work the calculations are based on DFT using a plane waves basis. Plane

wave basis sets, however, are not the natural way to describe the bonds between atoms, and

normally local orbital (or atomic orbitals) are used in chemical bonding analysis. Based on

the DFT planewave framework, the following sections describe methodologies for nevertheless

extracting the chemical bonding information based on two main approaches. One approach is

based on charge density which is the fundamental output quantity from DFT calculations from

which a material’s properties are determined. Examples of methodologies based on analysis

of the charge density information are the Bader analysis or the more recent DDEC method.

An alternative approach is based on the one-electron wavefunctions acquired from the DFT

calculations and projected onto a local orbital basis to describe the charge transfer. Exam-

ples of such are the Mulliken analysis, COOP and COHP. The amount of charge associated

with bonds, quantified as the COOP, and the bond-strength calculated from the COHP can

be understood as useful indicators, but they are dependent on projection onto some chosen

atom-centred basis functions of the one-electron wavefunctions of Kohn-Sham DFT.
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2.2.1 Mulliken analysis and Crystal Orbital Hamilton Populations

Since, as noted previously, planewave basis sets are not the natural way to describe the bonds

between atoms, in this section we discuss concepts for describing bonding by projecting the

one-electron wavefunctions acquired from the DFT calculations onto local basis functions. The

discussion in this section is based on the textbook by Finnis [116] and follows its notation.

Across the approaches we are interested in, each of the single particle Kohn-Sham eigenfunctions

|n⟩ are expanded on a basis of local functions:

|n⟩ =
∑
Iµ

Cn
Iµ |Iµ⟩ (2.21)

with Cn
Iµ being the expansion coefficients of the local orbitals and µ labeling a particular orbital

on a particular atom, I. While local orbitals on each atom are orthonormal, orthogonality

between orbitals on different atoms, i.e. atoms I and J where I ̸= J , is unlikely. Therefore in

the case of such non-orthogonal local basis functions, a matrix, S, is introduced to account for

the overlap between the orbitals, µ and ν, on the atoms, I and J :

SIµJν = ⟨Iµ|Jν⟩ (2.22)

The total number of electrons, N , in the system can then be expressed as the trace of the

electron density operator, ρ̂:

N = Tr ρ̂ =
∞∑
n=0

∑
IµJν

fnC
n
IµC

n∗
JνSJνIµ =

∑
IµJν

ρIµJνSJνIµ (2.23)

where

ρIµJν =
∞∑
n=0

fnC
n
IµC

n∗
Jν (2.24)

are the expansion coefficients of the density operator expressed in a local basis, and fn is the

occupancy of each state n. One way to then partition this total number of electrons when a

non-orthogonal local basis is used, is into the atom-centered charges, ρI , and the bond charges,
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ρIJ :

N =
∑
I

ρI +
1

2

∑
I ̸=J

ρIJ (2.25)

Apart from this particular charge partition, it can also be useful to allocate all the charge to

individual atoms, even with a non-orthogonal basis set, without any charge being assigned to

the bond, since this charge can be indicative of the valency of this atom. One way to define these

atomic charges is as Mulliken charges, by adding half of the bond charges of the neighboring

atoms, ρIJ , to each atom, ρI :

qI = ρI +
1

2

∑
J

ρIJ (2.26)

Complementary to the on-site Mulliken charges, one can describe chemical bonding between

different atomic pairs via the concept of ‘bond orders’ as defined by Coulson [117] as the off-

diagonal expansion coefficients of the density operator, ρ̂, expressed on the basis of local orbitals,

as shown in Eq. 2.24. These bond orders are commonly used as bond strength indicators.

Other ways to provide a measure of bond strength include the Crystal Orbital Overlap Popu-

lation, COOP(ϵ), and the later-introduced Crystal Orbital Hamiltonian Population, COHP(ϵ),

both of which are a function of the Kohn-Sham single particle energy ϵ. These methods describe

the local and energy resolved form of the number of electrons, from the COOP, and the band

energy, from the COHP. Published software tools exist that apply these concepts to the output

of planewave calculations performed by tools like VASP [118, 119]. One such software imple-

mentation used in our study is LOBSTER which was introduced by Maintz et al. [120, 121, 122].

Starting our further discussion with the COOP, it can be thought of as an energy-resolved bond

order and can be derived by first considering the density operator represented in a local basis:

D̂ =
∑

n,Iµ,Jν

Cn
Iµ |Iµ⟩ δ(ϵ− ϵn)C

n∗
Jν ⟨Jν| (2.27)

The COOP can then be expressed by taking the trace of D̂ in the local basis:

D(ϵ) = Tr D̂(ϵ) =
∑
IµJν

DIµJν(ϵ)SJνIµ (2.28)
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which is used to allocate the DOS to particular atoms, orbitals and bonds. Thus for particular

terms, the COOP can be expressed as:

COOP(ϵ, Iµ, Jν) =
∞∑
n=0

Cn
Iµδ(ϵ− ϵn)C

n∗
JνSJνIµ + c.c. (2.29)

and specifically for the onsite terms, considering the orbitals on each atom to be orthonormal,

we get:
∞∑
n=0

Cn
Iµδ(ϵ− ϵn)C

n∗
Iµ + c.c.

Considering that the off-diagonal terms of the COOP expression are included, the COOP

describes the energy-resolved values that quantify the local contributions, i.e. of bonds between

particular atomic pairs, to the total number of electrons. Similarly, but instead of accounting

for local contributions to the number of electrons, the COHP represents the local and energy-

resolved form of the band energy. To derive the expression for the COHP, we make use of

Eq. 2.24 that describes the density expansion coefficients to express the trace of ρ̂ times the

Hamiltonian operator, Ĥ, as:

Tr ρ̂Ĥ =
∑

n,Iµ,Jν

fnC
n
IµC

n∗
JνHJνIµ ≡ 2

∑
IµJν

∫ ∞

−∞
dϵfF(ϵ)C

n
Iµδ(ϵ− ϵn)C

n∗
JνHJνIµ (2.30)

where fF is the Fermi distribution, fn = 2fF(ϵn), and HJνIµ is a matrix element of the Hamil-

tonian. For a particular bond, the COHP therefore can quantify its contribution to the total

band energy at a given energy as follows:

COHP(ϵ, Iµ, Jν) = 2fF(ϵ)C
n
Iµδ(ϵ− ϵn)C

n∗
JνHJνIµ + c.c. (2.31)

2.2.2 Bader analysis

Apart from the approaches discussed above based on the one-particle Kohn-Sham equations,

as mentioned, other approaches to extract chemical bonding information from a system have

been based on charge density, which is a fundamental output quantity of DFT calculations.



52 Chapter 2. Theoretical background

The simplest such method is Bader analysis [113]. In Bader analysis charges on atoms are

calculated based on topological partitions of the charge density where the charge density is

separated into non-overlapping volumes enclosed by zero flux surfaces where ∇ρ(r) = 0.

2.2.3 Density Derived Electrostatic and Chemical Method

A second, but much more complex method using the same approach of depending only on the

charge density without direct reference to the wavefunctions is the Density Derived Electrostatic

and Chemical (DDEC) method [15]. DDEC is a partitioning method that was applied for these

calculations to predict the overlap population, atomic net charges, bond orders (BOs), and

sum of bond orders (SBOs) [14, 16]. Bond formation is considered to be based on the electron

exchange of two neighbouring atoms with electron densities that overlap. The strength of these

bonds can be quantified by the bond order, as it is derived within the DDEC method and is

based on the use of the dressed-exchange hole approach [15]. The implementation of the version

of this method used in this study, DDEC6, has been done in the CHARGEMOL program [123].

In particular, the dressed-exchange electrons between two atoms I and J , in the reference unit

cell and the material respectively, is represented by the BI,J matrix, whose off-diagonal elements

quantify the bond order between the two atoms. These off-diagonal elements are calculated by

the expression:

BI,J = CEI,J + ΛI,J (2.32)

where the CEI,J term describes the electron exchange between atoms I and J in a material.

This term is formulated as:

CEI,J = 2

∮
ρavg
I (rI) · ρavg

J (rJ)

ρavg(r) · ρavg(r)
ρ(r)d3r (2.33)

where ρ(r) is the total electron density at position r and ρ(rI) is the electron density assigned

to atom I with rI being the vector from the nuclear position of atom I to a position r. The

vector ρavg
I (rI) (and equivalently ρavg

J (rJ)) is a spherical average, at distance rI = ∥rI∥ from

the center of atom I, of the electronic and spin magnetisation densities, which were acquired
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from the DDEC partition method. ρavg(r) corresponds to the sum over all atomic ρavg
J (rJ) in

the unit cell. The ΛI,J term, describes the delocalisation of the dressed exchange hole, which

tailors the degree of contraction or diffusion to obtain accurate BOs. This term takes into

account pairwise interactions, the coordination number effects and a constraint on BI,I , the

density-derived localisation index (DDLI), to ensure it is well behaved.

The diagonal elements BI,I satisfy the expression:

BI,I = NI −
1

2
SBOI (2.34)

where NI is the total number of electrons assigned to atom I, expressed as NI=
∮
ρI(rI)d3r,

and SBOI is the sum of the bond orders on atom I.

It follows that for a material containing N electrons in the unit cell, the following summa-

tion rule is true for the above defined BI,J matrix:

N =
1

2

(∑
I

∑
J

BI,J +
∑
I

BI,I

)
(2.35)

The number of electrons assigned to atom I, NI , can be expressed as the difference between its

nuclear charge zI and its net atomic charge, qI :

NI = zI − qI (2.36)

where NI is connected to the BI,I by the expression:

NI = BI,I +
1

2

∑
I ̸=J

BI,J (2.37)

The sum of bond orders is defined as:

SBOI =
∑
I ̸=J

BI,J (2.38)
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Given the information of the atomic charge qI and the SBOI , BI,I can be expressed using

Eq. 2.36 and 2.37 as:

BI,I = zI − qI −
1

2
SBOI (2.39)

Therefore, for an atom I the electrons transferred to bonds or to other ions can be given by

the following:

zI −BI,I (2.40)

2.3 Harmonic phonons

2.3.1 Harmonic lattice dynamics

The theory of lattice dynamics concerns collective vibrations of atoms in crystalline solids and is

central to explaining thermal expansion and other thermophysical properties in such materials.

This theory has been described in available textbooks and papers, such as by Wallace [124]

and by Togo et al. [125], among others. Crystalline solids are represented by lattices of atoms

typically described by atomic unit cells infinitely repeated in all directions. We can consider

this infinite crystal structure by imposing periodic boundary conditions on a system of ncell

unit cells of M atoms each, where ncell is considered to be large enough to avoid interactions

of atoms with periodic images of themselves. In this system, we refer to each unit cell and

atom within it using the labels k and I, respectively. The potential energy of this crystal is

expressed as a function of the atomic displacements u(kI) around the equilibrium positions of

its atoms r(kI) and is expanded by applying Taylor expansion about the equilibrium positions

of the atoms that correspond to the minimum energy E0:

E = E0 +
∑
kI

∑
α

Φa(kI)uα(kI) +
1

2

∑
kk′II′

∑
αβ

Φαβ(kI, k
′I ′)uα(kI)uβ(k

′I ′) + . . . (2.41)

where α and β indicate the Cartesian directions of the atomic displacements. Since the ex-

pansion in this equation is about the equilibrium positions, where no forces are applied on the

atoms, Φa(kI) =
∂E

∂ua(kI)
will also be zero. The expansion of the crystal energy in Eq. 2.41 has
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been approximated up to the second-order expansion, assuming displacements of atoms in the

crystal are sufficiently small (harmonic approximation).

For atom kI, that is being displaced by ua(kI), the force applied on it is determined as follows:

Fα(kI) = − ∂E

∂ua(kI)
(2.42)

Considering Eq. 2.42, an element of the second-order force coefficient can then be determined

as follows:

Φαβ =
∂2E

∂uα(kI)∂uβ(k′I ′)
= −∂Fβ(k

′I ′)

∂uα(kI)
(2.43)

More computational details about the calculation of the force constants follow in Section 2.3.2.

Based on the classical equations of motion (F = −k · u = m · ü), the motion of the system

of atoms and how they change over time in a unit cell k, can be expressed as 3M coupled

equations:

Fa(kI) = mI
∂2ua(kI)

∂t2
= −

∑
k′I′

∑
β

Φαβuβ(k
′I ′) (2.44)

where mI refers to the mass of atom I. The summation of the pairwise interactions between

displaced atoms and atom kI along the α direction in the system, yields the net force on that

atom.

Considering the periodic potential of the lattice, from the Bloch theorem we could expect the

atom displacements to be described by a periodic function with the periodicity of a unit cell

and modulated by a plane wave. It can thus be preferable to express Eq. 2.44 in reciprocal

space. The dynamical matrix is then expressed in reciprocal space after Fourier transforming

the real space force constant matrix Φαβ(kI, k
′I ′).

Dαβ
II′(q) =

∑
k′

Φαβ(0I, k
′I ′)

√
mImI′

eiq·[r(k
′I′)−r(0I)] (2.45)

Combining the dynamical matrix Eq. 2.45 with the classical equations of motion Eq. 2.44,

leads to an eigenvalue problem that requires the diagonalisation of the D(q) dynamical matrix

resulting in a set of ωqj eigenfrequences and eqj eigenvectors at each wavevector q and band
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index j: ∑
βI′

Dαβ
II′(q)e

βI′

qj = ω2
qje

αI
qj (2.46)

Each eqj eigenvector at a particular wave vector q consists of 3M components describing the

collective motion of the atoms. The term ‘normal modes’ is used to describe these collective

displacements of the atoms in the crystal. The dependency of the frequency ω of each normal

mode on the wavevector q within the first Brillouin zone gives the phonon dispersion of the

crystal. At q = 0, corresponding to the center of the Brillouin zone (Γ), the displacement wave

has an infinite wavelength which describes the in phase movement of symmetrically equivalent

atoms in the different unit cells. At the Γ point there are always three acoustic modes, as all

the atoms in the unit cells of the crystal are moving in phase as a rigid block towards the three

directions of the crystal. These acoustic modes correspond to zero energy as their frequency is

zero and for small values of q, near zero, they show a linear dispersion. The remaining 3M − 3

modes at Γ are known as optical modes and involve relative movements between the atoms in

each unit cell.

Once the calculation of the phonon dispersion has been completed the phonon DOS is expressed

as:

g(ω) =
1

ncell

∑
qj

δ(ω − ωqj) (2.47)

when the DOS is integrated over the phonon frequency range and normalised by being divided

by the number of unit cells ncell, it equals 3M . In practise the DOS can be calculated via the

smearing method or a linear tetrahedron method [126], which is what was used in this study

implemented in PHONOPY [125]. The phonon frequencies are calculated at the q points on a

defined q sampling and then Eq. 2.47 is evaluated by integration within tetrahedra defined in

the Brillouin zone.

2.3.2 Calculations of phonon eigenmodes and eigenfrequencies

While the previous section covers the theoretical basis of harmonic lattice dynamics and nor-

mal phonon modes in crystals, this section describes an outline of how the phonon eigenmodes
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and eigenfrequencies are calculated. The first requirement in this process is the evaluation of

the force constant matrix, which can be mainly performed using the finite difference method

(supercell method) or the linear response method [127]. In the supercell method, which is the

method used in this study, finite displacements ∆rα(kI) of one atom at a time in the supercell

are performed and the resulting forces on each atom can then be calculated. By exploiting

the crystal symmetry, not all atoms in the unit cell need to be displaced thus reducing the

computational cost. For each supercell arrangement, the forces on each of its atoms are eval-

uated with DFT calulations, making use of the Hellman-Feynman force method implemented

in VASP [118, 119]. The force constants can then be calculated from first-order derivatives of

the forces as:

Φαβ(kI, k
′I ′) = −Fβ(k

′I ′; ∆rα(kI))− Fβ(k
′I ′)

∆rα(kI)
(2.48)

which approximates the exact derivative in Eq. 2.43.

The dynamical matrix is then calculated at each wavevector, q, defined from the q sampling

mesh by applying Fourier transformation on the force constant matrix. The supercell in this

case, whose size can be determined by the interaction range between the atoms, must be large

enough to allow for a wavelength λ = 2π/|q|. After the evaluation of the 3M × 3M dynamical

matrix at each q point, the calculation of the eigenfrequencies and eigenmodes is done by its

diagonalisation resulting in 3M eigenfrequencies ωqj and eigenmodes eαkqj . Therefore, after the

force set evaluation in VASP, the force constants, dynamical matrix, phonon frequencies and

eigenvectros at each q point are calculated in PHONOPY. Other dependant values such as

the phonon band structure, phonon DOS, thermodynamic properties, thermal properties and

characters of irreducible representations of normal modes are also calculated in PHONOPY

and are discussed further in the following sections.

2.3.3 Harmonic phonon thermodynamics

In the previous sections the discussion was classical, with the lattice vibrations in a crystal

being described in terms of its normal modes. In quantum mechanics, considering the analog
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of the quantum harmonic oscillator, the quantitised normal modes are called phonons, with the

energy of n quanta in a normal mode s at a wavevector q given as:

ϵ(s)(q) =

(
1

2
+ n

)
h̄ω(s) (2.49)

where n is the number of phonons in that normal mode. From this we can see that a non-zero

energy (h̄ω/2) corresponds to the lowest energy state, n = 0, indicating that there is some

degree of vibrational energy in the system even at 0 K, known as the zero-point energy.

The population n(s)(q, T ) of phonons at temperature T is defined based on a Bose-Einstein

distribution given that phonons are bosons:

n(s)(q, T ) =
1

exp
(

h̄ω(s)(q)
kBT

)
− 1

(2.50)

The Helmholtz free energy can be defined based on the canonical partition function, Z, as:

F = −kBT lnZ (2.51)

where the harmonic partition function, Zhar, for a crystal configuration is calculated as the sum

over all energy levels ϵ(s) of the given system:

Zhar =
∑

exp
(
− ϵ

kBT

)
(2.52)

The phonon Helmholtz free energy within the harmonic approximation for a quantum mechan-

ical solid is then given by the expression [124]:

Fvib =
∑
qj

[
h̄ωqj

2
+ kBT ln

[
1− exp

(
− h̄ωqj

kBT

)]]
(2.53)

Other thermodynamic values such as entropy S and internal energy U can then be obtained by

taking the derivative of the free energy F with respect to the temperature T .
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The harmonic phonon entropy is given by [124]:

Svib =
∑
qj

 h̄ωqj

T
(
exp

(
h̄ωqj

kBT

)
− 1
) − kB ln

(
1− exp

(
− h̄ωqj

kBT

)) (2.54)

Given that the internal energy is:

U = F + TS (2.55)

then the internal energy is given by [124]:

Uvib = Fvib + TSvib =
∑
qj

h̄ωqj

 1

exp
(

h̄ωqj

kBT

)
− 1

+
1

2

 (2.56)

2.3.4 Quasiharmonic lattice dynamics

There are a number of thermal properties such as thermal expansion, heat capacity, thermal

conductivity that are not explained by harmonic approximation, since the effect of unit cell vol-

ume changes cannot be described. In quasiharmonic approximation, harmonic approximation

is applied for different volumes but the force constants are allowed to change in accordance to

the unit cell volume. In that way phonon frequencies are expressed as a function of the volume,

also allowing for the calculation of the Grüneisen parameters. A commonly noticed trend is a

decrease in phonon frequency as the lattice expands.

Considering the volume dependence of the frequencies, the equations for vibrational free energy

2.53 and entropy 2.54 are written as follows:

Fvib(T, V ) =
∑
qj

[
h̄ωqj(V )

2
+ kBT ln

[
1− exp

(
− h̄ωqj(V )

kBT

)]]
(2.57)

and

Svib(T, V ) =
∑
qj

 h̄ωqj(V )

T
(
exp

(
h̄ωqj(V )

kBT

)
− 1
) − kB ln

(
1− exp

(
− h̄ωqj(V )

kBT

)) (2.58)
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Quasiharmonic approximation is an accurate enough approximation for temperatures generally

below about half the melting point.

2.3.5 Raman spectroscopy

Raman spectroscopy relies upon inelastic scattering of light by the material by inducing different

types of transitions, such as vibrational, electronic, rotational or a combination of these, to

the molecules or atoms of the scattering material. This results in emitted photons from the

scattering material having either lower (Stokes lines) or higher (anti-Stokes lines) frequency than

that of the incident photon. The most common transition noticed in solids is the vibrational

one, where each peak of the Raman spectra corresponds to a different vibrational mode of the

crystal. Raman spectroscopy is widely used as a method to identify the scattering material

based on its spectra, as the number and position of the peaks are determined uniquely from

the Raman-active normal modes allowed by the symmetry of the crystal. The selection rules

for these are based on the symmetry of the change of the polarisability in the material induced

by the normal mode amplitude.

At an elementary level, the Raman phenomenon can be explained classically based on elec-

tromagnetic wave theory by considering a time-dependent electric field E inducing a dipole

moment P between atoms of the material whose magnitude is proportional to the incident

electric field:

P = aE (2.59)

with a being the polarisability tensor of the matter, showing the ease with which the electron

density between the atoms is distorted due to the presence of the imposed electromagnetic field.

The polarisation, P , fluctuates with time with the frequency ωi of the electromagnetic field

inducing it E = E0sin(ωi):

P = aE0sin(ωi) (2.60)

emitting electromagnetic radiation at the same frequency ωi (Rayleigh).
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This time dependence of the material’s polarisation can be affected by lattice vibrations. Con-

sidering a vibrational mode k and its normal coordinate Qk, vibrating with frequency ω01,

Qk = Q01sin(ω01t), then for small nuclear displacements the polarisability is a linear function

of nuclear displacements around the atomic equilibrium positions and can be expressed as:

a = a0 +
∂a

∂Qk

∣∣∣∣
Qk=0

Qk = a0 +
∂a

∂Qk

Q01sin(ω01t) (2.61)

where a0 is the polarisability when the atoms are at equilibrium positions. By combining

Equations 2.60 and 2.61 the time dependency of the material’s polarisation is expressed:

P = a0E0sin(ωt) +
∂a

∂Qk

Q01E0sin(ωit)sin(ω01t) (2.62)

or equivalently

P = a0E0sin(ωit) +
1

2

∂a

∂Qk

Q01E0 [cos(ωi − ω01)t− cos(ωi + ω01)t] (2.63)

Equation 2.63 shows that a non-vanishing differential polarisability ∂a
∂Qk

Q01 is the main condition

under which Raman spectra can be observed, and the emitted frequencies are ωi−ω01 or ωi+ω01.

To determine whether this derivative would be zero or not, group theory can be applied. Normal

modes of lattice vibrations can be categorised using group theory based on whether they interact

with the incident electromagnetic wave via changes in polarisability (Raman activity) or the

dipole moment (infrared activity).

Significant information about the symmetry of a phase can be summarised in the table of

character which plays a key role in the selection procedure. A particular point group can be

described by a number of representations, since many different basis functions can be used,

with each representation’s symmetry species being able to be described by a linear combination

of the symmetry species corresponding to the point group’s irreducible representation. This

symmetry species list can then be used to uniquely describe the symmetry of that point group.

This information along with the different symmetry operations of the point group and their

effect on each particular symmetry species are summarised in the character table.
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The eigenvectors of each normal vibrational mode, which express the displacement of atoms

in the normal mode coordinates, can serve as a basis function with the mode linked to an

irreducible representation. To determine the irreducible representation of each normal mode,

the symmetry operations of the point group are applied on each mode’s eigenvectors, thus

determining the characters based on whether the operations change the direction of atomic

displacements for the mode. Given the characters assigned for the different symmetry operations

for each mode, the corresponding irreducible representation for that particular point group can

be determined based on the character table. A mode can then be characterised to be Raman-

active, where the vibration results in a change in polarisability, if the irreducible representation

has basis functions which are binary products of x, y and z e.g. x2, xy, xz, etc. or their linear

combinations. On the other hand, irreducible representations with basis functions x, y or z

correspond to infrared active modes of vibration.

2.4 Free energy

2.4.1 Combined free energy

The Helmholtz free energy is considered in terms of the following free energy contributions:

F (T, V ) = U0(V ) + Fqha(T, V ) + Fel(T, V ) (2.64)

where U0 is the DFT energy at T = 0K without including the zero-point energy, and Fqha

corresponds to the free energy due to atomic vibrations computed within the quasiharmonic

approximation as defined in Eq. 2.57 which includes the zero-point energy
∑

qj
1
2
h̄ωqj(V ). Fel

is the electronic contribution to the free energy, calculated using a finite temperature DFT

approach based on the Mermin functional [128]. According to this approach, at each finite

temperature an exchange-correlation functional is used to determine the free energy due to

electronic excitations. In this study we do not consider higher-order anharmonic vibrations

nor the impact of lattice vibrations on the electronic free energy, which would be much more



2.4. Free energy 63

expensive to compute, since we are not concerned with properties above about half the melting

point where these contributions would start to become important [129].

In quasiharmonic approximation, as explained in section 2.3.4, the full phonon density of states

is calculated at each configuration, considering a set of different unit cell volumes V for the

crystal structure, where a volume scaling factor is used to scale the lattice vectors and atomic

coordinates of the unit cell requiring a one-dimensional sampling of strains. However, for non-

cubic unit cells such as hexagonal or tetragonal unit cells the c/a ratio is not fixed, but a = b

at all volumes, therefore in principle a mesh of two defined strains along the a and c directions

is needed in such cases, with the strains defined as:

ϵ1 =
a− a0
a0

and ϵ3 =
c− c0
c0

(2.65)

where a0 and c0 are the equilibrium lattice constants at zero temperature and ϵ2 is always held

equal to ϵ1. The free energy, Eq. 2.64, is then expressed in terms of temperature and the two

strains as:

F (T, ϵ1, ϵ3) = U0(ϵ1, ϵ3) + Fqha(T, ϵ1, ϵ3) + Fel(T, ϵ1, ϵ3) (2.66)

Once the free energy expression has been calculated, the Gibbs free energy is then acquired by

minimising F + PV with respect to the volume or the strains (ϵ1, ϵ3):

G(T, P ) = min
V

[F + PV ] (2.67)

2.4.2 c/a constraint

As already mentioned, crystals of hexagonal or tetragonal symmetry exhibit some degree of

anisotropic thermal expansion which changes the c/a ratio of the unit cell. However, it can be

assumed, as it has been in later chapters, that by keeping the c/a ratio fixed the free energy as a

function of temperature and volume is a sufficiently good approximation. This approximation is

considerably more computationally efficient since sampling of strains along only one dimension

is required instead of a 2D mesh of strains. This is particularly useful in cases where a large
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number of phases are being considered such as in Chapter 4. The errors introduced due to this

approximation to the free energy and volume for hexagonal or tetragonal unit cells have been

derived by Mike Finnis and are described below.

The free energy is expressed with respect to the strains ϵ1 and ϵ3, considering the hexagonal

symmetry of MAX phases, within the approximation of linear elasticity:

F = −2α1ϵ1 − α3ϵ3 + (C11 + C12)ϵ
2
1 +

1

2
C33ϵ

2
3 + C13ϵ1ϵ3 (2.68)

the coefficients α1 and α3 describe the thermal expansion and Cij correspond to the elastic

constants, both sets of coefficients are functions of temperature.

The thermal expansions are described by minimising F with respect to the strains, and the

equilibrium strains are:

ϵ1 =
α1C33 − α3C13

2C2
13 − C33(C11 + C12)

ϵ3 =
2α1C13 − α3(C11 + C12)

2C2
13 − C33(C11 + C12)

(2.69)

and the corresponding unconstrained equilibrium free energy is:

Funconstrained =
α2
3(C11 + C12 − 4α1α3C13 + 2α2

1C33)

4C2
13 − 2C33(C11 + C12)

(2.70)

Similarly, by minimising F but under the constraint that ϵ3 = ϵ1, the equilibrium strain ϵ is:

ϵ = ϵ1 = ϵ3 =
2α1 + α3

4C13 + C33 + 2(C11 + C12)
(2.71)

and the corresponding constrained F is:

Fconstrained =
(2α1 + α3)

2

2(4C13 + C33 + 2(C11 + C12))
(2.72)

In order to express both the constrained and unconstrained free energies in terms of strains, we

substitute the α1 and α3 coefficients with the expressions that result by inverting Equations 2.69.
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Therefore, the free energy error expression is defined:

Ferror = Funconstrained − Fconstrained = −(−2C2
13 + (C11 + C12)C33)(ϵ1 − ϵ3)

2

2C11 + 2C12 + 4C13 + C33

(2.73)

Similarly, if we consider that the volume strain under the c/a constraint is 3ϵ (ϵ1 = ϵ3, Eq. 2.71)

and without the constraint imposed is 2ϵ1+ϵ3 (Eq. 2.69), then the resulting error in the volume

strain is:

Verror =
2(C11 + C12 − C13 − C33)(ϵ1 − ϵ3)

2C11 + 2C12 + 4C13 + C33

(2.74)

The error in the free energy shows a quadratic dependence on the strains (ϵ1 − ϵ3) whereas it

is linear for the volume, indicating that it is a good approximation. This is later verified by

inserting calculated and experimental numbers for the quantities involved, in Chapter 3.

2.4.3 Thermophysical properties

Having calculated the Helmholtz free energy as a function of temperature and volume F (T, V )

and the Gibbs free energy G(T, P ) as defined in equations 2.64 and 2.67, many thermophysical

properties can be derived such as the thermal expansion coefficient (αV ), the isobaric and iso-

choric heat capacities (CP and CV ), the isothermal bulk modulus (BT ) and the mode Grüneisen

parameter (γ(qi)). The macroscopic Grüneisen parameter (γth) can then be defined based on

the previous properties, αV , BT and CV [124].

The thermal expansion coefficient expresses how the crystal volume varies with temperature at

constant pressure, and is defines as:

αV =
1

V

(
∂V

∂T

)
P

(2.75)

The isothermal compressibility KT expresses how the crystal volume changes with pressure and

is defined as:

KT = − 1

V

(
∂V

∂P

)
T

(2.76)
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The isothermal bulk modulus is expressed as the inverse of the isothermal compressibility KT :

BT =
1

KT

(2.77)

The heat capacity expresses how the temperature of the crystal changes in response to a supplied

amount of heat. The isochoric heat capacity is expressed by:

CV = −T
(
∂2F

∂T 2

)
V

(2.78)

and the isobaric heat capacity is expressed by:

CP = −T
(
∂2G

∂T 2

)
P

(2.79)

The mode Grüneisen parameter, γ(qi), at the wave vector q and band index i is expressed by:

γ(qi) = − V

ω(qi)

∂ω(qi)

∂V
(2.80)

which shows the dependence of each frequency mode ω(qi) upon the unit cell volume. These

can be calculated within the quasiharmonic approximation. The thermal or macroscopic for-

mulation of the Grüneisen parameter is given by:

γth =
βV BT

CV

(2.81)

2.4.3.1 Calculation of elastic constants

Elastic constants are a measure of material’s stiffness and are expressed as the constant matrix

that connects the stress, σ, and strain, ϵ, tensors describing the crystal’s behaviour under

deformation within the linear elastic regime. This relationship using Voigt notation is expressed

as:

σi = Cij · ϵj (2.82)
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The elastic constants can be calculated from the stress-strain relationship and also equivalently,

as done in this study, as a second derivative of the free energy with respect to the strains. As

explained previously in Section 2.4.2, after applying a second order Taylor expansion to the

free energy with respect to the strains and exploiting the hexagonal or tetragonal symmetry

of the crystal, the free energy can be expressed as a function of the two strains ϵ1 and ϵ3 and

the elastic constants Cij (Eq. 2.68). The three C11+C12, C13 and C33 elastic constants used in

the free energy expression Eq. 2.68 correspond to crystal deformations along the a and c axes

without allowing any shear, preserving the crystal’s symmetry. Thus these three are available

as a bonus from the data obtained on the 2D mesh used for calculating free energy and volume

expansion. There are three more independent elastic constants in hexagonal crystals that we

have not investigated, which could only be obtained from further calculations involving shears

of the unit cell.

The elastic constants are computed by fitting a polynomial expression to the free energies

calculated for each deformation of the crystal defined in a 2D strain mesh ϵ1 and ϵ3. The

same process but calculating the free energy F (T, ϵ1, ϵ3) at different temperatures is used to

determine the temperature dependence of the elastic constants.

2.4.3.2 Free energy of formation and convex hull

The datasets provided in experimental studies from the literature commonly refer to the stan-

dard enthalpies of formation (or heats of formation) for different compounds. DFT studies

from the literature usually calculate formation energies based on the DFT energy at 0K with-

out accounting for any vibrations, this approach is a first approximation to either the enthalpy

or the free energy. In this study, the total Gibbs formation energy is calculated based on the

first DFT term corrected by the free energy contributions of the vibrations which also include

the entropic contribution.

In order to examine the relative stability of a phase against other phases existing in a system its

formation energy can be compared against any linear combination of alternative phases via the

construction of a convex hull. In the context of this work it will be useful to define three distinct



meanings of convex hull. Convex hull is a term appropriated from geometry, which is widely

used in computational materials science to mean the convex hull of formation energies generated

in the space of compositions by the calculated minimum energies of crystal structures that are

available at each composition. If a well-defined crystal structure lies on this convex hull, for

example in the two dimensional space of ternary compositions, it would be deemed to be stable

with respect to decomposition into neighbouring crystal structures on the hull. If above the

convex hull, it would be unstable to such a decomposition. As mentioned previously it is usual

in most DFT studies and in particular in the high-throughput calculations [45, 44], that the

energies are calculated for systems at zero absolute temperature, which neglects, besides the

effect of temperature itself, the contribution of the zero-point energy of vibration. It is worth

recalling that in quantum mechanics every vibrational mode has a certain energy even at zero

Kelvin, as described in Eq. 2.49, known as the zero-point energy. We designate such a convex

hull, that neglects zero-point energy, by the abbreviation CH0. For the stability of crystals at

finite temperature, the relevant energies would be the Gibbs energies, so we distinguish their

associated convex hull by the abbreviation CH(T ), where T denotes the temperature in degrees

Kelvin. Any difference between CH(0) and CH0 is the effect of including the zero-point energy.

The Gibbs energy of formation for each phase is defined as the difference in total Gibbs energy

of the compound and the Gibbs energies of its constituent elements in their stable states divided

by the number of atoms in the molecular unit. For the ternary Zr-Al-C and Ti-Al-C systems

we examine in Chapter 4, the Gibbs energy of formation is then expressed as:

∆Gf(MxAlyCz) =
1

x+ y + z
(G(MxAlyCz)− xG(M)− yG(Al)− zG(C)) (2.83)

where M is either Zr or Ti. For this purpose we assume their standard crystal structures for

the metals, while for simplicity we assume pure C in the diamond structure. The precise ele-

ment reference energies are of no practical importance for our conclusions about the stability of

ternary MAX phases. The ternary convex hulls we calculate include only fully ordered struc-

tures, including the Zr-C and Ti-C systems, and no configurational entropy is associated with

the arrangement of structural vacancies in the γ-phase, which we took from low-temperature

68



calculations of total energy [130, 131].
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Chapter 3

Structural and Thermophysical properties

of Zrn+1AlCn and Tin+1AlCn.

In this chapter the thermophysical and structural properties of the Zrn+1AlCn and Tin+1AlCn

MAX phases with a focus on Zr2AlC were calculated within the DFT framework with the lattice

vibrations being treated within the quasiharmonic approximation. For Zr2AlC the free energy

was expressed in terms of strains, ϵ1 = ϵ2 and ϵ3, and temperature, thus allowing for the calcu-

lation of the three independent elastic constants that do not relate to any loss of symmetry. In

addition to the lattice vibrations, the electronic excitations were considered and their contribu-

tion to the free energy and thermophysical properties was evaluated. The choice of exchange

correlation (XC) functional was also discussed, as was the effect of assuming that the coeffi-

cient of expansion is isotropic. Apart from considering the choice of computational parameters,

such as the XC functional and the error introduced by the different levels of approximation for

Zr2AlC, less computationally-demanding free energy calculations were conducted under the c/a

constraint for a larger number of MAX phases in the Zr-Al-C and Ti-Al-C systems. Based on

these free energy calculations, thermophysical properties were predicted for these MAX phases

and trends between them were discussed.
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3.1 Computational details

The following calculations are based on Density Functional Theory (DFT) implemented in the

Vienna Ab initio Simulation Package (VASP) [118, 119]. The electron-ion interactions have

been treated using a projector augmented wave (PAW) [132] pseudopotential method. The

exchange-correlation energy has been calculated using the PBEsol functional (Perdew-Burke-

Ernzerhof revised for solids) [111]. The electrons treated as valence were the 4s 4p 5s2 4d2 for

Zr, the 3s 3p 4s2 3d2 for Ti, the 2s 2p 3s2 3p1 for Al, and the 2s 2p for C.

The cut-off kinetic energy used was 760 eV and the k -point meshes were 13×13×3, 19×19×3

and 23× 23× 3 for the 211, 312 and 413 MAX phases respectively, for which values the total

energy was found to be sufficiently converged to better than 1meV/atom. For certain Zr2AlC

calculations, the strain dependent free energy and resulting thermophysical properties, such as

the elastic constants, were calculated using an increased cut-off energy of 820 eV and 23×23×5

k -points that were found to converge the elastic constants to 1GPa. This more accurate set of

computational parameters was used due to the high sensitivity of this phase’s elastic constants

calculations.

Accurate structural relaxation was conducted for each phase at a state of zero stress, setting

the threshold for the total energy at 10−9 eV and for the forces during the ionic relaxation at

10−5 eVÅ−1. Phonon spectra were calculated using the small displacement supercell method

implemented in PHONOPY [125] by applying finite displacements of 0.01Å. The supercell for

each phase was sufficiently large to converge the phonon free energy to 1meV/atom. The

convergence criterion for the density of Brillouin zone mesh points for sampling the phonons

was 1meV/atom or less, with a q-point sampling of 73×73×12 for 312 MAX phases, 25×25×5

for Zr2AlC and 171 × 171 × 38 for Ti2AlC. The electronic free energy at finite temperatures

was calculated using the Mermin method [128].

In order to obtain the free energy as a function of (ϵ1 = ϵ2, ϵ3) and temperature T , the internal

energy, U0(ϵ1, ϵ3), was calculated on a mesh consisting of 49 different strained structures in

the {±ϵ1,±ϵ3} strain domain. The displacements for the mesh started from the center of the
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strain domain and ended at a maximum of 0.0075 with a step of 0.0025. The lattice vibrational

part of the free energy, Fvib(ϵ1, ϵ3,T ), was calculated at two-degree temperature intervals from

0 to 2000K for supercells defined by a set of 17 strains on a square mesh of (ϵ1, ϵ3) with a

maximum strain magnitude of 0.02. The electronic free energy Fel(ϵ1, ϵ3, T ) was calculated for 14

temperatures between 116–2000K on a similar mesh of 17 strains with a maximum magnitude

of 0.01. When the c/a ratio was kept fixed, the free energy was expressed in terms of volume

and temperature by fitting the harmonic free energy calculated at temperature intervals of 2K

from 0 to 2000K, and the internal energy with a 3rd order polynomial to five volumes. The

volume scaling factors used to scale the lattice vectors and atomic coordinates were 0.98, 0.99,

1.0, 1.01, 1.025 for the Zr-based phases, while for the Ti-based phases we used six volumes,

scaling as 0.98, 0.99, 1.0, 1.005, 1.015, 1.025.

3.2 Results

3.2.1 Free energy and lattice parameters of Zr2AlC

The free energy is analysed in terms of its partial contributions:

F = U0(ϵ1, ϵ3) + Fqha(ϵ1, ϵ3, T ) + Fel(ϵ1, ϵ3, T ) (3.1)

where U0(ϵ1, ϵ3) is the zero-temperature energy, Fqha(ϵ1, ϵ3, T ) is the vibrational free energy and

Fel(ϵ1, ϵ3, T ) is the electronic free energy.

(a) U0 (b) U0 + Fqha (c) U0 + Fqha + Fel

Figure 3.1: The energy contours against the strain mesh for the different free energy contribu-
tions at 1000K.
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The free energy including the vibrational and electronic contributions is shown in the fitted

contours displayed in Figure 3.1 against the two strains (ϵ1, ϵ3). Starting from Fig. 3.1a, only

the internal energy U0(ϵ1, ϵ3), then U0(ϵ1, ϵ3) + Fqha(ϵ1, ϵ3), and finally the free energy U0(ϵ1, ϵ3)

+ Fqha(ϵ1, ϵ3) + Fel(ϵ1, ϵ3) at T = 1000K are shown. The shift of the lowest energy point from

zero in the case of U0(ϵ1, ϵ3) corresponds to the effect of each of the two contributions.

Figure 3.2: The free energy, U0 + Fqha and U0 + Fqha + Fel, at zero strains as a function of
temperature.

The contribution made by electronic excitations is very small as seen in Fig. 3.2. It amounts

to 8meV/atom, contributing less than 1% to the total energy at 1400K.

Table 3.1 contains the lattice parameters for the Zr2AlC phase, whose structure is shown in

Fig. 3.3, calculated for three different XC functionals, which are compared with other experi-

mental and theoretical studies. The LDA [109] and GGA (Perdew-Wang) [133] functionals are

generally believed to bracket the exact value [134] and our choice of PBEsol is a recommended

GGA-type functional for solids with improved treatment of the exchange energy [111, 134],

which we expect to return values within the range between standard LDA and GGA. For

PBEsol the effect of zero point energy on the lattice constants shows an increase by 0.17%

and 0.14% for a and c respectively. The effect of the thermal expansion at 300K increases a

and c by 0.3% and 0.2% respectively. For PBEsol at room temperature the lattice constants
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Figure 3.3: The primitive unit cell for the Zr2AlC phase, consisting of alternating Zr-C and Al
layers.

only differ by 0.7% and 0.3% from the experimental values. This is probably within the error

bars of any DFT calculation. Equally, such a difference could be explained by the possibility

of impurities in the Zr2AlC phase, elements like Hf and Nb, and in particular Hf due to their

very similar chemical behaviour and ionic radii, and electron configurations (4d2 5s2 for Zr and

5d2 6s2 for Hf) resulting in complete solubility between each other. Usually even in high purity

Zr powder there is some amount of Hf present and specifically, Hf can be present in the final

sample in percentages less that 1%, as has been reported in the initial reacting powders used for

MAX phases synthesis e.g ZrH2 contains about 1–2% of Hf in it [135]. Based on the study by

Lapauw et al. [3] it is reported that 0.1% of Nb changes the a and c lattices by 0.8% and 0.4%

respectively. Thus, even less than 1% of Nb could cause differences in the lattice parameters

similar to the differences that are shown between the calculations at room temperature and

the experimental results. In another study by Lapauw et al. [4] the sample of Zr2AlC phase

was reported with the presence of secondary phases such as ZrC and thus the measured lattice

constants of the Zr2AlC phase could have been affected by the resultant internal stresses.

Our calculations show close agreement with other theoretical studies, in particular our GGA

(Perdew-Wang) calculations have less than 0.4% difference for the a and c lattice constants

with other GGA calculations [19, 77, 18, 84, 136]. Of these studies, closest agreement for both
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Zr2AlC a (Å) c (Å) ZM

This study

LDA 3.272 14.407 0.087

GGA 3.322 14.584 0.087

PBEsol 3.290 14.506 0.086

PBEsol (zero point energy) 3.296 14.526 -

PBEsol (T= 300K) 3.300 14.538 -

Experimental studies

XRD [4] 3.3237 14.5705 0.087

SAED [4] 3.3 14.6 -

NPD [4] 3.3239 14.556 0.0898

Computational studies

GGA (PBE) [18] 3.3174 14.6304 0.0861

LDA [78] 3.2104 14.2460 -

GGA [136] 3.334 14.600 -

GGA (PBE) [77] 3.319 14.604 0.0864

GGA (PBE) [19] 3.319 14.606 0.0864

GGA (PBE) [84] 3.3186 14.6062 0.0864

Table 3.1: Lattice constants a and c and the z-coordinate of the Zr atoms, ZM.

lattice constants was noted with [19, 77, 84] where differences with our calculations were less

than 0.09% for a and 0.15% for c. These three studies applied the plane wave pseudopoten-

tial approach using the GGA (PBE) XC functional and used the same type of ion-electron

interaction method, the Vanderbilt-type ultrasoft pseudopotential. The cut-off kinetic energy

used was 500 eV and 550 eV for [19, 77] and [84] respectively. This high similarity of the cho-

sen computational details in these studies could explain the negligible differences with each

other in their predicted lattice constants. The study by Luo et al. [18], which also used the

PBE XC functional, like the aforementioned three studies, but a slightly lower cut-off energy

at 400 eV, shows a slightly larger difference with our GGA calculations at 0.14% for a and
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0.32% for c. Closest agreement for c specifically is shown between our GGA calculations and

those by Shang et al. [136], who used GGA-based projector augmented wave potentials and a

cut-off kinetic energy at 500 eV, with the difference being 0.11% for c, though a higher differ-

ence of 0.36% is noted for a. Despite the differences between our GGA calculations and these

other GGA studies being small overall, these small differences could also possibly be affected

by other choices in computational parameters apart from the use of lower cut-off kinetic en-

ergies and different pseudopotentials than our calculations, which used a cut-off of 760 eV and

projector augmented-wave (PAW) potentials. Specifically for the three aforementioned studies

with closest agreement for both lattice constants, [19, 77, 84], the maximum force threshold for

structural relaxation was set to 0.01 eV/Å compared to the 10−5 eV/Å in our calculations. The

k -points sampling was also quite different between our calculations, which used 23 × 23 × 5,

and the sparser sampling by Ali et al. [77], Nasir et al. [19] and Hadi et al. [84] at 10 × 10 × 2

and 12× 12× 3 and 19× 19× 3 respectively. Overall however, it is difficult to assign a cause

to the small differences between the calculated results, since the contributing factors: choice of

XC functional, k -point sampling, pseudopotential and cut-off are never the same in different

publications.

3.2.2 Elastic moduli of Zr2AlC

Out of the six elastic constants that correspond to the hexagonal symmetry of the MAX phases,

the three that were calculated, C11+C12, C13 and C33, correspond to deformations along the

a = b and c axis while preserving the hexagonal symmetry. Only these deformations are

required for exploring the thermal expansion and heat capacity, which are our main focus in

this chapter with regard to the thermophysical properties.

In Fig. 3.4 the three elastic constants are plotted as a function of temperature showing the effect

of the electronic contribution. The electronic contribution to the elastic constants is negative

for C11+C12 and C33, resulting in a 2% decrease at 1400K, whereas for C13 the contribution is

positive resulting in an increase of 2%. Overall, the elastic constants were found to decrease

with temperature by around 59, 41 and 10GPa for C11+C12, C33 and C13 respectively from 0



78 Chapter 3. Structural and Thermophysical properties of Zrn+1AlCn and Tin+1AlCn.

to 1400K.

Figure 3.4: The C11+C12, C33 and C13 elastic constants against temperature.

The values of the elastic constants have been found to be very sensitive to a number of com-

putational parameters including the density and amplitude of the strain mesh used to fit the

polynomial to the free energy. Fine-tuning these parameters is important to ensure that the

mesh size is small enough to capture the harmonic part. Apart from the method to calculate

the elastic constants as applied in this study, other theoretical studies used the stress-strain re-

lationship usually implemented through software packages e.g. VASP or CASTEP [137], where

the amplitude of the strains along several strain directions is usually set to a default value

which is sometimes inadequate.

In Table 3.2 the calculated elastic constants at different temperatures between 0 and 1400 K,

including the electronic contributions to the free energy, are shown as well as the elastic con-

stants from various studies calculated at 0K. The studies [18, 80] calculated the pressure effect

on the elastic constants, but we have not found any published theoretical study predicting tem-

perature dependent elastic constants nor experimental measurements for Zr2AlC. In the studies
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[19, 77, 74, 67, 18, 79] the elastic constants were predicted slightly lower than our results, with

a maximum difference of 2.0%, 3.7% and 2.9% for C11+C12, C13 and C33 respectively. Apart

from the computational details related to the method of calculating the elastic constants as

explained above, the elastic constants show sensitivity to the cut-off kinetic energy and, as

discussed in the computational details, were shown to require a high value. For instance, from

the aforementioned studies, the study by Luo et al. [18], which shows some of largest differences

compared to our results, uses a GGA-PBE XC functional, a cut-off kinetic energy of 400 eV and

k-points mesh of 9× 9× 2 instead of PBEsol, 820 eV and 23× 23× 5 used in this study. Also,

the parameters for geometry optimisation were set to a convergence of energy of 10−5 eV/atom

and a maximum force of 0.03 eV/Å, whereas in this study the values were 10−9 eV/atom and

Temp (K) C11+C12 (GPa) C13 (GPa) C33 (GPa)

0 328.43 65.44 227.71

150 326.46 64.76 225.89

500 313.19 62.05 216.19

1000 289.66 58.46 200.09

1200 279.59 57.07 193.25

1400 269.32 55.65 186.29

Literature

GGA-PBE [18] 322 63 227

GGA-PBE [19] 325 64 224

LDA [80] 342 67 235

GGA-WC [76] 375 75 337

GGA [77, 74] 325 63 221

GGA [67] 324 63 224

GGA-PBE [75] 333 67 227

GGA-PBE [79] 325 64 227

Table 3.2: Elastic constants calculated for different temperatures in our study and compared
with other 0K predicted values from the literature.
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10−6 eV/Å respectively. The studies [80, 76] predicted the elastic constants higher than ours.

Our largest difference is with the study by Kanoun et al. [76], where the elastic constants,

C11+C12, C13 and C33, where predicted 14%, 15% and 48% higher than ours respectively. The

overestimation in the elastic constants can be partially explained by their choice of XC func-

tional, where LDA, as used by Kanoun et al. , produces larger values than GGA, as used in this

study. In general the elastic constants are underestimated when using GGA and overestimated

using LDA functionals, resulting in larger predicted bond length and lower stiffness in the GGA

case.

Figure 3.5: The [1 1 1] plane of the 211 and 312 structures. l1 and l2 denote the lengths of the
carbide and Al layers in the MAX phases respectively, where M = Zr, Ti.

Because of the layered structure of the MAX phase, the strain ϵ33 will not be equally distributed

between the atomic planes, and we might expect the strain to be lower within the carbide-like

layers. To investigate this, we define ϵMC and ϵMA corresponding to the strains in the carbide

and Al layers respectively, as illustrated in Fig. 3.5. Fig. 3.6 shows that the strains between the

MAX phase layers are not uniformly distributed. Considering that the stress in the c direction,

σ33, is constant at every position between each pair of neighbouring planes, the crystal behaves

as if it was composed of different local elastic constants along the c direction. These are soft

regions corresponding to the Al layers and hard regions corresponding to the carbide layers, as

shown for the Zr2AlC phase in Fig. 3.6a where the linear change of ϵMA and ϵMC is shown as a

function of ϵ3, which varies from −0.025 to 0.025.
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(a) (b)

Figure 3.6: Figure (a) shows how the applied ϵ3 strain is distributed within the ZrC and Al
layers of the Zr2AlC phase. Figure (b) shows the ϵMA/ϵMC as a function of ϵ3 for the Zr and Ti
MAX phases.

In Fig. 3.6b, the way ϵMA/ϵMC varies with ϵ3 for different MAX phases is shown. In this case

we can see that as we go from 211 to 312 the ratio decreases, showing that the difference in the

distributed strains between the layers is smaller in the case of 312. This correlates with the fact

that the interlayer spacing in the carbide layer in 211 is smaller than the one in 312, indicating

stronger binding within the carbide layers as is discussed in more detail in Chapter 5. For

comparison reasons, the two closely related 211 and 312 Ti-based MAX phases are included in

Fig. 3.6b. In general the Zr-based MAX phases were found to have a higher ratio than their

corresponding Ti-based phases, with Zr2AlC having the highest ratio overall.

Figure 3.7: The two figures show the stress on the c axis (σ33) as a function of the strain of the
carbide layer, ϵMC for 211, 312 and pure carbide in the Zr and Ti systems.
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The carbide layer in these MAX phases is a nanoscale slab of the metal carbide, which is

bonded in a partially covalent, partially ionic way, and is a stiffer material than the nanolayer

around the Al layer as is shown by their relative stiffness in Fig. 3.6. As the thickness of the

carbide layer is increased then the elastic properties of the material would approach the elastic

properties of a pure carbide. As shown in the metal carbide nanolayer stress-strain relation

in Fig. 3.7, as the metal carbide proportion increases from the 211 to 312 MAX phase this

stress-strain relation approaches that of the pure metal carbide for both Zr and Ti systems.

3.2.3 The c/a constraint

In general, crystals of hexagonal or tetragonal symmetry exhibit some degree of anisotropic

thermal expansion, which changes the c/a ratio of a unit cell. It can be assumed, as it has been

in many studies in the literature, that for crystals of hexagonal symmetry one can estimate the

free energy as a function of temperature and volume sufficiently well by neglecting the change

in c/a ratio. This approximation makes a large saving in computer time, since if c/a is held

constant the scan of strains is only one dimensional, which is particularly useful when many

compounds have to be scanned or when costly calculations such as the full phonon spectrum

in the quasiharmonic approximation are required.

As was discussed previously for Zr2AlC, free energy calculations were performed within the

quasiharmonic approximation with respect to the two strains ϵ1 and ϵ3 taking into account the

anisotropy that is introduced by the hexagonal symmetry of the MAX phases. Based on these

calculations, thermal properties have been derived for Zr2AlC, such as the thermal expansion

coefficient and heat capacity. The resulting properties from both constrained and unconstrained

free energy calculations were found to have negligible differences.

In Section 2.4.2 the expression of the error introduced to the free energy and volume was

derived in terms of the equilibrium strains and elastic constants. Below, this error is evaluated

using the derived equations, 2.73 and 2.74, for Zrn+1AlCn and Tin+1AlCn. For Zr2AlC, using

our calculated elastic constants and the equilibrium strains at 300K resulted in errors of less

than 2.5 × 10−4 meV/atom and 1.2 × 10−5 for the free energy and volume strain respectively.
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Since calculations of strain dependent free energy and elastic constants were only conducted for

Zr2AlC, data from the literature, either experimental or theoretical, was applied to the error

estimations for the other MAX phases considered. For the Ti2AlC phase, the experimentally

determined linear thermal expansion coefficients (ϵ1 = 7.2× 10−6 and ϵ3 = 9.3× 10−6 K−1) and

predicted elastic constants (C11 + C12 = 365, C13 = 59 and C33 = 272GPa) were used from

the study by Wang et al. [83], where high isotropy in thermal expansion was also noted. For

Ti3AlC2, the predicted linear thermal expansion (ϵ1 = 8.2 × 10−6 and ϵ3 = 11.6 × 10−6 K−1)

and elastic constants (C11 + C12 = 440.08, C13 = 76.03 and C33 = 292.89GPa) based on

DFT calculations from the study by Son et al. [85] were used. For the Zr3AlC2 phase, the

predicted isotropic volume thermal expansion coefficient (1.34 × 10−5 K−1 at 300K) and the

elastic constants (C11 + C12 = 321.99, C13 = 63.07 and C33 = 226.77GPa) based on DFT

by applying the quasiharmonic Debye model were used from the study by Luo et al. [18]. In

this case, by estimating the volume expansion to be isotropic, we consider ϵ1 to be 1/3 of the

reported volume expansion coefficient. Since ϵ1 has to be smaller than ϵ3, we define an upper

limit for the (ϵ1 − ϵ3) term in the error expressions to be just ϵ1. Based on the data described

above, the error introduced by the c/a constraint on the free energy and volume strain for the

Zr and Ti MAX phases is estimated to be negligible. Specifically, the error is estimated to be

less than 10−7 meV/atom for the free energy and of the order of 10−7 for the volume strain.

In the following sections, where a larger number of phases are considered, the c/a constraint

is therefore applied to the calculation of the thermophysical properties of the Zrn+1AlCn and

Tin+1AlCn MAX phases.

3.2.4 Thermal expansion of Zrn+1AlCn and Tin+1AlCn

This section focuses on the comparison of the volume thermal expansion coefficients between

the different MAX phases in the two systems, Zr-Al-C and Ti-Al-C, under the approximation

that their thermal expansion is isotropic. More detailed calculations though were conducted

for Zr2AlC, with anisotropy considered in the thermal expansion of a and c separately, and the

electronic contribution to the free energy also being calculated. Comparison with the literature,
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experimental and theoretical studies is given in Table 3.3.

The thermal expansion coefficient is a useful thermal property with a particular significance

when interfaces in materials exist, as mismatches in the thermal expansion coefficient of the

combined phases can result in mechanical failure during thermal cycling. In these cases the

degree of anisotropy is also important, and although a lack of experimental studies is noted

for Zr-based MAX phases, for the Ti-based MAX phases, Ti2AlC and Ti3AlC2, a number of

experimental studies are reported focusing on thermal expansion and anisotropy [93, 94, 95,

96, 97, 83, 98]. The two main experimental methods applied in those studies are dilatometry

and high-temperature XRD measurements, which show a good agreement between themselves.

The average linear thermal expansion, αav = (2αa + αc)/3, given in these studies for their

respective temperature ranges is presented in Table 3.3, after being converted to the volume

thermal expansion coefficient, along with αV from other theoretical studies. The different

temperature ranges used in each study were all bounded between 300 and 1800K. For Ti2AlC,

by comparing our results with the volume thermal expansion coefficient within the temperature

ranges reported for each experimental study we find an agreement with a difference of 1–

9% [83, 93, 98, 97]. The closest agreement between our predictions and experiment is noted

with the study by Wang et al. [83] at about 1%, where the high-temperature XRD measurements

were conducted within 300–800K. For Ti3AlC2, a higher disagreement with the experimental

studies compared to Ti2AlC is noted, with differences being within the range of 14–25% [93, 94,

95, 96, 97]. Differences might occur due to the presence of other secondary phases as has been

reported, to different levels, in all of the aforementioned studies. In most of these studies, even

when high purity was achieved, the presence of secondary phases has been reported at around

4 vol%. In particular, in the study by Pang et al. [97] the final Ti3AlC2 sample was found to

contain secondary phases, Ti2AlC (2.7 wt.%) and TiC (0.2 wt.%), and an increase in Ti2AlC and

TiCx contents was reported because of the decomposition of Ti3AlC2 as temperature increased

from 1400 to 1550°C. In the study by Lane et al. [93] a multiphase sample consisting of a mixture

of 38 wt.% Ti5Al2C3, 32 wt.% Ti2AlC, 18 wt.% Ti3AlC2, and 12 wt.% (Ti0.5Al0.5)Al was used.

Although, as is reported in the study, by comparing the Ti3AlC2 phase’s thermal expansion

from the multiphase sample with this from a predominantly Ti3AlC2 sample, the difference is
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comparable to their measurement uncertainty. Apart from the presence of other phases in the

samples, the composition or the presence of impurities can also affect the thermal properties.

Experimental research suggests that MAX phases have the tendency of forming vacancies in

the C sublattice [138], which can also influence the thermal properties like thermal expansion

and heat capacity [139]. In the study by Tzenov et al. [95], different Ti3AlxCy compositions

were investigated within the window of x = 0.8–1.7 and y = 1.8–2.0, with the Ti3Al1.1C1.8

composition being used for their thermal expansion measurements, as it was the only one found

not to contain TiCx, but only a 4 vol% of Al2O3. Apart from the above, anisotropy has been

measured for the two Ti-based MAX phases in various studies [83, 93, 97, 96], where the αc/αa

ratio was found to be between 1.13–1.34 for 312 and 0.8–1.3 for 211. Although ratios of up to

around 1.3 are reported, we found the difference this anisotropy makes to the approximation of

the constant ratio in the free energy and volume strain to be negligible, as examined for Ti2AlC

with thermal expansion values, αc and αa, from the study by Wang et al. [83] in Section 3.2.3.

Figure 3.8: The thermal expansion coefficient for the Mn+1AlCn, M = [Zr, Ti] MAX phases.

In Fig. 3.8 the thermal expansion coefficient is plotted as a function of temperature for the

Zr and Ti MAX phases. In the temperature range 300–1000K, the Zr-based MAX phases

show lower thermal expansion coefficients compared to the Ti-based ones, with the Zr2AlC

phase showing the lowest. From the Ti-based phases the lowest thermal expansion is noted

for Ti3AlC2 and the highest for Ti2AlC. From around 400K the Ti4AlC3 phase shows a high
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rate of increase compared to the other MAX phases. However, after 1100K, the greatest rate

of increase is noted for Zr2AlC compared to the rest of the MAX phases that show a rather

more linear increase. This is probably due to the greater contribution of the Al layer in 211

compared to 312, recalling that the Al layers are softer than the ZrC layers.

Phase αV (×10−5 K−1) CV (KB) CP (KB)

Calc. Exp. Calc. Calc. Exp.

300K 1000K 300K 300K 1000K

Ti4AlC3 1.93 2.75 2.21 3.02

Ti3AlC2 1.85 2.52 1.8c [93] 2.42 2.44 3.01

2.53 [90] 3.67[90] 2.298d [94] 2.21 [90] 2.24 [90] 3.12 [90]

2.19 [86] 2.99[86] 1.8e [95] 2.53 [7] 2.29 [86] 3.03 [86]

2.26 [85] 3.14[85] 2.76f [96] 2.30 [85] 3.17 [85]

2.31 [140] 2.76g [97] 2.59 [7] 3.03j [7]

Ti2AlC 2.13 2.9 2.37h [83] 2.34 2.36 3.04 2.60a [8]

2.16 [83] 3.1[83] 2.76c [93] 2.35 [83] 2.39 [83] 3.05 [83] 2.37b [9]

2.55[73] 3.2[73] 2.46i [98] 2.34[89] 2.4 [73] 3.06 [73]

1.40 [91] 1.6[91] 2.84g [97] 2.38 [89] 3.07 [89]

1.73 [89] 2.41 [89] 3.23 [89]

Zr3AlC2 1.78 2.30 2.42 2.44 3.03

2.70 [7] 2.73 [7] 3.09j [7]

Zr2AlC 1.74 2.33 2.51 2.53 3.03

1.38 [18] 1.84 [18] 2.64 [19] 3.64 [19]

3.28 [19] 4.26 [19]

Table 3.3: The volume thermal expansion (αV ) and heat capacity (CP ) for the Mn+1AlCn,
M = [Zr, Ti] MAX phases calculated in this study are compared to relevant experimental
and theoretical values at 300K and 1000K. The theoretical calculation by Ouadha et al. [7],
j, is given at 600K. The experimental CP by Barsoum a [8] and Drulis b [9] are given at
400K at 250K respectively. The experimental measurements for αV were conducted within the
temperature ranges: c: 300–1273K, d: 300 K, e: 300–1473K, f : 300–1000K, g: 300–1800K, h:
300–800K, i: 300–1600K.
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Apart from the experimental studies, a number of theoretical studies have been reported for

Ti2AlC [83, 73, 91, 89], Ti3AlC2 [90, 86, 85] and Zr2AlC [18, 19]. Comparing these studies with

experiment, as seen in Table 3.3, shows that the method used to approximate the lattice vibra-

tions has an impact on the thermal expansion. As is also noted in the study by Wang et al. [83]

for the MAX phases, quasiharmonic approximation resulted in better agreement with exper-

imental studies compared to other approximations like the Debye–Grüneisen model, and the

differences were more apparent for the thermal expansion coefficient than the heat capacities.

This improvement with quasiharmonic approximation is due to its more accurate expression

of the free energy by using the full phonon spectrum compared to the Debye approximation

which does not take into account zero-point energy, nor the higher frequency optical phonons

that can be associated with carbon atoms in the structure. This improvement can be seen

for the Ti2AlC phase since quasiharmonic approximation applied in our study and the study

by Wang et al. [83] resulted in better agreement with the experimentally measured values by

Wang et al. [83] compared to other studies using the quasiharmonic Debye model [91, 89].

This point is emphasised by comparing our thermal expansion coefficient with other theoret-

ical studies, as shown in Table 3.3, the closest agreement is noted with studies also using

the quasiharmonic approximation. In particular, in the study by Wang et al. [83] for Ti2AlC

at 300K the thermal expansion coefficient was found to differ from our result by just 1.4%.

However, in the study by Duong et al. [73], where the quasihamonic approximation was also

used, the difference was found to be 20%. Part of this higher difference could be related to

the contribution of electron excitations they included in the thermal expansion. Higher differ-

ences, within the range of 19–34%, were noted when the lattice vibrations were treated within

the quasiharmonic Debye model [91, 89], with the difference increasing significantly at higher

temperature for [91]. Similarly for the Ti3AlC2 phase, the closest agreement is noted with

the study by Tongo et al. [86] where the thermal expansion coefficient was calculated using the

quasiharmonic approximation, with a difference of 18%. A larger difference is noted with the

study by Son et al. [85], where quasiharmonic approximation was used incorporating electron

excitation and anharmonicity corrections to the free energy. The largest difference, at about

37% was noted with the study by Ali et al. [90] where the quasiharmonic Debye model was ap-
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plied with the difference growing even larger as temperature increases. For the Ti3AlC2 phase

it is also worth comparing our thermal expansion coefficient with one predicted by a recently

developed bond-order potential [140]. Only a few interatomic potentials have been developed

for MAX phases [140, 141] and these were mainly aimed at investigating specific MAX phase

behaviour, such as plastic anisotropy and kinking nonlinear elasticity. In these studies, [141]

uses a modified version of a previously developed bond order interatomic potential by [140] to

better capture deformation behaviour. Although these interatomic potentials were not fitted

based on thermal properties, in the earlier study [140] they reported a difference of 15% with

experiment regarding their predicted thermal expansion coefficient, for which a difference of

25% was found when compared to our DFT calculations.

(a) (b) (c)

Figure 3.9: In (a) and (b) the calculated lattice constants a and c of Zr2AlC are plotted as a
function of temperature. In (c) the normalised lattice constants, a/a0 and c/c0 are shown as
a function of temperature. In the three sub-figures the calculations included both the phonon
and the electronic contributions.

Focusing on Zr2AlC, in Fig. 3.9 the lattice constants, a and c, for this phase are shown as a

function of temperature. The electronic contribution to the lattice constants was found to be

negligible. At 1000K an increase by around 0.01% with respect to the equilibrium values of

the lattice constants is noted. The thermal expansion along the a and c axes is very similar,

indicating an isotropic expansion. This is also described in sub-figure 3.9c where the two lattice

parameters a and c are divided by their equilibrium values at 0K and plotted as a function of

temperature.

Harmonic phonons contribute the most to the temperature dependence of the Zr2AlC free

energy, as shown in Fig. 3.2, but the electronic term can make non-trivial contributions to the
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derivatives such as the heat capacity at high-temperatures. The thermal expansion coefficient

αV compared to the literature is shown in Fig. 3.10. The electronic contribution to the thermal

expansion is also plotted and found to be 0.09 × 10−5K−1 at 1000K. The thermal expansion

coefficients compared to predictions by Luo et al. [18] and Nasir et al. [19] show considerable

differences. For instance, at 1000K we predicted αV 2.8 × 10−5 K−1 compared to around

1.8 × 10−5 K−1 by Luo et al. and 4.27 × 10−5K−1 by Nasir et al.. Both aforementioned

studies used the quasiharmonic Debye model instead of the full normal modes spectrum in the

quasiharmonic approximation applied in this study. Although both studies applied the same

method, the difference between them is significant.

3.2.5 Heat capacity of Zrn+1AlCn and Tin+1AlCn

Heat capacity is an important thermal property, particularly useful for calculating phase dia-

grams. CALPHAD, a method for calculating phase diagrams, uses a database of both exper-

imental and theoretical thermodynamic properties to fit the Gibbs free energy to polynomial

expressions for each phase likely to contribute to stability in a system. Accurate calculations

of heat capacities are therefore necessary, particularly in cases of a lack of experimental data,

and are also important to be compared with available experimental data, as the reliability of

Figure 3.10: Thermal expansion coefficient for Zr2AlC compared to studies by Luo et al. [18]
and Nasir et al. [19].
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the database used, and mainly of the heat capacities, determines the accuracy of the method.

In Fig. 3.11 the isobaric and isochoric heat capacity, CP and CV , are shown as a function

of temperature for the Zr and Ti MAX phases. At low temperature the differences between

CP and CV are small. After 800K the difference increases, with CP increasing linearly and

deviating from CV by 6–7% at 1600K where CV saturates to the classical limit of 3 kB at high

temperature. From low temperatures up to around 1000K the Ti MAX phases show lower heat

capacities compared to Zr ones, which is the opposite trend noticed for the thermal expansion

coefficients. The heat capacity increases as n decreases for both Ti-based and Zr-based phases,

with Ti4AlC3 showing the lowest values overall.

(a) (b)

Figure 3.11: The isobaric and isochoric heat capacity, CP and CV , for the Mn+1AlCn,
M = [Zr, Ti] MAX phases.

For the Ti2AlC phase experimental studies measuring the heat capacity are reported by Drulis

et al. [9] and Barsoum et al. [8]. The study by Drulis et al. [9] covers the temperature range from

3 to 260K, with the heat capacity being proportional to T 3 at those low temperatures. At tem-

perature 250K our calculations underestimate their CP by 19%. The study by Barsoum et al. [8]

covers from 400 to 1400K, from which the measured heat capacities up to 900K were used to

fit a Debye model. Our prediction is 11% lower than their experimental value at 400K.

By comparing with other theoretical studies there is a good agreement and the choice of the

method to approximate the lattice vibrations doesn’t show as large an effect as in the case of the
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thermal expansion. For Ti2AlC the difference with our values are below 1% at 1000K comparing

with the theoretical studies [83, 73, 89]. In the studies by Wang et al. [83] and Duong et al. [73],

electronic corrections to the CP were also incorporated, showing an enhanced heat capacity by

almost the same amount as the quasiharmonic contribution at high temperature, resulting in

a better agreement with experiments [73]. For Ti3AlC2, by comparing with studies using the

quasiharmonic approximation [90, 86], a difference below 4% was noted at 100K, whereas for

studies using the quasiharmonic Debye approximation a difference between 5% [85] and 8% [7]

was noted, where in the former study electronic and anharmonic corrections were also applied.

For Zr3AlC2, by comparing with the study by Ouadha et al. [7] using the quasiharmonic Debye

approximation, a difference of 2% at 600K is noted.

Figure 3.12: Heat capacity calculated taking into account the vibrational and electronic con-
tribution and compared to calculated CP by Nasir et al. [19].

For the Zr2AlC phase, Fig. 3.12 shows the isobaric heat capacity, CP , as a function of tempera-

ture along with predictions from study [19]. From our calculations the heat capacity including

only CP (qha) is 100.72 J/(molK) at 1000K. The electronic contribution to CP is found to

increase CP (qha) by 4.6% at 1000K. The calculated CP by Nasir et al. [19] at high temper-

ature shows only fair agreement with our results with the closest being with CP (qha+el),

e.g. at 1000K Nasir et al. predicts CP about 107 J/(molK) which is close to our result of

105.56 J/(molK). However there is a considerable disagreement at low temperatures which, as
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will also be discussed later, could be a result of their use of the quasiharmonic Debye approxi-

mation instead of the quasiharmonic approximation that this study uses.

3.2.6 Bulk modulus of Zrn+1AlCn and Tin+1AlCn

In Fig. 3.13 the bulk modulus, BT , is plotted for the Zr and Ti MAX phases with respect

to the temperature. It is noted that the Zr-based phases have a lower bulk modulus than

their corresponding Ti ones, indicating that the latter are more incompressible than their

corresponding Zr phases. This is in agreement with the study by Cover et al. [67] where trends

between 211 phases were studied. The bulk modulus increases with n, which is in agreement

with the theoretical study by He et al. [68], where the 312 phases were predicted higher than

the 211 ones. This trend is also shown by the experimental values [70, 71]. Both of the

aforementioned trends are opposite to the trends noted for the heat capacities for the MAX

phases. The highest BT corresponds to Ti4AlC3, while the two lowest correspond to the 211

phases, with Zr2AlC being the lowest overall. As temperature increases, the differences between

Ti4AlC3 and Ti3AlC2 and between Ti2AlC and Zr3AlC2 decrease. All the phases decrease their

stiffness with temperature, with the greatest reduction noted for Zr2AlC at 27% and the least

for Ti3AlC2 at 16%.

Figure 3.13: The isothermal bulk modulus for the Mn+1AlCn, M = [Zr, Ti] MAX phases.
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Other theoretical studies calculated the temperature dependence of the bulk modulus. The

studies [89, 90, 91, 19] used the quasiharmonic Debye model while other studies treated the

lattice vibrations within quasiharmonic approximation [83, 84, 73, 85, 86]. The study by

Duong et al. [73] also considered the contribution due to electronic excitations while the study

by Son et al. [85] also considered electronic and anharmonic corrections.

In Table 3.4 the bulk moduli calculated in this study are given for the Ti and Zr based MAX

phases at 0K along with other theoretical and experimental studies. In the reported theoret-

ical studies, the isothermal bulk modulus, BT was calculated under the c/a constraint using

either Eq. 2.76 or similarly the second derivative Gibbs free energy with respect to the volume

V (∂2G/∂V 2). Other studies alternatively used the Voigt and/or Reuss approximations, or the

average of those two bounds, the Voigt-Reuss-Hill (VRH) average, calculating them based on

the elastic constants. The differences between the approximations were noted to be small.

Ti4AlC3 Ti3AlC2 Ti2AlC Zr3AlC2 Zr2AlC

calc. calc. exp. calc. exp. calc. calc.

182.51 167.52 156 [70] 144.04 144 [71] 151.39 132.08

175.0 [69] 154 [86] 137 [72] 186 [142] 151 [68] 125 [19]

161.9 [69] 138 [83] 139.6 [143] 167 [7] 134 [80]

157 [90] 138.6 [69] 147.29 [84] 154 [76]

168 [68] 161 [91] 148.04[75] 124 [77]

160 [72] 141 [73] 158.2 [69] 125 [74]

163 [85] 140 [89] 125 [67]

184 [7] 138 [74] 176.28 [78]

137 [67] 128.54 [75]

133.7 [69]

126 [79]

Table 3.4: BT (GPa) for the Mn+1AlCn, M = [Zr, Ti] MAX phases calculated in this study at
0K and compared to experimental and theoretical values.
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In general, a very good agreement is noted with most of the theoretical and experimental studies

with differences from less than 1% to 8% compared to our calculations. For Ti3AlC2 the bulk

modulus was found to be in close agreement with the experimental study by Zhang et al. [70]

with only a 5% difference at 300K. For Ti2AlC, the predicted BT shows the closest agreement

with the experimental study [71], where we both agree on the same value of 144GPa by com-

paring with our predictions for 0K. At room temperature, our BT prediction is less than 2%

different to the experiments [71, 143] and a large difference of 32% is noted with the study [142].

Regarding the theoretical studies, the ones that showed the closest agreement to our values all

treated the electronic XC energy within the Perdew–Wang generalised-gradient approximation

(GGA-PW91). For Ti3AlC2, Zr3AlC2 and Zr2AlC the studies that showed the closest agree-

ment, with a difference less than 1%, were by He et al. [68] for the first two phases and Bai

et al. [69] for the latter. Both these studies approximated the electron-ion interactions using the

Vanderbilt-type ultrasoft pseudopotential. For Ti2AlC, the closest agreement with the theoret-

ical predictions, with a difference of 2%, was with the study by Duong et al. [73], which used the

projector augmented-wave (PAW) pseudo-potentials approximation, similarly to this study.

The studies with the largest difference compared to our results, that exceed our values by more

than 10%, used all-electron full-potential (linearised) augmented plane wave (FP-LAPW) pseu-

dopotentials combined with a GGA type XC functional. In particular, for Ti2AlC, Ti3AlC2

and Zr3AlC2, values around 10% greater than ours were noted with studies [91, 7] which used

the FP-LAPW method with a GGA (PBE) functional. For Ti3AlC2 specifically, the study

by Ouadha et al. [7] overestimates the experimental value [70] by 18%. In the case of Zr2AlC,

the predicted value by Kanoun et al. [76] was 16% higher than ours, where their study [76]

used an all-electron full-potential (linearised) augmented plane wave plus local orbitals (FP-

LAPW + lo) method with the XC potential estimated with the Wu and Cohen generalised

gradient approximation (GGA-WC) [144]. The largest difference for Zr2AlC, exceeding our

results by 33%, is noted with the study by Yakoubi et al. [78] where apart from the pseudopo-

tential difference the XC functional used also affected the predicted values. Specifically, the

FP-LAPW method was used instead of PAW and instead of a GGA-type XC functional, and

in particular PBEsol used in this study, LDA was used. It is generally known that LDA un-
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derestimates the thermal expansion and lattice constants and GGA overestimates them. For

the phonon frequencies and bulk modulus the opposite trend is noted with LDA overestimating

these values.

3.2.7 Grüneisen parameters

The Grüneisen parameters describe the effect of temperature on the lattice dynamics of crystals

by considering the volume dependence of the phonon frequencies. Based on this consideration,

anharmonicity of phonon-phonon interactions and thermophysical properties such as thermal

expansion can be predicted. In this section the average and mode Grüneisen parameters as

defined in Section 2.4.3 have been calculated. The thermal Grüneisen parameter, γth defined in

Eq. 2.81, was calculated as a function of temperature and compared for various phases in the

Zr-Al-C and Ti-Al-C systems, including the MAX phases, their end member phases as well as

other potentially competing phases. The mode Grüneiser parameters, γ(qi) defined in Eq. 2.80,

were also evaluated for the MAX phases to show the degree of change of each individual mode

frequency with respect to changes in volume.

(a) Phases in Zr-Al-C system (b) Phases in Ti-Al-C system

Figure 3.14: Thermal Grüneisen parameters, γth, with respect to the temperature for the MAX
phases and their competing phases and end members in the two systems Zr-Al-C and Ti-Al-C.

In Fig. 3.14 the thermal Grüneisen parameters are shown for phases in the Zr-Al-C and Ti-Al-C

systems. The Zr-based MAX phases have lower values overall than the corresponding Ti-based
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(a) Zr2AlC (b) Ti2AlC

(c) Zr3AlC2 (d) Ti3AlC2

Figure 3.15: Mode Grüneisen parameters calculations for Zr2AlC (a), Ti2AlC (b), Zr3AlC2

(c) and Ti3AlC2 (d). The colors of mode Grüneisen parameters are set for band indices with
ascending order of phonon frequency.

ones and the difference between the end members and MAX phases is larger in the case of

the Zr-Al-C system. The Zr-based 211 phase shows the lowest values overall, whereas for the

Ti-based MAX phases the lowest values correspond to the 312 phase. In the Zr-Al-C system

in particular, the Grüneisen parameter of Zr3AlC2 is in general higher than Zr2AlC, so that its

frequencies decrease faster with temperature, meaning that its free energy also decreases faster

with temperature.

The lowest average Grüneisen parameters for the Zr2AlC phase compared to the rest of the

MAX phases can be explained by looking closer at the frequencies of individual phonons. In

Fig. 3.15 the mode Grüneisen parameter γ(qi), as defined in Eq. 2.80, is shown for the four MAX
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phases. The Zr2AlC and Zr3AlC2 phases show very similar patterns across the different phonon

frequencies. Both of them show some negative modes at low frequencies close to 2.3THz. The

Zr2AlC phase though shows the most negative values reaching −0.8 explaining the low average

values in Fig. 3.14, whereas for Zr3AlC2 the most negative Grüneisen parameter is −0.098. On

the other hand, the Ti2AlC and Ti3AlC2 phases share a very similar pattern, without having

negative values for any of their Grüneisen modes. In general, for the four MAX phases the mode

Grüneisen parameters calculated show a significant degree of dispersion, with values ranging

from around negative −0.8 to positive 4. This indicates that the thermophysical properties of

such structures cannot be described accurately enough by the Debye model where only acoustic

modes are considered, resulting in a linear dispersion curve that neglects important information

about the full phonon dispersion spectra of the crystal.

3.3 Conclusions

Overall the thermophysical and structural properties of the Zrn+1AlCn and Tin+1AlCn MAX

phases were calculated based on DFT within the quasiharmonic approximation with a partic-

ular focus on Zr2AlC. For the Zr2AlC phase the free energy was expressed with respect to the

temperature and strains and electronic corrections were applied. The choice of PBEsol over

other XC functionals showed a close agreement with experiment with less than 1% difference

in the lattice constants at room temperature. The temperature dependent elastic constants

were predicted and the electronic contribution was found to be 2% at 1400K. Further elastic

property calculations predicted the slabs of metal carbide within the MAX phases to be stiffer

than their alternating Al layers. Calculated stress-strain curves in both Zr and Ti-based sys-

tems further indicated that as this carbide slab thickened, the MAX phases’ elastic properties

approach those of the metal carbide, as would be expected. Deformability can be an important

property requirement for candidate coating materials for nuclear fuel cladding, where coating

materials may need to follow the deformation of substrate fuel cladding due to irradiation creep

or swelling. By comparing the stress-strain curves for the two systems we found that Zr2AlC is

slightly softer than Ti2AlC, though no significant difference was found, with the difference be-



ing less than 10%. Other than to the elastic properties, electronic excitations were also found

to contribute to thermophysical properties, such as by 4.6% at 1000K to the heat capacity.

The anisotropy in the thermal expansion was found to be very weak for Zr2AlC and the error

introduced by neglecting it in the energy and volume strain was found to be negligible. Further

comparisons of the thermophysical properties, thermal expansion, heat capacities, bulk mod-

uli and Grüneisen parameters of the MAX phases in the Zr-Al-C and Ti-Al-C systems were

performed under the approximation of the c/a constraint. The thermal expansion and bulk

moduli were found to be higher for the Ti-based MAX phases than the Zr-based phases. The

heat capacity was found to increase as n decreases, whereas the opposite trend was noted for

the bulk modulus of the MAX phases in both systems. In general the predicted thermophysi-

cal properties were found to be in reasonable agreement with experimental data where it was

available. The method applied to predict the lattice vibrations was however found to have an

effect on thermal properties such as the heat capacity, as a significant discrepancy was noticed

for Zr2AlC at low temperatures between our results and the study by Luo et al. [18] where the

quasiharmonic Debye method was used. This discrepancy can be explained by the significantly

large degree of dispersion of the mode Grüneisen parameters we calculated for the MAX phases,

indicating that for such phases the Debye theory may not be sufficient to describe the thermal

effects.
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Chapter 4

Thermodynamic stability of MAX phases

in the Zr-Al-C and Ti-Al-C systems

One of the main objectives of this work was to predict the thermodynamic stability of MAX

phases in the Zr-Al-C system against the formation of other secondary phases in the system.

Thermodynamic stability was calculated via a convex hull construction for free energies, and

the effect of temperature on stability was evaluated. For comparison purposes, the stability of

the closely related Tin+1AlCn MAX phases was also calculated. The main results regarding the

thermodynamic stability that follow have also been published in Poulou et al. [145].

The calculation of the convex hulls considered only fully ordered structures of intermetalics,

carbides and ternary phases including the MAX phases in the system. The convex hull cal-

culations were performed at 0K (CH0), without zero point energy, and at finite temperature

(CH(T )), with CH(T ) being evaluated within the quasiharmonic approximation. The quan-

titative ab initio calculation of phase diagrams is notoriously problematic, since it generally

requires the calculation of energy-differences that are similar to or smaller than the accuracy of

the central approximation of applied DFT, which is the exchange-correlation (XC) functional.

For this reason we give special attention to the robustness of our conclusions with respect to

this approximation, by making selected calculations with four of the more commonly used XC

functionals. Further to that the Zr-Al system is examined in detail and discrepancies between

100
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various experiments and theoretical predictions are discussed. The thermodynamic prediction

suggests Zr-based MAX phases are unstable at room temperature and below with respect to

their decomposition to carbides and intermetallics, although with increasing temperature the

Zr3AlC2 phase becomes stable. On the other hand, the pure Ti2AlC phase is thermodynami-

cally stable at room temperature, consistent with the success in its synthesis. This difference

in stability between the Ti-based and Zr-based MAX phases is in alignment with the reported

difficulty in synthesis of Zrn+1AlCn and its low phase purity. Recent studies introduced tech-

niques to improve the phase purity by means of partial site-substitutions and provided a link

between phase purity and geometrical distortion in the MAX phases [3, 41]. Section 4.2.5 was

motivated by these studies’ findings and geometrical effects on the MAX phases for both sys-

tems were investigated by focusing on octahedral and Al layer distortion. Differences in the

distortion effect are compared and discussed for the two systems.

4.1 Methodology

4.1.1 Computational details

The following calculations are based on Density Functional Theory (DFT) implemented in the

Vienna Ab initio Simulation Package (VASP) [118, 119]. The electron-ion interactions have

been treated using a projector augmented wave (PAW) [132] pseudopotential method. The

exchange-correlation energy has been calculated using the PBEsol functional (Perdew-Burke-

Ernzerhof revised for solids) [111]. The electrons treated as valence were the 4s 4p 5s2 4d2

for Zr, the 3s 3p 4s2 3d2 for Ti, the 2s 2p 3s2 3p1 for Al, and the 2s 2p for C. The cut-off

kinetic energy used was 760 eV for all phases in the two systems. At 760 eV, the convergence

for each phase separately with respect to the total energy is better than 3.5meV/atom, while

the cancellation of errors brought the convergence of the standard formation energies to better

than 0.14 meV/atom. The k -point convergence of total energy was tested separately for each

phase to be better than 1meV/atom. Accurate structural relaxation was conducted for each

phase at a state of zero stress, setting the threshold for the total energy at 10−9 eV and for
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the forces during the ionic relaxation at 10−5 eVÅ−1. Phonon spectra were calculated using

the small displacement supercell method implemented in PHONOPY [125] by applying finite

displacements of 0.01Å. The supercell for each phase was sufficiently large to converge the

phonon free energy to 1meV/atom, which was also the convergence criterion for the density of

Brillouin zone mesh points for sampling the phonons.

4.1.2 Free energy of formation

The Helmholtz free energy is calculated in the quasiharmonic approximation, in which:

F (T, V ) = U0(V ) + Fqha(T, V ) (4.1)

U0 is the DFT energy at T = 0K without including the zero point energy, and Fqha corresponds

to the free energy due to atomic vibrations, computed within the harmonic approximation with

fixed dimensions of the unit cell. In the case of a crystal of hexagonal or tetragonal symmetry,

F is also a function of the c/a ratio of the conventional unit cell, however for the calculations of

free energy of all the compounds required we approximate the thermal expansion as isotropic.

We have shown that this approximation, although necessitated by the computational cost, in-

troduces an error in the calculated free energy of much less than 0.1meV/atom. The estimation

of this introduced error was justified in the methodology Section 2.4.2 and it was later evaluated

in Section 3.2.3 for MAX phases in the Zr-Al-C and Ti-Al-C systems by applying Eq. 2.73. We

have not included here electronic excitations (except for test purposes), or anharmonicity and

the impact of lattice vibrations on electronic free energy, of which anharmonicity in particular

would be much more expensive to compute. These omissions are reasonable, since we are not

concerned here with properties at above about half the melting point, where these contributions

would start to become important [129].

The free energy was expressed in terms of volume and temperature by fitting the harmonic free

energy calculated at temperature intervals of two degrees from 0 to 2000K, and the internal

energy with a 3rd order polynomial in V at five volumes. The volume scaling factors used
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to scale the lattice vectors and atomic coordinates were 0.98, 0.99, 1.0, 1.01, 1.025. For the

Ti-based phases we used six volumes, scaling as 0.98, 0.99, 1.0, 1.005, 1.015, 1.025. For the

Zrn+1AlCn MAX phases and the phases that might compete with them, an estimate of the

electronic contribution to the free energy, Fel(T, V ), was added to Eq. 4.1. The electronic term

was expressed in terms of volume and temperature by fitting it to a 5th order polynomial on a

2D mesh consisting of 5 volumes, the same ones used for the Zr-Al-C system, and a set of 15

temperatures between 116 and 2000K.

By minimising F + PV with respect to the volume, the Gibbs free energy is obtained:

G(T, P ) = min
V

[F + PV ] (4.2)

We have examined the thermodynamic stability by comparison of the Gibbs formation energies

of each phase against any linear combination of alternative phases by a convex hull construction

in the Zr-Al-C and Ti-Al-C systems. The convex hulls defined in this study are explained in

Section 2.4.3.2. As mentioned in the Methodology chapter, it is important to note that all the

structures considered for the convex hull evaluations were fully ordered structures, meaning

the arrangement of structural vacancies in the γ-phase [130, 131] are not associated with any

configurational entropy.

4.1.3 The phases considered

Tables 4.2 and 4.3 include the phases considered in the Zr-Al-C and Ti-Al-C systems respec-

tively. Of the binaries, the zirconium aluminides and Al4C3 (hR7) phase have been reported

as synthesised, but not all of them as pure phases. In particular, ten reported stable inter-

metallics ZrAl3 (tI16), ZrAl2 (hP12), Zr2Al3 (oF40), ZrAl (oC8), Zr5Al4 (hP18), Zr4Al3 (hP7),

Zr3Al2 (tP20), Zr5Al3 (tI32), Zr2Al (hP6) and Zr3Al (cP4) were considered. The published

phase diagrams suggest that two out of the ten reported phases are thermodynamically sta-

ble at high temperatures, Zr5Al4 and Zr5Al3. These ten intermetallics are included in the

phase diagrams reported in the literature, based on assessments of the Zr-Al system, some of
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them initially by Saunders et al. [146], followed by Murray et al. [23], Wang et al., and a recent

reassessment by Tamim et al. [147]. For the Ti-Al system, in cases where a published phase

diagram included multiple phases at a given composition, dependent on the temperature, we

have only included the lower temperature one. We have considered five stable Ti-Al inter-

metallics TiAl3 (tI8), TiAl2 (tI24), Ti3Al5 (tI32), TiAl (tP2) and Ti3Al (hP8) whose synthesis

has been reported many times, and they appear in the Ti-Al phase diagrams [148, 149, 150, 151].

We have discovered no reports of synthesis of Ti2Al3 (oF40), Ti5Al4 (hP18), Ti4Al3 (hP7) and

Ti3Al2 (tP20) for which, as prototype structures, we have assigned those of the correspond-

ing Zr aluminides. For both the zirconium and titanium carbides, the predicted structures

which have ordered sublattices of carbon vacancies were considered [130, 131]. Regarding the

zirconium ternary phases, all the phases considered, Zr2Al4C5, ZrAlC2 , Zr3Al4C6 Zr4Al3C6,

Zr3Al3C5, Zr2Al3C4, including the two MAX phases Zr2AlC and Zr3AlC2, have been reported

as synthesised [4, 5, 75, 152, 153]. For the MAX phases and especially the Zr2AlC phase the

presence of secondary phases, mainly ZrC and some aluminides (e.g ZrAl2) was observed [4, 5].

Similarly all the titanium ternary phases considered, including the three MAX phases Ti2AlC,

Ti3AlC2, and Ti4AlC3 have been reported as synthesised, with the 211 and 312 MAX phases

appearing with higher phase purity than the corresponding Zr ones.

4.2 Results

4.2.1 Results for phase diagrams in Zr-Al-C: 0K

4.2.1.1 CH0 in the Zr-Al-C system

In Fig. 4.1 the stoichiometric phase diagram is shown at 0K and 0 atm, calculated from the

internal energies, without including the zero point energy. For this and subsequent convex hull

constructions we have introduced the convention that compounds in red are on the convex hull,

while those in black are above it. As shown, the two MAX phases, Zr2AlC and Zr3AlC2 are

predicted unstable with reference to CH0, their closest competing phases being Zr4Al3, Zr4C3,
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ZrAl2 and Zr4C3, Zr7C6, ZrAl2 respectively. These are the ‘red’ phases that mark the corners of

the bounding triangle closest to the MAX phase in question. Of the remaining ternary phases,

ZrAlC2, Zr2Al4C5 and Zr3Al4C6 are above the hull and only the (ZrC)nAl3C2 (n = 2, 3, 4)

phases appear stable with reference to CH0.

Other phases appearing thermodynamically stable include Al4C3 and the following zirconium

carbides: ZrC, Zr2C, Zr3C2, Zr4C3 and Zr7C6. The predicted ordered carbides on CH0 are in

agreement with the ground state carbides in the studies by Yu et al. [154] and Xie et al. [130].

The study by Zhang et al. [155] predicts the Zr8C7, Zr6C5, Zr4C3, Zr3C2 and Zr2C ordered

phases as stable, this difference with our CH0 could be because they did not include the Zr7C6

phase, which may have otherwise made the Zr6C5 and Zr8C7 stoichiometries unstable, as seen

in our CH0.

As a by-product of our procedure, we find our stability prediction in the binary Zr-Al system

disagrees with the published Zr-Al phase diagram [156], as we shall discuss in Section 4.2.2.

For example of the ten phases reported as synthesised in this system, we predict four phases,

Zr3Al, Zr4Al3, ZrAl2 and ZrAl3, to be thermodynamically stable.

4.2.1.2 Sensitivity to exchange-correlation functional

The main uncertainty in the numerical results of these DFT calculations is in the approximation

of the XC functional. An estimation of the error that might be introduced in the formation

energies is important, since the phase stability sometimes depends on energy differences of a few

meV/atom. The LDA [109] and GGA(Perdew-Wang) [133] functionals are generally believed to

bracket the exact value [134] and our choice of PBEsol is a recommended GGA-type functional

for solids with improved treatment of the exchange energy [111, 134], which we expect to return

values within the range between standard LDA and GGA. This is our reference XC functional,

with which all the phase diagrams were calculated. We have also included in our tests a

recommended functional of the type that includes van der Waals dispersion, namely optPBE-

vdW [157, 158]. In the phase diagrams of Fig. 4.2, regions of the CH0 around the MAX phases

for the LDA, GGA, optPBE-vdW and PBEsol functionals are shown, with only a number of
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Figure 4.1: Zr-Al-C phase diagram at 0K without zero point energy. The red and black points
are located on and above the corresponding convex hull CH0 respectively. The MAX phases in
the system appear along the dashed line.

intermetallics and carbides included out of the total binary phases considered. Those included

were chosen based on the most competing phases for the two MAX phases as they appear in

Fig. 4.1 as well as other potentially competing phases located closely around these two MAX

phases, with the stability of most of those selected depending on no more than 5 meV/atom.

The actual formation energies for these phases are shown in Table 4.1 and presented graphically

in Fig. 4.3, and they show differences of up to 50meV/atom between PBEsol and the other

three tested functionals. As expected, the values calculated with PBEsol lie between those

of LDA and GGA. Fig. 4.3 shows that the biggest differences in formation energy are in the

carbon-containing compounds, where the formation energy with optPBE-vdW is consistently

and increasingly lower, as the proportion of carbon increases.

The levels of stability and instability of these phases is evaluated by their vertical distances

from the CH0 convex hull, and values are given in Table 4.1. The negative values represent

compounds that are on the convex hull, and the distances are then measured from where the

convex hull would be without them. These distances might be expected to be less sensitive
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to the choice of XC functional than the formation energies. However, this is not generally

true, although it is clearly the case for the MAX phases. All four functionals predict both

MAX phases to be unstable by a margin of 19–30meV/atom for Zr2AlC and a reduced margin

of 2–9meV/atom for Zr3AlC2. The lower end of the margin of instability for both phases is

predicted by GGA.

(a) PBEsol (b) PBE

(c) LDA (d) optPBE-vdW

Figure 4.2: Zr-Al-C phase diagrams (T = 0K, no zero-point energy) for different XC function-
als. Only the part of CH0 relevant to the stability of the MAX phases is shown. The red and
black points are located on and above CH0 respectively. The MAX phases in the system are
along the dashed line.
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Figure 4.3: Gibbs energies of formation for the Zr2AlC and Zr3AlC2 MAX phases and the
phases that might compete with them, calculated using four different XC functionals.

Table 4.1: The formation energies ∆Gf and the distances from CH0 of the Zr2AlC and Zr3AlC2

MAX phases and the phases that might compete with them, calculated with PBEsol, LDA,
GGA and optPBE-vdW functionals. For these results CH0 is calculated without each compound
in turn, so negative values indicate that the compound would be on the complete CH0.

Phase ∆Gf and distance from CH0 (eV/atom)

PBEsol LDA GGA optPBE-vdW

Zr6C5 −0.9062 +0.0039 −0.9007 +0.0043 −0.9189 +0.0036 −0.9467 +0.0040

Zr4C3 −0.8778 −0.0053 −0.8708 −0.0215 −0.8882 −0.0218 −0.9102 −0.0173

Zr3AlC2 −0.8039 +0.0035 −0.7999 +0.0085 −0.8161 +0.0020 −0.8353 +0.0060

Zr2AlC −0.7072 +0.0231 −0.7016 +0.0300 −0.7170 +0.0189 −0.7266 +0.0281

ZrAl −0.4666 +0.0267 −0.4689 +0.0325 −0.4705 +0.0174 −0.4733 +0.0215

ZrAl2 −0.5440 −0.0318 −0.5544 −0.0311 −0.5368 −0.0284 −0.5483 −0.0334

Zr2Al3 −0.5219 +0.0018 −0.5299 +0.0033 −0.5224 −0.0063 −0.5284 −0.0018

Zr4Al3 −0.4715 −0.0475 −0.4786 −0.0457 −0.4631 −0.0392 −0.4709 −0.0431

Zr5Al4 −0.4243 +0.0520 −0.4315 +0.0522 −0.4214 +0.0472 −0.4256 +0.0507

Zr7C6 −0.9188 −0.0069 −0.9142 −0.0250 −0.9318 −0.0246 −0.9616 −0.0270

Compared to the other functionals, optPBE-vdW consistently predicts greater stability of com-
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pounds with a higher proportion of carbon, as we see in Fig. 4.3. We attribute this to lack

of any van der Waals attractions in diamond, the reference end-member we have used in our

formation energy calculations, whereas the metal atoms involved all have some degree of van

der Waals interactions.

4.2.2 The Zr-Al intermetallics

Zr-Al exhibits the most complex phase diagram of any binary intermetallic system. During

synthesis of the MAX phases, in the resulting polycrystals some Zr-Al intermetallics seem al-

ways to accompany the grains of the MAX phase, and the intermetallics would naturally also

be products if the MAX phase were to decompose. We have compared our calculations of the

formation energies of the known intermetallics, using the four different exchange-correlation

functionals, with a range of experimental and theoretical data. A comparison with a previous

theoretical study of the Zr-Al system, based on ultrasoft pseudopotentials and GGA, is shown

in Fig. 4.4a. The energy differences are less than 0.02 eV/atom between those reported val-

ues and the current PBEsol ones. Besides the choice of exchange-correlation functional and

pseudopotentials, these differences may be due to computational parameters, such as k -points

and cut-off energy. All these calculations agree on the stability of the four phases that always

appear on the convex hull, as in Fig. 4.1. More surprisingly, they also agree on predicting that

ZrAl is above the convex hull, although ZrAl has been observed experimentally, and is taken to

be thermodynamically stable at low temperature according to all recent assessments [20, 159].

There are large differences between experimental results for the heats of formation of the ten

observed intermetallic phases reported by different authors, which makes it difficult to verify

the accuracy of our DFT enthalpies of formation by comparison with published experimental

data. We have included experimental data for enthalpy of formation that we could find that

covers a range of compositions in Fig. 4.4, together with two sets of DFT calculations, includ-

ing our own, and a thermodynamic assessment. The data of Wang et al. [20], also appearing

in [156], are the outcome of their thermodynamic assessment, and are significantly below the

theoretical predictions. The greatest difference we note is for the ZrAl phase, whose heat of
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formation is assessed at ∼ 0.2 eV/atom (∼ 20 kJ/mol) more negative than any DFT calcula-

tions. Furthermore, in contrast to this assessment, every DFT calculation places ZrAl clearly

above CH(0) and CH(T ). We suggest this discrepancy arises because the values reported by

Wang et al. are the result of a CALPHAD optimisation of parameters, including heats of

formation. In particular, their value for the ZrAl phase does not directly reflect experimental

calorimetric measurements of that energy. Rather it is a consequence of fitting data that will

reproduce the observed appearance of ZrAl on the phase diagram, on the assumption that it

is actually an equilibrium phase. By contrast, the results of recent calorimetric measurements

of Kematick et al. [22] give formation enthalpies slightly above the DFT values, but these data

were reinterpreted by Murray [23], which shifts the results downwards to values that lie below

DFT, although within 0.1 eV/atom. Both sets of data are shown in Fig. 4.4. Interestingly, these

experimental data do indicate that the ZrAl phase lies slightly above the convex hull, confirm-

(a) (b)

Figure 4.4: The CH0 for different functionals in this study are compared to experimental values
by Wang et al. [20], Macia̧g et al. [21], Kematick et al. [22] and Murray et al. [23] and calculations
by Ghosh et al. [24]. The energies of formation for the Zr-Al intermetallics are with respect to
their pure elements. Our calculations are shown on a continuous line, data from the literature
are shown on a dashed line. The black symbols denote that the phase is above the hull. (a)
the CH0 for the ten intermetallics (b) the CH0 zoomed in around the ZrAl phase.
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Figure 4.5: CH(T ) calculated with PBEsol at different temperatures. The formation energies
of the Zr-Al intermetallics are with respect to their pure elements. The black symbols denote
that the phase is above the hull.

ing the DFT predictions that the ZrAl phase is thermodynamically unstable. Our calculated

temperature-dependance of the enthalpies of formation, shown in Fig. 4.5, indicates a trend

for the thermodynamically unstable phases to approach CH(T ) as the temperature increases,

and they all reach the convex hull except ZrAl, Zr3Al2 and Zr5Al3, albeit at an unrealisti-

cally high-temperature for the quantitative validity of the quasiharmonic model. In summary,

our predicted instability of these three phases, which is robust to uncertainties in the DFT

exchange-correlation parameters, agrees qualitatively with the experimental data of refs. [23]

and [22], but not with the CALPHAD-assessed data of [20] or, more recently, [159].

Our final comment here on the comparison with experimental data concerns the biggest discrep-

ancy of the DFT calculations, which is with the enthalpies of formation reported by Macia̧g [21],

and also plotted in Fig. 4.4a. These data all lie below the DFT values, the biggest discrepancy

again being for ZrAl, with an enthalpy of formation about 0.3 eV/atom below DFT, which is

low enough to place it as a stable compound on this experimental convex hull. The discrepancy

is least, namely < 50meV/atom, for the Al-rich phases, ZrAl2 and ZrAl3. The data of ref. [21]
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were obtained from solution calorimetry, performed by preparing the phases, dissolving them

in liquid Al, and measuring the temperature change with reference to that induced by dissolv-

ing the pure elements. There are two possible sources of error that have not been quantified.

Firstly, a source of error suggested in the paper [21] is that, among the alloy phases prepared

for these experiments, the least pure as measured by X-ray diffraction was ZrAl, which con-

sisted of 92.72% ZrAl, with an admixture of Zr2Al3, Zr4Al3 and Zr5Al3. A second, perhaps

greater source of error in solution calorimetry for this system, recently identified by Barachin

et al. [160], is the likelihood of incomplete dissolution of Zr in liquid Al due to prior formation

of ZrAl3.

4.2.3 Results for phase diagrams in Zr-Al-C: T > 0K

In Fig. 4.1 the stoichiometric phase diagram is shown at 0K calculated from the internal

energies, without including the zero point energy. Fig. 4.6 shows how the phase diagram

changes with respect to the temperature by including the vibrational contribution to the free

energy at atmospheric pressure. Four different temperatures are shown, 0, 300, 800, and 1800K,

where for 0K the zero point energy is now included. On the Zr-Al side, the low-temperature

phases, Zr3Al, Zr4Al3, ZrAl2 and ZrAl3 remain thermodynamically stable and at 0K the zero

point energy doesn’t change the stability of any intermetallic in the system (Fig. 4.6(a)).

The Zr2Al3 phase appears stable from 300K, while the phases Zr2Al and Zr5Al4 appear stable

at temperature 1800K in agreement with the reported Zr-Al phase diagram [156], in which the

latter phase is also shown as a high temperature phase. The phases ZrAl, Zr3Al2 and Zr5Al3

are predicted to be unstable at all temperatures in marked contrast to the phase diagrams and

experimental studies [20, 156]. However, their distances from the hull were decreasing with tem-

perature as also shown in Table 4.2, with ZrAl being 0.0068 eV/atom above the hull at 1800K,

which is within the estimated error of the calculations. As also predicted by Ghosh et al. [24]

ZrAl, Zr3Al2 and Zr5Al3 showed a significant discrepancy in formation energy obtained by

ab initio and experiment reported in their study. This is consistent with earlier assertions [24]

that these intermetallics may be stabilised by impurity effects. Regarding the carbides, raising
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the temperatures above 300K changes the stability of two phases compared to CH0 (Fig. 4.1).

In particular, at 800K Zr2C has become unstable and at 1800K Zr8C7 has become stable.

Regarding the MAX phases, Zr3AlC2 becomes stable by 800K as the temperature increases,

whereas Zr2AlC remains unstable over the entire temperature range. The quantitative level of

stability of these two MAX phases is evaluated based on their distances from the convex hull

and the results are shown in Fig. 4.7. In the same plot, the contribution of the electronic free

(a) 0K and 1 atm (b) 300K and 1 atm

(c) 800K and 1 atm (d) 1800K and 1 atm

Figure 4.6: Zr-Al-C phase diagrams at different temperatures. The red and black points are
located on and above the convex hull respectively. The MAX phases in the system are shown
along the dashed line.
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Figure 4.7: Distances in energy from the convex hull against temperature for the Zr2AlC and
Zr3AlC phases. The electronic free energy contribution to the distance from the hull is shown
from 800K.

energy, Fel, to the distance from the hull for the two MAX phases is also shown for temperatures

above 500K. For temperatures below 500K the contribution of Fel was found to be less than

2–3meV/atom for the two MAX phases and their most competing phases, which is within the

accuracy of the current calculations. The contributions of Fel to the the distances from the

convex hull are relatively small and not monotonic with temperature. They don’t affect the

stability of either MAX phase. This is helped by some cancellation between the contributions

of the Fel to the MAX phases and to their competing phases.

Due to the hexagonal structure of the MAX phases the error that is introduced by the constraint

of fixed c/a has been estimated for different temperatures. This estimate is based on the Zr2AlC

phase whose free energy was expressed in terms of the two independent strains ϵ1 and ϵ3 and

the temperature. The effect on the formation energies was < 1meV/atom, which is less than

the uncertainty introduced by the XC functional.

4.2.4 Comparison with the Ti-Al-C system

In Fig. 4.8 the convex hulls CH0 and CH(300) are shown for the Ti-Al-C system. These convex

hulls are identical except for the status of the carbides, of which only Ti2C is unstable at 300K.
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This convex hull remains the same at higher temperatures.

The predicted stable Ti-Al intermetallics are the five synthesised ones, Ti3Al, TiAl, Ti3Al5,

TiAl2, and TiAl3, in agreement with the Ti-Al phase diagram. The rest, Ti2Al3, Ti4Al3, Ti5Al4

and Ti3Al2, whose synthesis hasn’t been reported yet and whose structures we included based on

corresponding Zr-Al ones, are predicted unstable for both CH0 and CH(T ) at standard condi-

tions. This is in agreement with previous 0K DFT energy calculations by Ghosh et al. [24] apart

from Ti4Al3, which they predicted stable, suggesting a possible transformation into TiAl (tP4)

and Ti3Al (hP8) at low temperatures.

To better visualise the thermodynamic stability of the MAX phases, cross-sections of the convex

hull between the end members ZrAl and ZrC for the Zr-based MAX phases and TiAl and TiC

for the Ti-based MAX phases are plotted together at different temperatures in Fig. 4.9. On

this diagram the Ti-based MAX phases clearly show their greater stability. Note that for this

comparison we have added a calculation of the hypothetical Zr4AlC3 MAX phase, to check that

the trend with n > 2 is similar to that observed in the Tin+1AlCn MAX phases, to be discussed

below. We also note that calculations at 1800K are expected to be less accurate, since full

anharmonicity is not included. For the Zr-based MAX phases there is a tendency to higher

stability as n increases, whereas the opposite trend is observed for the Ti-based phases, with

Ti2AlC and Ti4AlC3 appearing the most and least stable respectively. For the Ti-based MAX

phases this tendency is also in agreement with a previous study, where Ti2AlC was reported

more stable than Ti3AlC2 [33], and is further indicated by the fact that the 211 phase was

synthesised before 312. The effect of temperature on stability is also shown in Fig. 4.9. The

Zr2AlC phase approaches the convex hull as temperature increases as was also shown in Fig. 4.7,

whereas in the Ti-based system there are no significant differences since the phases Ti2AlC and

Ti3AlC2 remain stable and Ti4AlC3 remains just above the hull. In the case of Ti4AlC3 the

distance above the hull was about 0.5meV/atom, a value smaller than the uncertainty of these

calculations. In general we found that the vibrational free energy contribution affects stability

in the Zr-Al-C system more than in the Ti-Al-C system, especially for the MAX phases. In

fact, for the Ti-based MAX phases there is no change in stability and distance from the hull as

a function of temperature.
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A theoretical study by Dahlqvist et al. [43] calculated the formation energies of the three MAX

phases, Ti2AlC, Ti3AlC2 and Ti4AlC3, with respect to their decomposition into their closest

competing phases. These formation energies are equivalent to the distance from the hull as

defined in this study. For Ti4AlC3, in [43] the energy of formation with respect to its most

competing phases, Ti3AlC2 and TiC, is considered zero, as it is within the error margin of

their calculations, which is also the case with our study. Based on Fig. 4.8 where the Ti-

Al-C CH0 is shown, the Ti2AlC phase’s distance from the hull is −29meV/atom with most

competitive phases TiAl and Ti3AlC2, whereas, for Ti3AlC2 the most competitive phases are

Ti2AlC and Ti4AlC3 with a smaller distance from the hull of −13meV/atom. This description

is in agreement with Dahlqvist et al., with the same most competitive phases reported for each

MAX phase, and energies of formation with respect to their competing phases being −27 and

−12meV/atom for 211 and 312 respectively. A different study by Keast et al. [161] also studied

the thermodynamic stability of the three MAX phases in the Ti-Al-C system by comparing

their formation energy against some considered competing phases in the system, namely TiAl,

TiAl3, TiC, Ti3AlC and Al4C3. For Ti2AlC, the competing phases considered were either TiAl

and TiC or Ti3AlC, TiAl3 and TiC, resulting in formation energies of −135 and −91 meV/atom

respectively. Neither of these reactions, however, involve the most competing phases for Ti2AlC

as identified by Dahlqvist et al. [43] or our study via convex hull construction. For the 312 and

413 MAX phases both Keast et al. [161] and our study agree on the most competing phases,

with their study giving formation energies of −21 and 5 meV/atom respectively, with the latter

formation energy also agreeing with the negligible distance from the hull mentioned earlier for

the 413 phase.

Another study by Thore et al. [162], examined the effect of temperature on the stability of the

Ti-Al-C system by considering the electronic free energy and including the vibrational energy

within the quasiharmonic approximation. In agreement with our findings, their study showed

that the quasiharmonic free energy did not affect the MAX phase stability trends. From 0

to 2000K the most competing phases for the 3 MAX phases remained unchanged and the

formation energy of Ti4AlC3 with respect to its most competing phases remained close to zero

within their calculation uncertainty.
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In agreement with these previous calculations, our formation energy per atom of the MAX

phases with respect to MA and MX, as illustrated by Fig. 4.9, shows that for n ≥ 2 the

convex hulls are practically linear in the composition variable. This can be explained as follows

from the description of a MAX phase as a multilayer structure of MA monolayers sandwiched

between slabs of MX. The mole fraction xMA of MA on this line is 1/(n + 1), so we can write

the total energy per atom of a mole of MAX phase in terms of the energy of pure MX and MA

as:

En =
n

2n+ 2
EMX +

1

2n+ 2
EMA +

1

2n+ 2
γn (4.3)

This point of view introduces an excess energy γn associated with the interfaces that separate

each stoichiometric slab of MX from a thin layer of MA, the ‘A’ being a monotonic layer. With

increasing n, γn should tend to a negative constant, as the mutual interaction of the single-atom

A-layers vanishes. Taking the first two terms on the right-hand side of (4.3) over to the left of

this equation, it becomes an expression for the formation energy per atom of the MAX phase

with respect to these binaries, which we can write as:

Ef = xMAγn/2 (4.4)

Hence the linear behaviour in xMA that we see in the calculations shows us that γn is already

nearly constant for n ≥ 2. The n = 3 and higher-order MAX phases can only be very marginally

more stable than n = 2, by an amount too small to calculate reliably with the available methods.

The assumption of a constant value for the excess interfacial free energy γn would allow the

rapid calculation of enthalpy and energy of other MAX-like phases, e.g. those with a mixture

of thicknesses of the MX slabs. This could be further simplified to parameterise a model of the

Ising type, such as the axial next-nearest-neighbour Ising (ANNNI) model, which is familiar

for modelling the energy of different stacking sequences in close-packed metals and alloys. An

ANNNI model was fitted to the total energy of some other MAX phases, including X = N

besides carbon, by Ouisse and Chaussende [163], who observed the linear behaviour of energy

with n that it predicts is a general feature of these structures. Since we completed the present
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(a) 0 K (b) 300 K

Figure 4.8: Ti-Al-C phase diagrams (a) at 0K and 0 atm without including the zero point
energy and (b) at standard conditions. The red and black points are located on and above the
convex hull respectively.

Figure 4.9: Convex-hull cross-section MA-MX for the Zr-Al-C and Ti-Al-C systems plotted for
different temperatures.

calculations our attention was drawn to a paper by Lane et al.[42], who report on a MAX-like

phase Ti5Al2C3. These authors show convincingly that the Ti5Al2C3 structure is composed of

alternating layers of Ti2AlC and Ti3AlC2, just as the stoichiometry suggests. Inspection of Fig.

3d in [42], scaling the energies per atom to estimate their calculated energies per formula unit,

indicates that the energy of Ti5Al2C3 is indeed very close to the combined energy of Ti2AlC +

Ti3AlC2, as our constant γn model, or the short-ranged ANNNI model of [163], would predict.
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Table 4.2: Structures of phases considered in the Zr-Al-C system, the space group, the calcu-
lated lattice parameters, the formation energy ∆Gf with respect to the pure elements and the
distance from the convex hull are presented for this study. ∆Gf values marked with ∗ are at zero
pressure without including vibrations, while unmarked values in this study include vibrations
at 1 atm. These formation energies are compared with values from the literature where the
calculations are at zero temperature (without the zero point effect). The values marked with
† are from CALPHAD assessments. The values that correspond to the study by Alatalo et al.
[10] are marked with a and b referring to LASTO and PWPP calculations respectively. The
values that correspond to the study by Pisch [11] are marked by c and d referring to calculations
using the SCAN functional at 298K and the PBE functional at 0K respectively.

Phase Space group (#) Lattice parameters (Å) ∆Gf & Distance from ∆Ff Literature

the hull (eV/atom)

This study Calculations Experiment

Binary - Zr-Al

ZrAl3 [164] I4/mmm (139) a = 3.9778 −0.5001 −0.0921 (0K)∗ −0.509 [24] −0.53 [21]

c = 17.1440 −0.4912 −0.0909 (0K) −0.47a [10] −0.42 [22]

−0.4785 −0.0882 (300K) −0.50b [10] −0.51 [23]

−0.4435 −0.0812 (800K) −0.48 [165] −0.502 [166]

−0.3684 −0.0626 (1800K) −0.554 [167] −0.503† [20]

−0.493 [168] −0.421† [169]

−0.485 [170]

ZrAl2 [164] P63/mmc (194) a = 5.2459 −0.5440 −0.0318 (0K)∗ −0.553 [24] −0.58 [21]

c = 8.6818 −0.5337 −0.0303 (0K) −0.56a [10] −0.47 [22]

−0.5203 −0.0290 (300K) −0.57b [10] −0.56 [23]

−0.4830 −0.0255 (800 K) −0.535 [170] −0.540 [166]

−0.4077 −0.0218 (1800 K) −0.532 [171]

−0.545† [20]

−0.475† [169]

Zr2Al3 [164] Fdd2 (43) a = 9.5395 −0.5219 +0.0018 (0K)∗ −0.535 [24] −0.62 [21]

b = 13.8024 −0.5132 +0.0011 (0 K) −0.50a [10] −0.48 [22]

c = 5.5316 −0.5016 −0.0005 (300K) −0.53b [10] −0.57 [23]

−0.4688 −0.0037 (800K) −0.517 [170] −0.587† [20]

−0.4000 −0.0059 (1800 K) −0.486† [169]

ZrAl [164] Cmcm (63) a = 3.3121 −0.4666 +0.0267 (0K)∗ −0.478 [24] −0.74 [21]

b = 10.8395 −0.4591 +0.0259 (0 K) −0.45a [10] −0.46 [22]

c = 4.2639 −0.4498 +0.0226 (300 K) −0.46b [10] −0.55 [23]

−0.4233 +0.0165 (800 K) −0.49 [172] −0.674† [20]

−0.3688 +0.0068 (1800 K) −0.465 [170] −0.461† [169]
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(TABLE 4.2 continued)

Phase Space group (#) Lattice parameters (Å) ∆Gf & Distance from ∆Ff Literature

the hull (eV/atom)

This study Calculations Experiment

Zr5Al4 [164] P63/mcm (193) a = 8.3680 −0.4243 +0.0520 (0K)∗ −0.435 [24] −0.45 [22]

c = 5.7218 −0.4189 +0.0499 (0K) −0.40a [10] −0.54 [23]

−0.4122 +0.0439 (300K) −0.42b [10] −0.574† [20]

−0.3938 +0.0300 (800K) −0.416 [170] −0.425† [169]

−0.3621 −0.0044 (1800K)

Zr4Al3 [164] P6/mmm (191) a = 5.3910 −0.4715 −0.0475 (0 K)∗ −0.493 [24] −0.606† [20]

c = 5.3302 −0.4642 −0.0467 (0K) −0.45a [10]

−0.4514 −0.0427 (300 K) −0.47b [10]

−0.4192 −0.0339 (800K)

−0.3534 −0.0011 (1800K)

Zr3Al2 [164] P42/mnm (136) a = 7.5853 −0.3957 +0.0512 (0K)∗ −0.407 [24] −0.51 [21]

c = 6.9056 −0.3897 +0.0503 (0K) −0.40b [10] −0.42 [22]

−0.3831 +0.0446 (300K) −0.397 [170] −0.51 [23]

−0.3634 +0.0335 (800K) −0.572† [20]

−0.3194 +0.0159 (1800K) −0.398† [169]

Zr5Al3 [164] I4/mcm (140) a = 10.9578 −0.3733 +0.0521 (0K)∗ −0.390 [24] −0.40 [22]

c = 5.3208 −0.3691 +0.0498 (0K) −0.35a [10] −0.50 [23]

−0.3639 +0.0430 (300K) −0.37b [10] −0.534† [20]

−0.3489 +0.0284 (800K) −0.366 [170] −0.376† [169]

−0.3183 +0.0011 (1800 K)

Zr2Al [164] P63/mmc (194) a = 4.8552 −0.3667 +0.0228 (0K)∗ −0.381 [24] −0.58 [21]

c = 5.8486 −0.3617 +0.0219 (0K) −0.35a [10] −0.502† [20]

−0.3540 +0.0183 (300K) −0.37b [10] −0.346† [169]

−0.3339 +0.0109 (800K) −0.355 [170]

−0.2930 −0.0032 (1800K)

Zr3Al [164] Pm-3m (221) a = 4.3254 −0.3177 −0.0427 (0 K)∗ −0.322 [24] −0.45 [21]

−0.3131 −0.0419 (0 K) −0.301 [170] −0.375† [20]

−0.3032 −0.0376 (300 K) −0.30a [10] −0.280† [169]

−0.2796 −0.0292 (800K) −0.31b [10]

−0.2326 −0.0129 (1800K) −0.369 [167]
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(TABLE 4.2 continued)

Phase Space group (#) Lattice parameters (Å) ∆Gf & Distance from ∆Ff Literature

the hull (eV/atom)

This study Calculations Experiment

Binary - Al-C

Al4C3 [164] R-3m (166) a = 3.3327 −0.0945 −0.0945 (0K)∗ −0.102 [173] −0.326† [174]

c = 24.9414 −0.1087 −0.1087 (0K) −0.250c [11] −0.286† [175]

−0.1007 −0.1007 (300K) −0.092d [11] −0.306† [176]

−0.0836 −0.0836 (800K) −0.167 [177] −0.307 [178]

−0.0549 −0.0549 (1800K) −0.190 [179]

−0.308 [180]

−0.277 [181]

Binary - Zr-C

Zr2C [130] Fd-3m (227) a = 9.3295 −0.7024 −0.0087 (0K)∗ −0.62 [154]

−0.7204 −0.0067 (0K)

−0.7069 −0.0043 (300K)

−0.6870 +0.0017 (800K)

−0.6578 +0.0150 (1800K)

Zr3C2 [130] Fddd (70) a = 6.5875 −0.8325 −0.0073 (0K)∗

b = 9.3723 −0.8564 −0.0074 (0K)

c = 19.7998 −0.8431 −0.0075 (300K)

−0.8264 −0.0079 (800K)

−0.8074 −0.0052 (1800K)

Zr4C3 [130] C2/c (15) a = 6.5964 −0.8778 −0.0053 (0K)∗ −0.78 [154]

b = 13.2348 −0.9041 −0.0054 (0K)

c = 5.7285 −0.8907 −0.0052 (300K)

−0.8749 −0.0050 (800K)

−0.8595 −0.0044 (1800K)

Zr6C5 [130] C2/m (12) a = 5.7288 −0.9062 +0.0039 (0K)∗ −0.80 [154]

b = 9.9109 −0.9349 +0.0035 (0K)

c = 6.6102 −0.9217 +0.0034 (300K)

−0.9078 +0.0028 (800K)

−0.8979 +0.0014 (1800K)

Zr7C6 [130] R-3 (148) a = 8.7349 −0.9188 −0.0069 (0K)∗ −0.82 [154]

c = 8.1232 −0.9476 −0.0063 (0K)

−0.9344 −0.0060 (300K)

−0.9201 −0.0050 (800K)

−0.9100 −0.0026 (1800K)
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(TABLE 4.2 continued)

Phase Space group (#) Lattice parameters (Å) ∆Gf & Distance from ∆Ff Literature

the hull (eV/atom)

This study Calculations Experiment

Zr8C7 [182] P4332 (212) a = 9.3539 −0.9162 +0.0034 (0 K)∗ −0.81 [154]

−0.9460 +0.0029 (0 K)

−0.9332 +0.0025 (300K)

−0.9206 +0.0013 (800K)

−0.9143 −0.0013 (1800K)

ZrC [130] Fm-3m (225) a = 4.6686 −0.9246 −0.0657 (0 K)∗ −0.82 [154]

−0.9566 −0.0697 (0 K)

−0.9441 −0.0693 (300 K)

−0.9333 −0.0702 (800 K)

−0.9330 −0.0759 (1800K)

Ternary

Zr2AlC [164] P63/mmc (194) a = 3.2897 −0.7072 +0.0231 (0 K)∗ −0.68284 [45]

c = 14.5060 −0.7211 +0.0206 (0 K) −0.700 [136]

−0.7118 +0.0168 (300K) −0.726 [76]

−0.6974 +0.0104 (800K)

−0.6751 +0.0024 (1800K)

Zr3AlC2 [164] P63/mmc (194) a = 3.3067 −0.8039 +0.0053 (0 K)∗ −0.136e [7]

c = 19.7747 −0.8231 +0.0042 (0 K)

−0.8121 +0.0020 (300K)

−0.7972 −0.0024 (800K)

−0.7781 −0.0092 (1800K)

Zr4AlC3 [164] P63/mmc (194) a = 3.3119 −0.8338 +0.0147 (0 K)∗

c = 25.0849 −0.8562 +0.0138 (0 K)

−0.8455 +0.0113 (300K)

−0.8326 +0.0056 (800K)

−0.8212 −0.0043 (1800K)

Zr3Al3C5 [164] P63/mmc (194) a = 3.3314 −0.5935 −0.0030 (0 K)∗ −0.556 [183]

c = 27.4442 −0.6157 −0.0029 (0 K)

−0.6052 −0.0030 (300 K)

−0.5879 −0.0036 (800 K)

−0.5642 −0.0057 (1800K)

Zr2Al3C4 [164] P63mc (186) a = 3.3342 −0.5122 −0.0117 (0 K)∗

c = 22.0921 −0.5326 −0.0117 (0K)

−0.5224 −0.0116 (300K)

−0.5027 −0.0093 (800K)

−0.4706 −0.0014 (1800K)



4.2. Results 123

(TABLE 4.2 continued)

Phase Space group (#) Lattice parameters (Å) ∆Gf & Distance from ∆Ff Literature

the hull (eV/atom)

This study Calculations Experiment

Zr4Al3C6 [184] P63/mmc (194) a = 3.3291 −0.6447 −0.0003 (0K)∗

c = 32.7976 −0.6685 −0.0003 (0 K)

−0.6575 −0.0002 (300K)

−0.6407 +0.0003 (800K)

−0.6194 +0.0015 (1800K)

Zr2Al4C5 [164] R3m (160) a = 3.3283 −0.3959 +0.0382 (0 K)∗

c = 40.7833 −0.4173 +0.0358 (0 K)

−0.4081 +0.0353 (300K)

−0.3947 +0.0299 (800K)

−0.3795 +0.0142 (1800K)

Zr3Al4C6 [164] R3m (160) a = 3.3232 −0.4789 +0.0431 (0 K)∗

c = 48.8827

ZrAlC2 P63/mmc (194) a = 3.2385 −0.2663 +0.2777 (0 K)∗

c = 29.7380
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Table 4.3: Structures of phases considered in the Ti-Al-C system, the space group, the calcu-
lated lattice parameters, the formation energy ∆Gf with respect to the pure elements and the
distance from the convex hull are given for this study. ∆Gf values marked with ∗ are at zero
pressure without including vibrations, while unmarked values in this study are given including
vibrations at 1 atm. These formation energies are compared with values from the literature
where the calculations are at zero temperature (without the zero point effect). The values
marked with † are from CALPHAD assessments. The values that correspond to the study
by Hong et al. [12] are marked with a and b referring to FLAPW and LMTO calculations
respectively.

Phase Space group (#) Lattice parameters (Å) ∆Gf & Distance from ∆Ff Literature

the hull (eV/atom)

This study Calculations Experiment

Binary - Ti-Al

TiAl3 [164] I4/mmm (139) a = 3.8070 −0.4045 −0.0785 (0K)∗ −0.403 [24] −0.4619† [185]

c = 8.5375 −0.3942 −0.0735 (0 K) −0.42 [186, 187] −0.406 [188]

−0.3822 −0.0710 (300K) −0.42 [165] −0.369 [189]

−0.3470 −0.0632 (800 K) −0.43 [190, 191] −0.375† [192]

−0.3177 −0.0566 (1200K) −0.41 [193, 194, 195] −0.379 [196]

−0.397 [173] −0.379 [197]

−0.396 [198]

TiAl2 [164] Cmmm (65) a = 3.8931 −0.4347 −0.0114 (0K)∗ −0.435 [24] −0.4529† [185]

b = 12.0326 −0.4276 −0.0145 (0 K) −0.426 [198] −0.385 [188]

c = 3.9637 −0.4150 −0.0140 (300 K)

−0.3784 −0.0122 (800 K)

−0.3481 −0.0112 (1200K)

Ti3Al5 [164] P4/mbm (127) a = 11.1764 −0.4327 −0.0038 (0K)∗ −0.432 [24]

−0.4225 −0.0010 (0 K)

c = 3.9844 −0.4104 −0.0010 (300 K)

−0.3757 −0.0010 (800 K)

−0.3465 −0.0006 (1200K)

Ti2Al3 [164] Fdd2 (43) a = 9.1883 −0.3814 +0.0470 (0K)∗ −0.382 [24]

b = 13.0683 −0.3715 +0.0471 (0K)

c = 5.2440 −0.3615 +0.0454 (300 K)

−0.3310 +0.0423 (800 K)

−0.3054 +0.0397 (1200K)
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(TABLE 4.3 continued)

Phase Space group (#) Lattice parameters (Å) ∆Gf & Distance from ∆Ff Literature

the hull (eV/atom)

This study Calculations Experiment

TiAl [164] P4/mmm (123) a = 2.7905 −0.4112 −0.0249 (0K)∗ −0.412 [24] −0.4494† [185]

c = 4.0341 −0.4029 −0.0260 (0 K) −0.44 [190] −0.364 [188]

−0.3927 −0.0266 (300K) −0.42 [193, 199] −0.377 [189]

−0.3637 −0.0285 (800K) −0.41 [194] −0.413† [192]

−0.3394 −0.0301 (1200 K) −0.40 [43] −0.416 [196]

−0.405 [173]

−0.39 [172]

−0.404 [198]

−0.401 [200]

Ti4Al3 [164] P6/mmm (191) a = 5.1211 −0.3598 +0.0154 (0K)∗ −0.386 [24]

c = 4.8810 −0.3509 +0.0164 (0K)

−0.3408 +0.0166 (300K)

−0.3120 +0.0174 (800K)

−0.2880 +0.0181 (1200K)

Ti5Al4 [164] P63/mcm (193) a = 7.8238 −0.3393 +0.0439 (0K)∗ −0.332 [24]

c = 5.3825 −0.3319 +0.0433 (0K)

−0.3248 +0.0404 (300K)

−0.3037 +0.0333 (800K)

−0.2868 +0.0267 (1200K)

Ti3Al2 [164] P42/mnm (136) a = 7.1615 −0.2533 +0.1075 (0K)∗ −0.257 [24]

c = 6.3876 −0.2469 +0.1062 (0K)

−0.2428 +0.1004 (300K)

−0.2234 +0.0922 (800K)

−0.2042 +0.0885 (1200K)

Ti3Al [164] P63/mmc (194) a = 5.6812 −0.2852 −0.0753 (0K)∗ −0.284 [24] −0.2948† [185]

c = 4.6053 −0.2783 −0.0736 (0 K) −0.30 [190] −0.260 [189]

−0.2689 −0.0701 (300K) −0.28 [193, 194] −0.285† [192]

−0.2436 −0.0616 (800K) −0.28a [12] −0.256 [196]

−0.2227 −0.0530 (1200K) −0.29b [12]

−0.281 [173]

−0.279 [198, 200]

−0.295 [201]

−0.331 [202]
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(TABLE 4.3 continued)

Phase Space group (#) Lattice parameters (Å) ∆Gf & Distance from ∆Ff Literature

the hull (eV/atom)

This study Calculations Experiment

Binary - Ti-C

Ti2C [131] Fd-3m (227) a = 6.0436 −0.7221 −0.0025 (0K)∗ −0.615 [173]

−0.7332 −0.0002 (0K) −0.656 [203]

−0.7230 +0.0010 (300 K) −0.676 [204]

−0.7032 +0.0052 (800 K) −0.720 [205]

−0.6897 +0.0091 (1200K) −0.60 [154]

−0.691 [206]

Ti3C2 [131] C2/m (12) a = 5.2645 −0.8635 −0.0134 (0K)∗ −0.73 [154]

b = 5.2580 −0.8796 −0.0137 (0K)

c = 5.2440 −0.8688 −0.0136 (300K)

−0.8501 −0.0135 (800K)

−0.8386 −0.0135 (1200K)

Ti4C3 [131] C2/c (15) a = 5.2702 −0.9049 −0.0068 (0K)∗ −0.70 [154]

b = 5.2562 −0.9227 −0.0068 (0K)

c = 6.7910 −0.9119 −0.0068 (300K)

−0.8937 −0.0066 (800K)

−0.8831 −0.0063 (1200K)

Ti7C6 [131] R-3 (148) a = 5.2623 −0.9380 −0.0052 (0K)∗ −0.79 [154]

−0.9579 −0.0051 (0K)

−0.9471 −0.0050 (300K)

−0.9300 −0.0046 (800K)

−0.9209 −0.0043 (1200K)

Ti9C8 [131] R-3 (148) a = 5.2669 −0.9404 −0.0059 (0K)∗

c = 8.0370 −0.9610 −0.0060 (0K)

−0.9504 −0.0060 (300 K)

−0.9340 −0.0059 (800 K)

−0.9257 −0.0059 (1200K)

TiC [131] Fm-3m (225) a = 4.2920 −0.9230 −0.0348 (0K)∗ −0.780 [43]

−0.9458 −0.0382 (0K) −0.776 [173]

−0.9358 −0.0381 (300K) −0.76 [154]

−0.9219 −0.0397 (800K) −0.8473 [207]

−0.9163 −0.0420 (1200K) −0.849 [208]

−0.877 [206]
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(TABLE 4.3 continued)

Phase Space group (#) Lattice parameters (Å) ∆Gf & Distance from ∆Ff Literature

the hull (eV/atom)

This study Calculations Experiment

Ternary

Ti2AlC [164] P63/mmc (194) a = 3.0357 −0.7642 −0.0289 (0K)∗ −0.73 [43] −0.692† [150]

c = 13.6224 −0.7213 −0.0279 (0 K) −0.68 [173]

−0.7602 −0.0287 (300 K) −0.68168 [45]

−0.7378 −0.0287 (800 K) −0.71 [209]

−0.7213 −0.0279 (1200K) −0.693 [136]

Ti3AlC2 [164] P63/mmc (194) a = 3.0491 −0.8434 −0.0134 (0K)∗ −0.74 [173] −0.722† [150]

c = 18.4833 −0.8547 −0.0132 (0 K) −0.75 [43]

−0.8444 −0.0132 (300 K) −0.138e [7]

−0.8242 −0.0128 (800K)

−0.8105 −0.0123 (1200K)

Ti4AlC3 [164] P63/mmc (194) a = 3.0526 −0.8628 +0.005 (0 K)∗ −0.75 [173]

c = 23.3616 −0.8770 +0.0005 (0K) −0.76 [43]

−0.8668 +0.0005 (300K)

−0.8482 +0.0005 (800K)

−0.8366 +0.0003 (1200K)

Ti3AlC [164] Pm-3m (221) a = 4.1375 −0.6440 −0.0132 (0 K)∗ −0.57 [173] −0.574† [150]

−0.6495 −0.0148 (0 K)

−0.6432 −0.0185 (300 K)

−0.6294 −0.0274 (800 K)

−0.6195 −0.0343 (1200K)

e It looks as if perhaps the units were actually eV/atom rather than eV/f.u. in the paper cited
[7]

4.2.5 Geometrical distortion effect

As was shown in the previous section and illustrated in Fig. 4.9, the Ti-based MAX phases are

more thermodynamically stable than the Zr-based ones. This is in accordance with the earlier

successful synthesis with higher achieved phase purity of Ti-based MAX phases compared to

Zr-based ones. Recent studies [3, 41] regarding stability and phase purity of 211 MAX phase
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solid solutions have nevertheless reported up to 98% phase purity. Such high levels of purity

were achieved via the synthesis of double solid solutions, namely (Zr, Ti)2(Al, Sn)C [3] and (Zr,

Nb)2(Al, Sn)C [41]. In these studies a link was established between the geometric distortion

and the level of phase purity, with the distortion involving the octahedra around C atoms

and the trigonal prisms around Al atoms in the MAX phase’s carbide and aluminide layers.

Quantitative measures of these distortions were defined and their values were calculated based

on experimentally defined lattice parameters for the whole considered range of solutions between

the end-member MAX phases. The degree of distortion for the various solutions within the

limits of the end-member MAX phases was found to display a linear trend.

Based on the findings of these studies, this section discusses calculations that try to correlate

the lower stability of the Zr-based phases with the level of geometrical distortion. In particular,

the stability trend between Zr2AlC and Ti2AlC is studied in terms of the geometrical distortion

of the carbon centered octahedra [CM6] that make up the carbide slabs of the MAX phases for

the two systems. We have included this subsection for completion, although in the end no clear

correlation has emerged from our calculations. Octahedral distortion is defined with respect to

the ideal octahedra in the carbide bulk structures as described in Fig. 4.10. The distortion of

the octahedra in the MAX phases was additionally compared to the distortion of the octahedra

in a carbide slab geometry. A “carbide slab” refers here to a sequence of atomic layers M-X-M

in the 211 structure, or M-X-M-X-M in the 312 structure. There are two such slabs in the unit

cell of either MAX phase. In this section, carbide slab calculations refer to calculations for 211

MAX phases where just a single carbide slab is retained from their unit cell, removing all other

atoms.

The octahedral geometry is described with respect to the two variables h and d, which denote the

distance between the Zr (or Ti) layers and the bond length between Zr-Zr (or Ti-Ti) respectively.

The ideal h and d are expressed in the carbides as hideal = a/
√
3 and dideal = a/

√
2 respectively.

Therefore, the ideal ratio rideal = dideal/hideal equals
√
3/2. The octahedal distortion n can then

be defined as:

n =
d
h
− rideal

rideal
(4.5)
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The volume of the octahedron is given as V = 1√
3
hd2 and for the carbide case is Videal =

1
3
a3.

The volume difference of an octahedron with respect to the ideal one is given as:

δV

V
=
V − Videal

Videal
=
hd2 − hideald

2
ideal

hideald2ideal
(4.6)

In order to relate the equilibrium d and h values in the MAX phase, carbide slab and bulk

carbide structures, as shown in Fig. 4.10, sets of strains are defined. Strain sets (ϵd(s), ϵh(s)),

and (ϵd(b), ϵh(b)) correspond to the strains required to get from the slab and carbide to the

MAX phase respectively, while (ϵd(bs), ϵh(bs)) corresponds to the strains required to get from

the carbide to the slab structure. These strains are expressed as:

(ϵd(b), ϵh(b)) =
(
dM − db

db
,
hM − hb

hb

)
(4.7a)

(ϵd(s), ϵh(s)) =
(
dM − ds

ds
,
hM − hs

hs

)
(4.7b)

(ϵd(bs), ϵh(bs)) =
(
ds − db

db
,
hs − hb

hb

)
(4.7c)

where (dM, hM), (ds, hs) and (db, hb) are the equilibrium values for the octahedra in the MAX

phase, slab and bulk structures respectively.

dM, hM (Å) db, hb (Å) ds,hs (Å) ϵd(b), ϵh(b) ϵd(s), ϵh(s) ϵd(bs), ϵh(bs)

Zr (3.290, 2.506) (3.301, 2.695) (3.231, 2.526) (−0.0035, −0.0701) (0.0180, −0.0078) (−0.0211, −0.0627)

Ti (3.036, 2.271) (3.035, 2.478) (2.999, 2.293) (0.0003, −0.0836) (0.0121, −0.0097) (−0.0117, −0.0745)

Table 4.4: Equilibrium d and h values of the octahedra in the carbides, MAX phases and
carbide slab and their strain relations.

n(M) n(s) δV/V (M) δV/V (s)

Zr 0.072 0.044 −0.077 −0.102

Ti 0.092 0.068 −0.083 −0.096

Table 4.5: The distortion n and volume change δV/V for the slab (n(s), δV/V (s)) and MAX
phase (n(M), δV/V (M)) structures with respect to the ideal rideal ratio of the bulk structure.
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(a) The ideal octahedron in the
carbide structure (MC).

(b) The distorted octahedra in
M2AlC.

(c) The distorted octahedra in
M3AlC2.

Figure 4.10: The C centered octahedra, described by d and h values in the MC, M2AlC and
M3AlC2 structures, where M is either Zr or Ti. M1 corresponds to the outer layer of the MC
slab located next to the Al layer in the 312 MAX phase. M2 corresponds to the M atoms in
the MC slab of the 312 MAX phase.

In Table 4.4 the equilibrium d and h values for the three geometries are shown, both are smaller

for the Ti-based case. The strains applied on d for the three different cases are larger in the Zr

case than the corresponding Ti ones. Strain ϵd(s) is the largest of the strains applied to d for

the Ti system, whereas for Zr, ϵd(bs) is largest. The smallest strain on d for both systems is

ϵd(b). In particular in the case of Ti, this strain can be considered negligible. Unlike for d, the

strains on the h value in the three examined cases are larger in the Ti system compared to the

corresponding Zr ones. The largest h strain required for both systems is ϵh(b) from the bulk to

the MAX phase geometry, and the smallest is ϵh(s) from the slab to the MAX phase geometry.

Table 4.5 shows the octahedral distortion and the volume change for the slab and MAX phase

geometries with respect to the ideal octahedron as described by Equations 4.5 and 4.6. The

distortion for both of these geometries was found to be larger for the Ti case. The change in

volume for the MAX phase was found larger for the Ti case, whereas for the slab geometry it

was found larger for the Zr case.

The described distortions and strains were next examined with respect to their associated

energies. As a first step the carbide slab was relaxed with respect to the internal coordinates
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for different d values for the Zr and Ti systems. Fig. 4.11 displays the equilibrium d values

for the bulk carbides and the MAX phases as well as for each of the slab cases. For Ti, db

and dM are almost the same with the two corresponding vertical lines almost overlapping each

other, whereas for the Zr case they are further apart. This is also described by the strains

on d, ϵd(b) being −0.0035 and 0.0003 for Zr and Ti respectively. Additionally, db is closer

to ds for Ti, with ϵd(bs) being −0.0117, than for Zr where ϵd(bs) is almost two times larger.

This larger difference for Zr is associated with an energy of 0.016 eV/octahedron. Further to

that the energy that is required to distort the equillibrium octahedra in the ZrC slab to the

carbide octahedra, having dideal and hideal, without relaxing the internal coordinates of the slab

geometry, is 0.258 eV/octahedron (Fig. 4.12). This is comparable to the energy difference

between the free energies of formation of Ti2AlC and Zr2AlC with respect to their binaries,

which is around 0.324 eV/octahedron, as shown in Fig. 4.9.

Figure 4.11: Energy as a function of d for ZrC and TiC slab structures. For each d configuration
the internal coordinates have been relaxed. The dashed black and blue vertical lines correspond
to the d equilibrium values of the carbide and the MAX phase for the two systems. The
equilibrium ds values for the slabs are denoted with the red stars.

In Fig. 4.13, the total energy of M2AlC, where M is either Zr or Ti, is shown against the mixing

parameter λ, corresponding to the different octahedral distortions between the ideal octahedra

and the equilibrium ones in M2AlC. For the energy evaluation of these different distortions no

degree of lattice relaxation was involved. Fig. 4.13 shows that the differences in energy for both

distortions of the octahedra are quite small. The d distortions are about 10 times smaller than
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(a) (b)

Figure 4.12: Contour energy plots for the Zr2C and Ti2C carbide slabs as a function of h and
d. The orange points correspond to the equillibrium values (h, d) for the slab geometries. The
red and black points correspond to the MAX phase and bulk carbide structures respectively.
The energy is given in eV/octahedron.

those of h. In the case of the d distortions, the change for Ti2AlC is almost negligible, while

for Zr2AlC the change in total energy is about 0.40 meV/atom at the level of ZrC. For the h

distortions, the differences in energy are larger and comparable to each other for the two MAX

phases, with Ti2AlC having a larger change than Zr2AlC of about 0.01 eV/atom at the level of

their respective carbides.

(a) Octahedral distortions along d. (b) Octahedral distortions along h.

Figure 4.13: Distortions of d and h values the octahedra in the Zr2AlC and Ti2AlC phases.

Additionally, the stability was examined against the distortion of the Al layers in the 211 MAX



4.2. Results 133

phases. In Fig. 4.14a the total energy with respect to the different distortions of the Al layer

are shown. The energy change associated with the difference between Zr2AlC and Ti2AlC is

about 0.4 eV/atom and the lattice distances from the equilibrium a of the Al layer indicate

that the latter phase has higher stability. The energy difference associated with the Al layer

distortion is larger than the one corresponding to the C centered octahedral distortion.

(a) Energy with respect to the different distortions
of the a lattice of Al layers.

(b) Energy with respect to the different distortions
of the a lattice of M2C layers.

(c) Energy with respect to the different distortions
of the a lattice of the MAX phases M2AlC.

(d) MAX phases formation energy with respect to
the Al layers and the MC layers against the differ-
ent a lattice distortions.

Figure 4.14: Energy change with respect to the a lattice distortion.

Further to that, the binding energy between the Al and carbide layers is examined with respect

to the a lattice distortions of the 211 MAX phases, Fig. 4.14d. The formation energy is given

by:

Ef = EM2AlC − EM2C − EAl (4.8)
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where EM2AlC, EM and EAl are the total energies of the MAX phase structure, the MAX

phase structure without the Al atoms and the hexagonal Al layers respectively. In this figure,

the formation energy for Ti2AlC is lower than the corresponding Zr2AlC phase for most of

the a lattices, as well as having less energy change. However, by comparing the Ti2AlC and

Zr2AlC phases at their equilibrium a lattices, Ti2AlC is slightly above Zr2AlC by 0.02 eV/atom.

Therefore we can see that the formation energies of the MAX phases are about the same, with

the Al layer being stretched to the appropriate lattice parameters, which are not metallic Al,

though in the Ti case the Al layer is less stretched. The carbides do not appear stretched in

the MAX phase structures.

The two Figures, 4.14b and 4.14c, show how the energies change with respect to the a lattice

distortion for the carbide layers and the MAX phases structures respectively. The carbide

layers in the Zr2AlC phase have lower energies than the ones in the case of Ti. Similarly for

the total structural distortion, the Zr2AlC total energy is shown lower than that of Ti2AlC at

their equilibrium structures.

Up to this point, our geometric distortion analysis has focused on the octahedral distortions

in the MAX phases compared to the ideal carbide lattice and the slab geometry, as well as on

the Al lattice distortions and the energy associated with those. For completion of our analysis

however, it is also worth calculating octahedral and prismatic distortions for the two MAX

phases of interest as these distortions are defined in previous research [3, 41] and comparing

them with values from the literature.

The expressions used in the two studies [3, 41] and in our calculations presented in Table 4.6

for the octahedral distortion, Od, and the trigonal prism distortion, Pd, are given by:

Od =

√
3

2
√

4Z2
M(c/a)2 + 1

12

(4.9a)

Pd =
1√

1
3
+ (1

4
− ZM)2(c/a)2

(4.9b)

where a, c, and ZM correspond to the two lattice constants and the fractional z-coordinate of
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the M-atom which determines the distance between the M atoms and the C layer atoms. For

the ideal octahedral and trigonal prism, Od and Pd equal 1, as does the ratio between them,

Od/Pd.

As was mentioned at the start of this section, in the studies by Lapauw et al. [3] and Tunca et al. [41]

a link has been made between geometrical distortion and phase purity in terms of double partial

substitutions in the M and A sites of the 211 MAX phases. An indicator of phase purity was

noted in [41] to be the ratio of the two distortions, where a maximum purity was achieved with

the ratio approaching 1 when both Ti and Si were alloyed in the form of the (Zr,Ti)2(Al,Sn)C

MAX phase. In these studies however, particular attention was also paid to the prismatic dis-

tortion M6A which could be interpreted as the level of the steric mismatch due to the difference

between the size of the M and A atoms, with its value approaching 1 when their sizes are the

same. In particular in [41], Zr2AlC had the highest prismatic distortion of the study’s consid-

ered phases. In the study by Lapauw et al. [3] as well, the prismatic distortion was identified

as the main geometrical indicator for the high phase purity achieved with the (Zr, Nb)2AlC

and Zr2(Al, Sn)C double solution. Although these two geometric distortions were used as sta-

bility criteria to mainly explain trends in solutions of MAX phases, for example to investigate

how these distortion parameters change with the solute content in their M and A sites, our

calculations involve only two of the end members of these double solutions, Zr2AlC and Ti2AlC.

In Table 4.6, our calculated values for Od and Pd are presented alongside those by other theo-

retical and experimental studies, most of which were included in the study by Lapauw et al. [3]

where the lattice parameters used were based on experimental measurements [4] and [25]. Based

on our calculated lattice parameters the octahedral distortion, Od, is predicted larger in Ti2AlC

by 1.6% compared to that of Zr2AlC, whereas the prismatic distortion, Pd, is predicted smaller

in Ti2AlC by 2.2%, with both trends being in agreement with the study by Lapauw et al. [41].

Od/Pd on the other hand, diverges from the ideal ratio in our calculations by 2.05% for Ti2AlC

compared to 1.78% for Zr2AlC, which is the opposite trend to that noted in the experimental

values and in the study by Lapauw et al. [41]. Compared with experiment, the values based on

our calculations show the largest differences in the case of Ti2AlC, while compared to other the-

oretical studies, our results show better agreement with some differences remaining for Pd, the
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largest of which being less than 1% with the study by Tan et al. [210]. For Od in Ti2AlC our cal-

culated values are all between 1.080–1.081 in contrast to the experimental value at 1.0707. For

both distortions in Zr2AlC, our calculations show less than 1% difference with the experimental

values measured by Lapauw et al. [4].

Phase Od Pd Od/Pd |(Od/Pd)− 1|%

Ti2AlC 1.0801 1.0584 1.0205 2.05 calc. (this work)

1.0809 1.0608 1.0189 1.89 Hug et al. (calc.) [25]

1.0805 1.0630 1.0165 1.65 Tan et al.(calc.) [210]

1.0707 1.0714 0.9993 0.07 Hug et al. (exp.) [25]

Zr2AlC 1.0629 1.0822 0.9822 1.78 calc. (this work)

1.0607 1.0889 0.9741 2.59 Lapauw et al. (exp.) [4]

Table 4.6: The distortion of the octahedral around the C atoms, the trigonal prism around the
Al atoms and their ratio Od, Pd and Od/Pd are shown. These values for other theoretical and
experimental studies are also shown.

4.3 Conclusions

A detailed computational study of the thermodynamic stability of the MAX phases in the Zr-

Al-C system was made and was compared with the Ti-Al-C system, in which MAX phases were

synthesised much earlier. For this purpose we have made free energy calculations at the level of

density functional theory within the quasiharmonic approximation and constructed isothermal

sections of the ternary phase diagrams in which the MAX phases are competing with known

binary and ternary phases.

The concluding assessment is that at 0K, neglecting zero-point energy, the PBEsol functional

(the default choice) predicts that both observed phases, Zrn+1AlCn for n = 1 and n = 2,

are marginally unstable with respect to decomposition into carbides and aluminides of Zr,

lying 23meV/atom and 4meV/atom respectively above the convex hull. Results with other

functionals are similar, with all of them predicting the two MAX phases above the hull. The
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inclusion of vibrational contributions has the effect of moving both MAX phases down in

relative free energy. Zr3AlC2 is thereby predicted to be stable by ∼ 500K, but Zr2AlC never

quite becomes stable, although its distance above the convex hull is reduced to < 5meV/atom.

A comparison with the analogous phases in Ti-Al-C shows that both MAX phases in that

system are much more stable at all temperatures, in accordance with their earlier discovery.

This is consistent with the practical experience that MAX phases in the Zr-Al-C system are

more difficult to synthesise and that they can be obtained in a more phase-pure form when

substitutional impurities such as Si are incorporated. A quantitative explanation of this effect

remains as future research. Meanwhile, we predict there is no reason to expect that a pure

Zrn+1AlCn MAX phase can be synthesised. Despite this prediction, it is recognised that the two

Zr-based MAX phases have been synthesised with over 60% phase purity, however our results

indicate that these phases are actually metastable and perhaps appear for kinetic reasons. The

synthesis for both phases took place at high temperature, specifically at 1500 °C for Zr3AlC2

and at a very narrow temperature window 1475–1575 °C for Zr2AlC [4, 5]. As mentioned, in

our predictions MAX phase stability shows a tendency to increase as temperature increases,

therefore it could be possible that these phases are more stable at higher temperatures and

their structure is kinetically stabilised if they are cooled down without the time to decompose.

In that case it would be interesting to anneal them at an intermediate temperature between

room temperature and their synthesis temperature window to investigate whether they remain

stable or whether they decompose into intermetallics and carbides as the calculations predict.

Another possible explanation for the experimental observation of these Zr-based MAX phases

could be their stabilisation due to the hydrogen used in their synthesis procedure, since such

a stabilisation mechanism has been shown to increase the percentage of phase purity and to

facilitate the synthesis for other Ti-based MAX phases [211]. Incorporation of hydrogen in

the crystalographic voids in the MAX phases could provide another possible variation on their

composition that could lead to higher phase purity in addition to the previously mentioned

impurity incorporations into their M and A sites. It would be interesting to investigate if

hydrogen incorporation leads to increased vulnerability to decomposition or oxidation at high

temperature.



We have explained the linear behaviour of the formation energy of Mn+1AXn with respect to n

for n > 2, and that n >= 3 is only marginally more stable than n = 2, by introducing a model

that treats the energy of the MAX phase as the sum of a metal carbide part, an aluminium

layer part, and a constant excess energy corresponding to each aluminium layer.

Particular attention was paid in our study to the stability of compounds in the binary Zr-

Al system, since there are large discrepancies between published thermodynamic data. The

accepted published phase diagrams show ZrAl to be a stable line compound at low temperature.

Our calculations reported here, in agreement with other published DFT calculations, suggest

that on the contrary, ZrAl is thermodynamically unstable.

The last section of this chapter included an analysis of the degree of geometrical distortion

of the octahedra in the Zr2AlC and Ti2AlC MAX phases compared to the ideal equilibrium

values in the pure carbide structure. Comparisons for the d and h geometrical values of the

octahedra were made between the MAX phase, carbide and solely carbide slab structures. The

energies involved in distortions of the octahedra were determined for these different structures

and comparison was made between them. The energies involved by varying the distortion of the

Al layers in the MAX phases were also examined. In the last part of our geometrical distortion

analysis, we calculated the prismatic distortion in addition to the octahedral distortion and

compared our results to the literature. Prismatic distortion was calculated to be greater for

Zr2AlC compared to Ti2AlC, in agreement with previous research. The opposite trend was

noticed for the octahedral distortion as well as for the ratio of the two distortions which was

found to show higher divergence from its ideal value for Ti2AlC compared to Zr2AlC. Although

the prismatic distortion was predicted higher in Zr2AlC than in Ti2AlC, in agreement with

previous research, the rest of our geometric analysis outlined above did not provide a clear and

consistent link between geometrical distortion and the higher instability of Zr2AlC compared

to Ti2AlC.
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Chapter 5

Electronic structure and bonding analysis

The total energy of the MAX phases in our two systems, Zrn+1AlCn and Tin+1AlCn, as cal-

culated within the DFT approximations, has demonstrated that, compared to the stable, Ti-

based MAX phases, the Zr-based ones are either thermodynamically unstable, or metastable.

However, it is worthwhile to explore whether a deeper explanation of the difference might be

available, more explicitly within the electronic structures of the MAX phases or their competing

compounds, for example encoded within the charge densities or the Kohn-Sham single-electron

energies of the compounds involved. After all, although similar, Ti and Zr are not chemically

identical. For example, their stable oxides have different structures (fluorite for ZrO, rutile or

anatase for TiO), a slightly smaller metallic atomic radius (147pm versus 160pm) and slightly

higher Pauling electronegativity (1.5 versus 1.4) are associated with Ti [13]. Therefore in order

to understand this difference in stability, the electronic structure was studied in this chapter

in terms of total and partial density of states as calculated for the MAX phases and their par-

ent carbides and aluminides. Chemical bonding was also investigated based on charge density

difference and calculations of charge transfer in the two systems by applying three different

methods, Bader, Mulliken and DDEC. In order to further compare and understand the co-

valent bonding of the MAX phases in the Zr and Ti systems, bond orders as defined in the

DDEC6 [14, 15, 16] methodology and ICOHP [122] energy values indicating the bond strength

were calculated. The different methodologies applied for the charge transfer and covalent bond

140
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strength are discussed and compared with literature.

5.1 Computational details

Calculations in this chapter were done within the DFT framework, using VASP and setting

the same computational details for all phases considered as in the previous chapter, as defined

in Section 4.1.1. In addition to these computational details, to perform an accurate charge

density calculation in VASP a fine fast Fourier transform (FFT) grid density was used. This

charge density was used for Bader analysis calculations conducted by using the Bader Charge

Analysis code [212, 213, 214]. Other partitioning concepts applied in this chapter are the

COOP and COHP [115], implemented in the LOBSTER software [122, 120, 121] where these

local orbital based concepts are applied to outputs from planewave DFT codes such as VASP

using projection schemes, resulting in the projected COHP and COOP, pCOHP and pCOOP.

Another partitioning method applied uses the Density Derived Electrostatic and Chemical

(DDEC) approach and in particular the DDEC6 version [15] implemented in the CHARGEMOL

program [123]. By applying this method, overlap populations, atomic net charges, bond orders

(BOs), and sum of bond orders (SBOs) can be calculated [14, 16]. The required charge density

inputs for the DDEC method were computed using the fine FFT grid in VASP.

5.2 Results

5.2.1 Electronic structure

Electronic structure was studied in terms of the total and the atom projected density of states

(DOS and pDOS) of the Zr and Ti based 211 and 312 MAX phases as well as of their corre-

sponding carbide and aluminide binaries. Mainly, we focused on the comparison between the Zr

and Ti systems in terms of the energies at which peaks in the pDOS on different atomic orbitals

coincide, indicating a covalent bond. In particular, by examining the degree of hybridisation,
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e.g. the magnitudes of the coinciding peaks in the Zr and Ti based MAX phases, we were

seeking an indication of the relative strength of the corresponding bonds in these systems. The

DOS and pDOS results for the two systems are presented in Figures 5.1 and 5.2 for the MAX

phases and binaries respectively. In these figures, the Fermi energy was shifted to zero when

plotted.

Before comparing the relative strength of the corresponding bonds in the two systems, we note

that all MAX phases were found to have a non-zero density of states value at the Fermi level,

verifying their metallic nature, as has also been reported for these systems in the literature

[77, 74, 100]. We found the DOS that correspond to the Fermi level (the Fermi level is in

parentheses and in eV) for the MAX phases Zr2AlC, Zr3AlC2, Ti2AlC and Ti3AlC2 to be 2.41

(7.7266), 3.27 (8.272), 2.51 (8.7349), and 3.51 (9.2989) states/eV (unit cell) respectively. DOS

at the Fermi level for these MAX phases have also been reported in other theoretical studies,

such as 2.67 [215] and 2.81 [100] for Ti2AlC, 3.45 [100] for Ti3AlC and 2.72 [77] for Zr2AlC;

these values have a 2–13% difference from our results. In our results, the DOS at the Fermi

level between the Zr-based and Ti-based MAX phases were generally similar, with values for

the Ti 211 and 312 MAX phases being only around 4% and 6% higher than their respective Zr

counterparts. For Ti-based MAX phases, the DOS at the Fermi level for Ti3AlC2 was found

to be 40% higher than Ti2AlC. From Fig. 5.2, the main contribution to the DOS at the Fermi

level for the four MAX phases is from the d orbitals forming the delocalised states, which are

expected to dominate each compound’s conductivity. To examine whether DOS at the Fermi

level could be a good guide to the conductivity of these MAX phases, we compare trends in

our DOS results and measured conductivities from the experimental literature. Unlike the 40%

difference in the DOS at the Fermi level for the two Ti phases, experimentally measured elec-

trical conductivities for Ti2AlC [98] and Ti3Al1.1C1.8 [216] were very similar: 2.7× 106Ω−1m−1

and 2.6 × 106Ω−1m−1 respectively. Comparison of the electrical conductivities between Zr-

based and Ti-based MAX phases with our calculated DOS at the Fermi level results has not

been made, since no experimental measurements of electrical conductivities were found in the

literature for the Zr2AlC and Zr3AlC2 phases. For comparison reasons, we look into the link

between electrical conductivities and DOS at the Fermi level for the two carbides, ZrC and TiC,
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whose DOS at the Fermi level we calculated to be very similar at 1.15 and 1.16 states/eV (unit

cell) respectively. Measured values available in the literature of electrical conductivity for the

binary ZrC and TiC carbides, however, have been reported at 2.3× 106 and 1.5× 106 Ω−1m−1

respectively [217], resulting in ZrC conductivity being around 50% higher than in TiC. For TiC

though, it is worth noting that a range of values, from 4 × 105–1.7 × 106Ω−1m−1, have been

reported in experimental studies [218]. This range of reported values of conductivity for TiC

could suggest that stoichiometry may considerably affect the measured values. Thus from the

above, no clear link between DOS at the Fermi level and electrical conductivity for the four

MAX phases could be made.

(a) ZrAl (b) TiAl

(c) ZrC (d) TiC

Figure 5.1: Atom and orbital projected DOS for the binary carbides and aluminides.



144 Chapter 5. Electronic structure and bonding analysis

We begin the bond strength comparison by looking into overlapping pDOS peaks between

atomic orbitals in the binary end members of the MAX phases (Fig. 5.1). Starting with the

carbide structures, which are simpler than the MAX phases, we note that in the energies be-

tween −4.5 and −1.5 eV an overlap between the Md and Cp pDOS peaks occurs, suggesting

strong hybridisation between these atoms for both ZrC and TiC. For the aluminides, hybridis-

ation between Md and Alp occurs at a higher energy window compared to the carbides, from

around −2.5 eV up to just after the Fermi energy. Specifically, the highest degree of overlap

between Md and Alp occurs at around −1.6 eV for both aluminides where a sharp Alp peak in

TiAl compared to a broader one for ZrAl are observed. Overall, the pDOS peaks for the binary

carbides and aluminides show a high level of similarity between the two systems.

Moving on to the MAX phases, we see that their pDOS in Fig. 5.2 show some common attributes

with those of their aforementioned end members. Specifically, the pDOS between the MAX

phases and carbides are very similar if we exclude the Al peaks in the MAX phases. The M-C

and M-Al covalent bonds in the MAX phases also occur at around the same energy windows

with the carbides and aluminides respectively. In more detail, for the 211 MAX phases, the

pDOS overlapping, which indicates bonding, is noticed mainly in the energy window between

−4 to −2 eV where hybridisation between Md and Cp occurs, and to a much lesser degree

between Md and Als. At a higher energy window between −2.2 eV and just after the Fermi

level, hybridisation occurs mainly between Md and Alp. This suggests that the strongest

bonding effects exist between the Md -Cp and Md -Alp atomic orbital interactions. Comparing

the 211 and 312 Zr and Ti based MAX phases we find the energy windows are very similar,

indicating no clear differences in the energies at which the Md -Cp and Md -Alp bonding occurs.

As such, the strongest interactions for 312 MAX phases are noted in the same energy range as

211 and also stem from hybridisation of the Md -Cp and Md -Alp orbital pairs. 312 MAX phases

have two types of M atoms, M1 and M2, in their carbide layer, corresponding to atoms in the

outer and inner part of the layer respectively, with the outer layer being in contact with the

Al atoms. Hybridisation for both M1d -Alp and M2d -Alp occurs between −2 eV and up to the

Fermi level, where Md -Alp also occurs in 211. Similarly, M1d -Cp and M2d -Cp hybridisations

occur where Md -Cp is found for 211, between −4 to −2 eV.
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(a) Zr2AlC (b) Ti2AlC

(c) Zr3AlC2 (d) Ti3AlC2

Figure 5.2: Atom and orbital projected DOS for the Zrn+1AlCn and Tin+1AlCn MAX phases.

These observations regarding the prominent M-C and then M-Al covalent interactions in the

MAX phases confirm some of the typical bonding characteristics of MAX phases described in

the literature. As a general observation from the above analysis, the DOS for both Zr and Ti

based phases show a high resemblance, having their peaks in very similar energy ranges, and

no clear distinguishing factors between Zr and Ti based MAX phases that could explain their

difference in thermodynamic stability were found. As mentioned in the literature review, in the

study by Bai et al. [102] a number of Mn+1AlCn phases with n = 1–3 and M including Zr and Ti,

were examined based on their pDOS in order to identify trends in the strength of hybridisation

between Md -Cp and Md -Alp with respect to the valence electron concentration (VEC) and
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d-electron shell number of the M atoms. In the study by Bai et al., although these indicated

bonds were shown to have a tendency towards lower energies with increasing VEC, for VEC = 4

specifically, which includes Zr and Ti, no difference in the energy ranges or trends with respect

to the d-electron shell number was noted, which is in agreement with our comparison findings

for the Zr and Ti based MAX phases. To potentially explain the bonding differences and gain

a more quantitative description of the relative bond strength between the corresponding bonds

in the MAX phases of the two systems of interest, in the following sections, we will examine

their chemical bonding with the tools of charge density difference and charge transfer, for the

latter of which different methods such as Mulliken, COOP, COHP and DDEC were applied and

discussed.

5.2.2 Charge density difference and charge transfer

To further understand the atomic interactions within the two types of MAX phases, Zrn+1AlCn

and Tin+1AlCn, the charge density difference and the charge transfer have been calculated. The

charge density difference can be useful in visualising the local chemical bonding with respect

to the parent carbide systems. For the calculation of the charge density difference between the

Al and Zr-C layers the following expression was used:

∆ρAl = ρM2AlC − ρM2C − ρAl (5.1)

where M is either Zr or Ti and ρM2AlC, ρM2C and ρAl are respectively the charge densities of

the M2AlC structure, of the 211 structure without the Al atoms and of the 211 structure with

only the Al atoms present.

In Fig. 5.3 the 3D charge density difference in electrons per cubic Angstrom based on Eq. 5.1 is

shown for Zr2AlC and for Ti2AlC. The yellow and blue colours represent electron accumulation

and loss respectively. The isosurface around the Al atoms indicates a loss of electrons whereas

electron accumulation exists in between the Ti or Zr and Al layers indicating the formation of

a covalent bond. The charges are shown for the same isosurface value, 0.004 electrons Å−3, for
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Figure 5.3: Charge density difference at isosurface level 0.004 electrons Å−3 for Ti2AlC and
Zr2AlC.

the two MAX phases and although it is qualitative, it seems that there are more electrons piled

up between Ti and Al than Zr and Al. The isosurface around Zr or Ti has a positive and a neg-

ative charge, which could suggest polarisation of the M-M atoms that can be caused by electron

movement between the M and Al atoms, as also noticed in the study by Magnuson et al. [219].

The C atoms seem to have no charge in both phases, indicating a very weak bonding between

C and Al, as the Al layer appears to only have a local effect. This is confirmed below by the

calculation of the bond order and strength using two different methods (DDEC and pCOHP).

The weak Al-C bonds that are evidenced for both Zr2AlC and Ti2AlC have also been confirmed

for Ti2AlC in the study by Magnuson et al. [219]. Specifically, in their study, Magnuson et al.

verified the weaker Al-C bonds for Ti2AlC both experimentally, based on soft X-ray emission in-

terpreted in terms of pDOS to give information about the hybridisation between the constituent

atoms and particular orbitals involved, and theoretically, by calculating the balanced crystal

orbital overlap population (BCOOP) [220] for the system. Similarly with COOP, BCOOP is

an energy resolved quantity used as an indicator for bonding, with positive and negative values
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corresponding to bonding and antibonding states respectively, with BCOOP being to a lesser

degree basis set dependant. BCOOP performs better for highly non-orthogonal basis sets such

Phase Zr2AlC Zr3AlC2 Ti2AlC Ti3AlC2

M1 10.890 (+1.110)a 10.798 (+1.202)a 10.917 (+1.083)a 10.838 (+1.162)a

10.960 (+1.04)b 10.985 (+1.02)b 10.995 (+1.01)b 10.66 (+1.34)b

11.09 (+0.91)c 11.06 (+0.94)c 10.99 (+1.01)c 10.95 (+1.05)c

M2 10.397 (+1.603)a 10.562 (+1.438)

10.65 (+1.35)b 10.45 (+1.55)b

11.01 (+0.99)c 10.97 (+1.03)c

Al(2s2p3s23p1) 11.551 (−0.551)a 11.511 (−0.511)a 11.518 (−0.518)a 11.499 (−0.499)a

11.655 (−0.65)b 11.560 (−0.56)b 11.420 (−0.42)b 11.75 (−0.75)b

11.78 (−0.78)c 11.78 (−0.78)c 11.91 (−0.91)c 11.88 (−0.88)c

C(2s22p2) 5.669 (−1.669)a 5.748 (−1.748)a 5.648 (−1.648)a 5.632 (−1.632)a

5.445 (−1.44)b 5.420 (−1.42)b 5.605 (−1.60)b 5.77 (−1.74)b

5.02 (−1.02)c 5.04 (−1.04)c 5.11 (−1.11)c 5.12 (−1.12)c

Phase ZrAl ZrC TiAl TiC

M 11.665 (+0.336)a 10.179 (+1.821)a 11.400 (+0.600)a 10.368 (+1.632)a

11.81 (+0.19)b 10.57 (+1.43)b 11.84 (+0.16)b 10.39 (+1.61)b

11.24 (+0.76)c 10.96 (+1.04)c 11.14 (+0.86)c 10.90 (+1.10)c

Al(2s2p3s23p1) 11.336 (−0.336)a 11.600 (−0.600)a

11.19 (−0.19)b 11.16 (−0.16)b

11.76 (−0.76)c 11.86 (−0.86)c

C(2s22p2) 5.821 (−1.821)a 5.632 (−1.632)a

5.43 (−1.43)b 5.61 (−1.61)b

5.04 (−1.04)c 5.10 (−1.10)c

Table 5.1: The number of electrons associated with atom I, NI , and in the brackets the net
atomic charge qI is shown. These values are calculated by Bader analysis denoted with a, the
DDEC method, b and Mulliken analysis, c. M refers to either Zr(4s4p5s24d2) or Ti(3s3p4s23d2)
and M1 and M2 are defined as shown in Fig. 4.10.
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as in full potential linearised muffin tin orbital (FP-LMTO) calculations, though for minimal

basis sets such as in linear combination of atomic orbitals (LCAO) calculations, COOP and

COHP are preferable [220].

Zr Ti Al C

1.33 1.54 1.61 2.55

Table 5.2: Pauling electronegativity for the elements in the Zrn+1AlCn and Tin+1AlCn MAX
phases [13]

For further understanding of the bonding nature and level of ionicity in the phases, the charge

transfer between the atoms in the 211 and 312 MAX phases has been calculated and compared

with the charge transfer for their end members. The total number of electrons assigned to

the atoms, NI , and the net atomic charge, qI , (related by Eq. 2.36) are shown in the Table

5.1 calculated based on three different methodologies. These methodologies consist of Bader,

DDEC and Mulliken analysis, with each of these being based on different electron partitions.

In the case of Mulliken analysis, the total number of electrons assigned to the atoms, Mulliken’s

gross population, contains the onsite atomic charge, as well as half of the corresponding overlap

populations with the neighbouring atoms. Similarly, the DDEC NI represents the number

of assigned electrons incorporating the atomic and bonding charges as described in Eq. 2.37.

These values are calculated for the four MAX phases and their corresponding binary aluminides

and carbides. The electron transfer, qI , shows the oxidation, quantifying the loss of electrons

of each atom. This value does not always match the Pauling electronegativity of Zr, Ti, Al

and C, where C is the most electronegative and Zr the least, as shown in Table 5.2 where

although the electronegativity of Ti is greater than that of Zr, the charge transferred to Ti in

the MAX phases is more or less than the charge transferred to Zr depending on which of the

three definitions of charge transfer is chosen.

Based on the three applied methods in Table 5.1, the M1 and M2 atoms in the MAX phases

show a loss of electrons while Al and C atoms show a gain. Compared to the study by

Dahlqvist et al. [221], which applied Bader analysis to M3AlC2 MAX phases with the M atom in

groups IV–VI, this trend is in agreement with their findings for groups IV and V which include
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Zr and Ti, where Bader charge values for the atoms in Zr3AlC2 were found to be around +1.77

for M2, +1.48 for M1, −0.82 for Al and −1.98 for C and for Ti3AlC2 to be around +1.45 for

M2, +1.2 for M1, −0.63 for Al and −1.64 for C. Focusing only on our results again, we note

that the Al electron gain indicated by the different methods we used, as shown in Table 5.1,

seems to not align with our charge difference results shown in Fig. 5.3, which indicate a loss

of electrons around the Al atoms. This disagreement between our findings can be explained

by the fact that partition methods like Mulliken and Bader assign all the charge to atoms and

none to bonds e.g. in Bader, the partitioning of electrons is into space filling regions, whereas

in Figure 5.3 the charge density difference clearly shows the charge that has been lost from Al

appearing in bonds between Al and M atoms.

In general, it is expected that charge transfer values differ depending on the method applied,

therefore differences and similarities in overall trends in the charge transfer between the methods

were examined instead, focusing on trends between Zr and Ti MAX phases and binaries, and

in the Mn+1AXn phases as n increases. As is discussed below, many inconsistencies between

the methods were noted in these trends, however, indicating their strong dependence on the

definition of charge transfer used.

From the results in Table 5.1, there is a complete disagreement between Bader and Mulliken

analysis about whether Ti or Zr MAX phases show greater charge transfers. Based on the

Mulliken analysis, the M, Al and C atoms in the Ti-based MAX phases show a greater charge

transfer compared to their corresponding Zr-based ones. The opposite trend is noted in the

Bader analysis, where the atoms in the Zr-based MAX phases have higher charge transfer, in

agreement with the study by Dahlqvist et al. [221] where Bader analysis was also applied for

atoms in the Zr and Ti systems. Regarding this trend, the DDEC method agrees with Mulliken

analysis for all atoms only in 312 MAX phases. DDEC and Mulliken also agree that Ti binary

carbides show greater charge transfers than Zr ones, but with the aluminides that are more

metallic, they disagree.

Regarding whether 211 or 312 MAX phases show greater charge transfers, no overall agreement

is apparent between any of the methods in Table 5.1, some partial agreement is noted however,
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with the Bader and Mulliken methods showing the most similarities. In particular, according

to Bader and Mulliken analysis the M1 atom has lower charge in 211 than in 312 phases. The

DDEC method agrees with this trend only for the Ti system, whereas a decrease of charge is

noted from Zr2AlC to Zr3AlC2. For the Al atoms Bader shows that in both systems the Al atom

charge density is lower in 312 than 211, this trend is in agreement with Mulliken only for the Ti

system, while for Zr Mulliken predicts no change. Results from the DDEC method for Al show

no agreement with Bader or Mulliken for any of the systems. Regarding the charge transfer for

the C atoms in the MAX phases, a trend is noted based on the Mulliken analysis where C atoms

in the 211 phases have slightly lower charge, −1.02 (Zr2AlC) and −1.11 (Ti2AlC), compared

to their corresponding 312, −1.04 (Zr3AlC2) and −1.12 (Ti3AlC2). This trend, however, is not

verified with the Bader or DDEC methods as no consistent trend on the C atom oxidation is

noticed for both Zr and Ti based MAX phases from 211 to 312.

Figure 5.4: The atomic charges for the four MAX phases and their end members in the Zr-Al-C
and Ti-Al-C systems calculated for the different methods as included in Table 5.1.
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The above trends are better illustrated in Fig. 5.4, where the trends of the charge transfer for

each atom in the end members and MAX phases are shown and compared as calculated by

Bader and Mulliken analysis and the DDEC method. As n in the MAX phases increases, the

charge transfer for the M atom increases and approaches the oxidation value of M in the carbide

based on Bader and Mulliken analysis. This trend is true only for Ti-based phases according

to the DDEC method. The three methods agree that the M atoms in the carbides have higher

charge transfer than the M atoms in the corresponding MAX phases, with the lowest occurring

in the alluminides for both systems.

5.2.3 Overlap population and bond order: DDEC method

Quantifying the covalent bond strength between neighbouring pairs of atoms can provide more

detail into bonding differences between the chemically very similar Zrn+1AlCn and Tin+1AlCn

phases, as they were proven to be in sections 5.2.1 and 5.2.2. Based on the density derived

electrostatic and chemical (DDEC) method [14, 15, 16], bond orders (BOs) and sum of bond

orders (SBOs) can be defined, as is explained in the methodology section 2.2.3. Such values can

reflect the bond strength and can be used to quantify similarity between phases. The DDEC

method was employed to analyse 7 and 9 different interactions of neighboring atoms in the

211 and 312 MAX phases respectively, as well as equivalent interactions in their carbide and

aluminide binary phases.

In Table 5.3, the DDEC bond orders for pairs of neighbouring atoms and their corresponding

bond lengths are given. In the carbides and alluminides, the bond order is higher for Zr-C and

Zr-Al than their corresponding Ti-C and Ti-Al. In the case of the 211 MAX phases the Zr-C

bond order (0.68) is slightly stronger than Ti-C (0.67), whereas a larger difference is shown for

Zr-Al (0.34) compared to Ti-Al (0.26). Regarding the 312 phases, Ti1-C (0.75) is just slightly

higher than Zr1-C (0.74), whereas for M2-C, Zr2-C (0.51) is higher than Ti2-C (0.48). For the

M-Al bonds, Zr1-Al (0.32) has a higher bond order than Ti1-Al (0.29). Regarding the Al layer,

the bond orders are higher for Ti2AlC compared to Zr2AlC where the bonds are more stretched,

the same is true for the C-C bonding. The Al-Al and C-C bond lengths are smaller in Ti2AlC
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at 3.036Å compared to 3.290Å in Zr2AlC.

As a general characteristic, indicated by the bond order values in Table 5.3 and common for

the Zrn+1AlCn and Tin+1AlCn MAX phases, the M-C bonds show the highest bond orders,

followed by the M-Al and then by the Al-Al. The smallest bond orders are noted for the C-C

and Al-C interactions. This sequence has also been noted in terms of bond strength quantified

by ICOHP analysis for 211 MAX phases, including Ti2AlC, in the study by Music et al. [222].

The Al-C bonds show a very small bond order for both Zr2AlC and Ti2AlC as there is a

large distance between them, with M atoms in between resulting in bond lengths 4.094Å in

Zr2AlC and 3.830Å in Ti2AlC. This weak interaction is in agreement with the density charge

difference data discussed in Section 5.2.2 and other calculations based on total and partial

DOS for the Zr-based MAX phases [75] as well as with BCOOP calculations for Ti3AlC2 [99].

BCOOP, as noted in the previous section, is a modified version of COOP that performs more

robustly for highly non-orthogonal basis functions. The higher bond orders we predict for M-C

compared to M-Al, e.g. 0.68 (Zr-C) and 0.34 (Zr-Al) for Zr2AlC, suggest that the M-C bonds

are stronger than the M-Al bonds, as we might also expect from the results of our pDOS analysis

in Section 5.2.1. Other studies based on the total and partial density of states for Zr-based

MAX phases [75, 76] and a number of other M3AlC2 MAX phases, with M varying from 3d to

5d [68], have also confirmed this characteristic. This has also been verified for the Ti system by

Magnuson et al. [219], who, as mentioned previously, studied the system both experimentally,

using soft X-ray emission, and theoretically, using the BCOOP method, finding that the M

atoms are bonded stronger to the C atoms than the Al ones.

Recall that the two types of Zr or Ti atoms in the 312 phase are labelled M1 and M2, involving

the outer and inner M atoms of the MC layer respectively. In general, M1-C exhibits higher

bond order compared to M2-C, which is also confirmed by BCOOP calculations for Ti3AlC2 [99].

By comparing the M1-C and M2-C bonds in Zr3AlC2 to the M-C bonds in the carbide, the Zr1-C

bond order is increased by 0.2 compared to the binary ZrC, whereas for Zr2-C it is decreased

by 0.03. Similarly in Ti3AlC2, the Ti1-C bond order is increased by 0.27 compared to TiC,

whereas for Ti2-C it remains the same. For the 211 structures the bond orders of Zr-C and

Ti-C increase compared to the corresponding carbide structures by 0.14 for Zr and by 0.19 for
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Zr2AlC OP BO BL (Å) Ti2AlC OP BO BL (Å)

Zr - Al 0.27 0.34 3.040 Ti - Al 0.22 0.26 2.868

Zr - Zra 0.12 0.14/0.13 3.290 Ti - Tia 0.08 0.09 3.036

Zr - Zrb 0.12 0.14 3.145 Ti - Tib 0.08 0.09 2.869

Al - Al 0.18 0.22 3.290 Al - Al 0.21 0.24 3.036

Zr - C 0.53 0.68 2.276 Ti - C 0.52 0.67 2.088

C - C 0.03 0.03 3.290 C - C 0.06 0.06 3.036

Al - C 0.01 0.01 4.094 Al - C 0.02 0.02 3.830

Zr3AlC2 OP BO BL (Å) Ti3AlC2 OP BO BL (Å)

Zr1 - Al 0.26 0.32 3.042 Ti1 - Al 0.23 0.29 2.876

Zr1 - Zr1 0.10 0.12 3.307 Ti1 - Ti1 0.07 0.07 3.049

Zr1 - Zr2 0.10 0.10 3.206 Ti1 - Ti2 0.06 0.06 2.933

Zr2 - Zr2 0.07 0.07 3.307 Ti2 - Ti2 0.04 0.04 3.049

Zr1 - C 0.56 0.74 2.242 Ti1 - C 0.57 0.75 2.059

Zr2 - C 0.41 0.51 2.367 Ti2 - C 0.39 0.48 2.176

Al - Al 0.17 0.21 3.307 Al - Al 0.27 0.345/0.344 3.049

C - Ca 0.03 0.02 3.307 C - Ca 0.07 0.07 3.049

C - Cb 0.03 0.03 3.389 C - Cb 0.07 0.07 3.106

ZrAl OP BO BL (Å) TiAl OP BO BL (Å)

Zr - Al 0.34 0.42 2.910 Ti - Al 0.23 0.27 2.822

Zr - Al 0.25 0.31 3.007

Al - Al 0.34 0.43 2.633 Al - Al 0.24 0.28 2.791

Al - Al 0.13 0.15 3.312

Zr - Zr 0.23 0.29 3.312 Ti - Ti 0.25 0.30 2.791

ZrC OP BO BL (Å) TiC OP BO BL (Å)

Zr - C 0.42 0.54 2.334 Ti - C 0.39 0.48 2.146

C - C 0.03 0.03 3.301 C - C 0.07 0.07 3.035

Zr - Zr 0.06 0.06 3.301 Ti - Ti 0.03 0.03 3.035

Table 5.3: DDEC6 [14, 15, 16] bond orders (BO) and overlap population (OP) between different
atomic interactions and their corresponding bond lengths (BL). Where a and b correspond to
M-M bonds within M layers and between M layers respectively. When two values are given for
the bond order of an atomic interaction they correspond to symmetrically equivalent bonds.



5.2. Results 155

the Ti case. The above show that the bond order of M1-C is higher in 312 than in 211 and

lowest overall in the carbides, whereas M2-C in 312 is lower than the M1-C bond in 211 and

compared to the carbide is the same for Ti and lower for Zr. This implies that the bonds in

the carbide slabs of the MAX phases are stronger than in their corresponding binaries. This

can be due to the weaker M-Al bonds which transfer charge to the M-C bonds. Specifically, in

Zr2AlC and Ti2AlC the bond orders of Zr-C and Ti-C are around 2 and 2.6 times larger than

Zr-Al and Ti-Al respectively. BCOOP calculations also confirm that the Ti1-C bond strength

in Ti2AlC is higher than the carbide, however the Ti-C bond shows stronger bonding in Ti2AlC

than Ti3AlC2 [219], which is not aligned with our DDEC Ti1-C comparisons between 211 and

312.

Zr2AlC SBOs BI,I zI −BI,I Ti2AlC SBOs BI,I zI −BI,I

Zr 4.38 8.77 3.23 Ti 3.67 9.16 2.84

Al 3.51 9.90 1.11 Al 3.26 9.79 1.21

C 4.45 3.22 0.79 C 4.63 3.29 0.71

Zr3AlC2 SBOs BI,I zI −BI,I Ti3AlC2 SBOs BI,I zI −BI,I

Zr1 4.29 8.84 3.16 Ti1 3.86 8.73 3.27

Zr2 4.12 8.59 3.41 Ti2 3.58 8.66 3.34

Al 3.34 9.89 1.11 Al 4.08 9.71 1.29

C 4.14 3.35 0.65 C 4.56 3.46 0.54

ZrAl SBOs BI,I zI −BI,I TiAl SBOs BI,I zI −BI,I

Zr 4.46 9.58 2.42 Ti 3.47 10.10 1.90

Al 3.99 9.20 1.81 Al 3.38 9.47 1.53

ZrC SBOs BI,I zI −BI,I TiC SBOs BI,I zI −BI,I

Zr 4.06 8.54 3.46 Ti 3.35 8.72 3.28

C 3.68 3.59 0.41 C 3.80 3.71 0.30

Table 5.4: Sum of bond orders (SBOs), localisation index (BI,I) and zI − BI,I for each atom
calculated with the DDEC method [14, 15, 16].

Regarding the bond order between C-C and Al-Al, it does not seem to be affected as n in the
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MAX phases increases. The Zr-Al bond becomes weaker from Zr2AlC to Zr3AlC2, whereas the

opposite trend is noticed for the Ti system. This Ti system trend is confirmed in the next section

where bond strength is quantified with the integrated crystal orbital Hamilton population

(IpCOHP). This has also been confirmed experimentally using X-ray emission spectroscopy

Figure 5.5: The atomic charge (qI), SBOs and BI,I for each element (M, Al and C) for the
phases in the Zr and Ti systems.
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and theoretically using the BCOOP in the study by Magnuson et al. [219].

Table 5.4 shows the sum of bond orders (SBOs) on each atom as defined in Eq. 2.38, the

localisation index (BI,I) as defined in Eq. 2.34 and zI − BI,I described in the methodology,

Section 2.2.3, for Zrn+1AlCn, Tin+1AlCn and their end members. The SBOs, BI,I and qI are

also presented graphically in Fig. 5.5. zI−BI,I shows the number of electrons that are shared in

bonds formed by atom I or transferred to other atoms. In Fig. 5.5 there is a general downwards

trend for BI,I on M1 atoms in the sequence from the aluminide to 211, 312 and the carbide.

The SBO on M1 decreases from the aluminide to 211 and 312, whereas the opposite trend is

noted for the Ti phases, with the SBO on Ti1 increasing from TiAl to Ti2AlC and Ti3AlC2.

The charges on M1 atoms are lower in the aluminides compared to the carbides in both systems.

For C atoms the charge seems almost unchanged between 211, 312 and ZrC, whereas in the Ti

system the 312 phases seems to have a lower charge. In general, apart from the Zr1 atom, the

opposite trend is noted between SBOs and BI,I on each atom for the different phases that are

compared.

5.2.4 Crystal Orbital Hamilton Populations (COHP)

Apart from the DDEC method to gain insight into the strength and nature of bonds between

atoms, the projected Crystal Orbital Hamilton Populations (pCOHP) analysis [122, 120, 121]

can also be used to quantify the bond strength of atomic interactions. pCOHP quantifies the

local contribution to the total band energy from a bond between a particular atomic pair at a

given energy. This results in bonding and antibonding regions, indicated by the difference in

sign of the pCOHP values at different energies. The COOP and COHP partitioning concepts

are explained in more detail in the methodology Section 2.2.1. The integral of pCOHP up to

the Fermi level results in an energy value, instead of a number of electrons as in COOP or

the Mulliken scheme, and is therefore a more quantitative indicator of bond strength. The

integrals of pCOHP and COOP, IpCOHP and ICOOP, were calculated for 6 and 9 different

atomic interactions in the 211 and 312 MAX phases respectively as well as for pair interactions

in their end member aluminides and carbides as presented in Table 5.5. The negative values
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of IpCOHP in the table correspond to bonding and the positive to antibonding, whereas the

opposite is true for the IpCOOP values.

By comparing the IpCOHP values between the Zr and Ti based MAX phases it is noted that

the bond strength between the neighboring atoms is higher in the Zrn+1AlCn phases than the

Tin+1AlCn ones with the exception of the Al-Al interaction which is stronger in the Ti-based

phases. This trend in bond strength is consistent with DDEC calculations of the bond orders

in Section 5.2.3, apart from the bond orders of M1-C, C-C and Al-C which are higher in the

Ti-based MAX phases; although the values of the latter two are considered negligible.

As a general result from the IpCOHP values in Table 5.5 and in agreement with the DDEC

and pDOS calculations, the M-C bonds are always strongest, followed by the relatively weaker

M-Al and Al-Al and the weakest overall C-C and Al-C bonds. This trend is also indicated by

similar ICOHP calculations on M2AlC (M = Ti, V, Cr) MAX phases in the study by Music

et al. [222] which found the following sequence for Ti2AlC −3.48 (Ti-C), −0.92 (Ti-Al), −0.57

(Al-Al), −0.55 (Ti-Ti) and almost zero for the C–C and Al–C bond interactions. The M atoms

are attached more strongly to the C atoms than to the Al atoms and it is further noted that

M1-C strength increases from 211 to 312. As was discussed in the DDEC section these are

evident in both Zr and Ti systems and have been verified for other systems in the literature

[75, 76, 219, 68].

Comparison between M-C bonds in the MAX phases and their corresponding carbides indicates

that the M1-C bond is stronger in the MAX phases, while the M2-C bond in the 312 MAX

phases was found to be weaker than in the carbides. This trend is mostly in agreement with

the DDEC bond order results, with the difference that for Ti2-C the bond order was found to

match that of Ti-C in the TiC carbide.

The M-Ma and M-Mb interactions correspond to M-M bonds in the carbide slab within M layers

and between M layers respectively. Based on the DDEC method these two M-M interactions

have the same bond order. On the other hand based on the IpCOHP values the M-M bonds

between the different basal layers are stronger than the ones within the same layers which also

agrees with the bond lengths being shorter between the M atoms at different layers.
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Zr2AlC Bond Lengths (Å) IpCOHP IpCOOP Ti2AlC Bond Lengths (Å) IpCOHP IpCOOP

Zr - Al 3.040 −1.69 0.02 Ti - Al 2.868 −1.41 −0.03

Zr - Zra 3.290 −0.82 −0.11 Ti - Tia 3.036 −0.53 −0.10

Zr - Zrb 3.145 −1.18 −0.10 Ti - Tib 2.868 −0.81 −0.09

Al - Al 3.290 −1.34 0.05 Al - Al 3.036 −1.75 0.02

Zr - C 2.276 −3.57 0.17 Ti - C 2.088 −3.42 0.15

C - C 2.290 −0.01 −0.01 C - C 3.036 −0.10 −0.02

Zr3AlC2 Bond Lengths (Å) IpCOHP IpCOOP Ti3AlC2 Bond Lengths (Å) IpCOHP IpCOOP

Zr1 - Al 3.042 −1.73 0.02 Ti1 - Al 2.876 −1.42 −0.01

Zr1 - Zr1 3.307 −0.75 −0.10 Ti1 - Ti1 3.049 −0.49 −0.08

Zr1 - Zr2 3.206 −1.03 −0.12 Ti1 - Ti2 2.933 −0.70 −0.09

Zr2 - Zr2 3.307 −0.82 −0.11 Ti2 - Ti2 3.049 −0.57/−0.54 −0.10

Zr1 - C 2.242 −3.99 0.19 Ti1 - C 2.059 −3.79 0.17

Zr2 - C 2.367 −3.04 0.13 Ti2 - C 2.176 −2.94 0.12

Al - Al 3.307 −1.31 0.05 Al - Al 3.049 −1.73 0.02

C - Ca 3.307 −0.01 −0.01 C - Ca 3.049 −0.10 −0.02

C - Cb 3.389 −0.02 −0.01 C - Cb 3.106 −0.10 −0.01

ZrAl Bond Lengths (Å) IpCOHP IpCOOP TiAl Bond Lengths (Å) IpCOHP IpCOOP

Zr - Al 2.867 −2.10 −0.02 Ti - Al 2.822 −1.33/-1.34 −0.02

Zr - Al 2.910 −2.44 0.14

Zr - Al 3.000 −1.12 −0.08

Al - Al 2.633 −3.38 0.20 Al - Al 2.791 −2.44/-2.41 0.14

Al - Al 3.312 −1.21 0.08

Zr - Zr 3.312 −0.80 −0.13 Ti - Ti 2.791 −1.11 −0.06

Zr - Zr 3.327 −0.89 −0.08

ZrC Bond Lengths (Å) IpCOHP IpCOOP TiC Bond Lengths (Å) IpCOHP IpCOOP

Zr - C 2.334 −3.39/−3.38 0.15 Ti - C 2.146 −3.25/−3.26 0.14

C - C 3.301 −0.02 −0.01 C - C 3.035 −0.11 −0.02

Zr - Zr 3.301 −0.76/−0.78 Ti - Ti 3.035 −0.55 −0.09

Table 5.5: IpCOHP and IpCOOH for the four MAX phases M2AlC and M3AlC2 and binaries
MC and MAl (M = Zr or Ti) between different atomic pairs and their corresponding bond
lengths. Where a and b correspond to M-M bonds within M layers and between M layers
respectively. When two values are given for IpCOHP of an atomic interaction they correspond
to symmetrically equivalent bonds.

The IpCOHP values for the M-Al and Al-Al bonds increase and decrease respectively from 211
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to 312, whereas in the DDEC method for the Ti system, both Ti-C and Al-Al increase from 211

to 312 while for the Zr system, Zr-C and Al-Al decrease and increase respectively. Both of the

aforementioned methodologies agree that the Ti-Al bond in the 211 phase is weaker than in 312.

As was also discussed in the DDEC section, this is in agreement with the study by Magnuson

et al. [219] were it was confirmed both experimentally and computationally. In this study [219]

the role of Ti-Al and how it is affected by the order n of the MAX phase was found to be

related to mechanical properties such as the shear modulus and Young’s modulus, explaining

the relative softness of Ti2AlC compared to Ti3AlC2. A number of other studies have also made

links between the elastic properties and electronic structure [104, 72, 103, 105, 76] underlining

the effect of the M-Al bonding on the bulk modulus values, showing that increases of valence

electrons involved in M-Al bonding result in increases in shear and bulk moduli. Based on the

above and the IpCOHP bond energy values showing an increase for M-Al from 211 to 312, an

agreement is noted with the trend in Section 3.2.6 where the bulk modulus increases with n for

both systems, Zr and Ti MAX phases.

Figure 5.6: −pCOHP curve against energy for M2AlC phases (M = Zr or Ti). Black: Total,
Green: M-C, Blue: M-Al
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Figure 5.7: −pCOHP against energy for M3AlC2 phases (M = Zr or Ti). Black: Total, Red:
M1-Al, Blue: M1-M2, Yellow: M1-C, Green: M2-C

In Figures 5.6 and 5.7 the total and partial −pCOHP are plotted as a function of energy for

the M2AlC and M3AlC2 MAX phases respectively. The partial −pCOHP corresponds to 2

and 4 atomic interactions for the M2AlC and M3AlC2 MAX phases respectively. The Fermi

level is at zero pCOHP values for all the atomic pairs indicating stability. Unsurprisingly, the

biggest contribution to the total corresponds to the M-C interaction, as it dominates the largest

region below the Fermi energy for both systems. For the 312 phases the M1-Al, M2-C and M-M

bonding orbitals are filled and antibonding orbitals are above EF, whereas M1-C shows a small

antibonding peak just below EF. Similarly for 211, the antibonding orbitals for M-Al are above

EF, whereas for M-C a small antibonding peak is again noticed just below EF, which agrees

with the pCOHP curve for Ti2AlC phases calculated by Music et al. [222].

In order to facilitate comparison between Zr2AlC and Ti2AlC the pCOHP of M-Al and M-C

are plotted in Figures 5.8 and 5.9 respectively. In these figures the M-C interaction contains

a small antibonding peak for both phases, but with a larger peak for Zr2AlC, although the
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integrated value for the M-C bond energy is larger for the Zr case. In addition, it is noted that

the M-Al bonding and M-C antibonding peaks right below the Fermi level are at lower energy

for Ti than for Zr.

Figure 5.8: −pCOHP against energy for the M-C bond (M = Zr or Ti).

Figure 5.9: −pCOHP against energy for the M-Al bond (M = Zr or Ti).



5.3 Conclusions

The electronic structure was studied by calculating the total and partial DOS and a chemical

bonding analysis was performed by calculating the charge density difference, charge transfer

and bond orders. Different definitions of charge transfer were used by employing the Bader

analysis, Mulliken analysis, and DDEC methodologies. To gain insight into the covalent bonds

and quantify the different atomic interactions the DDEC bond orders were calculated and

compared to pCOHP results. Based on the above analysis the different methods agreed on the

general well-established chemical bonding characteristics of MAX phases. A mixed metallic-

ionic-covalent bonding nature was identified. M atoms were found to be attached more strongly

to the C atoms than the Al atoms. Generally, the M-C bonding in the carbide layer was found

to be the strongest due to interactions of hybridised Md and Cp states followed by relatively

weaker M-Al and even weaker Al-Al interactions. The weakest interactions were found to be

the C-C and Al-C bonds. In the 312 phases the M1-C bonds were found to be stronger than the

M2-C. It is further noted that M1-C bond strength increases from 211 to 312 and that M1-C

bonds in the MAX phases are stronger than their corresponding M-C bonds in the carbides. For

the atomic charges, qI , the three methods applied, Bader, Mulliken and DDEC, agreed for both

systems on the trend that the M atoms in the carbides have higher charge transfer than the M

atoms in the corresponding MAX phases and that the lowest overall occurs in the alluminides.

Apart from the above characteristics that show consistency between the methods, the charge

values and some of the bond strength trends were found to strongly depend on the method

used. Overall, a high chemical resemblance between the two MAX phases was noted and no

clear differentiation was identified to address the main motivation of this chapter, to explain

the lower thermodynamic stability of Zrn+1AlCn compared to Tin+1AlCn and in particular the

predicted thermodynamic instability of Zr2AlC. In terms of their potential as coating materials

for nuclear fuel cladding on the other hand, based on the above observations from our chemical

bonding analysis, nothing stands out that would favour the Zr MAX phases over the Ti ones.

For this use case, it is possibly other characteristics, such as the low neutron cross section, that

could be considered important advantages of the Zr-based MAX phases.
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Chapter 6

Phonon spectra and Raman spectroscopy

6.1 Introduction

Lattice-dynamics has been an important factor in understanding a number of physical proper-

ties such as heat capacity, thermal expansion, phase transitions, thermal conductivity as well

as in understanding elastic neutron scattering, infrared and Raman spectra. From the phonon

dispersion, the Γ point optical phonons are the best defined experimentally, as a number of

them can be identified as Raman and infrared active. Raman and infrared spectroscopy are

used as identification techniques based on the distinct vibrational characteristics of different

materials. Raman spectroscopy, specifically, is associated with high energy photons from in-

elastic scattering of visible or near-infrared radiation which is often applied to measure stresses,

identify compounds and the detection of defects. The association of the different vibrational

modes to the specific frequencies (location of the peaks in the Raman spectra) is important

and can contribute to understanding of how changes in Raman frequencies are connected to the

stiffness of bonds between pairs of atoms and specifically in the case of MAX phases between the

layers. Raman spectroscopy is the main technique that has been applied to understanding the

vibrational behaviour of MAX phases in contrast to other methods such as neutron scattering

or infrared spectroscopy [223].

Raman spectroscopy is important for identifying the presence or absence of particular phases
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for which the ‘fingerprint’ of Raman-active modes and their frequencies is known from previous

experiments or DFT calculations. There are a number of DFT studies on MAX phases focused

on lattice dynamics and understanding the origin of Raman-active modes. Overall the Raman-

active frequencies identified experimentally and theoretically show good agreement [224, 17,

225]. For 211 MAX phases all the four predicted Raman-active modes have been identified

experimentally [17, 226, 227, 224], as is also shown in the study [224] where a number of

phases, M2AlC (M = Ti, V, Nb, Ta), were studied with the position of the spectra peaks

being within ±15% of the corresponding predicted ones. On the other hand, for 312 phases,

experimental studies on phases including Ti3AlC2, Ti3SiC2 and Cr3AlC2 have assigned up to 6

of the 7 total predicted Raman active modes [228, 229, 17, 230]. In the study by Amer et al. [228]

the effect of carbon vacancies in the carbide layer of Ti3SiC2 was investigated by comparing the

MAX phases’s Raman spectra with the spectra of the non-stoichiometric TiC0.67 carbide. The

effect of carbon vacancies in TiC on Raman spectra has also been studied [229]. In the same

study [229] the influence of secondary phases in MAX phase samples, such as of Ti3SiC2, on

the Raman spectra was studied, indicating that in such multiphase systems prediction of the

Raman frequencies that are the most commonly predicted in the literature, as well as of the

height and broadening of the experimental peaks are important in understanding the spectra.

Another study by Bai et al. [225] on the Raman and infrared spectra of Mn+1AlCn (n = 1–3 &

M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) MAX phases, showed that the Raman wavenumbers

decrease as the d -electron shell number of M atoms for 211, 312 and 413 increases. Phonon

calculations and Raman spectra predictions were also conducted for Ti3AlC2 and Cr3AlC2 [231]

with particular focus on how the Raman active modes of A1g and E2g could relate to the reduced

mass of M-C and M-Al atomic pairs, suggesting that the M-C comparison of the bond strength

between the two MAX phases was possible from the A1g out of plane vibrations.

In the Ti-Al-C system there are a number of experimental [17, 226, 227] and theoretical [17,

226, 224, 227] studies focusing on understanding the Raman-active modes of MAX phases.

For Zrn+1AlCn MAX phases, phonon calculations and Raman-active modes analysis have been

conducted for the three MAX phases in the system in the study by Bai et al. [225], however

there are no reported experimental studies focusing on the Raman-active modes for Zr based
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MAX phases.

In the current chapter harmonic phonon calculations were conducted for phases in the Zr-Al-

C and Ti-Al-C systems focusing on the Zrn+1AlCn and Tin+1AlCn MAX phases. The main

characteristics of the phonon band structure and DOS of the MAX phases were identified and

comparison with their competing phases, carbides and aluminides, was made. A particular aim

was to identify secondary phases in the experimental samples of Zr3AlC2 that are studied in

the group of Finn Giuliani (Materials Dept., Imperial College). The frequencies of the Raman-

active modes were calculated for the MAX phases based on DFT calculations and identifying the

appropriate mode symmetry. Specifically, analysis of the Raman spectra of the Zr3AlC2 phase

based on calculations of the Raman-active frequencies and a comparison with the experimental

data was conducted.

6.2 Computational details

DFT parameters and phonon calculation settings for all phases considered in this chapter were

those defined in Section 4.1.1 of Chapter 4. For the Raman-active modes, separate convergence

tests with respect to the cut-off and k -points were conducted on 1×1×1 supercells, finding that

the same values as those in Chapter 4 resulted in a convergence of the Raman active phonon

frequencies to within 1 cm−1.

6.3 Results

6.3.1 Phonon band structure and DOS

The hexagonal Brillouin zone for the MAX phases belonging to the space group P63/mmc

(194) is illustrated in Fig. 6.1, highlighting the high symmetry points along which the band

structures have been calculated. Fig. 6.2 includes the band structure for the Zr2AlC, Zr3AlC2,
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Ti2AlC and Ti3AlC2 MAX phases and Fig. 6.3 includes the phonon DOS for these four MAX

phases and their binary end members.

In the band structures for the four different MAX phases in Fig. 6.2, the optical bands at the

highest frequencies above 15THz correspond to the C band where carbon vibrations dominate,

as they are the lightest atoms with stiff bonds to the transition metal, whereas Al and Ti or Zr

show overlapping frequencies mainly between 4.5–8THz. For Zr MAX phases, vibrations of Al

atoms typically couple to those of Zr or to a lesser degree to C, but there are still some modes

mainly based on Al due to its lightness. These Al dominant modes are noted in Fig. 6.3 at

low frequencies between 3–5THz and at higher frequencies between 8.5–9.5THZ. For Ti-based

MAX phases, Al coupled more to Ti and C compared to the corresponding Zr-based phases

resulting in less distinct Al peaks especially for the frequencies between 8.5–9.5THz where a

distinct Al peak is missing for the Ti-based MAX phases. The large atomic mass difference

between Zr and Al which is almost double that of Ti and Al, could lead to this more decoupled

Al peak in the Zr case. The bands at the lowest frequencies between 3–5THz for Zr MAX

phases and between 4–6THz for Ti MAX phases correspond to vibrations mainly due to Al

atoms. Those modes corresponding to the low energy distinct Al peaks are responsible for the

Figure 6.1: Hexagonal Brillouin zone, (b1, b2, b3) are the primitive reciprocal lattice vectors.

flat bands in Fig. 6.2 for the Zr case. Compared to Zr2AlC where flat bands are mainly noticed

between A and H, the projected DOS are narrower for Zr3AlC2 which is consistent with its

lower band dispersion mostly along the A, H and K high symmetry directions. These bands
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(a) Zr2AlC (b) Zr3AlC2

(c) Ti2AlC (d) Ti3AlC2

Figure 6.2: Phonon band structure for the 211 and 312 MAX phases. The Raman-active modes
are highlighted with red markers on the Γ point.

are at slightly higher frequencies in Zr3AlC2 than in Zr2AlC. For the modes with frequencies

between 8.5–9.5 THz that correspond to the narrow Al peak for the Zr-based MAX phases,

even lower band dispersion along all high symmetry directions can be noticed in Fig. 6.3.

For these phases there is also a small gap between the bands just under 10THz and the bands

just below them. This gap is larger for Zr2AlC than Zr3AlC2 in agreement with the gap between

Zr and Al in their projected DOS. For Ti2AlC the modes between 10 and 12.5 THz involve much

more Ti than Al and the gap at these frequencies in the projected DOS plots is not as clear as

in the Zr case. A small gap is noticed in the Ti band structure for these frequencies however,
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which could be due to the fact that the frequencies only appear in specific high symmetry

directions. Specifically, in the Zr case there is a bigger gap compared to Ti, which never goes

below 2 THz, with the closest approach being near the Γ point. In the Ti case, at the Γ point,

the gap is bigger than the corresponding Zr one, at around 2.5 THz, but then the gap becomes

considerably smaller or even vanishes along the other high symmetry points.

By comparing the projected DOS diagrams between the Ti and respective Zr phases in Fig. 6.3,

the two aluminides, ZrAl and TiAl, show the largest differences in their phonon DOS patterns.

This large difference is due to their different crystal structures, as TiAl has a tetragonal structure

P4/mmm (123) and ZrAl has a more complicated structure Cmcm (63). For the TiAl case,

there is overlapping of the projected phonon DOS of the Ti and Al atoms along all frequencies

and there is no Al dominated band, whereas for ZrAl a distinct peak of solely Al vibrating

atoms is noted at the higher end of its frequencies.

The mass difference effect between Zr and Ti as discussed so far seems to affect the DOS patterns

in MAX phases as well as in the binary phases, however in the case of the aluminides no direct

comparison could be made due to the difference in their structures. Assuming a harmonic

oscillator, the vibrational frequency is given by ω =
√
k/m, where k and m correspond to the

bond stiffness and the mass respectively, showing how frequency differences between pairs of

M, Al and C atoms depend on their differences in mass and bond stiffness. The frequencies of

the Zr-based MAX phases generally appeared to be lower than of the Ti-based phases. The

effect of the mass difference on the phonon frequencies in the 211 and 312 MAX phases is most

pronounced for the lower frequency modes and in particular for modes governed by Zr or Ti

atoms where the frequencies in the Zr phases are lower than those in Ti by a factor of about√
1/2. This frequency difference is similar to what we would expect by assuming the spring

constants for Zr and Ti were the same, resulting in their frequencies scaling with
√

1/m, and

taking into account that Zr has about twice the atomic mass of Ti. In this low frequency region,

we further focused on a comparison between the Zr2AlC and Ti2AlC phases by looking into

the transverse mode, which is a 2-fold degenerate branch going from Γ to A. The frequencies

at point A for Zr2AlC and Ti2AlC are 1.344 and 1.864 THz respectively, and by renormalising

these by multiplying with their respective atomic masses, Zr (∼91.2 u) and Ti (∼47.8 u), we
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have a point of comparison for the stiffness of their lattices to shears parallel to their basal

plane. As also noted above, the mass effect dominates the difference in frequency at lower

frequency modes, with the ratio of mω2 between the two MAX phases being almost 1. This

suggests that the Zr MAX phase lattice is not softer than the Ti one, at least for this shear

mode. To further compare elastic properties such as deformability between these two MAX

phases, a useful indicator could also be the ratio of the shear to the bulk modulus, i.e. the

ratio of the shear constant to the longitudinal elastic constant in the c direction. This ratio

expressed as the shear over the longitudinal frequency at point A for the Zr2AlC and Ti2AlC

phases is 0.63 and 0.64 respectively, again suggesting no significant difference in deformability

between the two phases. On the other hand, frequency differences between the Zr and Ti MAX

phases at high frequencies, in the C band, can be mostly explained by bonding differences,

since these modes are strongly decoupled from the rest of the atoms and correspond mainly to

C atomic vibrations. The high frequency modes in Zr-based MAX phases are slightly reduced

in frequency compared to their corresponding Ti ones, suggesting lower bond stiffness in Zr-

based MAX phases for the C atoms, which is also consistent with the trend in calculated bond

strengths from COHP noted in Section 5.2.4.

Figure 6.3: Projected phonon DOS for Zr and Ti based MAX phases and their end members.

For 312 and 211 there is a frequency, at about 4THz for Zr and 7THz for Ti, up to which
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both unit cells have the same number of modes despite the 312 unit cell consisting of an extra

Zr or Ti layer in its carbide slabs. This suggests that these carbide slabs are moving like rigid

blocks in each of these compounds. These modes correspond to the lower optical modes, such

as the two lower ones that are double degenerate at L and split between Γ and M resulting in

four modes. At higher frequencies additional modes appear for 312 as the 3 layers of Zr in 312

allow an extra three degrees of freedom compared to the 2 layers of Zr in the 211 phases. For

instance between the A and H directions at higher frequencies after the two first branches and

below 13THz, there are 7 modes in 211 and 10 in 312. Similarly, at frequencies above 13THz

there are 3 optical branches of carbon for 211 and 6 for 312.

The highest frequency at the Γ point for 211 phases is E2g which is 2-fold degenerate, and

corresponds to one mode frequency in two different directions in the x-y plane. There is also

another nearly degenerate mode at a slightly lower frequency at the top of the band structure,

in fact their difference is just 0.01 THz. This second highest frequency mode is again 2-fold

degenerate, showing vibrations in the x-y plane. In the case of the highest frequency at the Γ

point the Zr and C atoms are vibrating against each other, but the vibration of the C atoms is

dominant. The C atoms in the two different Zr2C slabs of a unit cell are vibrating out of phase,

whereas for the mode just below the highest one the C atoms in the two slabs are vibrating

in phase. The reason for this pair of very close frequencies can be explained by the layered

crystal structure of the 211 phase as there is a very weak coupling between the C atoms in the

separate slabs.

That is also the case for the highest band in the 312 phases, where there are two almost-

degenerate modes, 17.992 and 17.930 THz for Zr3AlC2 and 20.225 and 20.111 THz for Ti3AlC2.

In the 312 case the highest mode is not 2-fold degenerate as it is in 211. In these high frequency

modes the M and C atoms, with C clearly dominating, are moving against each other in the z

direction. The C atoms in the two Zr3C2 slabs are vibrating in antiphase for the highest mode

and in phase for the mode just below it. Right after these two top frequency vibrations along

the z axis, four 2-fold degenerate bands follow forming two pairs showing near-degeneracy in the

x-y plane. Specifically, these two pairs are in the frequency window 16.8–16.9 THz, where the

pair of modes with the highest frequency have frequencies 16.919 and 16.854 THz for Zr3AlC2
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and 19.357 and 19.337 THz for Ti3AlC2 and the second pair at slighly lower frequency have

16.795 and 16.755 THz for Zr3AlC2 and 19.244 and 19.211 for Ti3AlC2. These pairs involve

movements in the x-y plane, specifically the two layers of C atoms (or M atoms) in each slab

are vibrating against each other for the pair with the highest frequency and in the same phase

for the one right below it.

6.3.2 Calculation of Raman modes

In Table 6.1 the displacement contributions of the various atomic positions to the Raman

active modes for the 211 and 312 MAX phases are shown. For 211 there are 24 modes in

total, of which, apart from the 3 acoustic, the optical modes with symmetries defined as Γ =

A1g + 2A2u + 2B1g + 2B2u + 4E2u + 4E2g + 4E1u + 2E1g include 4 infrared (2A2u+ 2Eu) and 4

Raman (A1g + 2E2g+ E1g) active modes. Similarly for the 312 phases there are 36 phonon

Mn+1AXn Total modes site (WP) Raman active modes

211 24 M (4f) A1g+E2g+E1g

A (2d) E2g

321 36 M1 (4f) A1g+E2g+E1g

M2 (2a) -

A (2b) E2g

X (4f) A1g+E2g+E1g

Table 6.1: Raman active modes for each site in the 211 and 312 MAX phases.

modes in total with optical modes Γ = 2A1g +6E2g +4E1g +6E2u+3B1u+3B2g +3A2u+6E1u,

of which 6 are infrared (3A2u+3E1u) and 7 Raman (2A1g + 2E1g + 3E2g) active modes. It

is noted that Raman active modes in 211 do not involve displacements in the C atoms (2a),

unlike 312 for which all Raman active modes involve displacements of C atoms (4f), but which

involve none for M2 atoms (2a). The lack of involvement of C atoms in any of the Raman active

modes in the 211 phases is because only one C atom exists in the carbide slab which cannot

vibrate without creating a dipole, whereas in the 312 case the extra C layer in the carbide slab
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enables three extra Raman active modes with the C atoms vibrating against each other in the

x-y plane and the z direction.

In Figures 6.4 and 6.5 the schematics of the Raman active modes in the MAX phases are

visualised. These Raman active modes are presented in ordered frequency from ω1 to ω4 and

from ω1 to ω7 for 211 and 312 respectively. The 211 Raman active modes were found to

correspond to vibrations involving only M and Al atoms along the z axis (longitudinal) and in

the x-y plane (shear), as shown in Figure 6.4. Specifically, the E1g and two E2g modes involve

vibrations in the basal plane with E1g only corresponding to M atoms, whereas E2g to both

M and Al. The A1g mode corresponds to longitudinal vibrations of the M atoms. The lowest

frequency corresponds to the E2g symmetry and the highest to A1g. For 312, the predicted

Raman modes with symmetry E2g correspond to vibrations of M1, Al and C atoms in the basal

plane, whereas only the M1 and C atoms are involved in the the A1g and E1g modes with their

vibrations taking place along the z axis and in the basal plane respectively.

It is noted that between the frequencies of the first 4 and last 3 modes there is a relatively large

gap, where in the former neighbouring M and C atoms are vibrating in the same direction,

whereas in the latter in the opposite. These last 3 modes are in the C band, where the carbon

vibrations dominate, showing a strong decoupling from the rest of the modes in the lower

frequencies. The gap separating the C band from the rest of the modes, which is a general

characteristic in 312 MAX phases also identified in the previous section in the phonon DOS

and band structure of the MAX phases, is noted in Tables 6.2 and 6.3 for both Zr3AlC2 and

Ti3AlC2. For both phases, this gap is related to the previously discussed large atomic mass

difference between the M and C atoms, with Zr specifically, having over 7 times the atomic

mass of a C atom. Comparison with Ti3SiC2 [227], where Raman spectra have been measured

experimentally, also shows the clear decoupling of the carbon high frequency modes from the

rest of the Raman active modes, but to a lower degree than Zr3AlC2, as the difference in

frequency between the 4th (A1g) and 5th (E2g) mode is smaller in Ti3SiC2. The lowest mode,

with symmetry E2g, originates from shear vibrations involving M1, Al and C atoms vibrating

in the same direction. The highest mode involves only pairs of M and C atoms vibrating out of

phase along the z axis. The 5th and 6th modes, E2g and E1g, are very close to each other, almost
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at the same frequency, and as shown in their mode visualisation they differ only in that the M1

atoms (or similarly the C atoms) in their separate slabs are in phase for E2g and out of phase for

E1g. This indicates a weak coupling between the M1 (or C atoms) atoms between the different

slabs which has also been mentioned in the previous section to explain pairs of near-degenerate

modes in the C band noted in the band structure. This is similar to the coupled pendulums

analogy, described by two coupled harmonic oscillators vibrating in and out of phase, with

the antiphase mode corresponding to higher frequency than the in-phase one, whereas if they

were decoupled, both modes would vibrate in the same frequency. Due to this proximity of

the two modes in the 312 phases, only 6 of the 7 predicted Raman modes have been verified

experimentally for different 312 phases [225, 223, 100].

Figure 6.4: Visualisation of Raman active modes for the Zr2AlC phase and its binary end
members. The arrow lengths are proportional to the amplitude of the atomic motion.

For the Zr3AlC2 phase, the comparison between the experimental spectrum and the predicted

peaks is shown in Fig 6.6. The sample used in this experiment consisted of roughly 50%

Zr3AlC2, 40% ZrC and 5% ZrAl2 defined based on XRD measurements. Due to the presence of

coexisting phases in the sample, in addition to the Raman active modes for Zr3AlC2, the peaks

of ZrAl2 are plotted as well. No Raman-active modes are present for the pure ZrC phase due to

its Oh symmetry, where each site in the crystal is a center of inversion symmetry. The predicted

active modes for Zr3AlC2 and ZrAl2 are marked as vertical lines identifying the frequency of

each mode on the spectra plot.

Peaks ω1, ω2, ω4 and ω7 can be clearly identified on the experimental spectra giving sharp peaks
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Figure 6.5: Visualisation of Raman active modes for the Zr3AlC2 phase. The arrow lengths are
proportional to the amplitude of the atomic motion.

that closely match the predicted ones. However, some peaks in the calculated Raman spectra

are not clearly visible in the experimental data, such as the predicted mode ω3 at 170.33 (E2g)

due to the broad peak in the area around it and the nearly degenerate modes ω5 at 564.37 (E1g)

and ω6 at 562.20 (E2g) which might correspond to the more widely split pair of peaks on either

side, at about 560 and 570, or perhaps to one of these two that is too broadened to resolve

the degeneracy. This discrepancy between experimental and predicted modes can be due to

the proximity of their wavenumbers being too close for the experimental resolution, which is

a characteristic that has also been observed in other 312 and 413 MAX phase studies [223].

Peaks matching phases other than Zr3AlC2 can also be seen on the spectra, in particular the

predicted peak at 152.026 cm−1 (E2g) of the ZrAl2 phase is close to the peak at 154 cm−1 on the

spectra, but this might be a coincidence, since there are no experimental peaks at frequencies

anywhere close to two out of the other five predicted Raman frequencies for ZrAl2.

The clarity of the Raman spectra, e.g. the number of peaks or their intensity, can also be affected

by the presence of carbon vacancies [225, 223, 226, 228, 229] commonly found in synthesised

MAX phases [138]. As stoichiometric ZrC has no Raman active modes, any Raman-induced

peaks observed that might come from ZrCx are due to carbon vacancies, and in particular,

a study on TiC found that decreasing x in TiCx resulted in increasing Raman peak widths
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which was linked to vacancy clustering in the carbide layer [232]. Comparison between TiC0.67

and the Ti3SiC2 MAX phase spectra by Amer et al. [228] found the presence of all observed

Raman-induced peaks in TiC0.67 in the MAX phase spectra, but with shifted positions [228].

Another factor affecting the clarity of the Raman spectra is the presence of impurities and

secondary phases in the sample. It is common that MAX phase samples often contain other

phases, as was also identified in the Zr3AlC2 sample analysed by Lyons [6], where the presence

of other phases including ZrAl2 was noted. For the Ti3SiC2 MAX phase, comparison between

the mono-crystal and poly-crystal samples was made in the studies [229, 233], where in the

latter Raman spectra were measured from Ti3SiC2 synthesised single crystals. In these studies

difficulty in identifying the symmetries of the modes were explained based on the presence of

secondary phases in the sample, as well as on the experimental conditions such as the laser

beam wavelength. The secondary phases were found to affect the intensity, line-width and

frequency of the modes [229].

The difficulty of identifying some predicted modes experimentally, as noticed for Ti3SiC2, oc-

curs in both multiphase systems [229] and single crystals [233]. In both cases the low-intensity

Raman peaks predicted on the perfect crystal can be obscured by the background noise, indi-

cating the importance of the prediction of both the frequencies and intensities of the modes

[229].

In the experimental Zr3AlC2 Raman spectra shown in Fig. 6.6, there are a number of uniden-

tified peaks that do not align with the Raman active modes predicted for the two identified

phases in the sample, Zr3AlC2 and ZrAl2. These peaks include a quite sharp peak at around

90 cm−1, two broad ones at around 276 and 380 cm−1 and two broad peaks at high frequencies

553 and 576 cm−1. In between of the latter two peaks the two closely degenerate modes of

Zr3AlC2 are predicted. Due to these unidentified peaks Raman-active modes have also been

predicted for some additional phases, possibly present in the sample. These additional phases

include the Zr2Al3, Zr4Al3 besides the aforementioned ZrAl2 aluminium intermetallics and the

Zr7C6 non-stoichiometric carbide that were found to be the most competing phases of the two

MAX phases in the Zr-Al-C system at standard conditions and at 0K in Chapter 4. The
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Figure 6.6: Raman spectra of Zr3AlC2 sample [6] with the predicted active modes for the
Zr3AlC2 and Zr2Al phases.

Raman-active modes for the Zr2AlC MAX phase were also calculated.

Of particular interest are the Raman-active modes in the C band, showing a strong decoupling

of the C atoms vibrations at high frequencies from the rest of the lower frequency modes. Due

to the presence of the last broad split peaks at high frequencies, 553 and 576 cm−1, which

correspond to the upper modes in the C band resulting in three rather than two peaks, we

calculated the Raman frequencies for 5 of the non-stoichiometric carbides that appear on the

convex hull. In general, the presence of defects or disorder in the C sublattice would broaden

the two peaks. Raman frequencies calculated for all the crystalline phases we have considered

as possibly coexisting with the MAX phase are shown in Fig. 6.7. The experimental spectra

of the Zr3AlC2 phase [6] are also shown again for comparison. From this figure, the Zr4Al3

and Zr2AlC phases do not appear to align with any of the peaks. The Zr2Al3 phase matches

the first unidentified peak at around 90 cm−1 and is present in the broader peak at 380 cm−1.

The Raman active modes of the non-stoichiometric zirconium carbides are present at high

frequencies, as expected, as well as at some lower frequencies between 150 and 300 cm−1. From

these, the modes for Zr3C2, Zr4C3, Zr7C6 and Zr8C7 align or are close to the broad peaks at

276, 553 and 576 cm−1. Zr6C5 does not closely match any of these broad peaks.
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Figure 6.7: Raman spectra of Zr3AlC2 [6] with the predicted Raman-active modes of two
intermetallics, the Zr2AlC MAX phases and different ZrCx carbides.

Apart from the possible existence of other defective ZrC phases discussed previously, the ex-

istence of this extra peak in the C band of the experimental spectra, close to the predicted
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near-degeneracy peaks at 562.20 cm−1 (E2g) and 564.37 cm−1 (E1g) could be related to surface

effects or to the splitting of this close degeneracy due to possible breaks in the symmetry of

the phase. Surface effects can affect the selection criteria of particular bulk modes and the

strength of the coupling between the surface excited modes and the bulk modes, depending on

the penetration depth of the electromagnetic wave in the metal. Splitting of the degeneracy

on the other hand, could be a result of vacancies in the C or Al sublattice of the 312 MAX

phase which is common in MAX phases, as discussed before. This break in symmetry could

also be due to interruptions of the stacking sequence along the z axis. For example the stability

difference between 312 and 413 MAX phases is quite small, as shown in Chapter 4, with their

formation energies having negligible differences from the convex hull. Another factor that could

affect this degeneracy split, could be the grain orientation of Zr3AlC2 in the sample. Further

research would be required to determine the importance and degree of the effect of each of the

above possibilities on the existence of this extra peak in the C band.

Freq. ω1 ω2 ω3 ω4 ω5 ω6 ω7

(cm−1)

Ti2AlC 151.97 (E2g) 277.40 (E2g) 278.26 (E1g) 370.91 (A1g)

exp. 153.3 260.9 270.3 358.7 [17]

- 266 266 359 [226]

149.9 262.1 268.1 365.1 [227]

calc. 146 265 266 365 [17]

136 266 266 358 [226]

151 256 270 366 [224]

149 262 248 387 [227]

Ti3AlC2 126.57 (E2g) 189.12 (E1g) 203.60 (E2g) 274.10 (A1g) 640.82 (E2g) 641.90 (E1g) 674.64 (A1g)

exp. - 183.4 201.5 270.2 632.2 632.2 663.2 [17]

calc. 125 182 197 268 621 (E2g) 620 (E1g) 655 [17]

128.5 185.1 202.7 277.2 622.2 (E2g) 617.8 (E1g) 664.8 [231]

Table 6.2: Predicted Raman frequencies for the Ti2AlC and Ti3AlC2 MAX phases. The frequen-
cies for the Ti-based MAX phases are compared with available theoretical and experimental
data [17].

Tables 6.2 and 6.3 show the calculated Raman active modes compared with other theoretical and
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experimental values for the Ti and Zr based MAX phases respectively. Table 6.4 contains the

Raman active modes of Zr intermetallics considered competing phases for the Zr3AlC2 phase.

For the Ti2AlC phase our calculations overestimate the experimental values of ω2–ω4 by 2–6%

compared to the three different studies [17, 226, 227], while the difference with other theoretical

results is between 1–11% [17, 226, 224, 227]. Our calculations for Ti3AlC2 overestimate the

experimental values by Presser et al. [17] by a maximum of 3% which corresponds to mode ω2.

The rest of the modes were found overestimated by less than 2% with a minimum of 1% for ω3.

The differences with other calculations [17, 231] is between 1–4%. For the phonon calculations,

the methods used in the aforementioned literature were the direct method, used in our current

study and the DFT studies [226, 224, 227], and the standard density functional perturbation

theory, applied in the study by Li et al. [231].

For the Zr-based MAX phases, no experimental Raman analysis was found reported in the

literature. Table 6.3 shows our calculations for Zr2AlC and Zr3AlC2 with experimental mea-

surements [6] for Zr3AlC2. Our calculations for Zr3AlC2 are in good agreement with the experi-

mental values, with an underestimation of 0.55% and 1.9% for ω1 and ω4 and an overestimation

of 0.38% and 0.023% for ω2 and ω7. The study by Bai et al. [225] shows a larger difference than

our results with the experimental values between 1–6%, with the largest difference noted for

ω2.

Freq. ω1 ω2 ω3 ω4 ω5 ω6 ω7

(cm−1)

Zr2AlC 139.98 (E2g) 194.62 (E2g) 187.34 (E1g) 257.53 (A1g)

calc. 129 186 179 238 [225]

Zr3AlC2 106.41 (E2g) 132.51 (E1g) 170.33 (E2g) 193.16 (A1g) 562.20 (E2g) 564.37 (E1g) 600.14 (A1g)

exp. 107 132 - 197 - - 600/605

calc. 109 140 16? 189 527 529 593 [225]

Table 6.3: Predicted Raman frequencies for the Zr2AlC and Zr3AlC2 MAX phases. These
frequencies are compared with experimental measurements [6].
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Freq. ω1 ω2 ω3 ω4 ω5 ω6 ω7

(cm−1)

ZrAl3 143.44 (Eg) 197.47 (A1g) 203.20 (A1g) 248.76 (B1g) 285.77 (Eg) 328.01 (Eg)

ZrAl2 152.03 (E2g) 164.79 (E1g) 177.45 (A1g) 202.07 (E2g) 245.07 (E1g) 359.02 (E2g) 475.96 (A1g)

ZrAl 39.69 (B3g) 127.07 (B3g) 135.68 (B1g) 157.51 (Ag) 242.78 (B1g) 326.71 (Ag)

Zr4Al3 143.15 (E1g) 147.57 (E2g) 264.99 (A1g)

Table 6.4: Predicted frequencies of Raman active modes for possibly competing intermetallics.

Table 6.5: Predicted Raman-active frequencies for possibly competing binaries to the Zr-based
MAX phases.

Freq. Zr2Al3 Zr3C2 Zr4C3 Zr6C5 Zr7C6 Zr8C7

(cm−1)

ω1 90.72 (B1) 110.52 (B3g) 164.75 (Bg) 184.96 (Bg) 198.95 (Ag) 136.02 (E)

ω2 91.54 (A2) 121.88 (B2g) 181.22 (Bg) 188.65 (Ag) 200.80 (Eg) 136.81 (A1)

ω3 119.68 (A1) 168.59 (B1g) 194.16 (Ag) 209.20 (Bg) 210.93 (Ag) 144.19 (T2)

ω4 137.87 (B2) 186.90 (B1g) 197.07 (Ag) 213.95 (Ag) 229.98 (Eg) 151.51 (E)

ω5 146.94 (A2) 187.80 (B2g) 203.55 (Bg) 228.17 (Bg) 249.35 (Ag) 177.08 (T2)

ω6 165.21 (A2) 190.41 (B2g) 213.19 (Bg) 232.27 (Ag) 278.47 (Eg) 179.80 (E)

ω7 165.89 (B1) 191.03 (Ag) 214.56 (Ag) 253.43 (Bg) 486.12 (Ag) 184.59 (T2)

ω8 166.22 (B2) 192.85 (B3g) 226.44 (Bg) 268.37 (Ag) 494.47 (Eg) 186.65 (E)

ω9 184.48 (A1) 199.35 (B3g) 240.03 (Ag) 302.16 (Ag) 534.04 (Eg) 196.84 (T2)

ω10 213.47 (A2) 206.13 (B1g) 255.65 (Bg) 495.32 (Bg) 563.76 (Ag) 200.92 (E)

ω11 215.00 (B1) 215.51 (B3g) 271.00 (Ag) 513.90 (Ag) 602.45 (Ag) 205.25 (T2)

ω12 219.37 (B2) 225.24 (Ag) 280.55 (Ag) 522.36 (Bg) 622.57 (Eg) 213.41 (A1)

ω13 227.08 (A1) 228.34 (B1g) 466.56 (Bg) 537.58 (Bg) 217.24 (T2)

ω14 238.06 (B1) 230.37 (B2g) 515.41 (Ag) 598.91 (Bg) 235.65 (T2)

ω15 246.59 (A1) 246.83 (B2g) 519.05 (Bg) 600.21 (Ag) 238.67 (T2)

ω16 255.43 (B2) 255.17 (Ag) 522.14 (Ag) 246.04 (T2)

ω17 283.52 (B1) 268.75 (Ag) 539.64 (Bg) 246.29 (E)

ω18 288.30 (A1) 274.86 (B1g) 558.99 (Bg) 263.02 (T2)
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(TABLE 6.5 continued)

Freq. Zr2Al3 Zr3C2 Zr4C3 Zr6C5 Zr7C6 Zr8C7

(cm−1)

ω19 290.41 (A2) 485.52 (B3g) 583.72 (Ag) 264.29 (E)

ω20 302.85 (B1) 487.66 (B2g) 585.14 (Bg) 265.60 (A1)

ω21 304.48 (B2) 506.62 (B2g) 615.63 (Bg) 274.43 (T2)

ω22 319.27 (A2) 518.22 (B1g) 277.56 (E)

ω23 323.12 (A1) 524.70 (Ag) 308.33 (T2)

ω24 326.61 (B2) 536.31 (B3g) 310.32 (A1)

ω25 359.25 (A2) 571.20 (B1g) 460.87 (E)

ω26 375.49 (B1) 575.42 (B2g) 461.65 (T2)

ω27 389.09 (B2) 576.98 (Ag) 482.10 (T2)

ω28 580.25 (B3g) 482.38 (A1)

ω29 594.77 (B3g) 486.26 (E)

ω30 611.19 (B2g) 494.71 (T2)

ω31 502.67 (T2)

ω32 503.37 (E)

ω33 514.31 (E)

ω34 527.91 (T2)

ω35 541.04 (E)

ω36 541.50 (T2)

ω37 566.88 (T2)

ω38 580.68 (E)

ω39 599.08 (A1)

ω40 602.60 (T2)

ω41 609.13 (T2)

ω42 612.53 (E)
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6.4 Conclusions

In this chapter phonon calculations were conducted, with analysis of the phonon band structure

and DOS being performed for the Tin+1AlCn and Zrn+1AlCn MAX phases and their end mem-

bers. Characteristics of the MAX phase band structures and DOS were identified such as the

low dispersion particularly at frequencies above 7.5THz mostly observed for Zr-based phases,

attributed to the relatively distinctive Al phonon DOS peak, especially at frequencies between

8.5–9.5THz. Another characteristic noticed is the large band gap between the C band and

the lower frequency modes, which is evidenced in both systems, indicating a strong decoupling

between C dominated atomic vibrations and the rest of the vibrations. These characteristics

were attributed to the large mass differences between Zr and Al for the first characteristic, and

between M and C for the second, with Zr specifically having over 7 times the atomic mass of a C

atom. Comparison of the band structures between the Zr and Ti MAX phases also showed that

the mass effect dominated the difference in frequency at lower frequency modes. Specifically,

this was the case for the difference in slope of the transverse branch between the Γ and A points

for Zr2AlC and Ti2AlC. The elastic stiffness or deformability of these two MAX phases was

further examined by comparing the ratios of their shear constant to their longitudinal elastic

constant in the c direction. This comparison indicated that the Zr MAX phase lattice is not

softer than the Ti one, though Zr2AlC was found to have a slightly softer lattice based on their

stress-strain curves in Chapter 3. As also noted in that chapter, stiffness or deformability can

be an important property requirement for candidate coating materials for nuclear fuel cladding;

our calculations, however, indicate no significant or systematic difference in the stiffness be-

tween Zr and Ti MAX phases, with their difference possibly being on the order of 10% either

way.

Calculations of Raman-active phonon frequencies at the Γ point for these phases were conducted

and assignment of their corresponding mode symmetry was made. For the Ti-based MAX

phases the predicted Raman-active frequencies showed a good agreement of 2–6% compared

to the experimental values reported in the literature. In the Zr-Al-C system the frequencies of

Raman-active MAX phases and their possibly competing aluminides and carbides were calcu-



lated. In the Zr3AlC2 experimental spectra [6], 4 of the 7 theoretical Zr3AlC2 modes could be

identified with a good agreement, with a difference of less than 2%, and the presence of ZrAl2

was indicated but not conclusively proven, as two of the six theoretical Raman frequencies were

not close to any experimental peak. Among the different competing phases considered, partic-

ular attention was paid to the presence of the ZrC phase reported in the sample by the XRD

measurements [6] to possibly explain the two broad peaks observed in the C band at 553 and

576 cm−1. For this reason the effect of vacancies in the carbide was examined by considering a

number of non-stoichiometric Zr carbides. Overall though, no clear indication of the presence

of any specific non-stoichiometric carbide and competing aluminide phases was found in the

experimental spectra.
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Chapter 7

Conclusions and future work

In this work, we set out to develop an improved understanding of the MAX phases in the Zr-Al-

C and Ti-Al-C systems by predicting and comparing their structural, elastic, thermophysical

and electronic properties as well as conducting phonon and bonding analysis and predicting

their thermodynamic stability. Of particular importance in our study was the thermodynamic

stability of the Zr-based MAX phases in the context of the M-A-X ternary phase diagrams with

respect to their competing binary and ternary compounds, given their reported difficultly in

synthesis and low phase purity levels. The theoretical framework chosen for this work was based

on DFT with the lattice vibrations being treated within the quasiharmonic approximation.

This research first focused on, in Chapter 3, the prediction of structural and thermophysical

properties for Zrn+1AlCn phases and their end members and their comparison with the closely

related and contrastingly well-studied phases in the Ti-Al-C system. During this process, it was

found that the choice of PBEsol over other XC functionals, as tested for Zr2AlC specifically,

showed a close agreement with experiment with less than 1% difference in the lattice constants

at room temperature. Particular attention was paid to Zr2AlC, for which electronic excitations

were considered in addition to the vibrational free energy, and the free energy was expressed as

a function of the temperature and strains (ϵ1 = ϵ2, ϵ3). This also allowed for the prediction of

three of Zr2AlC’s temperature dependant elastic constants, for which the electronic contribution

was found to be around 2% at 1400K and an agreement of better than 3.7% was found compared

187
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to other predictions at T = 0K. With regards to elastic properties in the MAX phases in

general, calculations of the distribution of strain between the nanoscale layers of the phases

showed the layers of metal carbide being stiffer than their alternating Al layers, as would be

expected. As the thickness of this carbide layer increases, the MAX phases’ elastic properties

were also observed to approach those of the metal carbide, as indicated by the calculated

MAX phase and metal carbide stress-strain curves in both Zr-Al-C and Ti-Al-C systems. For

our calculations of equilibrium free energy in the quasiharmonic approximation we derived a

simple criterion that allowed us to neglect the change in the c/a ratio of the unit cell with

temperature, a common assumption in calculations of this kind, but not to our knowledge

justified previously. Other thermophysical properties such as thermal expansion, heat capacity

and temperature dependant bulk modulus were studied under the c/a constraint for Zrn+1AlCn

and Tin+1AlCn MAX phases and comparisons and trends were identified. Particularly, the

Ti-based MAX phases show lower heat capacity than the Zr-based ones with the heat capacity

increasing as n decreases. The opposite trend was noted for the bulk modulus, with its value

increasing with n and the Zr-based MAX phases showing lower bulk moduli compared to their

Ti-based counterparts. Comparison with the literature showed that heat capacity in particular

was considerably different at low temperature between the quasiharmonic and quasiharmonic

Debye methods, indicating the importance of considering the full phonon spectra in the free

energy calculation for those phases.

As mentioned at the start of this chapter, synthesis of the Zr-based MAX phases, and in par-

ticular of Zr2AlC, is reportedly challenging, and even when achieved, the presence of secondary

phases has been unavoidable. Additionally, higher phase-purity of Zr2AlC was only achieved

with the presence of additional elements. These introduce uncertainty whether the phase com-

position would change in a component of such a material in service. This uncertainty was the

motivation for the next focus of our study, in Chapter 4, on the prediction of the thermody-

namic stability of MAX phases in the Zr-Al-C system and their comparison with those in the

Ti-Al-C system. The thermodynamic stability was calculated against any competing binary

and ternary known compounds in both systems via the construction of a convex hull as a func-

tion of temperature. By introducing these finite-temperature convex hulls in the ternary space
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of compositions, we then could identify differences in the predicted thermodynamic stability

of the MAX phases between the two systems and explain how certain small energy differences

necessitated the very different options for their synthesis, despite their very close chemical and

structural resemblance. At the starting point of our calculations, at 0K, and neglecting the

zero point energy, based on the predictions of our chosen functional in this study, PBEsol,

the Zr2AlC and Zr3AlC2 MAX phases were found to be thermodynamically unstable with re-

spect to decomposition into carbides and aluminides in the Zr-Al-C system with their distances

above the hull being 23meV/atom and 4meV/atom respectively. As a test of the robustness

of our conclusions, the effect of other XC functionals was examined, finding that both phases

remained unstable. The effect of temperature on the convex hull by the inclusion of vibra-

tional and electronic excitations in the free energy was found to reduce the relative free energy

of both Zr-based MAX phases. Thus in the 500–600 K temperature range, Zr3AlC2 becomes

stable although Zr2AlC remains unstable up to 1800K where its distance reaches less than

5meV/atom above the hull. Therefore our predictions find no reason to expect that a pure

Zrn+1AlCn MAX phase that would be stable at room temperature can be synthesised at all.

Other research has shown that substitutional impurities e.g. Nb and Si included in these MAX

phases can result in a higher level of phase-purity being achieved during synthesis, however

the quantitative explanation of this impurity effect is an open question for future research. In

a detailed comparison with corresponding phases in Ti-Al-C we found the 211 and 312 MAX

phases in this system more stable than their competing phases at all temperatures. This is

consistent with the earlier discovery of these Ti based MAX phases and the higher difficulty in

synthesis experienced for MAX phases in Zr-Al-C. During this process, we introduced a simple

model to explain the calculated linear behaviour of the formation energy of Mn+1AXn with

respect to n for n > 2, which considers the MAX phases’ energy to be the sum of a constant

excess energy for each Al layer and a metal carbide part. This model demonstrates why as n

increases above n = 2 in MAX phases, stability can at best only be marginally increased.

In our study, particular focus was given to the thermodynamic stability of phases in the Zr-Al

system after large discrepancies were noted in the reported thermodynamic data, with studies

mostly disagreeing on the stability of ZrAl. In point of fact, in published Zr-Al system phase
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diagrams, ZrAl is shown to be a stable line-compound under around 1000K, whereas our

calculations on the other hand predict it unstable at any temperature, in agreement with other

published T = 0K predictions.

Having found the MAX phases in Zr-Al-C less thermodynamically stable than ones in Ti-Al-

C, in the final section of this chapter we analysed their geometrical distortion as a possible

explanation to these predicted differences. In particular, we examined the effect of the degree

of geometrical distortion of the octahedra in the Zr2AlC and Ti2AlC MAX phases compared to

the ideal equilibrium values in ZrC. Further to that the energy involved by varying the degree

of distortion in the octahedra as well as in the Al layers of the MAX phases was calculated.

No clear link was found with these areas, however, to explain the predicted differences in their

stability. The Zr-based MAX phases are predicted either unstable or metastable, whereas the

Ti-based ones are always predicted to be stable.

In an effort to further understand this difference in the thermodynamic stability between the

two systems, we then attempted to provide a deeper explanation that explicitly links these

differences with the electronic structure of the MAX phases or their competing compounds. As

an initial step, the electronic structure was studied by calculating the total and partial DOS.

Further chemical bonding analysis was performed by calculating the charge density difference

and charge transfer, by employing different charge partition concepts, namely the Bader, Mul-

liken and DDEC methodologies. To gain insight into the covalent bonding and quantify the

bond strength between different atomic pairs, bond orders based on the DDEC and pCOHP

analysis were calculated and the results were compared. The different methods used in this

chapter agreed on the general well-established chemical bonding characteristics of MAX phases,

such as confirming their mixed metallic-ionic-covalent bonding nature. The M-C bonding in

the carbide layer was also found to be the strongest followed by the relatively weaker M-Al and

even weaker Al-Al interactions, with the weakest interactions overall being the C-C and Al-C

bonds. In the 312 phases, the M1-C bonds were found to be stronger than the M2-C bonds and

the M1-C bond strength was found to increase from the 211 to the 312 phases. The different

methods were further found to agree on certain trends between the MAX phases and their end

members. For example, the M1-C bond order was found to be higher in the MAX phases than in
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their corresponding carbides. In terms of the atomic charge, qI , the three methods consistently

showed that the highest charge transfer on the M atoms occurs in the carbides and the lowest in

the aluminides. Apart from the commonly agreed characteristics, and despite the overall high

chemical resemblance of the Zrn+1AlCn and Tin+1AlCn phases, the charge values and some of

the bond strength trends were found to depend strongly on the method used. The chemical

differences between the two systems of MAX phases that could possibly explain their difference

in the thermodynamic stability might be masked by the details of these inconsistencies between

the methods.

During the course of this work, experimentalists working within the project became keen to

identify the phases they were finding while attempting the synthesis of Zr-based MAX phases,

such as a Zr3AlC2 sample prepared by Lyons [6], with their main method of analysis being

based on Raman spectroscopy. This provided an opportunity, in the context of this thesis,

to put DFT into practice as a tool of analysis for experimental results. Phonon calculations

conducted to assist in identifying what phases were present, showed that some of the Zr3AlC2

MAX phase frequencies were actually very clearly visible in the experimental results, whereas

for other possibly competing phases in the sample no clear indication was found. Starting

with this aim in Chapter 6, we first conducted phonon calculations for the Zrn+1AlCn and

Tin+1AlCn MAX phases and their end members and we analysed their phonon band structure

and DOS, which were presented at the beginning of the chapter before our discussion of the

predicted Raman active frequencies and comparison with the experimental spectra. One of

the characteristics noticed in the band structures of these materials, was the low dispersion

particularly at frequencies above 7.5THz and mostly observed for Zr-based phases. This could

be assigned to the relatively distinctive Al phonon DOS peak, especially at frequencies between

8.5–9.5THz for the Zr-based phases, that can be explained by the large atomic mass difference

between Zr and Al which is almost double that of Ti and Al, leading to this more decoupled

Al vibrations from the rest of the atoms in the Zr case. Another band structure characteristic

noticed for these phases was the large band gap between the C band and the rest of the lower

frequency modes, indicating a strong decoupling between C dominated atomic vibrations and

the rest of the vibrations. This is once more explained by the large mass difference between the
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M and C atoms, with Zr specifically having over 7 times the atomic mass of a C atom. Because

of the larger mass of Zr this decoupling is more pronounced for Zr-based MAX phases compared

to phases from other systems e.g. compared with the Raman spectra of Ti3SiC2 [227]. Given the

experimental analysis was done with Raman spectroscopy, Raman-active phonon frequencies

for the Zrn+1AlCn and Tin+1AlCn MAX phases were identified by their corresponding mode

symmetry. From the Raman spectra, typical characteristics were identified, including the lack

of C atom (2a) displacements in 211 Raman active modes, which are unlike those of 312 that do

involve displacements in C atoms (4f) but not M2 atoms (2a). Another typical characteristic

observed in the spectra, were the two close, almost degenerate, Raman modes of the 312 MAX

phases, which are also reported in the literature as a main reason experimental predictions have

generally only measured up to 6 out of the 7 predicted Raman active modes. This proximity in

the frequency of these two modes that correspond to the in and out of phase vibrations of the

M or C atoms in the adjacent layers, can be explained by a very weak coupling of the atoms

between the MAX phases’ layers. For the Ti-based MAX phases our predicted Raman active

frequencies showed a good agreement, between 2–6%, with the experimental values reported

in the literature. Regarding the Zr3AlC2 sample prepared by Lyons [6], 4 of the 7 modes

could be identified from the experimental Raman spectra based on the predicted Raman-active

frequencies, with less than 2% difference to the experimental findings by Lyons [6], and the

presence of a ZrAl2 secondary phase was also indicated. Raman-active mode predictions were

additionally made for a number of other possibly competing phases, aluminides and carbides

mainly appearing stable on the convex hull, in order to explain the presence of yet unidentified

peaks in the experimental spectra. Particular attention was paid to the presence of the ZrC

phase reported in the sample by the XRD measurements [6]. Specifically, to possibly explain

the two broad peaks in the experimental spectra in the C band at 553 and 576 cm−1, the

effect that vacancies might have on the Raman spectra was also investigated by calculating

the Raman active frequencies for a number of different non-stoichiometric ZrC phases: Zr3C2,

Zr4C3, Zr6C5, Zr7C6 and Zr8C7. No clear indication of the existence of any of these non-

stoichiometric carbides was noticed however, therefore future research on other possibilities of

explaining these unidentified peaks in the C band of the Raman spectra could be explored.



Such possible explanations could include symmetry breaks in the MAX phase structure, such

as vacancies in C or Al sublattices or breaking of the stacking symmetry, e.g. by alternating

312 and 413 phases, or effects of grain orientation.

193



194



Bibliography

[1] Zapata-Solvas, E. et al. Synthesis and physical properties of (Zr1−x,Tix)3AlC2 MAX

phases. Journal of the American Ceramic Society 100, 3393–3401 (2017).

[2] Horlait, D., Grasso, S., Chroneos, A. & Lee, W. E. Attempts to synthesise quaternary

MAX phases (Zr,M)2AlC and Zr2(Al,A)C as a way to approach Zr2AlC. Materials Re-

search Letters 4, 137–144 (2016).

[3] Lapauw, T. et al. The double solid solution (Zr, Nb)2(Al, Sn)C MAX phase: a steric

stability approach. Scientific Reports 8, 12801 (2018).

[4] Lapauw, T. et al. Synthesis of the new MAX phase Zr2AlC. Journal of the European

Ceramic Society 36, 1847–1853 (2016).

[5] Lapauw, T. et al. Synthesis of the novel Zr3AlC2 MAX phase. Journal of the European

Ceramic Society 36, 943–947 (2016).

[6] Lyons, J. To be published (2021). Institution: Imperial College London.

[7] Ouadha, I., Rached, H., Azzouz-Rached, A., Reggad, A. & Rached, D. Study of the

structural, mechanical and thermodynamic properties of the new MAX phase compounds

(Zr1−xTix)3AlC2. Computational Condensed Matter 23, e00468 (2020).

[8] Barsoum, M. W. et al. Thermal and electrical properties of Nb2AlC, (Ti, Nb)2AlC and

Ti2AlC. Metallurgical and Materials Transactions A 33, 2775–2779 (2002).

195



196 BIBLIOGRAPHY

[9] Drulis, M. K., Drulis, H., Gupta, S., Barsoum, M. W. & El-Raghy, T. On the heat

capacities of M2AlC (M = Ti, V, Cr) ternary carbides. Journal of Applied Physics 99,

093502 (2006).

[10] Alatalo, M., Weinert, M. & Watson, R. E. Stability of Zr-Al alloys. Physical Review B

57, R2009–R2012 (1998).

[11] Pisch, A. et al. Investigation of the thermodynamic properties of Al4C3: A combined

DFT and DSC study. Computational Materials Science 171, 109100 (2020).

[12] Hong, T. et al. Crystal structure, phase stability, and electronic structure of Ti-Al inter-

metallics: Ti3Al. Physical Review B 43, 1940–1947 (1991).

[13] Emsley, J. Nature’s building blocks: an AZ guide to the elements (Oxford University

Press, 2011).

[14] Manz, T. A. Introducing DDEC6 atomic population analysis: part 3. Comprehensive

method to compute bond orders. Royal Society of Chemistry Advances 7, 45552–45581

(2017).

[15] Manz, T. A. & Limas, N. G. Introducing DDEC6 atomic population analysis: part 1.

Charge partitioning theory and methodology. Royal Society of Chemistry Advances 6,

47771–47801 (2016).

[16] Limas, N. G. & Manz, T. A. Introducing DDEC6 atomic population analysis: part 4.

Efficient parallel computation of net atomic charges, atomic spin moments, bond orders,

and more. Royal Society of Chemistry Advances 8, 2678–2707 (2018).

[17] Presser, V. et al. First-order Raman scattering of the MAX phases: Ti2AlN,

Ti2AlC0.5N0.5, Ti2AlC, (Ti0.5V0.5)2AlC, V2AlC, Ti3AlC2, and Ti3GeC2. Journal of Raman

Spectroscopy 43, 168–172 (2012).

[18] Luo, F., Guo, Z.-c., Zhang, X.-l., Yuan, C.-y. & Cai, L.-c. Ab initio Predictions of

Structural and Thermodynamic Properties of Zr2AlC Under High Pressure and High

Temperature. Chinese Journal of Chemical Physics 28, 263–268 (2015).



BIBLIOGRAPHY 197

[19] Nasir, M. T. et al. Zirconium metal-based MAX phases Zr2AC (A = Al, Si, P and S): A

first-principles study. International Journal of Modern Physics B 28, 1550022 (2014).

[20] Wang, T., Jin, Z. & Zhao, J.-C. Thermodynamic assessment of the Al-Zr binary system.

Journal of Phase Equilibria 22, 544 (2001).

[21] Macia̧g, T. Enthalpy of formation of intermetallic phases from Al–Zr system determined

by calorimetric solution method. Journal of Thermal Analysis and Calorimetry 134,

423–431 (2018).

[22] Kematick, R. J. & Franzen, H. F. Thermodynamic study of the zirconium-aluminum

system. Journal of Solid State Chemistry 54, 226–234 (1984).

[23] Murray, J., Peruzzi, A. & Abriata, J. P. The Al-Zr (aluminum-zirconium) system. Journal

of Phase Equilibria 13, 277–291 (1992).

[24] Ghosh, G. & Asta, M. First-principles calculation of structural energetics of Al–TM

(TM=Ti, Zr, Hf) intermetallics. Acta Materialia 53, 3225–3252 (2005).

[25] Hug, G., Jaouen, M. & Barsoum, M. W. X-ray absorption spectroscopy, EELS, and

full-potential augmented plane wave study of the electronic structure of Ti2AlC, Ti2AlN,

Nb2AlC, and (Ti0.5Nb0.5)2AlC. Physical Review B 71, 024105 (2005).

[26] Medvedeva, N. I., Novikov, D. L., Ivanovsky, A. L., Kuznetsov, M. V. & Freeman, A. J.

Electronic properties of Ti3SiC2-based solid solutions. Physical Review B 58, 16042–16050

(1998).

[27] Nowotny, V. H. Strukturchemie einiger Verbindungen der Übergangsmetalle mit den

elementen C, Si, Ge, Sn. Progress in Solid State Chemistry 5, 27–70 (1971).

[28] Ivchenko, V. I. & Kosolapova, T. Y. Conditions of preparation of ternary Ti-Al-C alloy

powders. Soviet Powder Metallurgy and Metal Ceramics 14, 431–433 (1975).

[29] Ivchenko, V. I., Lesnaya, M. I., Nemchenko, V. F. & Kosolapova, T. Y. Preparation and

some properties of the ternary compound Ti2AlN. Soviet Powder Metallurgy and Metal

Ceramics 15, 293–295 (1976).



198 BIBLIOGRAPHY

[30] Jeitschko, W., Nowotny, H. & Benesovsky, F. Kohlenstoffhaltige ternäre Verbindungen

(H-phase). Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 94,

672–676 (1963).

[31] Jeitschko, W. & Nowotny, H. Die Kristallstruktur von Ti3SiC2—ein neuer

Komplexcarbid-Typ. Monatshefte für Chemie-Chemical Monthly 98, 329–337 (1967).

[32] Wolfsgruber, H., Nowotny, H. & Benesovsky, F. Die Kristallstruktur von Ti3GeC2. Monat-

shefte für Chemie und verwandte Teile anderer Wissenschaften 98, 2403–2405 (1967).

[33] Pietzka, M. A. & Schuster, J. C. Summary of constitutional data on the Aluminum-

Carbon-Titanium system. Journal of Phase Equilibria 15, 392–400 (1994).

[34] Barsoum, M. W. et al. High-Resolution Transmission Electron Microscopy of Ti4AlN3,

or Ti3Al2N2 Revisited. Journal of the American Ceramic Society 82, 2545–2547 (1999).

[35] Manoun, B., Saxena, S. K., El-Raghy, T. & Barsoum, M. W. High-pressure x-ray diffrac-

tion study of Ta4AlC3. Applied Physics Letters 88, 201902 (2006).

[36] Hu, C. et al. Nb4AlC3: A new compound belonging to the MAX phases. Scripta Mate-

rialia 57, 893–896 (2007).

[37] Barsoum, M. W. & El-Raghy, T. Synthesis and characterization of a remarkable ceramic:

Ti3SiC2. Journal of the American Ceramic Society 79, 1953–1956 (1996).

[38] Barsoum, M. W., Brodkin, D. & El-Raghy, T. Layered machinable ceramics for high

temperature applications. Scripta Materialia 36, 535–541 (1997).

[39] Hu, C., Zhang, H., Li, F., Huang, Q. & Bao, Y. New phases’ discovery in MAX family.

International Journal of Refractory Metals and Hard Materials 36, 300–312 (2013).

[40] Zhou, Y., Meng, F. & Zhang, J. New MAX-Phase Compounds in the V–Cr–Al–C System.

Journal of the American Ceramic Society 91, 1357–1360 (2008).

[41] Tunca, B. et al. Synthesis and Characterization of Double Solid Solution (Zr,Ti)2(Al,Sn)C

MAX Phase Ceramics. Inorganic Chemistry 58, 6669–6683 (2019).



BIBLIOGRAPHY 199

[42] Lane, N. J., Naguib, M., Lu, J., Hultman, L. & Barsoum, M. W. Structure of a new bulk

Ti5Al2C3 MAX phase produced by the topotactic transformation of Ti2AlC. Journal of

the European Ceramic Society 32, 3485–3491 (2012).

[43] Dahlqvist, M., Alling, B. & Rosén, J. Stability trends of MAX phases from first princi-

ples. Physical Review B 81, 220102 (2010).

[44] Aryal, S., Sakidja, R., Barsoum, M. W. & Ching, W.-Y. A genomic approach to the

stability, elastic, and electronic properties of the MAX phases. Physica Status Solidi B

251, 1480–1497 (2014).

[45] Ohmer, D., Qiang, G., Opahle, I., Singh, H. K. & Zhang, H. High-throughput design of

211-M2AX compounds. Physical Review Materials 3, 053803 (2019).

[46] Pino, E. S., Abe, A. Y. & Giovedi, C. The quest for safe and reliable fuel cladding ma-

terials. INAC 2015: international nuclear atlantic conference Brazilian nuclear program

State policy for a sustainable world, Brazil (2015).

[47] Duan, Z. et al. Current status of materials development of nuclear fuel cladding tubes

for light water reactors. Nuclear Engineering and Design 316, 131–150 (2017).

[48] Tallman, D. J. et al. Effects of neutron irradiation of Ti3SiC2 and Ti3AlC2 in the 121-

1085℃ temperature range. Journal of Nuclear Materials 484, 120–134 (2017).

[49] Wang, X. H. & Zhou, Y. C. Layered Machinable and Electrically Conductive Ti2AlC and

Ti3AlC2 Ceramics: a Review. Journal of Materials Science & Technology 26, 385–416

(2010).

[50] Li, S., Song, G., Kwakernaak, K., van der Zwaag, S. & Sloof, W. G. Multiple crack

healing of a Ti2AlC ceramic. Journal of the European Ceramic Society 32, 1813–1820

(2012).

[51] Lambrinou, K., Lapauw, T., Tunca, B. & Vleugels, J. MAX Phase Materials for Nuclear

Applications, chap. 21, 223–233 (John Wiley & Sons, Ltd, 2017).



200 BIBLIOGRAPHY

[52] Tunca, B. et al. Synthesis of MAX Phases in the Zr-Ti-Al-C System. Inorganic Chemistry

56, 3489–3498 (2017).

[53] He, L. F. et al. Isothermal oxidation of bulk Zr2Al3C4 at 500 to 1000℃ in air. Journal

of Materials Research 23, 359–366 (2008).

[54] Lu, X., Xiang, H., He, L.-F., Sun, L. & Zhou, Y. Effect of Ti Dopant on the Mechanical

Properties and Oxidation Behavior of Zr2[Al(Si)]4C5 Ceramics. Journal of the American

Ceramic Society 94, 1872–1877 (2011).

[55] Wan, D.-T. et al. A New Method to Improve the High-Temperature Mechanical Properties

of Ti3SiC2 by Substituting Ti with Zr, Hf, or Nb. Journal of the American Ceramic Society

93, 1749–1753 (2010).

[56] Adamaki, V., Minster, T., Thomas, T., Fourlaris, G. & Bowen, C. R. Study of the

mechanical properties of Ti2AlC after thermal shock. Materials Science and Engineering:

A 667, 9–15 (2016).

[57] Barsoum, M. W. & Radovic, M. Elastic and Mechanical Properties of the MAX Phases.

Annual Review of Materials Research 41, 195–227 (2011).

[58] Barsoum, M. W., Zhen, T., Kalidindi, S. R., Radovic, M. & Murugaiah, A. Fully re-

versible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nature Mate-

rials 2, 107–111 (2003).

[59] Radovic, M. & Barsoum, M. W. MAX phases: bridging the gap between metals and

ceramics. American Ceramics Society Bulletin 92, 20–27 (2013).

[60] Callister, W. Materials Science and Engineering : An Introduction (John Wiley & Sons,

New York, 2007), 7th edn.

[61] Ingason, A. S., Dahlqvist, M. & Rosen, J. Magnetic MAX phases from theory and

experiments; a review. Journal of Physics: Condensed Matter 28, 433003 (2016).

[62] Tallman, D. J., Anasori, B. & Barsoum, M. W. A Critical Review of the Oxidation of

Ti2AlC, Ti3AlC2 and Cr2AlC in Air. Materials Research Letters 1, 115–125 (2013).



BIBLIOGRAPHY 201

[63] Lin, Z. J., Li, M. S., Wang, J. Y. & Zhou, Y. C. High-temperature oxidation and hot

corrosion of Cr2AlC. Acta Materialia 55, 6182–6191 (2007).

[64] Lapauw, T. et al. Interaction of Mn+1AXn phases with oxygen-poor, static and fast-

flowing liquid lead-bismuth eutectic. Journal of Nuclear Materials 520, 258–272 (2019).

[65] Tunca, B. et al. Compatibility of Zr2AlC MAX phase-based ceramics with oxygen-poor,

static liquid lead–bismuth eutectic. Corrosion Science 171, 108704 (2020).

[66] Lambrinou, K., Charalampopoulou, E., Van der Donck, T., Delville, R. & Schryvers,

D. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid

lead-bismuth eutectic (LBE) at 500 °C. Journal of Nuclear Materials 490, 9–27 (2017).

[67] Cover, M. F., Warschkow, O., Bilek, M. M. M. & McKenzie, D. R. A comprehensive

survey of M2AX phase elastic properties. Journal of Physics: Condensed Matter 21,

305403 (2009).

[68] He, X. et al. General trends in the structural, electronic and elastic properties of the

M3AlC2 phases (M=transition metal): A first-principle study. Computational Materials

Science 49, 691–698 (2010).

[69] Bai, Y., He, X., Wang, R. & Zhu, C. An ab initio study on compressibility of Al-containing

MAX-phase carbides. Journal of Applied Physics 114, 173709 (2013).

[70] Zhang, H., Wu, X., Nickel, K. G., Chen, J. & Presser, V. High-pressure powder x-ray

diffraction experiments and ab initio calculation of Ti3AlC2. Journal of Applied Physics

106, 013519 (2009).

[71] Hettinger, J. D. et al. Electrical transport, thermal transport, and elastic properties of

M2AlC (M = Ti, Cr, Nb, and V). Physical Review B 72, 115120 (2005).

[72] Wang, J. & Zhou, Y. Dependence of elastic stiffness on electronic band structure of

nanolaminate M2AlC (M = Ti,V,Nb, and Cr) ceramics. Physical Review B 69, 214111

(2004).



202 BIBLIOGRAPHY

[73] Duong, T., Gibbons, S., Kinra, R. & Arróyave, R. Ab-initio aprroach to the electronic,

structural, elastic, and finite-temperature thermodynamic properties of Ti2AX (A = Al

or Ga and X = C or N). Journal of Applied Physics 110, 093504 (2011).

[74] Ali, M. A. et al. Recently synthesized (Zr1−xTix)2AlC (0 ≤ x ≤ 1) solid solutions:

Theoretical study of the effects of M mixing on physical properties. Journal of Alloys

and Compounds 743, 146–154 (2018).

[75] Wang, C. et al. Elastic, mechanical, electronic, and defective properties of Zr–Al–C

nanolaminates from first principles. Journal of the American Ceramic Society 101, 756–

772 (2017).

[76] Kanoun, M. B., Goumri-Said, S., Reshak, A. H. & Merad, A. E. Electro-structural

correlations, elastic and optical properties among the nanolaminated ternary carbides

Zr2AC. Solid State Sciences 12, 887–898 (2010). International Symposium on Structure-

Property Relationships in Solid-State Materials.

[77] Ali, M. A., Hossain, M. M., Jahan, N., Islam, A. K. M. A. & Naqib, S. H. Newly synthe-

sized Zr2AlC, Zr2(Al0.58Bi0.42)C, Zr2(Al0.2Sn0.8)C, and Zr2(Al0.3Sb0.7)C MAX phases: A

DFT based first-principles study. Computational Materials Science 131, 139–145 (2017).

[78] Yakoubi, A., Beldi, L., Bouhafs, B., Ferhat, M. & Ruterana, P. Full-relativistic calculation

of electronic structure of Zr2AlC and Zr2AlN. Solid State Communications 139, 485–489

(2006).

[79] Hadi, M. A. et al. Phase stability and physical properties of (Zr1−xNbx)2AlC MAX phases.

Journal of Physics and Chemistry of Solids 132, 38–47 (2019).

[80] Bouhemadou, A., Khenata, R. & Chegaar, M. Structural and elastic properties of Zr2AlX

and Ti2AlX (X = C and N) under pressure effect. The European Physical Journal B 56,

209–215 (2007).

[81] Ali, M. A., Nasir, M. T., Khatun, M. R., Islam, A. K. M. A. & Naqib, S. H. An

ab initio investigation of vibrational, thermodynamic, and optical properties of Sc2AlC

MAX compound. Chinese Physics B 25, 103102 (2016).



BIBLIOGRAPHY 203

[82] Li, X.-H., Cui, H.-L. & Zhang, R.-Z. Electronic, optical and thermal properties of Cr3AlB4

by first-principles calculations. Vacuum 145, 234–240 (2017).

[83] Wang, J., Wang, J., Li, A., Li, J. & Zhou, Y. Theoretical Study on the Mechanism of

Anisotropic Thermal Properties of Ti2AlC and Cr2AlC. Journal of the American Ceramic

Society 97, 1202–1208 (2014).

[84] Hadi, M. A. et al. Elastic and thermodynamic properties of new (Zr3−xTix)AlC2 MAX-

phase solid solutions. Computational Materials Science 137, 318–326 (2017).

[85] Son, W. et al. Ab-initio investigation of the finite-temperatures structural, elastic, and

thermodynamic properties of Ti3AlC2 and Ti3SiC2. Computational Materials Science

124, 420–427 (2016).

[86] Togo, A., Chaput, L., Tanaka, I. & Hug, G. First-principles phonon calculations of

thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2. Physical Review B 81, 174301

(2010).

[87] Razzak, M. A., Ali, M. S. & Hossain, M. A. First-principles study of structural, elastic,

electronic, thermodynamic and optical properties of Sc3SnX (X = B, C). Computational

Condensed Matter 13, 41–48 (2017).

[88] Li, X.-H., Cui, H.-L. & Zhang, R.-Z. Structural, optical, and thermal properties of MAX-

phase Cr2AlB2. Frontiers of Physics 13, 136501 (2018).

[89] Du, Y. L., Sun, Z. M., Hashimoto, H. & Tian, W. B. First-Principles Study on Thermo-

dynamic Properties of Ti2AlC and Ti2SC. Materials Transactions 50, 2173–2176 (2009).

[90] Ali, M. S., Islam, A. K. M. A., Hossain, M. M. & Parvin, F. Phase stability, elastic,

electronic, thermal and optical properties of Ti3Al1−xSixC2 (0 ≤ x ≤ 1): First principle

study. Physica B: Condensed Matter 407, 4221–4228 (2012).

[91] Djedid, A., Méçabih, S., Abbes, O. & Abbar, B. Theoretical investigations of structural,

electronic and thermal properties of Ti2AlX(X=C,N). Physica B: Condensed Matter 404,

3475–3482 (2009).



204 BIBLIOGRAPHY

[92] Oganov, A. R., Brodholt, J. P. & Price, G. D. Comparative study of quasiharmonic

lattice dynamics, molecular dynamics and Debye model applied to MgSiO3 perovskite.

Physics of the Earth and Planetary Interiors 122, 277–288 (2000).

[93] Lane, N. J., Vogel, S. C., Caspi, E. N. & Barsoum, M. W. High-temperature neutron

diffraction and first-principles study of temperature-dependent crystal structures and

atomic vibrations in Ti3AlC2, Ti2AlC, and Ti5Al2C3. Journal of Applied Physics 113,

183519 (2013).

[94] Gao, H., Benitez, R., Son, W., Arroyave, R. & Radovic, M. Structural, physical and

mechanical properties of Ti3(Al1−xSix)C2 solid solution with x = 0–1. Materials Science

and Engineering: A 676, 197–208 (2016).

[95] Tzenov, N. V. & Barsoum, M. W. Synthesis and Characterization of Ti3AlC2. Journal

of the American Ceramic Society 83, 825–832 (2000).

[96] Scabarozi, T. H. et al. Thermal expansion of select Mn+1AXn (M = early transition

metal, A = A group element, X = C or N) phases measured by high temperature x-ray

diffraction and dilatometry. Journal of Applied Physics 105, 013543 (2009).

[97] Pang, W.-K., Low, I.-M. & Sun, Z.-M. In Situ High-Temperature Diffraction Study of the

Thermal Dissociation of Ti3AlC2 in Vacuum. Journal of the American Ceramic Society

93, 2871–2876 (2010).

[98] Barsoum, M. W., El-Raghy, T. & Ali, M. Processing and characterization of Ti2AlC,

Ti2AlN, and Ti2AlC0.5N0.5. Metallurgical and Materials Transactions A 31, 1857–1865

(2000).

[99] Magnuson, M. et al. Electronic structure investigation of Ti3AlC2, Ti3SiC2, and Ti3GeC2

by soft x-ray emission spectroscopy. Physical Review B 72, 245101 (2005).

[100] Magnuson, M. & Mattesini, M. Chemical bonding and electronic-structure in MAX

phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films

621, 108–130 (2017).



BIBLIOGRAPHY 205

[101] Emmerlich, J., Music, D., Houben, A., Dronskowski, R. & Schneider,

J. M. Systematic study on the pressure dependence of M2AlC phases

(M = Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,W). Physical Review B 76, 224111 (2007).

[102] Bai, Y., He, X., Wang, R., Wang, S. & Kong, F. Effect of transition metal (M) and

M–C slabs on equilibrium properties of Al-containing MAX carbides: An ab initio study.

Computational Materials Science 91, 28–37 (2014).

[103] Sun, Z., Music, D., Ahuja, R., Li, S. & Schneider, J. M. Bonding and classification of

nanolayered ternary carbides. Physical Review B 70, 092102 (2004).

[104] Sun, Z., Ahuja, R., Li, S. & Schneider, J. M. Structure and bulk modulus of M2AlC (M

= Ti, V, and Cr). Applied Physics Letters 83, 899–901 (2003).

[105] Music, D., Sun, Z., Voevodin, A. A. & Schneider, J. M. Electronic structure and shearing

in nanolaminated ternary carbides. Solid State Communications 139, 139–143 (2006).

[106] Music, D., Emmerlich, J. & Schneider, J. M. Phase stability and elastic properties of

Tan+1AlCn (n = 1-3) at high pressure and elevated temperature. Journal of Physics:

Condensed Matter 19, 136207 (2007).

[107] Hamilton, W. R. Second Essay on a General Method in Dynamics. Philosophical Trans-

actions of the Royal Society of London 125, 95–144 (1835).

[108] Slater, J. C. Atomic Shielding Constants. Physical Review 36, 57–64 (1930).

[109] Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approxima-

tions for many-electron systems. Physical Review B 23, 5048–5079 (1981).

[110] Ceperley, D. M. & Alder, B. J. Ground State of the Electron Gas by a Stochastic Method.

Physical Review Letters 45, 566–569 (1980).

[111] Csonka, G. I. et al. Assessing the performance of recent density functionals for bulk solids.

Physical Review B 79, 155107 (2009).



206 BIBLIOGRAPHY

[112] Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Physical

Review B 13, 5188–5192 (1976).

[113] Bader, R. F. W. Molecular fragments or chemical bonds. Accounts of Chemical Research

8, 34–40 (1975).

[114] Mulliken, R. S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions.

I. The Journal of Chemical Physics 23, 1833–1840 (1955).

[115] Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-

resolved visualization of chemical bonding in solids based on density-functional calcula-

tions. The Journal of Physical Chemistry 97, 8617–8624 (1993).

[116] Finnis, M. Interatomic forces in condensed matter (Oxford University Press, Oxford,

2010).

[117] Coulson, C. A. The electronic structure of some polyenes and aromatic molecules VII.

Bonds of fractional order by the molecular orbital method. Proceedings of the Royal

Society of London A 169, 413–428 (1939).

[118] Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calcu-

lations using a plane-wave basis set. Physical Review B 54, 11169–11186 (1996).

[119] Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals

and semiconductors using a plane-wave basis set. Computational Materials Science 6,

15–50 (1996).

[120] Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. LOBSTER: A tool

to extract chemical bonding from plane-wave based DFT. Journal of Computational

Chemistry 37, 1030–1035 (2016).

[121] Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection

from plane-wave and PAW wavefunctions and application to chemical-bonding analysis

in solids. Journal of Computational Chemistry 34, 2557–2567 (2013).



BIBLIOGRAPHY 207

[122] Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal Orbital Hamilton Popula-

tion (COHP) Analysis As Projected from Plane-Wave Basis Sets. The Journal of Physical

Chemistry A 115, 5461–5466 (2011).

[123] Manz, T. & Limas, N. G. CHARGEMOL program for performing DDEC analysis. See

the following: http: // ddec. sourceforge. net (2016).

[124] Wallace, D. C. Thermodynamics of Crystals. Dover books on physics (Dover Publications,

1998).

[125] Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scripta

Materialia 108, 1–5 (2015).

[126] Lehmann, G. & Taut, M. On the Numerical Calculation of the Density of States and

Related Properties. Physica Status Solidi B 54, 469–477 (1972).

[127] Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal

properties from density-functional perturbation theory. Reviews of Modern Physics 73,

515–562 (2001).

[128] Mermin, N. D. Thermal Properties of the Inhomogeneous Electron Gas. Physical Review

137, A1441–A1443 (1965).

[129] Mellan, T. A., Duff, A. I. & Finnis, M. W. Spontaneous Frenkel pair formation in

Zirconium Carbide. Physical Review B 98, 174116 (2018).

[130] Xie, C. et al. Effects of carbon vacancies on the structures, mechanical properties, and

chemical bonding of zirconium carbides: a first-principles study. Physical Chemistry

Chemical Physics 18, 12299–12306 (2016).

[131] Gunda, N. S. H. & Van der Ven, A. First-principles insights on phase stability of titanium

interstitial alloys. Physical Review Materials 2, 083602 (2018).

[132] Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-

wave method. Physical Review B 59, 1758–1775 (1999).

http://ddec.sourceforge.net


208 BIBLIOGRAPHY

[133] Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas

correlation energy. Physical Review B 45, 13244–13249 (1992).

[134] He, L. et al. Accuracy of generalized gradient approximation functionals for density-

functional perturbation theory calculations. Physical Review B 89, 064305 (2014).

[135] Zapata-Solvas, E. et al. Experimental synthesis and density functional theory investi-

gation of radiation tolerance of Zr3(Al1−xSix)C2 MAX phases. Journal of the American

Ceramic Society 100, 1377–1387 (2017).

[136] Shang, L., Music, D., to Baben, M. & Schneider, J. M. Phase stability predictions of

Cr1−x,M x)2(Al1−y,Ay)(C1−z,X z) (M = Ti, Hf, Zr; A = Si, X= B). Journal of Physics

D: Applied Physics 47, 065308 (2014).

[137] Clark, S. J. et al. First principles methods using CASTE. Zeitschrift für Kristallographie

- Crystalline Materials 220, 567–570 (01 May. 2005).

[138] Sokol, M., Natu, V., Kota, S. & Barsoum, M. W. On the Chemical Diversity of the MAX

Phases. Trends in Chemistry 1, 210–223 (2019). Special Issue Part Two: Big Questions

in Chemistry.

[139] Hehenkamp, T., Berger, W., Kluin, J.-E., Lüdecke, C. & Wolff, J. Equilibrium vacancy

concentrations in copper investigated with the absolute technique. Physical Review B 45,

1998–2003 (1992).

[140] Plummer, G. & Tucker, G. J. Bond-order potentials for the Ti3AlC2 and Ti3SiC2 MAX

phases. Physical Review B 100, 214114 (2019).

[141] Plummer, G. et al. On the origin of kinking in layered crystalline solids. Materials Today

43, 45–52 (2021).

[142] Manoun, B. et al. Compression behavior of M2AlC (M = Ti, V, Cr, Nb, and Ta) phases

to above 50 GPa. Physical Review B 73, 024110 (2006).



BIBLIOGRAPHY 209

[143] Radovic, M. et al. On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2,

Ti3Si0.5Al0.5C2 and Ti2AlC in the 300-1573K temperature range. Acta Materialia 54,

2757–2767 (2006).

[144] Wu, Z. & Cohen, R. E. More accurate generalized gradient approximation for solids.

Physical Review B 73, 235116 (2006).

[145] Poulou, A., Mellan, T. A. & Finnis, M. W. Stability of Zr-Al-C and Ti-Al-C MAX phases:

A theoretical study. Physical Review Materials 5, 033608 (2021).

[146] Saunders, N. & Rivlin, V. G. Thermodynamic characterization of Al–Cr, Al–Zr, and

Al–Cr–Zr alloy systems. Materials Science and Technology 2, 520–527 (1986).

[147] Tamim, R. & Mahdouk, K. Thermodynamic reassessment of the Al–Zr binary system.

Journal of Thermal Analysis and Calorimetry 131, 1187–1200 (2018).

[148] Kattner, U. R., Lin, J. C. & Chang, Y. A. Thermodynamic assessment and calculation

of the Ti-Al system. Metallurgical Transactions A (Physical Metallurgy and Materials

Science) 23 A, 2081–2090 (1992).

[149] Zhang, F., Chen, S. L., Chang, Y. A. & Kattner, U. R. A thermodynamic description of

the Ti-Al system. Intermetallics 5, 471–482 (1997).

[150] Witusiewicz, V. T. et al. Thermodynamic description of the Al–C–Ti system. Journal of

Alloys and Compounds 623, 480–496 (2015).

[151] Witusiewicz, V. T., Bondar, A. A., Hecht, U., Rex, S. & Velikanova, T. Y. The Al-B-

Nb-Ti system. III. Thermodynamic re-evaluation of the constituent binary system Al-Ti.

Journal of Alloys and Compounds 465, 64–77 (2008).

[152] He, L., Zhou, Y., Bao, Y., Lin, Z. & Wang, J. Synthesis, Physical, and Mechanical

Properties of Bulk Zr3Al3C5 Ceramic. Journal of the American Ceramic Society 90,

1164–1170 (2007).

[153] Leela-adisorn, U. et al. AlZrC2 synthesis. Ceramics International 32, 431–439 (2006).



210 BIBLIOGRAPHY

[154] Yu, X.-X., Weinberger, C. R. & Thompson, G. B. Ab initio investigations of the phase

stability in group IVB and VB transition metal carbides. Computational Materials Science

112, 318–326 (2016).

[155] Zhang, Y., Liu, B. & Wang, J. Self-assembly of Carbon Vacancies in Sub-stoichiometric

ZrC1−x. Scientific Reports 5, 18098 (2015).

[156] Okamoto, H. Al-Zr (Aluminum-Zirconium). Journal of Phase Equilibria 23, 455 (2002).

[157] Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied

to solids. Physical Review B 83, 195131 (2011).

[158] Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals

density functional. Journal of Physics: Condensed Matter 22, 022201 (2010).

[159] Deng, Z.-X. et al. Ab initio and Calphad-type thermodynamic investigation of the Ti-

Al-Zr system. Journal of Mining and Metallurgy B 55, 427–437 (2019).

[160] Barrachin, M. et al. Critical evaluation of experimental data of solution enthalpy of zir-

conium in liquid aluminum. Journal of Chemical Thermodynamics 128, 295–304 (2019).

[161] Keast, V. J., Harris, S. & Smith, D. K. Prediction of the stability of the Mn+1AXn phases

from first principles. Physical Review B 80, 214113 (2009).

[162] Thore, A., Dahlqvist, M., Alling, B. & Rosén, J. Temperature dependent phase stability

of nanolaminated ternaries from first-principles calculations. Computational Materials

Science 91, 251–257 (2014).

[163] Ouisse, T. & Chaussende, D. Application of an axial next-nearest-neighbor Ising model

to the description of Mn+1AXn phases. Physical Review B 85, 104110 (2012).

[164] Datasheet from “PAULING FILE Multinaries Edition – 2012” in SpringerMaterials

(2016). Copyright 2016 Springer-Verlag Berlin Heidelberg & Material Phases Data System

(MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan.



BIBLIOGRAPHY 211

[165] Xu, J. & Freeman, A. J. Band filling and structural stability of trialuminides: YAl3,

ZrAl3, and NbAl3. Journal of Materials Research 6, 1188–1199 (1991).

[166] Meschel, S. V. & Kleppa, O. J. Standard enthalpies of formation of 4d aluminides by

direct synthesis calorimetry. Journal of Alloys and Compounds 191, 111–116 (1993).

[167] Clouet, E., Sanchez, J. M. & Sigli, C. First-principles study of the solubility of Zr in Al.

Physical Review B 65, 094105 (2002).

[168] Colinet, C. & Pasturel, A. Phase stability and electronic structure in ZrAl3 compound.

Journal of Alloys and Compounds 319, 154–161 (2001).

[169] Al-Zr. In Binary Systems. Part 1 _ Elements and Binary Systems from Ag-Al to Au-Tl,

vol. 19B1 of Landolt-Börnstein - Group IV Physical Chemistry (Springer-Verlag Berlin

Heidelberg). Datasheet - doi: 10.1007/10655491_58.

[170] Duan, Y. H., Huang, B., Sun, Y., Peng, M. J. & Zhou, S. G. Stability, elastic properties

and electronic structures of the stable Zr–Al intermetallic compounds: A first-principles

investigation. Journal of Alloys and Compounds 590, 50–60 (2014).

[171] Klein, R., Jacob, I., O’Hare, P. A. G. & Goldberg, R. N. Solution-calorimetric deter-

mination of the standard molar enthalpies of formation of the pseudobinary compounds

Zr(AlxFe1−x)2 at the temperature 298.15 K. The Journal of Chemical Thermodynamics

26, 599–608 (1994).

[172] Nguyen-Manh, D. & Pettifor, D. G. Electronic structure, phase stability and elastic

moduli of AB transition metal aluminides. Intermetallics 7, 1095–1106 (1999).

[173] Dahlqvist, M., Alling, B., Abrikosov, I. A. & Rosén, J. Phase stability of Ti2AlC upon

oxygen incorporation: A first-principles investigation. Physical Review B 81, 024111

(2010).

[174] Al-C. In Binary Systems. Part 1 _ Elements and Binary Systems from Ag-Al to Au-Tl,

vol. 19B1 of Landolt-Börnstein - Group IV Physical Chemistry (Springer-Verlag Berlin

Heidelberg). Datasheet - doi: 10.1007/10655491_29.



212 BIBLIOGRAPHY

[175] Deffrennes, G. et al. Critical assessment and thermodynamic modeling of the Al–C

system. Calphad 66, 101648 (2019).

[176] Qiu, C. & Metselaar, R. Solubility of carbon in liquid Al and stability of Al4C3. Journal

of Alloys and Compounds 216, 55–60 (1994).

[177] Li, K., Sun, Z. G., Wang, F., Zhou, N. G. & Hu, X. W. First-principles calculations on

Mg/Al4C3 interfaces. Applied Surface Science 270, 584–589 (2013).

[178] Blachnik, R. O. G., Gross, P. & Hayman, C. Enthalpies of formation of the carbides of

aluminium and beryllium. Transactions of the Faraday Society 66, 1058–1064 (1970).

[179] Meschel, S. V. & Kleppa, O. J. Standard enthalpies of formation of AlB12 and Al4C3 by

high temperature direct synthesis calorimetry. Journal of Alloys and Compounds 227,

93–96 (1995).

[180] King, R. C. & Armstrong, G. T. Heat of combustion and heat of formation of aluminum

carbide. Journal of Research of the National Bureau of Standards Section A: Physics and

Chemistry 68A, 661 (1964).

[181] Rinehart, G. H. & Behrens, R. G. Vaporization thermodynamics of aluminum carbide.

The Journal of Chemical Thermodynamics 12, 205–215 (1980).

[182] Rafaja, D., Lengauer, W., Ettmayer, P. & Lipatnikov, V. N. Rietveld analysis of the

ordering in V8C7. Journal of Alloys and Compounds 269, 60–62 (1998).

[183] Tian, H. et al. Predictions of the structures and properties of the substituted layered

ternary compound series (Zr1−xTx)3Al3C5 (T = Hf, Nb, and V) through first-principles

studies. Journal of Physics Condensed Matter 31, 12 (2019).

[184] Lin, Z. J., He, L. F., Li, M. S., Wang, J. Y. & Zhou, Y. C. Layered stacking characteristics

of ternary zirconium aluminum carbides. Journal of Materials Research 22, 3058–3066

(2007).

[185] Ohnuma, I. et al. Phase equilibria in the Ti–Al binary system. Acta Materialia 48,

3113–3123 (2000).



BIBLIOGRAPHY 213

[186] Hong, T., Watson-Yang, T. J., Freeman, A. J., Oguchi, T. & Xu, J.-h. Crystal structure,

phase stability, and electronic structure of Ti-Al intermetallics: TiAl3. Physical Review

B 41, 12462–12467 (1990).

[187] Hong, T. & Freeman, A. J. Effect of ternary additions on the structural stability and elec-

tronic structure of intermetallic compounds: Al3Ti + Cu. Journal of Materials Research

6, 330–338 (1991).

[188] Nassik, M., Chrifi-Alaoui, F. Z., Mahdouk, K. & Gachon, J. C. Calorimetric study of the

aluminium–titanium syste. Journal of Alloys and Compounds 350, 151–154 (2003).

[189] Kubaschewski, O. & Heymer, G. Heats of formation of transition-metal aluminides.

Transactions of the Faraday Society 56, 473–478 (1960).

[190] Asta, M., de Fontaine, D. & van Schilfgaarde, M. First-principles study of phase stability

of Ti–Al intermetallic compounds. Journal of Materials Research 8, 2554–2568 (1993).

[191] Fu, C. L. Electronic, elastic, and fracture properties of trialuminide alloys: Al3Sc and

Al3Ti. Journal of Materials Research 5, 971–979 (1990).

[192] Al-Ti. In Binary Systems. Part 1 _ Elements and Binary Systems from Ag-Al to Au-Tl,

vol. 19B1 of Landolt-Börnstein - Group IV Physical Chemistry (Springer-Verlag Berlin

Heidelberg). Datasheet - doi: 10.1007/10655491_53.

[193] Zou, J., Fu, C. L. & Yoo, M. H. Phase stability of intermetallics in the Al-Ti system: A

first-principles total-energy investigation. Intermetallics 3, 265–269 (1995).

[194] Watson, R. E. & Weinert, M. Transition-metal aluminide formation: Ti, V, Fe, and Ni

aluminides. Physical Review B 58, 5981–5988 (1998).

[195] Colinet, C. & Pasturel, A. Ab initio calculation of the formation energies of L12, D022,

D023 and one dimensional long period structures in TiAl3 compound. Intermetallics 10,

751–764 (2002).

[196] Kubaschewski, O. & Dench, W. A. The heats of formation in the systems titanium-

aluminium and titanium-iron. Acta Metallurgica 3, 339–346 (1955).



214 BIBLIOGRAPHY

[197] Meschel, S. V. & Kleppa, O. J. The Standard Enthalpies of Formation of Some 3d

Transition Metal Aluminides by High-Temperature Direct Synthesis Calorimetry, 103–112

(Springer Netherlands, Dordrecht, 1994).

[198] Jian, Y. et al. Phase stability, mechanical properties and electronic structures of Ti-Al

binary compounds by first principles calculations. Materials Chemistry and Physics 221,

311–321 (2019).

[199] Zou, J. & Fu, C. L. Structural, electronic, and magnetic properties of 3d transition-metal

aluminides with equiatomic composition. Physical Review B 51, 2115–2121 (1995).

[200] Music, D. & Schneider, J. M. Effect of transition metal additives on electronic structure

and elastic properties of TiAl and Ti3Al. Physical Review B 74, 174110 (2006).

[201] Wan, Y. et al. First-principles calculations of structural, elastic and electronic properties

of second phases and solid solutions in Ti-Al-V alloys. Physica B: Condensed Matter 591,

412241 (2020).

[202] Zhang, C., Hou, H., Zhao, Y., Yang, X. & Han, P. Effect of Zr, Hf, and Sn additives

on elastic properties of α2-Ti3Al phase by first-principles calculations. Journal of Wuhan

University of Technology—Materials Science Edition 32, 944–950 (2017).

[203] Eibler, R. New aspects of the energetics of ordered Ti2C and Ti2N. Journal of Physics:

Condensed Matter 19, 196226 (2007).

[204] Hugosson, H. W., Korzhavyi, P., Jansson, U., Johansson, B. & Eriksson, O. Phase

stabilities and structural relaxations in substoichiometric TiC1−x. Physical Review B 63,

165116 (2001).

[205] Eibler, R. Electronic structure and energetics of ordered titanium carbides of composition

Ti2C. Journal of Physics: Condensed Matter 14, 4425–4444 (2002).

[206] Connétable, D. First-principles study of transition metal carbides. Materials Research

Express 3, 126502 (2016).



BIBLIOGRAPHY 215

[207] Guo, F. et al. Structural, mechanical, electronic and thermodynamic properties of cubic

TiC compounds under different pressures: A first-principles study. Solid State Commu-

nications 311, 113856 (2020).

[208] Jang, J. H., Lee, C.-H., Heo, Y.-U. & Suh, D.-W. Stability of (Ti,M)C (M = Nb, V, Mo

and W) carbide in steels using first-principles calculations. Acta Materialia 60, 208–217

(2012).

[209] Hug, G. Electronic structures of and composition gaps among the ternary carbides

Ti2MC. Physical Review B 74, 184113 (2006).

[210] Tan, J. et al. A comparative first-principles study of the electronic, mechanical, defect

and acoustic properties of Ti2AlC and Ti3AlC. Journal of Physics D: Applied Physics

47, 215301 (2014).

[211] Lu, Y. et al. Facile Synthesis of Ti2AC (A = Zn, Al, In, and Ga) MAX Phases by

Hydrogen Incorporation into Crystallographic Voids. The Journal of Physical Chemistry

Letters 12, 11245–11251 (2021).

[212] Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader

decomposition of charge density. Computational Materials Science 36, 354–360 (2006).

[213] Yu, M. & Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration.

The Journal of Chemical Physics 134, 064111 (2011).

[214] Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without

lattice bias. Journal of Physics: Condensed Matter 21, 084204 (2009).

[215] Hug, G. & Fries, E. Full-potential electronic structure of Ti2AlC and Ti2AlN. Physical

Review B 65, 113104 (2002).

[216] Barsoum, M. W. et al. Electrical conductivity, thermopower, and Hall effect of Ti3AlC2,

Ti4AlN3, and Ti3SiC2. Physical Review B 62, 10194–10198 (2000).

[217] Pierson, H. O. Handbook of refractory carbides & nitrides: properties, characteristics,

processing and applications (William Andrew, 1996).



216 BIBLIOGRAPHY

[218] Hollander, L. E. Electrical conductivity and thermoelectric effect in single-crystal tic.

Journal of Applied Physics 32, 996–997 (1961).

[219] Magnuson, M. et al. Electronic structure and chemical bonding in Ti2AlC investigated

by soft x-ray emission spectroscopy. Physical Review B 74, 195108 (2006).

[220] Grechnev, A., Ahuja, R. & Eriksson, O. Balanced crystal orbital overlap population—a

tool for analysing chemical bonds in solids. Journal of Physics: Condensed Matter 15,

7751–7761 (2003).

[221] Dahlqvist, M. & Rosen, J. Order and disorder in quaternary atomic laminates from first-

principles calculations. Physical Chemistry Chemical Physics 17, 31810–31821 (2015).

[222] Music, D., Houben, A., Dronskowski, R. & Schneider, J. M. Ab initio study of ductility

in M2AlC (M = Ti, V, Cr). Physical Review B 75, 174102 (2007).

[223] Bai, Y., Srikanth, N., Chua, C. K. & Zhou, K. Density Functional Theory Study of

Mn+1AXn Phases: A Review. Critical Reviews in Solid State and Materials Sciences 44,

56–107 (2019).

[224] Leaffer, O. D., Gupta, S., Barsoum, M. W. & Spanier, J. E. On the Raman Scattering

from Selected M 2AC Compounds. Journal of Materials Research 22, 2651–2654 (2007).

[225] Bai, Y., He, X. & Wang, R. Lattice dynamics of Al-containing MAX-phase carbides: a

first-principle study. Journal of Raman Spectroscopy 46, 784–794 (2015).

[226] Wang, J., Zhou, Y., Lin, Z., Meng, F. & Li, F. Raman active phonon modes and heat ca-

pacities of Ti2AlC and Cr2AlC ceramics: first-principles and experimental investigations.

Applied Physics Letters 86, 101902 (2005).

[227] Spanier, J. E., Gupta, S., Amer, M. & Barsoum, M. W. Vibrational behavior of the

Mn+1AXn phases from first-order Raman scattering (M = Ti,V,Cr, A = Si, X = C,N).

Physical Review B 71, 012103 (2005).

[228] Amer, M. et al. The Raman spectrum of Ti3SiC2. Journal of Applied Physics 84, 5817–

5819 (1998).



BIBLIOGRAPHY 217

[229] Wdowik, U. D., Twardowska, A. & Mędala-Wąsik, M. Lattice dynamics of binary and

ternary phases in Ti–Si–C system: A combined Raman spectroscopy and density func-

tional theory study. Materials Chemistry and Physics 168, 58–65 (2015).

[230] Liu, Z. et al. Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX

phase. Acta Materialia 73, 186–193 (2014).

[231] Li, Y. F. et al. Phonon spectrum, IR and Raman modes, thermal expansion tensor and

thermal physical properties of M2TiAlC2 (M = Cr, Mo, W). Computational Materials

Science 134, 67–83 (2017).

[232] Klein, M. V., Holy, J. A. & Williams, W. S. Raman scattering induced by carbon vacancies

in TiCx. Physical Review B 17, 1546–1556 (1978).

[233] Mercier, F., Chaix-Pluchery, O., Ouisse, T. & Chaussende, D. Raman scattering from

Ti3SiC2 single crystals. Applied Physics Letters 98, 081912 (2011).


	Abstract
	Acknowledgements
	Introduction
	Overview of MAX phase properties
	Elastic and thermal properties
	Chemical bonding
	Thermodynamic stability

	Theoretical background
	Density Functional Theory
	Born–Oppenheimer approximation
	Hohenberg–Kohn theorems
	Hartree model and Hartree–Fock theory
	Kohn–Sham DFT
	Exchange–Correlation Functionals
	Periodic boundary conditions - Plane wave basis
	Pseudopotentials

	Chemical bonding
	Mulliken analysis and Crystal Orbital Hamilton Populations
	Bader analysis
	Density Derived Electrostatic and Chemical Method

	Harmonic phonons
	Harmonic lattice dynamics
	Calculations of phonon eigenmodes and eigenfrequencies
	Harmonic phonon thermodynamics
	Quasiharmonic lattice dynamics
	Raman spectroscopy

	Free energy
	Combined free energy
	c/a constraint
	Thermophysical properties
	Calculation of elastic constants
	Free energy of formation and convex hull



	Structural and Thermophysical properties of Zrn+1AlCn and Tin+1AlCn.
	Computational details
	Results
	Free energy and lattice parameters of Zr2AlC
	Elastic moduli of Zr2AlC
	The c/a constraint
	Thermal expansion of Zrn+1AlCn and Tin+1AlCn
	Heat capacity of Zrn+1AlCn and Tin+1AlCn
	Bulk modulus of Zrn+1AlCn and Tin+1AlCn
	Grüneisen parameters

	Conclusions

	Thermodynamic stability of MAX phases in the Zr-Al-C and Ti-Al-C systems
	Methodology
	Computational details
	Free energy of formation
	The phases considered

	Results
	Results for phase diagrams in Zr-Al-C: 0 K
	CH0 in the Zr-Al-C system
	Sensitivity to exchange-correlation functional

	The Zr-Al intermetallics
	Results for phase diagrams in Zr-Al-C: T > 0 K
	Comparison with the Ti-Al-C system
	Geometrical distortion effect

	Conclusions

	Electronic structure and bonding analysis
	Computational details
	Results
	Electronic structure
	Charge density difference and charge transfer
	Overlap population and bond order: DDEC method
	Crystal Orbital Hamilton Populations (COHP)

	Conclusions

	Phonon spectra and Raman spectroscopy
	Introduction
	Computational details
	Results
	Phonon band structure and DOS
	Calculation of Raman modes

	Conclusions

	Conclusions and future work

