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Abstract— In recent years, many researchers have attempted
to achieve cross-domain diagnosis of faults through domain
adaptation (DA) methods. However, owing to the complex phys-
ical environments, applications of DA-based approach are not
guaranteed to unknown operating environments. Some existing
domain generalization (DG) methods require enough fully labeled
source domains to train, which are often unavailable in practical
settings. In this study, an adversarial domain generalization
network (ADGN) based on class boundary feature detection is
proposed. The ADGN can diagnose faults in unknown operating
environments, and only one fully labeled domain is used in
training. Although ADGN has to access fully unlabeled auxiliary
domains, a large number of unlabeled samples exist under actual
working conditions. In our method, fuzzy features at a classifi-
cation boundary are detected by maximizing the classifier differ-
ences. Better feature mapping functions and domain-invariant
features are obtained by adversarial training. As the training
proceeds, the differences in the distribution of features among
the source, auxiliary, and unknown domains become smaller so
domain-invariant features can be used for fault diagnosis in
unknown operating environments. Comprehensive experiments
showed that ADGN can achieve higher fault diagnosis accuracies
than other methods when only one fully labeled domain is used in
an unknown operating environment. The ADGN can even cope
comfortably with complex transfer tasks with different speeds
and loads.

Index Terms— Adversarial learning, bearing, domain general-
ization (DG), fault diagnosis, transfer learning.

I. INTRODUCTION

W ITH the development of industrial level, intelligent
maintenance of industrial equipment such as engines,
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trains, and aircraft is becoming increasingly common [1].
Bearings, as an important component of industrial equipment,
often work under harsh conditions, and the health of bearings
is seriously threatened, resulting in industrial equipment not
working properly [2]–[4]. Therefore, ensuring the healthy
and stable operation of bearings is crucial for industrial
production [5].

Automatic detection and identification of machine faults
can be achieved using artificial intelligence methods with the
development of deep learning [6]. For example, convolutional
neural networks (CNNs) [7], deep belief networks (DBNs)
[8], recurrent neural networks [9], auto-encoders (AEs) [10],
and multilayer perceptron [11] have been introduced for fault
diagnosis. Wang et al. [12] used a multi-headed attention
mechanism to optimize the CNN model and used it success-
fully for fault diagnosis. Shao et al. [13] improved for AEs
and, on this basis, they proposed the method of ensemble
deep auto-encoders (EDAEs) with high diagnostic accuracy.
An et al. [14] introduced long short-term memory networks
to fault diagnosis and built a network model to minimize
the effect of rotational speed, thus improving the diagnostic
accuracy. Pan et al. [15] used dynamic learning rate to
adjust the training strategy of SAE, effectively improving
the diagnostic accuracy. Liu et al. [16] improved DBN by
proposing a multi-layer feature fusion method to improve the
model generalization capability. However, the above method
has significant limitations. For one, the model trained by
the above method only works for samples with the same
distribution as the training data. For another, a large number
of labeled samples are needed to train the model.

Bearings often work under different operating conditions,
that is, the distribution of training data and test data varies,
and the expected results cannot be achieved using the
above method. Cross-domain diagnostics are urgently needed.
Researchers introduce domain adaptation (DA) [17] to enable
cross-domain diagnosis. DA enhances the target domain train-
ing by mapping data features from different domains (e.g.,
two different datasets) to the same feature space. Currently,
distributed distance is widely used in DA, for example, max-
imum mean discrepancy (MMD) [18], correlation alignment
(CORAL) [19], joint MMD (JMMD) [20], and local MMD
(LMMD) [21]. Siahpour et al. [18] used MMD as a reg-
ularization term for cross-domain diagnosis. Qin et al. [19]
combined CORAL with domain adversarial loss to effectively
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solve the distribution mismatch between source and target
domain features. Liu et al. [20] used JMMD for joint distrib-
ution adaption, further improving the performance of cross-
domain diagnosis. Ramezani [21] narrowed the conditional
distribution differences using LMMD, aiming to narrow the
intra-class differences. Another group of researchers reduces
the domain differences from the perspective of adversarial
learning. Jiao et al. [22] conducted DA by adversarial learning
strategy and introduced a dynamic fitness factor to balance
edge distribution and conditional distribution.

However, the DA method still experiences drawbacks in
solving the cross-domain diagnosis problem. DA can only
achieve cross-domain diagnosis for a specific target domain
without good generalization. The diagnostic performance of
DA is greatly reduced in an unknown operating environment.
The reason is that DA models inevitably overfit when they
generalize knowledge from one specific domain to another.
In a real environment, the operating environment at the time of
failure is not unique, and diagnosis using DA requires training
a specific model for each operating environment. Therefore,
the research of fault diagnosis based on domain generalization
(DG) [23] is necessary. DG learns generic network models
with the help of sample features from multiple source domains.
Li et al. [24] obtained generic features by adversarial training
and achieved high diagnostic accuracy for the diagnosis of
unknown operating environments. Yang et al. [25] minimized
the domain differences by jointly monitoring the central loss
and softmax loss. Han et al. [26] considered intrinsic and
extrinsic generalization goals and proposed a hybrid diagnostic
network.

Although DG methods can diagnose faults for unknown
operating environments, the existing DG methods require
many fully labeled source domains for training. In practice,
the unlabeled samples are large, whereas the labeled ones
are few. After related experimental studies, for the existing
DG methods, the diagnostic accuracy of DG is unsatisfactory
when the number of fully labeled source domains involved in
training is small. For this reason, we put forward our method.

This study mainly investigates the generalization of only
one fully labeled source domain and proposes the adversarial
domain generalization network (ADGN). Several fully unla-
beled domains, which we call auxiliary domains, and one fully
labeled source domain are used by ADGN. The neural network
of ADGN consists of two modules: a feature generator (G)
and two fault classifiers (C). During training in the auxiliary
domain, the two fault classifiers attempt to make different
decisions from the other fault classifier while learning the
diagnostic knowledge. G wants to reconcile the contradiction
between the two fault classifiers. Through the adversarial game
of G and C, domain-invariant features are finally obtained.
In the above training process, the auxiliary domain only
needs to provide the sample information without labeling
information. The accuracy of the diagnosis is supported by
the source domain.

This work has resulted in the following contributions.

1) A new DG framework is proposed. It uses only one fully
labeled source domain and some fully unlabeled auxil-

Fig. 1. Schematic of general DG [23].

iary domains for fault diagnosis in unknown operational
environments.

2) A class boundary feature detection strategy is proposed
to enable the model to learn domain-invariant features.
Moreover, the strategy can make full use of the super-
vised capability of the fully labeled domain, to confer
the model with higher diagnostic accuracy.

3) The auxiliary domain is introduced to obtain the ideal
classification boundary by the adversarial training of the
classifier and feature generator.

The rest of this article is organized as follows. Section II
popularizes the basics of DG, and Section III details the idea
of ADGN and the training steps. Section IV presents the
experimental results and the analysis. Finally, Section V draws
the conclusions.

II. PRELIMINARIES

A. Domain Generalization

The purpose of DG is to generalize the model learned
in the source domain to any new domain. To learn models
with sufficient generalization capability, the training data are
usually required to come from domains with different data
distributions.

Fig. 1 shows the general form of DG, in which all the
domains in training are fully labeled domains and different
domains follow different feature distributions. In our work,
only one domain is fully labeled, and the rest of the domains
are unlabeled as auxiliary domains in training.

Each domain D contains a sample space X and a marginal
distribution P(X) in this space [27]. Each domain obeys
its own data distribution, and all contain M samples. The
DG problem has S domains with different but similar data
distributions, and it is denoted as Ds = {Dsi}S

i=1. DG requires
learning a model f from these S domains such that the
prediction error of f on the target domain is minimized. The
classification error formula for the target domain is shown as
follows:

min f
1

Nt

Nt∑
i=1

l( f (xi), yi) (1)



Fig. 2. Idea of the method. Note: In Step 1, features of the same type
are clustered near the classification boundary. In Step 2, the classification
difficulty is increased so that similar samples in the auxiliary domain are not
correctly classified. In Step 3, the samples of the training auxiliary domain
are adapted to the classification requirement.

where Nt represents the number of samples in the target
domain, and l(·, ·) denotes the specific loss function. xi and
yi are the i th sample and label, respectively.

B. Generative Adversarial Network (GAN)

Generative adversarial network (GAN) [28] consists of two
main parts: a generator and a discriminator. The generator
is responsible for generating fake samples. The discriminator
needs to determine whether the samples are real or generated
by the generator. The objective function of GAN is as follows:
minGmaxD V (D, G)

= Ex∼pdata

[
log D(x)

] + Ez∼pnoise

[
log(1 − D(G(z)))

]
(2)

where G is the generator, D is the discriminator, pdata is the
true data distribution, and the noise distribution is denoted by
pnoise. x is the true data, and z is the noise data.

Recently, researchers have introduced GAN into transfer
learning, and the ADGN method also borrows ideas from
GAN.

III. ADVERSARIAL DOMAIN GENERALIZATION NETWORK

MODEL

In this section, ADGN is described in detail. The core idea
of the method is introduced in Section III-A. The components
of the model are further described, along with how to train it,
in Section III-B.

A. Overall Idea

In ADGN, a fully labeled source domain DLS =
{(xLS, j , yLS, j )}M

j=1 and N fully unlabeled auxiliary domains
{DU Sn}N

n=1 = {{xU Sn, j}M
j=1}N

n=1 are accessed. DU Sn denotes the
nth unlabeled domain. xLS, j and yLS, j are the j th sample
and label in domain DLS, respectively. xU Sn, j denotes the
j th sample in domain DU Sn . M is the number of samples
contained in each domain.

This model has a feature extractor G and two independent
label classifiers C1 and C2. First, xLS, j and xU Sn, j are used
as the input of the feature generator G, and high-dimensional
features are output through the feature generator G. Subse-
quently, the output of the feature generator is used as the input
of classifiers C1 and C2. Finally, classification probabilities

{q1,n(y | xU Sn, j )}N
n=1 and {q2,n(y | xU Sn, j )}N

n=1 are obtained.
Obviously, the above steps do not obtain domain-invariant
feature. Referring to the idea of GANs, classifiers are used
as discriminators for training generators to generate domain-
invariant features. As shown in Fig. 2, in the feature mapping
space, we refer to the intersection of two classifiers as the
classification boundary of the model. For example, if a feature
is within the classification boundary of class A, then the fea-
ture is classified as class A by both the classifiers. The model
requires the same classification result for the two classifiers.
We refer to this requirement as the classification requirement.
In addition, we refer to the features that are made different
decisions by the two classifiers as fuzzy features. In step 1,
the source domain is trained and its classification boundaries
are obtained. Given that the source and auxiliary domains’
samples are similar, some of the auxiliary domain features
can satisfy the classification requirement. When increasing
the classification difference between the two classifiers for the
auxiliary domain, the classification boundary is converged to
the mapped feature space of the source domain. In other words,
only the source domain features can satisfy the classification
requirement, and most of the auxiliary domains’ features
cannot satisfy. Moreover, the number of fuzzy features also
increases. Therefore, if the decision differences among the
two classifiers for fuzzy features need to be reduced, then the
feature mapping function of the model should be optimized
so the fuzzy features are more similar to the source domain
features, which can always satisfy the classification require-
ments. During iterations, the decision differences between the
two classifiers for the auxiliary domain are smaller and the
domain-invariant features are obtained. dn(p1, p2) denotes the
decision divergence of the two classifiers on the nth auxiliary
domain DU Sn . p1 and p2 represent the predicted output of the
two classifiers, respectively.

For the model to gain generalization capabilities, the follow-
ing work is done. First, a large number of fuzzy features can
be obtained by increasing the number of auxiliary domains’
samples. Next, the discriminator is trained, which maximizes
the decision-making differences. If the decision-making differ-
ences in the two classifiers are not controlled artificially, the
two classifiers will be very similar and will be unable to detect
fuzzy features effectively. Finally, the generator is trained to
play against the discriminator, and the generator aims to reduce
the decision-making differences in the discriminator. Through
adversarial learning, a feature generator that minimizes intra-
class feature differences is obtained.

B. Training Steps

Step 1: Classifiers and generators are trained to correctly
classify samples of source domain DLS. This step is crucial
to gather sample features of the same class near the classifi-
cation boundary, which provides a prerequisite for detecting
fuzzy features in Step 2. In addition, trained classifiers and
generators must first work on source domain DLS to generalize
better to other domains. The objectives of the optimization are
as follows:

minG,C1,C2L(XLS, YLS) (3)



Fig. 3. Flowchart of ADGN. The arrows of a specific color represent the
input or output of a specific domain. di and d j denote the classifier differences
in the ith and j th auxiliary domains, respectively. L is the cross-entropy loss.

L(XLS, YLS)=− 1

M

M∑
i=1

K∑
k=1

I
[
yls

i = k
]

log
exp

(
xls

i,[k]

)
∑K

j=1 exp
(
xls

i,[k]

)
(4)

where I [] is an indicator function that returns a value indicat-
ing the probability that the case is true. xls

i represents the i th
sample of the source domains. yls

i represents the i th label of
the source domains. K is the number of classes owned. k is
the kth class

Step 2: As shown in Fig. 3, the two classifiers are initialized
differently to obtain different classifiers from the beginning.
The fuzzy features of the class boundaries are then detected to
a greater extent by further increasing the difference between
the two classifiers. In addition, more class boundary fuzzy
features are obtained when the involved domains are sufficient,
and the generalization is stronger. In particular, the feature
generator parameters θG are fixed in this step, and only the
classifier parameters θC1 and θC2 are updated. The purpose is
to train the generator and discriminator independently to avoid
the mutual influence of parameter updates. To prevent the two
classifiers from losing their classification power, we add the
source domain classification loss to the objective. The overall
objectives are as follows:

minC1,C2L(XLS, YLS) − Ladv(XU S1, . . . , XU SN ) (5)

Fig. 4. Test rig of SCU.

TABLE I

DOMAIN SETUP

Ladv(XU S1, . . . , XU SN ) = ExU Sn ∼XU Sn

[
N∑

n=1

dn(p1, p2)

]
. (6)

dn(·, ·) denotes the decision divergence of the two classifiers
on the nth auxiliary domain DU Sn

dn(p1, p2) = 1

K

K∑
k=1

|p1k(y | xusn) − p2k(y | xusn)|. (7)

p1k and p2k represent the probability that C1 and C2
will predict the features as class k, respectively. The specific
calculation formula is as follows:

p1k(y | xusn) = ezk∑K
k=1 ezk

. (8)

Here, zk denotes the output value of the kth node of the
neural network.

Step 3: As shown in Fig. 3, the classifier parameters θC1

and θC2 are fixed, and the feature generator parameters θG are
updated. A large number of class boundary fuzzy features are
detected by Step 2. In Step 3, a feature generator is trained,
which captures and amplifies the class features embedded in
the fuzzy features and forms a confrontation with the classifier
so that the classifier cannot easily detect the fuzzy features.
The objectives are as follows:

minGLadv(XU S1, . . . , XU SN ). (9)

Training for these three steps is cycled, and the DG model
with strong generalizability is finally obtained by the mutual
adversarial of classifiers and generators.

IV. EXPERIMENTAL ANALYSIS

A. Case 1: Soochow University (SCU) Dataset

1) Dataset Description: The data used in this case are
obtained from the testbed of Soochow University. As shown



TABLE II

DATASET SETUP

TABLE III

MODEL FRAMEWORK OF FEATURE GENERATORS

TABLE IV

PARAMETER SETTING OF CLASSIFIER

in Fig. 4, the test bench consists of couplings, bearings, and
dynamometers. Bearings with different health conditions are
replaced for data acquisition. The bearing type is 6205-2RS
SKF. The nut is adjusted to obtain data for different loads.
The load size is measured by SGSF-20K dynamometer. The
speed can be adjusted from 800 to 1200 r/min by motor speed
control. Faults are set on the outer race, inner race, and ball of
the train bearing using the wire cutting method. The groove
width is approximately 0.2 mm, and the depth is around 6 mm.
It is used to simulate the bearing outer race fault (OF), inner
race fault (IF), ball fault (BF), outer race ball fault (OBF),
inner race ball fault (IBF), inner race outer race fault (IOF),
and inner race outer race ball fault (IOBF).

The working environment settings for the dataset are pro-
vided in Table I. Each dataset contains seven types of fault
samples, 1400 in total (i.e., 200 samples for each fault). The
sample settings for one of the datasets are presented in Table II.

2) Comparison Method: In this section, ADGN is compared
with other DG models. To be fair, all the models use the
same feature generators and classifiers and domain settings.
The comparison method is set as follows.

M1: Combine data from all the domains in one place for
training to learn a model trained on all data.

M2: Analogous to DANN [29] in DA, domain-invariant
features are obtained using adversarial training of generators

TABLE V

PARAMETER SETTING OF DOMAIN DISCRIMINATOR

TABLE VI

EXPERIMENTAL RESULTS (SCU) (ONLY ONE FULLY LABELED DOMAIN

IS USED IN THE TRAINING PROCESS)

TABLE VII

EXPERIMENTAL RESULTS (SCU) (MULTIPLE FULLY LABELED DOMAINS

ARE USED IN THE TRAINING PROCESS)

and discriminators. As more domains are involved in the
training compared with DA, the domain-invariant features
obtained will be more generalizable.

M3: DG methods using MMD guidance.
M4: DG methods using CORAL guidance.
3) Network Settings: Tables III–V list the model framework

of the feature generator, the model parameters of the classifier,
and the model parameters of the domain discriminator required
for M2, respectively.

4) Analysis of Results: Upon completion of model training,
the best results of this model are compared with those of other
methods after convergence. The diagnostic results are summa-
rized in Table VI. Our proposed method is significantly better
than other methods and has higher robustness. It can maintain
reliable diagnostic accuracy for different generalization tasks.

We also perform a study for the comparison method. The
transfer tasks listed in Table VI can access only one source
domain with labels. We configure multiple source domains
with labels for M1, M2, M3, and M4 based on the original
settings. Table VII presents the diagnosis results.

According to the experimental results, we find interesting
phenomena. The generalization task is denoted by the symbol
ABC → E, and A in bold indicates that domain A is the source
domain, that is, both the sample and the label can be accessed.



TABLE VIII

DATASET SETUP (SDUST)

TABLE IX

DATASET SETUP (SDUST)

TABLE X

EXPERIMENTAL RESULTS (SDUST) (ONLY ONE FULLY LABELED

DOMAIN IS USED IN THE TRAINING PROCESS)

B and C, which are not in bold, are the two auxiliary domains,
that is, samples are accessible and labels are not. E is the
unknown domain, which is used to verify the generalization
performance of the model. In this case, 12 transfer tasks are
set up to demonstrate the superiority of the proposed model
by fully considering the tasks of different situations.

1) By detecting a large number of fuzzy features and
training them, ADGN achieves reliable diagnosis
under unknown operating environments. ADGN realizes

TABLE XI

EXPERIMENTAL RESULTS (SDUST) (MULTIPLE FULLY LABELED
DOMAINS ARE USED IN THE TRAINING PROCESS)

Fig. 5. Test rig of SDUST.

cross-domain diagnosis by eliminating fuzzy features.
An important aspect of the improvement achieved by
ADGN is that the present method considers the effect of
category boundaries rather than the traditional adaptation
of edge probability distributions.

2) ADGN obtains comparable or even higher diagnostic
accuracy using only one domain of sample labels for
supervision than using three domains of sample labels
for simultaneous supervision. ADGN achieves high
diagnostic accuracy, thanks to ADGN’s unique class
boundary feature detection module, which transforms
fuzzy features at classification boundaries into robust
features. The accuracies in Table VI are all trained using
sample labels from only one domain. The accuracies
in Table VII are all trained by accessing labels from
three domains. Looking at ADGN in Table VI and the
other methods in Table VII, ADGN has better diagnostic
accuracy and more robustness.

3) ADGN seeks generalized features from classification
boundaries and shows higher performance in different
transfer tasks. Using the data in Table VI analyzing M1,
M2, M3, and M4 independently, these models perform
poorly on many transfer tasks. None of these models is
well-robust, and they do not respond well to the changes
in objective conditions. On the contrary, ADGN presents
excellent diagnostic performance with full accuracy in
various transfer tasks, which is crucial for industrial
production.

4) In this experiment, the diagnostic performance of MMD
is slightly better than that of CORAL. This outcome can
be proven by comparing the experimental results of M3
and M4. Therefore, a better adaptation can be found by
changing different distance metrics.

5) The comparison method exhibits higher diagnostic accu-
racy and robustness when trained with sample labels
from multiple domains than when trained with sample



Fig. 6. Classification effect on SCU.

Fig. 7. Classification effect on SDUST.

Fig. 8. Visualization of training effects on SCU.

labels from only one domain. M2, M3, and M4 seek
generalization features from the perspective of marginal
distribution adaptation, so the robustness of M2, M3,

and M4 is poor when only one source domain is
involved in the training. Comparing similar methods in
Tables VI and VII, they show the same phenomenon,



that is, multiple source domains involved in the training
outperform the single source domain involved in the
training. A model trained on only one source domain
will have a classifier that is more inclined to the source
domain and is prone to errors in classifying features
from other domains. ADGN considers from the classi-
fication boundary and effectively collects the class edge
features to avoid overfitting of the classifier.

B. Case 2: Shandong University of Science and
Technology (SDUST) Dataset

1) Dataset Description: To further verify the effectiveness
and robustness of ADGN, experiments are carried out using
laboratory data from the Shandong University of Science and
Technology (SDUST). The experimental equipment is shown
in Fig. 5. The bench consists of a gearbox, a motor, three
couplings, two rotors, two bearing blocks, and a brake. The
bearing type is N205EU. The test bearing is set up with four
basic health conditions (normal, IF, BF, and OF) and three
failure sizes (0.2, 0.4, and 0.6 mm). Therefore, ten health states
are obtained, and they are listed in Table VIII.

As in Case 1, the five operating environments are set
according to the speed and load. The detailed settings are listed
in Table IX.

2) Analysis of Results: We continue to use the transfer task
and network from Case 1. The experimental results are given
in Tables X and XI, and after analysis, similar conclusions
as in Case 1 are obtained. In Case 2, the task is less difficult
because of the smaller span between loads. Thus, the accuracy
of each method is improved, relative to Case 1. Nevertheless,
ADGN still performs the best.

3) Visualization of Learned Representation: To understand
the classification effect of the model more intuitively, the
features extracted by the classifier are transformed into a 2-D
feature representation by T-SNE [30], and the classification
effect plots of Cases 1 and 2 are shown in Figs. 6 and 7,
respectively. The figures only show the classification effect
under unknown operating environment, and they demonstrate
that the classification effect of ADGN is significantly better
than that of other methods. Focusing on the T-SNE plots of
M1, M2, M3, and M4, these methods have different degrees
of crossover in the classification boundaries, producing many
misclassifications. On the contrary, the classification boundary
of ADGN is obvious, and the clustering effect is better.

Fig. 8 shows the dynamic process of the model’s clustering
effect gradually becoming better, from left to right, showing
the classification effect of the model at the early stage of
training, at the middle stage of training, and after the training is
completed. In particular, the classification ability of the model
at the early stage of training is obviously insufficient, and no
obvious classification boundary is formed. In the middle of
the training period, the model has the classification ability for
individual categories, and it can achieve reliable classification
for a few categories. However, some categories of samples can-
not be classified correctly. After repeated training, the model
finally has good classification effect with clear classification
boundary and reliable classification.

V. CONCLUSION

This study focuses on bearing fault detection in unknown
operating environments and achieves better results using only
one source domain with labels for DG studies. The per-
formance of models trained by the general method using
only one labeled source domain is significantly worse. The
relationship between classification boundaries and domain-
invariant features is explored. The fuzzy features detected by
the classifier are trained to be robust features with distinct class
features through adversarial games between the generator and
the classifier. Finally, a fault diagnosis framework for unknown
operating environments is successfully developed. ADGN is
proven to be a very effective diagnostic tool for fault diagnosis.
Achieving such superior results using only one source domain
is rare. Through the validation of the two datasets, ADGN can
also cope well with complex working conditions with different
speeds and complexities. In addition, ADGN provides new
ideas for future work to explore domain-invariant features from
the classification boundary.
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