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Abstract

Although wind energy helps us slow down the increase of global temperatures,

its weather-dependence and unpredictability make it risky to invest in. In this

thesis we apply statistical and mathematical tools to enable energy providers

to accurately plan such investments.

In the first part we want to understand the impact of wind energy on electricity

prices. We extend an existing multifactor model of electricity spot prices by

including stochastic volatility as well as the information about wind energy

production. Empirical studies indicate that these additions improve the

model fit. We also model wind-related variables directly, using Brownian

semistationary processes with generalised hyperbolic marginals. Finally, we

introduce a joint model of prices and wind energy production suitable for

quantifying the risk faced by energy distributors.

The second goal is to produce accurate short-term wind speed forecasts based

on historical data instead of computationally expensive physical models. We

achieve this by splitting the wind speed into two horizontal components

and modelling them with Brownian semistationary processes with a novel

triple-scale kernel. We develop efficient estimation and forecasting procedures.

Empirical studies show that such modelling choices result in good forecasting

performance.
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1
Introduction

1.1 Motivation

In December 2015 for the first time governments from all over the world

united to tackle climate change. The Paris Agreement helped set concrete

and actionable goals to stop the increase in global average temperature

before it reaches 2 ◦C above pre-industrial levels ([United Nations, 2015]).

A necessary step to accomplish this ambitious objective is a more effective

use of renewable energy sources. In particular, by 2030 the European Union

aims to increase the participation of renewable sources in the total energy

production to at least 32%, while the energy efficiency by at least 32.5%

([European Commission, 2018a]).

One of the most important renewable energy sources is wind power. Currently

it accounts for over 11% of total energy produced in Europe and by 2030 we

can expect this number to grow up to 25% ([Wind Europe, 2019]). In the

past two decades global wind energy capacity expanded rapidly, from 7.5 GW

in 1997 to 564 GW in 2018 ([International Renewable Energy Agency, 2018]).

Wind power’s dependence on weather conditions makes it notoriously risky to

invest in, since weather forecasts, especially with long horizons, still lack the
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desirable level of accuracy ([Met Office, 2019]). Therefore energy providers

face two important challenges. Firstly, they have to accurately predict the

output of wind turbines, which enables them to plan their production and

further investments accordingly. Secondly, to assess their potential profit they

must be able to understand the impact of wind energy on electricity prices.

Our research was motivated by these two questions, which we introduce in

more detail in the introductions to Part I and Part II. The practitioners’

feedback enabled us to make sure that our results not only advance the

mathematical and statistical knowledge but also can be directly applied to

real world problems.

1.2 Outline

In Part I we explore the link between electricity prices and wind energy

using the Austrian-German market as an example. We start by analysing

the historical data in Chapter 3, with particular focus on the relationship

between wind-related variables and spot prices of energy. In Chapter 4 we use

this knowledge to propose a model of electricity prices with a novel feature:

the information about wind energy production. Our empirical results clearly

state that such approach improves the model fit and should be considered

by practitioners. We explore this idea even further in Chapter 5, where

we present a joint model of wind energy production and electricity prices.

In building this model we focus on risk quantification, a feature of great

importance for energy distributors and traders.

Another challenge faced by the wind energy industry is the shortage of accurate

wind speed forecasts. Therefore in Part II we take another approach to help

energy providers reach the goal of increased global wind energy production.

We aim to accurately predict wind speeds in a given location on short time

horizon, which directly translates to short-term wind energy production

forecasts. We start by analysing the historical wind speed and direction data

from a location near Paris in Chapter 7. Our findings suggest modelling two

horizontal components of wind speed separately, which we successfully achieve

in Chapter 8. In Chapter 9 we explore the correlation structure of these
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components and ways of extending our results to a two-dimensional model.

We show that short-term wind speed forecasts based on the two-component

model outperform not only simple persistence forecasts but also direct wind

speed forecasts (without the horizontal component split).

1.3 Main contributions

As the title of the thesis suggests, our research focused on applying methods

of stochastic modelling and statistical inference to increase the knowledge

about electricity prices, wind energy production and wind speed forecasting.

In this section we list our main contributions to the field described in both

parts of the thesis.

In Part I:

• We generalised the arithmetic model for electricity prices proposed by

[Benth et al., 2014] so that the short-term factor can accommodate

stochastic volatility.

• We extended the model by including the information about wind energy

generation, which improved the model fit.

• We applied the Brownian semistationary framework with generalised hy-

perbolic marginals and gamma kernel introduced by [Barndorff-Nielsen

et al., 2013] to model wind-related variables directly.

• We also proposed a discrete joint model of wind energy generation and

electricity prices particularly suitable to quantify risks faced by wind

energy distributors.

In Part II:

• We modelled wind speed components using Brownian semistationary

processes and proposed a method of joining two correlated components

into the wind speed.
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• We generalised more standard gamma and power-law kernels and pro-

posed a triple-scale kernel able to capture the complex behaviour of

wind speed components.

• We studied two methods of parameter estimation: the generalised

method of moments and a novel regression-based method. We provided

practitioners with recommendations for the estimation procedure.

• We concluded from empirical studies that the split into two horizontal

components improves the forecasts in comparison to modelling wind

speed directly.

1.4 Papers

The research was done in collaboration with Almut Veraart (Imperial Col-

lege London), Olivier Féron (EDF), Pierre Gruet (EDF) and Peter Tankov

(ENSAE ParisTech). It has resulted in the following papers.

• A paper “A multifactor approach to modelling the impact of wind energy

on electricity spot prices” based on Chapter 4, co-authored by Almut

Veraart and Pierre Gruet, is currently under revision for resubmission

in Energy Economics. The preprint is available online: [Rowińska et al.,

2018].

• Chapter 5 will result in a paper “A joint model of wind energy production

and electricity spot prices” co-authored by Almut Veraart.

• Part II is a foundation of a working paper “Gaussian moving average

processes applied to wind speed modelling and forecasting” co-authored

by Peter Tankov and Almut Veraart.
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Modelling electricity prices and
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2
Introduction

2.1 Motivation

Wind energy constitutes an increasingly higher part of total energy generation

all over the world, which is changing the behaviour of energy markets. The

combination of its low marginal costs and the inelasticity of power demand

(Section 2.2) results in lower energy prices, especially when the wind is high.

We call this phenomenon a merit-order effect ([European Wind Energy As-

sociation, 2010]). It is extremely important to quantify these effects using

appropriate mathematical and statistical models. While other renewable

sources also impact the supply curve, their impact is more predictable. There-

fore in our research we focus on wind energy.

While the literature abounds with models of electricity prices – spot and

futures via spot (eg. [Carmona et al., 2013], [Cartea et al., 2009], [Benth

et al., 2014]) and futures directly (eg. [Benth and Paraschiv, 2016], [Barndorff-

Nielsen et al., 2013], [Borovkova and Geman, 2006]) – most of them ignore

the increasing role of renewables, in particular wind power, in energy markets.

Few exceptions include [Elberg and Hagspiel, 2015], who included a copula

model for the spatial dependence structure of wind power in Germany into
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a model for electricity spot prices. [Veraart, 2016] took a different approach

and modelled the impact of wind power generation on German spot prices

by regime-switching Lévy semistationary processes. [Ketterer, 2014] chose

a generalised autoregressive conditional heteroskedasticity (GARCH) model

of wind power’s impact on the electricity price level and volatility in Germany,

taking into account changes in market regulations. Finally, [Deschatre and

Veraart, 2017] focused on the impact of wind energy production on the spikes

in the spot prices.

In the first part of this thesis we aim to help fill this research gap. We start

by describing the main features of electricity prices and introducing the most

important energy contracts.

2.2 Features of electricity prices

Because energy markets have been liberalised only over the last decades,

modelling electricity prices is a relatively new topic in mathematics and

economics. Electricity differs from other commodities ([ter Haar, 2010]), so

we cannot easily transfer tools of financial mathematics to energy modelling.

Firstly, the energy storage is either impossible or very expensive, mainly

in the form of hydroelectric potential ([Aı̈d, 2015]). Therefore supply and

demand must always match. Any disturbances of this equilibrium can result

in large spikes in the electricity spot (day-ahead) market, which lead to

a strong and heteroscedastic (time-varying) volatility of electricity prices,

especially of spot contracts. A long-term underproduction of energy may

result in a decreased frequency or even blackouts with dire consequences, such

as the famous European blackout in 2006 ([European Commission, 2007]).

To prevent such dangerous events, supply and demand must be adjusted in

real time. Transmission system operators must also keep sufficient operating

reserves, i.e. energy generators capable of producing electricity in a short time

in case of emergency. We can already see the importance of accurate models

of energy generation which help plan such reserves effectively.

Over time prices tend to a long-term average determined by the demand-

supply balance, so they revert to the mean. Furthermore, electricity prices
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exhibit seasonality: the demand significantly increases in winter months

(due to the increased usage of heating and lights) as well as during hot

summer months (air conditioning), although these patterns vary significantly

depending on the local climate ([Aı̈d, 2015]). Because prices react to the

demand, very cold or very warm weather usually results in more expensive

electricity. The periodic behaviour occurs also at a smaller, weekly scale:

the demand increases in the peak time, when people use electricity for their

everyday activities. Finally, the distributions of prices have fat tails and long

memory ([Aı̈d, 2015]).

2.3 Electricity markets

In this section we briefly introduce electricity markets; for a more detailed

description we refer the reader to [Äıd, 2015]. Deregulated electricity markets

exist since 1981, when Chile quoted the first electricity spot price. In 1993

the Scandinavian market introduced also futures contracts. Today liberalised

energy markets exist all over the world, including Austria and Germany, the

countries of interest in this part of the thesis. In 01.10.2018 this market

split into two separate bidding zones ([European Energy Exchange, 2018]).

However, since we consider only the data up to 2016, we introduce electricity

markets using the example of the joint Austrian-German market. It consists

of:

• The spot/day-ahead market (EPEX SPOT), where one can buy or sell

energy delivered during the following day.

• The futures/forward market (EEX), where the participants trade elec-

tricity delivered later than one day ahead.

• The intraday/balancing market (EPEX SPOT), where the transmission

system operator and the players adjust the traded quantities to ensure

the balance between supply and demand.

In this thesis we focus on modelling the spot market, although in Chapter 4

we use the data from the futures market to calibrate our model.
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2.3.1 The spot market

Every day registered spot market players bid to sell or buy electricity for

delivery during chosen hours of the following day. If the delivery happens

during hours of high demand (7 a.m. to 8 p.m.), we call the contract peak load ;

during low demand we talk about off-peak contracts. If the delivery period

encompasses all hours, we call it base load. At noon the market is cleared

for the following day, which means that the market organiser establishes the

price for each delivery hour, based on all the bids.

Prices are constrained between -500 and 3000 EUR/MWh. Negative prices

occur rarely, but we still observe them when the supply significantly exceeds

the demand. Traditional coal power plants require a lot of time and resources

to stop and start running, therefore sometimes energy providers prefer to pay

the consumers for using electricity instead of switching the production off and

on (for more details see [EPEX SPOT, 2019]). Negative prices directly result

from our inability to store energy. Such events happen mostly at night when

the demand tends to be lower than during the waking hours of the majority

of people.

2.3.2 The forward market

Because all energy trading happens on exchanges, we use terms forward and

futures market interchangeably. As opposed to the spot market, sellers cannot

choose the hours of delivery, so they agree to deliver electricity during all hours

of the delivery period: a year (called a calendar), a quarter, a month, a week,

a weekend or a day. These delivery periods exist with different maturities,

so in total the Austrian-German market offers the participants the following

contracts: 6 calendars (1 year ahead up to 6 years ahead), 11 quarters, 9

months, 4 weeks, 2 weekends and 8 days. However, in our work we consider

only six types of futures contracts: one month ahead (1MAH), two months

ahead (2MAH), up to six months ahead (6MAH). Market participants can

decide on either peak load, base load or off-peak contracts, although the latter

option is available only for the yearly, quarterly and monthly futures.

Similarly to spot, futures prices exhibit seasonal patterns, in this case related
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to the expiry date ([Borovkova and Geman, 2006]). Furthermore, the volatility

of futures prices increases with the decreasing length of delivery period.

Another important feature of futures prices is their relationship to spot prices.

If futures contracts are cheaper than spot, we call this situation backwardation;

the opposite event is called contango.
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3
The data

3.1 Data description

In Chapter 4 and Chapter 5 we consider daily data from Austrian and German

energy markets: electricity spot and monthly futures prices (see Section 2.3),

total load (total energy generation) as well as wind energy generation. Unless

stated otherwise, we estimate our models on five-year-long time series of

daily data between 01.01.2011 and 31.12.2015. We downloaded hourly time

series from the website of the Open Power System Data project ([Open Power

System Data, 2019]) and Austrian Power Grid ([Austrian Power Grid, 2019]).

We use the following variables.

• Austrian Power Grid (APG):

– Day-ahead forecasts of wind energy production in Austria [MW].

– Day-ahead forecasts of total load (total energy production) in

Austria [MW].

• Open Power System Data:
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– Day-ahead forecasts of wind energy production in Germany, summed

over all four energy providers: TransnetBW, TenneT, 50Hertz and

Amprion [MW].

– Actual total load (total wind energy production) in Germany

[MW].

– Spot prices in the joint Austrian-German market [EUR].

These two data sources are not fully consistent with regard to the load as they

provide values from different areas of Austria. The Open Power System Data

gather data not only from the control area APG, but also from the rest of

the country, including industrial production units and railroad consumption,

not connected to the APG ([European Commission, 2018b]). However, in our

research we are mostly interested in the impact of wind energy generation on

energy prices. Since wind energy should not influence commercial production

units, these inconsistencies do not cause problems in our analyses — especially

as Austrian load is a few orders of magnitude smaller than German one, so

any differences in the Austrian data become negligible when we look at both

countries together. Figure 3.1 presents the control areas of four German

transmission system operators.

Remark 3.1. The meaning of the term “load” varies across the literature: it

can denote either power (the rate of electricity consumption over time) in

kW or MW or consumed energy in kWh or MWh ([Hong, 2014]). Although

hourly data sets will report the same magnitude regardless of the meaning, in

our research we consider also other time periods, so for consistency we report

the data in MWh and EUR/MWh. We recall that we define a watt as one

joule per second, so it measures the power produced or used in a given time –

in other words, the rate of energy generation or consumption. We also recall

that

1 kW = 103 W

1 MW = 106 W

1 GW = 109 W.
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Figure 3.1: Control areas of transmission system operators in Germany ([McLloyd, 2013]).
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On the other hand, watt-seconds are units of energy defined as one joule. For

example, a country with hourly demand of 20 GW will use 20 GWh in one

hour. A country with hourly demand of 10 GW will use the same amount of

energy in two hours. Conversions of energy units are similar to power units:

1 kWh = 103 W h

1 MWh = 106 W h

1 GWh = 109 W h.

We aggregate the data to daily values: we average the prices and sum up total

wind energy productions as well as total loads. Similarly to [Jónsson et al.,

2010], we approximate the unavailable day-ahead forecasts of total load in

Germany by randomly perturbing the actual total load. Precisely, we assume

that for each day t = 1, . . . , N (N denotes the number of observed days)

forecasted load(t) = actual load(t) + ε(t),

where ε ∼ N (0, σ2) and σ equals approximately 2% of averaged actual

load. While this method works very well in practice ([Jónsson et al., 2010],

[Veraart, 2016]), [Jónsson et al., 2010] point out some flaws of this approach.

First, it cannot account for possibly autocorrelated residuals of forecasted

load. Second, it assumes the independence of forecast errors of wind energy

production and total load, which is unrealistic as they both stem from weather

forecasts. However, the effect of these simplifications on our applications is

negligible. Alternatively, we could obtain the forecasted load by smoothing

the actual load, as we expect the forecasts to be smoother than the data.

We sum up the values of forecasted load and wind energy production in both

countries to get figures for the whole region. Finally, we convert the units to

gigawatts. In the rest of this chapter “wind” denotes the sum of day-ahead

forecasts (true or perturbed) of wind energy production levels in Austria and

Germany (in GWh).
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3.2 Futures prices

In Chapter 4 we propose a model calibration procedure which additionally

requires the prices of monthly futures contracts: one month ahead (1MAH) up

to six months ahead (6MAH) [European Energy Exchange, 2017]. Figure 3.2

shows the empirical data for 1MAH and 6MAH, two most extreme time

horizons considered. Because the trading periods of futures contracts are

limited, we can see discontinuities in the beginning and the end of trading

periods. We also note seasonal patterns in the data as well as the downward

trend over time. Finally, the spikes characteristic to spot prices are not

present in the futures prices, which [ter Haar, 2010] explains by the smaller

influence of demand-supply imbalances on longer term contracts. Table 3.1

presents the summary statistics of considered futures data.

The main topic of this thesis is spot prices. Therefore in Table 3.1 we present

the summary statistics of considered futures data and for more details about

futures contracts, including a thorough data analysis, we refer the reader to

[ter Haar, 2010] and references therein.

Figure 3.2: Time series of futures prices data: one-month-ahead (red) and six-months-
ahead (blue).
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Min. 1st Qu. Median Mean 3rd Qu. Max.
1MAH 27.60 32.45 38.45 40.33 48.16 63.70
2MAH 26.40 32.54 38.50 40.96 48.56 67.80
3MAH 26.40 33.60 38.58 41.35 47.50 67.50
4MAH 28.00 33.17 38.15 41.33 46.88 65.50
5MAH 24.40 33.58 38.65 40.85 47.00 66.00
6MAH 26.65 33.25 36.55 39.40 42.00 65.25

Table 3.1: Summary statistics of monthly futures prices computed after removing NA
values.

3.3 Exploratory data analysis

Table 3.2 presents the summary statistics of daily data sets: day-ahead elec-

tricity prices, day-ahead forecasts of wind energy production and total load,

denoted by S, WD and LD, respectively. First we note the high variability

of all time series. We would like to point out the occurrence of daily negative

prices and the strict positivity of daily wind energy production forecasts. Fig-

ure 3.3a, Figure 3.4a and Figure 3.5a illustrate the same data with time series

plots, in which we can clearly see the seasonal patterns. Furthermore, during

the time of observations spot prices have significantly decreased while wind

energy production increased. Also, Figure 3.3b, Figure 3.4b and Figure 3.5b,

the plots of autocorrelation functions, indicate strong seasonal patterns in all

variables.

In Figure 3.6 we observe the densities as well as the relationships (scatter

plots and correlation coefficients) between variables. We also see that wind

energy production forecasts are clearly right-skewed. Finally, the correlation

coefficients between S and WD as well as between S and LD indicate some

level of dependency between these variables.

Min. 1st Qu. Median Mean 3rd Qu. Max.
S -54.70 31.26 38.76 39.18 48.35 99.43
WD 2.21 67.44 117.93 156.30 204.42 792.91
LD 1103.53 1441.13 1617.32 1586.58 1727.01 2005.90

Table 3.2: Summary statistics of day-ahead electricity prices S [EUR/MWh], day-ahead
forecasts of daily wind energy production WD [GWh] and day-ahead forecasts of daily load
LD [GWh].
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(a) Time series plot of electricity spot
prices S.

(b) Autocorrelation function of electricity
spot prices S.

Figure 3.3: Time series and autocorrelation function plots of electricity spot prices S.

(a) Time series plot of day-ahead fore-
casts of daily wind energy production
WD.

(b) Autocorrelation function of day-
ahead forecasts of daily wind energy
production WD.

Figure 3.4: Time series and autocorrelation function plots of day-ahead forecasts of daily
wind energy production WD.
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(a) Time series plot of day-ahead fore-
casts of daily load LD.

(b) Autocorrelation function of day-
ahead forecasts of daily load LD.

Figure 3.5: Time series and autocorrelation function plots of day-ahead forecasts of daily
load LD.

3.3.1 Wind penetration index and residual demand

Our research focuses on the relationship between electricity spot prices and

wind energy production forecasts. We stress that it is the wind energy

production forecasts, not the actual values, that impact the price, as they

represent the information available to market participants at the time of

transaction ([Ketterer, 2014]). It is crucial that we focus on day-ahead

forecasts, because longer forecasting horizons reduce their accuracy and

usefulness for making market decisions.

[Jónsson et al., 2010] argue that the same level of wind energy production

will affect the price in a different way depending on the total demand. In

the literature we find two ways of combining these two variables: wind

penetration index, suggested for example by [Jónsson et al., 2010], as well

as the residual load (or demand) studied by [Nicolosi and Fürsch, 2009] and

others. Therefore we study additional time series: wind penetration index

WPI, defined as the ratio between wind energy production and total load, as

well as residual demand RD, defined as the difference between load and wind

energy production. WPI is a dimensionless quantity with values between

zero (no wind energy production) and one (all energy production coming
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Figure 3.6: Relationships between day-ahead forecasts of wind energy generation WD and
total load LD as well as electricity price S.
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from wind energy). Because of energy export, on rare occasions the value of

WPI might exceed one. RD corresponds to energy from sources other than

wind, expressed in GWh. Table 3.3 shows the summary statistics of these

two time series. In the discussed period (2011–2015) on average 10% of total

energy produced in Austria and Germany came from wind. Figure 3.7a and

Figure 3.7b present both time series. We note that WPI is very volatile and

oscillates a lot around its mean level.

Min. 1st Qu. Median Mean 3rd Qu. Max.
WPI 0.00 0.04 0.07 0.10 0.13 0.52
RD 693.18 1267.06 1471.30 1430.28 1590.27 1919.02

Table 3.3: Summary statistics of day-ahead wind penetration index WPI [-] and day-ahead
residual demand RD [GWh].

(a) Time series plot of day-ahead fore-
casts of the wind penetration index
WPI.

(b) Time series plot of day-ahead fore-
casts of the residual demand RD.

Figure 3.7: Time series and autocorrelation function plots of day-ahead forecasts of WPI
and RD.
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3.4 Seasonality

3.4.1 Seasonal patterns in the data

All variables considered exhibit seasonal patterns. According to Figure 3.8, on

average lowest prices occur during the weekends and in summer months. We

also see that the prices decreased from 2011 to 2015. Figure 3.9 shows that

while (unsurprisingly) we generate similar amounts of wind energy regardless

of the weekday, the production is much higher in winter than in summer.

Moreover, we notice a significant increase in wind energy production as the

years progressed, which might explain the decrease in prices. When it comes

to the total load and residual demand, in Figure 3.10 and Figure 3.11 we can

see that similarly to spot prices lowest values occur during the weekends as

well as in summer. The total energy generation stayed approximately the

same over the years. Finally, from Figure 3.12 we learn that the highest

values of the wind penetration index occur on the weekends and in winter,

which is mostly due to lower values of total load in the denominator.

(a) Averaged day-ahead electricity prices
S grouped by weekdays.

(b) Averaged day-ahead electricity prices
S grouped by months.

Figure 3.8: Day-ahead electricity prices S grouped by seasons: weekdays (left panel) and
months (right panel).
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(a) Averaged day-ahead forecasts of daily
wind energy production WD grouped by
weekdays.

(b) Averaged day-ahead forecasts of daily
wind energy production WD grouped by
months.

Figure 3.9: Day-ahead forecasts of daily wind energy production WD grouped by seasons:
weekdays (left panel) and months (right panel).

(a) Averaged day-ahead forecasts of daily
load LD grouped by weekdays.

(b) Averaged day-ahead forecasts of daily
load LD grouped by months.

Figure 3.10: Day-ahead forecasts of daily load LD grouped by seasons: weekdays (left
panel) and months (right panel).
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(a) Averaged day-ahead forecasts of
the residual demand RD grouped by
weekdays.

(b) Averaged day-ahead forecasts of the
residual demand RD grouped by months.

Figure 3.11: Day-ahead forecasts of the residual demand RD grouped by seasons: week-
days (left panel) and months (right panel).

(a) Averaged day-ahead forecasts of the
wind penetration index WPI grouped by
weekdays.

(b) Averaged day-ahead forecasts of the
wind penetration index WPI grouped by
months.

Figure 3.12: Day-ahead forecasts of the wind penetration index WPI grouped by seasons:
weekdays (left panel) and months (right panel).
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3.4.2 Seasonality functions

Before we propose models of any of the variables, we remove trends and

seasonal patterns from all data sets by assuming that

S(t) = ΛS(t) + S(t),

WD(t) = ΛWD(t) +WD(t),

LD(t) = ΛLD(t) + LD(t),

WPI(t) = ΛWPI(t) +WPI(t),

RD(t) = ΛRD(t) +RD(t),

where Λ? denote deterministic seasonality and trend functions for appropriate

variables, while bars detrended and deseasonalised variables. Let

Λ?
1(t) = c?0 + c?1t+ c?2 cos

(
c?3 + 2πt

365

)
,

where stars correspond to coefficients of the variable of interest. We addition-

ally define dummy variables for days of the week (dMon, . . . , dSat) and main

holidays (h(t) = 0 for Dec 24th, Dec 25th, Dec 26th and Jan 1st; h(t) = 1

otherwise). We set

Λ?
2(t) = c?hh(t) + c?MondMon(t) + · · ·+ c?SatdSat(t)

and

Λ?
3(t) = c?hh(t) + c?MondMon(t) + · · ·+ c?FridFri(t),
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where the latter does not include a dummy variable for Saturday. Now we

can define

ΛS(t) = ΛS
1 (t) + ΛS

2 (t),

ΛWD(t) = ΛWD
1 (t),

ΛLD(t) = ΛLD
1 (t) + ΛLD

2 (t),

ΛWPI(t) = ΛWPI
1 (t) + ΛWPI

3 (t),

ΛRD(t) = ΛLD(t)− ΛWD(t).

As we do not observe weekly effects in WD, we remove only yearly seasonality.

Furthermore, the dummy variable for Saturday is not significant in case of

WPI, so we do not include this variable. Finally, since RD is an additive

function of LD and WD, we do not introduce any additional seasonal factors

for this variable.

We use the function nls from the R package stats ([R Core Team, 2018])

to estimate the coefficients of seasonality functions Λ. We initialise all

parameters with 0.1. We present the estimated parameters in Table 3.4,

Table 3.5, Table 3.6 and Table 3.7. The estimated coefficients reflect the

patterns in the data. For example, cSSat has the smallest magnitude of all

weekly coefficients of ΛS, which corresponds to lower spot prices on the

weekends. Also, the trend coefficient cWD
1 is positive, which reflects the

gradual increase in wind energy production over time.

3.4.3 Deseasonalied and detrended data

Figure 3.13, Figure 3.14, Figure 3.15, Figure 3.16 and Figure 3.17 present

plots of deseasonalised time series averaged by weekdays or months. We

can see that the deseasonalisation procedure was effective and removed most

seasonal effects (please pay attention to the scale in the plots).

Since in this thesis we explore the relationship between electricity spot prices

and wind energy production, we first need to check if such a relationship exists

in deseasonalised data sets. In Figure 3.18 we observe strong correlations
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Estimate Std. Error t value Pr(> |t|)
cS0 9.757 1.9 5.135 3.119e-07
cS1 -0.0134 0.0003584 -37.4 2.038e-227
cS2 -3.027 0.2672 -11.33 8.465e-29
cS3 8328 32.17 258.9 0
cShol 30.33 1.814 16.72 1.795e-58
cSMon 13.92 0.698 19.94 3.931e-80
cSTue 15.53 0.6981 22.25 3.38e-97
cSWed 16.03 0.6982 22.96 1.303e-102
cSThu 15.52 0.6982 22.22 5.643e-97
cSFri 14.23 0.6987 20.37 3.359e-83
cSSat 6.471 0.6981 9.27 5.122e-20

Table 3.4: Estimated parameters of the seasonality and trend function ΛS .

Estimate Std. Error t value Pr(> |t|)
cWD

0 106.7 5.282 20.2 4.895e-82
cWD

1 0.05425 0.005024 10.8 2.15e-26
cWD

2 66.29 3.7 17.92 2.923e-66
cWD

3 -4.364e+04 20.62 -2117 0

Table 3.5: Estimated parameters of the seasonality and trend function ΛWD.

between S and three deseasonalised wind-related variables: WD (-0.600),

WPI (-0.635) and RD (0.721). We also note that in first two cases the

correlations are negative, while in the last one positive. This agrees with the

expectations, since cheap wind energy tends to lower the prices (in case of

the residual demand we subtract wind energy generation from the load, so

we swap the sign).
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(a) Averaged deseasonalised day-ahead
electricity prices S grouped by weekdays.

(b) Averaged deseasonalised day-ahead
electricity prices S grouped by months.

Figure 3.13: Deseasonalised day-ahead electricity prices S grouped by seasons: weekdays
(left panel) and months (right panel).

(a) Deseasonalised averaged day-ahead
forecasts of daily wind energy production
WD grouped by weekdays.

(b) Deseasonalised averaged day-ahead
forecasts of daily wind energy production
WD grouped by months.

Figure 3.14: Deseasonalised day-ahead forecasts of daily wind energy production WD
grouped by seasons: weekdays (left panel) and months (right panel).
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(a) Deseasonalised averaged day-ahead
forecasts of daily load LD grouped by
weekdays.

(b) Deseasonalised averaged day-ahead
forecasts of daily load LD grouped by
months.

Figure 3.15: Deseasonalised day-ahead forecasts of daily load LD grouped by seasons:
weekdays (left panel) and months (right panel).

(a) Deseasonalised averaged day-ahead
forecasts of the wind penetration index
WPI grouped by weekdays.

(b) Deseasonalised averaged day-ahead
forecasts of the wind penetration index
WPI grouped by months.

Figure 3.16: Deseasonalised day-ahead forecasts of the wind penetration index WPI
grouped by seasons: weekdays (left panel) and months (right panel).
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Estimate Std. Error t value Pr(> |t|)
cLD0 868.2 20.77 41.81 4.178e-268
cLD1 -0.01136 0.003918 -2.899 0.003784
cLD2 -113 2.916 -38.74 8.935e-240
cLD3 -5.853e+04 9.441 -6199 0
cLDhol 458.2 19.83 23.11 8.758e-104
cLDMon 337.1 7.63 44.18 4.403e-290
cLDTue 380.5 7.631 49.87 0
cLDWed 386.7 7.632 50.67 0
cLDThu 373.7 7.632 48.97 0
cLDFri 340.4 7.637 44.57 1.059e-293
cLDSat 109.7 7.631 14.38 1.692e-44

Table 3.6: Estimated parameters of the seasonality and trend function ΛLD.

Estimate Std. Error t value Pr(> |t|)
cWPI

0 0.2015 0.01653 12.19 6.527e-33
cWPI

1 3.422e-05 3.178e-06 10.77 2.962e-26
cWPI

2 0.03468 0.002365 14.67 4.102e-46
cWPI

3 -75.88 24.94 -3.043 0.002378
cWPI

hol -0.1179 0.01608 -7.332 3.388e-13
cWPI

Mon -0.02055 0.00536 -3.834 0.0001301
cWPI

Tue -0.02341 0.00536 -4.367 1.331e-05
cWPI

Wed -0.0262 0.005361 -4.887 1.116e-06
cWPI

Thu -0.02371 0.005361 -4.423 1.032e-05
cWPI

Fri -0.02388 0.005367 -4.449 9.142e-06

Table 3.7: Estimated parameters of the seasonality and trend function ΛWPI .
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(a) Deseasonalised averaged day-ahead
forecasts of the residual demand RD
grouped by weekdays.

(b) Deseasonalised averaged day-ahead
forecasts of the residual demand RD
grouped by months.

Figure 3.17: Deseasonalised day-ahead forecasts of the residual demand RD grouped by
seasons: weekdays (left panel) and months (right panel).
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Figure 3.18: Relationships between deseasonalised electricity spot prices S and deseason-
alised forecasts of wind energy production WD, wind penetration index WPI and residual
demand RD.
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4
A multifactor approach to modelling

the impact of wind energy on

electricity spot prices

In this chapter we introduce a model for electricity spot prices with wind

energy production as an exogenous variable. Our work builds upon the paper

by [Benth et al., 2014], who proposed an arithmetic model for spot prices

with three factors: a deterministic seasonality and trend function as well as

short- and long-term stochastic parts (details in Section 4.1).

To generalise this model we consider a short-term process more flexible than

CARMA(2,1) proposed by [Benth et al., 2014], i.e. a Lévy semistationary

(LSS ) process ([Barndorff-Nielsen et al., 2013]) with stochastic volatility.

Instead of α-stable driving process we choose processes from the generalised

hyperbolic class (Appendix A) which not only capture the features of elec-

tricity prices but also are easy to fit thanks to the algorithm implemented by

[Lüthi and Breymann, 2016].

After establishing the basic model, we extend it by adding wind-related exoge-

nous variables. We show that the information about wind energy generation
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improves the goodness of fit. Finally, we complete the research by modelling

wind variables directly.

The chapter is structured as follows. In Section 4.1 we introduce a three-factor

arithmetic model for spot prices and derive a formula for futures prices. In

Section 4.2 we describe how to fit the model to empirical data and study

all model terms in detail. We also present numerical results and discuss the

possibility of adding stochastic volatility to the model (Subsection 4.2.3).

Section 4.3 includes possible modifications of the basic model which include

the information about wind energy generation. In that section we discuss

the numerical results and compare the performance of different model mod-

ifications. In Section 4.4 we complete the work by modelling wind-related

variables directly. Finally, in Section 4.5 we present the conclusions of our

research.

4.1 The arithmetic model

The multifactor arithmetic model of spot prices introduced by [Benth et al.,

2014] serves as a great starting point for inclusion of the information about

wind energy production. It allows us to capture both short- and long-term

price dynamics. Since the reliability of wind energy generation forecasts

decreases rapidly with the forecasting horizon ([Met Office, 2019]), it is safe

to assume that this additional information influences electricity spot prices

only in short-term. Therefore the modelling framework suggested by [Benth

et al., 2014] enables us to separate the dynamics of electricity prices into two

parts, one of which depends on wind energy.

4.1.1 Assumptions

Let S(t) denote the time series of electricity spot prices. Following [Benth

et al., 2014], we propose the arithmetic model

S(t) = Λ(t) + Z(t) + Y (t),
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where Λ(t) + Z(t) form the long-term factor, while Y (t) describes the short-

term behaviour. Precisely, Λ(t) denotes a deterministic seasonality and trend

function, Z(t) is a Lévy process with zero mean (under the physical measure)

and

Y (t) =

∫ t

−∞
g(t− s)σ(s−)dL(s)

with a deterministic kernel g such that lim
t→∞

g(t) = 0. Following [Barndorff-

Nielsen et al., 2013] and references therein, we state conditions under which

this integral exists.

Remark 4.1. We denote the Lévy triplet of L(t) associated with a truncation

function h(z) = 1{|z|≤1} by (d, b, lL), where d denotes the drift, b the variance

of the Gaussian component and lL the Lévy measure. Let us define φt(s) :=

g(t− s)σ(s−). Then the process (φt(s))s≤t is integrable with respect to L if

and only if (φt(s))s≤t is F -predictable and these three conditions hold almost

surely:

b

∫ t

−∞
(φt(s))

2 ds <∞, (4.1)∫ t

−∞

∫ ∞
−∞

(
1 ∧ |φt(s)z|2

)
lL(dz)ds <∞, (4.2)∫ t

−∞

∣∣∣∣dφt(s) +

∫ ∞
−∞

(h (zφt(s))− φt(s)h(z)) lL(dz)

∣∣∣∣ <∞. (4.3)

To ensure the square integrability, we assume that L(t) has a finite second

moment and replace Eq. (4.1) by∫ t

−∞
E
[
φt(s)

2
]
ds =

∫ t

−∞
g(t− s)2E

[
σ(s)2

]
ds <∞

and

E
[
(g(t− s)σ(s)ds)2] <∞.

For the latter condition it is enough to ensure that for some a ∈ (0, 1)∫ ∞
0

g2a(x)dx <∞
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and ∫ t

−∞
g2(1−a)(t− s)E

[
σ(s)2

]
.

The short-term process belongs to a class of Lévy semistationary (LSS )

processes (cf. [Barndorff-Nielsen et al., 2013]), so Y (t) is stationary if and

only if σ(t) and the increments of L(t) are jointly stationary. It is worth

noting that while integrating from −∞ does not correspond to the real

world, where t ≥ 0, we need such an integral to obtain a stationary model.

Therefore, similarly to [Barndorff-Nielsen et al., 2013], we assume that s(0) is

a realisation of a random variable Λ(0) + Z(0) + Y (0). Here σ(t) is a càdlàg

stochastic process describing the volatility of Y (t). While the empirical

studies (Section 4.2) do not indicate much stochastic volatility in our data,

we develop the theoretical framework which can accommodate σ(t) with

a short memory. We suggest using a (stationary) Ornstein-Uhlenbeck process,

i.e. σ(t) =
∫ t
−∞ e

−δ(t−s)dV (s) with a constant δ > 0 and a Lévy subordinator

V (t), independent from the driving Lévy process L(t) (cf. Subsection 4.2.3).

4.1.2 Change of measure

In traditional financial mathematics, one needs to define a probability measure

Q equivalent to the physical measure P which transforms the discounted price

dynamics into a (local) Q-martingale. However, in the electricity markets

not all the assets are tradable, so Q can denote any probability measure

equivalent to P. As suggested by [Barndorff-Nielsen et al., 2013], we define

the generalised Esscher transform of L(t) with a parameter θ(t), a Borel

measurable function, via the Radon-Nikodym density process

dQθ
L

dP

∣∣∣∣
FT

= exp

(∫ t

0

θ(s)dL(s)−
∫ t

0

φL (θ(s)) ds

)
.

Here θ(·) is a real-valued function integrable with respect to L(t) and φL(·) =

log (E[exp(xL(1))]) denotes the log-moment generating function of L(1) (if it

exists).
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By analogy, we define Qη
V by

dQη
V

dP

∣∣∣∣
FT

= exp

(∫ t

0

η(s)dV (s)−
∫ t

0

φV (η(s)) ds

)
. (4.4)

Then we get a new probability measure for Y (t): QY := QL ×QV . We define

a measure change for Z(t) in a similar way, i.e.

dQκ
Z

dP

∣∣∣∣
FT

= exp

(∫ t

0

κ(s)dZ(s)−
∫ t

0

φZ (κ(s)) ds

)
. (4.5)

Finally, we define the probability measure Q := QY × QZ . If we choose

θ(t), η(t) and κ(t) to be constant, then the change of measure will preserve

the desirable Lévy property.

4.1.3 Futures contracts

Assuming no arbitrage, we can express the price ft(T ) at time t ≥ 0 for

a futures contract with maturity T ≥ t as

ft(T ) = EQ [S(T )|Ft] = EQ[Λ(T ) + Z(T ) + Y (T )|Ft]
= Λ(T ) + Z(t) + (T − t)EQ [Z(1)]

+

∫ t

−∞
g(T − s)σ(s−)dL(s) + EQ [L(1)]

∫ T

t

g(T − s)EQ [σ(s)|Ft] ds.

(4.6)

Due to its nonstorability, electricity is delivered over a time period rather

than at one specific moment. Thus for all 0 ≤ t ≤ T1 < T2 we define the price

of a futures contract with a delivery period [T1, T2] by

Ft(T1, T2) := EQ

[
1

T2 − T1

∫ T2

T1

S(T )dT

∣∣∣∣Ft] . (4.7)
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If following [Benth et al., 2014] we define time to maturity as u := 1
2

(T1 + T2)−
t, then Eq. (4.7) becomes

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

Λ(T )dT + Z(t) + uEQ [Z(1)]

+
1

T2 − T1

(∫ T2

T1

∫ t

−∞
g(T − s)σ(s−) dL(s) dT

+ EQ [L(1)]

∫ T2

T1

∫ T

t

g(T − s)EQ [σ(s)|Ft] ds dT
)
.

(4.8)

Now we are ready to study the long-term behaviour of the futures prices,

which will help us conduct the empirical work Section 4.2.

Proposition 4.0.1. Assume that δ > 0, lim
x→∞

∫ x
0
g(y)e−

δ
2

(x−y)dy = 0 and

σ(t)2 =
∫ t
−∞ e

−δ(t−x)dV (x). Then for τ > 0 and fixed t > 0,

lim
T1→∞

1

τ

(∫ T1+τ

T1

∫ t

−∞
g(T − s)σ(s−) dL(s) dT

+ EQ [L(1)]

∫ T1+τ

T1

∫ T

t

g(T − s)EQ [σ(s)|Ft] ds dT
)

= EQ [L(1)]C,

(4.9)

where

C := EQ [σ(0)]

∫ ∞
0

g(y)dy (4.10)

and the limit is in the L2−sense.

To prove Proposition 4.0.1 we will use the following lemma.

Lemma 4.0.1. If H̃ := lim
T→∞

H(T ) exists in the L2−sense, then for a fixed

τ > 0 the L2−limit lim
T1→∞

1
τ

∫ T1+τ

T1
H(T )dT also exists and equals H̃.

Proof of Lemma 4.0.1. Our assumption says that

lim
T→∞

EQ

[
(H(T )− H̃)2

]
= 0,
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so that for all ε > 0 there exists T̃ such that for all T > T̃ we have

EQ

[(
H(T )− H̃

)2
]
< ε. Thus if T1 > T̃ , then

EQ

[(
1

τ

∫ T1+τ

T1

H(T )dT − H̃
)2
]
≤ max

T1≤T≤T1+τ
EQ

[(
H(T )− H̃

)2
]
< ε,

(4.11)

which was to be proven.

Proof of Proposition 4.0.1. First we will show that lim
T1→∞

1
τ

∫ T1+τ

T1

∫ t
−∞ g(T −

s)σ(s−) dL(s) dT = 0 in the L2−sense. As all considered functions are

measurable and non-negative, we can use Tonelli’s theorem ([Tao, 2011,

p. 171]) to compute

lim
T→∞

EQ

[(∫ t

−∞
g(T − s)σ(s−)dL(s)

)2
]

= EQ
[
L(1)2

]
EQ
[
σ(0)2

] ∫ t

−∞
lim
T→∞

g(T − s)2ds = 0,

(4.12)

which by Lemma 4.0.1 proves this statement.

Now we need to prove that

lim
T1→∞

∫ T1+τ

T1

∫ T

t

g(T − s)EQ [σ(s)|Ft] ds dT = C

in the L2−sense. By Lemma 4.0.1 it is enough to prove that

lim
T→∞

EQ

[(∫ T

t

g(T − s)EQ [σ(s)|Ft] ds− C
)2
]

= 0.
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We observe that

EQ

[(∫ T

t

g(T − s)EQ [σ(s)|Ft] ds− C
)2
]

= EQ

[(∫ T

t

g(T − s)EQ [σ(s)|Ft] ds
)2
]

− 2CEQ

[∫ T

t

g(T − s)EQ [σ(s)|Ft] ds
]

+ C2.

(4.13)

Using Jensen’s inequality and Tonelli’s theorem, we can estimate

lim
T→∞

EQ

[(∫ T

t

g(T − s)EQ [σ(s)|Ft] ds
)2
]

≥ lim
T→∞

(
EQ

[∫ T

t

g(T − s)EQ [σ(s)|Ft] ds
])2

= lim
T→∞

(∫ T

t

g(T − s)EQ [EQ [σ(s)|Ft]] ds
)2

=

(
EQ [σ(0)] lim

T→∞

∫ T−t

0

g(y)dy

)2

= C2.

(4.14)

On the other hand,

EQ [σ(s)|Ft] = EQ

[√∫ s

−∞
e−δ(s−x)dV (x)

∣∣∣∣Ft
]

≤ EQ

[√∫ t

−∞
e−δ(s−x)dV (x) +

√∫ s

t

e−δ(s−x)dV (x)

∣∣∣∣Ft
]

=

√∫ t

−∞
e−δ(s−x)dV (x) + EQ

[√∫ s

t

e−δ(s−x)dV (x)

]

= σ(t)e−
δ
2

(s−t) + EQ

[√∫ s

t

e−δ(s−x)dV (x)

]
,

(4.15)

where to non-negative processes we apply the inequality
√
a+ b ≤

√
a+
√
b

as well as the identity
∫ t
−∞ e

−δ(s−x)dV (x) = e−δ(s−t)
∫ t
−∞ e

−δ(t−x)dV (x) =

σ(t)2e−δ(s−t). We remark that σ(s) is stationary in mean, i.e. EQ [σ(s)] =
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EQ [σ(0)] for all s ∈ R. Furthermore,

EQ

[√∫ s

t

e−δ(s−x)dV (x)

]
= EQ

√∫ s−t

0

e−δudV (u)


≤ EQ

[√∫ ∞
0

e−δudV (u)

]
= EQ [σ(0)] ,

(4.16)

as we integrate a non-negative function over a smaller domain. Therefore

EQ [EQ [σ(s)|Ft]EQ [σ(u)|Ft]] ≤ EQ
[
σ(0)2

]
e−

δ
2

(s−t)e−
δ
2

(u−t)

+ EQ [σ(0)]

(
e−

δ
2

(u−t)EQ

[√∫ s

t

e−δ(s−x)dV (x)

]

+ e−
δ
2

(s−t)EQ

[√∫ u

t

e−δ(u−x)dV (x)

])

+ EQ

[√∫ s

t

e−δ(s−x)dV (x)

]
EQ

[√∫ u

t

e−δ(u−x)dV (x)

]
≤ EQ

[
σ(0)2

]
e−

δ
2

(s−t)e−
δ
2

(u−t)

+ EQ [σ(0)]2
(
e−

δ
2

(s−t) + e−
δ
2

(u−t) + 1
)
,

(4.17)
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where the first inequality follows from Eq. (4.15) and the second one from

Eq. (4.16). This implies that

lim
T→∞

EQ

[(∫ T

t

g(T − s)EQ [σ(s)|Ft] ds
)2
]

= lim
T→∞

∫ T

t

∫ T

t

g(T − s)g(T − u)EQ [EQ [σ(s)|Ft]EQ [σ(u)|Ft]] dsdu

≤ EQ
[
σ(0)2

](
lim
T→∞

∫ T

t

g(T − s)e−
δ
2

(s−t)ds

)2

+ 2EQ [σ(0)]2 lim
T→∞

(∫ T

t

g(T − s)ds
∫ T

t

g(T − s)e−
δ
2

(s−t)ds

)
+ EQ [σ(0)]2

(
lim
T→∞

∫ T

t

g(T − s)ds
)2

= EQ
[
σ(0)2

](
lim
T→∞

e−
δ
2

(T−t)
∫ T−t

0

g(y)e
δ
2
ydy

)2

+ 2EQ [σ(0)]2 lim
T→∞

∫ T−t

0

g(y)dy lim
T→∞

(
e−

δ
2

(T−t)
∫ T−t

0

g(y)e
δ
2
ydy

)
+ EQ [σ(0)]2 lim

T→∞

∫ T−t

0

g(y)dy = C2,

(4.18)

where we use Tonelli’s theorem and assumptions of Proposition 4.0.1. From

Eq. (4.14) and Eq. (4.18) we deduce that

lim
T→∞

EQ

[(∫ T

t

g(T − s)EQ [σ(s)|Ft] ds
)2
]

= C2. (4.19)

Because by Tonelli’s theorem

lim
T→∞

EQ

[∫ T

t

g(T − s)EQ [σ(s)|Ft] ds
]

= EQ [σ(0)] lim
T→∞

∫ T

t

g(T − s)ds = C,

Eq. (4.13) implies that lim
T1,→∞

∫ T1+τ

T1

∫ T
t
g(T − s)EQ [σ(s)|Ft] ds dT = C in the

L2−sense.
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Proposition 4.0.1 allows us to conclude that in the long end, i.e. for t� T1,

we can approximate the deseasonalised futures price by

F̃t(T1, T2) := Ft(T1, T2)− 1

T2 − T1

∫ T2

T1

Λ(T )dT

≈ Z(t) + uEQ [Z(1)] + EQ [L(1)]C.

(4.20)

4.2 Empirical studies

We fit the proposed model to two sets of Austrian and German data: daily

averages of hourly spot prices and monthly (one month ahead, 1MAH, up to six

months ahead, 6MAH) base load futures prices, traded between 1 January 2011

and 3 August 2015 (cf. Section 3.1). In order to split spot prices into

S(t) = Λ(t) +Z(t) +Y (t), we modify the algorithm proposed by [Benth et al.,

2014, pp. 398-9]. The idea behind this method is to use futures prices to

split spot prices into the long and short-term factors. In Proposition 4.0.1 we

showed that in the long end deseasonalised futures prices are influenced only

by the long-term factor Z(t), therefore the algorithm requires us to choose

a threshold u? such that deseasonalised prices of contracts with times to

maturity u ≥ u? are described approximately by Z(t) alone; we recall that

we defined the time to maturity as u = 1
2

(T1 + T2)− t. We fix u? to 16 days,

because the results do not seem to be sensitive to the choice of a particular

threshold. We proceed as follows.

1. We estimate Λ(t) from spot prices and subtract from S(t), as described

in Section 3.4.

2. We filter out a realisation of Z(t) (Subsection 4.2.1).

3. We model Y (t) = S(t)−Λ(t)−Z(t) (Subsection 4.2.2) as a CARMA(2,1)

process.

We note that [Müller and Seibert, 2019] propose an alternative estimation

procedure based on the Markov chain Monte Carlo method.
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4.2.1 Non-stationary long-term factor Z(t)

Let us denote the empirical mean (i.e. the averaged data) by Ê[·]. For u ≥ u?,

using Proposition 4.0.1 and E [Z(t)] = 0, we can approximate

µF̃ (u) := Ê
[
F̃t(T1, T2)

]
= uÊQ [Z(1)] + ÊQ [L1]C (4.21)

and by linear regression estimate ÊQ [L1]C and ÊQ [Z(1)], as presented in

Figure 4.1. These parameters together allow us to recover a realisation of the

Figure 4.1: Plot of µF̃ (u) with the fitted regression line.

long-term process

Ẑ(t) = Ẑ

(
1

2
(T1 + T2)− u

)
=

1

cardU(t, u?)

∑
(u,T1,T2)∈U(t,u?)

[
F̃t(T1, T2)− ÊQ [L1] Ĉ − uÊQ [Z(1)]

]
,

(4.22)

where

U(t, u?) := {(u, T1, T2) ∈ R3 : u ≥ u?and ∃Ft(T1, T2) :
1

2
(T1 + T2)− t = u}.

(4.23)

Because futures contracts are traded only from Monday to Friday, Z(t) does
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Figure 4.2: Estimated Z(t). Figure 4.3: The increments of Z(t).

not include the weekend data. Following [Benth et al., 2014], on the weekends

we set this process to be constant and equal to the Friday price. The process

Z(t) is clearly non-stationary, therefore we study its increments, plotted in

Figure 4.3. At first glance Z(t) has stationary increments, as confirmed at

0.01 significance level by the augmented Dickey-Fuller (ADF) test, computed

using the function adf.test from the R package tseries ([Trapletti and

Hornik, 2018]). We observe that the estimated Z(t) has (mostly) uncorrelated

increments and squared increments, as shown in Figure 4.4 and Figure 4.5.

Thus we can model Z(t) by a Lévy process with increments following a suitable

infinitely divisible distribution. Inspired by [Barndorff-Nielsen et al., 2013],

we fit 11 distributions from a class of generalised hyperbolic distributions

(Appendix A), using the R package ghyp provided by [Lüthi and Breymann,

2016]. We rank distributions according to the Akaike information criterion

(AIC) in the ascending order, so that the first one gives the best fit. In

Table 4.1 we can see that the increments of Z(t) are best described by

a symmetric normal inverse Gaussian (NIG) distribution. The fit is very good,

as shown in Figure 4.6.
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Figure 4.4: The autocorrelation function of
the increments of Z(t).

Figure 4.5: The autocorrelation function of
the squared increments of Z(t).

Figure 4.6: The increments of Z(t) and the fitted generalised hyperbolic distribution: his-
togram and q-q plot.
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model symmetric lambda alpha.bar mu sigma gamma aic llh
8 NIG TRUE -0.500 0.236 -0.005 0.386 0.000 663.866 -328.933
6 ghyp TRUE -0.288 0.249 -0.005 0.381 0.000 664.904 -328.452
3 NIG FALSE -0.500 0.237 -0.008 0.385 0.007 665.605 -328.802
1 ghyp FALSE -0.294 0.250 -0.007 0.381 0.006 666.693 -328.346
10 t TRUE -1.036 0.000 -0.006 0.992 0.000 678.914 -336.457
5 t FALSE -1.039 0.000 -0.008 0.964 0.034 680.663 -336.331
4 VG FALSE 0.636 0.000 0.022 0.347 -0.022 684.218 -338.109
9 VG TRUE 0.727 0.000 0.002 0.356 0.000 697.183 -345.592
7 hyp TRUE 1.000 0.027 -0.001 0.341 0.000 713.650 -353.825
2 hyp FALSE 1.000 0.027 -0.001 0.341 0.001 715.649 -353.824
11 gauss TRUE Inf -0.001 0.382 0.000 1194.509 -595.255

Table 4.1: Generalised hyperbolic distributions fitted to the increments of Z(t) with
parametrisation (λ, α, µ,Σ, γ).

4.2.2 Stationary short-term factor Y (t)

We obtain a realisation of Y (t) by subtracting Z(t) from the deseasonalised

spot prices. Figure 4.7 shows the resulting process and its autocorrelation

function. The augmented Dickey-Fuller (ADF) test ([Trapletti and Hornik,

2018]) allows us to reject the unit root hypothesis at significance level 0.01,

so Y (t) is a stationary time series.

Figure 4.7: The estimated Y (t): time series plot and the autocorrelation function.
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Inspired by [Benth et al., 2014], we start by modelling Y (t) with a CARMA(2,1)

process, a special case of an Lévy semistationary processes described in Ap-

pendix C. The CARMA(2,1) kernel satisfies the assumptions of Proposi-

tion 4.0.1, as long as λi 6= − δ
2

for i = 1, 2. This follows from

lim
x→∞

∫ x

0

g(y)e−
δ
2

(x−y)dy = lim
x→∞

2∑
i=1

αi

∫ x

0

eλiye−
δ
2

(x−y)dy =

lim
x→∞

2∑
i=1

αi

λi + δ
2

(
eλix − e−

δ
2
x
)

= 0,

because δ > 0 and λi < 0 for i = 1, 2. We implement the algorithm

from Section C.4 to fit a CARMA(2,1) model to Y (t). First, we use the

function arima from the R package stats ([R Core Team, 2018]) to fit

an ARMA(2,1) process. We estimate the ARMA(2,1) model with parameters

(φ1, φ2, θ) = (1.413,−0.446,−0.826). In Figure 4.8 we can see that the

estimated discrete model describes Y (t) accurately, although it cannot capture

some extreme values.

Figure 4.8: The ARMA(2,1) model fitted to Y (t).
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Proceeding as described in Section C.4, we map the estimated ARMA(2,1)

parameters into CARMA(2,1) kernel parameters, which gives us the process

(D2 + 0.809D + 0.048)Y (t) = (0.194 +D)DL(t),

where D denotes “differentiation” with respect to t (for details see Ap-

pendix C). We recover the driving Lévy noise L(t). As with the increments of

Z(t), we choose the best fit to the increments ∆L of the driving noise among

11 generalised hyperbolic distributions. From Table 4.2 we learn that the best

fit is given by the asymmetric Student’s-t distribution. Below we describe

the quality of these estimates, from now on called “true” estimates.

model symmetric lambda alpha.bar mu sigma gamma aic llh
5 t FALSE -2.131 0.000 1.178 7.708 -1.215 12403.016 -6197.508
1 ghyp FALSE -2.055 0.319 1.186 7.654 -1.191 12405.297 -6197.649
10 t TRUE -2.044 0.000 0.293 7.854 0.000 12412.389 -6203.194
3 NIG FALSE -0.500 0.962 1.310 7.606 -1.342 12413.597 -6202.799
6 ghyp TRUE -2.047 0.005 0.293 7.850 0.000 12414.389 -6203.194
8 NIG TRUE -0.500 0.908 0.306 7.724 0.000 12425.469 -6209.734
2 hyp FALSE 1.000 0.770 1.463 7.500 -1.498 12429.264 -6210.632
4 VG FALSE 1.528 0.000 1.444 7.517 -1.479 12438.049 -6215.025
7 hyp TRUE 1.000 0.724 0.286 7.604 0.000 12442.264 -6218.132
9 VG TRUE 1.503 0.000 0.285 7.614 0.000 12451.107 -6222.553
11 gauss TRUE Inf -0.034 7.949 0.000 12741.822 -6368.911

Table 4.2: Generalised hyperbolic distributions fitted to the increments ∆L of the driving
noise of Y (t).

To test the quality of the estimation procedure described in Section C.4,

we simulate 1,000 paths of sampled the Y (t) with N = 1, 824 observations.

As described in Section C.5, the simulation method requires simulating two

Ornstein-Uhlenbeck processes driven by the same Lévy noise. We use the

Euler-Maruyama method with the step size h = 0.01. We first simulate

two Ornstein-Uhlenbeck processes of length 2N
h

= 364, 800. We discard the

first half of each time series as a burn-in period. Finally, we resample every
1
h

= 100 points to obtain two time series of length N = 1, 824.

For each path we re-estimate the parameters partrue, which after averaging

over all paths give us Monte Carlo estimates parMC. We compute the bias
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and standard error of all parameters:

parMC − partrue

and √∑1000
i=1 (parMC

i − partrue)
2

1000
,

respectively. We additionally report the relative bias and error defined as

parMC − partrue

parMC

and √∑1000
i=1 (parMC

i −partrue)
2

1000

parMC
,

respectively. From Table 4.3 we learn that the (relative) biases as well as

(relative) standard errors of estimates are small. We present histograms of

resulting estimates in Figure 4.9.

a1 a2 b0

True estimate 0.809 0.048 0.194
Monte Carlo estimate 0.811 0.045 0.191

Standard error 0.116 0.023 0.066
Relative error 0.143 0.519 0.348

Bias 0.002 -0.003 -0.004
Relative bias 0.002 -0.059 -0.019

Table 4.3: Parameters of CARMA(2,1) kernel estimated via bootstrapping with 1, 000
simulations.

Remark 4.2. It is crucial to simulate the Ornstein-Uhlenbeck processes on

a sufficiently refined grid. For example, the Euler-Maruyama step size ht = 1.0

results in large (relative) biases of estimated parameters.

Similarly we re-estimate the parameters of the generalised hyperbolic noise.

In Table 4.4 we observe large standard and relative errors as well as (relative)

biases. However, we recall that to each path of the noise’s increments we

fit 11 distributions from the generalised hyperbolic class and choose the one
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Figure 4.9: Parameters of CARMA(2,1) kernel estimated from 1, 000 simulated paths (from
left to right: a1, a2 and b0). Red vertical lines indicate true estimates, while red lines Monte
Carlo estimates.

with the smallest value of AIC (Akaike information criterion). As stated

in Section A.2, slightly different parameters might result in a distribution

belonging to a different class. Therefore the distributions fitted to similar

paths might have very different parameters. Figure 4.10 helps explain this

phenomenon. For example, the estimates of λ and γ are clearly bimodal,

so the average of parameters resulting from both cases matches neither of

two distributions. However, this should not worry us because these different

parameters result in very similar distributions.

λ α δ β µ
True estimate -2.131 0.020 11.592 -0.020 1.178

Monte Carlo estimate 0.631 0.415 29.214 -0.153 5.802
Standard error 38.008 1.212 20.699 1.062 9.926
Relative error 60.282 2.923 0.709 -6.944 1.711

Bias 2.761 0.394 17.622 -0.132 4.624
Relative bias 4.379 0.951 0.603 0.866 0.797

Table 4.4: Parameters of the generalised hyperbolic noise estimated via bootstrapping with
1, 000 simulations.

4.2.3 Stochastic volatility

Figure 4.11 and Figure 4.12 present the autocorrelation functions of the

increments and squared increments of the recovered driving Lévy process

L(t). Figure 4.12 indicates that the squared increments of L(t) are not
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Figure 4.10: Parameters of the generalised hyperbolic noise estimated from 1, 000 simu-
lated paths (from left to right: λ, α, δ, β and µ). Red vertical lines indicate true estimates,
while blue lines Monte Carlo estimates.

independent, so the model could benefit from including a short-memory

stochastic volatility in the definition of Y (t). We notice the highest peak at

lag 7, which could indicate that some traces of weekly behaviour remained

after the deseasonalisation.

In this section again we assume that

Y (t) =

∫ t

−∞
g(t− s)σ(s)dB(s),

where

σ(t)2 =

∫ t

−∞
e−δ(t−s)dV (s),

B is a standard Brownian motion, g a CARMA kernel and V a Lévy subordi-

nator independent of B. Now we replace the driving Lévy process estimated

in Subsection 4.2.2 by a volatility modulated Brownian motion, so

dL(t) = σ(t)dB(t).
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Figure 4.11: The autocorrelation function of
the increments of L(t).

Figure 4.12: The autocorrelation function of
the squared increments of L(t).

Since in Chapter 7 we deseasonalised all relevant data sets, we do not explicitly

introduce any seasonal components of the stochastic volatility. While one

should be aware that volatility might change with seasons, we believe that

this effect should not influence the results in a significant way.

For all n = 1, . . . , N , where N denotes the number of observations, the

estimated realised variance converges uniformly on compact sets in probability

to the integrated variance C(t), where

C(t) :=

∫ t

0

σ(s)2ds

and

∆h
nC := Cnh − C(n−1)h =

∫ nh

(n−1)h

σ(s)2ds.
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We compute:

κ1 := EQ
[
σ(t)2

]
= EQ [V (1)]

∫ ∞
0

e−δxdx =
EQ [V (1)]

δ
;

κ2 := VarQ
[
σ(t)2

]
= VarQ [V (1)]

∫ ∞
0

e−2δxdx =
VarQ [V (1)]

2δ
;

CovQ
(
σ(t+ s)2, σ(t)2

)
= VarQ [V (1)]

∫ ∞
0

e−δ(x+s)e−δxdx

=
VarQ [V (1)]

2δ
e−δs = κ2e

−δs.

It follows that for k ∈ 0, . . . , N − n

EQ
[
∆h
nC
]

= κ1;

CovQ
(
∆h
n+kC,∆

h
nC
)

= EQ

[∫ (n+k−1)h

(n+k)h

σ(s)2ds

∫ nh

(n−1)h

σ(u)2du

]
− κ2

1

=

∫ (n+k−1)h

(n+k)h

∫ nh

(n−1)h

EQ
[
σ(s)2σ(u)2

]
dsdu− κ2

1

= κ2

∫ (n+k−1)h

(n+k)h

∫ nh

(n−1)h

e−δ|s−u|dsdu+ κ2
1 − κ2

1

= κ2

∫ (n+k−1)h

(n+k)h

e−δudu

∫ nh

(n−1)h

eδsds =
κ2

δ2

(
e
δ
2 − e−

δ
2

)2

e−δhk;

VarQ
[
∆h
nC
]

= CovQ
(
∆h
nC,∆

h
nC
)

=
κ2

δ2

(
e
δ
2 − e−

δ
2

)2

.

Thus for k = 0, . . . , N − n the theoretical autocorrelation function of Lévy

increments converges to

ACF(h) = e−δk.

In order to estimate the memory parameter δ, we need to match this theoretical

function with its empirical counterpart, both computed for

N∑
n=1

(
∆h
nC
)2
.

We use the function nls from the R package stats ([R Core Team, 2018]), with

the first six lags and the starting value equal zero. It gives us an estimate of
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δ̂ = 2.24, at significance level 0.01. Figure 4.13 presents the true and estimated

autocorrelation functions. We conclude that the stochastic volatility model

Figure 4.13: True and estimated autocorrelation functions of the squared increments of
L(t).

of Y (t) is a valid alternative to CARMA(2,1), as indicated by correlated

squared increments of the driving process L(t) as well as by the presence of

a statistically significant Ornstein-Uhlenbeck memory parameter. However,

since the evidence of stochastic volatility in our data set is relatively weak,

we expect this model to be the preferred choice in data sets with more

pronounced volatility. In the remaining sections we will return to the model

without stochastic volatility and propose a different modification so that we

can identify the impact of different modifications on the model quality.

4.3 The influence of wind energy production on electricity

prices

So far the model has not included any information about wind energy pro-

duction. Therefore in this section we modify the model proposed in Sub-
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section 4.1.3 and consider the relationship between the daily wind energy

generation levels and spot prices in Germany and Austria between 01.01.2011

and 31.12.2015, as described in Section 3.1. We recall that because long-term

weather forecasts tend to be unreliable, we assume that wind energy produc-

tion influences only the short-term factor Y . Therefore Λ and Z introduced

in Subsection 4.1.3 remain unchanged.

As described in Subsection 3.3.1, we explore three wind-related variables:

day-ahead forecasts of wind energy generation WD, wind penetration index

WPI and residual demand RD. We recall that the two latter variables are

the ratio of WD to LD and the difference between LD and WD, respectively,

where LD denotes the day-ahead forecast of the total load.

We start by regressing the short-term factor Y on combinations of these de-

seasonalised and detrended variables (WD, LD and WPI) and their squares.

[Elberg and Hagspiel, 2015] suggest a similar approach, with some significant

differences. Firstly, they only consider the residual demand, while we compare

it to wind energy generation and wind penetration index. Secondly, in order

to capture the non-linear relationship between spot prices and the residual

demand, they suggest using splines. However, as shown in Figure 3.18, the

relationships between deseasonalised wind variables and spot prices do not

seem to require a polynomial level higher than quadratic. Moreover, linear

regression results in a more parsimonious and intuitive model than splines,

which is important for practitioners. Thirdly, instead of varying model coeffi-

cients with time like [Elberg and Hagspiel, 2015], we deseasonalise the data;

again, the resulting model is easier to use in practice.

First we consider models with one wind-related variable each (models 4, 5 and

6), to check which one helps explain electricity spot prices. We then extend

them by adding square terms (models 7, 8 and 9) to allow for non-linear

relationships. We also look into all wind variables together (model 3) as

well as all wind variables in both linear and squared forms (model 2). These

two models let us compare the significance of variables of interest directly.

Because the relationships between explanatory variables are not linear, we

do not expect any collinearity issues. However, we include these two models

to check if the impact of some variables on the prices changes due to the

presence of the others. In practice we suggest using one of the remaining
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models to avoid overfitting. For that reason and to keep the interpretability

we do not include any models with interaction terms between explanatory

variables. Finally, we consider a model without any information about the

wind energy production for comparison.

In Table 4.5 and Table 4.6 we report the regression coefficients for all nine

proposed models, estimated with robust linear regression and ordinary least

squares, respectively. In the first case we use the R function rlm from the

package MASS ([Venables and Ripley, 2002]), while in the latter lm from stats

([R Core Team, 2018]). In the remainder of the chapter we keep the coefficients

estimated with robust regression, as this approach should reduce the bias

towards outliers. The results of both estimation methods differ slightly, but

almost only quantitatively: only WD in the model 3 is significant at level

0.05 when we use the robust regression, while insignificant with the standard

linear regression.

The intercept becomes significant if and only if we include squared variables.

We are particularly interested in model 2, where we include all three variables

(WD, WPI and RD) as well as their squares. The results indicate that all

three wind-related variables help explain the short-term factor Y (t): WPI

and RD in their basic form, while WD squared. Because WD
2

and RD
2

take large values, the coefficients in front of them are very small.

After regressing the short-term factor Y (t) on combinations of these variables

and their squares, we fit CARMA(2,1) models to the residuals.

4.3.1 Model comparisons

In this section we try to answer two questions. First, if considering wind

energy data improves the model for electricity spot prices. Second, which

combination of wind energy variables gives the best results.

Since statistical significance gives us valuable information about the usefulness

of different wind-related variables in explaining the electricity prices, we do

not remove coefficients insignificant at level 0.05. This choice allows us to

interpret the compared models in a meaningful way.

We compare the models in sample, i.e. on the data set the model was fitted
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intercept WD WPI RD WD
2

WPI
2

RD
2

1 x x x x x x x
2 -0.849 0.0109 -54.3 0.0267 5.28e-05 -17.3 5.29e-06
3 -0.193 0.0169 -53.9 0.0266 x x x
4 -0.0913 -0.0441 x x x x x
5 -0.114 x -73.4 x x x x
6 -0.191 x x 0.038 x x x
7 -0.806 -0.0514 x x 6.11e-05 x x
8 -0.777 x -84.1 x x 143 x
9 -0.652 x x 0.0409 x x 2.31e-05

Table 4.5: Coefficients of linear parts of all models of Yt, of the form a0 + a1 ·WD + a2 ·
WPI+a3 ·RD+a4 ·WD

2
+a5 ·WPI

2
+a6 ·RD

2
, estimated using the robust linear regression

(function rlm in the R package MASS). With ’x’ we denote variables absent in a given model.
Coefficients in bold are significant at level 0.05.

to (2011–2015). As the difference between models lies only in the short-

term factor Y (t), we focus on this part of the model. Using the parameters

estimated in Section 4.3, for each model we simulate a path of Y (t) of the

same length as the original data: 1, 824 days (for simulation details we refer

the reader to Subsection 4.2.2). In Figure 4.14 we present the densities of

the simulated and true Y (t). All models replicate the density relatively well.

Additionally, for all models we measure the distances between the true and

simulated densities with four statistical distances provided in the R package

philentropy ([Drost, 2018]):

1. Euclidean : d =
√

(
∑
|Pi −Qi|2);

2. Manhattan : d =
∑
|Pi −Qi|;

3. Minkowski : d = (
∑
|Pi −Qi|p)

1
p ;

4. Chebyshev : d = max |Pi −Qi|.

Table 4.7 presents the models whose densities are the closest and the furthest

from the true Y (t). The model 1 (with no wind information) maximises

three out of four distances. This confirms our intuition, since the model

without any wind information should explain smaller parts of prices than
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intercept WD WPI RD WD
2

WPI
2

RD
2

1 x x x x x x x
2 -0.854 0.00704 -45.5 0.0303 4.19e-05 17.9 5.93e-06
3 -0.115 0.0106 -38.6 0.0302 x x x
4 -0.116 -0.0451 x x x x x
5 -0.116 x -74.7 x x x x
6 -0.116 x x 0.0395 x x x
7 -0.912 -0.0542 x x 6.38e-05 x x
8 -0.839 x -87.7 x x 145 x
9 -0.577 x x 0.0429 x x 2.17e-05

Table 4.6: Coefficients of linear parts of all models of Yt, of the form a0 + a1 ·WD + a2 ·
WPI + a3 · RD + a4 ·WD

2
+ a5 ·WPI

2
+ a6 · RD

2
, estimated using the ordinary linear

regression (function lm in the R package stats). With ’x’ we denote variables absent in
a given model. Coefficients in bold are significant at level 0.05.

other models. On the other hand, model 9 (with RD linear and squared)

minimises three out of four distances, which would confirm the insights of

[Elberg and Hagspiel, 2015].

measure 1 2 3 4
min distance 9 9 9 7
max distance 1 1 1 8

Table 4.7: Best and worst models according to different statistical divergencies (in sample).

Similarly to [Cartea et al., 2009], we also compare the true and simulated

summary statistics. Precisely, we simulate 1, 000 paths of Y (t) of the same

length as the original data: N = 1, 824. We compute the mean (m), vari-

ance (v), skewness (s) and kurtosis (k) of each path, and average them over

all paths to obtain Monte Carlo estimates of summary statistics. In Table 4.8

we present squared differences between true and Monte Carlo statistics, while

in Table 4.9 the squared differences normalised by the value of the appro-

priate true statistics. Additionally, for all models we compute (normalised)

Euclidean distances:√
(mtrue −mMC)2 + (vtrue − vMC)2 + (strue − sMC)2 +

(
ktrue − kMC

)2
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Figure 4.14: Densities of the true and simulated short-term factors Y (t) for nine different
model variations: in sample.
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and √(
1− mMC

mtrue

)2

+

(
1− vMC

vtrue

)2

+

(
1− sMC

strue

)2

+

(
1− kMC

ktrue

)2

,

i.e. square roots of all columns of Table 4.8 and Table 4.9. From Table 4.10

and Table 4.11 we learn that models 8 and 1 perform best according to these

distances, while models 4 and 5 worst.

Model Mean (m) Variance (v) Skewness (s) Kurtosis (k)
1 0.00 14.39 0.09 17.85
2 0.09 32.45 0.13 39.41
3 0.02 25.62 [0.02] 35.04
4 [0.00] 533.92 0.32 56.07
5 0.47 6.81 0.05 35.99
6 0.25 24.76 0.04 35.69
7 0.00 279.02 0.29 77.63
8 0.01 [0.09] 0.06 [14.95]
9 0.36 43.09 0.17 40.06

Table 4.8: Squared differences between summary statistics of Y (t): true and averaged over
1, 000 Monte Carlo simulations. Square brackets denote the minimum value for a given
statistics, while underlines the maximum value.

Model Mean (m) Variance (v) Skewness (s) Kurtosis (k)
1 0.12 0.00 0.30 0.20
2 6.99 0.01 0.43 0.45
3 1.17 0.01 [0.06] 0.40
4 [0.00] 0.11 1.05 0.63
5 34.71 0.00 0.15 0.41
6 18.40 0.01 0.12 0.40
7 0.02 0.06 0.96 0.88
8 0.58 [0.00] 0.20 [0.17]
9 26.94 0.01 0.57 0.45

Table 4.9: Squared normalised differences between summary statistics of Y (t): true and
averaged over 1, 000 Monte Carlo simulations. Square brackets denote the minimum value
for a given statistics, while underlines the maximum value.

Additionally, we look at the squared differences between the first ten moments

of Y (t): true (µtrue
1 , . . . , µtrue

10 ) and averaged over 1,000 Monte Carlo simulations
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Model 1 2 3 4 5 6 7 8 9
Distance 5.69 8.49 7.79 24.30 6.58 7.79 18.89 [3.89] 9.15

Table 4.10: Euclidean distances between summary statistics of Y (t): true and averaged
over 1, 000 Monte Carlo simulations. Square brackets denote the minimum value, while
underlines the maximum value.

Model 1 2 3 4 5 6 7 8 9
Distance [0.79] 2.80 1.28 1.34 5.94 4.35 1.38 0.97 5.29

Table 4.11: Normalised Euclidean distances between summary statistics of Y (t): true and
averaged over 1, 000 Monte Carlo simulations. Square brackets denote the minimum value,
while the underlines the maximum value.

(µMC
1 , . . . , µMC

10 ). We also compute the same metric, but normalised by true

moments. Thus for i = 1, . . . , 10 we compute(
µtrue
i − µMC

i

)2

and (
1− µMC

i

µtrue
i

)2

,

respectively. For each distance and each number of moments we define

the best model as the model minimising the distance and the worst as the

one maximising the distance. We present the best and worst models in

Table 4.12 (differences between moments) and Table 4.13 (sums of differences

between moments). Clearly model 4 (WD) has the worst performance. The

best-performing models are 3 (all variables without squares) and 5 (WPI).
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Best models Worst models
Moment Non-normalised Normalised Non-normalised Normalised

1 4 4 5 5
2 8 8 4 4
3 3 3 4 4
4 5 5 4 4
5 3 3 4 4
6 5 5 4 4
7 3 3 4 4
8 5 5 4 4
9 5 5 4 4
10 5 5 4 4

Table 4.12: Best and worst models: models minimising and maximising (normalised)
squared distances between the moments of empirical and simulated data (1,000 simulations).
Models are described in Table 4.5.

Best models Worst models
Highest moment Non-normalised Normalised Non-normalised Normalised

1 4 4 5 5
2 8 4 5 5
3 8 8 4 5
4 5 8 4 4
5 3 3 4 4
6 5 3 4 4
7 3 3 4 4
8 5 3 4 4
9 3 3 4 4
10 5 3 4 4

Table 4.13: Best and worst models: models minimising and maximising the sum of (nor-
malised) squared distances between the moments of empirical and simulated data (1,000
simulations), for different numbers of moments. Models are described in Table 4.5.
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4.4 Modelling wind-related variables using gamma kernels

In Subsection 4.3.1 we showed that wind-related variables (WD, RD and

WPI) help model electricity spot prices. In this section we propose models

for these three variables which can be used as exogenous variables in the

arithmetic model (Section 4.3) instead of empirical data.

4.4.1 Lévy semistationary processes with gamma kernels

Inspired by [Barndorff-Nielsen et al., 2013], we let

X(t) = µ+ c

∫ t

−∞
g(t− s)ω(s)dB(s) + γ

∫ t

−∞
q(t− s)ω2(s)ds, (4.24)

where µ, c and γ are real constants, ω is a stationary volatility process and

B denotes a standard Brownian motion independent of ω. We denote the

gamma density with parameters ν̄ > 0 and λ̄ > 0 by

ḡ
(
t; ν̄, λ̄

)
=

λ̄ν̄

Γ(ν̄)
tν̄−1e−λ̄t.

To ensure the existence of Eq. (4.24), we assume that 1
2
< ν̄ < 1. We define

g (t) =
λ̄ν̄−

1
2√

Γ(2ν̄ − 1)
tν̄−1 exp

(
− λ̄

2
t

)
and

q(t) = g2(t) = ḡ
(
t; 2ν̄ − 1, λ̄

)
.

We also let

ω2(t) =

∫ t

−∞
p(t− s)dU(s)

for

p(t) =
1

λ̄
ḡ
(
t; 2− 2ν̄, λ̄

)
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and a subordinator U(t), which we will specify later. We observe that

X(t)|ω ∼N
(
µ+ γ

∫ t

−∞
q(t− s)ω2(s)ds, c2

∫ t

−∞
g2(t− s)ω2(s)ds

)
=:N

(
µ+ γσ2(t), c2σ2(t)

)
with

σ2(t) =

∫ t

−∞
e−λ̄(t−s)dU(s).

We can compute

E
[
σ2(0)

]
=

E [U(1)]

λ̄

and

Var
(
σ2(0)

)
=

Var (U(1))

2λ̄
.

[Barndorff-Nielsen et al., 2013] notice that if U denotes a subordinator such

that σ2 ∼ GIG(λ, χ, ψ) then X ∼ GH (λ, χ, ψ, µ, c2, γ), so the marginal

distribution of X uniquely determines the distribution of σ2.

Based on the explicit formula for the autocovariance of Lévy semistationary

processes provided by [Barndorff-Nielsen et al., 2018, p. 24], for s > 0 we

compute the autocovariance of Eq. (4.24):

Cov (X(t+ s), X(t)) = c2E
[
ω2(0)

] ∫ ∞
0

g(x+ s)g(x)dx

+ γ2

∫ ∞
0

∫ ∞
0

q(x+ s)q(y)Cov
(
ω2(|x− y|), ω2(0)

)
dxdy.

Let us study each term separately. By [Barndorff-Nielsen et al., 2013],

E
[
ω2(0)

]
= E [U(1)]

∫ ∞
0

p(x)dx

= E [U(1)]

∫ ∞
0

1

λ̄

λ̄2−2ν̄

Γ (2− 2ν̄)
x1−2ν̄e−λ̄xdx =

E [U(1)]

λ̄
= E

[
σ2(0)

]
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and

Cov
(
ω2(t+ s), ω2(t)

)
= Var (U(1))

∫ ∞
0

p(x+ s)p(x)dx

= 2λ̄Var
(
σ2(0)

) ∫ ∞
0

p(x+ s)p(x)dx.

Furthermore,∫ ∞
0

g(x+ s)g(x)dx =

∫ ∞
0

λ̄2ν−1

Γ (2ν̄ − 1)
((x+ s)x)ν̄−1 e−

λ̄
2

(2x+s)dx

=
1

Γ(ν̄ − 1
2
)
2

3
2
−ν̄K̄ν̄− 1

2

(
λ̄

2
s

)
,

where

K̄α (x) = xαKα (x)

and Kν (x) denotes the modified Bessel function of the third kind. Finally,∫ ∞
0

p(x+ s)p(x)dx =

∫ ∞
0

(
1

λ̄

λ̄2−2ν̄

Γ (2− 2ν̄)

)2

((x+ s)x)1−2ν̄ e−λ̄(2x+s)dx

=
1

λ̄3

(
1

Γ (2− 2ν̄)

)2
Γ (3− 2ν̄)

Γ
(

1
2

) 22ν̄− 5
2 K̄ν− 1

2

(
λ̄s
)
.

Therefore

Cov (X(t+ s), X(t)) = P +Q,

with

P = c2E
[
σ2(0)

] 2
3
2
−ν̄

Γ(ν̄ − 1
2
)
K̄ν̄− 1

2

(
λ̄

2
s

)
and

Q = γ22λ̄Var
(
σ2(0)

) 1

λ̄3

(
1

Γ (2− 2ν̄)

)2
Γ (3− 2ν̄)

Γ
(

1
2

) 22ν̄− 5
2

λ̄4ν̄−2

Γ (2ν̄ − 1)2∫ ∞
0

∫ ∞
0

(x+ s)2ν̄−2e−λ̄(x+s)y2ν̄−2e−λ̄yK̄ν̄− 1
2

(
λ̄|x− y|

)
dxdy

= cQ

∫ ∞
0

∫ ∞
0

(x+ s)2ν̄−2e−λ̄(x+s)y2ν̄−2e−λ̄yK̄ν̄− 1
2

(
λ̄|x− y|

)
dxdy,
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where

cQ = γ2λ̄4ν̄−4Var
(
σ2(0)

)
22ν̄− 3

2
Γ (3− 2ν̄)

Γ
(

1
2

) (
1

Γ (2− 2ν̄) Γ (2ν̄ − 1)

)2

.

Similarly, we compute the variance of X:

Var (X(0)) = P0 +Q0,

with

P0 = c2E
[
σ2(0)

]
and

Q0 = cQ

∫ ∞
0

∫ ∞
0

(xy)2ν̄−2e−λ̄(x+y)K̄ν̄− 1
2

(
λ̄|x− y|

)
dxdy.

Now we are ready to estimate the parameters λ̄ and ν̄ of the gamma kernel

by matching the first lags of the empirical and theoretical autocorrelation

functions, with the latter equal to

cor (X(t), X(t+ s)) =
P +Q

P0 +Q0

.

4.4.2 Estimation procedure

We start the estimation procedure by using the function stepAIC.ghyp from

the R package ghyp ([Lüthi and Breymann, 2016]) to fit 11 generalised hy-

perbolic distributions to X, where X denotes the wind variable of interest

(WD, RD or WPI). As usually, we find the distribution which minimises

the Akaike information criterion (AIC). Finally, we convert the parameters of

the best fitting marginal generalised hyperbolic distribution (Section A.3) to

the parametrisation
(
λ, χ, ψ, µ, c =

√
Σ, γ

)
.

After fitting the marginal distribution, we proceed to estimate kernel parame-

ters ν̄ and λ̄ by matching first lags of the empirical and theoretical autocor-

relation functions of X(t). [Barndorff-Nielsen et al., 2013] suggest using the

first
⌊√

N
⌋

lags, where N denotes the number of observations. Therefore we

apply the function optim from the R package stats ([R Core Team, 2018])
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to minimise the squared difference between the first
⌊√

1824
⌋

= 42 lags of

the empirical and theoretical autocorrelation functions. We set the initial

parameters to ν̄ = 0.99 and λ̄ = 0.01.

Remark 4.3. The optimisation procedure is not sensitive to reasonable starting

values. For example, setting the initial values to ν̄ = 0.75 and λ̄ = 0.20 results

in the same optimal parameters up to the third decimal place. On the other

hand, the number of lags used in the estimation procedure influences the

results. In case of the residual demand, the estimation procedure performed

on six lags, with the original initial values, resulted in ν̄ = 0.87 and λ̄ = 0.26

instead of ν̄ = 0.82 and λ̄ = 0.20. This should not surprise us considering the

changing behaviour of the autocorrelation function. Therefore the choice of

the number of lags must correspond to the application of interest.

4.4.3 Numerical results

In this subsection we describe the results of the estimation procedure from

Subsection 4.4.2 run on three wind-related variables.

4.4.3.1 Wind energy production

In Table 4.14 we can see that the asymmetric normal inverse Gaussian

distribution minimises the Akaike information criterion (AIC), therefore it

provides the best fit. Figure 4.15 shows that the fit is indeed very good,

apart from some imperfections in the right tail. Therefore we assume that

the marginal distribution of WD is asymmetric hyperbolic with(
λ, χ, ψ, µ, c =

√
Σ, γ

)
= (−0.50, 2.21, 2.21,−121.45, 8.79, 121.39) .

The value of the parameter γ is positive, which reflects the positive skewness

of WD.

For the kernel we obtain parameter estimates ν̄ = 0.99 and λ̄ = 0.57, so

similarly to [Barndorff-Nielsen et al., 2013] we are outside the semimartingale

setting, but this does not cause any problems since we are not modelling
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model symmetric lambda alpha.bar mu sigma gamma aic llh
3 NIG FALSE -0.500 2.212 -121.451 77.228 121.395 21945.436 -10968.718
5 t FALSE -6.690 0.000 -212.251 58.792 212.452 21948.790 -10970.395
2 hyp FALSE 1.000 1.682 -113.757 79.374 113.742 21950.036 -10971.018
1 ghyp FALSE -6.715 0.000 -213.113 58.569 213.321 21950.789 -10970.394
4 VG FALSE 2.067 0.000 -101.971 83.414 101.966 21962.771 -10977.386
8 NIG TRUE -0.500 0.716 -20.367 113.947 0.000 22192.167 -11093.084
6 ghyp TRUE -0.524 0.715 -20.333 113.970 0.000 22194.166 -11093.083
7 hyp TRUE 1.000 0.331 -20.978 112.161 0.000 22197.557 -11095.779
10 t TRUE -1.802 0.000 -18.542 118.648 0.000 22198.139 -11096.070
9 VG TRUE 1.171 0.000 -21.571 112.311 0.000 22199.454 -11096.727
11 gauss TRUE Inf -0.000 111.723 0.000 22383.348 -11189.674

Table 4.14: Generalised hyperbolic distributions fitted to WD with parametrisation
(λ, α, µ,Σ, γ).

Figure 4.15: WD and the fitted generalised hyperbolic distribution: histogram and q-q
plot.
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a tradable asset. The fit between autocorrelation functions is good, as shown

in Figure 4.16.

Figure 4.16: True and estimated autocorrelation functions of WD according to the model
described in Section 4.4.

4.4.3.2 Residual demand

A quick look at Figure 3.18 suggests that we expect the marginal distribution

of RD to be asymmetric. Table 4.15 shows that indeed the best fit is provided

by the asymmetric hyperbolic distribution. Apart from some minor issues

in the left tail, this distribution fits very well, as we observe in Figure 4.17.

Therefore the marginal distribution of RD is asymmetric hyperbolic with(
λ, χ, ψ, µ, c =

√
Σ, γ

)
= (1.00, 0.26, 2.53, 96.44, 11.12,−96.43) .
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model symmetric lambda alpha.bar mu sigma gamma aic llh
2 hyp FALSE 1.000 0.809 96.439 123.598 -96.435 23019.220 -11505.610
4 VG FALSE 1.568 0.000 95.617 124.152 -95.607 23019.521 -11505.760
1 ghyp FALSE 1.253 0.595 95.796 123.875 -95.795 23021.045 -11505.522
3 NIG FALSE -0.500 1.532 108.093 120.079 -108.117 23024.637 -11508.319
5 t FALSE -4.000 0.000 149.128 112.832 -150.102 23041.408 -11516.704
8 NIG TRUE -0.500 0.898 21.547 147.663 0.000 23199.988 -11596.994
6 ghyp TRUE -0.559 0.895 21.473 147.727 0.000 23201.982 -11596.991
7 hyp TRUE 1.000 0.655 21.368 145.660 0.000 23205.129 -11599.565
10 t TRUE -1.996 0.000 19.800 152.178 0.000 23205.779 -11599.889
9 VG TRUE 1.475 0.000 21.750 145.478 0.000 23209.951 -11601.976
11 gauss TRUE Inf -0.000 145.640 0.000 23350.474 -11673.237

Table 4.15: Generalised hyperbolic distributions fitted to RD with parametrisation
(λ, α, µ,Σ, γ).

Figure 4.17: RD and the fitted generalised hyperbolic distribution: histogram and q-q plot.
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The kernel parameters are estimated as ν̄ = 0.82 and λ̄ = 0.20, so again we

are not dealing with a semimartingale. Figure 4.18 presents the good match

between the empirical and theoretical autocorrelation functions.

Figure 4.18: True and estimated autocorrelation functions of RD according to the model
described in Section 4.4.

4.4.3.3 Wind penetration index

Similarly to WD, the deseasonalised wind penetration index is best described

by the asymmetric normal inverse Gaussian distribution. From Table 4.16 we

learn that the skewness parameter γ is positive, but of smaller magnitude than

the one of WD. Again, we are satisfied with the fit presented in Figure 4.19.

The marginal distribution of WPI is thus asymmetric hyperbolic with(
λ, χ, ψ, µ, c =

√
Σ, γ

)
= (−0.50, 1.71, 1.71,−0.07, 0.22, 0.07) .

93



model symmetric lambda alpha.bar mu sigma gamma aic llh
3 NIG FALSE -0.500 1.712 -0.067 0.050 0.067 -4956.436 2482.218
2 hyp FALSE 1.000 1.110 -0.062 0.052 0.062 -4955.579 2481.789
1 ghyp FALSE 0.227 1.447 -0.063 0.051 0.063 -4955.566 2482.783
4 VG FALSE 1.757 0.000 -0.059 0.053 0.059 -4945.900 2476.950
5 t FALSE -4.411 0.000 -0.095 0.045 0.095 -4940.267 2474.133
8 NIG TRUE -0.500 0.686 -0.014 0.072 0.000 -4688.184 2347.092
6 ghyp TRUE -0.618 0.676 -0.014 0.072 0.000 -4686.234 2347.117
10 t TRUE -1.750 0.000 -0.012 0.076 0.000 -4681.876 2343.938
7 hyp TRUE 1.000 0.402 -0.014 0.071 0.000 -4678.876 2342.438
9 VG TRUE 1.206 0.000 -0.014 0.071 0.000 -4674.755 2340.378
11 gauss TRUE Inf 0.000 0.071 0.000 -4493.115 2248.557

Table 4.16: Generalised hyperbolic distributions fitted to WPI with parametrisation
(λ, α, µ,Σ, γ).

Figure 4.19: WPI and the fitted generalised hyperbolic distribution: histogram and q-q
plot.
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For the kernel we obtain the parameter estimates ν̄ = 0.88 and λ̄ = 0.39,

so once again we are outside the semimartingale setting. These parameters

provide good matching between autocorrelation functions, as presented in

Figure 4.20.

Figure 4.20: True and estimated autocorrelation functions of WPI according to the model
described in Section 4.4.

4.5 Summary and outlook

In this chapter we introduced a three-factor arithmetic model of electricity

spot prices, consisting of a deterministic seasonality and trend function as

well as short- and long-term stochastic components, and derived a formula

for futures prices. We modelled the long-term component as a Lévy process

with increments belonging to the class of generalised hyperbolic distributions.

We described the short-term factor with Lévy semistationary processes. We

started from a CARMA(2,1) model, and generalised it by adding a short-
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memory stochastic volatility. We further modified the model by including the

information about the wind energy production and total load as exogenous

variables. We fitted our models to Austrian and German data including spot

and futures prices as well as the wind energy production and total load data.

Empirical studies revealed that the basic model (without wind energy pro-

duction data or stochastic volatility) already provides a good fit to the data.

We compared this benchmark model with alternatives including wind energy

generation. Each suggested model has different benefits and drawbacks, so the

choice should depend on the application of interest. For example, the model

including residual demand in the linear and squared form (model 9) minimises

the distances between true and fitted densities according to three out of

four tested metrics. On the other hand, the model without the information

about wind energy production (model 1) maximises the same distances. If

the quality of interest is the distances between empirical and fitted summary

statistics, we suggest using the model with wind penetration index in the

linear and squared form (model 8). If one is interested in the goodness of fit

of higher moments, the model with wind penetration index (model 5) or the

model with all wind variables (model 3) would both be good options.

We rounded the chapter off by modelling wind-related variables – wind energy

production, wind penetration index and residual demand – with Lévy semis-

tationary processes with gamma kernels. The empirical results showed that

this type of model suits our application very well. Models of wind-related

variables enable practitioners to apply models of electricity prices described in

Section 4.3 without relying on additional data. In Chapter 5 we will extend

this idea and propose a joint model of wind energy generation and electricity

prices.

Our studies indicate that the inclusion of wind energy production data in

electricity pricing models is a promising area of research. We expect this

effect to grow as wind energy constitutes an increasingly bigger part of total

energy production in many countries – therefore its impact on the prices will

increase. Furthermore, we suggest repeating similar experiments with other

renewables such as solar, possibly making use of already existing models of

solar power generation ([Lingohr and Müller, 2019] or [Veraart and Zdanowicz,

2015]). Since the participation of solar power in the total energy generation
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in Austria and Germany is still smaller than of the wind power, its impact

might be smaller. However, the inclusion of other renewables would give us

the full picture and help explain the prices even better due to their priority

in the electricity market (merit-order effect).
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5
A joint model of wind energy

production and electricity spot prices

In Chapter 4 we found that wind energy production, possibly together with

total load, helps explain the electricity spot prices. So far we included these

additional information as exogenous variables. In this chapter we aim to

propose a joint model of electricity spot prices and wind energy production.

We recall that correlation coefficients between the deseasonalised electricity

spot prices and wind related variables – deseasonalised wind energy production

forecasts, deseasonalised wind penetration index forecasts and deseasonalised

residual demand forecasts – equal −0.60, −0.63 and 0.72, respectively. Our

joint model should account for such a strong relationship.

A joint model of wind energy production and energy prices has important

applications. First, it can provide a better way of modelling both variables

because, as opposed to modelling them separately, it includes the crucial

information about the relationship between them. Furthermore, to trade

some contracts we must be able to compute expected values not only of both

variables but also the product between them. Here we explore an example of

such contract introduced by [Deschatre and Veraart, 2017].
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We fit a discrete vector autoregressive model to the wind energy production

and electricity prices data from 2011–2015 described in Chapter 3, after

necessary transformations. We then test the model on the data from 2016.

Since the intended application involves trading energy contracts, in the

validation we focus on one of the most important properties for practitioners:

the tail behaviour. Therefore we study if our model is able to provide the

information about the risk connected to wind energy generation and trading.

We also prove that the joint model performs better than an alternative model

which assumes the independence of variables.

5.1 The multivariate autoregressive model

We suggest modelling wind energy production and spot prices with a discrete

(bivariate) vector autoregressive process. We consider two variables described

in Chapter 3: electricity spot prices S(t) and wind energy production day-

ahead forecasts WD(t), both from 2011 to 2015. We assume that for t =

2, 3, . . .

S(t) = ΛS(t) + Y (t),

where ΛS is the trend and seasonality function described in Chapter 3 (please

note that here Y denotes a different process than in Chapter 4). However,

we modify the deseasonalising procedure of the wind energy production to

ensure that simulated WD takes only non-negative values. For t = 2, 3, . . .

we let √
WD(t) = Λ

√
WD(t) +X(t),

where, similarly to ΛWD described in Chapter 3, the seasonality function has

the form

Λ
√
WD(t) = c

√
WD

0 + c
√
WD

1 t+ c
√
WD

2 cos

(
c
√
WD

3 + 2πt

365

)
.

For the details of the estimation procedure we refer the reader to Chapter 3.

Remark 5.1. We could transform wind energy production data in many

alternative ways described jointly as Box-Cox transformations with a general
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formula

f(x;λ) =

xλ−1
λ
, λ 6= 0,

log(x), λ 6= 0.

The function BoxCox.lambda from the R package forecast ([Hyndman and

Khandakar, 2008]) uses the maximum likelihood method to find the optimal

λ. In our case it resulted in λ = 0.07, suggesting a transformation close to

the natural logarithm. However, we decided to use the square root instead,

for two main reasons. First, its inverse transformation does not magnify

small discrepancies between the simulated and empirical data as much as

exponentiating does. Second, the model with log-transformed data does not

provide an intuitive interpretation. For example, when we use the logarithm,

Y Granger-causes X (cf. below), even though Y does not Granger-cause

exp(X). In other words, such a model would suggest spurious relationships

between variables.

As an initial test of the relationship between X and Y we check the Granger

causality. It is the common way of finding out if the past of one stationary

variable influences another stationary variable. First we decide the number

of relevant lags, in this case 2. To establish if X Granger-causes Y , for

t = 2, 3, . . . we fit two regression models to Y :

Y (t) = a0 + a1Y (t− 1) + a2Y (t− 2) + ε(t)

and

Y (t) = a0 + a1Y (t− 1) + a2Y (t− 2) + b1X(t− 1) + b2X(t− 2) + ε(t).

We test the null hypothesis that b1 = b2 = 0, i.e. that past lags of X do not

help model Y . We stress that Granger causality corresponds to forecasting

ability, not true causality.

The Granger test performed with the function grangertest from the R

package lmtest ([Zeileis and Hothorn, 2002]) with two lags confirms (on

significance level 0.001) that X Granger-causes Y but Y does not Granger-

cause Y , as expected: it is the wind energy production which influences

electricity prices, not vice versa. This suggests that a vector autoregressive
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model could be a good choice. For t ∈ {2, 3, . . . } we choose the process

VAR(2)

X(t) = βX0 + βX1Y (t− 1) + βX2Y (t− 2) + γX1X(t− 1) + γX2X(t− 2) + εX(t);

Y (t) = βY 0 + βY 1Y (t− 1) + βY 2Y (t− 2) + γY 1X(t− 1) + γY 2X(t− 2) + εY (t).

(5.1)

In Table 5.1 and Table 5.2 we present coefficients estimated with the R

package vars ([Pfaff, 2008]). We observe that while Y has no statistically

significant influence on X, X impacts Y . If we assume higher orders of the

VAR model, X is influenced only by its two previous lags, while Y must

include lags of both variables. Since two lags suffice to model the wind energy

production, we do not increase the number of lags in the model Eq. (5.1).

Figure 5.1 and Figure 5.2 suggest a very mild stochastic volatility in both

Estimate Std. Error t value Pr(> |t|)
γX1 0.702 0.029 24.071 0.000
βX1 -0.020 0.015 -1.324 0.186
γX2 -0.108 0.029 -3.709 0.000
βX2 0.020 0.015 1.307 0.191
βX0 0.001 0.072 0.015 0.988

Table 5.1: Parameters of X modelled by Eq. (5.1) estimated using the R package vars. In
bold: coefficients estimated on the confidence level 0.001.

Estimate Std. Error t value Pr(> |t|)
γY 1 -0.077 0.057 -1.358 0.175
βY 1 0.578 0.029 19.750 0.000
γY 2 0.214 0.057 3.749 0.000
βY 2 0.132 0.029 4.519 0.000
βY 0 -0.006 0.141 -0.040 0.968

Table 5.2: Parameters of Y modelled by Eq. (5.1) estimated using the R package vars. In
bold: coefficients estimated on the confidence level 0.001.

processes. From Figure 5.3 we learn that the residuals of X and Y are

uncorrelated beyond lag 0, where the correlation equals −0.61.

We model the residuals with a distribution belonging to the bivariate gen-

eralised hyperbolic class (for more details we refer the reader to [Lüthi and
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Figure 5.1: Residuals (left) and squared residuals (right) of the VAR(2) model fitted to
X(t).

Figure 5.2: Residuals (left) and squared residuals (right) of the VAR(2) model fitted to
Y (t).
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Figure 5.3: The cross-correlation between the residuals of X and Y , i.e. the autocorrelation
between εX(t+k) and εY t for lags k ∈ Z.

Breymann, 2016]). We use the R package ghyp to rank 11 distributions from

this class according to Akaike information criterion, as shown in Table 5.3.

The best fit is provided by the asymmetric Student’s-t distribution with

λ = −2.745, which corresponds to 5.49 degrees of freedom. This means that

the process requires much heavier tails than the bivariate normal distribu-

tion. Figure 5.4 shows the qq-plots of the fitted marginals as well as the the

empirical scatter plot and empirical bivariate histogram.

For comparison we fit univariate generalised hyperbolic distributions to εX and

εY , following the same procedure, where we assume uncorrelated residuals.

The best fit to the first variable is provided by the asymmetric variance-

gamma, while to the latter by asymmetric Student’s-t distribution (with 4.39

degrees of freedom). Figure 5.5 and Figure 5.6 show that modelling both

variables separately could improve the individual fits. However, this approach

would neglect the clear evidence of their strong relationship presented in

Figure 5.4. Instead of the bivariate generalised hyperbolic we could also

jointly model the residuals with a bivariate Gaussian distribution, which is

the most common assumption of vector autoregressive processes. To compare

these three approaches we simulate three sets of two-dimensional points on
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the plane corresponding to true residuals (of length 1826 equal to 5 years of

the data). We compute the Euclidean distances between true and simulated

two-dimensional residuals and present the summary statistics of the results in

Table 5.4. The bivariate generalised hyperbolic model minimises the quartiles

as well as the median of the distance distribution. The worst performing

model is the univariate one, which indicates the assumption of correlated

residuals improves the fit.

model symmetric lambda alpha.bar aic llh
5 t FALSE -2.745 0.000 19651.496 -9817.748
1 ghyp FALSE -2.750 0.000 19653.493 -9817.747
3 NIG FALSE -0.500 1.566 19676.652 -9830.326
10 t TRUE -2.644 0.000 19679.825 -9833.912
6 ghyp TRUE -2.643 0.000 19681.825 -9833.913
2 hyp FALSE 1.500 1.280 19700.297 -9842.148
4 VG FALSE 2.221 0.000 19710.961 -9847.481
8 NIG TRUE -0.500 1.490 19715.531 -9851.766
7 hyp TRUE 1.500 1.302 19746.377 -9867.189
9 VG TRUE 2.226 0.000 19760.620 -9874.310
11 gauss TRUE Inf 20160.802 -10075.401

Table 5.3: Bivariate generalised hyperbolic distributions fitted to the residuals of X(t) and
Y (t) with parametrisation (λ, α, µ,Σ, γ).

Min. 1st Qu. Median Mean 3rd Qu. Max.
Bivariate ghyp 0.31 3.68 6.06 7.45 9.86 64.97

Univariate ghyp 0.39 4.35 6.81 7.94 10.22 65.74
Bivariate Gaussian 0.12 3.99 6.40 7.74 10.11 62.68

Table 5.4: Summary statistics of Euclidean distances between residuals (εX , εY ) and three
fitted processes: bivariate generalised hyperbolic, univariate generalised hyperbolic and
bivariate Gaussian.

Finally, in Figure 5.7 we present the reaction of variables to a shock from

the other variable called the impulse response function, based on the Wold

(moving average) representation of the VAR process ([Pfaff, 2008]). The

impulse responses were computed by the function irf from the R package vars

([Pfaff, 2008]). At time 0 we apply the shock to one of the variables at time

and study the reaction of the other series from time 0 to 20. The red dotted
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Figure 5.4: The qq-plots of the marginals fitted to the residuals of X(t) (upper left) and
Y (t) (bottom right) as well as the bivariate histogram and the scatter plot of true residuals.

Figure 5.5: The residuals εX and the fitted generalised hyperbolic distribution: histogram
and q-q plot.
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Figure 5.6: The residuals εY and the fitted generalised hyperbolic distribution: histogram
and q-q plot.

lines denote 95% confidence intervals computed in bootstrapping procedure

with 1, 000 runs. As expected, a shock in the wind energy production has

a relatively big impact on electricity prices, while a shock in electricity prices

does not significantly influence wind energy generation.

Remark 5.2. The function VARselect from the R package vars run with the

maximum lag 10 suggests that the optimal order of the VAR model Eq. (5.1)

is:

• 9, according to the Akaike information criterion;

• 6, according to the Hannan-Quinn criterion;

• 3, according to the Schwarz criterion;

• 9, according to the Akaike forecast prediction error.

However, due to the trade-off between the model fit and parsimony, we stick

to the lower order. Alternatively, we could consider a VARMA(p,q) model.
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Figure 5.7: Left: response of Y on the impulse from X at time 0. Right: response of X
on the impulse from Y at time 0. The red dotted lines denote 95% confidence intervals
computed in bootstrapping procedure with 1, 000 runs.

5.2 Value at risk

In this section we propose a way of assessing the model which focuses on its

tails, the quality of great importance for practitioners. For simplicity let us

use the economic term “profit” to denote S(t), WD(t) or S(t)WD(t). We

consider a standard risk measure, value at risk at level α ∈ (0, 1), denoted

V aRα and defined as the (1− α)-th quantile of the distribution of interest.

Intuitively, the value of risk describes the maximum loss at a given confidence

level. For example, let us imagine a contract with a one-month 95% value at

risk equal 1, 000 EUR and the expected shortfall 2, 000 EUR. After a month

the losses will be bigger than 1, 000 EUR with probability 5% and in that

case their expected value will equal 2, 000 EUR.

We estimate a year-long time series of day-ahead values at risk of electricity

spot prices S(t), wind energy productionWD(t) and their product S(t)WD(t),

relevant for contracts such as the one described in Subsection 5.2.2. The

product of these variables also serves as a simple alternative to the notion

of bivariate quantiles introduced by [Chaudhuri, 1996]. We assume the

model Eq. (5.1), calibrated on the 2011–2015 data, and use 2016 data in our

computations. We compute values at risk with two levels α – 95% and 99% –
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using the Monte Carlo method with nsim = 1, 000 simulations.

We start on 31.12.2015 and simulate X(t) and Y (t) for 01.01.2016, using the

data from 30.12.2015 and 31.12.2015, since the model requires the data from

past two days. We add seasonalities to obtain S(t) and WD(t), the latter

after squaring. We compute the value at risk for 01.01.2016. We proceed

to compute the value at risk for 02.01.2016 using the data from 31.12.2015

and 01.01.2016, and continue until we obtain nsim = 1, 000 time series of

day-ahead values at risk for each day of 2016, and each simulation.

5.2.0.1 Backtesting

A good model of value at risk ensures that the true profit (based on the actual

data) is lower than the value at risk about (1 − α)% times. In particular

we want to ensure that the value at risk is not set too high, which would

underestimate the true risk. We use a standard method of testing a model

based on past data: backtesting. For example, the Basel Committee on

Banking Supervision uses a traffic light approach to backtesting value at

risk ([Bank for International Settlements, 1996]). In this section we consider

a simplified version of the procedure required by this regulatory body.

Figure 5.8, Figure 5.9 and Figure 5.10 show that at the first glance one-day-

ahead values at risk based on the model Eq. (5.1) behave as expected. To

test this idea more rigorously, we can treat each day of 2016 as a Bernoulli

trial with the probability of “success” (true profit lower than the value at

risk) equal to 1 − α. This allows us to conduct hypothesis tests on 5%

confidence level with three alternative hypotheses: p 6= p0, p < p0 and p > p0,

where p0 denotes the probability of success under the null hypothesis (i.e.

1 − α), while p is the true probability of success. In other words, p-values

bigger than 0.05 indicate a correct model for value at risk, while smaller ones

suggest model modifications. Most importantly, we require to fail to reject

the latter hypothesis; the alternative would mean that our value at risk is

not conservative enough.

In Table 5.5 we present the results of tests conducted with the function

binom.test from the R package stats ([R Core Team, 2018]). According to

two-sided tests we fail to reject all models apart from the V aR95%(WD(t)S(t)).
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However, as we infer from the results of the test with the alternative hypothesis

p > p0, the value at risk was in this case set too low, which does not cause as

big of a problem as setting it too high.

Figure 5.8: Day-ahead values at risk (red line) and true wind energy production forecasts
data (dots) for 2016 in GWh.

Figure 5.9: Day-ahead values at risk (red line) and true electricity spot prices data (dots)
for 2016 in EUR/MWh.
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Figure 5.10: Day-ahead values at risk (red line) and true product of wind energy produc-
tion forecasts and electricity spot prices data (dots) for 2016 in GWh.

variable 1− α exceptions
p-value binomial test with HA

p 6= p0 p < p0 p > p0

WD(t) 0.05 20 0.63 0.71 0.37
WD(t) 0.01 2 0.6 0.29 0.88
S(t) 0.05 14 0.4 0.18 0.88
S(t) 0.01 5 0.42 0.84 0.3

WD(t)S(t) 0.05 6 0.0016 0.00068 1
WD(t)S(t) 0.01 4 0.79 0.7 0.5

Table 5.5: Results of binomial tests of values at risk V aRα with three alternative hypothe-
ses: true probability of “success” (or exception) different, smaller or greater than the hypoth-
esised one. The column “exceptions” contains the number of instances when the true data
was lower than the value at risk.
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5.2.1 The joint model versus two separate models

It would be interesting to compare the joint model of wind energy production

and electricity prices to two separate models of these variables. As a natural

modification of the model Eq. (5.1) we propose two ARMA(p,q) models

(Section C.1) fitted to X and Y separately, assuming the independence of

variables. To this end we use the function auto.arima from the R package

forecast, which uses the stepwise selection of ARMA(p,q) order ([Hyndman

and Khandakar, 2008]). It suggests to model X with ARMA(1,1) model with

coefficients φ1 = 0.52 and θ1 = 0.21, while for Y it chooses ARMA(2,1) with

φ1 = 1.35, φ2 = −0.41 and θ1 = −0.77. As in the case of VAR(2) we fit the

optimal univariate generalised hyperbolic distributions to residuals of both

models: asymmetric variance-gamma to the residuals of X and asymmetric

t-Student’s to the residuals of Y . In Figure 5.11 and Figure 5.12 we see that

both distributions fit well.

Figure 5.11: The residuals of the ARMA(1,1) model fitted to X and the fitted generalised
hyperbolic distribution: histogram and q-q plot.

We recall that the main motivation behind our choice of the joint model

Eq. (5.1) instead of two independent models was the ability to capture the

relationship between wind energy production and electricity prices. As a proxy
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Figure 5.12: The residuals of the ARMA(2,1) model fitted toY and the fitted generalised
hyperbolic distribution: histogram and q-q plot.

to evaluate this feature we use the product of both variables PR := S ·WD.

We simulate 5 years of data from both models, add seasonality and multiply the

results to obtain PRVAR := SVAR·WDVAR and PRARMA := SARMA·WDARMA.

In Figure 5.13 we can already see that the joint model can replicate the true

density of the training data better than two ARMA models. The Euclidean

distance between true and simulated density confirms this intuition: it is higher

in case of independent models. The joint model outperforms independent

models especially in higher quantiles, as we observe in Figure 5.14. Therefore

while independent models can be suitable to model both variables, we strongly

suggest using the joint model to describe the dependence between wind energy

production and electricity prices.

5.2.2 Application

In this chapter we proposed a model able to reproduce the dependence

between wind energy production and electricity prices. Now we would like to

study a contract which requires a way to accurately simulate the product of

these variables. Following [Deschatre and Veraart, 2017], we apply the model
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Figure 5.13: True (red) and simulated (blue) densities of the product of wind energy gener-
ation and electricity prices, based on the model Eq. (5.1) (left) and two independent ARMA
(right) models.

Figure 5.14: The q-q plot of the simulated (horizontal axis) versus true (vertical axis)
product of wind energy generation and electricity prices, based on the model Eq. (5.1) (left)
and two independent ARMA (right) models.
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Eq. (5.1) to quantify the risk faced by electricity distributors. A distributor

agrees to pay a fixed price K for the electricity from a wind farm responsible

for Q% of the total wind energy production in a given market. Over a time

period from 0 to T the income will equal

P = Q

∫ T

0

(S(t)−K)WD(t)dt.

We can study the impact of extreme price values S(t) on the distributor’s total

income P . We consider two standard risk measures: value at risk (defined in

Section 5.2) and the expected shortfall at level α ∈ (0, 1), denoted ESα(P )

and defined by E [P |P ≤ V aRα(P )]. Intuitively, the expected shortfall tells

us about the expected loss in worst case scenarios.

In the following we assume the model Eq. (5.1). We set Q = 0.01, K = 20

EUR/MWh and the maturity T equal to 366 days (the whole calendar

year 2016, which follows the available data set). We start by simulating

two time series of length 366: X(t) and Y (t), and adding the seasonality

to obtain S(t) and WD(t), the latter after squaring. Further we compute

Q(S(t) − K)WD(t) and approximate P by a sum over all points in the

simulated Q(S(t)−K)WD(t). We repeat the procedure nsim = 1, 000 times

to compute VaR and ES. Finally, we use nboot = 100, 000 bootstrap samples

to compute the confidence intervals of the expected value of P as well as

the value at risk and the expected shortfall, all in thousands EUR. Table 5.6

presents 95% confidence intervals for different risk measures with strike price

K = 20 EUR/MWh. We learn that this particular contract on average is

profitable for the distributor.

Risk measure 95% CI CI length
Expectation 788.74 864.61 75.87
V aR95%(P ) -1175.96 -1065.37 110.59
ES95%(P ) -8204.39 -6710.64 1493.75
V aR99%(P ) -5648.29 -4723.55 924.74
ES99%(P ) -34132.14 -25818.15 8313.99

Table 5.6: Confidence intervals of the expectation and risk measures of the profit P in
thousands EUR, with the strike price K = 20 EUR/MWh.
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5.3 Summary and outlook

In this chapter we jointly modelled wind energy production and electricity

spot prices. We based our model on a bivariate vector autoregressive process

with correlated generalised hyperbolic residuals. The model captures very

well the correlation structure; in particular, it outperforms univariate models

when applied to the product of two variables of interest, a value relevant for

many applications. When validating the model we focused on low quantiles:

we assessed the value at risk, a measure of great importance for practitioners.

The backtesting procedure indicated the the model accurately estimated the

risk related to wind energy production and electricity prices as well as their

product. Finally, we computed the value at risk and expected shortfall of

a contract relating these variables and their product.

We believe that this joint modelling approach might be improved even further

if one could get better marginal fits while still capturing the correlation

structure. We suggest exploring the copula approach ([Czado, 2019]). One

could also include other wind-related variables such as the wind penetration

index or residual demand (Chapter 3). Finally, one could extend the vector

autoregressive model by the moving average component which might improve

the results even further.
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Part II

Gaussian moving average

processes applied to wind speed

modelling and forecasting
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6
Introduction

6.1 Motivation

As we observed in Chapter 4, wind energy production forecasts highly influence

electricity prices. However, accurate predictions of wind energy generation

still pose a serious challenge. In this part of the thesis we attempt to fill this

gap by modelling wind speed in one location. We aim to produce reliable

models and short-term forecasts of wind speed, which for a specific turbine

can be converted into wind energy production through a power curve ([Zhu

and Genton, 2012]).

Such local (at a wind farm level) models and forecasts are of particular interest

to practitioners. For example, the wind farm’s owner needs to predict her

or his production levels to prevent energy shortages and unnecessary losses.

Furthermore, all members of the European Union must release Guarantees

of Origin (GoOs) which certify that a given MWh of energy comes from

renewable sources ([European Commission, 2009]). Therefore more and more

supply contracts promise the consumers to provide an agreed percentage

of energy from local wind farms, which further increases the importance of

accurate wind energy predictions.
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We use the statistical approach to wind speed forecasting, which involves

historical data as opposed to computationally expensive Numerical Weather

Prediction (NWP) models. According to [Giebel, 2003], statistical models can

outperform physical models for predictions up to six hours ahead, therefore

we focus on this time frame.

We propose a temporal model for wind speed in one location corresponding

to a small group of wind turbines. Although this approach excludes the

information about high spatial correlation, typical for weather variables, we

believe that we can alleviate this problem by including the wind direction data

in our analysis. By reducing the spatial complexity, we can use high frequency

data (5-minute intervals) to better model strong temporal correlations reaching

even over 24 hours ([Hering and Genton, 2010]).

6.2 Wind speed forecasting in the literature

Out of the vast literature about wind speed modelling, a few models have

caught our attention. [Gneiting et al., 2006] proposed a spatio-temporal model

with westerly and easterly regimes pronounced in Oregon and Washington,

US. [Hering and Genton, 2010] argued that two regimes might not suffice, so

they replaced directional regimes by trigonometric functions of wind speed

directions as covariates. Finally, [Benth and Benth, 2010] used more standard

methods: they applied the Box-Cox transformation to the right-skewed wind

speed data and proceeded to model it as an autoregressive moving average

process (cf. Section C.1).

We must also mention a class of approaches which has recently gained a lot

of popularity in the field: machine learning. For example, [Ak et al., 2016]

applied two different machine learning methods to short-term forecasts of

wind speed in Saskatchewan (Canada), while [Sergio and Ludermir, 2015]

studied the performance of deep learning approaches used to forecast wind

speeds in the north-eastern part of Brazil. Recently researchers from Google’s

DeepMind successfully trained a neural network on historical weather and wind

turbine data to forecast wind turbine output 36 hours ahead [Witherspoon

and Fadrhonc, 2019].
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Machine learning approaches are getting increasingly better results, especially

given growing capacities of modern computers. However, we are interested in

exploring a different method for a variety of reasons. Firstly, we would like to

be able to forecast wind speeds in a relatively short time without the access

to supercomputers. Secondly, we want to explore models given by explicit

formulae to assess their mathematical properties rigorously, instead of using

a black-box model. Thirdly, machine learning approaches are usually hard to

interpret, as opposed to more traditional models.

Surprisingly few authors have considered forecasting horizontal wind velocity

components. [Hering and Genton, 2010] extended the regime-switching

framework suggested by [Gneiting et al., 2006] and included wind direction

as a circular variable. [Pinson, 2012], [Schuhen et al., 2012] and [Lang et al.,

2019] forecasted zonal and meridional components of wind speed with bivariate

Gaussian processes. [Sloughter et al., 2013] produced probabilistic forecasts

of wind vectors using Bayesian methodology. Finally, [Monahan, 2013]

pointed out that these bivariate approaches have multiple advantages over

modelling the wind speed directly: horizontal components include information

about both speed and direction; their joint distribution resembles bivariate

Gaussian more than the joint distribution of speed and direction; dynamical

models usually require the input of vector components instead of speed and

direction. Our work further explores this two-component approach to wind

speed forecasting.

6.3 Outline

We structure this part of the thesis as follows. We start by describing the

data sets as well as the procedures of deseasonalisation and splitting wind

velocity into horizontal components (Chapter 7). In Chapter 8 we move

on to describing the one-dimensional Gaussian moving average model of

a horizontal component. We discuss the model’s properties (Section 8.1) as

well as the estimation (Section 8.2) and forecasting methods (Section 8.3).

In Chapter 9 we extend this model to two dimensions. We describe the

model (Chapter 9), discuss the estimation procedures (Section 9.2), look at
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forecasting (Section 9.3) and simulating from the model (Section 9.4). In

Section 9.5 we compare our results to a simpler approach of forecasting wind

speed directly.
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7
The data

7.1 Data description

Our data set consists of wind speeds S̃(t) in m s−1 and directions R̃(t) in

degrees from the North measured by the Institut Pierre Simon Laplace

(IPSL) Atmospheric Research Observatory, Site Instrumental de Recherche

par Télédétection Atmosphérique (SIRTA); for convenience we use the tilde

to denote raw data, reserving bare letters for deseasonalised variables. We

work with 1-minute averages of 10-second data from a 10m mast located on

a laboratory roof platform at 15m above ground level, near Paris (48.7◦N,

2.2◦E), created by Christophe Boitel ([Haeffelin et al., 2005]). The available

data set starts on 01.01.2007 and finishes on 12.01.2017. In this chapter we

analyse a subset of this data encompassing 01.03.2010–31.05.2010, presented

in Figure 7.1, as an example of all time periods available to us. We notice that

northerly winds slightly dominate in the specified time period (this dominance

is much more pronounced in other seasons of 2010).

From wind speeds S̃(t) and wind directions R̃(t) we obtain horizontal compo-
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nents of wind speed using the following relations:

X̃(t) = S̃(t) cos

(
R̃(t)π

180◦

)
,

Ỹ (t) = S̃(t) sin

(
R̃(t)π

180◦

)
.

We notice that X̃ corresponds to the North–South, while Ỹ to the East–West

component of the wind. In particular:

• Northerly winds (R̃(t) = 0◦) result in X̃ = S̃ and Ỹ = 0.

• Easterly winds (R̃(t) = 90◦) result in X̃ = 0 and Ỹ = S̃.

• Southerly winds (R̃(t) = 180◦) result in X̃ = −S̃ and Ỹ = 0.

• Westerly winds (R̃(t) = 270◦) result in X̃ = 0 and Ỹ = −S̃.

Figure 7.1: Histogram of wind directions measured from the North (0◦ corresponds
to northerly winds, 90◦ to easterly etc.) and time series of wind speeds, 01.03.2010–
31.05.2010.

122



7.2 Smoothing and seasonality

Like most climatological time series, our data set displays strong seasonality,

both on daily and yearly scales. In this section we first describe the Savitzky-

Golay filter and show how we apply it to smooth out the data set.

7.2.1 Savitzky-Golay filter

For i = . . . ,−2,−1, 0, 1, 2, . . . and ∆ > 0 let fi := f(∆i) denote a series of

equally spaced data. We can smooth fi out by applying a digital filter ([Press

et al., 1992]). We replace each value of fi by gi, a linear combination of itself

and its neighbours, nL preceding and nR following, which means that

gi =

nR∑
n=−nL

cnfi+n.

The simplest digital filter, the so-called moving window average filter, assumes

that cn = 1
nL+nR+1

. This filter preserves the zeroth and first moments, but

distorts higher moments of the function. The Savitzky-Golay filter generalises

this idea by finding such coefficients cn that higher moments get preserved

as well. In other words, instead of replacing the underlying function by

a constant, we use the least squares method to fit polynomials of higher

degrees. Figure 7.2 shows an example of smoothing exponential data with

Gaussian noise using a Savitzky-Golay filter with the length of moving window

31 and polynomial order 4.

7.2.2 Smoothing and deseasonalisation procedure

We remove the seasonal patterns from S̃, X̃ and Ỹ as follows.

1. We introduce 2880 variables: means and standard deviations for each

minute of the day.
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Figure 7.2: Results of Savitzky-Golay filter with the length of moving window 31 and poly-
nomial order 4. The data y(t) = e−t

2

was perturbed with a noise ε ∼ N(0, 0.05).

2. We smooth out the resulting time series means and standard devia-

tions using the Savitzky-Golay filter with the window length 121 and

polynomial order 3.

3. We subtract the smoothed means from the appropriate hours of original

time series and divide the results by appropriate smoothed standard

deviations.

We acknowledge that 2880 might seem like a large number of new variables.

However, a coarser time scale (for example 48 variables: means and standard

deviations for each hour of the day) fails to remove the seasonality from the

data.

The means and standard deviations computed in the first deseasonalisation

step are contaminated with a random noise. Therefore we smooth out these

time series with a low-pass Savitzky-Golay filter ([Savitzky and Golay, 1964]).

While simple moving average filtering techniques tend to reduce the noise

more effectively, the Savitzky-Golay filter better preserves the original shape
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and features of the signal. This algorithm approximates the desired function

within the moving window by a non-constant polynomial fitted by the method

of least squares.

Because we are interested in short-term forecasting, we do not want to remove

the short-term variations from the original data set. Therefore we apply the

filter only to seasonal dummy variables as opposed to the raw data.

Figure 7.3 presents the original and filtered daily means and daily standard

deviations of wind speed and its horizontal components. We are satisfied with

the stationarity of intraday means of deseasonalised horizontal components.

While some non-stationary patterns persist, mostly in standard deviations,

they do not pose a significant problem, as in our research we focus on very

short-term forecasts, for which non-stationarities disappear. One can argue

that in this particular application we could avoid such a complex smoothing

procedure. However, we aim to make our research as general and widely

applicable as possible, so we decided to use this flexible framework.

Figure 7.3: Intraday means (red) and standard deviations (blue) of wind speed S and
its horizontal components X and Y , 01.03.2010–31.05.2010, original and smoothed by
Savitzky-Golay filter with the length of moving window 121 and polynomial order 3.

7.3 Data analysis

We denote the deseasonalised time series S̃, X̃ and Ỹ by Sdes, X and Y ,

respectively. Because our deseasonalising process is non-linear and results in

negative values of Sdes, we additionally define

S =
√
X2 + Y 2
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to get meaningful speed values. As we can see in Figure 7.4, while the

smoothed wind speed clearly deviates from Gaussian distribution, the Gaus-

sian law reasonably approximates the X and Y projections.

The correlation coefficient between X and Y equals 0.40, similarly Figure 7.5

indicates a mild positive correlation between the deseasonalised components.

The correlation coefficient between the original components X̃ and Ỹ is almost

the same as between X and Y : 0.39. Non-deseasonalised speed and direction

are almost uncorrelated, with the coefficient -0.15. Such low dependence

seems to be specific to our data set, not a universal feature of wind speeds

and directions.
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Figure 7.4: Distribution and qq-plots of two smoothed components X and Y and
smoothed wind speed Sdes, 01.03.2010–31.05.2010. Data sampled every 10 minutes.
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Figure 7.5: The scatter plot of deseasonalised components X and Y , 01.03.2010–
31.05.2010.
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8
Modelling horizontal components

In this chapter we separately model both horizontal components of wind

speed obtained in Chapter 7. The models are based on Gaussian moving

average processes with a novel kernel function which generalises gamma and

power-law kernels, called the triple-scale kernel. We explore two estimation

methods: the generalised method of moments (Subsection 8.2.1.1) and the

regression-based method (Subsection 8.2.1.2). Based on the estimation results,

in Section 8.3 we compute short-term forecasts of wind speed and analyse

their accuracy.

8.1 One-dimensional model

The Gaussian moving average process belongs to a flexible class of Gaussian

processes with a rich correlation structure, which makes it suitable for mod-

elling horizontal wind speed components. We define it via the moving-average

representation

Z(t) =

∫ t

−∞
g(t− s)dW (s) , (8.1)
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where t ∈ R, W denotes a standard Brownian motion and g a square integrable

kernel function. Any stationary, non-deterministic, centred and mean square

continuous-time Gaussian process admits a representation of this form [Hida

and Hitsuda, 1993, paragraph III.4]. A moving average Gaussian process is

stationary and for h ∈ R its covariance function has the form

c(t, t+ h) =

∫ ∞
0

g(t)g(t+ h)dt := c(h).

For h ∈ R we also introduce the variogram function

v(h) = E[(Z(t+ h)− Z(t))2] = 2(c(0)− c(h)).

Gaussian moving average processes belong to the class of Lévy semistationary

processes ([Barndorff-Nielsen and Shephard, 2012]). Examples of kernels

widely used in the literature (e.g. [Barndorff-Nielsen et al., 2013] or [Bennedsen

et al., 2017]) include:

• the exponential kernel (Ornstein-Uhlenbeck process): g0(t) = exp
(
− t

∆2

)
for ∆2 > 0;

• the gamma kernel: g1(t) = tα exp
(
− t

∆2

)
for α ∈

(
−1

2
, 1

2

)
\{0} and

∆2 > 0;

• the power-law kernel: g2(t) = tα (1 + t)β−α for α ∈
(
−1

2
, 1

2

)
\{0} and

β < −1
2
,

where t > 0. In Figure 8.1 we can observe three time scales present in

empirical variograms of horizontal components of wind speed (especially Y ).

Therefore we suggest modelling the horizontal components with the following

generalisation of gamma and power-law kernels:

gX(t) = σXt
αX

(
1 +

t

∆1,X

)βX
exp

(
− t

∆2,X

)
,

gY (t) = σY t
αY

(
1 +

t

∆1,Y

)βY
exp

(
− t

∆2,Y

)
,

(8.2)
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where θ = (σ, α, β,∆1,∆2), α > −1
2
, β ∈ R, ∆1 > 0, ∆2 > 0 and σ > 0. Such

triple-scale kernels reproduce three time scales in variograms of our wind time

series better than gamma or power-law kernels, recovered by setting β = 0 or

∆2 =∞, respectively (for details see Subsection 8.3.2.1).
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Figure 8.1: Variograms of deseasonalised components X and Y , 01.03.2010–31.05.2010.
Lags correspond to minutes.

8.2 Estimation

In this section we introduce two estimation methods of the model presented

in Section 8.1: the generalised method of moments (Subsection 8.2.1.1) and

a regression-based method (Subsection 8.2.1.2).

8.2.1 Methods

8.2.1.1 The generalised method of moments

For proofs and further details we refer the reader to [Matyas et al., 1999] or

[Hall, 1996]. Suppose we want to use an N -dimensional vector of observations

Z to estimate a parameter vector θ with a true value θ0. Let fGMM (Z, θ)

be a continuous vector function of θ such that E
[
fGMM
t (Zt, θ0)

]
= 0 for all
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t = 1, . . . , N . We define the criterion function

Q(θ) =
(
f̄GMM(Z, θ)

)T
Wf̄GMM(Z, θ),

where the superscript T denotes matrix transpose, W is a positive definite

GMM weight matrix and f̄GMM the empirical estimate of the expected value

of fGMM. We define the GMM estimator as

arg min
θ
Q(θ),

which we can rewrite as

arg min
θ

N−1∑
m=0

N−1∑
n=0

Wmnf̄
GMM
m (Zm, θ)f̄

GMM
n (Zn, θ).

Such an estimator is consistent and asymptotically normal ([Hall, 1996,

Chapter 3]). The optimal weight matrix resulting in the lowest variance of

the estimator is given by W ∗ = (Ωθ)−1, where

Ωθ
mn = E[

(
fGMM(Z, θ)

)T
fGMM(Z, θ)].

Because the matrix Ω depends on the unknown parameter value θ0, we use

a two-step procedure.

1. We compute the initial estimator θ̃ with a unit weight matrix.

2. We compute the optimal weight matrix using Ŵ ∗ = (Ωθ̃)−1 and recom-

pute the estimator θ̂ with the weight matrix Ŵ ∗.

8.2.1.2 The regression-based method

Plots such as Figure 7.1 suggest that wind speeds and their components

have a characteristic named by some researchers antipersistence or roughness

([Bennedsen, 2015]). We quantify the roughness or smoothness of time

series data, relative to paths of a Brownian motion, with a fractal index

α ∈
(
−1

2
, 1

2

)
. Curves with α < 0 are rougher, while α > 0 smoother than
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paths of a Brownian motion characterised by α = 0. The most common

example of a Gaussian process with a positive fractal index is the fractional

Brownian motion (fBm) with Hurst parameter H ∈ (0, 1] and α = H − 1
2

([Bennedsen, 2015]).

Inspired by the approach of [Bennedsen et al., 2017], we use the theory

of fractals to estimate the parameters of one-dimensional Gaussian moving

average processes. We need to introduce the following concepts.

Definition 8.1. We call a measurable function L : (0, 1] → [0,∞) slowly

varying at 0 if for all t > 0

lim
x→0

L(tx)

L(x)
= 1.

Definition 8.2. We say that a function f(x) = O(h(x)) as x → ∞ if and

only if

lim sup
x→∞

∣∣∣∣f(x)

h(x)
<∞

∣∣∣∣ .
Following [Bennedsen et al., 2017] we consider a kernel g for which the

following conditions hold.

(C1) There exits a parameter α ∈
(
−1

2
, 1

2

)
\{0} such that for all t ∈ (0, 1]

g(t) = tαLg(t), where Lg(t) is continuously differentiable, slowly varying

at 0 and bounded away from 0. There also exists a constant C > 0

such that for all t ∈ (0, 1] the derivative L
(1)
g of Lg satisfies |L(1)

g (t)| ≤
C (1 + t−1).

(C2) The function g is continuously differentiable on (0,∞), so that its

derivative g(1) is ultimately monotonic and satisfies
∫∞

1
g(1)(t)2dt <∞.

(C3) There exists ξ > 1
2

such that g(t) = O(t−ξ) as t→∞.

We have already encountered an example of such kernel: the triple-scale

kernel.
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Proposition 8.0.1. For t > 0 the kernel function

g(t) = σtα
(

1 +
t

∆1

)β
exp

(
− t

∆2

)
. (8.3)

satisfies conditions (C1)–(C3).

Proof. (C1) We define

Lg(t) := σ

(
1 +

t

∆1

)β
exp

(
− t

∆2

)
.

This function is clearly continuously differentiable. Since

lim
x→0

Lg(tx)

Lg(x)
= lim

x→0

(
1 + tx

∆1

)β
exp

(
− tx

∆2

)
(

1 + x
∆1

)β
exp

(
− x

∆2

) = 1,

it is also slowly varying at 0.

(C2) For t > 0 we compute

g(1)(t) = g(t)

[
α

t
+

β

∆1 + t
− 1

∆2

]
,

g(2)(t) = g(t)

[(
α

t
+

β

∆1 + t
− 1

∆2

)2

− α(∆1 + t)2 + βt2

t2 (∆1 + t)2

]
.

Therefore

lim
t→∞

g(2)(t) =
1

∆2
2

lim
t→∞

g(t) > 0,

so the first derivative g(1)(t) is ultimately increasing. Moreover, for

t ≥ 1

g(1)(t)2 = g(t)2

[
α

t
+

β

∆1 + t
− 1

∆2

]2

≤ g(t)2

[
α +

β

∆1 + 1
− 1

∆2

]2

,

so
∫∞

1
g(1)(t)2dt <∞ as g(t) is square integrable.

(C3) It suffices to notice that g(t) decays exponentially to 0 as t→∞.
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Now we are ready to apply the properties of the kernel function to approximate

the variogram of the moving-average Gaussian process.

Proposition 8.0.2. For a small number of lags h we can approximate the

variogram v(h) of a moving average Gaussian process

Z(t) =

∫ t

−∞
g(t− s)dW (s)

with a square integrable kernel g(t) satisfying conditions (C1), (C2) and (C3)

by

v(h) ≈ Lg(h)2h2α+1 Γ2(α + 1)

Γ(2α + 2) cos(πα)
, h→ 0

where

(f1(t) ≈ f2(t), t→ 0) ⇐⇒ lim
t→0

f1(t)

f2(t)
= 1.

Proof. Using [Bennedsen et al., 2017, Proposition 2.2] we can approximate

v(h) ≈ h2α+1

(∫ ∞
0

(sα − (s+ 1)α)2ds+
1

2α + 1

)
Lg(h)2, h→ 0. (8.4)

On the other hand, computing the variance of the fractional Brownian mo-

tion WH(t) with the Mandelbrot-Van Ness representation ([Mandelbrot and

Van Ness, 1968]), we get

E[(WH(t))2] =
1

Γ2(H + 1/2)

(∫ ∞
0

(sH−1/2 − (s+ 1)H−1/2)2ds+
1

2H

)
=

1

sin(πH)Γ(2H + 1)
.

We substitute H = α + 1
2

and transform the equation to obtain∫ ∞
0

(sα − (s+ 1)α)2ds+
1

2α + 1
=

Γ2(α + 1)

Γ(2α + 2) cos(πα)
. (8.5)
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From Eq. (8.4) and Eq. (8.5) we conclude that

v(h) ≈ Lg(h)2h2α+1 Γ2(α + 1)

Γ(2α + 2) cos(πα)
, h→ 0.

We apply Proposition 8.0.2 to Eq. (8.3) and obtain

v(h) ≈ σ2h2α+1 Γ2(α + 1)

Γ(2α + 2) cos(πα)
,

as in this case

Lg(h)2 ≈ σ2, h→ 0.

Therefore we can regress the logarithm of the variogram function on the

logarithm of the lag number

log(v(h)) ≈ m log(h) + b

to estimate the parameters α and σ:

α̂ =
m− 1

2
; (8.6)

σ̂ =

√
exp(b)Γ (2α̂ + 2) cos (πα̂)

Γ (α̂ + 1)
. (8.7)

We estimate the remaining parameter β by matching theoretical and empirical

variograms using the method of least squares.

8.2.2 Numerical results

We apply both estimation methods described in Section 8.2 to the Gaussian

moving average process with the triple-scale kernel.
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8.2.2.1 The generalised method of moments

We estimate the parameters θX and θY of the horizontal components using

the generalised method of moments described in Subsection 8.2.1.1. Let Ẑ

denote empirical data and h ∈ {1, 5, 10, 20, 30, 60, 120, 180, 360} (minutes).

We define

fGMM
1 (Z, θ, h) := (Z(t+ h)− Z(t))2)− (Ẑ(t+ h)− Ẑ(t))2.

Then

fGMM (Z, θ) =

 fGMM
1 (Z, θ, 1)

...

fGMM
1 (Z, θ, 360)

 .
We start the least squares procedure with (σ0

X , α
0
X , β

0
X) = (σ0

Y , α
0
Y , β

0
Y ) =

(0.1, 0.1, 0.1). We fit the model to the first 180 lags of the variogram function.

We use the function minimize from Python’s library scipy.optimize ([Virta-

nen et al., 2019]) with the limited-memory Broyden-Fletcher-Goldfarb-Shanno

method (L-BFGS-B, [Zhu et al., 1997]) and bounds (σX , αX , βX) ∈ (0.0,∞)×
(−0.5,∞) × (−∞,∞) and (σY , αY , βY ) ∈ (0.0,∞) × (−0.5,∞) × (−∞,∞).

To approximate the integrals numerically, we use the function quad from

Python’s library scipy.integrate ([Virtanen et al., 2019], based on 15-point

Gauss-Kronrod quadrature. For integrals with at least one infinite limit, the

software computes a Fourier integral.

We use only the first step of the GMM procedure, as the second step is

computationally expensive and results in numerical instabilities. Figure 8.2

presents empirical and fitted variograms for both horizontal components, for

01.03.10–31.05.10.

8.2.2.2 The regression-based method

We estimate the parameters θX and θY of the horizontal components using

the regression-based method described in Subsection 8.2.1.2. To regress the

logarithm of the variogram function on the logarithm of the lag number, we

use the function linregress from Python’s library scipy.stats ([Virtanen
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Figure 8.2: Variograms of horizontal components fitted with the generalised method of
moments (GMM), using first 180 lags. Training set: 01.03.10–31.05.10.

et al., 2019]). The remaining parameter β we fit similarly to the generalised

method of moments case, using the function minimize from Python’s library

scipy.optimize ([Virtanen et al., 2019]) with the Broyden-Fletcher-Goldfarb-

Shanno method (BFGS). Figure 8.3 presents empirical and fitted variograms

of both horizontal components, for 01.03.10–31.05.10.

8.2.2.3 Comparison

In Figure 8.4 we can see that the regression-based method provides a slightly

better fit than the generalised method of moments, especially to the X

component. The parameters obtained using the regression-based method

behave better also out of sample, as Figure 8.5 shows. Table 8.1 compares

parameters fitted using these two methods. We notice that while the estimates

of σX , σY , αX and αY do not differ significantly between the methods, βX

has a different sign depending on the chosen method.
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Figure 8.3: Variograms of horizontal components fitted with the regression-based method,
using first 180 lags. Training set: 01.03.10–31.05.10.

Method σ̂X α̂X β̂X σ̂Y α̂Y β̂Y
GMM 0.114 -0.351 -0.469 0.123 -0.388 0.658

regression 0.107 -0.398 0.072 0.135 -0.345 0.087

Table 8.1: Parameters of horizontal components fitted with the regression-based method
and generalised method of moments, using first 180 lags. Training set: 01.03.10–31.05.10.

1 min 1 hour 1d 2d3d

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Variogram of X, log scale

Empirical
Fitted: GMM
Fitted: regression

1 min 1 hour 1d 2d3d

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Variogram of Y, log scale

Empirical
Fitted: GMM
Fitted: regression

Figure 8.4: Variograms of horizontal components fitted with the regression-based method
and generalised method of moments, using first 180 lags. Training set: 01.03.10–31.05.10.
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8.3 Forecasting

In this section we propose methods to forecast a single component of wind

speed as well as the wind speed itself given past information on both com-

ponents. In addition to point forecasts, we consider the “ideal” forecasts,

which assume the knowledge of the full continuous history, and the “realistic”

forecasts based on discrete observations.

8.3.1 Methods

Let F denote the completed natural filtration of the Brownian motion W .

The conditional distribution of a Gaussian moving-average process Z(t+ h),

defined by Eq. (8.1), given Ft, is Gaussian with mean m̃(t, h) and variance

ṽ(h):

m̃(t, h) =

∫ t

−∞
g(t+ h− s)dW (s)

ṽ(h) = E
[
(E[Z(t+ h)|Ft]− Z(t+ h))2 |Ft

]
=

∫ h

0

g(s)2ds.

Therefore, the “ideal” point forecast of the moving average process with time

horizon h is given by m̃(t, h) and the L2 error of this forecast is ṽ(h). We

can compare this L2 error with the L2 error of the persistence forecast, which

assumes that the best predictor of Z(t+ h) is Z(t). This error is equal to the

variogram

v(h) = E[(Z(t+ h)− Z(t))2] = 2(c(0)− c(h)), h ∈ R.

We recall that

c(t− u) =

∫ min{t,u}

−∞
g(t− s)g(u− s)ds.

In practice we aim to forecast Z(tn+h) from a sequence of discrete observations

Z(t1), . . . , Z(tn) using the Gaussian structure of the process (details in [Davis,
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2006]). The conditional mean is given by

E[Z(tn + h)|Z(t1), . . . , Z(tn)] = v>Ω−1z,

where

• v ∈ Rn with vi = c(tn + h− ti);

• Ω ∈Mn(R) with Ωij = c(ti − tj);

• z ∈ Rn with zi = Z(ti).

We can express the conditional variance (and the L2 error of the point forecast)

as

E
[
(E[Z(tn + h)|Z(t1), . . . , Z(tn)]− Z(tn + h))2 |Z(t1), . . . , Z(tn)

]
= c(0)− v>Ω−1v.

When reporting empirical results, in practice we proceed as follows. Taking

one minute as our unit, we set:

• ∆ = |ti − ti+1|: the interval between consecutive time steps (in our case

∆ = 1).

• ndates: the number of data points used to produce a single forecast (in

our case ndates = 720).

• h: the forecast horizon (in our case h ∈ {1, 5, 10, 20, 30, 60, 120, 180, 360}
minutes).

We split the data into four three-month-long training and one-month-long

testing sets, as specified in Table 8.2. We deseasonalise the testing set with

the 2880 dummy variables obtained using the training set, as described in

Section 7.2. Therefore we forecast deseasonalised values, which we can easily

convert into forecasts with seasonality effects by reverting the deseasonalising

and smoothing procedure from Section 7.2.

As before, we approximate all integrals with the function quad from Python’s
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library scipy.integrate ([Virtanen et al., 2019]), based on 15-point Gauss-

Kronrod quadrature. We compute the theoretical discrete and continuous

errors, both for the forecast based on the Gaussian moving average and the

persistence forecast. Finally, we report also the actual root mean square

errors for both models, i.e. the square root of the sum of squared differences

between the actually predicted values and the test data.

Fitting Forecasting

Start End Start End

01.12.2009 28.02.2010 01.03.2010 31.03.2010

01.03.2010 31.05.2010 01.06.2010 30.06.2010

01.06.2010 31.08.2010 01.09.2010 30.09.2010

01.09.2010 30.11.2010 01.12.2010 31.12.2010

Table 8.2: Training and testing data sets.

The explicit formulae for conditional means and errors allow us to construct

probabilistic forecasts in addition to point forecasts. For each future obser-

vation we can construct a prediction interval, i.e. an interval in which this

observation is expected to fall with a given probability, given the previous

observations. We can express lower and upper bounds of these intervals as

µ(h)± zα
2
σ(h),

where µ(h) and σ(h) denote the expected value and the square root of the L2

error of the point forecast (discrete or continuous), respectively, while zα
2

the

quantile of the standard normal distribution.

8.3.2 Numerical results

In Figure 8.5 we compare the actual root mean square errors of forecasts

based on parameters estimated with the generalised method of moments

(Subsection 8.2.1.1) and the regression-based method (Subsection 8.2.1.2) as

well as of the persistence forecast. The regression-based method provides

better forecasts than the generalised method of moments. The Gaussian
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moving average model outperforms the persistence forecast for short time

horizons.
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Figure 8.5: Actual root mean square errors of forecasted horizontal components X and
Y , compared to persistence forecasts. Parameters estimated with the generalised method
of moments (Subsection 8.2.1.1) and the regression-based method (Subsection 8.2.1.2).
Training set: 01.03.10–31.05.10. Testing set: 01.06.10–30.06.10.

8.3.2.1 The comparison with gamma and power-law kernels

In Section 8.1 we mentioned other examples of kernels used to model Gaussian

moving average processes. One can wonder how the performance of various

kernels differs. In this section we compare the models resulting from the

triple-scale kernel with gamma and power-law kernels. Precisely, we use

the procedure described in Subsection 8.2.1.2 to estimate moving average

Gaussian process with the following kernels:

• triple-scale kernel: g(t) = σtα
(
1 + t

60

)β
exp

(
− t

1440

)
for α > −1

2
, β ∈ R

and σ > 0;

• gamma kernel: g1(t) = σtα exp (−λt) for α ∈
(
−1

2
, 1

2

)
\{0} and λ > 0;

• power-law kernel: g2(t) = σtα
(
1 + t

60

)β−α
for α ∈

(
−1

2
, 1

2

)
\{0} and

β < −1
2
,
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where t > 0. We note a slightly different parametrisation of the triple-scale

and power-law kernels: we keep the parametrisation of the power-law kernel

suggested by [Bennedsen et al., 2017].

We start by estimating the parameters of both horizontal components modelled

with gamma and power-law kernels based on 180 lags, as we did with the

triple-scale kernel. Since in the regression-based estimation procedure σ and α

do not depend on the rest of the kernel, their values are the same for all three

kernels. To estimate the remaining parameters we use the function minimize

from Python’s library scipy.optimize ([Virtanen et al., 2019]) with the

limited-memory Broyden-Fletcher-Goldfarb-Shanno method (L-BFGS-B). It

results in λ = 0.0 for gamma kernel and β = −0.5 for power-law kernel,

which correspond to the bounds of both parameters. After studying the

behaviour of the minimised function we conclude that the algorithm attempts

to reduce both kernels to σtα. We also compare the models out of sample.

Figure 8.6 shows that in this case gamma and triple-scale kernels are almost

indistinguishable and they both outperform power-law kernel and persistence

forecasts.

However, the comparison changes drastically when we look at longer time

scales. In Figure 8.7 we show the results of fitting the same models to 10, 000

lags instead of just 180. In this case only the triple-scale kernel can capture

various types of variogram behaviour. This shows that the triple-scale kernel

truly generalises more standard kernels: it can reduce to simpler gamma or

power-law kernels for shorter time scales but is able to capture more complex

behaviour when needed.

8.4 Summary and outlook

In this chapter we proposed a one-dimensional model of both horizontal

components of the wind speed: a Gaussian moving average process with

a novel triple-scale kernel. This kernel replicates the complex behaviour of

the empirical variogram function better than more standard kernels such as

gamma or power-law. Additionally, it reduces to simpler forms when the

variogram’s behaviour is less complicated, for example for shorter time scales.
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Figure 8.6: The comparison of actual root mean square errors of forecasted horizontal
components X and Y with triple-scale, gamma and power-law kernels, and persistence
forecasts. Parameters estimated with the regression-based method (Subsection 8.2.1.2).
Training set: 01.03.10–31.05.10. Testing set: 01.06.10–30.06.10.
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Figure 8.7: Variograms of Y (t) for 01.03.2010–31.05.2010 fitted with the regression-based
method (Subsection 8.2.1.2), for lags 1–10,000 (1 lag corresponds to 1 minute). From left
to right: triple-scale kernel, gamma kernel and power-law kernel.

We estimated the model using two methods: the generalised method of

moments and the regression-based method. We established that the latter

provides more accurate estimates. Finally, we produced short-term forecasts

of both horizontal components. For both components they outperform the

benchmark persistence forecast.

We established that the Brownian semistationary process with the triple-scale

kernel is a good model for horizontal components of wind speed. In the

next chapter we will explore ways of combining one-dimensional models into
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a bivariate model which will allow us to produce short-term forecasts of wind

speed.
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9
Two-dimensional setting

In Chapter 8 we modelled the horizontal components of wind speeds with

Brownian semistationary processes with a novel triple-scale kernel. In this

chapter we suggest a way of joining these univariate models into a bivariate

wind speed model with correlated marginals. We also develop two approxima-

tions to wind speed forecasts and test them against two benchmark models:

persistence and direct wind speed prediction.

9.1 Bivariate Gaussian moving average processes

To jointly model and forecast two horizontal components of the wind speed,

we must extend the setting of Gaussian moving average process analysed in

Section 8.1 to two dimensions. To this end, we propose the following flexible

framework. For t ∈ R we define a general bivariate Brownian semistationary

process by

Z(t) =

(
Z1(t)

Z2(t)

)
=

∫ t

−∞
K(t− s)d

(
W1(s)

W2(s)

)
, (9.1)
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where for s ≤ t

K(t− s) =

(
k11(t− s) k12(t− s)
k21(t− s) k22(t− s)

)
.

The Brownian motions W1 and W2 are independent, since we include all the

dependence structure in the matrix K. Eq. (9.1) allows us to compute the

auto- and cross-covariances explicitly.

Proposition 9.0.1. For h ≥ 0 and Z(t) as in Eq. (9.1) the following hold.

1. The autocovariances of Z1 and Z2 have the form:

E[Z1(t)Z1(t+ h)]

=

∫ t

−∞
(k11(t− s)k11(t+ h− s) + k21(t− s)k21(t+ h− s)) ds,

E[Z2(t)Z2(t+ h)]

=

∫ t

−∞
(k12(t− s)k12(t+ h− s) + k22(t− s)k22(t+ h− s)) ds.

(9.2)

2. The cross-covariances of Z1 and Z2 have the form:

E[Z1(t)Z2(t+ h)]

=

∫ t

−∞
(k11(t− s)k21(t+ h− s) + k12(t− s)k22(t+ h− s)) ds,

E[Z1(t+ h)Z2(t)]

=

∫ t

−∞
(k21(t− s)k11(t+ h− s) + k22(t− s)k12(t+ h− s)) ds.

(9.3)

Proof. Let us define

U(t) =

∫ t

−∞
A(t− s)dW1 (s) +

∫ t

−∞
B(t− s)dW2 (s) ,

V (t) =

∫ t

−∞
C(t− s)dW1 (s) +

∫ t

−∞
D(t− s)dW2 (s) ,

(9.4)
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where W1, W2 denote independent standard Brownian motions and A, B, C,

D square integrable kernel functions. For h ≥ 0 we compute

C
{

(α, β)T ; (U(t), V (t+ h))T
}

= logE
[
ei(αU(t)+βV (t+h))

]
= logE

[
ei(α

∫ t
−∞ A(t−s)dW1(s)+β

∫ t+h
−∞ C(t+h−s)dW1(s))

]
+ logE

[
ei(α

∫ t
−∞B(t−s)dW2(s)+β

∫ t+h
−∞ D(t+h−s)dW2(s))

]
=: P +Q,

where in the first equality we use the definition of cumulant generating

function ([Sato et al., 1999]), while in the second one the independence of

W1 and W2. Using the Lévy–Khintchine formula for Gaussian processes, we

express the first factor as

P = logE
[
ei

∫ t
−∞ αA(t−s)+βC(t+h−s)dW1(s)

]
+ logE

[
ei

∫ t+h
t βC(t+h−s)dW1(s)

]
=

∫ t

−∞
e−

1
2

(αA(t−s)+βC(t+h−s))2

ds+

∫ t+h

t

e−
1
2
β2C2(t+h−s)ds

=

∫ t

−∞
e−

1
2
α2A2(t−s)−αA(t−s)C(t+h−s)ds+

∫ t+h

−∞
e−

1
2
β2C2(t+h−s)ds.

Now we can differentiate P to obtain

− ∂2P

∂α∂β

∣∣∣∣
α=0,β=0

= − ∂

∂β

(∫ t

−∞
e−

1
2

(αA(t−s)+βC(t+h−s))2

(
−αA2(t− s)− βA(t− s)C(t+ h− s)

)
ds
) ∣∣∣∣

α=0,β=0

=

∫ t

−∞
e−

1
2

(αA(t−s)+βC(t+h−s))2

(−αA(t− s)C(t+ h− s))

×
(
−αA2(t− s)− βA(t− s)C(t+ h− s)

)
ds

∣∣∣∣
α=0,β=0

+

∫ t

−∞
e−

1
2

(αA(t−s)+βC(t+h−s))2

A(t− s)C(t+ h− s)ds
∣∣∣∣
α=0,β=0

=

∫ t

−∞
A(t− s)C(t+ h− s)ds.
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Similar calculations show that

− ∂2Q

∂α∂β

∣∣∣∣
α=0,β=0

=

∫ t

−∞
B(t− s)D(t+ h− s)ds.

Therefore

− ∂2

∂α∂β

∣∣∣∣
α=0,β=0

C
{

(α, β)T ; (U(t), V (t+ h))T
}

=

∫ t

−∞
A(t− s)C(t+ h− s) +B(t− s)D(t+ h− s)ds.

Finally, we substitute the terms in Eq. (9.4).

1. A(t− s) = k11(t− s), B(t− s) = k12(t− s), C(t− s) = k21(t− s) and

D(t− s) = k22(t− s):

E[Z1(t)Z2(t+ h)] = − ∂2

∂α∂β

∣∣∣∣
α=0,β=0

C
{

(α, β)T ; (Z1(t), Z2(t+ h))T
}

=

∫ t

−∞
k11(t− s)k21(t+ h− s) + k12(t− s)k22(t+ h− s)ds.

2. A(t− s) = k21(t− s), B(t− s) = k22(t− s), C(t− s) = k11(t− s) and

D(t− s) = k12(t− s):

E[Z1(t+ h)Z2(t)] = − ∂2

∂α∂β

∣∣∣∣
α=0,β=0

C
{

(α, β)T ; (Z2(t), Z1(t+ h))T
}

=

∫ t

−∞
k21(t− s)k11(t+ h− s) + k22(t− s)k12(t+ h− s)ds.

3. A(t− s) = k11(t− s) = C(t− s), B(t− s) = k12(t− s) = D(t− s):

E[Z1(t)Z1(t+ h)] = − ∂2

∂α∂β

∣∣∣∣
α=0,β=0

C
{

(α, β)T ; (Z1(t), Z1(t+ h))T
}

=

∫ t

−∞
k11(t− s)k11(t+ h− s) + k12(t− s)k12(t+ h− s)ds.
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4. A(t− s) = k22(t− s) = C(t− s), B(t− s) = k21(t− s) = D(t− s):

E[Z2(t)Z2(t+ h)] = − ∂2

∂α∂β

∣∣∣∣
α=0,β=0

C
{

(α, β)T ; (Z2(t), Z2(t+ h))T
}

=

∫ t

−∞
k22(t− s)k22(t+ h− s) + k21(t− s)k21(t+ h− s)ds.

We consider a two-dimensional model which accounts for the non-zero cor-

relation between horizontal components. Precisely, we use Eq. (9.1) with

W1 = WX , W2 = W Y and a kernel

K(t− s) =

(
gX(t− s) 0

ρgX(t− s)
√

1− ρ2gY (t− s)

)
,

where t ≥ s, gX and gY denote square integrable functions, WX and W Y

independent standard Brownian motions, while ρ a constant correlation

coefficient. We use the convention that gX(t) = gY (t) = 0 for t ≤ 0 and

gX(t) ≥ 0, gY (t) ≥ 0 for t > 0. Now X(t) and Y (t) become
X(t) =

∫ t
−∞ gX(t− s)dWX (s) ,

Y (t) =
∫ t
−∞ gY (t− s)dW Y (s) ,

dWX (s) dW Y (s) = ρdt.

(9.5)

Proposition 9.0.1 gives us the forms of autocovariances and cross-covariances

of Eq. (9.5) for h ≥ 0:

E[X(t)X(t+ h)] =

∫ ∞
0

gX(s)gX(s+ h)ds,

E[Y (t)Y (t+ h)] =

∫ ∞
0

gY (s)gY (s+ h)ds,

E[X(t)Y (t+ h)] = ρ

∫ ∞
0

gX(s)gY (s+ h)ds,

E[Y (t)X(t+ h)] = ρ

∫ ∞
0

gY (s)gX(s+ h)ds.

(9.6)
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The model Eq. (9.5) allows for an asymmetric cross-covariance, i.e. in general

for h 6= 0

E[X(t)Y (t+ h)] 6= E[X(t+ h)Y (t)].

We also define a two-dimensional analogue of the variogram: the cross-

variogram:

E [(X(t+ h)−X(t))(Y (t+ h)− Y (t))]

= ρ

(
2

∫ ∞
0

gX(s)gY (s)ds−
∫ ∞

0

gX(s+ h)gY (s)ds−
∫ ∞

0

gX(s)gY (s+ h)ds

)
.

(9.7)

9.2 Estimation

In this section we suggest a novel calibration method which combines two

procedures described in Section 8.2: the generalised method of moments

and the regression-based method. Our aim is to capture the behaviour of

marginals as well as the correlation structure.

9.2.1 Methods

We estimate seven parameters (ρ, σX , αX , βX , σY , αY , βY ) as follows. We

use the regression-based procedure (Subsection 8.2.1.2) to compute σ̂X , α̂X ,

σ̂Y and α̂Y , the estimates of σX , αX , σY and αY , respectively. We set

(ρ0, β0
X , β

0
Y ) = (0.0, 0.0, 0.0) and estimate the remaining parameters (ρ, βX , βY )

by matching the empirical and theoretical weighted cross-variograms and

variograms. Precisely, we minimise the expression

w (E [(X(t+ h)−X(t))(Y (t+ h)− Y (t))]

−Ê
[
(X̂(t+ h)− X̂(t))(Ŷ (t+ h)− Ŷ (t))

])2

+
(
E
[
(X(t+ h)−X(t))2)

]
− Ê

[
(X̂(t+ h)− X̂(t))2)

])2

+
(
E
[
(Y (t+ h)− Y (t))2

]
− Ê

[
(Ŷ (t+ h)− Ŷ (t))2

])2

,

(9.8)
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where X̂ and Ŷ denote the empirical data and h ∈ {1, 5, 10, 20, 30, 60, 120, 180, 360}
(minutes). Let

fGMM
1 (X, θ, h) := (X(t+ h)−X(t))2)− (X̂(t+ h)− X̂(t))2

and

fGMM
2 (X, Y, θ, h)

:= (X(t+ h)−X(t))(Y (t+ h)− Y (t))− (X̂(t+ h)− X̂(t))(Ŷ (t+ h)− Ŷ (t)).

Then our method of parameter estimation corresponds to the one-step gener-

alised method of moments (Subsection 8.2.1.1) with the weight matrix

W =

 I 0 0

0 wI 0

0 0 I


and the function

fGMM (Z, θ) =



fGMM
1 (X, θ, 1)

. . .

fGMM
1 (X, θ, 360)

fGMM
2 (X, Y, θ, 1)

. . .

fGMM
2 (X, Y, θ, 360)

fGMM
1 (Y, θ, 1)

. . .

fGMM
1 (Y, θ, 360)


,

where I denotes the identity matrix of dimension 9 × 9 (9 is the length of

the vector of considered forecast horizons h). We start the least squares

procedure with (ρ0, β0
X , β

0
Y ) = (0.0, 0.0, 0.0). We use the function minimize

from Python’s library scipy.optimize ([Virtanen et al., 2019]) with Sequen-

tial Least Squares Programming (SLSQP) method and bounds (ρ, βX , βY ) ∈
(−1.0, 1.0)×(−∞,∞)×(−∞,∞). We run the procedure for different weights

w and numbers of lags.
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Remark 9.1. Alternatively, we could use the generalised method of moments to

estimate all seven parameters. However, the computational time significantly

(more than ten times) exceeds the computational time of the previous method.

Moreover, the joint estimation of all seven parameters is not computationally

stable, even when we set σ̂X , α̂X , σ̂Y and α̂Y estimated using the regression-

based method as initial parameters. Therefore we recommend the combination

of the regression-based method and the generalised method of moments

described above.

9.2.2 Numerical results

In this section we present the results of full model estimation as described in

Section 9.2. We use the first 180 lags since we are interested in short-term

forecasts, mostly up to 3 hours (180 minutes). We choose different values of

the weight w.

9.2.2.1 Weight w = 1

Table 9.1 shows the estimates of all seven parameters. The parameters

estimated with the regression-based method (σ̂X , α̂X , σ̂Y and α̂Y ) do not

vary much for different time periods. On the other hand, the estimates of the

remaining parameters are not consistent among seasons, which most likely

indicates problems with parameter identification in the generalised method of

moments. The issue could result from some seasonal effects remaining even

after the deseasonalisation procedure. Finally, it is possible the suggested

model cannot fully capture the behaviour of our data set.

Nevertheless, our estimation method provides good fits to variograms, as

presented in Figure 9.1. However, Figure 9.2 suggests that we could improve

the fit to the cross-variogram.
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ρ̂ σ̂X α̂X β̂X σ̂Y α̂Y β̂Y
01.12.2009–28.02.2010 0.075 0.107 -0.373 0.146 0.120 -0.317 0.124
01.03.2010–31.05.2010 0.024 0.107 -0.398 0.072 0.135 -0.345 0.087
01.06.2010–31.08.2010 -0.048 0.136 -0.360 0.055 0.173 -0.336 0.030
01.09.2010–30.11.2010 0.020 0.111 -0.373 0.105 0.120 -0.336 0.086

Table 9.1: Fitted parameters for different sets of training data, estimated with the proce-
dure described in Section 9.2, for lags 1–180 and with weight w = 1.
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Figure 9.1: Variograms of X(t) and Y (t) for 01.12.2009–28.02.2010, fitted with the pro-
cedure described in Section 9.2, for lags 1–180 and with weight w = 1. Please note the
logarithmic scale of the plots.
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Figure 9.2: The cross-variogram of X(t) and Y (t) for 01.12.2009–28.02.2010,fitted with
the procedure described in Section 9.2, for lags 1–180 and with weight w = 1. Left: logarith-
mic scale. Right: natural scale.

9.2.2.2 Weight w = 100

Table 9.2, Figure 9.3 and Figure 9.4 indicate that the fit resulting from

setting w = 100 is similar to w = 1, so we suggest setting lower values of w.

Throughout the rest of this chapter we will use w = 1.

ρ̂ σ̂X α̂X β̂X σ̂Y α̂Y β̂Y
01.12.2009–28.02.2010 0.073 0.107 -0.373 0.260 0.120 -0.317 0.159
01.03.2010–31.05.2010 0.024 0.107 -0.398 0.097 0.135 -0.345 0.091
01.06.2010–31.08.2010 -0.047 0.136 -0.360 0.127 0.173 -0.336 0.052
01.09.2010–30.11.2010 0.020 0.111 -0.373 0.105 0.120 -0.336 0.086

Table 9.2: Fitted parameters for different sets of training data, estimated with the proce-
dure described in Section 9.2, for lags 1–180 and with weight w = 100.
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Figure 9.3: Variograms of X(t) and Y (t) for 01.12.2009–28.02.2010, fitted with the pro-
cedure described in Section 9.2, for lags 1–180 and with weight w = 100. Please note the
logarithmic scale of the plots.
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Figure 9.4: The cross-variogram of X(t) and Y (t) for 01.12.2009–28.02.2010, fitted with
the procedure described in Section 9.2, for lags 1–180 and with weight w = 100. Left:
logarithmic scale. Right: natural scale.
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9.2.2.3 Maximum likelihood

We explore also the maximum-likelihood method of parameter estimation,

very popular in the Gaussian setting (see e.g. [Davis, 2006]). We observe

two evenly spaced time series: {Xi}Ni=1 and {Yi}Ni=1, where Xi := X(i∆)

and Yi := Y (i∆) for i = 1, 2, . . . , N and ∆ > 0. We can treat them as N

observations of bivariate pairs Zi = (Xi, Yi), i = 1, . . . , N with the pairwise

log-likelihood function

l :=
∑

1≤i<j≤N

f(Zi,Zj)(zi, zj),

where

f(Zi,Zj)(zi, zj) =
1

2π
(detΣij)

− 1
2 exp

−1

2

(
Zi

Zj

)T

Σ
− 1

2
ij

(
Zi

Zj

)
and

Σij = Cov (Zi, Zj) = Cov




Xi

Yi

Xj

Yj




=


Var (Xi) Cov (Xi, Yi) Cov (Xi, Xj) Cov (Xi, Yj)

Cov (Yi, Xi) Var (Yi) Cov (Yi, Xj) Cov (Yi, Yj)

Cov (Xj, Xi) Cov (Xj, Yi) Var (Xj) Cov (Xj, Yj)

Cov (Yj, Xi) Cov (Yj, Yi) Cov (Yj, Xj) Var (Yj)

 .

Since Σij is symmetric, we have to compute only the upper or lower triangular

part. The explicit formulae for the entries are given by Eq. (9.2). We can

estimate the parameters of X and Y by minimising the the log-likelihood l.

Unfortunately, in practice the computational cost of this method discourages

from its application.
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9.3 Forecasting

Because we do not know the explicit formula for E[S(t+h)|Ft], we approximate

it in two different ways and compare predicted wind speed to test data ob-

tained from deseasonalised horizontal components as S(t) =
√
X(t)2 + Y (t)2.

Precisely, we first deseasonalise horizontal components in the testing data set

with 2880 variables obtained using the procedure described in Section 7.2.

Then we use these components to compute deseasonalised wind speed. There-

fore both in the estimation and forecasting steps we work on the deseasonalised

data.

9.3.1 Methods

In this chapter we focus on point forecasts. We evaluate their forecasting

performance by root mean square errors (RMSEs), i.e. the quadratic mean

of differences between predicted and actual values at a given time horizon.

We compare these errors to RMSEs of simple persistence (sometimes called

“no-change”) forecasts, since beating the performance of persistence forecasts

should constitute the first goal of any forecasting exercise.

[Giebel, 2003] suggest also other loss functions widely used in the forecasting

literature. Examples include:

• Root mean square error (RMSE):

√
1
N

∑N
i=1

(
ypred
i − yobs

i

)2

,

• Mean absolute error (MAE): 1
N

∑N
i=1

∣∣∣ypred
i − yobs

i

∣∣∣,
• Mean error (ME): 1

N

∑N
i=1

(
ypred
i − yobs

i

)
,

• Histogram of the error distribution,

• Coefficient of determinant (R2),

where we predict a time series {ypred
i }Ni=1 and observe {yobs

i }Ni=1.

While in this chapter we focus on forecasting wind speeds, [Hering and Genton,
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2010] argue that practitioners would most likely convert these results into

predicted wind power production levels using a power curve

P =
1

2
αρπr2S3,

where α denotes a dimensionless efficiency constant of a given turbine type, ρ

the air density, r the radius swept by turbine blades and S the wind speed.

Loss functions applied to the predicted power rather than wind speeds put

more weight on average values, ignoring the extremes. Very low wind speeds

do not suffice to start the turbine, while very high force it to stop, therefore

within these two extreme regions the actual value of the speed does not

matter.

9.3.1.1 Taylor series approximation

Let f : R2 → R be a smooth function at the point a ∈ R2. Let v = (v1, v2)T ,

x = (x1, x2)T , a = (a1, a2)T and v = x− a. Then we can expand

f(x) = f(a) +
∂f

∂x1

(a)v1 +
∂f

∂x2

(a)v2 +
∂2f

∂x2
1

(a)
v2

1

2!
+

∂2f

∂x1∂x2

(a)v1v2

+
∂2f

∂x2
2

(a)
v2

2

2!
+R3(x, a),

where

lim
x→a

R3(x, a)

(x− a)3
= 0.

Let us consider an example which will help us approximate two-dimensional

wind speed forecasts.
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Example 9.1. Let x ∈ R2, a ∈ R2 \ {0}, v = x− a and f(x) =
√
x2

1 + x2
2.

Then
∂f

∂x1

(a) =
a1

(a2
1 + a2

2)
1
2

∂f

∂x2

(a) =
a2

(a2
1 + a2

2)
1
2

∂2f

∂x2
1

(a) =
a2

2

2 (a2
1 + a2

2)
3
2

∂2f

∂x1x2

(a) = − a1a2

(a2
1 + a2

2)
3
2

∂2f

∂x2
2

(a) =
a2

1

2 (a2
1 + a2

2)
3
2

.

Therefore

f(x) =
(
a2

1 + a2
2

) 1
2 +

a1v1 + a2v2

(a2
1 + a2

2)
1
2

+
a2

2v
2
1 − 2a1a2v1v2 + a2

1v
2
2

2 (a2
1 + a2

2)
3
2

+R3(x, a),

where

lim
x→a

R3(x, a)

(x− a)3
= 0.

Now let X(t1), . . . , X(tn) and Y (t1), . . . , Y (tn) be sequences of discrete obser-

vations of our Gaussian processes. We define

Z1 := (X(tn + h), Y (tn + h))T ,

Z2 := (X(t1), . . . , X(tn), Y (t1), . . . , Y (tn))T .

Then

E [Z1|Z2] = Σ12Σ−1
22 Z2 :=

[
µX(h)

µY (h)

]
,

Cov (Z1|Z2) = Σ11 − Σ12Σ−1
22 Σ21 :=

[
νX(h) νXY (h)

νXY (h) νY (h)

]
,

where

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
=

[
Cov (Z1) Cov (Z1, Z2)

Cov (Z2, Z1) Cov (Z2)

]
.
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We can use Example 9.1 to approximate

S =
(
X2 + Y 2

) 1
2

≈ X0 (X −X0) + Y0 (Y − Y0)

(X2
0 + Y 2

0 )
1
2

+
Y 2

0 (X −X0)2 − 2X0Y0 (X −X0) (Y − Y0) +X2
0 (Y − Y0)2

2 (X2
0 + Y 2

0 )
3
2

.

(9.9)

After applying Eq. (9.9) with (X0, Y0) = (µX(h), µY (h)) we obtain

S =
(
X2 + Y 2

) 1
2 ≈

(
µX(h)2 + µY (h)2

) 1
2

+

(
µX(h)

(µX(h)2 + µY (h)2)
1
2

(X − µX(h)) +
µY (h)

(µX(h)2 + µY (h)2)
1
2

(Y − µY (h))

)

+
1

2

(
µY (h)2

(µX(h)2 + µY (h)2)
3
2

(X − µX(h))2

− 2µX(h)µY (h)

(µX(h)2 + µY (h)2)
3
2

(X − µX(h)) (Y − µY (h))

+
µX(h)2

(µX(h)2 + µY (h)2)
3
2

(Y − µY (h))2

)
.

Now we can take conditional expectations of both sides to get

E [S(tn + h)|Z2] = E
[(
X(tn + h)2 + Y (tn + h)2

) 1
2 |Z2)

]
≈
(
µX(h)2 + µY (h)2

) 1
2 +

1

2

(
µY (h)2

(µX(h)2 + µY (h)2)
3
2

νX(h)

− 2µX(h)µY (h)

(µX(h)2 + µY (h)2)
3
2

νXY (h) +
µX(h)2

(µX(h)2 + µY (h)2)
3
2

νY (h)

)
.
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9.3.1.2 Monte Carlo approximation

Let us define[
X(tn + h|t1, . . . , tn)

Y (tn + h|t1, . . . , tn)

]
:=

[
X(tn + h)

Y (tn + h)

]∣∣∣∣
[
X(t1)

Y (t1)

]
, . . . ,

[
X(tn)

Y (tn)

]

With notation the same as in the Taylor series approximation example, we

know that[
X(tn + h|t1, . . . , tn)

Y (tn + h|t1, . . . , tn)

]
∼ N

([
µX(h)

µY (h)

]
,

[
νX(h) νXY (h)

νXY (h) νY (h)

])
. (9.10)

Therefore we can simulate Nsim = 10, 000 variables[
X(tn + h|t1, . . . , tn)

Y (tn + h|t1, . . . , tn)

]1

sim

, . . . ,

[
X(tn + h|t1, . . . , tn)

Y (tn + h|t1, . . . , tn)

]Nsim

sim

from the bivariate normal distribution given by Eq. (9.10) and approximate

E [S(tn + h)|X(t1), . . . , X(tn), Y (t1), . . . , Y (tn)]

≈ 1

Nsim

ΣNsim
i=1

√
(X i

sim(tn + h|t1, . . . , tn))
2

+ (Y i
sim(tn + h|t1, . . . , tn))

2
.

(9.11)

9.3.2 Numerical results

We compare the persistence forecast with two approximations of forecasts

based on the Gaussian moving average model. Table 8.2 presents three-

month-long training and one-month-long testing data sets. The models are

calibrated on training sets with the method described in Section 9.2, with

w = 1 and first 180 lags. The maximum forecasting horizon is 360 minutes.

Figure 9.5 presents root mean square errors of wind speed forecasts based

on the Gaussian moving average model, approximated via Taylor series and

Nsim = 10, 000 Monte Carlo simulations, compared to the persistence forecast.

We described the method of computation of these errors in Section 8.3. Both

approximations of speed forecasts give very similar results. Up to about three
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hours the Gaussian moving average model performs significantly better than

the persistence forecast. As we can see in Figure 9.6 and Figure 9.7, the

Gaussian moving average model outperforms the persistence forecast also for

horizontal components.
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Figure 9.5: Root mean square errors of forecasted wind speed S, approximated with a Tay-
lor series and Monte Carlo simulation, compared to the persistence forecast. Models cali-
brated with the method described in Section 9.2, with w = 1 and first 180 lags. Training set:
01.12.09–28.02.10, testing set: 01.03.10–31.03.10.
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Figure 9.6: Root mean square errors of forecasted horizontal component X: theoretical
continuous, theoretical discrete and actual, compared to persistence forecasts. The bottom
right plot: the ratio between the actual Gaussian moving average forecast and persistence
forecast. Models calibrated with the method described in Section 9.2, with w = 1 and first
180 lags. Training set: 01.12.09–28.02.10, testing set: 01.03.10–31.03.10.
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Figure 9.7: Root mean square errors of forecasted horizontal component Y : theoretical
continuous, theoretical discrete and actual, compared to persistence forecasts. The bottom
right plot: the ratio between the actual Gaussian moving average forecast and persistence
forecast. Models calibrated with the method described in Section 9.2, with w = 1 and first
180 lags. Training set: 01.03.10–31.05.10, testing set: 01.06.10–31.08.10.

166



9.4 Simulation

We recall that our two-dimensional model has the form
X(t) =

∫ t
−∞ gX(t− s)dWX (s) ,

Y (t) =
∫ t
−∞ gY (t− s)dW Y (s) ,

dWX (s) dW Y (s) = ρdt,

where the kernels gX and gY are given by Eq. (8.2). For many applications

(beyond the scope of this thesis) the practitioners need to simulate from the

model. Following [Bennedsen et al., 2017], we propose a hybrid scheme, which

allows us to generate paths of the desired process. Let n ∈ N. Then

X(t) =
∞∑
k=1

∫ t− k
n

+ 1
n

t− k
n

gX(t− s)dWX (s) ,

Y (t) =
∞∑
k=1

∫ t− k
n

+ 1
n

t− k
n

gY (t− s)dW Y (s) .

We know that gX and gY satisfy (C1), i.e.

gX(t) = tαXLXg (t)

gY (t) = tαY LYg (t),

for αX , αY ∈
(
−1

2
, 1

2

)
\{0} and continuously differentiable functions LXg (t)

and LYg (t), slowly varying at zero and bounded away from zero. Therefore we

can approximate

• gX(t− s) ≈ (t− s)αXLXg
(
k
n

)
for t− s ∈

[
k−1
n
, k
n

]
and k “small”;

• gX(t − s) ≈ gX
(
bk
n

)
for bk ∈ [k − 1, k] and k “large” (at least bigger

than 2).

167



This means that for κ = 1, 2, . . .

X(t) =
∞∑
k=1

∫ t− k
n

+ 1
n

t− k
n

gX(t− s)dWX (s)

≈
κ∑
k=1

LXg

(
k

n

)∫ t− k
n

+ 1
n

t− k
n

(t− s)αXdWX (s)

+
∞∑

k=κ+1

gX

(
bk
n

)∫ t− k
n

+ 1
n

t− k
n

dWX (s) .

(9.12)

If κ = 0, we interpret the first sum on the right-hand side of Eq. (9.12) as

zero and require b1 ∈ (0, 1]. We define the cut-off point for the second sum as

Nn ≥ κ+ 1. We approximate gY analogously. Now we can simulate from the

model defined in Chapter 9 as follows.

1. We define constants κ ∈ N and Nn ≥ κ + 1. We define also a grid

Gn = {t, t− 1
n
, t− 2

n
, . . . } for some n ∈ N.

2. We choose a sequence {bk}k≥κ+1 such that bk ∈ [k − 1, k] \{0} for all

k ≥ κ+ 1.

3. We simulate paths of correlated Brownian motions WX and W Y with

the correlation coefficient ρ.

4. We simulate

Xsim(t)

=
κ∑
k=1

LXg

(
k

n

)∫ t− k
n

+ 1
n

t− k
n

(t− s)αX
(
WX

(
t− k

n
+

1

n

)
−WX

(
t− k

n

))

+
∞∑

k=κ+1

gX

(
bk
n

)∫ t− k
n

+ 1
n

t− k
n

(
WX

(
t− k

n
+

1

n

)
−WX

(
t− k

n

))
,

Y sim(t)

=
κ∑
k=1

LYg

(
k

n

)∫ t− k
n

+ 1
n

t− k
n

(t− s)αY
(
W Y

(
t− k

n
+

1

n

)
−W Y

(
t− k

n

))

+
∞∑

k=κ+1

gY

(
bk
n

)∫ t− k
n

+ 1
n

t− k
n

(
W Y

(
t− k

n
+

1

n

)
−W Y

(
t− k

n

))
.
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5. We compute

Ssim(t) =
√
Xsim(t)2 + Y sim(t)2.

For more details and theoretical properties of the scheme we refer the reader

to [Bennedsen et al., 2017].

9.5 Forecasting wind speed directly

One can wonder if the two-dimensional approach is worth pursuing. In other

words, does it give better results than forecasting wind speed directly, using

a one-dimensional model? We investigate this question by modelling and

forecasting the wind speed with the following model.

S(t) =

∫ t

−∞
gS(t− s)dW (s) ,

where for t > 0

gS(t) = σSt
αS

(
1 +

t

60

)βS
exp

(
− t

1440

)
,

with σS > 0, αS > −1
2

and βS ∈ R. We calibrate this model using the

regression-based approach described in Subsection 8.2.1.2. Figure 9.8 com-

pares the forecasting performance of this direct wind speed model with the

persistence forecast and forecasts obtained from two horizontal components

as described in Section 9.3. We train the models on 01.12.09–28.02.10, with

w = 1 and first 180 lags. We test them on 01.03.10–31.03.10.

We can see that while for very short horizons all methods’ performances are

comparable, for horizons longer than about 20 minutes both approximations

of wind speed forecasts based on horizontal components outperform direct

forecasts. We expect we would notice an even bigger difference in perfor-

mances if we considered probabilistic rather than just point forecasts. Finally,

in some locations, such as valleys, wind directions and speeds tend to be

highly correlated, which suggests the component split as opposed to the direct

approach ignoring any information about the directions.
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Figure 9.8: Root mean square errors of forecasted wind speed S, approximated with a Tay-
lor series and Monte Carlo simulation, compared to the persistence forecast and direct wind
speed forecast. Models calibrated with the method described in Section 9.2, with w = 1 and
first 180 lags. Training set: 01.12.09–28.02.10, testing set: 01.03.10–31.03.10.
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9.6 Summary and outlook

This chapter extended the results of Chapter 8, where we proposed a model for

horizontal components of wind speed based on Gaussian moving average pro-

cesses with a novel triple-scale kernel. We suggested a way to combine these

one-dimensional models into a two-dimensional wind speed model. First, we

defined bivariate Gaussian semistationary processes and studied their proper-

ties. To model the wind speed we started from the assumption of uncorrelated

horizontal components and extended it to a model with a constant correla-

tion coefficient between the components. We developed a model estimation

method which allows to put more weight on either marginal distributions or

the correlation structure, depending on the particular application.

After fitting the model to the data, we approximated wind speed forecasts in

two ways: using the Taylor series approximation and Monte Carlo method.

Both prediction methods significantly outperformed persistence forecasts for

short time horizons, according to the root mean square error. We also checked

how the forecasts resulting from the component split compare to predicting

wind speed directly with a one-dimensional Gaussian moving average model

with the triple-scale kernel. As expected, modelling horizontal components

separately results in better forecasts for horizons exceeding about 20 minutes.

To round the chapter off we recalled a method of simulating from our model.

Further studies should focus on identifying the best way of modelling the

dependence structure between horizontal components. One could consider

replacing the driving Brownian motion by a Lévy process, for example with

a generalised hyperbolic marginal distribution. While distributions from this

class provide a better fit to the component data than the Gaussian distri-

bution, the Gaussian framework makes modelling and forecasting easier, so

one would have to carefully weigh benefits and drawbacks. Another approach

would be to replace the Brownian semistationary framework by multivariate

trawl models, processes suitable for modelling a variety of time series, for

instance in economics ([Barndorff-Nielsen et al., 2014]) or environmental

sciences ([Noven et al., 2018]). This approach would involve establishing

suitable forecasting methods tailored to trawl processes. Finally, autoregres-

sive fractionally integrated moving average processes (ARFIMA) and their
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continuous-time counterparts ([Marquardt, 2007]) are good candidates for

modelling time series with long memory, for which the long-run mean decays

slower than exponentially.
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10
Conclusions and further studies

10.1 Conclusions

In this thesis we used stochastic modelling and statistical inference to answer

two crucial questions posed by energy providers:

• How does the level of wind energy generation impact electricity prices?

• Can we produce accurate short-term wind speed forecasts without

resorting to computationally expensive methods and the access to

elaborate physical models?

In Part I we tackled the first problem. To this end, we extended the model of

electricity spot prices proposed by [Benth et al., 2014] to include stochastic

volatility present increasingly often in markets with high participation of

renewable sources, as well as the information about wind energy generation.

We also suggested a way to model wind-related variables. The latter extension

not only provides a valuable economic interpretation but also, according to

our empirical studies, improves the model fit. Finally, we proposed a joint

model of electricity prices and wind energy generation particularly suitable
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for studying the risks faced by energy distributors and traders.

The second question we answered positively in Part II. We found that while

modelling wind speed directly did not give satisfactory results, splitting

it into two horizontal components allowed us to produce accurate short-

term forecasts. We successfully applied moving average Gaussian processes –

univariate to model horizontal components and correlated bivariate for the

wind speed – with a novel triple-scale kernel able to capture the complex

behaviour of wind speed autocorrelation structure. After developing and

testing a variety of estimation procedures, we managed to produce short-term

forecasts which outperformed not only standard persistence forecasts but also

forecasts without the component split.

10.2 Further studies

Our answers encourage even more research questions. We already concluded

Chapter 4, Chapter 5, Chapter 8 and Chapter 9 with suggestions of studies

extending presented results. In the final section of the thesis we would like to

go one step further and see how our work fits into the broader topic of energy

modelling.

Our research focused on temporal models, which could serve as a building

block for spatio-temporal models. In particular, one could extend the wind

speed modelling and forecasting framework proposed in Part II to multiple

locations within a region or even a country. This would translate into the

prediction of total wind energy production, thanks to its relationship with

wind speed expressed as the power curve ([Hering and Genton, 2010]).

Particularly interesting objects useful in spatio-temporal modelling are ambit

fields ([Barndorff-Nielsen et al., 2018]), which encompass also purely temporal

processes described in this thesis, such as CARMA (Appendix C) or Gaussian

moving average processes (Eq. (8.1)). Applications of such spatio-temporal

processes range from modelling sea surface temperature anomalies ([Nguyen

and Veraart, 2017]) to tumour growth ([Jónsdóttir et al., 2008]) to turbulence

([Barndorff-Nielsen and Schmiegel, 2004]). Given the usually strong spatial

dependence of the wind ([Bardal and Sætran, 2016]), we expect that a similar
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approach, carefully applied, would improve the models and forecasts proposed

in Part II.

One can easily see how the forecasts of total wind energy generation in

a country would fit directly into our model from Chapter 4. Ideally, the spatio-

temporal model would have enough flexibility to incorporate whole energy

networks encompassing multiple countries. This would fulfil the growing need

of energy producers and traders, given the increasing volume of cross-border

energy exchanges.

We firmly believe that such mathematical and statistical studies on wind

energy and electricity prices will encourage new investments in renewable

energy sources. Before our chance to stop climate change is gone with the

wind.
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A
Generalised hyperbolic distributions

In this thesis we often consider distributions from the generalised hyperbolic

(GH) class. Their properties such as fat tails and skewness make them suitable

for our applications. Most importantly, they are infinitely divisible, which

in particular means that they can generate a Lévy process (see Appendix B)

L(t) such that L(1) has a generalised hyperbolic density.

[Lüthi and Breymann, 2016] provided a concise introduction to these distri-

butions and developed an R package ghyp, which came in useful many times

during our research.

A.1 Definitions and properties

We begin by defining the building block of these Gaussian mixture distribu-

tions: the generalised inverse Gaussian distribution (GIG).

Definition A.1 (Generalised inverse Gaussian distribution). The den-

sity of a generalised inverse Gaussian variable W ∼ GIG(λ, χ, ψ) with pa-

rameters satisfying one of the following

• χ > 0, ψ ≥ 0, λ < 0,
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• χ > 0, ψ > 0, λ = 0,

• χ ≥ 0, ψ > 0, λ > 0,

is given by

fGIG(x) =

(
ψ

χ

)λ
2 xλ−1

2Kλ

(√
χψ
) exp

(
−1

2

(χ
x

+ ψx
))

.

Now we are ready to define generalised hyperbolic distributions as Gaussian

mixtures.

Definition A.2 (Generalised hyperbolic distribution). A random vec-

tor X follows a univariate generalised hyperbolic (GH) distribution if

X
law
= µ+Wγ +

√
WσZ, (A.1)

where Z ∼ N(0, 1), σ, µ, γ ∈ R and W is a scalar-valued random vari-

able, independent of Z, whose distribution is generalised inverse Gaussian:

GIG(λ, χ, ψ).

We interpret the parameters of generalised hyperbolic distribution as follows.

• µ corresponds to the location.

• Σ = σ2 measures the dispersion.

• λ, χ and ψ determine the shape, i.e. the relationship between the tails

and the center: as a rule of thumb, their large values indicate that the

distribution resembles a Gaussian distribution.

• γ indicates the skewness: γ = 0 means that the distribution is symmet-

ric.

We also observe that

X|W = w ∼ N (µ+ wγ,wΣ) .

We recall one more desirable property of this distribution class.
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Proposition A.0.1 ([Lüthi and Breymann, 2016, Proposition 1]). The gen-

eralised hyperbolic class is closed under linear transformations: if

X ∼ GH (λ, χ, ψ, µ,Σ, γ)

and

Y = aX + b

for a, b ∈ R, then

Y ∼ GH
(
λ, χ, ψ, aµ+ b, a2Σ, aγ

)
.

A.2 Special cases of generalised hyperbolic distributions

In the class of generalised hyperbolic distributions we distinguish special

subclasses.

• Hyperbolic (hyp) for λ = 1.

• Normal inverse Gaussian (NIG) for λ = 1
2
.

• Variance gamma (VG) for χ = 0 and λ > 0 (a limiting case).

• Generalised hyperbolic Student’s-t (often called Student’s-t) for ψ = 0

and λ < 0.

In our research we use the R package ghyp ([Lüthi and Breymann, 2016]) to

fit 11 different distributions to the increments of the Lévy process of interest

and rank them according to the Akaike information criterion (AIC). Namely,

we compare symmetric and asymmetric versions of hyp, NIG, VG, Student’s-t

and GH distributions, as well as a Gaussian distribution, to find the best

fitting one.
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A.3 Parametrisations

The (λ, χ, ψ, µ,Σ, γ) parametrisation has alternatives; the R package ghyp

([Lüthi and Breymann, 2016]) lets the user choose between three options. The

other two are (λ, ᾱ, µ,Σ, γ, ) and (λ, α, µ,∆, δ, β) parametrisations. [Lüthi

and Breymann, 2016] provided ranges of parameters for special cases listed in

Section A.2 as well as explicit functions switching between parametrisations.

In this thesis we report the results using different parametrisations, depending

on the application.
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B
Lévy processes

For basic introductions to Lévy processes we suggest [Papapantoleon, 2008],

[Barndorff-Nielsen and Shephard, 2012] or [Kyprianou, 2014]. More advanced

readers could consult [Tankov and Cont, 2015], who not only provided clear

explanations but also most proofs omitted in this chapter.

To study Lévy processes – stochastic processes able to accommodate jumps

– we need to define the following special class of functions. We assume

a probability space (Ω,F , {Ft}t∈R,P) satisfying the usual conditions: right-

continuity of the filtration {Ft}t∈R and completeness (F0 contains all P-null

sets).

Definition B.1 (Cádlág). A function defined on (the subset of) the real

line is cádlág (French: continue á droite, limite á gauche) or RCLL (right-

continuous with left limits) if it is right-continuous everywhere and has left

limits everywhere.

Now we are ready to define one of the most fundamental concepts of this

thesis.

Definition B.2 (Lévy process). We call a cádlág, adapted, real valued

stochastic process L = {L(t)}t≥0 a Lévy process if:
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1. L(0) = 0 almost surely;

2. L has independent increments, i.e. L(t)− L(s) is independent of {Fs}
for all 0 ≤ s < t <∞;

3. L has stationary increments, i.e. L(t)− L(s) has the same distribution

as L(t− s) for all 0 ≤ s < t <∞;

4. L is continuous in probability, i.e. lims→t P (L(t)− L(s) > ε) = 0 for

all 0 ≤ s ≤ t <∞ and ε < 0.

Some examples of Lévy processes include:

• Brownian motion: the only non-deterministic Lévy process with contin-

uous paths.

• Poisson processes and compound Poisson processes.

• Stable processes.

• Lévy processes with generalised hyperbolic increments (see Appendix A).

If L(t) is a Lévy processes, for z ∈ R and t ≥ 0 its characteristic function has

the form

φ(t; z) = E [izL(t)] = exp (tξ(z)) ,

where

ξ(z) = izb− z2c

2
+

∫ ∞
−∞

(
eizx − 1− izx1{|x|<1}

)
ν(dx),

b ∈ R is the drift, c ≥ 0 the diffusion coefficient and ν a Lévy measure on the

Borel subsets of R\{0} such that∫ ∞
0

min
(
x2, 1

)
ν(dx) <∞.

We call ξ(z) the characteristic component of L(t).
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C
Lévy-driven CARMA processes

We base this chapter on [Garćıa et al., 2011] and references therein, who

provided an excellent introduction to the continuous version of widely used

autoregressive moving average processes (ARMA).

C.1 ARMA models

[Brockwell and Davis, 2002] provided a detailed introduction to time series

and forecasting, including autoregressive moving average (ARMA) processes.

Definition C.1 (ARMA(p,q) process). We call a time series {Xt}t∈Z an

autoregressive moving average process of order (p,q) or ARMA(p,q) if for all

t ∈ Z

Xt −
p∑

m=1

φmXt−m = εt +

q∑
n=1

θnεt−n,

where for all t ∈ Z and for a constant σ > 0 it holds that εt ∼ WN(0, σ2)

and polynomials (1−
∑p

m=1 φmz
m), (1 +

∑q
n=1 θnz

n) have no common roots.

We recall that WN(0, σ2) denotes white noise, i.e. a stationary sequence of

uncorrelated random variables with mean zero and variance σ2.

182



C.2 Definitions and properties

Definition C.2 (CARMA process). Let L(t) be a Lévy process and

0 ≤ q < p. We define the L-driven CARMA(p,q) process with parame-

ters [a1, . . . , ap; b1, · · · , bq] as a stationary solution of the system of formal

stochastic differential equations

a(D)Y (t) = b(D)DL(t), (C.1)

where D denotes “differentiation” with respect to t,

a(z) := zp + a1z
p−1 + · · ·+ ap, (C.2)

b(z) := b0 + b1z + · · ·+ bp−1, (C.3)

a(z) and b(z) have no common roots, bq = 1 and bj = 0 for q < j < p.

Since we cannot define the derivative DL(t) in the usual sense, we interpret

Eq. (C.1) as the state-space representation, i.e.

Y (t) = bTX(t), (C.4)

dX(t) = AX(t)dt+ edL(t), (C.5)

where

A =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−ap −ap−1 −ap−2 · · · −a1

 , (C.6)

e =


0

0
...

0

1

 , b =


b0

b1

...

bp−2

bp−1

 . (C.7)
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Following [Brockwell et al., 2011], we assume that X(0) is independent

of {L(t), t ≥ 0}, all eigenvalues of A (easily calculated as roots of the

autoregressive polynomial a(z)) have negative real parts and

X(0)
law
=

∫ ∞
0

eA(t−u)edL(u). (C.8)

Then {X(t), t ≥ 0} is a strictly stationary solution of Eq. (C.5).

In order to define CARMA(p,q) on the real line, we can define a Lévy process

{M(t), t ≥ 0} such that L(t) and M(t) are iid. Then we extend L(t) for the

whole real line as

L̃(t) := L(t)1[0,∞)(t)−M(−t−)1(−∞,0](t), t ∈ R. (C.9)

In the remaining part of this chapter we will denote L̃ by L and call it the

background driving Lévy process of Y (t). Now we are ready to provide the

necessary and sufficient conditions for the existence of a covariance stationary

solution of Eq. (C.5).

Proposition C.0.1 ([Brockwell et al., 2011, Proposition 1]). Eq. (C.5)

has a covariance stationary solution X such that X(t) is independent of

{L(s) − L(t)}s>t for all t ∈ R if and only if the real parts of the roots of

a(z) = 0 are negative. This solution has the form

X(t) =

∫ t

−∞
eA(t−u)edL(u)

law
=

∫ ∞
0

eAuedL(u).

This leads us to an alternative definition of the object crucial for this thesis:

the continuous autoregressive moving average process (CARMA).

Definition C.3 (CARMA(p,q) process). Let us assume that L is a Lévy

process, the roots of a(z) = 0 are distinct and their real parts are nega-

tive. Then we define the L-driven CARMA(p,q) process with parameters

a1, . . . , ap; b1, . . . , bq as the process satisfying

Y (t) = bTX(t) =

∫ ∞
−∞

g(t− u)dL(u)
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with

g(t) = bT eAte1[0,∞)(t)

called the kernel of the CARMA process {Y (t)}. Y is a causal function of L

because Y (t) does not depend on {L(s)− L(t), s ≥ t} for all t.

To assure the existence and uniqueness of our CARMA processes, we need to

state the following additional assumptions.

Assumption C.1. Unless stated otherwise, throughout the whole thesis we

assume that roots of a(z) = 0 are distinct and their real parts are negative.

Furthermore, a(z) and b(z) have no common roots.

CARMA processes have an intuitive and very useful representation as a sum

of Lévy-driven Ornstein-Uhlenbeck processes, described in more detail in

Appendix D. This observation helps us estimate the parameters of these

objects as well as simulate them.

Proposition C.0.2 ([Brockwell et al., 2011, Proposition 2]). Under As-

sumption C.1, any CARMA(p,q) process Y (t) can be expressed as a sum of

dependent and possibly complex-valued CAR(1) processes, i.e.

Y (t) =

p∑
r=1

Y (r)(t), (C.10)

where for r = 1, . . . , p

Y (r)(t) =

∫ t

−∞
αre

λr(t−u)dL(u), (C.11)

αr =
b(λr)

a′(λr)
, (C.12)

with a′(·) denoting the derivative of a(·).

In this thesis we focus on one particular example: the CARMA(2,1) process.

Therefore we state some basic facts about this object.
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Example C.1 (CARMA(2,1)). The Lévy-driven CARMA(2,1) process is

defined as the strictly stationary solution to the system of equations

(D2 + a1D + a2)Y (t) = (b0 +D)DL(t), (C.13)

where t ∈ R, b(z) = b0 + z and a(z) = z2 + a1z + a2 = (z − λ1)(z − λ2),

λ1 6= λ2, Re(λ1) < 0 and Re(λ2) < 0. Furthermore, for u ≥ 0 the kernel of

Y (t) equals

g(u) = α1e
λ1u + α2e

λ2u, (C.14)

where α1 = b0+λ1

λ1−λ2
and α2 = b0+λ2

λ2−λ1
. Therefore we can represent this process as

Y (t) = α1

∫ t

−∞
eλ1(t−u)dL(u) + α2

∫ t

−∞
eλ2(t−u)dL(u). (C.15)

C.3 The sampled CARMA process

In practice we observe any continuous process Y (t) only in discrete time.

Precisely, we denote by {Yn := Y (nh), n = 0, 1, . . . , N} the sampled process,

where N is the number of available observations and h > 0 is a small,

fixed interval between the consecutive observations. The following proposition

explores the relationship between the continuous and discrete processes, which

prepares us for the estimation of CARMA(p,q) parameters.

Proposition C.0.3 ([Brockwell et al., 2011, Proposition 3]). Under Assump-

tion C.1 the following hold.

1. The sampled process {Yn := Y (nh), n = 0, 1, . . . , N}, with a fixed

h > 0, can be represented as Yn =
∑p

r=1 Y
(r)
n , where n ∈ Z. For each

r = 1, . . . , p, the discrete-time process {Y (r)
n } is obtained by sampling

the component CAR(1) process {Y (r)(t)} (cf. Appendix D) at spacing

h > 0. As Y is strictly stationary,

∀n ∈ Z Y (r)
n = eλrY

(r)
n−1 + Z(r)

n , (C.16)
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with the iid noise

∀n ∈ Z Z(r)
n = αr

∫ nh

(n−1)h

eλr(nh−u)dL(u). (C.17)

2. The sampled process {Yn := Y (nh), n = 0, 1, . . . , N} satisfies

φ(B)Yn =

p∑
r=1

V r
n−r+1 =: Un, (C.18)

where

φ(z) :=

p∏
r=1

(
1− eλrhz

)
= 1−

p∑
r=1

φrz
r (C.19)

and B denotes the backshift operator, i.e. BjYn := Yn−j. For each

r = 1, . . . , p, we define the iid sequence {V (r)
n } by

V (r)
n :=

∫ nh

(n−1)h

p∑
k=1

αk

(
e(r−1)hλk −

r−1∑
j=1

φje
(r−1−j)hλk

)
× e(nh−u)λkdL(u).

(C.20)

3. We can represent the right-hand side of Eq. (C.18) as an invertible

moving average

θ(B)Wn := Wn + θ1Wn−1 + · · ·+ θp−1Wn−p+1, (C.21)

where {Wn} is a sequence of white noise (possibly not iid) and θ1, . . . , θq

are moving average constants depending on the CARMA process. There-

fore {Yn} can be represented as a weak ARMA(p,p-1) process (an

ARMA(p,p-1) process allowing for not iid driving white noise) such that

φ(B)Yn = θ(B)Wn (C.22)

and

Wn = θ(B)−1

p∑
r=1

V p
n−r+1. (C.23)
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C.4 Estimation

Now we are ready to estimate the CARMA parameters, following the algorithm

described by [Garćıa et al., 2011]. [Brockwell et al., 2011] showed that for

a fixed sampling interval h > 0 the mean corrected sampled CARMA(p,q)

process is a weak ARMA(p,p-1) process, so we can estimate ARMA(p,p-1)

parameters and map them to the continuous setting as outlined below. In the

thesis we are particularly interested in CARMA(2,1), so for brevity we specify

the estimation procedure for this particular process. We slightly abuse the

notation by denoting variables and their estimates with the same symbols;

the meaning should be clear from the context.

1. We estimate ARMA(2,1) parameters β = (φ1, φ2, θ)
T , using the quasi-

maximum likelihood approach (alternatively least squares).

2. Eq. (C.18) has the form

Yn − φ1Yn−1 − φ2Yn−2 =
(
1− eλ1hB

) (
1− eλ2hB

)
Yn. (C.24)

By multiplying through and matching coefficients, we obtain

φ1 = eλ1h + eλ2h, φ2 = −e(λ1+λ2)h. (C.25)

This gives us a nonlinear system of two equations for the estimators of

λ1 and λ2, whose solutions are

λ1 = log

φ1

2
+

√(
φ1

2

)2

+ φ2
2

 , (C.26)

λ2 = log

φ1

2
−

√(
φ1

2

)2

+ φ2
2

 . (C.27)

From there we immediately calculate a1 = − (λ1 + λ2) and a2 = λ1λ2.

Remark C.1. We implicitly assume that φ1 > 0 and φ2 < 0, so this

method is not suitable for some CARMA processes. Alternative estima-
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tion methods include quasi-maximum likelihood implemented in the R

package yuima ([Iacus and Mercuri, 2015]).

3. The right-hand side of Eq. (C.18) implies the form of the autocovariance

of the process φ(B)Yn:

∀s ∈ R γU(s) = cov (φ(B)Yn, φ(B)Yn−s) . (C.28)

Furthermore, using Corollary 3 by [Barndorff-Nielsen et al., 2013], for

all s ∈ R we calculate the autocovariance of Y (t)

γY (s) = Cov (Y (s), Y (0)) =

∫ ∞
0

g(x)g(x+ s)dx = w1e
λ1s + w2e

λ2s,

(C.29)

where

w1 =
α2

1λ1λ2 + α1
2λ2

2 + 2λ1λ2α1α2

2λ1λ2 (λ1 + λ2)
, (C.30)

w2 =
α2

2λ1λ2 + α2
2λ2

1 + 2λ1λ2α1α2

2λ1λ2 (λ1 + λ2)
. (C.31)

Thus for all s ∈ R the autocorrelation of Y (t) equals

δY (s) =
γY (s)

γY (0)
=
w1e

λ1s + w2e
λ2s

w1 + w2

. (C.32)

For CARMA(2,1) we can rewrite Eq. (C.28) as

γU(0) = (1 + φ2
1 + φ2

2)γY (0) + (2φ2φ2 − 2φ1)γY (1)− 2φ2γY (2),

γU(1) = −φ2γY (3) + φ1(φ2 − 1)γY (2)

+ (1 + φ2
1 + φ2

2 − φ2)γY (1) + φ1(φ2 − 1)γY (0),

(C.33)

where we use explicit formulae for γY (·) given by Eq. (C.29). Since

they depend on a0, a1 and b0, we plug in the estimates of the first two

parameters.

On the other hand, the autocorrelation function at the first lag of
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a moving average process with coefficient θ can be expressed as

δU(1) =
γU(1)

γU(0)
=

θ

1 + θ2
. (C.34)

Now we can replace the left-hand side of Eq. (C.34) by expressions

from Eq. (C.33) to get a non-linear equation for b0, which we solve

numerically.

4. Having estimated the parameters of CARMA(2,1), we need to recover

the background driving Lévy process L(t), using results by [Brockwell

et al., 2011, Section 5]:

X(0)(t) = X(0)(0)e−b0t +

∫ t

0

e−b0(t−s)Y (s)ds, (C.35)

X(1)(t) = DX(0)(t) = −b0X
(0)(t) + Y (t). (C.36)

The canonical state vector Y(t) is given by(
Y (1)(t)

Y (2)(t)

)
=

1

λ1 − λ2

(
−λ2(b0 + λ1) (b0 + λ1)

λ1(b0 + λ2) −b0 + λ2

)(
X(0)(t)

X(1)(t)

)
. (C.37)

To recover the background driving Lévy process L(t) we can choose one

of two equations, either with r = 1 or r = 2:

L(t) =
1

αr

[
Y (r)(t)− Y (r)(0)− λr

∫ t

0

Y (r)(s)ds

]
. (C.38)

We approximate the integral using the trapezoidal rule. [Brockwell et al.,

2011] recommend choosing r such that |λr| is minimal, which minimizes

the contribution of λr
∫ t

0
Y (r)(s)ds compared to Y (r)(t)− Y (r)(0).

C.5 Simulation

To simulate any CARMA(p,q) process, we use its representation as a sum

of CAR(1) processes stated in Proposition C.0.2. For brevity we restrict our

attention to simulating CARMA(2,1) process Y (t) with parameters a1, a2
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and b0 and eigenvalues of the matrix A: λ1 and λ2. We start from simulating

two Ornstein-Uhlenbeck processes Y (1)(t) and Y (2)(t) with λ1 and λ2, driven

by the same Lévy process (cf. Section D.4). Then we compute

Y (t) = α1Y
(1)(t) + α2Y

(2)(t),

where

α1 =
b0 + λ1

λ1 − λ2

α2 =
b0 + λ2

λ1 − λ2

.
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D
Lévy-driven CAR(1) processes

One of the most important processes belonging to the CARMA class (Ap-

pendix C) is the Lévy-driven CAR(1) process, called also Lévy-driven Ornstein-

Uhlenbeck process. For more details we refer the reader to [Brockwell et al.,

2007].

D.1 Definitions and properties

Definition D.1 (Lévy-driven CAR(1) process). Let L(t) be a Lévy

process. The L-driven Ornstein-Uhlenbeck process with the parameter λ > 0

is a strictly stationary solution of the stochastic differential equation

dY (t) = −λY (t)dt+ dL(t), t > 0.

As in Eq. (C.9) we extend L(t) to the whole real line. If λ > 0, for all

t > s ∈ R the process Y (t) defined by

Y (t) =

∫ t

−∞
e−λ(t−u)dL̃(u)
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is a strictly stationary solution to

dY (t) = −λY (t)dt+ dL̃(t).

Again, we will denote L̃ by L and call it the background driving Lévy process

of Y (t).

D.2 The sampled CAR(1) process

In this section we point out the relationship between the Ornstein-Uhlenbeck

process and the discrete autoregressive process of order one. We denote by

{Yn := Y (nh), n = 0, 1, . . . , N} the sampled CAR(1) process, where N is the

number of available observations and h > 0 is a small, fixed interval between

the consecutive observations. The sampled CAR(1) process is the discrete

time autoregressive AR(1) process (cf. Section C.1)

∀n ∈ Z Yn = φYn−1 + Zn,

where

φ = e−λh

and

∀n ∈ Z Zn =

∫ nh

(n−1)h

eλ(nh−u)dL(u)

is the iid and positive noise.

D.3 Estimation

To estimate the parameters of a CAR(1) process Y (t) we follow the procedure

suggested by [Brockwell et al., 2007] and references therein. Again, we slightly

abuse the notation by denoting variables and their estimates with the same

symbols, the meaning of which is clear from the context. We proceed as

follows.
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1. We estimate the parameter φ of the sampled process Yn, for example

by maximising the likelihood function.

2. We compute

λ = − log(φ).

3. For all n = 1, . . . N we define the increments of the driving process L(t)

on intervals ((n− 1)h), nh] by

∆h
nL := Lnh − L(n−1)h = Ynh − Y(n−1)h + λ

∫ nh

(n−1)h

Yudu.

We recover these increments using the trapezoidal rule

∆h
nL ≈ Yn − Yn−1 +

λh

2
(Yn + Yn−1) .

D.4 Simulation

We simulate a CAR(1) process Y (t) as follows.

1. We partition the interval [0, T ] into N equal intervals of length h = T
N

.

2. For i = 1, . . . , N we simulate the increments of the driving process

∆h
nL following the appropriate centred distribution, for example from

the generalised hyperbolic class (see Appendix A). If the mean µ of

Lévy increments differs from zero, after simulating the increments we

subtract the mean from the resulting time series.

3. We set the initial value of Y to 0.

4. For n = 1, . . . , (N − 1) we use the Euler-Maruyama method to compute

Yn+h = Yn + λhYn + (Ln+h − Ln) + hµ.

In practice we first simulate a CAR(1) process of length 2N . We further

discard the first half of the time series as a burn-in period. We finally resample
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the resulting time series every 1
h

points to obtain a process corresponding to

the original data, if needed.
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with Applications: Introductory Lectures. Universitext. Springer Berlin

Heidelberg.

[Lang et al., 2019] Lang, M. N., Mayr, G. J., Stauffer, R., and Zeileis, A.

(2019). Bivariate Gaussian models for wind vectors in a distributional

regression framework. Advances in Statistical Climatology, Meteorology and

Oceanography, 5(2):115–132.

[Lingohr and Müller, 2019] Lingohr, D. and Müller, G. (2019). Stochastic

modeling of intraday photovoltaic power generation. Energy Economics,

81:175–186.

201

http://blog.drhongtao.com/2014/09/load-demand-energy-power.html
http://blog.drhongtao.com/2014/09/load-demand-energy-power.html
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