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Abstract

This thesis has both numerical and theoretical aspects in studying Abelian sandpiles.

We start with a numerical approach, using exact sampling. Our methods use a com-

bination of Wilson’s algorithm to generate uniformly distributed spanning trees, and

Majumdar and Dhar’s bijection. We study the probability of topplings of individual

vertices in avalanches starting at the centre of large cubic lattices in 2, 3 and 5 dimen-

sions. Based on these, we estimate the values of the toppling probability exponent in

the infinite volume limit in d = 2, 3, and find good agreement with theoretical results

on the mean-field value of the exponent in d ≥ 5. We also study the distribution

of the number of waves in 2 dimension. Our simulation method, combined with a

variance reduction concept, is well suited for analyzing various problems, even in very

high dimensions. We demonstrate this by estimating the single-site height probability

distribution in 32 dimension, and compare it to the asymptotic behaviour as d → ∞.

Then we prove an asymptotic formula for the single-site height distribution with error

estimates in terms of Poisson(1) probabilities.

We continue with studying the following problem arising in the simulation context. We

consider a simple random walk on Zd started at the origin and stopped on its first exit

time from (−L,L)d ∩ Zd. Write L in the form L = mN with m = m(N) and N → ∞
so that L2 ∼ ANd for some real positive constant A. Our main result is that for d ≥ 3,

the projection of the stopped trajectory to the N -torus locally converges, away from

the origin, to an interlacement process at level Adσ1, where σ1 is the exit time of a

Brownian motion from the unit cube (−1, 1)d that is independent of the interlacement

process. The above problem is a variation on results of Windisch (2008) and Sznitman

(2009).
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Notation

We use c, c′ and C to denote positive constants, depending only on dimension d. It may

change from line to line, but we keep the same notation for simplicity. If a constant is

to depend on some other parameters, this will be made explicit.

If f(x), g(x) are functions, we write f ∼ g if they are asymptotic, i.e.

lim
x→∞

f(x)

g(x)
= 1.

We write f ≈ g if they are logarithmically equivalent, i.e.

lim
x→∞

log f(x)

log g(x)
= 1.

We write f(x) = O(g(x)) if f(x) ≤ cg(x), as x → ∞, for some constant c, where

the constant c depends only on dimension d as well. We write f(x) = o(g(x)) if

f(x)/g(x) → 0, as x → ∞. Similarly, the rate of convergence depends on no other

quantities, except dimension d.

VIII



List of Figures

3-1 Log-log plot of average cluster size ⟨s⟩o (black) and average number of

distinct sites toppled ⟨sdistinct⟩o (red) versus lattice size L with Dirichlet

boundary conditions in d = 2, when considering L = 2n with 6 ≤ n ≤ 13

with sample sizes 107, 107, 107, 107, 107, 2.5× 106 and 6× 105, 6× 105

respectively. The dots show the data points and the straight lines are

the least squares fits to these data points. The slope of the black line is

2, and the slope of the red line is 1.58. . . . . . . . . . . . . . . . . . . . 24

3-2 Average cluster size ⟨s⟩o and average number of distinct sites toppled

⟨sdistinct⟩o rescaled by L2 versus logL with Dirichlet boundary conditions

in d = 3. We considered the values L = 32, 64, 128, 256 (with sample

sizes 107, 107, 4× 106 and 4× 105). . . . . . . . . . . . . . . . . . . . . . 25

3-3 This figure explains how the hashing algorithm is implemented. . . . . . 35

3-4 A heat-plot of the logarithm of the toppling probability with Dirichlet

boundary conditions in d = 2 for a system with L = 4096. The values

are shown for vertices in the box [−256, 256]2. . . . . . . . . . . . . . . . 36

3-5 A rainbow-plot of the logarithm of the toppling probability with Dirichlet

boundary conditions in d = 2 for a system with L = 4096. The values

are shown for vertices in the box [−256, 256]2. . . . . . . . . . . . . . . . 37

3-6 The logarithm of the toppling probabilities against the logarithm of |x|’s
with Dirichlet boundary conditions in d = 2 for systems with L = 512

(blue), 1024 (yellow), 2048 (green), 4096 (red), and 8192 (black) with

sample sizes 6×107, 3×107, 7.5×106, 4×106 and 106 respectively. The

probabilities are shown for vertices in the positive x-axis up to L− 1. . 38

IX



3-7 The estimates t̂L(x) rescaled by the |x|â, where â = 0.43 is obtained from
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Chapter 1

Introduction

1.1 Motivation

In the theoretical physics literature, the sandpile model appears in connection with

the self-organized criticality. Before explaining what the self-organized criticality is,

we first explain the meaning of criticality in the example of bond percolation on the

d-dimensional integer lattice Zd. While percolation will not concern us later in the

thesis, the two exponents we discuss have analogues for the sandpile model.

Let 0 < p < 1 and set each edge of Zd occupied with probability p and not occupied

with probability 1− p, independently. An edge of Zd is also called a bond of Zd. The

clusters are defined as the connected components of the random subgraph of Zd induced

by the occupied bonds. Let Co denote the cluster containing the origin (denoted by o)

and we write |Co| for the size of the cluster Co (the number of vertices). Let Pp denote

the probability measure with the parameter p.

Broadbent and Hammersley [8, 21] studied the critical probability pc in percolation

theory and proved the following fundamental result. In d ≥ 2, there exists a critical

probability 0 < pc = pc(d) < 1 such that

Pp[|Co| <∞] = 1, if p < pc;

Pp[|Co| = ∞] > 0, if p > pc.

This implies that in the case p < pc there is no infinite cluster anywhere in the lattice

a.s. by translation invariance. In the case p > pc there exists a unique infinite cluster

in the lattice a.s.[20]. We can say that a phase transition occurs at the critical value pc,

1



CHAPTER 1. INTRODUCTION

which separates the subcritical phase p < pc where all cluster in the lattice are finite

a.s. and the supercritical phase p > pc where there exists an infinite cluster a.s.

Percolation at the critical probability pc has many properties which are different from

the case p ̸= pc and are typically more challenging to establish. Indeed, analysing the

critical behaviour is considered to be one of the most challenging problems to prove

in probability. For example, it is widely believed that there is no infinite component

almost surely in critical percolation on d-dimensional lattices for d ≥ 2. In the planar

case d = 2, Ppc [|Co| < ∞] = 1 was proved by Harris [28] and Kesten [44]. This result

was also proved in high dimensions (d ≥ 19 for the nearest-neighbour model on Zd or

d > 6 for a class of “spread-out” models of independent bond percolation on Zd) by

Hara and Slade [23]. Later, Fitzner and van der Hofstad [16] extended this result to

d ≥ 11 for the nearest-neighbour model on Zd. In the case p ̸= pc, it is known that the

probabilities Pp[|Co| = n] decay faster than a power of n [20], which are already not

trivial to establish.

It is conjectured that there exist critical exponents η = η(d) > 0 and δ = δ(d) > 0 such

that, for all d ≥ 2,

Ppc [x ∈ Co] =
1

|x|d−2+η+o(1)
, as |x| → ∞;

Ppc [|Co| ≥ n] = n−
1
δ
+o(1), as n→ ∞.

Most progress on this conjecture has been made in the case d = 2 and in high dimen-

sions. We have η = 5
24 and δ = 91

5 for the critical site percolation on the triangular

lattice [64, 45]. η = 0 is derived in high dimensions by Hara [22] (for the nearest-

neighbour model on Zd with d ≥ 19) and by Hara, van der Hofstad and Slade [26]

(for the spread-out model on Zd with d > 6). Later, Fitzner and van der Hofstad [16]

reduced the dimensions from d = 19 to d ≥ 11 for the nearest-neighbour model on Zd.

We also know that δ = 2 in sufficiently high dimensions [24, 25].

It seems that the interesting properties of percolation are very sensitive to the fact that

p = pc, that is, we are at the critical value of the parameter p.

Bak, Tang and Wiesenfeld [3] showed that certain extended dissipative dynamical sys-

tems naturally evolve into a critical state, with no intrinsic time or length scales. This

phenomenon is called the self-organized criticality (SOC), since there is no parame-

ter turned to a critical value. In the same paper, Bak, Tang and Wiesenfeld used

the sandpile dynamics to further explain their idea. Dhar [10] established the com-
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1.2. THESIS OUTLINE

mutativity of the sandpile model, which has many nice consequences and makes the

model more amenable to study. While not intended to be a realistic model of sand, the

Abelian sandpile model has important qualitative features of avalanche-like phenom-

ena and has very non-trivial behaviour. Hence, the Abelian sandpile model became

the primary theoretical example of SOC [11].

The Abelian sandpile model [11, 33] is a system of particles subjected to local distribu-

tion rules called topplings, that give rise to non-local, scale-invariant dynamical events

called avalanches. These will be defined in Chapter 2. Establishing the power law

exponents rigorously in d = 2, 3 is challenging, study of which has largely been limited

to simulations. Analogues of the percolation cluster will be the set of vertices toppled

in the avalanche.

1.2 Thesis outline

We start by discussing the motivation of the thesis. In this thesis, we work on critical

exponents in sandpiles both analytically and numerically. My research involved: nu-

merical simulation of sandpile critical exponents, as well as two theoretical questions

inspired by these simulations. The first of these is about the asymptotic height distri-

bution in high-dimensional sandpiles. The second gives a heuristic understanding of

the hashing algorithm used for the high-dimensional simulations and it is related to

random interlacements. The rest of this chapter presents an outline of the content of

the thesis in different chapters.

Chapter 2 introduces the key definitions and background of the Abelian sandpile model.

Some of the simulation methods used in Chapter 3 are also present here. Other defi-

nitions and properties used in this thesis will be stated in the corresponding chapters.

Very briefly, the sandpile model in a finite set, a subset of Zd, describes a dynamics of

particles (grains of sand, etc) where the basic rule is that when a vertex has at least

2d particles, it topples by sending one particle to each neighbour. Particles are added

to the system one by one, and at each step the system is stablized until no topplings

are possible. Hence, when the dynamics reaches stationarity, there will be some fixed

probability that a particle added at the origin causes a toppling at a vertex x. We call

this the toppling probability of x.

In Chapter 3, we explain the simulation method based on Wilson’s algorithm and the

burning bijection between recurrent sandpiles and spanning trees. We also used the

hashing function when computing the avalanche in high dimensions (d ≥ 5) to reduce

memory we use. We discuss the simulation results both in low dimensions (d = 2, 3)
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CHAPTER 1. INTRODUCTION

and high dimensions (d ≥ 5).

The main results of Chapter 3 are:

• In d = 2, the simulation suggests that the toppling probability at a vertex x

satisfies a power law of the form:

P[x topples] = |x|−η+o(1),

where η = η(2) = 0.4, to 1 d.p.

• In d = 3, the simulation suggests that the behaviour of the toppling probability

at x is |x|−1−η(3)+o(1) with η(3) ≈ 0.1.

• The simulation in very high dimensions (d = 32) gives a close agreement with

a asymptotic formula for the height probability at the origin o (the probability

at stationarity to see a specific number of particles between 0 and 2d− 1 at the

origin).

We state the asymptotic formula (see Theorem 3.5.1 below) in Chapter 3, and prove this

formula in Chapter 4. The asymptotic formula is for the single site height distribution

of Abelian sandpiles on Zd as d → ∞, in terms of Poisson(1) probabilities with error

estimates. This chapter involves detailed random walk estimates. We introduce the

statement of Theorem 3.5.1 below, and we will explain more details in Chapter 4.

Let pd(i) = P[η(o) = i], i = 0, . . . , 2d− 1, denote the height probabilities at the origin

in d dimensions.

Theorem (Theorem 3.5.1). (i) For 0 ≤ i ≤ d1/2, we have

pd(i) =
i∑

j=0

e−1 1
j!

2d− j
+O

( i

d2

)
=

1

2d

i∑
j=0

e−1 1

j!
+O

( i

d2

)
.

(ii) If d1/2 < i ≤ 2d− 1, we have

pd(i) = pd(d
1/2) +O(d−3/2).

(iii) As a consequence of (i) and (ii), we have pd(i) ∼ (2d)−1, if i, d→ ∞.

The main result of Chapter 5 (see Theorem 5.1.1 below) is motivated by the hashing al-

gorithm used in Chapter 3 to study high-dimensional sandpiles. While it looks difficult

to bound the running time of the algorithm directly, we can obtain a heuristic bound
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by making some simplifications. This leads us to prove that the trace of the random

walk in an N -torus converges (away from the origin) to an interlacement process at a

random level expressed in terms of the exit time of Brownian motion from the cube

(−1, 1)d. We introduce the statement of Theorem 5.1.1 below, and we will explain more

details in Chapter 5.

Let us first define some notations used in the theorem. L = mN , where L2 ∼ ANd

as N → ∞ for some constant A ∈ (0,∞). Let TN = [−N/2, N/2)d ∩ Zd, d ≥ 3 and

φ : Zd → TN . We write vertices and subsets of the torus in bold, i.e. x ∈ TN and

K ⊂ TN . Let T = inf{t ≥ 0 : Yt ̸∈ (−L,L)d}, the first exit time from (−L,L)d. Let

σ1 denote the exit time from (−1, 1)d of a standard Brownian motion started at o. For

K0 ⊂ Zd, let Cap(K0) denote the capacity of K0 [48]. For any 0 < R <∞ and x ∈ Zd,

let BR(x) = {y ∈ Zd : |y − x| < R}, where | · | is the Euclidean norm. Let KR denote

the collection of all subsets of BR(o). Given x ∈ TN , let τx : TN → TN denote the

translation of the torus by x. Let g : N → R be any function satisfying g(N) → ∞.

Theorem (Theorem 5.1.1). Let d ≥ 3. For any 0 < R < ∞, any K0 ∈ KR, and any

x satisfying τxφ(BR(o)) ∩ φ(Bg(N)(o)) = ∅ we have

Po

[
φ(Yt) ̸∈ τxφ(K

0), 0 ≤ t < T
]
= E

[
e−dAσ1Cap(K0)

]
+ o(1) as N → ∞.

The error term depends on R and g, but is uniform in K0 and x.

Chapter 6 concludes the thesis by briefly summarising the research findings in the

preceding chapters and stating the possible future open questions arising from the

simulation results.

A note on the references. Chapters 3, 4, and 5 that are based on published or submitted

papers have their own references sections at the end of those chapters. References of

the remaining part of the thesis are at the end of the thesis.

5



Chapter 2

Definitions and background

In this chapter, we introduce the definitions and basic properties used throughout this

thesis. Other definitions and properties, which are only used in the individual chapters,

will be introduced in the corresponding chapters.

2.1 Abelian sandpile model

We start with the definition of and some fundamental facts about the Abelian sandpile

model on a finite graph G. Sandpiles are a lattice model of self-organized criticality,

introduced by Bak, Tang and Wiesenfeld [3], and have been studied in both physics

and mathematics. See the surveys [33], [51], [63], [30], [11].

After discovering the Abelian group structure of addition operators in this model,

Dhar [10] generalized it to arbitrary finite graphs and called it the Abelian sandpile

model. He studied the self-organized critical nature of the stationary measure and

gave an algorithmic characterization of recurrent configurations, the so-called “burning

algorithm”. This algorithm gives a one-to-one correspondence between the recurrent

configurations of the Abelian sandpile models and rooted spanning trees [55]. This

bijection is essential for our numerical simulations.

2.1.1 Definitions

Let G = (V ∪ {ρ}, E) be a finite, connected graph, where we allow multiple edges

between vertices. V is a finite set of vertices and the distinguished vertex ρ is called

the sink. E is the set of edges. Loop-edges are excluded for simplicity (their presence

would involve only trivial modifications). Let degG(x) be the degree of the vertex x in

6



2.1. ABELIAN SANDPILE MODEL

the graph G and let x ∼ y denote that vertices x and y are connected by at least one

edge.

Two examples we will be concerned with are as follows. Let V ⊂ Zd be a finite d-

dimensional box: V = VL = [−L,L]d ∩ Zd. All vertices in V c = Zd \ V are identified

to the sink, ρ. All loop-edges created at ρ are removed. This is called the wired

graph induced by V . A second example is obtained, if we take V = VL \ {ρ}, where
ρ = (L, . . . , L), with periodic boundary conditions. This is called the torus graph.

Instead of Zd, we can start from any locally finite, infinite, connected graph.

A sandpile is a collection of indistinguishable grains on the vertices in V . A sandpile

is specified by a map η : V → {0, 1, 2, . . . }. We say that η is stable at x ∈ V , if

η(x) < degG(x) (the latter being = 2d when V ⊂ Zd). We say that η is stable, if

η(x) < degG(x), for all x ∈ V . Sometimes, especially in physics, a sandpile is specified

by a map η∗ : V → {1, 2, . . . }. A stable sandpile is then defined as having one of the

values 1, 2, . . . ,degG(x) at all x. This defines the same model after a trivial shift of

coordinates.

If η is unstable (i.e. η(x) ≥ degG(x) for some x ∈ V ), x is allowed to topple which

means that x passes one grain along each edge to its neighbours. When the vertex x

topples, the grains are re-distributed as follows:

η(x) → η(x)− degG(x);

η(y) → η(y) + nxy, y ∈ V, y ̸= x.
(2.1)

where nxy is the number of edges between x and y. In the examples we are concerned

with, we have nxy = 1 for all x, y ∈ V . Grains arriving at ρ are lost, so we do not keep

track of them. Toppling a vertex may generate further unstable vertices.

Regarding η as a row vector, the re-distribution rule (2.1) can be written as

η → η −∆′
x,·,

where

∆′
xy = degG(x), if x = y

∆′
xy = −nxy, if x ̸= y.

∆′
x,· is the row x of ∆′, that is, if ∆ is the graph Laplacian of G then ∆′ is the restriction

of the graph Laplacian ∆ to V × V .
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CHAPTER 2. DEFINITIONS AND BACKGROUND

Since η(x) ≥ degG(x) is required before toppling x, the number of grain at x is non-

negative after toppling. Hence, we still have a sandpile configuration after toppling. In

this case, we a say that toppling x is legal in η. Given a sandpile ξ on V, we define its

stabilization

ξ◦ ∈ ΩG := {all stable sandpiles on V} =
∏
x∈V

{0, 1, ...,degG(x)− 1}

by carrying out all possible legal topplings, in any order, until a stable sandpile is

reached. It was shown by Dhar [10] that the map ξ 7→ ξ◦ is well-defined, in the sense

that no matter what the order of topplings carried out, the same stable configuration

will be reached.

Theorem 2.1.1. [10, 33] The map ξ 7→ ξ◦ is well-defined.

We include the proof here that follows in [33, Theorem 2.3].

Proof. We need to show:

(a) Only finitely many topplings can occur, regardless of how we choose to topple

vertices.

(b) The final stable configuration is independent of the sequence of topplings chosen.

In order to see (a), observe that if x ∼ rho then x can topple only finitely many times

(the system loses particles to the sink ρ on each toppling of x). It follows by induction

that for all k ≥ 1,if x ∼ xk−1 ∼ · · · ∼ x1 ∼ ρ, then x can topple only finitely many

times. Since G is connected, we are done.

We now prove (b) in two steps:

(i) Topplings commute: If x, y ∈ V , x ̸= y and η is unstable at both x and y, then

writing Tx to denote the effect of toppling x we claim that

TyTxη = TxTyη.

Observe that in either order, both topplings are legal. Then the claim is immediate

from observing that both sides equal η −∆′
x,· −∆′

y,·.

(ii) Suppose now that and

x1, x2, . . . , xk (2.2)

8



2.1. ABELIAN SANDPILE MODEL

and

y1, y2, . . . , yℓ

are two sequences of vertices that are both possible stabilizing sequences of η. That is,

when carried out in order from left to right, in both sequences each toppling is legal,

and the final results are stable configurations.

If η is already stable, then k = ℓ = 0 and there is nothing to prove.

Otherwise, we have k, ℓ ≥ 1 and η(x1) ≥ degG(x1). Therefore, x1 must occur some-

where in the second sequence, otherwise the second sequence would never reduce the

number of particles at x1. Let x1 = yi, 1 ≤ i ≤ ℓ, and suppose that i is the smallest

such index. By part (i), the toppling of yi = x1 can be moved to the front of the second

stabilizing sequence. Precisely, we have

Tx1Tyi−1 . . . Ty1η = Tyi−1Tx1Tyi−2 . . . Ty1η

= Tyi−1Tyi−2Tx1 . . . Ty1η

...

= Tyi−1Tyi−2 . . . Ty1Tx1η.

It follows that the sequence

x1, y1, . . . , yi−1, yi+1, . . . , yℓ (2.3)

also stabilizes η. We now remove x1 from the beginning of the sequences (2.2) and

(2.3) and repeat the argument for Tx2η. Iterating gives that k = ℓ and the multisets

[x1, . . . , xk] and [y1, . . . , yℓ] are permutations of each other. That is, each vertex topples

the same number of times in the two stabilizing sequences, and hence they reach the

same final configuration. This completes the proof that the stabilization ξ 7→ ξ◦ is

well-defined.

Adding a single particle to the sandpile and stabilizing can induce a highly complex

sequence of topplings, see for example the early simulations in [3, Figure 1]. The

sequence of topplings carried out is called an avalanche.

Definition 2.1.1. Given a configuration η, the avalanche started at x is the multi-set of

topplings resulting from adding a particle at x in η and stabilizing. Note the multi-set is

well-defined by the proof of Theorem 2.1.1. The avalanche cluster started at x is the set

of sites that topples at least once: Avx = {y ∈ V : y topples after adding a particle at x}.

9



CHAPTER 2. DEFINITIONS AND BACKGROUND

We denote Avo by Av.

We can use a decomposition of the avalanche into waves, introduced by Ivashkevich,

Ktitarev and Priezzhev [32]. Waves are defined as follows. After we added a particle

at x, topple x, and all other vertices that can be toppled, but do not allow x to topple

a second time. It is not difficult to see that each vertex topples at most once under

this restriction. The set of vertices that toppled is called the first wave. After the first

wave, if x is still unstable (this will be the case if and only if all of its neighbours were

in the first wave), topple x a second time and topple all other vertices that can be

toppled, not allowing x to topple a third time. This is called the second wave, etc.

2.1.2 Basic properties

Definition 2.1.2. The addition operators Ax are maps from the set of all sandpiles to

the set of all stable sandpiles, ΩG, defined by adding one particle at x and stabilizing.

Axη = (η + 1x)
◦, where 1x is the row vector with 1 in x and 0 elsewhere.

Lemma 2.1.1. [10, 33] The addition operators commute. More formally, AxAy =

AyAx for all x, y ∈ V .

We include the proof here that follows in [33, Lemma 2.8].

Proof. We have

AxAyη = ((η + 1y)
◦ + 1x)

◦ (2.4)

and

AyAxη = ((η + 1x)
◦ + 1y)

◦. (2.5)

We show that both expressions equal

(η + 1x + 1y)
◦. (2.6)

To see this, start with the configuration η+ 1x + 1y, and carry out topplings as in the

stabilization of η+1y. The extra particle present at x does not affect the legality of any

of the topplings in the stabilization of η+1y. Hence with the extra particle at x present,

we arrive at the configuration (η+1y)
◦+1x. Now carry out any further topplings that

are possible, arriving at the right hand side of (2.4). Due to Theorem 2.1.1, the final

configuration also equals (2.6). Equality of (2.6) and (2.5) is seen similarly.

The reason that the addition operators commute in this model is that the toppling
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2.1. ABELIAN SANDPILE MODEL

conditions depend on local heights, and not on discrete gradients of these heights. Since

the addition operators commute in this model, we call it the Abelian sandpile model. In

other possible models of self-organized criticality, the toppling conditions may depend

on gradients of heights, in this case the addition operators may not commute [10]. The

dynamics of the sandpile can be considered as a toy model of avalanche-like phenomena.

The sandpile model is not meant to be a realistic representation of sand. A more

suitable condition for toppling in order to model sand grains moving down a slope could

be that the discrete gradient exceeds some fixed critical value. However, topplings do

not commute in such models, as can be seen. Later, we will see how commutativity

in the Abelian sandpile model has a lot of nice consequences that make it easier to

study. The point is that the Abelian sandpile model already has important qualitative

characteristics of avalanche-type phenomena and has very nontrivial behaviour.

We will now define the sandpile Markov chain with inital state η0. The state space

is the set of stable sandpiles, ΩG. Fix a positive probability distribution p on V , i.e.∑
x∈V p(x) = 1 and p(x) > 0 for all x ∈ V . Starting at η0 ∈ ΩG, choose a random vertex

X ∈ V according to p, add one particle at X and stabilize. The one step transition of

the Markov chain moves η to AXη = (η + 1X)◦. By Theorem 2.1.1, we can write the

time evolution of the sandpile Markov chain as ηn = (η0+
∑n

i=1 1Xi
)◦, where n ≥ 1 and

X1, X2, . . . are i.i.d. random variables with distribution p. The stationary distribution

of the Markov chain does not depend on p, and equals to the uniform distribution on

the set of recurrent states [58, Corollary 3.2] and [30].

Considering the sandpile Markov chain on a finite connected graph G, there is only one

recurrent class [30]. We denote the set of recurrent sandpiles by RG.

Although the Abelian sandpile model can be defined on an arbitrary finite connected

graph, in this thesis we mainly focus on V ⊂ Zd. Let us now introduce the sandpile

model on subsets of Zd.

Given a finite set V ⊂ Zd (the wired graph induced by V ), a sandpile on V is given

by η : V → {0, 1, 2, ...}. Recall that we identify all vertices in V c = Zd \ V into a

single vertex that becomes the sink ρ. Then remove all loop-edges at ρ. This is called

the wired graph induced by V . We say that η is stable at x ∈ V , if η(x) < 2d. η is

unstable at x ∈ V , if η(x) ≥ 2d, then x is allowed to topple. When topping x, x sends

one particle along each edge adjacent to x and the particles at x and its neighbours are
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re-distributed as follows:

η(x) → η(x)− 2d;

η(y) → η(y) + 1, y ∈ V, y ∼ x.

Consider the stationary sandpile in the box VL = [−L,L]d∩Zd with Dirichlet boundary

conditions. We write PL for the stationary distribution of sandpiles in VL. It was shown

in [2] that PL has a weak limit P in d ≥ 2. That means that for any event E that

only depends on finitely many sandpile heights, we have PL[E] converges to P[E], as

L → ∞. Let us add a grain at the origin o and carry out the resulting avalanche. We

are going to abbreviate the event ‘when a grain is added at o, vertex x topples in the

resulting avalanche’ to simply ‘x topples’. Thus let PL[x topples] denote the probability

that x topples in the avalanche initiated at o in volume VL. Note that the event ‘x

topples’ is not local, however it still holds that P[x topples] = limL→∞PL[x topples].

This result was shown in the case for d ≥ 3 in Proposition 3.11 and d = 2 in Lemma

5.10 in [6].

It is still an open problem to prove that in d = 2

P[ finitely many vertices topple in an avalanche ] = 1,

and the corresponding problem in d ≥ 3 was shown by Járai and Redig [34, Theorem

3.11]. In Section 3.3.2, our wave simulation data in d = 2 suggests that the number

of waves decays as a power law, and this lends heuristic support to the above open

problem. Extending the Markov chains dynamics to Zd has only been done in d ≥ 3

[34]. In d = 2, it hinges on the above open problem.

2.1.3 Height probability in 2D

Dhar and Majumdar [12] studied the Abelian sandpile model on the Bethe lattice and

the exact expressions for various distribution functions including the height distribution

at a vertex were obtained using combinatorial methods. However, on d-dimensional

cubic lattices of d ≥ 2, exact results for the height probability are only known for d = 2.

Under the stationary distribution in a box VL = [−L,L]d, the height of a sandpile at

any vertex takes values 0, 1, . . . , 2d − 1. The height probabilities of the d-dimensional

Abelian sandpile model are the limits of the probabilities of the origin having heights

0, 1, . . . , 2d−1 as L→ ∞, denoted by p(0), p(1), . . . , p(2d−1). Existence of these limits

follow from [2].

12



2.2. THE BURNING BIJECTION AND WILSON’S ALGORITHM

In dimension 2, the height of a sandpile at any vertex of a square lattice takes values

in 0, 1, 2 and 3. The first numerical estimation of the height probabilities was made

by Zhang [70]. Zhang introduced a continuous-energy model, which has continuous

heights, and obtained p(0) = 0.10, p(1) = 0.16, p(2) = 0.32 and p(3) = 0.42.

Erzan and Sinha [15] obtained p(0) = 0.07 ± 4%, p(1) = 0.17 ± 7%, p(2) = 0.31 ± 9%

and p(3) = 0.45±3% for the discrete sandpile model on the lattice of linear sizes 30 and

40. Manna [56] obtained p(0) = 0.073, p(1) = 0.174, p(2) = 0.307 and p(3) = 0.446 on

the square lattice of size 672. Typical errors in these estimates are of the order of 0.003.

Grassberger and Manna [19] performed simulations on some even larger lattices (up to

size 1400 × 1400), but this did not allow to draw conclusions with the same accuracy

as Manna’s results [56]. Their results for the lattice of size 672 give p(0) = 0.0736,

p(1) = 0.1740, p(2) = 0.3062 and p(3) = 0.4462. Both of the last two values of p(0) are

very consistent with the exact value p(0) = 2/π2 − 4/π3 = 0.07363... [54].

Exact results for p(1), p(2), and p(3) were derived in the infinite volume limit by Priez-

zhev [61]. The formulas for p(1), p(2) and p(3) involved rational polynomials in terms

of 1/π and two multiple integrals. A high-precision numerical evaluation of these two

different integrals seemed to give the average height
∑3

i=0 ip(i) exactly equal to the

simple fraction 17/8 [11]. Jeng, Piroux and Ruelle [41] extended Priezzhev’s work. By

assuming the average height was 17/8 exactly, they obtained the following formulas:

p(0) =
2

π2
− 4

π3
;

p(1) =
1

4
− 1

2π
− 3

π2
+

12

π3
;

p(2) =
3

8
+

1

π
− 12

π3
;

p(3) = 1− p(0)− p(1)− p(2) =
3

8
− 1

2π
+

1

π2
+

4

π3
.

(2.7)

The average height, which is indeed 17/8, was proved independently by Kenyon and

Wilson [42], and Poghosyan, Priezzhev and Ruelle [60]. This implies (2.7), which we

will use in Chapter 3 to check our code.

2.2 The burning bijection and Wilson’s algorithm

The Abelian sandpile is closely related with other probability models on graphs such

as spanning trees. The connection between the spanning trees and the abelian sandpile
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model was discovered by Majumdar and Dhar [55]. In this section, we present two

connections to spanning trees, which feature in many parts of my thesis.

In 1990, Dhar [10] introduced an efficient way called the burning algorithm to check

whether a particular stable sandpile η is in RG. Application of this algorithm leads to

the burning bijection established by Majumdar and Dhar [55] between RG and the set

of all spanning trees of G, denoted by TG.

The burning algorithm is introduced as follows. Given a stable sandpile η ∈ ΩG, at

time t = 0, the sink, ρ, burns. We set B0 = {ρ}, the set of vertices burnt at time 0,

and set U0 = V , the set of vertices unburnt at time 0.

At time t = 1, all x ∈ U0 such that η(x) ≥ degU0
(x) burns. Then we set B1 = {x ∈

U0 : η(x) ≥ degU0
(x)}, the set of vertices burnt at time 1, and set U1 = U0 \ B1, the

set of vertices unburnt at time 1.

Generally, for t ≥ 1, all x ∈ Ut−1 such that η(x) ≥ degUt−1
(x) burns. Then we set

Bt = {x ∈ Ut−1 : η(x) ≥ degUt−1
(x)} and Ut = Ut−1 \Bt.

We have UT = UT+1 = . . . for some 1 ≤ T <∞ and we know η is recurrent if and only

if UT = ∅ [10, 30, 33].

The burning bijection is described as follows. We use the burning algorithm to define a

map ψ : RG → TG. For every x ∈ V , fix an arbitrary ordering ≺x of the edges incident

to x. Let η ∈ RG. The spanning tree ψ(η) is defined by assigning to x ∈ V an edge

adjacent to x, and oriented outwards from x. The construction guarantees that the

edges form a spanning tree directed towards ρ.

Given any vertex x, there is a unique t = t(x) ≥ 1 such that x ∈ Bt. Let

Fx = {f : tail(f) = x, head(f) ∈ Bt−1},

mx = |{f : tail(f) = x,head(f) ∈
⋃

i≤t−1

Bi}|.

Fx is the set of edges leading to the neighbours of x burnt one step before x, and mx

is the number of edges connecting x to its neighbours burnt before x. Fx is not empty.

Since we start with a stable sandpile η in the algorithm, a number of neighbours of x

need to burn to satisfy η(x) ≥ degUt−1
(x). Hence there is at least one neighbour of x

burnt at time t− 1.

Since x burns at time t and we declare x burnt when η ≥ degUt−1
= degG(x) −mx,
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and η(x) < degG(x)−mx + |Fx|, otherwise x should have burnt before time t, we have

degG(x)−mx ≤ η(x) < degG(x)−mx + |Fx|.

Assuming η(x) = degG(x)−mx + i, for some 0 ≤ i < |Fx|, we add the i-th edge in Fx

in the ordering to ψ(η) := τ . We call this edge ex. Since the burning algorithm on a

recurrent sandpile burns all vertices, τ spans. For any edge ex ∈ τ , head(ex) ∈ Bt(x)−1,

where t(x) denotes the time when x is burnt. All paths orient towards ρ, so τ does not

contain loops. Hence τ is a spanning tree of G.

The orientation of the edges is obtained uniquely by following paths towards ρ, so we

can remove the orientation to obtain an unoriented spanning tree without loss of in-

formation.

Lemma 2.2.1. [55, 33] The map ψ is injective.

Proof. Let η1, η2 ∈ RG and assume η1 ̸= η2. Then there is a first time t such that

either B1
t ̸= B2

t , or B
1
t = B2

t but η1|B1
t
̸= η2|B2

t
, where B1

t and B2
t are sets of vertices

burnt at time t for η1 and η2 respectively.

In the case that B1
t ̸= B2

t , there exists some vertices x1, x2, . . . , xi, belonging to B1
t ,

but not in B2
t or vice versa, so the edges ex1 , ex2 , . . . , exi are assigned differently for η1

and η2, where recall ex from the definition of the map ψ above.

In the case that η1|B1
t

̸= η2|B2
t
, there exists some vertices x1, x2, . . . , xj such that

η1(x1) ̸= η2(x1), . . . , η1(xj) ̸= η2(xj). This implies that the edges ex1 , ex2 , . . . , exj are

different in the corresponding spanning trees.

Therefore, in both cases, the spanning trees ψ(η1) and ψ(η2) are constructed differently.

We have that |RG| = det(∆
′
G) [33] and the Matrix-Tree Theorem [7] in combinatorics

states that |TG| = det(∆
′
G). Therefore Lemma 2.2.1 implies the map ψ : RG → TG is

bijective.

The map ψ : RG → TG is called the burning bijection and toppling procedure used to

construct ψ is usually referred to as the burning procedure.

Recall the unique stationary measure νG is the uniform distribution on RG [10]. The

burning bijection ψ maps νG to the uniform distribution on TG. This uniform distri-

bution is called the uniform spanning tree measure, denoted µG.
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Wilson [68] introduced a simple and efficient algorithm to generate a uniformly random

element in TG (a sample from µG). We need to state the procedure of loop-erasure

before introducing the Wilson’s algorithm. Given a path π = [w0, w1, ..., wk] in G, we

erase loops from π chronologically, as they are created. We trace π until the first time t,

if any, when wt ∈ {w0, w1, ..., wt−1}, i.e. there is a loop. We suppose wt = wi, for some

i ∈ {0, 1, ..., t−1} and remove the loop [wi, wi+1, ..., wt = wi]. We repeat this process as

long as there are loops. This gives the loop-erasure LE(π) of π, which is a self-avoiding

path [53]. If π is generated from a random walk process on G, the loop-erasure of π is

called the loop-erased random walk (LERW).

In general, fix a vertex r of G and let v1, v2, ..., vn be an arbitrary enumeration of

the remaining vertices in G. In the sandpile context, we normally choose r = ρ. Let

τ0 = {r}. We start a simple random walk π1 at v1 on G and π1 stops when r is first

hit. LE(π1) is attached to τ0 and the resulting path is denoted by τ1. Then we start

a second simple random walk π2 at v2 and stop π2 when it hits τ1. We attach LE(π2)

to τ1 and denote the resulting tree by τ2. We continue the same procedure until all

the vertices are visited. We construct a random sequence of trees τ1 ⊂ τ2 ⊂ ... ⊂ τn,

where τn is a spanning tree of G. Wilson’s theorem [68] implies that τn is uniformly

distributed over all spanning trees of G.
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Chapter 3

Simulation results

Chapter Overview

This chapter is based on a joint work by Járai and me [11]. The presentation here is

slightly different and some additional commentary is included. Due to this there will

be some repetition of material from the previous chapters.

This chapter is mainly motivated by the critical exponent of toppling probability in

sandpiles. We will be interested in the following question: if a particle is added at the

origin, what is the probability that a distant vertex topples? The set of vertices that

topple can be viewed as an analogue of the critical percolation cluster; see Chapter

1. The exponent describing the toppling probability is the analogue of the exponent

η of the percolation, which was introduced in Chapter 1. The toppling probability is

well-understood in dimensions d ≥ 5, but only limited information was known in lower

dimensions [3]. We also examine a number of related numerical questions.

The simulation data is freely available from the University of Bath Research Data

Archive and the simulation code is available upon request [12].
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3.1. INTRODUCTION

This is the Accepted Manuscript version of an article accepted for publication in Journal

of Statistical Mechanics: Theory and Experiment. IOP Publishing Ltd is not responsi-

ble for any errors or omissions in this version of the manuscript or any version derived

from it. The Version of Record is available online at DOI: 10.1088/1742-5468/ab2ccb.

Abstract

We study Abelian sandpiles numerically, using exact sampling. Our method uses a

combination of Wilson’s algorithm to generate uniformly distributed spanning trees,

and Majumdar and Dhar’s bijection with sandpiles. We study the probability of top-

plings of individual vertices in avalanches initiated at the centre of large cubic lattices

in dimensions d = 2, 3 and 5. Based on these, we estimate the values of the toppling

probability exponent in the infinite volume limit in dimensions d = 2, 3, and find good

agreement with theoretical results on the mean-field value of the exponent in d ≥ 5.

We also study the distribution of the number of waves in 2-dimensional avalanches.

Our simulation method, combined with a variance reduction idea, lends itself well to

studying some problems even in very high dimensions. We illustrate this with an

estimation of the single site height probability distribution in d = 32, and compare this

to the asymptotic behaviour as d → ∞. We give an asymptotic formula for the single

site height distribution of Abelian sandpiles on Zd as d → ∞, in terms of Poisson(1)

probabilities with error estimates. The proof of this formula is given in Chapter 4.

3.1 Introduction

The definitions of and some fundamental facts about the Abelian sandpile model has

given in Chapter 2. In this chapter, we briefly recalled them and then begin by intro-

ducing toppling probability exponents and discussing previous related work.

3.1.1 Abelian sandpile model

We start with the definition of and some fundamental facts about the Abelian sandpile

model on a finite graph G. Sandpiles are a lattice model of self-organized criticality,

introduced by Bak, Tang and Wiesenfeld [2], and have been studied in both physics

and mathematics. We refer to [5] for an overview. After discovering the Abelian group

structure of addition operators in this model, Dhar [4] generalized it to arbitrary finite

graphs and called it the Abelian sandpile model. He studied the self-organized critical

nature of the stationary measure and gave an algorithmic characterization of recurrent
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CHAPTER 3. SIMULATION RESULTS

configurations, the so-called “burning algorithm”. This algorithm gives a one-to-one

correspondence between the recurrent configurations of the Abelian sandpile models

and rooted spanning trees [19]. This bijection is essential for our numerical simulations.

3.1.1.1 Basic properties

Let G = (V ∪ {ρ}, E) be a finite, connected graph, where we allow multiple edges

between vertices. V is a finite set of vertices and the distinguished vertex ρ is called

the sink. E is the set of edges and loop-edges are excluded for simplicity. Let degG(x)

be the degree of the vertex x in the graph G and let x ∼ y denote that vertices x and

y are connected by at least one edge.

Two examples we will be concerned with are as follows. Let V ⊂ Zd be a finite d-

dimensional box: V = VL = [−L,L]d ∩ Zd. All vertices in V c = Zd \ V are identified

to the sink, ρ. All loop-edges created at ρ are removed. This is called the wired

graph induced by V . A second example is obtained, if we take V = VL \ {ρ}, where
ρ = (L, . . . , L), with periodic boundary conditions. This is called the torus graph.

A sandpile is a collection of indistinguishable grains on the vertices in V . A sandpile

is specified by a map η : V → {0, 1, 2, . . . }. We say that η is stable at x ∈ V , if

η(x) < degG(x) (the latter being = 2d when V ⊂ Zd). We say that η is stable, if

η(x) < degG(x), for all x ∈ V . Sometimes, especially in physics, a sandpile is specified

by a map η∗ : V → {1, 2, . . . }. A stable sandpile is then defined as having one of the

values 1, 2, . . . ,degG(x) at all x. This defines the same model after a trivial shift of

coordinates.

If η is unstable (i.e. η(x) ≥ degG(x) for some x ∈ V ), x is allowed to topple which

means that x passes one grain along each edge to its neighbours. When the vertex x

topples, the grains are re-distributed as follows:

η(x) → η(x)− degG(x);

η(y) → η(y) + nxy, y ∈ V, y ̸= x.

where nxy is the number of edges between x and y. In the examples we are concerned

with, we have nxy = 1 for all x, y ∈ V . Grains arriving at ρ are lost, so we do not keep

track of them.

Toppling a vertex may generate further unstable vertices. Given a sandpile ξ on V, we
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define its stabilization

ξ◦ ∈ ΩG := {all stable sandpiles on V} =
∏
x∈V

{0, 1, ...,degG(x)− 1}

by carrying out all possible topplings, in any order, until a stable sandpile is reached.

It was shown by Dhar [4] that the map ξ 7→ ξ◦ is well-defined, that is, the order of

topplings does not matter.

We now define the sandpile Markov chain with inital state η0. The state space is

the set of stable sandpiles, ΩG. Fix a positive probability distribution p on V , i.e.∑
x∈V p(x) = 1 and p(x) > 0 for all x ∈ V . Starting at η ∈ ΩG, choose a random

vertex X ∈ V according to p, add one grain at X and stabilize. The one step transition

of the Markov chain moves from η to (η+1X)◦. Considering the sandpile Markov chain

on a finite connect graph G, there is only one recurrent class [4]. We denote the set of

recurrent sandpiles by RG.

3.1.2 Toppling probability exponent

Consider the stationary sandpile in the box VL = [−L,L]d∩Zd with Dirichlet boundary

conditions. We write PL for the stationary distribution of sandpiles in VL. It was shown

in [1] that, in d ≥ 2, PL has a weak limit P. That means that for any event E that only

depends on finitely many sandpile heights we have PL[E] converges to P[E], as L→ ∞.

Let us add a grain at the origin o, and carry out the resulting avalanche. We are going

to abbreviate the event ‘when a grain is added at o, vertex x topples in the resulting

avalanche’ to simply ‘x topples’. Thus let PL[x topples] denote the probability that x

topples in the avalanche initiated at o in volume VL. Note that the event x topples is

not local, however it still holds that P[x topples] = limL→∞PL[x topples]. This result

was shown the case when d ≥ 3 in Proposition 3.11 and the case when d = 2 in Lemma

5.10 in [3].

It was shown by Dhar [4], [5] that in the stationary sandpile in the box VL = [−L,L]d∩
Zd, the expected number of topplings at x, when a grain is added at o is given by the

Green function GL(o, x) (the inverse of the graph Laplacian). In dimensions d ≥ 3,

this has infinite volume limit

lim
L→∞

GL(o, x) = G(o, x) ∼ cd|x|2−d, as |x| → ∞,

where we write |x| for the Euclidean distance of x from o. Due to Markov’s inequality,

we have P[x topples] ≤ G(o, x). It was shown in [10] that in d ≥ 5 it also holds
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that P[x topples] ≥ cG(o, x) with some constant c = c(d) > 0, and hence in these

dimensions

P[x topples] ≈ |x|2−d. (3.1)

In analogy with other statistical physics models at criticality (such as percolation at

the critical threshold), the authors of [10] conjecture that in all dimensions d ≥ 2 one

has the behaviour

P[x topples] ≈ |x|2−d−η (3.2)

with a critical exponent η = η(d) ≥ 0. Then (3.1) shows that the mean-field value of

η equals 0 (d > 4), and one expects that η(d) > 0 in dimensions d = 2, 3, and that

η(4) = 0 with a logarithmic correction.

In this chapter we carry out a numerical study of the conjecture (3.2) in dimensions

d = 2, 3, and also study the behaviour of PL[x topples]|x|d−2 in d = 5. We also consider

the scaling limit of the toppling probability PL[x topples] in finite volumes when |x|/L
is bounded away from 0.

3.1.3 Related work

To the best of our knowledge, individual toppling probabilities were not studied numer-

ically previously in the literature. Manna [20] and Grassberger and Manna [7] studied

average ‘cluster sizes’ related to our findings. In order to explain what these are, let

tL(x; z) = PL[x topples if a grain is added at z],

where PL refers to probabilities in the stationary state in volume [−L,L]d, with Dirich-

let boundary conditions. Let us write n(z, x) for the random variable that is the number

of topplings at x, given a grain is added at z. The above papers considered numeri-

cal estimates of the expected number of topplings in an avalanche under stationarity

initiated at a randomly chosen site. Denoting this expectation by ⟨s⟩, we have

⟨s⟩ = 1

|VL|
∑
z∈VL

EL[
∑
x∈VL

n(z, x)] =
1

|VL|
∑
z∈VL

∑
x∈VL

GL(z, x) ∼ c(d)L2, (3.3)

as L→ ∞.

They also considered numerical estimates of the expected number of distinct sites

toppled in such avalanches. This is given by an average over the vertex z ∈ VL where

the avalanche is initiated of the expected number of x ∈ VL that topple at least once,
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that is, where n(z, x) ≥ 1. Thus

⟨sdistinct⟩ =
1

|VL|
∑
z∈VL

EL[
∑
x∈VL

1n(z,x)≥1] =
1

|VL|
∑
z∈VL

∑
x∈VL

tL(x; z). (3.4)

In [7] it was found that this scales as ≈ L1.64 in d = 2. In order to confirm that our

methods give results consistent with earlier work, we checked both of the exponents

(3.3) and (3.4) with our simulation methods for lattice sizes comparable to those in

[20] and [7] (L = 64, 128, 256, 512), and found very close agreement with the above

exponents. Another test we performed was to check that our methods yield the exactly

known height probabilities in 2D [23].

In the present chapter we restrict to avalanches started at the origin o, which yield the

somewhat modified average cluster sizes:

⟨s⟩o := EL[
∑
x∈VL

n(o, x)] =
∑
x∈VL

GL(o, x) ∼ c′(d)L2, as L→ ∞. (3.5)

and

⟨sdistinct⟩o := EL[
∑
x∈VL

1n(o,x)≥1] =
∑
x∈VL

tL(x; o). (3.6)

For the latter, we find an exponent somewhat different from that of (3.4), namely

≈ L1.58 in d = 2, when considering lattice sizes L = 2n, 6 ≤ n ≤ 13; see Figure 3-1.

The difference could be due to large avalanches started closer to the boundary having

significantly smaller size than those started at the center of the box.

In 3D, Grassberger and Manna [7] found the behaviour of (3.4) to be very close to

L2, and suggest that the difference from (3.3) could be only a logarithmic correction.

When we restricted to avalanches started at o, we found that (3.6) also differs very little

from (3.5); see Figure 3-2. However, our analysis of individual toppling probabilities

in 3D suggest that η(3) > 0 (≈ 0.09). The reason why this positive exponent does not

affect the average number of topplings could be that the averages are dominated by

very large avalanches.

We also collected data on the number of waves in 2D avalanches initiated at the origin.

Let wL(n) be the probability of observing n waves in a box of radius L. It has been

pointed out in [16] that although the expected scaling (in the limit L→ ∞) is w(n) ∼
n−2, the data is better fit with an exponent larger than 2 (about 2.1 in [16]). In

Section 3.3.2, we present data restricting to avalanches initiated at the middle of the

box, and see that there is better agreement with the theoretically predicted exponent
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Figure 3-1: Log-log plot of average cluster size ⟨s⟩o (black) and average number of
distinct sites toppled ⟨sdistinct⟩o (red) versus lattice size L with Dirichlet boundary
conditions in d = 2, when considering L = 2n with 6 ≤ n ≤ 13 with sample sizes 107,
107, 107, 107, 107, 2.5× 106 and 6× 105, 6× 105 respectively. The dots show the data
points and the straight lines are the least squares fits to these data points. The slope
of the black line is 2, and the slope of the red line is 1.58.
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Figure 3-2: Average cluster size ⟨s⟩o and average number of distinct sites toppled
⟨sdistinct⟩o rescaled by L2 versus logL with Dirichlet boundary conditions in d = 3.
We considered the values L = 32, 64, 128, 256 (with sample sizes 107, 107, 4 × 106 and
4× 105).

2 [19, Eqn. (5.11)].

Grassberger and Manna [7] observed that convergence to stationarity is faster, espe-

cially in high dimensions, starting from a uniformly random sandpile compared to an

empty sandpile. As a partial explanation, in the present chapter we state an asymp-

totic formula for the single site marginals in stationarity (and in the infinite volume

limit) that approaches a uniform distribution as d→ ∞. We give the exact asymptotic

formula for the probabilities of small heights given in terms of the Poisson distribution.

Our asymptotic formula, whose proof will be given in the next chapter, coincides with

the asymptotics of the exact results of Dhar and Majumdar [6] on regular trees of high

degree (see formula (8.2) in [6]).

3.2 Simulation methods

3.2.1 Overview

We use an exact sampling method. By this we mean that we use an algorithm that,

given perfectly random numbers as input, will output a recurrent sandpile configuration
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that is exactly uniformly distributed (which is the steady-state of the model). First, we

generate a uniformly distributed spanning tree (or part thereof) on the underlying graph

using Wilson’s algorithm [25]. This is an efficient algorithm, and good estimates on its

running time are available on cubic lattices. Note that since the number of spanning

trees grows exponentially in the number of vertices, it is not a straightforward task

to sample one uniformly at random. However, the algorithm in [25], described below,

achieves this in polynomial time. Second, we convert the spanning tree into a sandpile

configuration (or part thereof) based on a version of Majumdar and Dhar’s burning

bijection [19]. The sandpile configuration thus obtained is an unbiased sample from the

stationary distribution of the model. This allows us to avoid any issues arising from

having to estimate mixing properties of the underlying Markovian dynamics. A grain is

added to the sampled configuration, and the resulting avalanche computed. The above

is repeated a large number of times to obtain independent samples of avalanches in the

steady-state. Independence allows us to estimate sampling errors accurately, and avoid

issues arising from unknown effects due to correlated samples.

As random number generator, we used the 32 bit version of the Mersenne Twister [21],

that is known to have a very large period (> 219,000). An additional advantage of this

generator is that it allows one to ’jump ahead’ by a given number of steps in the pseudo-

random sequence [8], which allowed us to run computations in parallel with sequences

that were guaranteed to be disjoint (we used jump-ahead with different multiples of

2100 steps on each node).

In 2D only about 44% of configurations yield an avalanche, and in high dimensions

only about fraction 1/2d. Therefore, in dimensions d = 5 and higher we used an

importance sampling technique that allows us to sample only those configurations that

yield an avalanche, and thereby increase the accuracy of our estimates compared to

simple sampling. This is described in Section 3.2.3.

3.2.2 Wilson’s algorithm

Let G = (V ∪{ρ}, E) be a finite connected graph, where ρ plays the role of the sink for

the sandpile. A loop-erased random walk (LERW) from vertex x ∈ V with target set

F ∋ ρ is defined as follows. Consider a simple random walk on G started from x and

stopped at the first time it hits F . Then erase the loops in the path chronologically,

as they are created, yielding a simple path between x and F . (When x ∈ F , we define

this as the trivial path of zero steps.)

Wilson’s algorithm generates a random spanning tree of G as follows. Enumerate the
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vertices in V as V = {x1, . . . , xn}, and set F0 = {ρ}. Run a LERW from x1 with target

set F0, and let γ1 be the path of the LERW. Set F1 = F0 ∪ γ1. Next, run a LERW

from x2 with target set F1, and let γ2 be the path of the LERW. Set F2 = F1 ∪ γ2,
etc. The union of the loop-erased walks γ1, . . . , γn form a random spanning tree of G.

Wilson proved that the tree is uniformly distributed over all spanning trees of G [25],

regardless of the chosen enumeration of V . Wilson also showed that the running time

of the above algorithm is the mean commute time between ρ and a randomly chosen

vertex that is distributed according to the stationary distribution of the simple random

walk on G. Here the commute time between vertices x and y of G is defined to be

ExTy+EyTx, where Tx is the first hitting time of x, and Ex is expectation over random

walk started at x.

In our 2D simulations we used two different boundary conditions: (i) G is the 2L× 2L

torus with ρ equal one of the vertices (periodic boundary conditions); (ii) G is given

by the box VL = [−L + 1, L − 1]2, with ρ equal to the entire boundary of this box

(Dirichlet boundary conditions). In case (i), the mean commute time between ρ and a

random vertex of the torus is of order L2 logL; see [18, Proposition 10.21], and it is of

the same order with the boundary condition (ii); see [18, Proposition 10.7]. Hence the

entire spanning tree can be generated in time O(L2 logL).

In 3D, we only used the Dirichlet boundary condition, and in this case the entire tree

can be generated in time O(L3); see [18, Proposition 10.21].

In 5D and higher, avalanches typically take place on a small subset of the box. (The

upper critical dimension for the model is dc = 4; [24].) Hence on high-dimensional

lattices we only generated those LERWs that were necessary to compute the avalanche;

see Sections 3.2.3 and 3.2.4 below. The time required to compute a single LERW from

the bulk of the lattice to the boundary is O(L2), as this is the number of random walk

steps required. We used hashing [15, Sections 6.5, 6.6] to store the generated random

walk steps, and the resulting LERW, so the memory requirement for a single LERW is

also O(L2). This method of simulation allowed us to investigate the height distribution

at the origin in very high dimensions (d = 32), on lattices of radius up to L = 128, as

this only requires running LERWs from the origin and its neighbours.

3.2.3 Bijection and importance sampling

We first recall Majumdar and Dhar’s burning bijection [19]. Given a sandpile configu-

ration η in volume V , first burn the sink vertex ρ. Then at each step t ≥ 1, burn all
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vertices x such that

η(x) ≥ #{unburnt neighbours after step t− 1}.

Let Bt = {x ∈ V : x burnt at step t}. Connect a vertex in Bt to a neighbour in Bt−1 by

an edge. If there are more than one such neighbours, the choice can be made depending

on the value of η(x), in a bijective fashion. This maps the sandpile η to a spanning

tree. In order to invert the map at a vertex x, it is sufficient to know the length of the

paths in the spanning tree from x and its neighbours to ρ. For this purpose, when we

generate our LERWs, we also record their lengths. Then the tree-distance dist(x, ρ)

from any vertex x to ρ is given by the sum of the length of the LERW γx from x to

its endpoint y in its target set and the tree-distance dist(y, ρ) from y to ρ. (This is

already available when γx is generated, if we record the tree-distance along each LERW

after they were generated.) We checked the one-site marginals obtained with the above

method in 2D against the exactly known values [23], [13], [22], [14] and there was very

close agreement.

We will need the following modification of the above burning rule [23]. Let us burn

vertices as above, with the exception that the origin o is not allowed to burn. This way

there will be a set W ⊂ V , such that o ∈ W , and W did not burn yet. Once only W

is left unburnt, we burn o and complete the process by burning W . The following fact

will be important. Let

qd(i) = P[degW (o) = i], i = 0, . . . , 2d− 1,

where degW (o) denotes the degree of vertex o in the subgraph of V induced by W , in

other words, degW (o) = #{y ∈ W : y ∼ o}. Then conditioned on the random variable

degW (o), we have that the random variable η(o) is uniformly distributed over the set

{degW (o), . . . , 2d− 1} [23]. Then we have

pd(i) = P[η(o) = i] =
i∑

j=0

qd(j)

2d− j
.

Let us modify the bijection based on the above burning process, as follows: from vertices

in V \W , we choose an outgoing edge of the spanning tree as in Majumdar and Dhar’s

original bijection. We choose an outgoing edge from o to the set V \W according to

the value of η(o) ∈ {degW (o), . . . , 2d − 1} in a bijective fashion. Finally, we choose

outgoing edges from vertices in W , again as in the standard burning bijection. In the

resulting spanning tree we have that W equals the set of descendants of o.
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For the purposes of simulating degW (o), we would like to be able to distinguish during

the simulation which vertices are descendants of o. We first note that we are not able

to use the graph distance in the tree to do this. For example, we have

{y ∼ o : y ∈W} ⊂ {y ∼ o : dist(y, ρ) > dist(o, ρ)},

but the containment may be strict: there can exist z ∼ o, z ̸∈W such that dist(z, ρ) >

dist(o, ρ).

Let us define a new distance function dist′ in the tree under which the edge pointing

from o to its neighbour outside W has a new length SHIFT, but all other edges of

the tree still have length 1, where SHIFT will be a sufficient large integer. We choose

SHIFT large enough, so that

{y ∈W : y ∼ o} = {y ∼ o : dist′(y, ρ) > dist′(o, ρ)}.

Therefore, degW (o) will be readily available if the function d′(x) = dist′(x, ρ) can be

easily simulated.

To find d′, we first generated the LERW γo from o to ρ. We added the large constant

SHIFT to its length, and set d′(o) = dist(o, ρ) + SHIFT, and d′(y) = dist(y, ρ) for

all other vertices on γo. Then we generated the remaining LERWs. For a LERW

started at x that hits its target set at y, we computed d′(x) = |γx| + d′(y). Note

here d′(y) is already available, and |γx| is available from the newly simulated LERW.

Similarly, for other vertices z on γx, the distance d′(z) can be computed. The added

shift at o ensures that if x ̸∈ W , then d′(x) = dist(x, ρ), while for x ∈ W , we have

d′(x) = dist(x, ρ) + SHIFT. Choosing SHIFT sufficiently large ensures that

{y ∈W : y ∼ o} = {y ∼ o : d′(y) > d′(o)},

and hence degW (o) is readily available from the simulated spanning tree. In d = 2, 3

we chose SHIFT to be the volume of the box (2L)d, and in d ≥ 5 we chose it to be

the size of the hashtable. Note that d′ can be used directly to find the sandpile heights

under the bijection, regardless whether x is in W or not.

3.2.3.1 5D variance estimate

In dimension d = 5, in order to only sample configurations where avalanches occur,

we disregard the value of η at o, and set it equal to 2d − 1. This biases the toppling

probabilities in a computable way.
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Let Q = degW (o) and P = η(o) be random variables, then, according to the bijection,

the follow three objects are conditionally independent given W : P , the restriction of η

to W \ {o}, the restriction of η to V \W . In particular, the conditional probability of

P given W

PL[P = j|W ] =
1

2d−Q
, 0 ≤ Q ≤ j ≤ 2d− 1. (3.7)

Let the avalanche cluster be Av := {x ∈ V : x topples at least once after adding at o }.
Let Av∗ := {x ∈ V : x topples at least once after setting η(o) = 2d− 1}, the resulting

avalanche of the original configuration η after setting η(o) = 2d − 1. Let pL(i, x) :=

PL[x ∈ Av∗|Q = i].

Since in order for vertex x to be toppled in Av, the origin o has to be toppled, and

hence when x ∈ Av we have P = 2d− 1. On the event P = 2d− 1, the events x ∈ Av

and x ∈ Av∗ are the same. Let Wi be the collection of possible values of W when

Q = i. We have the toppling probability by the law of total probability

PL[x ∈ Av] = PL[x ∈ Av, P = 2d− 1] = PL[x ∈ Av∗, P = 2d− 1]

=
2d−1∑
i=0

∑
w∈Wi

PL[W = w]PL[P = 2d− 1|W = w]PL[x ∈ Av⋆|W = w].

The last term of the right-hand side holds since conditional on {W = V }, {P = 2d−1}
and {x ∈ Av∗} are independent, as x ∈ Av∗ only depends on the restriction of η to

V \ {o}. We have PL[P = 2d− 1|W = w] = 1/(2d− i), for w ∈ Wi.

Then the toppling probability

PL[x ∈ Av] =

2d−1∑
i=0

1

2d− i

∑
w∈Wi

PL[W = w]PL[x ∈ Av⋆|W = w]

=

2d−1∑
i=0

1

2d− i
PL[x ∈ Av∗, Q = i].

In order to estimate this, we check whether x toppled or not in Av∗. Grouping the

result according to the values of Q, this gives us an estimate of pL(i, x). Summing over

all possible values of Q, we estimate the toppling probability.

In order to estimate the standard error of the toppling probability estimate, let Zx =

I[x ∈ Av] be a random variable, PL[Zx = 1|P = 2d−1, Q = i] = pL(i, x). Conditioned

on {Q = i} ∩ {P = 2d − 1}, we define the random variable Yx = 1
2d−iZx. Then the
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adjusted toppling probability

PL

[
Yx =

1

2d− i

∣∣∣Q = i

]
= pL(i, x)

with the expectation and variance conditioned on Q

EL[Yx|Q] =
pL(Q, x)

2d−Q
and VarL(Yx|Q) =

pL(Q, x)(1− pL(Q, x))

(2d−Q)2
.

The toppling probability PL[x ∈ Av] ≃ 1
n

∑n
k=1 Y

(k)
x , where each Y

(k)
x takes values 0

or 1/(2d−Q). Comparing with Zx, we expect that the variance of Yx is smaller than

that of Zx.

Denote qL(i) = PL[Q = i]. Since EL[Yx] = EL[EL[Yx|Q]] = PL[x ∈ Av] = tL(x; o) =:

tL(x) and tL(x) =
∑2d−1

i=0 qL(i)
pL(i,x)
2d−i , we have

VarL(EL[Yx|Q]) = EL

[
pL(Q, x)

2

(2d−Q)2

]
− tL(x)

2,

EL[VarL(Yx|Q)] = EL

[
pL(Q, x)(1− pL(Q, x))

(2d−Q)2

]
,

VarL(Yx) = EL(VarL(Yx|Q)) + VarL(EL[Yx|Q]) = EL

[
pL(Q, x)

(2d−Q)2

]
− tL(x)

2

=

2d−1∑
i=0

qL(i)
pL(i, x)

(2d− i)2
− tL(x)

2 ≤ tL(x)− tL(x)
2 = tL(x)(1− tL(x)).

Based on the above, we recorded
∑2d−1

i=0 q̂L(i)
p̂L(i,x)
(2d−i)2

− t̂L(x)
2, where p̂, q̂ and t̂ denote

simulation estimates. This gives an approximation to the variance of the toppling

probability estimate at x. We obtained q̂L(i) as the number of sample Q = i dividing

by the total number of samples. p̂L(i, x) is the number of samples in which x topples

and Q = i divided by the number of samples in which Q = i. Finally, we obtained

t̂L(x) =

2d−1∑
i=0

p̂L(i, x)q̂L(i).

As a comparison with simple sampling we note the following. Let d = 5, L = 32, and

let x be a neighbour of the origin. Then simple sampling with 1.5 × 106 avalanches

(on 64 nodes) took 16, 901 seconds of CPU time per node, resulting in the estimate
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t̂L(x) = 0.0157 ± 0.0001. With variance reduction, the same precision was obtained

with 1.5× 105 avalanches (on 64 nodes) and took 3455 seconds of CPU time per node,

with a time save of a factor 4.89.

3.2.3.2 Variance of height probability estimates in d = 32

We recorded the estimated probabilities q̂d(i) for i = 0, . . . , 2d− 1 while simulating the

height probabilities p̂d(i) in d = 32. Then we can compute the variance of the height

probability estimates as follows. We have

p̂d(i) =

i∑
j=0

q̂d(j)

2d− j
, i = 0, . . . , 2d− 1.

Since the estimates q̂d(j) are almost independent, except for the constraint
∑2d−1

j=0 q̂d(j) =

1, the variance of the height probability estimates is

Var(p̂d(i)) ≃
i∑

j=0

1

(2d− j)2
Var(q̂d(j)) =

i∑
j=0

1

(2d− j)2
q̂d(j)(1− q̂d(j))

n
,

where i = 0, 1, . . . , 2d− 1 and n is the number of samples generated.

3.2.4 Avalanche simulation

Using the Abelian property of the model, Ivashkevich, Ktitarev and Priezzhev [9] intro-

duced a special order of topplings of non-stable vertices during an avalanche. We use

this to generate the avalanche in d = 2, 3 and 5 as follows. First, adding a grain to o, if

o is unstable, we topple it once and then topple all possible vertices without toppling o

a second time. The toppled vertices form the first wave of topplings in the avalanche.

Then, we allow the vertex o to topple a second time creating a second wave and so on.

The process terminates when o becomes stable. Hence, we obtain the representation

of the avalanche as a sequence of waves. In each wave, no vertex can topple more than

once. We made use of this property as follows: whenever a vertex reached the height

2d, we pushed it onto a stack containing vertices to be toppled, and popped from this

stack until it became empty.

The avalanches are expected to behave differently in dimensions d ≥ 5, compared to

d = 2, 3. Long loops are unlikely, and the loop erased random walk behaves similarly to

the random walk, in particular it scales diffusively [17, Section 7.7]. Also, independent

random walks starting from two neighbouring vertices are likely to either meet after a
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few steps or not to meet at all, i.e. they are likely to connect to the sink with disjoint

paths. Considering the Dirichlet boundary conditions, the number of vertices in d

dimensions is O(Ld) and the number of steps that the random walk takes to exit a box

is O(L2). In high dimensions, the order of the number of vertices grows much faster

than that of the number of steps of the random walk. Therefore, it is very inefficient

to store the entire box, since we are likely to only use a small part of the box. The

idea is to only generate loop erased random walks when they are needed. The way to

do this is the following.

First, the loop erased random walks starting from o and its neighbours are generated.

This allows the computation of the random variable Q. We then set η(o) = 2d − 1.

We then compute the sand heights of the neighbours by running loop erased random

walks starting from their neighbours. This allows the toppling of o to be carried out.

We repeat the above steps as long as there are topplings.

It would be time-consuming to search every step of previous loop-erased walks to check

whether they were hit or not. Instead, we do the following to see when a random walk

hits previous paths. We used the technique of hashing [15, Sections 6.5, 6.6] to store

the steps of the walk in such a way that it is easy to locate intersections. For a hash

function f : VL → {0, 1, . . . ,HASHSIZE − 1}, if we have a vertex x ∈ VL, we apply a

function f(x) that assigns a memory location. The first walk will occupy some part of

this memory space, and when we run a second walk and so on, we have to compute

f of the current location of the walk and check if that memory location is already

used or not. If yes, the current walk hits a previous walk. If not, we will continue the

walk. One of the difficulties is that it can happen that f(x) = f(y) for distinct x, y,

that is, the random walk passing through another space point has the same location

assigned to it in the memory. We use linking and a separate table to keep track of the

used memory spaces. This will be discussed in more detail after explaining the hash

functions. See [15, Sections 6.5,6.6] for a detailed description of the idea of hashing.

We first used a hashing function g based on projecting the box [−L,L]d onto a torus

with size length N , with a linear ordering of the vertices of the torus.

g(x) =
d∑

i=1

(xi mod N)×N i−1,

where the size of the hashtable was HASHSIZE = Nd.

Experimentally, the following hash function f tends to be more efficient than the simple

projection method. Hence, our simulation used a hash function (called function hash)
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of the form

f(x) =
d∑

i=1

xi ∗mi−1 (mod HASHSIZE)

for a point x in the box {1, . . . , 2L − 1}d, where L,m and HASHSIZE are powers of

2. Setting L,m and HASHSIZE as powers of 2 and writing them in binary numbers

allows one to compute f efficiently.

We used two arrays to manage the hashing algorithm. One is called hashtab with size

HASHSIZE to store the hash values already used by the hash function f . The other

one is the vertexdata with size HASHSIZE to store the positions, sandpile and random

walk data of the corresponding vertices. vertexdata is a list of all vertices visited by

random walks so far.

For instance, see Figure 3-3. For vertex 1 (the origin o), we first use the hash function

f to compute a hash value, and store the hash value in the array hashtab. Then we

install vertex 1 in the first node of the array vertexdata. For vertex 2, we repeat similar

steps by first using the hash function f to compute a hash value, and storing the hash

value in the array hashtab. Then we install vertex 2 in the second node of the array

vertexdata. When a collision happens, i.e. f(x) = f(y) for some vertices x ̸= y, we need

to distinguish x and y in the table vertexdata. This is shown in the third picture of

Figure 3-3. Say that vertex k has the same hash value as vertex 2. Then vertex k will

map to the same value as vertex 2 in hashtab. Checking whether the actual coordinates

are the same or not, we find that y is different from x. We place a link from vertex 2

in vertexdata to the next available free node. When a further vertex, say vertex l, is

mapping to the same place as vertices 2, k in hashtab, we place an additional link from

vertex k to the next available free node in vertexdata. We repeat the above steps until

all the random walk steps needed for the avalanche have been computed, unless the

vertexdata is full, in this case, the sample will be discarded.

In high dimension, avalanches are 4 dimensional and an avalanche that reaches all the

way to the boundary has about O(L4) vertices. Each of these L4 vertices will have its

own random walk. This means we need at most O(L6) random walk steps to be stored,

independently of the dimension. We will discuss this further in Section 6.2.
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hashtab vertexdata

vertex 1

hashtab vertexdata

vertex 1

vertex 2

hashtab vertexdata

vertex 1

vertex 2

vertex k

freevertex

Figure 3-3: This figure explains how the hashing algorithm is implemented.
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log P[x topples]

Figure 3-4: A heat-plot of the logarithm of the toppling probability with Dirichlet
boundary conditions in d = 2 for a system with L = 4096. The values are shown for
vertices in the box [−256, 256]2.

3.3 2D results

3.3.1 Toppling probabilities in the bulk

We simulated the toppling probability both with Dirichlet and periodic boundary con-

ditions. We found similar behaviour in different radial directions; see Figure 3-4 and

3-5. In this thesis, we included an extra rainbow plot that demonstrates the phe-

nomenon more clearly at various radial distances from the origin o. It appears that

asymptotically, the toppling probability only depends on the Euclidean distance from

the origin (in the infinite volume limit). In the case of periodic boundary conditions,

with the largest system size considered L = 4096, we occasionally encountered some

extremely long avalanches.

Assuming the behaviour t(x) := P[x topples] ∼ c |x|−η for |x| ≫ 1 (that is, in the

infinite volume limit L→ ∞), we want to estimate η = η(2). Let t̂L(x) be the number

of samples in which x topples divided by the total number of samples. A log-log plot

of the numerical estimates t̂L(x) are shown in Figure 3-6.

We have attempted to fit a finite-size scaling form tL(x) ≈ c |x|−a f2(|x|/L1/ν), with
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log P[x topples]

Figure 3-5: A rainbow-plot of the logarithm of the toppling probability with Dirichlet
boundary conditions in d = 2 for a system with L = 4096. The values are shown for
vertices in the box [−256, 256]2.
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Figure 3-6: The logarithm of the toppling probabilities against the logarithm of |x|’s
with Dirichlet boundary conditions in d = 2 for systems with L = 512 (blue), 1024
(yellow), 2048 (green), 4096 (red), and 8192 (black) with sample sizes 6× 107, 3× 107,
7.5× 106, 4× 106 and 106 respectively. The probabilities are shown for vertices in the
positive x-axis up to L− 1.
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Figure 3-7: The estimates t̂L(x) rescaled by the |x|â, where â = 0.43 is obtained
from finite-size scaling for 50/512 ≤ |x/L| ≤ 1, when considering Dirichlet boundary
conditions in d = 2 for systems with L = 512 (blue), 1024 (yellow), 2048 (green), 4096
(red), and 8192 (black). Sample sizes are as in Figure 3-6.

a scaling function f2, to the data. For this, we minimized the sum of squares of the

pairwise differences between tL(x)|x|a and tL′(x′)|x′|a, with |x|/L1/ν = |x′|/(L′)1/ν ,

normalized by the standard error of the difference. First, this clearly showed that we

must have ν = 1. Second, we obtained a reasonable collapse of the data for â = 0.43,

when small |x| values (|x/L| < 50/512) were excluded from the least squares sum; see

Figure 3-7.

For all pairs of L and L′, where L ̸= L′ and L,L′ ∈ {29, . . . , 213}, we sum over x on the

positive x-axis where |x/L| ≥ 50/512 (excluded small |x| values)

∑
L̸=L′

∑
x

(tL(x)|x|a − tL′(x′)|x′|a)2√
σ2x,L + σ2x′,L′

where σx,L is the standard error for tL(x)|x|a and σx′,L′ is the standard error for

tL′(x′)|x′|a. |x′| is the nearest integer to |x|(L′)1/ν/L1/ν .

We considered the above sum is dependant on ν and a. First we found when ν is

different from 1 (ν < 1 or ν > 1) the sum is greater than that when ν = 1. Setting

ν = 1, we found the minimum as a function of a, for â = 0.43.
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Figure 3-8: The logarithm of the toppling probability against the logarithm of |x| with
Dirichlet boundary conditions in d = 2 for a systems with L = 8192 (black dots). The
probabilities are shown for vertices in the positive x-axis up to L− 1. The line of best
fit with slope 0.42 is from the least squares method (red line).

Alternatively, a least squares fit of log t̂L(x) against log |x|, for vertices x along the

positive x-axis with 20 ≤ |x| ≤ 150 gives the estimate η(2) ≈ η̂(2) = 0.42; see Figure

3-8. This minimizes the sum∑
20≤|x|≤150

(log t̂L(x)− η(2) log |x| − c)2,

where we do not care about the value of c. We choose the range of |x| by visualising

the graph plot. We used the function lsfit in R to obtain the least squares estimate.

Multiplying t̂L(x) by |x|η̂ we found little deviation from a constant; see Figure 3-9.

We also simulated the toppling probability with periodic boundary conditions, and this

gave similar results. The agreement with the power law appears to extends to a longer

interval, and the estimated exponent, based on a least squares fit to the log-log data

over 20 ≤ |x| ≤ 500, gave η̂(2) ≈ 0.41. Figure 3-10 shows the toppling probabilities

rescaled by |x|0.41 in systems of size L = 512, 1024, 2048, 4096. Figure 3-11 compares

the L = 4096 data rescaled with varying η.

The least squares fit of log t̂L(x) against log |x|, for all vertices x with Euclidean distance
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Figure 3-9: The toppling probability with Dirichlet boundary conditions in a system
with L = 8192, rescaled by |x|η̂ (η̂ = 0.42) against the logarithm of |x|, where x is taken
along the positive x-axis between 1 and L − 1. The black curve connects all integer
points with x between 0 and L − 1. The error bars show ±2 standard deviations (for
every power of 2 only, for readability). The number of samples taken was 106.
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Figure 3-10: Rescaled toppling probabilities against the logarithm of |x| with periodic
boundary conditions in d = 2 for systems with L = 512 (yellow), 1024 (green), 2048
(red), and 4096 (black) (with sample sizes 2 × 107, 1.5 × 107, 3 × 106 and 7.5 × 105).
The probabilities are shown for vertices in the positive x-axis up to L.

20 ≤ |x| ≤ 100 gives an estimate η̂′(2) ≈ η̂(2), that is, η̂′(2) ≈ 0.42. Multiplying t̂L(x)

by |x|η̂′ the graph settles to be horizontal for moderate values of |x|; see Figure 3-12.

In summary, we have estimates of toppling probabilities along the positive x-axis,

both for Dirichlet and periodic boundary conditions. The least squares fit for the

moderate values of x with Dirichlet boundary condition gives the exponent 0.42; see

Figure 3-8. In addition, the finite-size scaling with Dirichlet boundary condition gives

the exponent 0.43; see Figure 3-7. For periodic boundary conditions, rescaling the

toppling probabilities with η = 0.41 and L = 512, 1024, 2048, 4096 is shown in Figure

3-10. As there is little dependence on L for moderate values of x, this suggests that

this plot shows the results close to the infinite volume limit. Rescaling the toppling

probabilities with different values of η = 0.38, 0.405, 0.425 and L = 4096 is shown in

Figure 3-11. Both the curves for η = 0.405, 0.425 are reasonably flat for moderate

values of x.

Based on the above, we make the following conjecture for the toppling probability in

the infinite volume limit L→ ∞:

P[x topples] = |x|−η+o(1),
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Figure 3-11: Toppling probabilities against the logarithm of |x| with periodic boundary
conditions in d = 2 for a system with L = 4096 rescaled by |x|η with η = η̂ ≈ 0.425
(black), η = 0.405 (blue), η = 0.38 (red). The probabilities are shown for vertices in
the positive x-axis up to L. Error bars (green) shown for |x| a power of 2.
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Figure 3-12: The toppling probability with Dirichlet boundary conditions in d = 2 for
a system with L = 4096, rescaled by |x|η̂ (η̂ = 0.42). The probabilities are shown for
all vertices in a disk of radius 100.
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Figure 3-13: The difference of logarithms for L = 512 (green),1024 (red), and 2048
(black) in d = 2. A horizontal line with y = â ≈ 0.44 (black line).

where η = η(2) = 0.4, to 1 d.p. However, we cannot make a conclusion for the second

decimal place just based on numerical results.

Toppling probabilities in the scaling limit. Finally, we comment on the toppling prob-

ability of those vertices x whose distance from the origin is of the same order as the

system size L. Assume that the toppling probability for x within a system of size L

scales as tL(x) = |x|−af2(x/L) with some exponent a and a scaling function f2. Then

we can estimate â as follows. The toppling probability for 2x in a system of size 2L is

t̂2L(2x) = |2x|−âf2(2x/2L) = 2−â|x|−âf2(x/L) = 2−ât̂L(x). A plot of the difference of

logarithms
1

log 2
(log tL(x)− log t2L(2x)) ≈ â.

is shown in Figure 3-13 for L = 2048, 1024, 512. The data is affected by imprecise

estimates of avalanches near the boundary. Hence, in estimating â, we considered the

mean difference over 1/2 ≤ |x|/L ≤ 3/4. Using the data for L = 2048 this gives

â = â(2) = 0.44± 0.05, which is not far from the exponent obtained in the bulk.

Rescaling by |x|â, where â = 0.43 was obtained from the finite-size scaling analysis,

and plotting against |x|/L, yields the graph in Figure 3-14. The graph suggests that

as long as |x|/L is bounded away from 0, the rescaled quantity tL(x)|x|a has a scaling
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Figure 3-14: The rescaled toppling probability with Dirichlet boundary conditions in
d = 2 for systems with L = 512 (yellow), 1024 (green), 2048 (red), and 4096 (black).
The probabilities are shown for points on the positive x-axis with 50/512 ≤ |x/L| ≤ 1.

limit f2(y), as x/L→ y ∈ [−1, 1]2.

3.3.2 The number of waves in 2D

In this section we present results on the number of waves in avalanches initiated at the

origin. The distribution of the number of waves is the most interesting in 2D, since the

average number of waves diverges logarithmically as L→ ∞:

EL[number of waves] = GL(o, o) ∼
1

2π
logL, as L→ ∞. (3.8)

Recalling that n(o, o) denotes the number of topplings at the origin o caused by addition

of a grain at the origin o, let us put

wL(n) = PL[n(o, o) = n], w(n) = lim
L→∞

wL(n).
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Figure 3-15: Log-log plot of the probability of observing n waves in a box of radius
L, wL(n), versus 1 ≤ n ≤ 50 with Dirichlet boundary conditions in d = 2, when
considering L = 8192.

(The existence of the limit defining w(n) is known rigorously; see [3].) Let us define

the complementary distribution functions

WL(n) = PL[n(o, o) ≥ n] =
∑
m≥n

wL(m)

W (n) = P[n(o, o) ≥ n] =
∑
m≥n

w(m).

Assuming that w(n) decays as a power law: w(n) ≈ n−δ, and from the divergence of

the mean as in (3.8), it has been predicted that W (n) ≈ n−1 (and hence δ = 2); see

[19, Eqn. (5.11)]. Our simulation results found close agreement with this exponent.

For L = 8192 and 5 ≤ n ≤ 50, a least square fit to log ŵ(n)/ log n gives a slope

approximately −2.04; see Figure 3-15.

In Figure 3-16 we show for L = 8192 the rescaled quantity wL(n)n
2. Error bars are

shown up to n = 200. Beyond this bound, avalanches with particular values of n are

too infrequent to estimate from our data. There is no clear indication of the rescaled

values settling down to a constant for moderate n.

The data is a lot smoother for WL(n), and the errors for the rescaled quantity WL(n)n
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Figure 3-16: wL(n)n
2 with Dirichlet boundary conditions in d = 2, when considering

L = 8192, against log n for 1 ≤ n ≤ 2000. Error bars show ±2 standard deviations.
The sample size is 106.

are also smaller. In Figure 3-17 we show for L = 8192 the rescaled quantity WL(n)n

against log n for 1 ≤ n ≤ 2000. It is apparent that the graph does not settle to

a constant value for moderate values of n. Therefore, if W (n) indeed satisfies an

asymptotic of the form W (n) ∼ cn−1, convergence to this asymptotic is reached only

for very large values of L and n. It has been pointed out in [7] that the simulation data

in that paper better fits with δ ≈ 2.1. However, any exponent > 2 can be ruled out, as∑
n≥1

nw(n) = lim
L→∞

GL(o, o) = ∞. (3.9)

An alternative possibility is that the scaling behaviour of WL(n) depends in a more

complicated way on L and n. For example, it is consistent with (3.9) to have W (n) ∼
cn−1(log n)−β with some 0 < β < 1. Note that we cannot have WL(n) satisfy this

behaviour with a cut-off at some Lσ, since

Lσ∑
n=2

1

n logβ n
∼ c(σ) (logL)1−β.

Hence a logarithmic correction of the form above would require that for finite L there

is sufficient weight on very large avalanches (whose size diverges with L) to yield
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Figure 3-17: WL(n)n with Dirichlet boundary conditions in d = 2, when considering
L = 8192, against log n for 1 ≤ n ≤ 2000. Error bars show ±2 standard deviations.
The sample size is 106.

GL(o, o) ∼ (2π)−1 logL. In Figure 3-18, we show the effect of scaling the data with dif-

ferent powers (log n)β. Scaling with β = 0.4 describes the data fairly well for moderate

values of n. However, our conclusion from the above is that understanding the scaling

of w(n) or W (n) requires further work.

3.4 3D results

In 3D we found that with periodic boundary conditions there were some extremely

long avalanches. In this chapter we only include our data with Dirichlet boundary

conditions. Assuming the behaviour t(x) ∼ c |x|−1−η in the infinite volume limit L →
∞, we want to estimate η = η(3). A log-log plot of the numerical estimates t̂L(x) are

shown in Figure 3-19.

Fitting a finite size-scaling form tL(x) = |x|−1−af3(|x|/L) yielded the estimated expo-

nent â ≈ 0.0, when small values of x (those with |x|/L < 5/32) were excluded; see

Figure 3-20.

On the other hand, for the largest system size (L = 256), the least squares fit of

log t̂L(x) against log |x|, for vertices x along the positive x-axis with 7 ≤ |x| ≤ 55 gives
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Figure 3-18: WL(n)n (log n)
β, with Dirichlet boundary conditions in d = 2, when

considering L = 8192, for β = 0.3 (red), β = 0.4 (black), β = 0.5 (blue). The
horizontal axis shows log n for 1 ≤ n ≤ 2000.

0 1 2 3 4 5

−
1

4
−

1
2

−
1

0
−

8
−

6
−

4

Toppling probabilities in 3D

log |x|

lo
g

 P
[x

 t
o

p
p

le
s
]

Figure 3-19: The logarithm of the toppling probabilities against the logarithm of |x|’s
with Dirichlet boundary conditions in d = 3 for systems with L = 32 (yellow), 64
(green), 128 (red), and 256 (black) (with sample sizes 8 × 107, 2 × 107, 4.5 × 106,
4× 106).
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Figure 3-20: The estimates t̂L(x) rescaled by the |x|1+â, where â = 0.0 is obtained from
finite scaling for 5/32 ≤ |x/L| ≤ 1, when considering Dirichlet boundary conditions in
d = 3 for systems with L = 32 (yellow), 64 (green), 128 (red), and 256 (black).

the somewhat different estimate η(3) ≈ η̂(3) = 0.09; see Figure 3-21.

The estimate t̂L(x) rescaled by |x|1+η̂ appear to approach a constant with little devia-

tion; see Figure 3-22.

Based on the above, we believe that the exponent describing the toppling probability in

the infinite volume limit differs from the one describing it in the scaling limit x/L→ y.

We make the following conjecture:

P[x topples] = |x|−1−η+o(1)

with η = η(3) ≈ 0.1.

Toppling probabilities in the scaling limit. Next we consider the toppling probability

in the scaling limit (at x whose distance from the origin is of the same order as L).

Rescaling by |x|1+â, where â = 0.0 was obtained from the finite-size scaling analysis,

and plotting against |x|/L, yields the graph in Figure 3-23. The graph suggests that as

long as |x|/L is bounded away from 0, the rescaled quantity tL(x)|x|1+a has a scaling

limit f3(y), as x/L→ y ∈ [−1, 1]3.

From the assumed scaling form tL(x) = |x|−1−af3(x/L), with some exponent a and
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Figure 3-21: The logarithm of the toppling probability against the logarithm of |x|
with Dirichlet boundary conditions in a systems with L = 256 (black dots). The line
of best fit with slope 1 + η̂, where η̂ = 0.09, from the least squares method (red line).

a scaling function f3. We can estimate â similarly as in d = 2. The difference of

logarithms
1

log 2

(
log t̂L(x)− log t̂2L(2x)

)
≈ â.

We show these differences in Figure 3-24 for L = 128, 64, 32, together with the hori-

zontal line corresponding to â = 0.0.

The above raises the question: if you rescale with |x|, does the limit exist? In other

words: is there a function f3 : [−1, 1]3 → R such that

|x|PL[x topples] ∼ f3(x/L), as L→ ∞?

3.5 High-dimensional results

3.5.1 Toppling probability simulations in 5D

In dimensions d ≥ 5, it has been proved by Járai, Redig and Saada [10] that η = η(d) =

0, in the sense that

c|x|2−d ≤ P[x topples] ≤ C|x|2−d.
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Figure 3-22: The toppling probability with Dirichlet boundary conditions in systems
with L = 32 (yellow), 64 (green), 128 (red), and 256 (black), rescaled by |x|1+η̂, where
x is taken along the positive x-axis between 1 and 55, and η̂ ≈ 0.1. The error bars
show ±2 standard deviations of the toppling probability with L = 256 (for every 3-rd
point only, for readability). Sample sizes are same as in Figure 3-19.
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The probabilities are shown for points on the positive x-axis with 5/32 ≤ |x/L| ≤ 1.

0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Approximate value of a

|x|/L

[l
o

g
 t

L
(x

) 
−

 l
o

g
 t

2
L
(2

x
)]

 /
 l
o

g
 2

Figure 3-24: The difference of logarithms in d = 3 for L = 32 (green), 64 (red), and
128 (black). A horizontal line with y = 1 (black line), corresponding to â = 0.0.
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Based on this we can expect that the toppling probability (in the infinite volume limit

L→ ∞) rescaled by |x|d−2 is asymptotic to a constant as |x| → ∞.

Figure 3-25 shows our simulation results which appear consistent with this conjecture.

There are approximately 400 samples discarded out of 4× 107 due to a full hashtable.

The discarded data affects the toppling probability estimate by at most 10−5 as an

additive error. This estimated error 10−5 is an upper bound only, and we expect the

actual error to be smaller since the discarded avalanche has to hit the vertices on the

positive x-axis. The effects of discarded samples on small values of |x| is small, but

the effects will increase as |x| increases. The discarded data may affect the probability

more when |x| is near the boundary.

In the following, we argue the effect heuristically due to discarded data is small, and

10−5 may be taken as a relative error, at least for a moderate value of |x|. We denote

the number of random walk steps used to generate the whole avalanche by |RW|, just
in this section. In the simulation, we used the size of the hashtable as L5, which is

1/32 times the size of the box [−L,L]5. Then we have

PL [x ∈ Av] = PL

[
x ∈ Av, |RW| ≤ L5

]
+PL

[
x ∈ Av, |RW| > L5

]
.

When x is not too close to the boundary, let us consider the correlation between the

events that the vertex x is in the avalanche and that the number of random walk steps

|RW| is greater than L5. As a simplification, we replace the event that x topples in

the whole avalanche with the event x topples in a typical wave. Then using Wilson’s

algorithm to generate a wave, we first have a loop-erased random path from x to

the origin o. The typical number of vertices connected to this path is O(|x|4); this

case typically involves O(|x|)6 random walk steps in total. Hence, for the event that

|RW| > L5 to occur we need L5 = |x|6. Assuming this is not the case for |x|, we have

the events PL [x ∈ Av] and PL

[
|RW| > L5

]
are roughly independent and the event

PL

[
|RW| > L5

]
has probability 10−5 from our simulation results.

Since GL(x) ≍ L2−dk/L where x = L − k and k = o(L), we expect the toppling

probability rescaled by |x|d−2 tends to 0 as |x|/L tends to 1. Proposition 1.5.9 in [17]

states the results for a ball with radius L. We expect similar results in a box [−L,L]d

for the part near a flat boundary. The probability would be even smaller when near a

corner of a box. Hence we expect a drop in the rescaled toppling probabilities when |x|
is near the boundary in Figure 3-25, and the discarded samples will accentuate this.
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Figure 3-25: The toppling probability in the box with radius L = 32 in 5D, rescaled
by |x|d−2, where x is taken along the first coordinate axis. The error bars show ±2
standard deviations. The number of samples taken was 4 × 107, with approximately
400 samples discarded due to a full hashtable.

3.5.2 Asymptotic height probabilities

Recall that pd(i) = P[η(o) = i] denotes the height probability in d dimensions (in the

infinite volume limit L → ∞). The following theorem states the asymptotic form of

the height probabilities as d→ ∞. The proof of this theorem, that relies on analyzing

Wilson’s algorithm on the infinite graph Zd, will be stated in Chapter 4.

Theorem 3.5.1. (i) For 0 ≤ i ≤ d1/2, we have

pd(i) =
i∑

j=0

e−1 1
j!

2d− j
+O

( i

d2

)
=

1

2d

i∑
j=0

e−1 1

j!
+O

( i

d2

)
.

(ii) If d1/2 < i ≤ 2d− 1, we have

pd(i) = pd(d
1/2) +O(d−3/2).

(iii) As a consequence of (i) and (ii), we have pd(i) ∼ (2d)−1, if i, d→ ∞.

The asymptotic formula appearing in part (i) of the theorem is the same as obtained by

Dhar and Majumdar [6] on the Bethe lattice with large coordination number. Figure
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Figure 3-26: Simulated height probabilities (black dots) in d = 32 for a system with
L = 128 (with sample size 4× 106), and the asymptotic formula (red pluses).

3-26 compares the formula to simulations in d = 32 in the finite volume L = 128.

3.6 Chapter outlook

While in d = 32 we only looked at the height probability, one could consider the entire

avalanche using the same methods with a smaller box size L. As we discuss in Chapter

6, the memory requirement is of the order L6 in high dimensions, where the constant

multiple depends on d as well. The exit of the random walk is of the order dL2.

Some theoretical questions are inspired by these simulations discussed in Chapter 4

and 5.

Our simulation method was based on the Wilson’s algorithm and the burning bijection

between recurrent sandpiles and spanning trees. Mersenne Twister [21] was used to

generate a 32 bits long random number was involved in generating the loop erased

random walks. The High Performance Computing Cluster (HPC) was used to compute

models and simulations which desktop computers or laptops do not have the capacity

or capability to compute.

The method could extend to 4D with slight modification. Further possible future work

will be discussed in Chapter 6.
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Chapter 4 will prove for the asymptotic height formula in Theorem 3.5.1. Chapter 5

will consider the aspect of the hashing. In high dimensions, the loop-erased random

walk visits on O(L2) vertices, the same as the simple random walk generating it. Con-

sider a simplified hashing function that projects this walk to the N -torus where Nd

is constant times L2. We prove for the projected random walk that it converges to

random interlacement.
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Chapter 4

Asymptotic height distribution

Chapter overview

This chapter is based on [11]. According to Aldous’ results [1], in the uniform span-

ning tree on certain d-regular graphs, the degree for a vertex can be approximated as

1 + Poisson(1) for d large. This suggests that the sandpile height on Zd can also be

approximated using Poisson(1). We explore this in this chapter. We saw in Chapter

3 that the asymptotic formula is very close to the numerical results already in a finite

box in d = 32.
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4.1. INTRODUCTION

Abstract

We prove the asymptotic formula for the single site height distribution of Abelian

sandpiles on Zd as d → ∞ in terms of Poisson(1) probabilities. We provide error

estimates.

4.1 Introduction

We consider the Abelian sandpile model on the nearest neighbour lattice Zd; see Section

4.1.1 for definitions and background. Let P denote the weak limit of the stationary

distributions PL in finite boxes [−L,L]d ∩ Zd. Let η denote a sample configuration

from the measure P. Let pd(i) = P[η(o) = i], i = 0, . . . , 2d − 1, denote the height

probabilities at the origin in d dimensions.

We now recall Theorem 3.5.1, which is our main result that states the asymptotic form

of these probabilities as d→ ∞.

Theorem 4.1.1. (i) For 0 ≤ i ≤ d1/2, we have

pd(i) =
i∑

j=0

e−1 1
j!

2d− j
+O

(
i

d2

)
=

1

2d

i∑
j=0

e−1 1

j!
+O

(
i

d2

)
. (4.1)

(ii) If d1/2 < i ≤ 2d− 1, we have

pd(i) = pd(d
1/2) +O(d−3/2).

(iii) As a consequence of (i) and (ii), we have pd(i) ∼ (2d)−1, if i, d→ ∞.

The appearance of the Poisson(1) distribution in the above formula is closely related

to the result of Aldous [1] that the degree distribution of the origin in the uniform

spanning forest in Zd tends to 1 plus a Poisson(1) random variable as d → ∞. Indeed

our proof of (4.1) is achieved by showing that in the uniform spanning forest of Zd,

the number of neighbours w of the origin o, such that the unique path from w to

infinity passes through o is asymptotically the same as the degree of o minus 1, that

is, Poisson(1).

In Chapter 3 we compared the formula (4.1) to numerical simulations in d = 32 on a

finite box with L = 128, and there is excellent agreement with the asymptotics already

for these values.

Other graphs where information on the height distribution is available are as follows.
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Dhar and Majumdar [7] studied the Abelian sandpile model on the Bethe lattice and

the exact expressions for various distribution functions including the height distribution

at a vertex were obtained using combinatorial methods. For the single site height

distribution they obtained (see [7, Eqn. (8.2)])

pBethe,d(i) =
1

(d2 − 1) dd

i∑
j=0

(
d+ 1

j

)
(d− 1)d−j+1.

If one lets the degree d → ∞ in this formula, one obtains the form in the right hand

side of (4.1) for any fixed i (with 2d replaced by d).

Exact expressions for the distribution of height probabilities were derived by Papoyan

and Shcherbakov [20] on the Husimi lattice of triangles with an arbitrary coordination

number q. However, on d-dimensional cubic lattices of d ≥ 2, exact results for the

height probability are only known for d = 2; see section 2.1.3 [18], [22], [13], [14], [21].

4.1.1 Definitions and background

Sandpiles are a lattice model of self-organized criticality, introduced by Bak, Tang and

Wiesenfeld [3], and have been studied in both physics and mathematics. See the surveys

[10], [15], [23], [9], [6]. Although the model can easily be defined on an arbitrary finite

connected graph, in this chapter we will restrict to subsets of Zd.

Recall that we denote VL = [−L,L]d ∩ Zd as a box of radius L, where L ≥ 1. For

simplicity, we suppress the d-dependence in our notation. We let GL = (VL ∪ {ρ}, EL)

denote the graph obtained from Zd by identifying all vertices in Zd \ VL that becomes

ρ, and removing loop-edges at ρ. We call ρ the sink. A sandpile η is a collection of

indistinguishable particles on VL, specified by a map η : VL → {0, 1, 2, . . . }.

We say that η is stable at x ∈ VL, if η(x) < 2d. We say that η is stable, if η(x) < 2d,

for all x ∈ VL. If η is unstable (i.e. η(x) ≥ 2d for some x ∈ VL), x is allowed to topple

which means that x passes one particle along each edge to its neighbours. When the

vertex x topples, the particles are re-distributed as follows:

η(x) → η(x)− 2d;

η(y) → η(y) + 1, y ∈ VL, y ∼ x.

Particles arriving at ρ are lost, so we do not keep track of them. Toppling a vertex

may generate further unstable vertices.
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Given a sandpile ξ on VL, we define its stabilization

ξ◦ ∈ ΩL := {all stable sandpiles on VL} = {0, 1, . . . , 2d− 1}VL

by carrying out all possible topplings, in any order, until a stable sandpile is reached.

It was shown by Dhar [5] that the map ξ 7→ ξ◦ is well-defined, that is, the order of

topplings does not matter.

We now recall the sandpile Markov chain. The state space is the set of stable sandpiles

ΩL. Fix a positive probability distribution p on VL, i.e.
∑

x∈VL
p(x) = 1 and p(x) > 0

for all x ∈ VL. Given the current state η ∈ ΩL, choose a random vertex X ∈ V

according to p, add one particle at X and stabilize. The one step transition of the

Markov chain moves from η to (η + 1X)◦. Considering the sandpile Markov chain on

GL, there is only one recurrent class [5]. The set of recurrent sandpiles is denoted by

RL and the invariant distribution PL of the Markov chain is uniformly distributed on

RL.

Majumdar and Dhar [19] gave a bijection between RL and spanning trees of GL. This

maps the uniform measure PL on RL to the uniform spanning tree measure USTL.

A variant of this bijection was introduced by Priezzhev [22], and is described in more

generality in [12], [8]. The latter bijection enjoys the following property, that we will

exploit in this chapter. Orient the spanning tree towards ρ, and let πL(x) denote the

oriented path from a vertex x to ρ. Let

WL = {x ∈ VL : o ∈ πL(x)}.

Then we have that

conditional on degWL
(o) = i, the height η(o) is uniformly

distributed over the values i, i+ 1, . . . , 2d− 1.
(4.2)

This has the following consequence for the height probabilities. Let qL(i) = USTL[degWL
(o) =

i], i = 0, . . . , 2d− 1. Then

pL(i) := PL[η(o) = i] =

i∑
j=0

qL(j)

2d− j
.

The measuresPL have a weak limitP = limL→∞PL [2], and hence p(i) = limL→∞ pL(i)

exist, i = 0, . . . , 2d− 1. Although the qL(i) depend on the non-local variable WL, one

also has that q(i) = limL→∞ qL(i) exist, i = 0, . . . , 2d − 1; see [12]. In fact, q(i) is
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given by the following natural analogue of its finite volume definition. Consider the

uniform spanning forest measure USF on Zd; defined as the weak limit of USTL; see

[16, Chapter 10]. Let π(x) denote the unique infinite self-avoiding path in the spanning

forest starting at x, and let

W = {x ∈ Zd : o ∈ π(x)}.

Then q(i) = USF[degW (o) = i], i = 0, . . . , 2d− 1.

Therefore, we have

p(i) := P[η(o) = i] =
i∑

j=0

q(j)

2d− j
. (4.3)

4.1.2 Wilson’s method

We recall Wilson’s method here with slightly different focus from Chapter 3. Given

a finite path γ = [s0, s1, ..., sk] in Zd, we erase loops from γ chronologically, as they

are created. We trace γ until the first time t, if any, when st ∈ {s0, s1, ..., st−1}, i.e.
there is a loop. We suppose st = si, for some i ∈ {0, 1, ..., t − 1} and remove the

loop [si, si+1, ..., st = si]. Then we continue tracing γ and follow the same procedure

to remove loops until there are no more loops to remove. This gives the loop-erasure

π = LE(γ) of γ, which is a self-avoiding path [17]. If γ is generated from a random

walk process, the loop-erasure of γ is call the loop-erased random walk (LERW).

When d ≥ 3, the USF on Zd can be sampled via Wilson’s method rooted at infinity [4],

[16, Section 10], that is described as follows. Let s1, s2, . . . be an arbitrary enumeration

of the vertices and let T0 be the empty forest with no vertices. We start a simple random

walk γn at sn and γn stops when Tn−1 is hit, otherwise we let it run indefinitely. LE(γn)

is attached to Tn−1 and the resulting forest is denoted by Tn. We continue the same

procedure until all the vertices are visited. The above gives a random sequence of

forests T1 ⊂ T2 ⊂ . . . , where T = ∪nTn is a spanning forest of Zd. The extension

of Wilson’s theorem [24] to transient infinite graphs proved in [4] implies that T is

distributed as the USF.
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4.2 Proof of the main theorem

Let (Sx
n)n≥0 be a simple random walk started at x (independent between x’s on Zd)

and let π(x) be the path in the USF from x to infinity. We introduce the events:

Ei =
{
|{w ∼ o : π(w) passes through o}| = i

}
, i = 0, . . . , 2d− 1;

Ei(x1, x2, . . . , xi) =
{
{w ∼ o : π(w) passes through o} = {x1, x2, . . . , xi}

}
.

Then recall that

q(i) = P[degW (o) = i] = P[Ei] =
∑

x1,...,xi∼o
distinct

P[Ei(x1, . . . , xi)]. (4.4)

We denote q(i) by qd(i) from now on to emphasize the dependence on d.

4.2.1 Preliminary

Lemma 4.2.1. We have

P[So
n = o for some n ≥ 2] = O(1/d)

P[So
n = o for some n ≥ 4] = O(1/d2)

as d→ ∞.

Proof. Let D̂(k) = 1
d

∑d
j=1 cos(kj), kj ∈ [−π, π]d, be the Fourier transform in d di-

mensions of the one-step distribution of RW. Lemma A.3 in [17] states that for all

non-negative integers n and all d ≥ 1 we have

∥D̂n∥1 = (2π)−d

∫
[−π,π]d

|D̂(k)n|ddk ≤
(
πd

4n

)d/2

.

Based on above, we have

P[So
n = o for some n ≥ 4] ≤ 1

(2π)d

∞∑
n=4

∫
D̂n(k)dk

≤ 1

(2π)d

d−1∑
n=4

∫
D̂n(k)dk +

∞∑
n=d

(
πd

4n

)d/2

.

(4.5)

Since
∫
D̂4(k)dk and

∫
D̂6(k)dk state the probability that So returns to o in 4 and 6

steps each, by counting the number of ways to return, they are bounded by dimension-
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independent multiples of 1/d2 and 1/d3 respectively. We have
∫
D̂n(k)dk = 0 with odd

n, and for 6 < n ≤ d− 1 and n even, we have
∫
D̂n(k)dk ≤

∫
D̂6(k)dk. Hence,

1

(2π)d

∫
D̂n(k)dk = O

(
1

d3

)
, 6 ≤ n ≤ d− 1.

The last sum in (4.5) can be bounded as:

(
πd

4

)d/2 ∞∑
n=d

n−d/2 ≤
(
πd

4

)d/2 ∫ ∞

d−1
x−d/2dx =

(
πd

4

)d/2 (d− 1)1−
d
2

d/2− 1

=

(
d− 1

d/2− 1

)(
d

d− 1

) d
2 (π

4

) d
2 ≤ Ce−cd,

since we can take d > 4 and π
4 < 1.

Hence, we have the required results

P[So
n = o for some n ≥ 4] ≤

∫
D̂4(k)dk + d

∫
D̂6(k)dk + Ce−cd

= O

(
1

d2

)
+ d×O

(
1

d3

)
= O

(
1

d2

)
,

P[So
n = o for some n ≥ 2] ≤

(
1

2d

)
+P[So

n = o for some n ≥ 4] = O

(
1

d

)
.

4.2.2 Lower bounds

Let us fix the vertices x1, . . . , xi ∼ o. Let

A0 =
{
So
1 ̸∈ {x1, . . . , xi}, So

n ̸∈ N for n ≥ 2
}
,

where N = {y ∈ Zd : |y| ≤ 1}.

Lemma 4.2.2. We have

(1−P[A0]) = O(i/d).

Proof.

P[A0] = P[So
1 ̸= x1, . . . , xi]P[So

n ̸∈ N for n ≥ 2|So
1 ̸= x1, . . . , xi].
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We have P[So
1 ̸= x1, . . . xi] = 1−O(i/d) and the probability for the remaining steps is

at least 1−O(1/d), shown as follows. The probabilities P[So
2 ̸= o|So

1 ̸= x1, . . . , xi] and

P[So
3 ̸∈ N |So

2 ̸= o, So
1 ̸= x1, . . . , xi] are both equal to 1−O(1/d). Considering the s.r.w

starting at the position So
3 , it hits at most three neighbours of o in two further steps,

the remaining neighbours will need at least 4 steps to hit, so, by Lemma 4.2.1, we have

∑
at most 3 neighbours xj

∑
k≥1

P2k(S
o
3 , xj) ≤ O(

1

d
),

∑
the remaining neighbours xj′

∑
k≥2

P2k(S
o
3 , xj′) ≤ O(d)O(

1

d2
) = O(

1

d
),

since P2k(x, y) ≤ P2k(o, o) for all x, y. Therefore, combining above results together, we

get P[So
n ̸∈ N for n ≥ 2|So

1 ̸= x1, . . . , xi] ≥ 1−O(1/d) as required.

Let us label the neighbours of o different from x1, . . . , xi as xi+1, . . . , x2d, in any order.

On the event A0, the first step of π(o) is to a neighbour of o in {xi+1, . . . , x2d} and we

could assume x2d to be the first step of π(o). Then π(o) does not visit other vertices

in N\{o}. Define Aj = {Sxj

1 = o} for j = 1, 2, . . . , i and then P[Aj ] = 1/2d.

Using Wilson’s algorithm, consider random walks first started at o, x1, .., xi and then

started at xi+1, . . . , x2d−1. We obtain the following:

P[Ei(x1, . . . , xi)] ≥ P[A0]×
i∏

j=1

P[Aj ]×P[Ei(x1, .., xi)|A0 ∩A1 ∩ · · · ∩Ai]

≥
(
1−O

(
i

d

))(
1

2d

)i

P[Ei(x1, .., xi)|A0 ∩A1 ∩ · · · ∩Ai].

(4.6)

Define Bk = {Sxk
1 ̸= o, Sxk

n ̸∈ {x1, . . . , xi} for n ≥ 2} for k = i+ 1, . . . , 2d− 1.

Lemma 4.2.3.

P[Bk] ≥ 1− 1/2d−O(i/d2), where i+ 1 ≤ k ≤ 2d− 1.

Proof. We have P[Sxk
1 ̸= o] = 1−1/2d. If the first step is not to o, the first step could be

in one of the e1, . . . , ei directions, say ej , with probability i/2d. Then the probability to

hit xj is 1/2d+O(1/d2). Hence,the probability that Sxk hits {x1, . . . , xi} is O(i/d2).

Lemma 4.2.4.

qd(i) ≥ e−1 1

i!
(1 +O(

i2

d
)).
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Proof. By (4.6) and Lemma 4.2.3, we have

P[Ei(x1, . . . , xi)] ≥
(
1−O

(
i

d

))(
1

2d

)i(
1− 1

2d
+O

(
i

d2

))2d−1−i

.

Then by (4.4), we have

qd(i) ≥
(
2d

i

)(
1−O

(
i

d

))(
1

2d

)i(
1− 1

2d
+O

(
i

d2

))2d−1−i

=
2d(2d− 1) . . . (2d− i+ 1)

i! (2d)i

(
1−O

(
i

d

))(
1− 1

2d
+O

(
i

d2

))2d(
1 +O

(
i

d

))
.

For the first term of the right-hand side, we have

2d(2d− 1) . . . (2d− i+ 1)

i!(2d)i
=

1

i!
1

(
1− 1

2d

)(
1− 2

2d

)
. . .

(
1− i

2d
+

1

2d

)
=

(
1 +O

(
i2

d

))
.

For the third term of the right-hand side, using the Taylor series expansion for expo-

nential and logarithm, and since i ≤ d, we have(
1− 1

2d
+O

(
i

d2

))2d

= exp

(
2d× log

(
1− 1

2d
+O

(
i

d2

)))
= exp

(
2d

(
− 1

2d
+O

(
i

d2

)))
= exp

(
−1 +O

(
i

d

))
= e−1

(
1 +O

(
i

d

))
.

Then the result follows

qd(i) ≥ e−1 1

i!

(
1 +O

(
i

d

))(
1 +O

(
i2

d

))(
1 +O

(
i

d

))(
1−O

(
i

d

))
= e−1 1

i!

(
1 +O

(
i2

d

))
.

The above lemma gives a lower bound for qd and we now prove an upper bound.
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4.2.3 Upper bounds

Recall that π(o) denotes the unique infinite self-avoiding path in the spanning forest

starting at o and let Āo = {π(o) visits only one neighbour of o}.

Lemma 4.2.5.

P[π(o) visits more than one neighbour of o] = P [Āc
o] = O(1/d).

Proof. The first step of π(o) must visit a neighbour of o, denoted by w, then P [Āc
o]

= P[The 2nd step of π(o) visits x ̸= 2w, the 3rd step visits w′ ∼ o, w′ ̸= w] +O

(
1

d2

)
=

(
1

2d

)(
2d− 1

2d

)
+O

(
1

d2

)
= O

(
1

d

)
.

Let Āall = {∀w ∼ o : either π(w) does not visit o or π(w) visits o at the first step }.

Lemma 4.2.6.

P[∃w ∼ o : π(w) visits o but not at the first step] = P[Āc
all] = O(1/d).

Proof. For a given w, w ∼ o, use Wilson’s algorithm with a walk started at w. Consider

that if Sw
1 ̸= o, or Sw

1 = o but Sw returns to w subsequently and then this loop starting

from w in Sw is erased, π(w) does not visit o at the first step. Hence, we have the

inequality:

P[π(w) visits o but not at the first step]

≤ P[Sw visits o but not at the first step] +P[Sw
1 = o, Sw

n = w for some n ≥ 2].

(4.7)

We bound the two terms as follows. For the first term, let us append a step from o

to w at the beginning of the walk, and analyze it as if the walk started at o. Since

So
1 ∈ N\{o}, by symmetry, we may assume So

1 = w. Then if So
2 ̸= o, So will need at

least 2 more steps to return to o.

For the second term in the right hand side of (4.7), we first note that we have P[Sw
1 =

o, Sw
2 = w] = 1/(2d)2. If Sw does not return to w in the first two steps, Sw will need
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at least 4 steps to return to w. Then, we have that the right hand side of (4.7) is

≤ P[So returns to o in at least 4 steps] +
1

(2d)2

+P[Sw returns to w in at least 4 steps]

= 2×P[So returns to o in at least 4 steps] +O

(
1

d2

)
.

Therefore, by Lemma 4.2.1, we have the required result

P[∃w ∼ o : π(w) visits o but not at the first step ]

= 2d×P[π(w) visits o but not at the first step for a fixed w ∼ o] = O

(
1

d

)
.

Due to Lemmas 4.2.5 and 4.2.6, we have

qd(i) ≤ O

(
1

d

)
+P[Āo ∩ Āall ∩ Ei] = O

(
1

d

)
+

∑
x1,...,xi∼o
distinct

P[Āo ∩ Āall ∩ Ei(x1, . . . , xi)].

Here,

Āo ∩ Āall ∩ Ei(x1, . . . , xi)

⊂ Āo ∩ Āall ∩ {the first step of π(xj) is to o, j = 1, . . . , i} ∩ Fi(x1, . . . , xi),
(4.8)

where

Fi(x1, . . . , xi) = {π(xj) does not go through o, j = i+ 1, . . . , 2d}.

The right hand side of (4.8) is contained in the event

Āo ∩ {π(o) does not visit x1, . . . , xi} ∩ Ārest ∩
⋂

1≤j≤i

Hj ∩ Fi(x1, . . . , xi),

where

Ārest = {π(xj) goes through at most one xj′ , j = i+ 1, . . . , 2d, i+ 1 ≤ j′ ≤ 2d, j′ ̸= j}

and Hj = {the first step of π(xj) is to o} for j = 1, . . . , i.
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We denote Āo ∩ {π(o) does not visit x1, . . . , xi} by Āo,x1,...,xi . Then

P
[
Āo,x1,...,xi ∩ Ārest ∩

⋂
1≤j≤i

Hj ∩ Fi(x1, . . . , xi)
]

= P[Āo,x1,...,xi ]
i∏

j=1

P
[
Hj

∣∣∣ ⋂
1≤j′<j

Hj′ ∩ Āo,x1,...,xi

]
×P

[
Fi(x1, . . . , xi) ∩ Ārest

∣∣∣Āo,x1,...,xi ∩
⋂

1≤j≤i

Hj

]
.

Therefore, we have

qd(i) ≤ O

(
1

d

)
+

∑
x1,...,xi∼o
distinct

 i∏
j=1

P
[
Hj

∣∣∣ ⋂
1≤j′<j

Hj′ ∩ Āo,x1,...,xi

]
×P

[
Fi(x1, . . . , xi) ∩ Ārest

∣∣∣Āo,x1,...,xi ∩
⋂

1≤j≤i

Hj

]
.

(4.9)

Lemma 4.2.7.

P[Hj |Āo,x1,...,xi ∩
⋂

1≤j′<j

Hj′ ] = 1/2d+O(1/d2),where j = 1, . . . , i.

Proof. Given that π(o) visits only one neighbour of o which is not in {x1, . . . , xi} and

the first steps of π(x1), . . . , π(xj−1) are all to o, the probability that Hj happens is

P[S
xj

1 = o] = 1/2d with the error term of O(1/d2) due to the loop-erasure.

Lemma 4.2.8.

P

Fi(x1, . . . , xi) ∩ Ārest

∣∣∣Āo,x1,...,xi ∩
⋂

1≤j≤i

Hj

 ≤ E

[(
1− 1

2d
+O

(
1

d2

))2d−i−1−N

1Ārest

]
,

(4.10)

where N = |{i+ 1 ≤ j ≤ 2d− 1 : ∃i+ 1 ≤ j′ < j s.t. π(xj′) goes through xj}|.

Proof. Consider Wilson’s algorithm with random walks started at the remaining neigh-

bours xi+1, . . . , x2d. Assume x2d to be the neighbour of o that π(o) goes through.

The probability that π(xk) does not go through o is 1 − 1/2d + O(1/d2) for k ∈
{i+ 1, . . . , 2d− 1}.

If π(xk) visits xk′ , where k < k′ ≤ 2d−1, the probability that π(xk′) does not go through
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o is 1 instead of 1− 1/2d+O(1/d2), since the LERW from xk′ stops immediately and

π(xk′) ⊂ π(xk), which does not go through o.

Lemma 4.2.9. On the event Ārest, N ≤ B, where B ∼ Binom(2d − i − 1, p), p =

1/2d+O(1/d2).

Proof. Since we have (2d− i− 1) trials with probability at most 1/2d+O(1/d2).

Due to Lemma 4.2.9, we have that the right hand side of (4.10) is

≤
(
1− 1

2d
+O

(
1

d2

))2d(
1 +O

(
i

d

))
E
[ 1

(1− 1
2d +O( 1

d2
))B

]
, (4.11)

where E[zB] =
∑2d−i−1

j=0 zj
(
2d−i−1

j

)
pj(1− p)2d−i−1−j = (1− p− zp)2d−i−1.

Hence (4.11) is

≤ e−1

(
1 +O

(
1

d

))(
1 +O

(
i

d

))(
1− 1

2d
+O

(
1

d2

)
+

1
2d +O( 1

d2
)

1− 1
2d +O( 1

d2
)

)2d−i−1

= e−1

(
1 +O

(
1

d

))(
1 +O

(
i

d

))(
1 +O

(
1

d2

))2d−i−1

= e−1

(
1 +O

(
i

d

))
.

(4.12)

Lemma 4.2.10.

qd(i) ≤ O(
1

d
) + e−1 1

i!
(1 +O(

i

d
)).

Proof. Due to Lemma 4.2.7, (4.9) and (4.12), we have

qd(i) ≤ O

(
1

d

)
+

(
2d

i

)(
1

2d
+O

(
1

d2

))i

e−1

(
1 +O

(
i

d

))
= O

(
1

d

)
+ e−1 2d(2d− 1) . . . (2d− i+ 1)

i!

(
1

2d

)i(
1 +O

(
1

d

))i(
1 +O

(
i

d

))
≤ O

(
1

d

)
+ e−1 1

i!

(
1 +O

(
i

d

))
.

Lemma 4.2.11. For k = 1, . . . , 3 and distinct w1, . . . , wk ∼ o, we have

P[π(wi) passes through o for i = 1, . . . , k] =

(
1

2d

)k

+O(d−k−1).
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This lemma can be proved using ideas used to prove Lemma 4.2.7.

4.2.4 Proof of the asymptotic formula

Proof of Theorem 3.5.1. We first prove part (i). By Wilson’s algorithm,

pd(i) =
i∑

j=0

qd(j)

2d− j
.

Due to Lemmas 4.2.4 and 4.2.10 , we have

pd(i) ≥
i∑

j=0

e−1 1
j!(1 +O( j

2

d ))

2d− j
=

i∑
j=0

e−1 1
j!

2d− j
+

i∑
j=0

1
j!O( j

2

d )

2d− j
, (4.13)

and

pd(i) ≤
i∑

j=0

O(1d) + e−1 1
j!(1 +O( jd))

2d− j
=

i∑
j=0

e−1 1
j!

2d− j
+

i∑
j=0

O(1d) +
1
j!O( jd)

2d− j
. (4.14)

Here, using that 0 ≤ j ≤ d1/2, we have

i∑
j=0

1
j!O( j

2

d )

2d− j
≤ 1

2d− d1/2
O(

1

d
)

i∑
j=0

j2

j!
= O(

1

d2
).

Similarly,

i∑
j=0

O(1d) +
1
j!O( jd)

2d− j
≤

i∑
j=0

O(d−2) +

i∑
j=0

j

j!
O(d−2) = O(i/d2).

Putting these error bounds together with (4.13) and (4.14), we prove statement (i) of

the theorem.

Let us now use that

1

2d
e−1

i∑
j=0

1

j!
≤

i∑
j=0

e−1 1
j!

2d− j
≤ 1

2d− i
e−1

i∑
j=0

1

j!
.

When i ≤ d1/2, and i, d→ ∞, we have 1
2d−i ∼

1
2d and

∑i
j=0

1
j! → e. Hence,

i∑
j=0

e−1 1
j!

2d− j
∼ 1

2d
, as i, d→ ∞.
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We are left to prove statement (ii). The uniform distribution for d1/2 ≤ i ≤ 2d− 1 can

be obtained from the monotonicity:

pd(d
1/2) ≤ pd(i) ≤ pd(2d− 1), d1/2 ≤ i ≤ 2d− 1,

if we show that pd(2d− 1) = pd(d
1/2) +O(d−3/2).

We write

pd(2d− 1) =

2d−1∑
j=0

qd(j)

2d− j
= pd(d

1/2) +

2d−1∑
j=d1/2

qd(j)

2d− j
≤ pd(d

1/2) +

2d−1∑
j=d1/2

qd(j). (4.15)

Introducing the random variable

X := | {w ∼ o : o ∈ π(w)} |,

the last expression in (4.15) equals

pd(d
1/2) +P[X ≥ d1/2] ≤ pd(d

1/2) +P[X3 ≥ d3/2] ≤ pd(d
1/2) +

E[X3]

d3/2
.

Therefore, it remains to show that E[X3] = O(1). This follows from Lemma 4.2.11, by

summing over w1, . . . , w3 (not necessarily distinct). The cases k = 1, 2 of the lemma

are used to sum the contributions where one or more of the wi’s coincide.

4.3 Chapter outlook

This proof could possibly be extended to a larger class of graphs, where the degree

goes to infinity. Aldous’ results [1] involved a large class of graphs under symmetry

assumptions; see [1, Hypothesis 7]. It would be interesting to explore further.
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Chapter 5

Interlacement limit of a stopped

trace on a torus

Chapter Overview

This chapter is based on a manuscript submitted for publication; see [7]. This chapter

is motivated by the hashing algorithm used in Chapter 3 to study high-dimensional

sandpiles. While it looks difficult to bound the running time of the algorithm directly,

we can obtain a heuristic bound by making some simplifications. First, let us consider

a single loop-erased walk, instead of multiple walks. Second, let us assume the simple

hash function g(x) = x( mod N), where mod N is understood coordinatewise, from

Chapter 3. As can be seen in the discussion of Section 3.2.4 and Figure 3-3, the running

time is influenced by two factors, the number of random walk steps, and the multiplicity

of each projected value, since the multiplicity gives how many times we must follow the

links in the vertexdata table. We know that each random walk will use O(L2) distinct

vertices. Suppose we can show that a simple random walk run up to its first exit from

(−L,L)d and taken mod N spreads roughly evenly over the torus TN . Suppose also

that for each point on the torus TN the expected multiplicity is O(1). Then the running

time and the memory used will be roughly a constant times L2. We can expect the

above is true, when L2 ∼ ANd.

In this chapter, we will show that the random walks spread evenly over the torus in

the following sense: the probability for the translate of any finite set K to be visited

converges to the probability that an interlacement process visits K, as long as the

translate of K is not too close to the origin o of the random walk. We will not examine
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the multiplicity of visits here, but we expect that one can show using similar methods

that when K is a single point, this multiplicity is asymptotically a Poisson sum of

independent geometric distributions, where the intensity of Poisson is the intensity of

the random interlacement process.
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CHAPTER 5. INTERLACEMENT LIMIT OF A STOPPED TRACE ON A
TORUS

Abstract

We consider a simple random walk on Zd started at the origin and stopped on its first

exit time from (−L,L)d ∩ Zd. Write L in the form L = mN with m = m(N) and

N an integer going to infinity in such a way that L2 ∼ ANd for some real constant

A > 0. Our main result is that for d ≥ 3, the projection of the stopped trajectory

to the N -torus locally converges, away from the origin, to an interlacement process at

level Adσ1, where σ1 is the exit time of a Brownian motion from the unit cube (−1, 1)d

that is independent of the interlacement process. The above problem is a variation on

results of Windisch (2008) and Sznitman (2009).

5.1 Introduction

A special case of a result of Windisch [15] — extended further in [1] — states that

the trace of a simple random walk on the discrete d-dimensional torus (Z/NZ)d, for
d ≥ 3, started from stationarity and run for time uNd converges, in a local sense, to

an interlacement process at level u, as N → ∞. In this chapter we will be concerned

with a variation on this result, for which our motivation was a heuristic analysis of

an algorithm we used to simulate high-dimensional loop-erased random walk and the

sandpile height distribution in Chapter 3. Let us first describe our main result and

then discuss the motivating problem.

Consider a discrete-time lazy simple random walk (Yt)t≥0 starting at the origin o in Zd.

We stop the walk at the first time T it exits the large box (−L,L)d. We will take L of

the form L = mN , wherem = m(N) and N is an integer, such that L2 ∼ ANd for some

A ∈ (0,∞), asN → ∞. We consider the projection of the trajectory {Yt : 0 ≤ t < T} to
the N -torus TN = [−N/2, N/2)d∩Zd. The projection is given by the map φ : Zd → TN ,

where for any x ∈ Zd, φ(x) is the unique point of TN such that φ(x) ≡ x (mod N),

where congruence (mod N) is understood coordinate-wise.

Let σ1 denote the exit time from (−1, 1)d of a standard Brownian motion started at

o. For any finite set K0 ⊂ Zd, let Cap(K0) denote the capacity of K0 [9]. For any

0 < R < ∞ and x ∈ Zd, we denote BR(x) = {y ∈ Zd : |y − x| < R}, where | · | is the

Euclidean norm. Let KR denote the collection of all subsets of BR(o). Given x ∈ TN

let τx : TN → TN denote the translation of the torus by x. Let g : N → (0,∞) be any

function satisfying g(N) → ∞, as N → ∞.

Theorem 5.1.1. Let d ≥ 3. For any 0 < R <∞, any K0 ∈ KR, and any x satisfying
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τxφ(BR(o)) ∩ φ(Bg(N)(o)) = ∅ we have

Po

[
φ(Yt) ̸∈ τxφ(K

0), 0 ≤ t < T
]
= E

[
e−dAσ1Cap(K0)

]
+ o(1) as N → ∞. (5.1)

The error term depends on R and g, but is uniform in K0 and x.

Note that the trace of the lazy simple random walk stopped at time T is the same as

the trace of the simple random walk stopped at the analogous exit time. We use the

lazy walk for convenience of the proof.

Our result is close in spirit — but different in details — compared to a result of Sznit-

man [12] that is concerned with simple random walk on a discrete cylinder. The inter-

lacement process was introduced by Sznitman in [13]. It consists of a one-parameter

family (Iu)u>0 of random subsets of Zd (d ≥ 3), where the distribution of Iu can be

characterized by the relation

P[Iu ∩K = ∅] = exp(−uCap(K)) for any finite ∅ ≠ K ⊂ Zd. (5.2)

An alternative definition — that provides more insight but is more cumbersome to state

— represents Iu as the trace of a Poisson cloud of bi-infinite random walk trajectories

(up to time-shifts), where u is an intensity parameter. We refer to [13] and the books

[3, 14] for further details. Comparing (5.1) and (5.2) makes it clear what we mean by

saying that the stopped trajectory, locally, is described by an interlacement process at

the random level u = Adσ1.

Our motivation to study the question in Theorem 5.1.1 was a simulation problem that

arose in our numerical study of high-dimensional sandpiles in Chapter 3. We refer

the interested reader to [11, 2, 6] for background on sandpiles. In our simulations

we needed to generate loop-erased random walks (LERW) from the origin o to the

boundary of [−L,L]d where d ≥ 5. Recall that the LERW is defined by running a simple

random walk from o until it hits the boundary, and erasing all loops from its trajectory

chronologically, as they are created. We refer to the book [9] for further background

on LERW (which is not needed to understand the results in this chapter). It is known

from results of Lawler [8] that in dimensions d ≥ 5 the LERW visits on the order of L2

vertices, the same as the simple random walk generating it. As the number of vertices

visited is a lot smaller than the volume cLd of the box, an efficient way to store the

path generating the LERW is provided by the well-known method of hashing. We refer

to Chapter 3 for a discussion of this approach, and only provide a brief summary here.

Assign to any x ∈ [−L,L]d ∩Zd an integer value f(x) ∈ {0, 1, . . . , CL2} that is used to
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label the information relevant to position x, where C can be a large constant or slowly

growing to infinity. Thus f is necessarily highly non-injective. However, we may be

able to arrange that with high probability the restriction of f to the simple random

walk trajectory is not far from injective, and then memory use can be reduced from

order Ld to roughly O(L2).

A simple possible choice of the hash function f can be to compose the map φ : [−L,L]d∩
Zd → TN with a linear enumeration of the vertices of TN , whose range has the required

size1. The method can be expected to be effective, if the projection φ(Y [0, T )) spreads

roughly evenly over the torus TN with high probability. Our main theorem establishes

a version of such a statement, as the right hand side expression in (5.1) is independent

of x.

We now make some comments on the proof of Theorem 5.1.1. We refer to [3, Theorem

3.1] for the strategy of the proof in the case when the walk is run for a fixed time uNd.

The argument presented there goes by decomposing the walk into stretches of length

⌊N δ⌋ for some 2 < δ < d , and then estimating the (small) probability in each stretch

that τxφ(K
0) is hit by the projection. We follow the same outline for the stopped

lazy random walk. However, the elegant time-reversal argument given in [3] is not

convenient in our setting, and we need to prove a delicate estimate on the probability

that τxφ(K
0) is hit, conditional on the start and end-points of the stretch. For this, we

only want to consider stretches with “well-behaved” starting and end-points. We also

classify stretches as “good stretch” where the total displacement is not too large, and as

“bad stretch”. We do this in such a way that the expected number of “bad stretches”

is small and summing over the “good stretches” gives us the required behaviour.

A note on constants. All constants will be positive and finite. Constants denoted C or

c may change from line to line. If we need to refer to a constant later, it will be given

an index, such as C1.

We now describe the organization of this chapter. Section 5.1 introduces the main result

and the motivating problem. In Section 5.2, we first introduce some basic notation, then

we recall several useful known results on random walk and state the key propositions

required for the proof of the main theorem, Theorem 5.1.1. Section 5.3 contains the

proof of the main theorem, assuming the key propositions. Finally, in Section 5.4 we

provide the proofs of the propositions stated in Section 5.2.

1This is slightly different from what was used for the simulations in Chapter 3, but easier to analyse.
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5.2 Preliminaries

5.2.1 Some notation

We first introduce some notation used in this chapter. In section 5.1, we denoted

the discrete torus TN = [−N/2, N/2)d ∩ Zd, d ≥ 3 and the canonical projection map

φ : Zd → TN .

We write vertices and subsets of the torus in bold, i.e. x ∈ TN and K ⊂ TN . In order

to simplify notation, in the rest of the chapter we abbreviate K = τxφ(K
0), and let

K ⊂ Zd be a translate of K0 with the property that φ(K) = K. Let (Yt)t≥0 be a

discrete-time lazy simple random walk on Zd, that is,

P[Yt+1 = y′ |Yt = x′] =

1
2 when y′ = x′;

1
4d when |y′ − x′| = 1.

We denote the corresponding lazy random walk on TN by (Yt)t≥0 = (φ(Yt))t≥0. LetPx′

denote the distribution of the lazy random walk on Zd started from x′ ∈ Zd, and write

Px for the distribution of the lazy random walk on TN started from x = φ(x′) ∈ TN .

We write pt(x
′, y′) = Px′ [Yt = y′] for the t-step transition probability. Further notation

we will use:

• L = mN , where L2 ∼ ANd as N → ∞ for some constant A ∈ (0,∞)

• D = (−m,m)d, rescaled box, indicates which copy of the torus the walk is in

• n = ⌊N δ⌋ for some 2 < δ < d, long enough for the mixing property on the torus,

but short compared to L2

• x0 ∈ K is a fixed point of K

• we write points in the original lattice Zd with a prime, such as y′, and decompose a

point y′ as yN+y with y in a rescaled lattice isomorphic to Zd and y = φ(y′) ∈ TN

• T = inf{t ≥ 0 : Yt ̸∈ (−L,L)d}, the first exit time from (−L,L)d

• S = inf{ℓ ≥ 0 : Ynℓ ̸∈ (−L,L)d}, the first multiple of n when the rescaled point

Ynℓ/N is not in (−m,m)d

We omit the dependence on d and N from some notation above for simplicity.
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5.2.2 Some auxiliary results on random walk

In this section, we collect some known results required for the proof of Theorem 5.1.1.

We will rely heavily on the Local Central Limit Theorem (LCLT) [9, Chapter 2], with

error term, and the Martingale maximal inequality [9, Eqn. (12.12) of Corollary 12.2.7].

We will also use the result from Equation (6.31) in [9], saying that the probability of

a random walk started uniformly from the boundary of a large ball with a radius n

hitting a finite set K before exiting the ball tends to Cap(K), as n→ ∞. In estimating

some error terms in our arguments, sometimes we will use the Gaussian upper and

lower bounds [5]. We also need to derive a lemma from the mixing property on the

torus [10, Theorem 5.6] to show that the starting positions of different stretches are

not far from uniform on the torus; see Lemma 5.2.1.

We recall the LCLT from [9, Chapter 2]. The following is a specialisation of [9, Theorem

2.3.11] to lazy simple random walk. The covariance matrix Γ and the square root J∗(x)

of the associated quadratic form are given by

Γ = (2d)−1I, J∗(x) = (2d)
1
2 |x|,

where I is the (d× d)-unit matrix.

Let p̄t(x
′) denote the estimate of pt(x

′) that one obtains by the LCLT, for lazy simple

random walk. We have

p̄t(x
′) =

1

(2πt)d/2
√
det Γ

exp

(
−J

∗(x′)2

2t

)
=

1

(2πt)d/2(2d)−d/2
exp

(
−2d |x′|2

2t

)
=

C̄

td/2
exp

(
−d |x

′|2

t

)
.

The lazy simple random walk (Yt)t≥0 in Zd is aperiodic, irreducible with mean zero,

finite second moment, and finite exponential moments. All the third moments of Y1

vanish.

Theorem 5.2.1 ([9], Theorem 2.3.11). For lazy simple random walk (Yt)t≥0 in Zd,

there exists ρ > 0 such that for all t ≥ 1 and all x′ ∈ Zd with |x′| < ρt,

pt(x
′) = p̄t(x

′) exp

{
O

(
1

t
+

|x′|4

t3

)}
.
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The Martingale maximal inequality in [9, Eqn. (12.12) of Corollary 12.2.7] is stated as

follows. Let (Y
(i)
t )t≥0 denote the i-th coordinate of (Yt)t≥0 (1 ≤ i ≤ d). The standard

deviation σ of Y
(i)
1 is given by σ2 = (2d)−1. For all t ≥ 1 and all r > 0 we have

Po

[
max
0≤j≤t

Y
(i)
j ≥ rσ

√
t

]
≤ e−r2/2 exp

{
O

(
r3√
t

)}
. (5.3)

Now we state the result of [9, Eqn. (6.31)]. Recall that Br(o) is the discrete ball centred

at o with radius r. Let

ξBr(o) = inf{t ≥ 1 : Yt ̸∈ Br(o)}.

Let ∂Br(o) = {y′ ∈ Zd \Br(o) : ∃x′ ∈ Br(o) such that |x′ − y′| = 1}. For a given finite

set K ⊆ Zd, let HK denote the hitting time

HK = inf{t ≥ 1 : Yt ∈ K}.

Then we have

Cap(K) = lim
r→∞

∑
y′∈∂Br(o)

Py′ [HK < ξBr(o)]. (5.4)

Here Cap(K) is the capacity of K; see [9, Section 6.5].

In estimating some error terms in our arguments, sometimes we will use the Gaussian

upper and lower bounds [5]: there exist constants C = C(d) and c = c(d) such that

pt(x
′, y′) ≤ C

td/2
exp

(
−c |y

′ − x′|2

t

)
, for x′, y′ ∈ Zd and t ≥ 1;

pt(x
′, y′) ≥ c

td/2
exp

(
−C |y′ − x′|2

t

)
, for |y′ − x′| ≤ t.

(5.5)

Regarding mixing times, recall that lazy simple random walk on the N -torus mixes in

time N2 [10, Theorem 5.6]. With this in mind we derive the following simple lemma.

Recall that 2 < δ < d and n = ⌊N δ⌋.

Lemma 5.2.1. There exists C = C(d) such that for any N ≥ 1 and any t ≥ n we have

Po[Yt = x] ≤ C

Nd
, x ∈ TN .
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Proof. Using the Gaussian upper bound, the left hand side can be bounded by

∑
x∈Zd

pt(o, xN + x) ≤ C

td/2

∑
x∈Zd

exp

(
−c |xN + x|2

t

)
≤ C

td/2

∑
x∈Zd

exp

(
−c |xN |2

t

)

≤ C

td/2

∞∑
r=0

(r + 1)d−1 exp

(
−cr

2N2

t

)
≤ C

td/2

∫ ∞

0
(r + 1)d−1 exp

(
−cr

2N2

t

)
dr

=
C

td/2

∫ ∞

0
(

√
tu

N
+ 1)d−1 exp (−cu)

√
t

2N
√
u
du

≤ C

Nd

∫ ∞

0
(
√
u)d−2 exp (−cu) du =

C

Nd
.

5.2.3 Key propositions

In this section we state some propositions to be used in Section 5.3 to prove Theorem

5.1.1. The propositions will be proved in Section 5.4.

The strategy of the proof is to consider stretches of length n of the walk, and estimate

the probability in each stretch thatK is not hit by the projection. For this, we only want

to consider stretches with “well-behaved” starting and end-points, which motivates the

definition of the set Gζ,C1 below. The definition involves a parameter 0 < ζ < 1, whose

choice we now specify.

First, we will need 2 < δ < d to satisfy the inequality

2δ >
d2

d− 1
. (5.6)

This can be satisfied if d ≥ 3 and δ is sufficiently close to d, say δ = 7
8d. Since the left

hand side of (5.6) equals (δ/d)(d− 2), we can subsequently choose ζ such that we also

have

0 < ζ <
δ

d
, ζ(d− 2) > d− δ. (5.7)

We now define

Gζ,C1 =

(τ, (yℓ,yℓ)
τ
ℓ=1) :

(
√
log log n)−1Nd

n ≤ τ ≤ logN Nd

n ;

yℓ ∈ D, yℓ ∈ TN \B(x0, N
ζ) for 1 ≤ ℓ < τ ;

yτ ∈ Dc and yτ ∈ TN \B(x0, N
ζ);

|y′ℓ − y′ℓ−1| ≤ f(n)n
1
2 for 1 ≤ ℓ ≤ τ

 , (5.8)
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where f(n) = C1
√
log n and recall that we write y′ℓ = yℓN+yℓ and y

′
ℓ−1 = yℓ−1N+yℓ−1,

and we define y′0 = o. The time τ is corresponding to a particular value of the exiting

time S, so yℓ ∈ D for 1 ≤ ℓ < τ and yτ /∈ D. The parameter C1 will be chosen in the

course of the proof. See Figure 5-1 for a visual illustration of the set Gζ,C1 .

L

o

N

y1

y2

y3

y4 = yτ

Figure 5-1: This figure explains the properties of the set Gζ,C1 (not to scale). None of
the yℓ’s is in a shaded region.

The starting point for the proof is the following proposition that decomposes the prob-

ability we are interested in into terms involving single stretches of duration n.

Proposition 5.2.1. For a sufficiently large value of C1, we have

Po

[
Yt ̸∈ φ−1(K), 0 ≤ t < T

]
=

∑
(τ,(yℓ,yℓ)

τ
ℓ=1)∈Gζ,C1

τ∏
ℓ=1

Py′ℓ−1

[
Yn = y′ℓ, Yt ̸∈ φ−1(K) for 0 ≤ t < n

]
+ o(1),

(5.9)

where o(1) → 0 as N → ∞.

Central to the proof of Theorem 5.1.1 is the following proposition, that estimates the

probability of hitting a copy of K during a “good stretch” where the displacement

|y′ℓ − y′ℓ−1| is not too large.

Proposition 5.2.2. Let (τ, (yℓ,yℓ)
τ
ℓ=1) ∈ Gζ,C1. For a sufficiently large value of C1,
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and for all 1 ≤ ℓ ≤ τ such that |y′ℓ − y′ℓ−1| ≤ 10
√
n log logn we have

Py′ℓ−1

[
Yn = y′ℓ, Yt ̸∈ φ−1(K) for 0 ≤ t < n

]
= Py′ℓ−1

[
Yn = y′ℓ

] (
1− 1

2

Cap(K)n

Nd
(1 + o(1))

)
.

(5.10)

In addition to this proposition (that we prove in Section 5.4.3), we will need a weaker

version under less restriction on the distance |y′ℓ− y′ℓ−1|. This will be needed to handle

some error terms and it will be useful to demonstrate some of our proof ideas. It will

be proved in Section 5.4.1.

Proposition 5.2.3. Let (τ, (yℓ,yℓ)
τ
ℓ=1) ∈ Gζ,C1. For all 2 ≤ ℓ ≤ τ we have

Py′ℓ−1

[
Yn = y′ℓ, Yt ̸∈ φ−1(K) for all 0 ≤ t < n

]
= Py′ℓ−1

[
Yn = y′ℓ

] (
1−O

( n

Nd

))
.

(5.11)

and for the first stretch we have

Po

[
Yn = y′1, Yt ̸∈ φ−1(K) for all 0 ≤ t < n

]
= Po

[
Yn = y′1

]
(1− o(1)) . (5.12)

Our final proposition is needed to estimate the number of stretches that are ‘bad’.

Proposition 5.2.4. We have

P

[
#

{
1 ≤ ℓ ≤ Nd

n
C1 logN : |Ynℓ − Yn(ℓ−1)| > 10

√
n log log n

}
≥ Nd

n

1

log log n

]
→ 0,

(5.13)

as N → ∞.

5.3 Proof of the main theorem assuming the key propo-

sitions

This section is the proof of the main theorem, Theorem 5.1.1.

Proof of Theorem 5.1.1 assuming Propositions 5.2.1–5.2.4.

We first denote L = {ℓ : |y′ℓ − y′ℓ−1| ≤ 10
√
n log log n}, then we have Lc = {ℓ :

|y′ℓ − y′ℓ−1| > 10
√
n log logn}.
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By Propositions 5.2.1, 5.2.2 and 5.2.3, we have

Po

[
Yt ̸∈ φ−1(K), 0 ≤ t < T

]
= o(1) +

∑
(τ,(yℓ,yℓ)

τ
ℓ=1)∈Gζ,C1

τ∏
ℓ=1

Py′ℓ−1
[Yn = y′ℓ]

× (1− o(1))
∏

2≤ℓ≤τ
ℓ∈L

(
1− 1

2
Cap(K)

n

Nd
(1 + o(1))

) ∏
2≤ℓ≤τ
ℓ∈Lc

(
1−O

( n

Nd

))
.

(5.14)

By Proposition 5.2.4, we have

|Lc| ≤ Nd

n

1

log logn
with probability going to 1, as N → ∞. (5.15)

By (5.15), we can lower bound the last product in (5.14) by

exp

(
−O

( n

Nd

) Nd

n

1

log log n

)
= eo(1) = (1 + o(1)).

Since the product is also at most 1, it equals 1 + o(1).

Also due to (5.15), we have

τ − Nd

n

1

log log n
≤ |L| ≤ τ.

Since τ ≥ Nd

n (
√
log logn)−1, we have |L| = (1 + o(1))τ . This implies that the penulti-

mate product in (5.14) equals(
1− 1

2
Cap(K)

n

Nd
(1 + o(1))

)(1+o(1))τ

= exp

(
−1

2
Cap(K)

n

Nd
τ(1 + o(1))

)
. (5.16)

By summming over (yℓ,yℓ)
τ
ℓ=1 we get that (5.14) equals

o(1) +
∑′

τ

E

[
1S=τ exp

(
−1

2
Cap(K)

n

Nd
τ(1 + o(1))

)]
, (5.17)

where the primed summation denotes restriction to Nd

n (
√
log logn)−1 ≤ τ ≤ (logN)N

d

n .

Since S satisfies the bounds on τ with probability going to 1, the latter expression equals

o(1) +E
[
e
− 1

2
Cap(K) n

Nd S
]
. (5.18)
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Let Γn denote the covariance matrix for Yn, so that Γn = n
2dI. Let Z1 =

√
2d
n Yn in

distribution, with the covariance matrix ΓZ = I. Let Zℓ =
√

2d
n Ynℓ in distribution for

ℓ ≥ 0.

Recall that S = inf{ℓ ≥ 0 : Ynℓ /∈ (−L,L)d}. Since L2 ∼ ANd, the event {Ynℓ /∈
(−L,L)d} is the same as {Ynℓ /∈ (−(1+o(1))

√
ANd/2, (1+o(1))

√
ANd/2)d}. Converting

to events in terms of Z we have

Zℓ /∈
(
−
√

2dA(1 + o(1))(Nd/n)1/2,
√

2dA(1 + o(1))(Nd/n)1/2
)d
.

Now we can write S as

S = inf{ℓ ≥ 0 : Zℓ /∈ (−
√

2dA(1 + o(1))(Nd/n)1/2,
√
2dA(1 + o(1))(Nd/n)1/2)d}.

Let σ1 = inf{t > 0 : Bt /∈ (−1, 1)d} be the exit time of Brownian motion from (−1, 1)d.

By Donsker’s Theorem [4, Theorem 8.1.5] we have

P

[
S ≤ 2dA(1 + o(1))

Nd

n
t

]
→ P[σ1 ≤ t].

Then we have that n
NdS converges in distribution to cσ1, with c = 2dA. This completes

the proof.

5.4 Proofs of the key propositions

5.4.1 Proof of Proposition 5.2.3

In the proof of the proposition we will need the following lemma that bounds the

probability of hitting some copy of K in terms of the Green’s function of the random

walk. Recall that the Green’s function is defined by

G(x′, y′) =
∞∑
t=0

pt(x
′, y′),

and in all d ≥ 3 satisfies the bound [9]

G(x′, y′) ≤ CG

|y′ − x′|d−2

for a constant CG = CG(d). For part (ii) of the lemma recall that K∩φ(Bg(N)(o)) = ∅.
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Lemma 5.4.1. Let d ≥ 3.

(i) If y′ ∈ Zd satisfies φ(y′) ̸∈ B(x0, N
ζ), then for all sufficiently small ε > 0 we have

N2+6ε∑
t=0

∑
x∈Zd

∑
x′∈K+xN

pt(y
′, x′) ≤ C

N ζ(d−2)
. (5.19)

(ii) If g(N) ≤ N ζ , then for all sufficiently small ε > 0 we have

N2+6ε∑
t=0

∑
x∈Zd

∑
x′∈K+xN

pt(o, x
′) ≤ C

g(N)(d−2)
. (5.20)

(iii) If y′ ∈ Zd satisfies φ(y′) ̸∈ B(x0, N
ζ), then for all sufficiently small ε > 0 we have

∑
x∈Zd

∑
x′∈K+xN

|x′−y′|≤n
1
2+ε

G(y′, x′) ≤ C

Nd−δ−2δε
. (5.21)

Proof. (i) Due to (5.3), the probability that |Yt − y′| > N1+4ε for some 0 ≤ t ≤ N2+6ε

is stretched-exponentially small in N . Excluding this event, we have the upper bound∑
x′∈φ−1(K)

|x′−y′|≤N1+4ε

G(y′, x′).

LetQ(kN) be the cube with radius kN centred at o and then y′+(Q(kN)\Q((k − 1)N))

are disjoint annuli for k = 1, 2, . . . . We decompose the sum over x′ according to which

annulus x′ falls into. For k ≥ 2 we have∑
x′∈φ−1(K)

x′−y′∈Q(kN)\Q((k−1)N)

CG

|y′ − x′|d−2
≤ |K|Ckd−1CG(Nk)

2−d ≤ |K|CkN2−d,

where CG is the Green’s function constant. The contribution from a copy of K in

y′ +Q(N) will be of order N2−d if its distance from y′ is at least N/3, say. Note that

there is at most one copy of K within distance N/3 of y′, which may have a distance

as small as N ζ .

We have to sum over the following values of k:

k = 1, . . . ,
N1+4ε

N
= N4ε.
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Since x′ ∈ φ−1(K) and y′ /∈ φ−1
(
B(x0, N

ζ)
)
for x0 ∈ K, the distance between x′ and

y′ is at least N ζ . Therefore, we get the upper bound as follows:

∑
x′∈φ−1(K)

|x′−y′|≤N1+4ε

G(y′, x′) ≤ |K|N ζ(2−d) +
N4ε∑
k=1

|K|CkN2−d

≤ |K|N ζ(2−d) + C|K|N2−d ×N8ε ≤ C|K|N ζ(2−d).

Here the last inequality follows from the choice of ζ, (5.7), for sufficiently small ε > 0.

(ii) The proof is essentially the same, except for the contribution of the ”nearest” copy

of K, which is now C|K|g(N)2−d.

(iii) The proof is very similar to that in part (i). Recall that n = ⌊N δ⌋. This time we

need to sum over k = 1, . . . , n
1
2
+ε/N , which results in the bound

C|K|N−ζ(d−2) + C|K|N2−d ×N δ+2δε−2 = C|K|
[
N−ζ(d−2) +N δ−d+2δε

]
.

Here, for ε > 0 for small enough, the second term dominates due to the choice of ζ; see

(5.7).

Proof of Proposition 5.2.3. Since

Py′ℓ−1

[
Yn = y′ℓ, Yt ̸∈ φ−1(K) for 0 ≤ t < n

]
= Py′ℓ−1

[
Yn = y′ℓ

]
−Py′ℓ−1

[
Yn = y′ℓ, Yt ∈ φ−1(K) for some 0 ≤ t < n

]
,

we need to show that

Py′ℓ−1

[
Yn = y′ℓ, Yt ∈ φ−1(K) for some 0 ≤ t < n

]
= O

( n

Nd

)
Py′ℓ−1

[
Yn = y′ℓ

]
.

Define A(x) = {Yn = y′ℓ, Yt ∈ xN +K for some 0 ≤ t < n}, so that

Py′ℓ−1

[
Yn = y′ℓ, Yt ∈ φ−1(K) for some 0 ≤ t < n

]
≤
∑
x∈Zd

Py′ℓ−1
[A(x)]. (5.22)

We have

Py′ℓ−1
[A(x)] ≤

∑
n1+n2=n

∑
x′∈K+xN

pn1(y
′
ℓ−1, x

′)pn2(x
′, y′ℓ). (5.23)

We bound this by splitting up the sum into different contributions. Let ε > 0 that will
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be chosen sufficiently small in the course of the proof.

Case 1. n1, n2 ≥ N2+6ε and |y′ℓ−1 − x′| ≤ n
1
2
+ε

1 , |x′ − y′ℓ| ≤ n
1
2
+ε

2 . By the LCLT we

have that

pn1(y
′
ℓ−1, x

′) ≤ Cpn1(y
′
ℓ−1, u

′) for any u′ ∈ TN + xN,

pn2(x
′, y′ℓ) ≤ Cpn2(u

′, y′ℓ) for any u′ ∈ TN + xN.

For this note that we have∣∣∣∣∣d|y′ℓ−1 − x′|2

n1
−
d|y′ℓ−1 − u′|2

n1

∣∣∣∣∣ ≤ d|x′ − u′|2

n1
+

2d|⟨x′ − u′, y′ℓ−1 − x′⟩|
n1

≤ C
N2

n1
+
CN · n

1
2
+ε

1

n1
,

where the first term tends to 0 and the rest equals

CNn
− 1

2
+ε

1 ≤ CN ·N (2+6ε)(− 1
2
+ε) = CN−ε+6ε2 → 0, as N → ∞.

A similar observation shows the estimate for pn2(x
′, y′ℓ).

It follows that the contribution of the values of n1, n2 and x in Case 1 to the right hand

side of (5.22) is at most

C

Nd

∑
n1+n2=n

∑
u′∈Zd

pn1(y
′
ℓ−1, u

′)pn2(u
′, y′ℓ) =

C

Nd

∑
n1+n2=n

pn(y
′
ℓ−1, y

′
ℓ) ≤

Cn

Nd
pn(y

′
ℓ−1, y

′
ℓ),

where 1/Nd comes from that u′ is uniformly chosen from TN + xN .

Case 2a. n1, n2 ≥ N2+6ε but |x′ − y′ℓ−1| > n
1
2
+ε

1 . In this case we bound pn2(x
′, y′ℓ) ≤ 1

and have that the contribution of this case to the right hand side of (5.22) is at most∑
n1+n2=n

n1,n2≥N2+6ε

Py′ℓ−1
[|Yn1 − y′ℓ−1| > n

1/2+ε
1 ] ≤

∑
n1+n2=n

n1,n2≥N2+6ε

C exp(−cn2ε1 )

≤ Cn exp(−cN4ε) = o
(
pn(y

′
ℓ−1, y

′
ℓ)
)
,

where in the first step we used (5.3) and in the last step we used the Gaussian lower

bound (5.5) for pn. Indeed, by the Gaussian lower bound for pn, we have

pn(y
′
ℓ−1, y

′
ℓ) ≥

c

nd/2
exp

(
−
C|y′ℓ − y′ℓ−1|2

n

)
≥ c

nd/2
exp (−C log n) . (5.24)
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Then we have

0 ≤ Cn exp(−cN4ε)

cn−d/2 exp (−C log n)

≤ Cn1+d/2 exp
(
−cN4ε + C log n

)
→ 0, as N → ∞.

Case 2b. n1, n2 ≥ N2+6ε but |y′ℓ−x′| > n
1/2+ε
2 . This case can be handled very similarly

to Case 2a.

Case 3a. n1 < N2+6ε and |x′ − y′ℓ−1| ≤ N
δ
2
−ε. By the LCLT we have

pn2(x
′, y′ℓ) =

C

n
d/2
2

exp

(
−
d|y′ℓ − x′|2

n2

)
(1 + o(1))

pn(y
′
ℓ−1, y

′
ℓ) =

C

nd/2
exp

(
−
d|y′ℓ − y′ℓ−1|2

n

)
(1 + o(1)).

We claim that

pn2(x
′, y′ℓ) ≤ C pn(y

′
ℓ−1, y

′
ℓ). (5.25)

We first note that n2 = n − n1 = n(1 + o(1)), then we deduce that n
−d/2
2 = O(n−d/2)

and

exp

(
−
d|y′ℓ − y′ℓ−1|2

n

)
≥ exp

(
−
d|y′ℓ − y′ℓ−1|2

n2

)
.

Since we have |x′ − y′ℓ−1| ≤ N
δ
2
−ε in the exponent, we have, as N → ∞,

|x′ − y′ℓ−1|2

n2
≤ N δ−2ε

n2
→ 0

and
|y′ℓ − y′ℓ−1||x′ − y′ℓ−1|

n2
≤ n

1
2C1

√
log nN

δ
2
−ε

n2
→ 0.

These imply that∣∣∣∣∣ |y′ℓ − y′ℓ−1|2 − |y′ℓ − x′|2

n2

∣∣∣∣∣ ≤
∣∣∣∣∣ |y′ℓ − y′ℓ−1|2 − |(y′ℓ − y′ℓ−1) + (y′ℓ−1 − x′)|2

n2

∣∣∣∣∣
≤

|x′ − y′ℓ−1|2

n2
+

2|y′ℓ − y′ℓ−1||x′ − y′ℓ−1|
n2

→ 0.

Thus (5.25) follows from comparing the LCLT approximations of the two sides.

We now have that the contribution of this case to the right hand side of (5.22) is at
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most

Cpn(y
′
ℓ−1, y

′
ℓ)

∑
n1<N2+6ε

∑
x∈Zd

∑
x′∈K+xN

pn1(y
′
ℓ−1, x

′) ≤ C

N ζ(d−2)
pn(y

′
ℓ−1, y

′
ℓ)

≤ C
n

Nd
pn(y

′
ℓ−1, y

′
ℓ),

where in the first step we used Lemma 5.4.1(i) and the last step holds for the value of

ζ we chose; cf. (5.7).

Case 3b. n1 < N2+6ε but |x′ − y′ℓ−1| > N
δ
2
−ε. Bounding the pn2 term by 1 and using

the Gaussian upper bound (5.5) for pn1 , we get

∑
n1+n2=n
n1<N2+6ε

∑
x∈Zd

∑
x′∈K+xN

pn1(y
′
ℓ−1, x

′)pn2(x
′, y′ℓ) ≤

∑
n1<N2+6ε

C

n
d/2
1

exp

(
−N

δ−2ε

N2+6ε

)

≤ CNO(1) exp(−N δ−2−8ε) = o(1)pn(y
′
ℓ−1, y

′
ℓ), as N → ∞.

In the last step we used a Gaussian lower bound for pn; cf. (5.24).

Case 4a. n2 < N2+6ε and |y′ℓ − x′| ≤ N
δ
2
−ε. This case can be handled very similarly

to Case 3a.

Case 4b. n2 < N2+6ε and |y′ℓ − x′| > N
δ
2
−ε. This case can be handled very similarly

to Case 3b.

Therefore, we discussed all possible cases and proved statement (5.11) of the proposition

as required.

The proof of (5.12) is similar to the first part with only a few modifications. In this

part we have to show that

Po

[
Yn = y′1, Yt ∈ φ−1(K) for some 0 ≤ t < n

]
= o(1)Po

[
Yn = y′1

]
.

Define A0(x) = {Yn = y′1, Yt ∈ xN +K for some 0 ≤ t < n}, so that

Po

[
Yn = y′1, Yt ∈ φ−1(K) for some 0 ≤ t < n

]
≤
∑
x∈Zd

Po[A0(x)]. (5.26)

We have

Po[A0(x)] ≤
∑

n1+n2=n

∑
x′∈K+xN

pn1(o, x
′)pn2(x

′, y′1). (5.27)
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We bound the term above by splitting up the sum into the same cases as in the proof

of (5.11). The different cases can be handled very similarly to the first part. The

difference is only in Case 3a while applying the Green’s function bound Lemma 5.4.1.

In Case 3a, by the LCLT, we can deduce that

pn2(x
′, y′1) ≤ C pn(o, y

′
1).

If g(N) > N ζ , the bound of Lemma 5.4.1(i) can be used as before. If g(N) ≤ N ζ , by

Lemma 5.4.1(ii), we have that the contribution of this case to the right hand side of

(5.26) is at most

Cpn(o, y
′
1)

∑
n1<N2+6ε

∑
x∈Zd

∑
x′∈K+xN

pn1(o, x
′) ≤ C

g(N)d−2
pn(o, y

′
1) = o(1)pn(o, y

′
1).

Here we used that g(N) → ∞.

Note that Case 4a can be handled in the same way as in the proof of (5.11), since the

distance between y′1 and any copy of K is at least N ζ .

Therefore, we discussed all possible cases and proved (5.12) as required.

5.4.2 Proof of Proposition 5.2.1

Proof of Proposition 5.2.1. We denote the error term in (5.9) as E, which we claim to

satisfy |E| ≤ E1 + E2 + E3 + E4, with

E1 = P

[
Sn

Nd
< (
√

log log n)−1

]
+P

[
Sn

Nd
> logN

]
E2 = P

[
∃ℓ : 1 ≤ ℓ ≤ logN

Nd

n
such that Yℓn ∈ φ−1(B(x0, N

ζ))

]
E3 = P

[
∃ t : T ≤ t < Sn such that Yt ∈ φ−1(K)

]
.

E4 = P

[
∃ℓ : 1 ≤ ℓ ≤ logN

Nd

n
such that |Yℓn − Y(ℓ−1)n| > f(n)n

1
2

]
.

Since T ≤ Sn, we have

Po

[
Yt ̸∈ φ−1(K), 0 ≤ t < T

]
−Po

[
Yt ̸∈ φ−1(K), 0 ≤ t < Sn

]
≤ E3.
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By the Markov property, for (τ, (yℓ,yℓ)
τ
ℓ=1) ∈ Gζ,C1 ,

τ∏
ℓ=1

Py′ℓ−1

[
Yn = y′ℓ, Yt ̸∈ φ−1(K) for 0 ≤ t < n

]
= Po

[
Ynℓ = y′ℓ for 0 ≤ ℓ ≤ τ ; Yt ̸∈ φ−1(K) for 0 ≤ t < τn;

Ynℓ ̸∈ φ−1(B(x0, N
ζ)) for 0 < ℓ ≤ τ

]
.

We denote the probability on the right hand side by p(τ, (yℓ,yℓ)
τ
ℓ=1). On the event of

the right hand side, since yτ ∈ Dc, we have S = τ and the events in the definitions of

E1, E2 and E4 do not occur. Hence∣∣∣∣∣∣
∑

(τ,(yℓ,yℓ)
τ
ℓ=1)∈Gζ,C1

p(τ, (yℓ,yℓ)
τ
ℓ=1)−Po

[
Yt ̸∈ φ−1(K) for 0 ≤ t < Sn

]∣∣∣∣∣∣ ≤ E1 + E2 + E4.

The proof follows since Ej → 0, for j = 1, 2, 3, 4, as is shown below.

We bound E1, E2, E3 and E4 in the following lemmas.

Lemma 5.4.2. We have E1 → 0 as N → ∞.

Proof. By the definitions of S and T , we first notice that

P

[
S < (

√
log logn)−1N

d

n

]
≤ P

[
T < (

√
log log n)−1Nd

]
≤
∑

1≤i≤d

(
P

[
max

0≤j≤(
√
log logn)−1Nd

Y
(i)
j ≥ L

]
+P

[
max

0≤j≤(
√
log logn)−1Nd

−Y (i)
j ≥ L+ 1

])
,

where Y (i) denotes the i-th coordinate of the d-dimensional lazy random walk.

We are going to use (5.3). Setting t = (
√
log logn)−1Nd and rσ

√
t = L, we can evaluate

each term (similarly for the event with −Y (i)
j ) in the sum

P

[
max

0≤j≤(
√
log logn)−1Nd

Y
(i)
j ≥ L

]
≤ exp

{
−1

2

L2

σ2(
√
log logn)−1Nd

+O

(
L3

σ3(
√
log logn)−2N2d

)}
.
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Recall that L2 ∼ ANd and σ2 = 1/2d, we have the upper bound

exp

(
−(1 + o(1))

1

2

2d ·ANd

(
√
log logn)−1Nd

)
= exp

(
−(1 + o(1))Ad

√
log log n

)
→ 0, as N → ∞,

and

exp

{
O

(
(ANd)3/2

σ3(
√
log logn)−2N2d

)}
= exp

{
O
(
N−d/2(log log n)

)}
= (log n)O(N−d/2) = O(1), as N → ∞.

Now we use the Central Limit Theorem (CLT) and induction to estimate the probability

P
[
Sn
Nd > logN

]
. By the CLT, if we have a lazy random walk starting from the origin

o at time 0, the walk exits (−L,L)d in Nd steps with at least positive probability c0

independent of N , for sufficient large N .

Po

[
S >

Nd

n

]
≤ Po

[
YNd ∈ [−L,L)d

]
= 1−Po

[
YNd /∈ [−L,L)d

]
≤ 1− c0.

Assume that

Po

[
S > k

Nd

n

]
≤ (1− c0)(1− c′0)

k−1 ≤ e−c′0k,

where c0 and c′0 comes from the CLT with c′0 ≤ c0; see below for details.

By the Markov property,

Po

[
S > (k + 1)

Nd

n

]
= Po

[
S > k

Nd

n

]
Po

[
S > (k + 1)

Nd

n

∣∣∣∣S > k
Nd

n

]
≤ Po

[
S > k

Nd

n

]
max

z∈(−L,L)d
Pz

[
YNd ∈ (−L,L)d

]
≤ Po

[
S > k

Nd

n

]
max

z∈(−L,L)d
Pz

[
YNd ∈ z + (−2L, 2L)d

]
≤ Po

[
S > k

Nd

n

]
Po

[
YNd ∈ (−2L, 2L)d

]
≤ (1− c0)(1− c′0)

k−1(1− c′0) = (1− c0)(1− c′0)
k ≤ e−c′0(k+1),

where c0 and c′0 comes from the CLT with c′0 ≤ c0.

Coming to the second term in E1, note that since the rescaled exit time S is of the scale
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Nd/n, we have shown above that for some c we have Po

[
S > kNd

n

]
≤ e−ck for all k ≥ 0.

Applying this with k = logN , Po

[
S > logN Nd

n

]
≤ e−c logN → 0 as required.

Lemma 5.4.3. We have E2 ≤ C logN Ndζ

n for some C. Consequently, E2 → 0.

Proof. Since the number of points in B(x0, N
ζ) is O(Ndζ), and since we are considering

times after the first stretch, the random walk is well mixed, so the probability to visit

any point in the torus is O(1/Nd). Using a union bound we have

E2 ≤ C logN
Nd

n
Ndζ 1

Nd
= C logN

Ndζ

n
,

Since ζ < δ/d, we have

E2 → 0, as N → ∞.

Before we bound the error term E3, we first introduce the following lemma. Let T
(i)
0 =

inf{t ≥ 0 : Y
(i)
t = 0}, where recall that Y (i) denotes the i-th coordinate of the d-

dimensional lazy random walk. We will denote by t0 an instance of T
(i)
0 .

Lemma 5.4.4. For all 1 ≤ i ≤ d, for any −n ≤ y < 0 and 0 < t0 ≤ n we have

Ey

[
Y (i)
n |T (i)

0 = t0, Y
(i)
n > 0

]
≤ Cn

1
2

Ey

[
(Y (i)

n )2 |T (i)
0 = t0, Y

(i)
n > 0

]
≤ Cn.

Proof. Using the Markov property at time t0, we get

Ey

[
Y (i)
n |T (i)

0 = t0, Y
(i)
n > 0

]
= E0

[
Y

(i)
n−t0

|Y (i)
n−t0

> 0
]
=

E0

[
Y

(i)
n−t0

1{Y (i)
n−t0

>0}

]
P0

[
Y

(i)
n−t0

> 0
]

≤ C0

(
E0

[
(Y

(i)
n−t0

)2
]) 1

2 ≤ C(n− t0)
1
2 ≤ Cn

1
2 ,

where the third step is due to Jensen’s inequality and P0

[
Y

(i)
n−t0

> 0
]
≥ c0 for some

c0 > 0, and the second to last step is due to E0

[
(Y

(i)
n−t0

)2
]
= (n− t0)/2d.
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We can similarly bound the conditional expectation of (Y
(i)
n )2 as follows:

Ey

[
(Y (i)

n )2|T (i)
0 = t0, Y

(i)
n > 0

]
= E0

[
(Y

(i)
n−t0

)2|Y (i)
n−t0

> 0
]

=

E0

[
(Y

(i)
n−t0

)21{Y (i)
n−t0

>0}

]
P0

[
Y

(i)
n−t0

> 0
] ≤ C0

(
E0

[
(Y

(i)
n−t0

)2
])

≤ C(n− t0) ≤ Cn.

Lemma 5.4.5. We have E3 → 0 as N → ∞.

Proof. First we are going to bound the time difference between T and Sn. We are

going to consider separately the cases when YT is in each face of the cube [−L,L)d.
Assume that we have Y

(i)
T = L for some 1 ≤ i ≤ d. (The arguments needed are very

similar when Y
(i)
T = −L− 1 for some 1 ≤ i ≤ d, and this will not be given.)

Let us consider the lazy random walk (Yt)t≥0 in multiples of n steps. Let

s1 = min{ℓn : ℓn ≥ T} − T,

and similarly, let

sr+1 = rn+min{ℓn : ℓn ≥ T} − T, r ≥ 1.

We let M0 = L − Y
(i)
T+s1

and Mr = L − Y
(i)
T+sr+1

for r ≥ 1. We have that (Mr)r≥0 is a

martingale. Let S̃ = inf{r ≥ 0 : Mr ≤ 0}, and we are going to bound P[S̃ > N ε1 ] for

some small ε1 that we are going to choose in the course of the proof. We are going to

adapt an argument in [10, Proposition 17.19] to this purpose.

Define

Th = inf{r ≥ 0 :Mr ≤ 0 or Mr ≥ h},

where we set h =
√
n
√
N ε1 . Let (Fr)r≥0 denote the filtration generated by (Mr)r≥0.

We have

Var(Mr+1 | Fr) = nσ2 for all r ≥ 0, (5.28)

where recall that σ2 is the variance of Y
(i)
1 .

We first estimate E[M0 | S̃ > 0]. Since 0 ≤ s1 < n, by the same argument as in Lemma
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5.4.4 we have that

E[M0 |Y (i)
T+s1

< L] = E[L− Y
(i)
T+s1

|L− Y
(i)
T+s1

> 0] ≤ Cn
1
2 .

We first bound P[MTh
≥ h |M0]. Since (Mr∧Th

) is bounded, by the Optional Stopping

Theorem, we have

M0 = EMTh
= E

[
MTh

1{MTh
≤0}

]
+E

[
MTh

1{MTh
≥h}

]
= −m−(h) +E

[
MTh

1{MTh
≥h}

]
≥ −m−(h) + hP [MTh

≥ h] ,

where we denote E[MTh
1{MTh

≤0}] by −m−(h) ≤ 0 and the last step is due to Markov’s

inequality. Hence, we have

M0 +m−(h) ≥ hP [MTh
≥ h] .

We bound m−(h) using Lemma 5.4.4

m−(h) ≤ max
y≤L

Ey

[
Y (i)
n − L|Y (i)

n > L
]
≤ Cn

1
2 .

Hence, we have

P[MTh
≥ h |M0] ≤

M0

h
+
Cn

1
2

h
.

We now estimate P[Th ≥ r |M0]. Let Gr =M2
r − hMr − σ2nr. The sequence (Gr) is a

martingale by (5.28).

Since Var(Mr+1|Fr) = E[M2
r+1|Fr]−M2

r = nσ2

E[Gr+1|Fr] = E[M2
r+1|Fr]− hE[Mr+1|Fr]− nσ2(r + 1)

= E[M2
r+1|Fr]− nσ2 − hMr − nσ2r =M2

r − hMr − nσ2r = Gr.

We can bound both the ‘overshoot’ above h and the ‘undershoot’ below 0 by Lemma

5.4.4. For the ‘undershoot’ below 0 we have

E[(MTh
−h)MTh

|MTh
≤ 0] = E[M2

Th
|MTh

≤ 0]+E[−hMTh
|MTh

≤ 0] ≤ Cn+Chn1/2.
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For the ‘overshoot’ above h, write MTh
=: NTh

+ h, then we have

(MTh
− h)MTh

= NTh
(h+NTh

),

Hence

E[(MTh
− h)MTh

|MTh
≥ h] = E[hNTh

|NTh
≥ 0] +E[N2

Th
|NTh

≥ 0] ≤ Chn1/2 + Cn.

For r < Th, we have (Mr − h)Mr < 0 Therefore, we have

E
[
M2

r∧Th
− hMr∧Th

]
≤ Chn1/2 + Cn.

Since (Gr∧Th
) is a martingale

−hM0 ≤ G0 ≤ EGr∧Th
= E[M2

r∧Th
− hMr∧Th

]− σ2nE[r ∧ Th]

≤ Cn
1
2h+ Cn− σ2nE[r ∧ Th].

We conclude that E[r ∧ Th |M0] ≤ h(M0+Cn
1
2 )+Cn

σ2n
. Letting r → ∞, by the Monotone

Convergence Theorem,

E[Th |M0] ≤
h(M0 + Cn

1
2 ) + Cn

σ2n
,

where h =
√
n
√
N ε1 . This gives

P[Th > N ε1 |M0] ≤
1

N ε1

[√
n
√
N ε1M0 + Cn

√
N ε1 + Cn

σ2n

]
.

Taking expectations of both sides, we have

P[Th > N ε1 ] ≤ 1

N ε1

[√
n
√
N ε1EM0 + Cn

√
N ε1 + Cn

σ2n

]

=
EM0

σ2
√
n
√
N ε1

+
C

σ2
√
N ε1

+
C

σ2N ε1
≤ C√

N ε1
.

Combining the above bounds, we get

P[S̃ > N ε1 ] ≤ P[MTh
≥ h] +P[Th > N ε1 ] ≤ E[M0]

h
+
Cn

1
2

h
+

C√
N ε1

≤ C√
N ε1

.
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We now bound the probability that a copy of K is hit between times T and sNε1 .

We first show that the probability that the lazy random walk on the torus is in the ball

B(x0, N
ζ) at time T goes to 0. Indeed, we have

Po

[
YT ∈ φ−1

(
B(x0, N

ζ)
)]

=
∑

y′∈∂(−L,L)d∩φ−1(B(x0,Nζ))

Po

[
YT = y′

]
≤ CN ζ(d−1) L

d−1

Nd−1

C

Ld−1
= CN (ζ−1)(d−1),

where we have ζ < δ/d < 1, so the last expression goes to 0. Here we used that

Po[YT = y′] ≤ C/Ld−1, for example using a half-space Poisson kernel estimate [9,

Theorem 8.1.2].

Condition on the location y′ of the walk at the exit time T . For y′ /∈ φ−1
(
B(x0, N

ζ)
)

we first bound the probability of hitting K between the times between 0 and s2. After

time s2, the random walk is well mixed, and we can apply a simpler union bound.

We thus have the upper bound

s2∑
t=0

∑
x′∈φ−1(K)

pt(y
′, x′) ≤ P

[
max

0≤t≤s2
|Y (i)

t − y′| ≥ n
1
2
+ε

]
+

∑
x′∈φ−1(K)

|x′−y′|≤n
1
2+ε

G(y′, x′).

The first term is stretched-exponentially small due to the Martingale maximal inequal-

ity (5.3). The Green’s function term is bounded by Lemma 5.4.1(iii).

After time s2, by the mixing property, we have that

sNε1∑
t=s2

Py

[
Yt ∈ φ−1(K)

]
≤ n ·N ε1 |K| C

Nd
= C N δ+ε1−d.

Therefore, combining the above upper bounds, we have the required result.

E3 ≤ C ·N− ε1
2 + C ·N δ−d+2δε + C ·N δ−d+ε1 → 0, as N → ∞,

if ε and ε1 are sufficiently small.

Lemma 5.4.6. We have E4 ≤ Ce−cf(n)2 Nd logN
n for some C. There exists C1 such

that if f(n) ≥ C1
√
logN , then E4 → 0.
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Proof. By the Martingale maximal inequality (5.3), we have that

E4 ≤ Ce−cf(n)2N
d logN

n
.

There exists C1 such that if f(n) ≥ C1
√
logN , we have

E4 → 0, as N → ∞.

5.4.3 Proof of Proposition 5.2.2

In this section we need C1 large enough so that we have

e−df(n)2Ndn→ 0. (5.29)

We have

Py′ℓ−1
[Yn = y′ℓ, Yt ∈ φ−1(K) for some 0 ≤ t < n] = P [∪x∈ZdA(x)] ,

where

A(x) =
{
Yn = y′ℓ, Yt ∈ xN +K for some 0 ≤ t < n

}
.

The strategy is to estimate the probability via the Bonferroni inequalities:∑
x

Py′ℓ−1
[A(x)]−

∑
x1 ̸=x2

Py′ℓ−1
[A(x1) ∩A(x2)] ≤ P [∪x∈ZdA(x)]

≤
∑
x

Py′ℓ−1
[A(x)].

(5.30)

We are going to use a parameter An that we choose as An = 10 log log n so that in

particular An → ∞.

Case (I): |y′ℓ − y′ℓ−1| ≤ An
√
n.

We will show that the main contribution in (5.30) comes from x in the set:

G =
{
x ∈ Zd : |y′ℓ−1 − xN | ≤ A2

n

√
n, |xN − y′ℓ| ≤ A2

n

√
n
}
.

We first examine Py′ℓ−1
[A(x)] for x ∈ G. Putting B0,x = B(x0+xN,N ζ), let n1 be the
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B0,x

K+ xN

x′

z′

y′ℓ−1

y′ℓ

Figure 5-2: The decomposition of a path hitting a copy of K into three subpaths (not
to scale).

time of the last visit to ∂B0,x before hitting K + xN , let n1 + n2 be the time of the

first hit of K+ xN , and let n3 = n− n1 − n2. See Figure 5-2 for an illustration of this

decomposition. Then we can write:

Py′ℓ−1
[A(x)] =

∑
n1+n2+n3=n

∑
z′∈∂B0,x

∑
x′∈K+xN

p̃(x)n1
(y′ℓ−1, z

′)

×Pz′ [HK+xN = n2 < ξB0,x , YHK+xN
= x′] pn3(x

′, y′ℓ),

(5.31)

where

p̃(x)n1
(y′ℓ−1, z

′) = Py′ℓ−1
[Yn1 = z′, Yt ̸∈ K+ xN for 0 ≤ t ≤ n1].

We are going to use another parameter εn that will need to go to 0 slowly. We choose it

as εn = (10 log log n)−1 → 0. The main contribution to (5.31) will be when n1 ≥ εnn,

n3 ≥ εnn and n2 ≤ N2δ/d ∼ n2/d. Therefore, we split the sum over n1, n2, n3 in (5.31)

into the main contribution I(x) and an error term II(x) according to:

Py′ℓ−1
[A(x)] = I(x) + II(x) :=

∑
n1+n2+n3=n

n1,n3≥εnn, n2≤N2δ/d

+
∑

n1+n2+n3=n
n1 < εnn or n3 < εnn

or n2 > N2δ/d

(5.32)

Lemma 5.4.7. When x ∈ G and n3 ≥ εnn, we have

pn3(x
′, y′ℓ) = (1 + o(1))pn3(u

′, y′ℓ) for all x′ ∈ K+ xN and all u′ ∈ TN + xN,

with the o(1) term uniform in x′ and u′.
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Proof. By the LCLT, we have

pn3(x
′, y′ℓ) =

C

n
d/2
3

exp

(
−
d|y′ℓ − x′|2

n3

)
(1 + o(1)),

pn3(u
′, y′ℓ) =

C

n
d/2
3

exp

(
−
d|y′ℓ − u′|2

n3

)
(1 + o(1)).

We compare the exponents∣∣∣∣d|y′ℓ − x′|2

n3
−
d|y′ℓ − u′|2

n3

∣∣∣∣ ≤ d|x′ − u′|2

n3
+

2d|⟨x′ − u′, y′ℓ − x′⟩|
n3

≤ C
N2

n3
+
CN ·A2

n

√
n

n3
→ 0,

as N → ∞.

Lemma 5.4.8. When x ∈ G and n1 ≥ εnn, we have

p̃(x)n1
(y′ℓ−1, z

′) = (1 + o(1))pn1(y
′
ℓ−1, u

′) for all z′ ∈ ∂B0,x and all u′ ∈ TN + xN,

with the o(1) term uniform in z′ and u′.

Proof. The statement boils down to showing the following claim:

Py′ℓ−1
[Yn1 = z′, Yt ∈ K+ xN for some 0 ≤ t ≤ n1] = o(1)pn1(y

′
ℓ−1, z

′).

For this, observe that by (5.5) we have

pn1(y
′
ℓ−1, z

′) ≥ c

n
d/2
1

exp

(
−C

|z′ − y′ℓ−1|2

n1

)

≥ c

nd/2
exp

(
−cA

2
nn+N ζ

εnn

)
≥ c

nd/2
exp

(
−C(log log n)O(1)

)
= n−d/2+o(1).

(5.33)

On the other hand, using the Markov property, (5.5), and the fact that for x′ ∈ K+xN
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we have |y′ℓ−1 − x′| ≥ cN ζ and |x′ − z′| ≥ cN ζ , we get

Py′ℓ−1
[Yn1 = z′, Yt ∈ K+ xN for some 0 ≤ t ≤ n1]

≤
∑

1≤m≤n1−1

∑
x′∈K+xN

pm(y′ℓ−1, x
′) pn1−m(x′, z′)

≤ C
∑

1≤m≤n1−1

1

md/2

1

(n1 −m)d/2
exp

(
−cN

2ζ

m

)
exp

(
−c N2ζ

n1 −m

)

= C

 ∑
1≤m≤n1/2

+
∑

n1/2≤m≤n1−1

 .
(5.34)

Due to symmetry, it is enough to bound the sum over 1 ≤ m ≤ n1/2. This gives

C

n
d/2
1

∑
1≤m≤n1/2

1

md/2
exp

(
−cN

2ζ

m

)

=
C

n
d/2
1

 ∑
1≤m≤N2ζ

+
∑

N2ζ<m≤n1/2

 . (5.35)

In the second sum we can bound the exponential by 1, and get the upper bound

C

n
d/2
1

N ζ(2−d) = o(n−d/2+o(1)).

In the first sum, we group terms on dyadic scales k so that 2k ≤ N2ζ/m ≤ 2k+1,

k = 0, . . . log2N
2ζ . This gives the bound

C

n
d/2
1

log2 N
2ζ∑

k=0

(2k)d/2−1

(N2ζ)d/2−1
exp

(
−c2k

)
≤ C

n
d/2
1

1

N ζ(d−2)
,

which is of the same order as the other term.

The previous two lemmas allow us to write, for x ∈ G, the main term I(x) as

I(x) =
1 + o(1)

Nd

∑
u′∈TN+xN

∑
n1+n2+n3=n
n1,n3≥εnn
n2≤N2δ/d

pn1(y
′
ℓ−1, u

′) pn3(u
′, y′ℓ)

∑
z′∈∂B0,x

Pz′ [HK+xN = n2 < ξB0,x ].

(5.36)
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Lemma 5.4.9. Assume that n1, n3 ≥ εnn and n2 ≤ N2δ/d.

(i) We have

pn1+n3(y
′
ℓ−1, y

′
ℓ) = (1 + o(1))pn(y

′
ℓ−1, y

′
ℓ).

(ii) We have∑
x∈G

∑
u′∈TN+xN

pn1(y
′
ℓ−1, u

′) pn3(u
′, y′ℓ) = (1 + o(1))pn1+n3(y

′
ℓ−1, y

′
ℓ). (5.37)

Proof. (i) When n2 ≤ N2δ/d = n2/d, we have

n1 + n3 = n
(
1−O

(
n−1+2/d

))
.

Hence the exponential term in the LCLT for pn1+n3(y
′
ℓ−1, y

′
ℓ) is

exp

(
−
|y′ℓ − y′ℓ−1|2

n

(
1 +O(n−1+2/d)

))
= (1 + o(1)) exp

(
−
|y′ℓ − y′ℓ−1|2

n

)
,

where we used that |y′ℓ − y′ℓ−1|2 ≤ A2
nn = no(n1−2/d).

(ii) If we summed over all x ∈ Zd, we would get exactly pn1+n3(y
′
ℓ−1, y

′
ℓ). Thus the

claim amounts to showing that∑
x∈Zd\G

∑
u′∈TN+xN

pn1(y
′
ℓ−1, u

′) pn3(u
′, y′ℓ) = o(1)pn1+n3(y

′
ℓ−1, y

′
ℓ). (5.38)

First, note that from the Local CLT we have

pn1+n3(y
′
ℓ−1, y

′
ℓ) = (1 + o(1))pn1+n3

(y′ℓ−1, y
′
ℓ).

In order to estimate the left hand side of (5.38), using (5.5), the contribution of {x ∈
Zd \ G : max{|y′ℓ−1 − xN |, |xN − y′ℓ−1|} > A2

n

√
n} can be estimated as follows. First,

we have

pn1+n3(y
′
ℓ−1, y

′
ℓ) ≥

c

nd/2
exp(−A2

n + o(1)) ≥ c

nd/2
exp(−100(log log n)2).

On the other hand, note that either n1 ≥ n/3 or n3 ≥ n/3. Without loss of generality,

assume that n3 ≥ n/3. Then the contribution to the left hand side of (5.38), using

(5.5), and by summing in dyadic shells with radii 2kA2
n

√
n, k = 0, 1, 2, . . . we get the
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bound

∞∑
k=0

C(A2
n

√
n)d2dk

C

n
d/2
1

exp(−c22kA4
nn/n1)

1

n
d/2
3

exp(−c22kA4
nn/n3)

≤
∞∑
k=0

C A2d
n 2dk

1

ε
d/2
n

exp(−c22kA4
n)

1

nd/2
exp(−c22kA4

n)

≤ C

nd/2
A2d

n

ε
d/2
n

∞∑
k=0

exp(−c22k(log log n)4 + dk log 2)

=
C

nd/2
o
(
exp(−100(log log n)2)

)
.

(5.39)

The above lemma allows us to write∑
x∈G

I(x) =
1 + o(1)

Nd
pn(y

′
ℓ−1, y

′
ℓ)

∑
n1+n2+n3=n
n1,n3≥εnn
n2≤N2δ/d

∑
z′∈∂B0,x

Pz′ [HK+xN = n2 < ξB0,x ]

=
(1 + o(1))n

Nd
pn(y

′
ℓ−1, y

′
ℓ)

∑
n2≤N2δ/d

∑
z′∈∂B0,x

Pz′ [HK+xN = n2 < ξB0,x ].

(5.40)

The next lemma will help us extract the Cap(K) contribution from the right hand side

of (5.31).

Lemma 5.4.10. We have

N2δ/d∑
n2=0

∑
z′∈∂B0,x

Pz′ [HK+xN = n2 < ξB0,x ]

=
1

2
Cap(K) (1 + o(1)).

(5.41)

Proof. Performing the sum over n2 and using time-reversal allows us to write the left

hand side of (5.41) as ∑
z′∈∂B0,x

Pz′ [HK+xN < ξB0,x ]

−

 ∑
z′∈∂B0,x

Pz′ [N
2δ/d < HK+xN < ξB0,x ]


=

1

2
Cap(K)−

∑
x∈K

Px+xN [N2δ/d < ξB0,x < HK+xN ]

(5.42)
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The subtracted term in the right hand side of (5.42) is at most

|K|max
x∈K

Px+xN [ξB0,x > N2δ/d].

Since ζ < δ/d, this expression is o(1).

From the above lemma we get that the main contribution equals

∑
x∈G

I(x) = (1 + o(1))
n

Nd

1

2
Cap(K) pn(y

′
ℓ−1, y

′
ℓ). (5.43)

It is left to estimate all the error terms.

Lemma 5.4.11. We have∑
x∈G

II(x) = o(1)
n

Nd
pn(y

′
ℓ−1, y

′
ℓ).

Proof. We split the estimates according to which condition is violated in the sum.

Case 1. n2 > N2δ/d. We claim that

Pz′ [HK+xN = n2 < ξB0,x , YHK+xN
= x′] ≤ C exp(−N ε/2)pn2(z

′, x′).

By (5.3), we have

Pz′ [HK+xN = n2 < ξB0,x , YHK+xN
= x′] ≤ C exp(−N ε).

By (5.5) on pn2 and since ζ < δ/d

pn2(z
′, x′) ≥ C

n
d/2
2

exp

(
−N

2ζ

n2

)
≥ C exp(−N ε/2).

We also have the bound

p̃(x)n1
(y′ℓ−1, z

′) ≤ pn1(y
′
ℓ−1, z

′).

We then get (summing over z′ and x′) that the contribution to
∑

x∈Zd II(x) from Case

1 is at most

C exp(−N ε/2)N (d−1)ζ
∑

n1+n2+n3=n

pn(y
′
ℓ−1, y

′
ℓ) ≤ Cn2 exp(−N ε/2)pn(y

′
ℓ−1, y

′
ℓ)

= o(1)
n

Nd
pn(y

′
ℓ−1, y

′
ℓ).
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Case 2. n2 ≤ N2δ/d and n1 < εnn. Note that since n2 ≤ N2 ≤ εnn, if we put

n′1 = n1 + n2 and n′3 = n3, we can upper bound the contribution of this case by∑
n′
1+n′

3=n
n′
1≤2εnn

∑
x∈G

∑
x′∈K+xN

pn′
1
(y′ℓ−1, x

′)pn′
3
(x′, y′ℓ).

Now we can model the bound on the argument for Proposition 5.2.3 as follows.

Case 2–(i). N2+6ε ≤ n′1 ≤ 2εnn and |y′ℓ−1 − x′| ≤ (n′1)
1
2
+ε and |x′ − y′ℓ| ≤ n

1
2
+ε. The

LCLT allows us to replace x′ by u′ ∈ T+ xN both in pn′
1
and pn′

3
, yielding the upper

bound

C

Nd

∑
n′
1+n′

3=n
n′
1≤2εnn

∑
u′∈Zd

pn′
1
(y′ℓ−1, u

′)pn′
3
(u′, y′ℓ) =

C

Nd

∑
n′
1+n′

3=n
n′
1≤2εnn

pn(y
′
ℓ−1, y

′
ℓ) = C

2εnn

Nd
pn(y

′
ℓ−1, y

′
ℓ)

= o(1)
n

Nd
pn(y

′
ℓ−1, y

′
ℓ).

Case 2–(ii). N2+6ε ≤ n′1 ≤ 2εnn but either |y′ℓ−1 − x′| > (n′1)
1
2
+ε or |x′ − y′ℓ| >

n
1
2
+ε. This case gives a stretched-exponentially small contribution as in the proof of

Proposition 5.2.3.

Case 2–(iii). n′1 < N2+6ε. This case can be handled exactly as Cases 3a and 3b of

Proposition 5.2.3.

Case 3. n2 ≤ N2δ/d and n3 < εnn. This case can be handled very similarly to Case

2.

Lemma 5.4.12. We have∑
x∈Zd\G

P[A(x)] = o(1)
n

Nd
pn(y

′
ℓ−1, y

′
ℓ).

Proof. By the same arguments as in Lemma 5.4.9(ii), we have

pn(y
′
ℓ−1, y

′
ℓ) ≥

C

nd/2
exp

(
−100(log log n)2

)
.

For x ∈ Zd \G, let k be the dyadic scale that satisfies

2kA2
n

√
n ≤ |x′ − y′ℓ−1| < 2k+1A2

n

√
n.
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Then we have

P[A(x)] ≤
∑

1≤m≤n−1

∑
x′∈K+xN

pm(y′ℓ−1, x
′)pn−m(x′, y′ℓ)

≤ C|K|
∑

1≤m≤n−1

1

md/2

1

(n−m)d/2
exp

(
−c2

2kA4
nn

m

)
exp

(
−c2

2kA4
nn

n−m

)
.

Due to symmetry of the right hand side, it is enough to consider the contribution of

1 ≤ m ≤ n/2, which is bounded by

C

nd/2
exp

(
−c22kA4

n

) ∑
1≤m≤n/2

1

md/2
exp

(
−c2

2kA4
nn

m

)

≤ C

nd/2
exp

(
−c22kA4

n

) log2 n∑
k′=1

∑
m:2k′≤n/m<2k′+1

2k
′d/2

nd/2
exp

(
−c22kA4

n2
k′
)

≤ C

nd
exp

(
−c22kA4

n

) ∞∑
k′=1

n

2k′
exp

(
−c22kA4

n2
k′ + k′d/2 log 2

)
≤ Cn

nd
exp

(
−c22kA4

n

)
.

Now summing over x ∈ Zd \G we have that

∑
x∈Zd\G

P[A(x)] ≤ Cn

nd

∞∑
k=0

1

Nd

(
2kA2

n

√
n
)d

exp
(
−c22kA4

n

)

≤ C

nd/2
n

Nd

∞∑
k=0

exp
(
−c22kA4

n + kd log 2 + 2d logAn

)
= o(1)

1

nd/2
n

Nd
exp

(
−100(log logn)2

)
.

Lemma 5.4.13. We have∑
x1 ̸=x2∈Zd

P[A(x1) ∩A(x2)] = o(1)
n

Nd
pn(y

′
ℓ−1, y

′
ℓ).
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Proof. The summation on the left hand side is bounded above by

P[A(x1) ∩A(x2)] ≤
∑

m1+m2+m3=n

∑
x′
1∈K+x1N

x′
2∈K+x2N

[
pm1(y

′
ℓ−1, x

′
1)pm2(x

′
1, x

′
2)pm3(x

′
2, y

′
ℓ)

+pm1(y
′
ℓ−1, x

′
2)pm2(x

′
2, x

′
1)pm3(x

′
1, y

′
ℓ)
]
.

Due to symmetry it is enough to consider the first term inside the summation. The

estimates are again modelled on the proof of Proposition 5.2.3.

Case 1. m1 + m2 ≥ n/2 and |x′2 − y′ℓ−1| ≤ 2C1
√
n
√
log n. In this case we can use

the calculations of Proposition 5.2.3 with x′2 playing the role of y′ℓ to perform the

summation over x′1 and x1 and get the upper bound:

C
n

Nd

∑
m′

1+m′
2=n

∑
x2∈Zd

∑
x′
2∈K+x2N

pm′
1
(y′ℓ−1, x

′
2)pm′

2
(x′2, y

′
ℓ), (5.44)

where we have written m′
1 = m1 +m2 and m′

2 = m3. Using again the calculations in

Proposition 5.2.3 yields the upper bound

C
( n

Nd

)2
pn(y

′
ℓ−1, y

′
ℓ) = o(1)

n

Nd
pn(y

′
ℓ−1, y

′
ℓ). (5.45)

Case 2. m1 +m2 ≥ n/2 and 2C1
√
n
√
log n < |x′2 − y′ℓ−1| ≤ n

1
2
+ε. First sum over all

x′1 ∈ Zd to get the upper bound

Cn
∑

m′
1+m′

2=n

∑
x2∈Zd

∑′

x′
2∈K+x2N

pm′
1
(y′ℓ−1, x

′
2)pm′

2
(x′2, y

′
ℓ), (5.46)

where the primed summation denotes the restriction 2C1
√
n
√
log n < |x′2 − y′ℓ−1| ≤

n
1
2
+ε. The choice of C1 (recall (5.29)) implies that pm′

1
is o(1/nNd). Due to the

triangle inequality we also have |y′ℓ − x′2| > C1
√
n
√
log n. Using the LCLT for pm′

2
we

get that

pm′
2
(x′2, y

′
ℓ) ≤

C

(m′
2)

d/2
exp(−dC2

1n log n/m
′
2) ≤

C

nd/2
exp(−dC2

1 log n) ≤ Cpn(y
′
ℓ−1, y

′
ℓ).

(5.47)

Case 3. m1 + m2 ≥ n/2 and |x′2 − y′ℓ−1| > n
1
2
+ε Summing over all x′1 ∈ Zd, we get

the transition probability pm1+m2(y
′
ℓ−1, x

′
2). This is stretched-exponentially small, and

hence this case satisfies the required bound.

Case 4. m2 +m3 ≥ n/2. Due to symmetry, this case can be handled analogously to
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Cases 1–3.

5.4.4 Proof of Proposition 5.2.4

Proof. By Martingale maximal inequality (5.3) used in the last step,

Py′ℓ−1
[|Yn − y′ℓ−1| >

√
n(10 log log n)] = P0[|Yn| >

√
n(10 log log n)]

≤ exp(−c100(log log n)2).

Hence we have

E

[
#

{
1 ≤ ℓ ≤ Nd

n
C1 logN : |Ynℓ − Yn(ℓ−1)| > 10

√
n log logn

}]
≤ Nd

n
C1 logN exp(−c(log log n)2) ≤ Nd

n
C exp(−(c/2)(log log n)2).

By Markov’s inequality, it follows that

P

[
#

{
1 ≤ ℓ ≤ Nd

n
C1 logN : |Ynℓ − Yn(ℓ−1)| > 10

√
n log logn

}
≥ Nd

n
(log log n)−1

]
≤

Nd

n C exp(−(c/2)(log log n)2)
Nd

n (log log n)−1
≤ C

exp(−(c/2)(log log n)2)

(log log n)−1
→ 0,

as N → ∞.

5.5 Chapter outlook

The following are some possible generalisations regarding the proof of the main theorem:

(1) It is not essential that we restrict to the simple random walk: any random walk

for which the results in Section 5.2, hold (such as finite range symmetric walks) would

work equally well.

(2) The paper [15] considers several distant sets K1, . . . ,Kr, and we believe this would

also be possible here, but would lead to further technicalities in the presentation.

(3) It is also not essential that the rescaled domain be (−1, 1)d, and we believe it could

be replaced by any other domain with sufficient regularity of the boundary.
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In this chapter, we considered a single simple random walk starting from a fixed point

(the origin o) to hit a finite set on Zd. We could extend this result with some mod-

ification to a finite number of independent random walks, say i independent random

walks. In this case, the probability that i independent random walks do not hit φ−1(K)

converges to

E
[
e−AdCap(K)(σ1+σ2+···+σi)

]
+ o(1), as N → ∞

where σ1, σ2, . . . , σi are the exit time of independent Brownian motions from the unit

cubic (−1, 1)d.

The potential implications of this connection are for the numerical methods about

the height probability and the whole avalanche: From Chapter 3, we know that we

need 2d + 1 random walks to generate the height probability in d dimensions. In this

case, we could give a heuristic upper bound O(L2) for the average running time for

generating the height probability. A rigorous upper bound on the running time would

require further study of the nearby random walks. In terms of the whole avalanche,

the memory use is O(L6).
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Chapter 6

Conclusion

In this thesis, I worked on critical exponents in sandpiles both analytically and nu-

merically. My research involved: numerical simulation of sandpile critical exponents as

well as some theoretical questions inspired by these simulations that involve detailed

random walk estimates and random interlacements. The following sections are future

open questions and long term goals of my current research in sandpiles. Some of the

open questions are also inspired by the simulation results in Chapter 3.

6.1 Future open questions

6.1.1 Sandpiles on a 4-dimensional hierarchical lattice

In Abelian sandpiles, the exact behaviour of the toppling probability in 4 dimen-

sions is not known, but Járai, Redig and Saada [35] expected that P[x topples] =

|x|d−2 log−α |x| with α ≥ 0. Detecting the exact exponent numerically is hard, since

even when the size of the box [−L,L]4 is very large, logL is still very small. However,

we could modify our previous simulation method in Chapter 3 to check at least the

leading order of the behaviour in 4 dimensions, i.e. |x|−2. We would like to further

study the exact behaviour theoretically, which is a challenging problem. As a simplifi-

cation, we plan to study the exact behaviour on a hierarchical model by adapting the

renormalization group method in Bauerschmidt, Brydges and Slade’s book [4]. This

method is novel in the context of the sandpile model, which has not been done in the

literature.

The reasons why we choose to study the exact behaviour in 4 dimensional hierarchical

lattice is the following two. First, we have studied numerically in 2 and 3 dimensions.
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For d ≥ 5, the critical exponent of the toppling probability in sandpile model is well

understood. Second, we plan to start with the hierarchical lattice, because it is easier

than in Z4.

Renormalization approach requires the understanding of the continuous height sandpile

model. We have only studied the discrete sandpile model in this thesis so far. Let us

now briefly introduce the continuous height sandpile model.

A continuous model with deterministic additions, called the Abelian avalanche model,

has been introduced on finite graphs by Gabrielov [17]. Let V be a finite set of N

elements (sites), and let ∆ be a N ×N real matrix with indices in V , such as

∆ii > 0, for all i

∆ij ≤ 0, for all i ̸= j

and si =
∑

j ∆ij ≥ 0 for all i. The value si is called the dissipation at a site i.

We define a positive real value hi as the height at every site i. The set h = {hi} is

called the configuration of the system. For every site i, a threshold Hi is defined. The

configurations h with hi < Hi for all i are called stable. For every stable configuration,

the height hi increases in time with a constant rate νi ≥ 0 until it is greater than a

threshold Hi at a site i. Then the site i topples, and the heights are redistributed as

follows:

hj → hj −∆ij , for all j.

Similarly, as in the discrete case, if after the redistribution, any heights are greater

than thresholds at some other sites, these sites also topples according to the above

redistribution law, and so on, until we arrive at a stable configuration. The sequence of

topplings is called an avalanche. This model has the Abelian property, i.e. the stable

configuration after an avalanche, and the number of topplings at any site during the

avalanche, do not depend on the order of topplings during the avalanche. Hence, we

call this model an Abelian avalanche model.

Járai, Redig and Saada [35] later studied a continuous height sandpile model, which

a special case of the model introduced by Gabrielov [17]. Let Λ ⊂ Zd be finite. A

continuous configuration on Λ is a collection of heights occupying the sites in Λ. We

write a configuration as a map η : Λ → [0,∞). Let γ ≥ 0 be a real parameter. We

say that a configuration η is γ-stable if ηx ≤ 2d + γ for all x ∈ Λ. We say that x is

allowed to η-topple if ηx ≥ 2d+ γ. A γ-toppling at x means that height 1 is sent along

each edge incident to x in Zd, and height γ is lost, thereby decreasing the height at
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0-blocks

1-blocks

2-block

Figure 6-1: Blocks in Bj for j = 0, 1, 2 when d = 2, N = 2, L = 2.

x by 2d + γ and increasing the height at each neighbour by 1. This model has the

Abelian property as well, i.e. any configuration has a unique γ-stabilization arrived at

by carrying out all possible γ-topplings. The order of topplings during the avalanche

does not affect the stable configuration after an avalanche. They also called this model

the Abelian avalanche model in the paper [35]. In this model, the infinite volume limit

when γ = 0 is the same as the discrete sandpile model, which is the limit of the infinite

volume model with dissipation γ when γ ↓ 0 [35].

We would like to study a variant of a model introduced by Gabrielov [17] , which adapts

the renormalization group method. Let us now briefly introduce the hierarchical model

in [4, Chapter 4].

For d ≥ 2, although in our case d = 4, we introduce a general version here. Throughout

our discussion and analysis of the hierarchical model, let L > 1 be the side length of

a 1-block and N ∈ N+ be the maximum level of blocks. Set the hypercube ΛN =

[0, LN − 1]d ∩ Zd. As in Fig 6-1, we partition ΛN into disjoint blocks of side length Lj

(number of vertices), with j = 0, 1, 2, . . . , N . For j = 0, 1, 2, . . . , N , we denote Bj as

the set of disjoint blocks B of side length Lj so that we get a partition ΛN = ∪B∈BjB.

An element B ∈ Bj is a called a j-block.

For a sandpile model in hierarchical lattice, let η denote the configuration on ΛN ,

which is a map η : ΛN → [0,∞). The toppling matrix ∆H,N should be the hierarchical

Laplacian such that

∆H,N
x,x =M, for all x

∆H,N
x,y = −mj,N , for all x ̸= y,

where the constants mj,N depend on the least level j at which x and y are in the same

block; see [4] for details.
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Let N(x, y;h) be the number of times y toppled during stabilization if amount of h is

added at x. Define the addition operators acting on η as

Ah
x(η)y := ηy + hδxy −

∑
z∈ΛN

∆H,N
z,y N(x, z;h), for all y ∈ ΛN

i.e. add amount of sand h at x and stabilize.

Gabrielov [17] showed that there exists such stationary measure µN and set RΛN
of

recurrent sandpiles invariant under the addition operators Ah
x. We would be interested

in computing these more specifically for the hierarchical model.

Similarly, as in the discrete sandpile model, we can prove the Dhar’s formula, which

states that the expected number of times y toppled when we add height h at x is given

by the Green’s function.

From the definition of the addition operators Ah
x, we have for all y ∈ ΛN

EµN [ηy] = EµN [ηy] + hδxy −
∑
z∈ΛN

∆H,N
z,y EµN [N(x, z;h)].

Rearranging, we get ∑
z∈ΛN

EµN [N(x, z;h)]∆H,N
z,y = hδxy.

Finally, we have the Dhar’s formula as follows:

EN [N(x, y;h)] = hGN (x, y) = h (∆H,N )−1
x,y,

where GN (x, y) is the Green’s function on ΛN ,

As in the next step, we need to compute VarµN [N(o, x;h)]. It is helpful to start with

some simple examples regarding the renormalization method to discuss the support of

the stationary measure µN . First, we check the case when N = 1, this might be trivial

with product measure only. Then, we could move on to look at the case when N = 2,

L = 2, and so on.

6.1.2 Rotational invariance in 2D

From our simulation of the toppling probability in 2 dimensions, we found similar

behaviour in different radial directions; see Figure 3-4 and Figure 3-5 in Chapter 3. It

appears that asymptotically, the toppling probability only depends on the Euclidean
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distance from the origin (in the infinite volume limit). Lawler, Schramm and Werner

[49] proved that the scaling limit of a loop-erased random walk is the radial SLE2 path,

which is conformally invariant. We hope to use this result to prove the probability that

the vertex toppled in the last wave of an avalanche is rotationally symmetric on the full

plane. In the infinite volume limit case, the main difficulty is to bridge the gap between

the behaviour of the loop-erased paths near the origin and their large scale behaviour.

In a bounded domain, we expect that a conformal covariance statement holds. This

would be very interesting to explore.

The reason for looking at the last wave is a simplification, as it is simpler than looking

at the toppling probability itself. In the case of last wave, there is a bijection between

the last wave and the two-component spanning forest of the domain under the condition

that the origin is not connected to the sink; see [6] for details.

6.1.3 Other possible future work

It is also useful to study other dynamical properties in Abelian sandpiles. Bhupatiraju,

Hanson and Járai [6] proved bounds on the behaviour of various avalanche character-

istics such as the probability that a given vertex topples, the radius of the avalanche

cluster, and the number of vertices toppled. Their results yield rigorous inequalities

for the relevant critical exponents in d ≥ 2. Hutchcroft [31] deduced that the critical

exponents describing the diameter and total number of topplings in an avalanche on a

large class of graphs in d ≥ 5. In the case of Zd, d ≥ 5, some of the results regarding

critical exponents recover earlier results in [6]. We would be interested in study these

quantities in the case of Zd, d = 2, 3.

6.2 Research goals in Abelian sandpiles

The final goal of my current research in Abelian sandpiles is to provide a rigorous

mathematical analysis of the results from the simulations. In particular, it will consider

two aspects connected to the simulation. It is expected that the first aspect will provide

a rigorous analysis of the algorithm designed and prove an upper bound on its average

running time. To start with this problem, we have shown for a single random walk

starting from a fixed point (the origin o) to hit a finite set is a random interlacement

by looking into stretches of random walks in Chapter 5. We could extend this result

to a finite number of (almost) independent random walks with slight modification by

considering the random walks starting at the origin and its neighbours. In addition to

lending rigorous support to the use of the algorithm, we expect that it will shed new
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light on the mean-field values of critical exponents in sandpiles.

As in Figure 3-25, there is a drop in the toppling probability near the boundary of the

box [−L,L]d when d = 5 and L = 32, which is clearly not in the |x|−(d−2) behaviour.

Further extending our analysis to growing number of random walks in a torus, we

would need the hashtable size Nd, where ANd ∼ L6, so there is no sample discarded

when using the hashing method. Hutchcroft [31] showed that the probability that

the avalanche reaches radius L/2 is L−2. The avalanche size reaches L4 is with the

probability of the same order, because the avalanche size exponent is 1/2 in dimensions

5 and higher [31]. We can heuristically expect that the size of largest avalanche in the

box [−L,L]d is of size L4. This requires L2×L4 steps to simulate the whole avalanche.

Hence, we require the hashtable size as stated above.

In further work, we hope to prove rigorous upper bounds for the values of the exponent

we estimated. This is a much more challenging open question for which only lower

bounds are known at the moment. Bhupatiraju, Hanson and Járai [6] proved lower

bounds for these values of exponents by considering the last wave. We know that the

first moment of topplings is the Green’s function, i.e. the expected number of visits at

x, but the second moment is unknown. If we could bound the second moment, we can

either improve the lower bound, or even prove the upper bound.
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