Synthesis of Palladium complexes derived from Amido linked

N-Heterocyclic Carbenes and their use in Suzuki cross coupling

reactions

Rohit Singh Chauhan ${ }^{*}$, Suryakant Nagar ${ }^{\text {a }}$, Sucheta Chatterjee ${ }^{\text {b }}$, Dibakar Goswami*b, c , David B. Cordes ${ }^{\text {d }}$, Alexandra M. Z. Slawin ${ }^{\text {d }}$, Trupti Tawde ${ }^{\text {a }}$.
${ }^{\text {a }}$ Department of Chemistry, K. J. Somaiya College of Science \& Commerce, Mumbai-400077.
Tel: +91-22-21020615; Fax No: +91-22-21020367;
Email: rohit.chauhan@somaiya.edu
${ }^{\text {b }}$ Bio-Organic Division, Bhabha Atomic Research Centre, Anushakti Nagar, Mumbai-4000094 and ${ }^{\mathrm{c}}$ HomiBhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai -400094, India.Email: dibakarg@barc.gov.in
${ }^{d}$ East CHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST.

Abstract:

Treatment of 1-(n-butyl)-3-N-(2-Ar)acetamido-1, 3-imidazolium chloride $(\mathrm{Ar}=$ furylmethyl,phenylmethyl) with excess $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\left[\mathrm{PdCl}_{2}(\mathrm{~L}-\mathrm{L})\right]$ (L-L $=2 \mathrm{PPh}_{3}$, dppf) afforded orange compounds of composition [(1-(n-butyl)-3-N-(2-Ar)acetamido-1,3-imidazol-2ylidene) $]_{2} \mathrm{Pd}(\mathrm{Ar}=$ furylmethyl; phenylmethyl). These complexes were characterized by NMR (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR), IR and micro-analysis data. Subsequently, the catalytic efficiency of these complexes for cross coupling reactions between 4-haloarenens (halo $=\mathrm{Br}, \mathrm{I}$) and phenylboronic acid was studied under different solvents (acetonitrile, THF and DMF), temperatures with different catalyst loadings. The molecular structure of [(1-(n-butyl)-3-N-(2-furylmethyl)acetamido-1, 3-imidazol-2-ylidene) $]_{2} \mathrm{Pd}$ was established by single crystal X-ray
diffraction analysis.
Key words: N -heterocyclic carbene, $\left[\mathrm{PdCl}_{2}(\mathrm{P}-\mathrm{P})\right]$, NMR, Suzuki Cross coupling.

1. Introduction:

Internally functionalized amido linked N -heterocyclic carbenes (NHC) is an active area of research ${ }^{[1-4]}$ The strong σ donor property of these carbenes ${ }^{[5]}$ results in air stable compounds with strong metal carbon bonds. ${ }^{[6-9]}$ NHC complexes of group 10 metals are highly efficient catalysts for C-C coupling reactions such as Suzuki-Miyaura, ${ }^{[2, ~ 8, ~ 10, ~ 11] ~}$ Sonogashira ${ }^{[12,13]}$ and the Hiyama couplings. ${ }^{[14]}$

The transmetalation reaction of \{[1-R-3-\{N-(benzylacetamido)imidazol-2ylidene $\left.]_{2} \mathrm{Ag}\right\} \mathrm{Cl}\left(\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ with $\left[\mathrm{PdCl}_{2}(\mathrm{COD})\right]$ resulted in a complex $\{[1-\mathrm{R}-3-\{\mathrm{N}-$ (benzylacetamido)imidazol-2-ylidene $]_{2} \mathrm{PdCl}_{2} \quad\left(\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}, \mathrm{CH}_{2} \mathrm{Ph}\right) .{ }^{[15]}$ Several complexes of composition [1-(i-propyl)-3-(R)imidazol-2-ylidene $] \mathrm{PdCl}_{2}$ ($\mathrm{R}=2,6$-di-i-propyl-phenylimino-2phenylethyl, benzyl), trans-[\{1-benzyl-3-(3,3-dimethyl-2-oxobutyl)imidazol-2-ylidene ${ }_{2} \mathrm{PdBr}_{2}$] and cis-[\{1-benzyl-3-(N-tert-butylacetamido)imidazol-2-ylidene $\}_{2} \mathrm{PdCl}_{2}$], [1-(o-methoxybenzyl)-3-tert-butylimidazol-2-ylidene] ${ }_{2} \mathrm{PdCl}_{2}$ were also obtained by the above method. ${ }^{[11]}$ However, the reaction of $1-(\mathrm{R})-3-(\mathrm{N}-2,6$-di-i-propylphenylacetamido)imidazolium chloride $(\mathrm{R}=1-(2,4,6-$ trimethylphenyl, isopropyl) in pyridine with PdCl_{2} and excess $\mathrm{K}_{2} \mathrm{CO}_{3}$ afforded trans-[1-(R)-3($\mathrm{N}-2,6$-di-i-propylphenylacetamidol)imidazol-2-ylidene] PdCl_{2} (pyridine) $\quad(\mathrm{R}=\quad 1-(2,4,6-$ trimethylphenyl, isopropyl). ${ }^{[13]}$ Meanwhile Hermann et.al. reported that $\left[\left\{(\mathrm{NHC}) \operatorname{PdI}_{2}\right\}_{2}\right]$ on treatment with one equivalent of phosphine under ambient condition gives trans $\left.\left[(\mathrm{NHC})\left(\mathrm{PPh}_{3}\right) \mathrm{PdI}_{2}\right)\right]$. NMR experiments revealed decomposition of $\left.\left[(\mathrm{NHC})\left(\mathrm{PPh}_{3}\right) \mathrm{PdI}_{2}\right)\right]$ to $\left.\left[(\mathrm{NHC})_{2} \mathrm{PdI}_{2}\right)\right]$ and trans $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}_{2}\right]$ over the course of several days (Scheme 1). ${ }^{[16]}$ In contrast
to this result, the reaction of $\left[\mathrm{NiX}_{2}\left(\mathrm{PPR}_{3}\right)_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ with NHCs showed the substitution of the sterically demanding phosphine ligands by carbene ligands. ${ }^{[17,18]}$

Scheme 1: Reaction of $\left[\mathrm{M}(\mathrm{OAc})_{2}\right](\mathrm{M}=\mathrm{Ni}, \mathrm{Pd})$ with dialkylimmidazolium salt with in presence of PPh_{3} and their equilibrium existence (Adapted from reference 16-18)

We have recently reported the synthesis of 1-(n-butyl)-3-N-(2-Ar)acetamido-1, 3imidazolium chloride ($\mathrm{Ar}=$ furylmethyl,phenylmethyl) and their reactivity towards $\left[\mathrm{NiCl}_{2}(\mathrm{P}-\mathrm{P})\right]$ (L-L = $\left.2 \mathrm{PPh}_{3}, \mathrm{dppf}\right) .{ }^{[5]}$ The interesting outcomes of our previous study prompted us to further
explore the chemistry of these imidazolium salts towards palladium metal precursors and study their promising catalytic activities for Suzuki coupling reactions.

2. Result and Discussions:

Refluxing an acetonitrile suspension (25 mL) of [1-(n-butyl)-3-N-(Ar)acetamido-1,3imidazolium chloride ($\mathrm{Ar}=$ furyl methyl, phenyl methyl) with excess $\mathrm{K}_{2} \mathrm{CO}_{3}$ and one mole $\left[\mathrm{PdCl}_{2}(\mathrm{~L}-\mathrm{L})\right]\left(\mathrm{L}-\mathrm{L}=2 \mathrm{PPh}_{3}\right.$, dppf) afforded a complex of composition [(1-(n-butyl)-3-N-(2-Ar)acetamido-1,3-imidazol-2-ylidene $)]_{2} \operatorname{Pd}(\mathrm{Ar}=$ furylmethyl(1a), phenylmethyl (1b)) (Scheme 2). This result is different from the outcomes of transmetallation reaction between silver analogue $\quad\left[1-\mathrm{R}-3-\{\mathrm{N} \text {-(benzylacetamido)imidazol-2-ylidene }]_{2} \mathrm{AgCl}\left(\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}, \mathrm{CH}_{2} \mathrm{Ph}\right)\right.$ and $\left[\mathrm{PdCl}_{2}(\mathrm{COD})\right]$ which resulted in the complex $\{[1-\mathrm{R}-3-\{\mathrm{N}$-(benzylacetamido)imidazol-2ylidene $]_{2} \mathrm{PdCl}_{2}\left(\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}, \mathrm{CH}_{2} \mathrm{Ph}\right){ }^{[15]}$ where the bond exists only between the metal and carbene carbon. These mentioned outcomes advocate strongly in favor of formation of the internally functionalized chelated ring where carbon and nitrogen are the donor atoms (complex 1). This in turn facilitates the substitution of auxiliary phosphine ligands under basic conditions due to robust trans effect as well as harsh reaction conditions. Subsequently, theoretical studies about the electronic nature of amido-linked carbene reveals that σ donor nature of this carbene is ten time higher than its π acceptor properties. ${ }^{[14,19]}$ The rich charge density is further enhanced with prompt chelation of NHC ligand through carbon as well as nitrogen atoms to the metal center. ${ }^{[5,}$ 19]
${ }^{1} \mathrm{H}$ NMRs of complexes $\mathbf{1 a} / \mathbf{1 b}$ displayed resonances at $7.25 / 7.15$ and $6.94 / 6.90 \mathrm{ppm}$ of $4^{\text {th }}$ and $5^{\text {th }}$ position of imidazole ring respectively, supporting the complexation of palladium metal to carbene centre. Furthermore, the disappearance of the proton signal for $2^{\text {nd }}$ position of imidazole ring as well as the amide proton also confirmed the coordination to the metal. The
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR displayed all the expected signals in the region ~ 13 to 169 ppm including the deshielded resonance at 169 ppm which is regarded as the signature peak of a $\mathrm{Pd}-\mathrm{C}_{\text {carbene }}$ bond. ${ }^{[5,9}$, ${ }^{15]}$ The IR spectra of complexes 1a and 1b displayed all possible vibrations ranging from 2966 to $536 \mathrm{~cm}^{-1}$. The stretching frequency at $1588 \mathrm{~cm}^{-1}$ indicated the presence of carbonyl group. The somewhat lower frequency value can be attributed to the weak electron density around CO group as a result of the complexation. ${ }^{[19]}$ Secondly, two prominent vibrations were observed at \sim 538 and $693 \mathrm{~cm}^{-1}$ which support the existence of $\mathrm{Pd}-\mathrm{C}_{\text {carbene }}$ and $\mathrm{Pd}-\mathrm{N}$ bonds respectively. ${ }^{[5,20-22]}$

Scheme 2: Reaction of [1-(n-butyl)-3-N-(2-Ar)acetamido-1,3-imidazol chloride (Ar = Furyl methyl, phenyl methyl) with $\left[\mathrm{PdCl}_{2}(\mathrm{~L}-\mathrm{L})\right]\left(\mathrm{L}-\mathrm{L}=2 \mathrm{PPh}_{3}, \mathrm{dppf}\right)$

We have also reported similar reactivity pattern of imidazolium salt with $\left[\mathrm{NiCl}_{2}(\mathrm{~L}-\mathrm{L})\right]$ (L $=\mathrm{PPh}_{3}$, dppf), where substitution of phosphine occurs through NHC. ${ }^{[5]} \mathrm{We}$, however have not been able to confirm the phosphine-displacement step. However, the symmetrical NHC complex $\left[\operatorname{Pd}(\mathrm{NHC})_{2} \mathrm{I}_{2}\right]$ on stirring with one equivalent phosphine resulted in a compound $\left[\mathrm{Pd}(\mathrm{NHC})\left(\mathrm{PPh}_{3}\right) \mathrm{I}_{2}\right]$ which on keeping in dichloromethane solution over several days gave $\left[\mathrm{Pd}(\mathrm{NHC})_{2}\right]$ and a side product of $\left[\mathrm{PdI}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] .{ }^{[16]}$ The recent reports ${ }^{[23]}$ about the values of ${ }^{77} \mathrm{Se}$
chemical shift and coupling constants of ${ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{H})$ i.e. $\mathrm{N}-\mathrm{CH}-\mathrm{N}$ are fairly obliging to decide the donor property of carbene. The reported values of amido-linked carbene ${ }^{[5]}$ (de-shielded ${ }^{77} \mathrm{Se}$ chemical shift and higher coupling constant) corresponds to their comparable σ donor nature with respect to the well-studied N , N -alkylimidazol-2-ylidenes e.g. IPr , IMes, $\mathrm{ICy}, \mathrm{I}^{\mathrm{t} B u}{ }^{[23]}$ However, comparisons with wider range of available carbenes confirm its weak $\boldsymbol{\sigma}$ donor nature. It appears that in $\left[(1-(\mathrm{n} \text {-butyl) }-3-\mathrm{N}-(2-\mathrm{Ar}) \text { acetamido-1,3-imidazol-2-ylidene })]_{2} \mathrm{Pd}\right.$ (1) the substantial σ donor nature of the amido-linked carbine enabled the substitution of the phosphine ligand. In another example, the higher platinoids based carbene also demonstrated similar nature of reactivity, where ruthenium carbene complexes show the loss of phosphine under ambient conditions. ${ }^{[24]}$

Figure 1. ORTEP drawing of [1-(n-butyl)-3-N-(2-furylmethyl)acetamido-1,3-imidazol-2ylidene) $]_{2} \mathrm{Pd}$ with atomic number scheme. The ellipsoids were drawn at the 50% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: Pd1-C11.9748 (17), Pd1-C1 ${ }^{\mathrm{i} 1.9749(17), P d 1-N 82.0676(14), ~ P d 1-N 82.0676(14) ; ~ C 1-P d 1-C 1 i 99.12(9), ~ C(1)-~}$ $\operatorname{Pd}(1)-\mathrm{N}(8) 84.86(6), \quad \mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(8) 175.73(6), \quad \mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(8) 175.73(6), \quad \mathrm{C}(1)-\operatorname{Pd}(1)-$ $\mathrm{N}(8) 84.86(6), \mathrm{N}(8)-\mathrm{Pd}(1)-\mathrm{N}(8) 91.21(8)$.

The molecular structure of [(1-(n-butyl)-3-N-(2-furylmethyl)acetamido-1,3-imidazol-2ylidene) $]_{2} \mathrm{Pd}$ (1a) (Figure 1) consists of distorted square planar palladium center with cis ligands. The Pd-C carbene and Pd-N bond lengths (1.9748(17)/1.9749(17) $\AA, 2.0676(14) \AA$) of complex 1a are in good agreement with other palladium NHC complexes. ${ }^{[25-27]}$ The $\mathrm{C}(1)-\operatorname{Pd}(1)-\mathrm{C}^{\mathrm{i}}(1)$ bond angle is larger than the $\mathrm{N}(8)-\mathrm{Pd}(1)-\mathrm{N}^{\mathrm{i}}(8)$ bond angle which may be due to steric repulsion of the butyl group.

Catalytic activity

Initially, we carried out the reaction of 4-bromotoluene (2b) with phenylboronic acid using $10 \mathrm{~mol} \%$ of the catalyst $\mathbf{1 a} / \mathbf{1 b}$ in presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equivalents) in different solvents like THF, N,N-dimethylacetamide, dioxane and isopropanol at $100^{\circ} \mathrm{C}$ (Scheme 3, Table 1). In THF and isopropanol, the reactions were sluggish and afforded only $10-15 \%$ yields in 18 h . In N,N-dimethylacetamide, the yield was higher. In general, it is established fact that mostly palladium compounds form nanoparticles that catalyze these common substrates for coupling reactions whereas $\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]$ in water and polyethylene glycol mixture also act as proven catalyst for Suzuki reaction of aryl bromides under the mild conditions with quantitative yield of $\sim 95 \%$. ${ }^{[28]}$ In our findings, the best result was obtained with dioxane where the product $\mathbf{3 b}$ was
obtained in $75-79 \%$ yields. These results indicated that dioxane was the most suitable solvent amongst those chosen.

Scheme 3

Table 1. Solvent screening in Suzuki coupling of 2b with phenylboronicacid. ${ }^{\text {a }}$

Substrate $^{\mathrm{a}}$	Product	Catalyst	Solvent	Yield $^{\mathbf{b}} \mathbf{(\%)}$
$\mathbf{2 b}$	$\mathbf{3 b}$	$\mathbf{1 a}$	THF	8%
2b	$\mathbf{1 b}$	THF	9%	
	3b	$\mathbf{1 a}$	Isopropanol	8%
2b	1b	Isopropanol	15%	
	3b	$\mathbf{1 a}$	N,N-dimethylacetamide	42%
2b	1b	N,N-dimethylacetamide	39%	
		$\mathbf{1 a}$	Dioxane	76%

${ }^{\text {a }}$ Reaction conditions: 1 mmol aryl bromide, 2.5 mmolphenylboronic acid, $3 \mathrm{mmol} \mathrm{K}_{2} \mathrm{CO}_{3}$ in 5 mL solvent was heated at $100^{\circ} \mathrm{C}$ with $10 \mathrm{~mol} \%$ catalyst for 18 h . ${ }^{\mathrm{b}}$ Isolated yield.

Next, we attempted the reaction in dioxane solvent using different bases. It was observed that the coupling in presence of 3 equivalents of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in dioxane solvent at $100{ }^{\circ} \mathrm{C}$ proceeded to give the best results where the product $\mathbf{3 b}$ was obtained in $74-76 \%$ isolated yield, which was higher than when other bases were used (Scheme 3, Table 2). In all these reactions, $10 \mathrm{~mol} \%$ of catalyst ($\mathbf{1 a} / \mathbf{1 b}$) was used.

Table 2. Screening of bases in Suzuki coupling of 2b with phenylboronicacid. ${ }^{\text {a }}$

Substrate ${ }^{\text {a }}$	Product	Catalyst	Base	Yield ${ }^{\text {b }}$ (\%)
2b		1a	$\mathrm{Et}_{3} \mathrm{~N}$	1\%
	3b			
		1b	$\mathrm{Et}_{3} \mathrm{~N}$	1\%
2b		1a	KOAc	25\%
	3b			
		1b	KOAc	28\%
2b		1a	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	69\%
	3b			
		1b	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	61\%
2b		1a	$\mathrm{K}_{2} \mathrm{CO}_{3}$	74\%
	3b			
		1b	$\mathrm{K}_{2} \mathrm{CO}_{3}$	76\%

${ }^{\text {a }}$ Reaction conditions: 1 mmol aryl bromide, 2.5 mmolphenylboronic acid, 3 mmolbase in 5 mL dioxanewas heated at $100{ }^{\circ} \mathrm{C}$ with $10 \mathrm{~mol} \%$ catalyst for 18 h . ${ }^{\mathrm{b}}$ Isolated yield.

Further, to investigate the dependence of reaction yields on temperature of the reaction, the reactions were carried out at different temperatures (Scheme 3, Table 3). The reaction in dioxane using $\mathrm{K}_{2} \mathrm{CO}_{3}$ was not feasible at room temperature. Increasing the temperature gradually increased the yield. The optimum temperature for the reaction was $80^{\circ} \mathrm{C}$, beyond which the reaction did not show any beneficial effect. Hence the substrates were subjected to Suzuki cross coupling reaction at $80^{\circ} \mathrm{C}$.

2b

2b

2b
3b

Table 3. Screening of temperature in Suzuki coupling of 2b with phenylboronicacid. ${ }^{\text {a }}$

Substrate $^{\mathrm{a}}$	Product	Catalyst	Temperature	Yield ${ }^{\mathrm{b}}(\%)$
$\mathbf{2 b}$	$\mathbf{3 b}$	$\mathbf{1 a}$	$25^{\circ} \mathrm{C}$	NR^{c}
		$\mathbf{1 b}$	$25^{\circ} \mathrm{C}$	NR^{c}
2b	3b	$\mathbf{1 a}$	$50^{\circ} \mathrm{C}$	21%
		$\mathbf{1 b}$	$50^{\circ} \mathrm{C}$	19%
2b	3b	$\mathbf{1 a}$	$80^{\circ} \mathrm{C}$	73%
		$\mathbf{1 b}$	$80^{\circ} \mathrm{C}$	77%
2b	$\mathbf{3 b}$	$\mathbf{1 a}$	$110^{\circ} \mathrm{C}$	72%

${ }^{\text {a }}$ Reaction conditions: 1 mmol aryl bromide, 2.5 mmol phenylboronic acid, $3 \mathrm{mmol}_{2} \mathrm{CO}_{3}$ in 5 mL dioxane heated as specified with $10 \mathrm{~mol} \%$ catalyst for $18 \mathrm{~h} .{ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}} \mathrm{NR}=\mathrm{No}$ reaction

After the initial standardization of the solvent, base and temperature, Suzuki cross coupling reaction of $\mathbf{2 b}$ was carried out in dioxane using $\mathrm{K}_{2} \mathrm{CO}_{3}$ as a base with different catalyst loadings. The reactions with $10 \mathrm{~mol} \%$ of catalyst $(\mathbf{1 a} / \mathbf{1 b})$ were facile, and gave products in moderate yield. Lowering the catalyst concentration to $5 \mathrm{~mol} \%$ and further to $2 \mathrm{~mol} \%$ did not alter the reaction outcome (Table 4). However, when $1 \mathrm{~mol} \%$ catalyst was used, the yields dropped to $41-46 \%$. Further decrease in catalyst loading decreased the yields (data not shown). Hence $2 \mathrm{~mol} \%$ was considered as the optimum amount of catalyst required for this reaction.

Table 4. Screening of catalyst loading in Suzuki coupling of 2b with phenylboronicacid. ${ }^{\text {a }}$

Substrate $^{\mathrm{a}}$	Product	Catalyst	Catalyst loading	Yield $^{\mathrm{b}}(\%)$
2b	3b	$\mathbf{1 a}$	$10 \mathrm{~mol} \%$	73%
2b	1b	$10 \mathrm{~mol} \%$	76%	
	3b	$\mathbf{1 a}$	$5 \mathrm{~mol} \%$	72%
2b	1b	$5 \mathrm{~mol} \%$	74%	
	3b	$\mathbf{1 a}$	$2 \mathrm{~mol} \%$	73%
2b	1b	$2 \mathrm{~mol} \%$	77%	
	3b	$\mathbf{1 a}$	$1 \mathrm{~mol} \%$	41%
		$\mathbf{1 b}$	$1 \mathrm{~mol} \%$	46%

${ }^{\text {a }}$ Reaction conditions: 1 mmol aryl bromide, 2.5 mmolphenylboronic acid, $3 \mathrm{mmol}_{2} \mathrm{CO}_{3}$ in 5 mL dioxane heated at $80^{\circ} \mathrm{C}$ with catalyst for $18 \mathrm{~h} .{ }^{\mathrm{b}}$ Isolated yield.

Further the catalytic activities of the complexes 1a and 1b in a Suzuki cross coupling reactions were evaluated using the standardized conditions (Scheme 4, Table 5). It was gratifying to note that the reactions gave satisfactory yields $(71 \%-85 \%)$ of the desired products. Quite interestingly, these catalysts performed reasonably well in case of an aryl bromide substrate with an electron donating group -OMe (3b) with $75-79 \%$ yield of the desired product, which was otherwise not obtained with similar catalysts. ${ }^{[15]}$ It is worth mentioning that the marginal differences in yields of similar reactions during screening of different conditions were due to the fact that all the calculated yields are isolated yields, and are amenable to human errors. The discussed catalytic activities of complex $\mathbf{1}$ is considerably fair as compared to similar $\mathrm{Pd}(\mathrm{II})$ catalysts derived from tridentate internally functionalized NHC ligands whereas it is in the range
of good agreement with monodentate NHC complex of composition [\{1(R)-3N-(2-phenyl)acetamido-1, 3-imidazol-2-ylidene $\}\{$ pyridine $\}] \mathrm{PdCl}_{2}$ ($\mathrm{R}=$ phenyl, naphthyl). ${ }^{1 \mathrm{cc}}$ However, the catalytic efficiency of complex $\mathbf{1 a}$ and $\mathbf{1 b}$ are inferior to neutral NHC ligands i.e. phosphine based NHC ligands ${ }^{[29]}$ etc. This poor catalytic efficiency of these complex can easily be encountered due to unavailable vacant site and stable chelated ring formation in complex $\mathbf{1}$.

Scheme 4.

Table 5. Suzuki coupling of aryl bromides with phenylboronicacid. ${ }^{\text {a }}$

Substrate $^{\mathrm{a}}$	X	R	Product	Catalyst	Yield $^{\mathbf{b}}$ (\%)
$\mathbf{2 a}$	I	H	$\mathbf{3 a}$	$\mathbf{1 a}$	82
2b	I		$\mathbf{1 b}$	85	
	Br	H	$\mathbf{3 a}$	$\mathbf{1 a}$	73
2c	Br			$\mathbf{1 b}$	71
	Br		$\mathbf{1 a}$	79	
2d	Br	$-\mathrm{OCH}_{3}$	$\mathbf{3 b}$	$\mathbf{1 b}$	75
	Br			$\mathbf{1 a}$	81
	Br	$-\mathrm{CH}_{3}$	$\mathbf{3 c}$	$\mathbf{1 b}$	82

${ }^{\text {a }}$ Reaction conditions: 1 mmol aryl bromide, 2.5 mmol phenylboronic acid, $3 \mathrm{mmol} \mathrm{K}_{2} \mathrm{CO}_{3}$ in 5 mL dioxane heated at $80^{\circ} \mathrm{C}$ with $2 \mathrm{~mol} \%$ catalyst. ${ }^{\text {b }}$ Isolated yield.

Based on the results, the possible mechanism of the Suzuki coupling reaction of aryl halide and phenylboronic acid using the catalysts can be summarized using the catalytic cycle (scheme 5). The reaction proceeds via the oxidative addition of substrate, transmetalation, and reductive elimination to finally produce the product.

Scheme 5:

3. Conclusion:

In summary, we have prepared a complex [1-(n-butyl)-3-N-(Ar)acetamido-1,3-imidazol-2-ylidene $)]_{2} \mathrm{Pd}(\mathrm{Ar}=$ furylmethyl, phenylmethyl $)$, by the substitution of phosphine ligand with an N heterocyclic carbene. The substantially strong σ donor nature of these amido linked carbene over π acceptor property accounts for the complexation of palladium metal center through carbon and nitrogen atom. The resulted complexes displayed promising catalytic activity for cross coupling reactions of haloarenes with phenyl boronic acid.

4. Experimental:

All manipulations were carried out under a nitrogen atmosphere using standard Schlenk flasks. Solvents used in the reactions were distilled using standard procedures. The precursor compound N -benzyl, N -furyl 2-chloroacetamide, ${ }^{[19]}$ 1-(n-butyl)-3-N-(2-Ar)acetamido-1, 3imidazolium chloride $(\mathrm{Ar}=\text { furylmethyl, phenylmethyl })^{[5,30]}$ and $\left[\mathrm{PdCl}_{2}(\mathrm{P}-\mathrm{P})\right]\left(\mathrm{P}-\mathrm{P}=\mathrm{PPh}_{3}\right.$, dppf), ${ }^{[31]}$ were prepared according to literature methods. Triphenyl phosphine and 1, 1'Bis(diphenylphosphino)ferrocene were procured from Sigma-Aldrich. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded either on a Varian spectrometer operating at 500 and 125 MHz respectively. Elemental analyses were carried out on a Thermo Fischer Flash EA1112 CHNS analyzer.

Synthesis of complexes:

4.1. [(1-(n-butyl)-3-N-(2-furylmethyl)acetamido-1,3-imidazol-2-ylidene) $]_{2} P d$ (1a)

(i) $\quad\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](301 \mathrm{mg}, 0.5 \mathrm{mmol})$ was added to an acetonitrile suspension $(25 \mathrm{~mL})$ of 1(n-butyl)-3-N-(2-furylmethyl)acetamido-1, 3-imidazolium chloride ($130 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.3 \mathrm{gm}, 10 \mathrm{mmol})$. The resulting mixture was refluxed at $100^{\circ} \mathrm{C}$ for 12 hours under an inert atmosphere. After filtration, the solvent was removed from the filtrate under reduced
pressure, the residue extracted with dichloromethane (5 mL) and kept for crystallization at $-4^{\circ} \mathrm{C}$ to afford yellow crystals of 1a (yield: $140 \mathrm{mg}, 41 \%$; m.p.: $168^{\circ} \mathrm{C}$). Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Pd}$: C, 53.63; H, 5.78; N, 13.40\%; Found: C, 53.66; H, 5.78; N, 13.41. ${ }^{1}\{\mathrm{H}\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): 7.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NC}(4) H \mathrm{C}), 6.94(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NC}(5) H \mathrm{C}), 6.65(\mathrm{~d}, J=2 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right), 6.27\left(\mathrm{dd}, J=4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right), 6.05\left(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{4} H_{3} \mathrm{O}\right), 5.22(\mathrm{~d}, J=14 \mathrm{~Hz}$, $\left.\left.2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2}\right), 4.84\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} H_{2}\right), 4.35(\mathrm{~d}, J=14 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH})_{2}\right), 3.57(\mathrm{~d}, J=14 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), 3.24-3.09 (m, 4H, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$). 2.80-2.66 (m, $4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.16-1.09 (m, 4H, $\left.-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.84\left(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 14.9,24.9$, $25.6,38.5,45.2,53.0,64.9,68.6,68.7,69.2,69.3,101.4,105.3,114.9,117.2,120.8,123.5$, 123.6, 123.7, 123.8, 126.5, 126.9, 127.3, 128.6, 129.4, 135.9, 151.7, 161.0, 164.1. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-}\right.$ ${ }^{1}$): 540 (s), 693 (s), 720 (s), 754 (w), 1116 (s), 1185 (s), 1439 (s), 1588 (b), 1678 (w), 2872 (w), 2935 (w), 2966 (w).
(ii) An acetonitrile solution $(15 \mathrm{~mL})$ of $\left[\mathrm{PdCl}_{2}(\mathrm{dppf})\right](366 \mathrm{mg}, 0.5 \mathrm{mmol})$ was added to a mixture of 1-(n-butyl)-3-N-(2-furylmethyl)acetamido-1, 3-imidazolium chloride (130mg, 0.5 $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.3 \mathrm{gm}, 10 \mathrm{mmol})$ in the same solvent. The resulting solution was refluxed at $100^{\circ} \mathrm{C}$ for 14 hours and passed through a G-3 sintered crucible to remove the unreacted material. The collected filtrate was dried under reduced pressure and washed with ether $(15 \mathrm{~mL})$ to remove phosphine. Yellow crystals of 1a (yield: $120 \mathrm{mg}, 35 \%$) were obtained on crystallizing from dichloromethane-hexane solvent (5 mL) mixture. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Pd}$: C, 53.63; H , 5.78; N, 13.40%; Found: C, $53.61 ; \mathrm{H}, 5.71 ; \mathrm{N}, 13.23 \% .{ }^{1}\{\mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{HNMR}$ signals are consistent with the above-mentioned values.

4.2. [(1-(n-butyl)-3-N-(2-phenylmethyl)acetamido-1,3-imidazol-2-ylidene)]2Pd (1b)

(i) Treatment of an acetonitrile suspension $(25 \mathrm{~mL})$ of 1 -(n-butyl)-3-N-(phenylmethyl) acetamido-1, 3-imidazolium chloride ($130 \mathrm{mg}, 0.5 \mathrm{mmol}$) with $\mathrm{K}_{2} \mathrm{CO}_{3}(1.3 \mathrm{gm}, 10$ $\mathrm{mmol})$, followed by the addition of $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](301 \mathrm{mg}, 0.5 \mathrm{mmol})$, and heating at $100^{\circ} \mathrm{C}$ for 14 hours resulted in an orange solution. On passing through a celite column, a yellow solution was obtained which was dried under reduced pressure to afford an orange powder of $\mathbf{1 b}$ (yield: $115 \mathrm{mg}, 25 \%$, m.p.: $175^{\circ} \mathrm{C}$). Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Pd}: \mathrm{C}, 59.39 ; \mathrm{H}, 6.23 ; \mathrm{N}, 12.99 \%$; Found: C, $59.43 ; \mathrm{H}, 5.99 ; \mathrm{N}, 12.90 \% .{ }^{1}\{\mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: 7.7-7.4 $(\mathrm{m}, 10 \mathrm{H}$, $\left.\mathrm{C}_{6} H_{5}\right), 7.15\left(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NC}_{4} H \mathrm{C}\right), 6.90\left(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NC}_{5} H \mathrm{C}\right), 5.22(\mathrm{~d}, J=14 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 4.99\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.94\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} H_{2}\right), 3.22\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H_{2}\right)$, 1.75 (br, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.41-1.34 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.00(\mathrm{t}, J=7 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.74\left(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13}\{\mathrm{C}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 13.3$, 19.6, $29.7,30.3,33.0,43.3,49.9,57.8,69.7,73.4,73.5,74.0,106.1,110.1,119.6,122.0,125.5,128.2$, $128.3,128.5,131.2,131.3,131.5,131.7,132.0,132.1,140.7,156.4,165.7,168.9 . \mathrm{IR}^{(\mathrm{KBr}}, \mathrm{cm}^{-}$ ${ }^{1}$): 536 (s), 580 (w), 693 (s), 704 (s), 726 (s), 762 (w), 1120 (s), 1170 (b), 1448 (s), 1586 (b), 1681 (w), 2847 (s), 2928 (s).
(ii) Prepared in a manner similar to compound 1a, using method (ii) with 1-(n-butyl)-3-N-(phenyl-methyl)acetamido-1,3-imidazolium chloride ($137 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.3 \mathrm{gm}, 10$ $\mathrm{mmol})$ and $\left[\mathrm{PdCl}_{2}(\mathrm{dppf})\right](366 \mathrm{mg}, 0.5 \mathrm{mmol})$, gave a yellow powder, which was re-crystallized from dichloromethane-hexane (yield: $99 \mathrm{mg}, 29 \%$, m.p.: $175{ }^{\circ} \mathrm{C}$) (scheme 1). Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Pd}$: C, 59.39; H, 6.23; N, 12.99\%; Found: C, 59.02; H, 6.08; N, 13.13\%. ${ }^{13} \mathrm{C}\left\{{ }^{\{1} \mathrm{H}\right\}$ NMR and FTIR signals are consistent with the above mentioned values.

4.3. Catalytic activities of $3 a$ and $3 b$ in Suzuki cross coupling reactions

Phenylboronic acid ($305 \mathrm{mg}, 2.5 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(410 \mathrm{mg}, 3 \mathrm{mmol})$ and $\mathbf{1 a} / \mathbf{1 b}(2 \mathrm{~mol} \%)$ was added to a solution of the substrate (1 mmol , Table 2) in dioxane $(5 \mathrm{~mL})$, and the suspension was refluxed for 16 h . After completion of the reaction (cf. TLC), the reaction mixture was concentrated in vacuo, followed by column chromatography (silica gel, $0-5 \% \mathrm{EtOAc} /$ hexane) to obtain pure products. The yields of the products are summarized in Table 1.
4.3.1. Biphenyl (2a): White solid (m.p. $71^{\circ} \mathrm{C}$; lit. $70.5-72{ }^{\circ} \mathrm{C}$); ${ }^{[32] ~}{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.34-7.49 (m, 6H), 7.58-7.63 (m, 4H).
4.3.2. 4-Methoxy-1,1'-biphenyl (2b): White solid (m.p. $93{ }^{\circ} \mathrm{C}$; lit. $91.1-92.3{ }^{\circ} \mathrm{C}$); ${ }^{[32] ~}{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl3) $\delta 3.79(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.81-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.25(\mathrm{~m}, 3 \mathrm{H})$, 7.39-7.50 (m, 3H), 7.57-7.66 (m, 1H).
4.3.3. 4-Methyl-1,1'-biphenyl (2c). White solid (m.p. $47^{\circ} \mathrm{C}$; lit. $45-50{ }^{\circ} \mathrm{C}$); ${ }^{[32]}{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.431(t, J=5.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.49-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.59(\mathrm{~m}, 2 \mathrm{H})$.

4.4. Crystal Structure determination:

The molecular structure of compound [1-(n-butyl)-3-N-(2-furylmethyl)acetamido-1, 3-imidazol-2-ylidene) $]_{2} \mathrm{Pd}(\mathbf{1 a})$ was collected at 173 K on using a Rigaku FR-XUltrahigh Brilliance Microfocus RA generator/confocal optics and XtaLAB P200 diffractometer [Mo-K ${ }_{\alpha}$ radiation (λ $=0.71075 \AA$)]. Data were collected using Crystal Clear and processed (including correction for Lorentz, polarization and absorption) using CrysAlisPro. ${ }^{[33]}$ The structures were solved dualspace methods (SHELXT), ${ }^{[34]}$ and refined by full-matrix least-squares against F^{2} (SHELXL2018/3). ${ }^{[33]}$ The non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Molecular structures were drawn using ORTEP. ${ }^{[35]}$ Selected
crystallographic data are listed in Table 6. Deposition number 2011024 contains the supplementary crystallographic data for this paper. These data was provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachin formations zentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

Table 6: Selected crystallographic data for [1-(n-butyl)-3-N-(2-furylmethyl)acetamido-1,3-imidazol-2-ylidene) $]_{2} \operatorname{Pd}(1 a)$.

Complex	1a
Chemical formula	$\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Pd}$
Formula wt.	627.05
Crystal size $\left(\mathrm{mm}^{3}\right)$	$0.150 \times 0.090 \times 0.030$
Crystal system	orthorhombic
Space group	$\mathrm{P}_{\mathrm{ccn}}$
Unit cell dimensions	
a (\AA)	$16.9659(9)$
$\mathrm{b}(\AA)$	$10.0132(5)$
$\mathrm{c}(\AA)$	$16.6484(7)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	90
$\gamma\left({ }^{\circ}\right)$	90
Volume $\left(\AA^{3}\right)$	$2828.3(2)$
$\rho_{\text {cacld, }} \mathrm{g}$ cm ${ }^{-3}$	1.047
Z	$2.418 / 922$
$\left(\mathrm{~mm}{ }^{-1}\right) / \mathrm{F}(000)$	2

Limiting indices	$-21 \leq \mathrm{h} \leq 20$
	$-12 \leq \mathrm{k} \leq 13$
	$-21 \leq \mathrm{l} \leq 15$
θ for data collection $\left(^{\circ}\right.$)	$2.362<\theta<29.013$
No of reflections collected	22898
No of independent reflection $\left(R_{\text {int }}\right)$	$3361[\mathrm{R}(\mathrm{int})-0.0364]$
Data/restraints/parameters	$3361 / 0 / 178$
Final R_{1}, wR	
2	indices $(I>2 \sigma I)$
$\mathrm{R}_{1}, \mathrm{wR}_{2}$ (all data)	$0.0244 / 0.0718$
Goodness of fit on F^{2}	$0.0419 / 0.0804$

Acknowledgement:

One of the authors (RSC) is grateful to DST for the financial support under the DST young scientist scheme YSS/2014/000797. We thank Dr. Pradnya Prabhu for encouraging this work and his valuable suggestions for the preparation of this article.

Conflicts of interest

We confirm that there are no known conflicts of interest associated with this publication.

Supporting Information

CCDC2011024 for 1a contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/structures.

References:

1) S. Modak, S. Borah, A.P. Prakasham, M.M. Shaikh, R.J. Butcher, M. Gangwar and P. Ghosh, Inorg. Chim. Acta 2019, 498, 119090.
2) K.N. Sharma, N. Satrawala, R.K. Joshi, Eur. J. Inorg. Chem. 2018, 16, 1743.
3) E. Peris, Chem. Rev. 2018, 118, 9988.
4) Q. Zhao, G. Meng, S. P. Nolan and M. Szostak, Chem. Rev. 2020, 120, 1981.
5) S. Nagar, S. Chatterjee, D. Goswami, D.B. Cordes, A.M.Z. Slawin, R.S. Chauhan, P. Prabhu, Inorg. Chim. Acta 2020, 504, 119446.
6) H.V. Huynh, Chem. Rev. 2018, 118, 9457.
7) C. Singh, A.P. Prakasham, M.K. Gangwar and P. Ghosh, Chem. Select 2018, 3, 9361.
8) K.N. Sharma, N. Satrawala, A.K. Srivastava, M. Ali, and R.K. Joshi, Org. Biomol. Chem. 2019, 17, 8969.
9) C. Singh, A.P. Prakasham, M.K. Gangwar, R.J. Butcher, and P. Ghosh, ACS Omega 2018, 3, 1740.
10) M. Beller, H. U. Blaser,Organometallics as Catalysts in the Fine Chemical Industry Springer Berlin Heidelberg, 2012, 42, 1-34.
11) L. Ray, M.M. Shaikh, P. Ghosh, Dalton Trans.2007, 4546; b) L. Ray, M.M. Shaikh, P. Ghosh, Organometallics 2007, 26, 958; c) C.-Y. Liao, K.-T. Chan, J.-Y. Zeng, C.-H. Hu, C.-Y. Tu, and H. M. Lee, Organometallics 2007, 26, 1692.
12) R. A. Batey, M. Shen and A. J. Lough, Org. Lett. 2002, 4, 1411.
13) M.K. Samantaray, M.M. Shaikh, P. Ghosh, J. Organomet. Chem. 2009, 694, 3477.
14) L. Ray, S. Barman, M.M. Shaikh, P. Ghosh, Chem. Eur. J. 2008, 14, 6646; b) L. Ray, M. M. Shaikh, and P. Ghosh, Eur. J. Inorg. Chem. 2009, 1932.
15) S. Kumar, M.M. Shaikh, P. Ghosh, J. Organomet. Chem. 2009, 694, 4162.
16) W.A. Herrmann, V.P.W. Bo"hm, C.W.K. Gstottmayr, M. Grosche, C.-P. Reisinger, T. Weskamp, J. Organomet. Chem. 2001, 617/618, 616.
17) W.A. Herrmann, G. Gerstberger, and M. Spiegler, Organometallics 1997, 16, 2209.
18) V.P.W. Böhm, W.A. Herrmann, Angew. Chem. 2000, 112, 4200; Angew. Chem. Int. Ed. Engl.2000, 39, 4036.
19) C. Singh, M.K. Gangwar, P. Ghosh, Inorg. Chim. Acta 2017, 466, 358; b) M. K. Samantaray, M. M. Shaikh, P. Ghosh, Organometallics 2009, 28, 2267.
20) M.A. Ali, A.H. Mirza, J.D. Chartres, P.V. Bernhardt, Polyhedron 2011, 30, 299.
21) J.N. Liu, B.W. Wu, B. Zhang, Y.C. Liu, Turk J. Chem. 2006, 30, 41.
22) W. Lai,M. -K. Lau,V. Chong,W. -T. Wong,W. -H. Leung,N. -T. Yu, J. Organomet. Chem. 2001, 634, 61.
23) G. Meng, L. Kakalis, S. P. Nolan, M. Szostak, Tetrahedron Lett. 2019, 60, 378.
24) T.M. Trnka, R.H. Grubbs, Acc. Chem. Res. 2001, 34, 18.
25) C. Chen, H. Qiu, W. Chen, D. Wang, J. Organomet. Chem. 2008, 693, 3273.
26) T.A.P. Paulose, J.A. Olson, J.W. Quail, S.R. Foley, J. Organomet. Chem. 2008, 693 3405.
27) K.A. Netland, A. Krivokapic, M. Schroder, K. Boldt, F. Lundvall, M. Tilset, J. Organomet. Chem. 2008, 693, 3703.
28) L. Liu, Y. Zhang, and Y. Wang, J. Org. Chem. 2005, 70, 6122.
29) (a) N. Tsoureas, A. A. Danopoulos, A. A. D. Tulloch, M. E. Light, Organometallics 2003, 22, 4750. (b) A.-E. Wang, J. Zhong, J.-H. Xie, K. Li, Q.-L. Zhou, Adv. Synth. Catal. 2004, 346, 595. (c) S. Gischig, A. Togni, Eur. J. Inorg. Chem. 2005, 4745.
30) E. Mas-Marzá, E. Peris, I. Castro-Rodríguez, K. Meyer, Organometallics 2005, 24, 3158.
31) R. S. Chauhan, D. B. Cordes, A. M. Z. Slawin, S. Yadav and C. Dash, Inorg. Chim. Acta 2018, 478, 125; R. S. Chauhan, A. Kumar, P. Prabhu, Inorg. Chim. Acta 2019, 487, 395.
32) N. Kurono, T. Inoue, M. Tokuda, Tetrahedron 2005, 61, 11225.
33) CrysAlisProv1.171.38.46. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, U.K., 2015.
34) G. M. Sheldrick, Acta Crystallogr. Sect. A. 2015, 71, 3.
35) G. M. Sheldrick, Acta Crystallogr. Sect. C.2015,71, 3; b) C. K. Johnson, ORTEP II, Report ORNL-5136, Oak Ridge National Laboratory, Oak Ridge TN, 1976.
