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Abstract

The AutoNaut USV is a novel wave-propelled vessel with a very low noise profile. As

such, it is uniquely suited to passive acoustic monitoring, which can be carried out using

a towed hydrophone array. However, the method of propulsion inherently presents some

challenges to employing bearing estimation techniques by potentially exacerbating the

uncertainty in array shape. The aim of this research is to investigate and demonstrate

the capabilities of such a vessel, to quantify its performance and to evaluate the steps

required to fully realise its potential.

A recursive Bayesian array shape estimation method was developed to combine the

data from all available sensors on the array. This was tested and verified with simulated

data and then used to estimate the motion of an array in operation during the Un-

manned Warrior ’16 trial. This trial data was used to demonstrate bearing estimation

to a sound source, with an analysis of the performance increase from compensating for

the perturbed shape. The outcomes of this were then used to investigate the optimal

positioning of non-acoustic sensors on an array.

The main result was the successful demonstration of bearing estimation to a sound

source from experimental data. The results of the array shape estimation process

suggest that the array is tilted and periodically perturbed into a bowing shape with an

amplitude of less than 0.1m. Compensating for this results in up to a 5.8dB increase

in the output spectrum from the MUSIC bearing estimation algorithm.

While a perturbed array shape results in a slight drop in performance, a conclusion

of this work is that the tilt on the array and the resulting detection of a multipath

arrival presents a further challenge in interpreting the results. Nonetheless the re-

search presented here represents a successful first step to enabling the AutoNaut’s full

capabilities.
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Chapter 1

Introduction

1.1 Passive Underwater Acoustic Sensing

The underwater environment presents a unique challenge for surveillance and moni-

toring of sound sources of interest. Due to the rapid attenuation of light in water,

usual methods of visual tracking and detection are rendered mostly useless. However,

acoustic waves travel roughly five times as fast and are significantly less attenuated [1].

As such, sound is of key importance to understanding and investigating the underwater

environment, hence sonar being the most ubiquitous of underwater sensing modalities.

Sonar, which stands for sound navigation and ranging, refers to use of sound prop-

agation in order to navigate, or to detect other objects or vessels in the water. Unlike

active sonar, which emits an acoustic wave and measures the response, passive sonar

uses the sound generated by a source of interest to infer its identity or its location.

1.2 Applications

Passive sonar is an excellent tool for monitoring a sound-producing source in situations

where it may not be desirable to produce any sound, with its application varying from

environmental conservation, scientific and military uses.

1.2.1 Marine Mammal Monitoring

The vocal nature of marine mammals makes them excellent candidates for the use of

passive sonar. Marine mammal enumeration and location tracking is not only impor-

tant for environmental conservation studies to document their behaviour, it can also

be preventative as in marine mammal mitigation zones. Seismic surveys and the naval

use of high-powered active sonar have been linked to numerous cases of mass marine
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mammal strandings [2][3][4][5] to the point where in certain instances it has resulted in

government-imposed bans [6] and federal court cases [7]. Around all types of anthro-

pogenic noise, from active sonar to offshore oil and gas developments, it is required to

have a mitigation zone to reduce the impact of the loud sounds on the health of nearby

marine mammals. This is a defined area in which the presence of a marine mammal

will require the activity to cease. Often done through visual surface sighting when a

whale breaches, the use of passive acoustic monitoring (PAM) provides a potentially

more reliable and persistent tool to aid fulfilment of this requirement.

1.2.2 Port and Harbour Security

From a commercial and a defence point of view, ports and harbours are a point of

weakness which hostile parties may look to exploit. As a location containing expensive

equipment, sensitive data and cargo, and large numbers of personnel it is integral to

have robust security measures in place. Divers entering unseen from the surface present

a danger which can potentially be detected and tracked using passive sonar techniques

on the acoustic emissions from their rebreathers [8].

1.2.3 Anti-Submarine Warfare

Also in a military context, anti-submarine warfare (ASW) is an application of passive

sonar that has been around since the beginning of the 20th century. Vital to success

in military conflicts involving submarines is the knowledge of the location and identity

of enemy vessels. Passive sonar offers a method of gaining this information without

highlighting the presence of or compromising the location of your own vessel.

1.3 Deployment methods

There are a number of different commonly used methods of deployment for a passive

sonar system, each with their own advantages and disadvantages.

1.3.1 Bottom Deployed

Sea bed mounted hydrophones [9][10][11] are typically mounted on frames or anchored

to the floor and attached to a short buoy to keep them in position. They are relatively

inexpensive and can cover wide areas persistently. However, they are static, potentially

difficult to accurately position and sometimes require retrieval for accessing the data,

which can make them logistically more complicated to implement.
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Figure 1-1: Bottom-deployed hydrophones

1.3.2 Buoy-Mounted

A slightly more mobile solution is known as a sonobuoy [12][11], introduced in the

1940s for ASW deployed from aircraft. One or more hydrophones is connected at a

certain depth to a floating buoy, which gives them the advantage of being able to cover

a variable area, and of better connectivity as the data can be transmitted via radio

to a nearby crewed vessel. These are often expendable and deliberately sunk after a

certain period of time, making them somewhat expensive and wasteful, as well as not

having any active control over their position once deployed.

Figure 1-2: Buoy-mounted hydrophone

1.3.3 Towed

The most mobile style of deployment of passive sonar is a towed array behind a ves-

sel. This method was originally developed during World War I [13] and is extremely

ubiquitously used for many things from ASW to seismic surveys. They were developed

to overcome the effects of vessel noise from hull-mounted hydrophones and also offer

the benefit of increased array aperture. They are versatile and capable of monitoring
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Figure 1-3: Towed array

a variable wide area. These arrays can range from tens of metres all the way up to

multiple kilometres in length [13] and are typically deployed from large tow vessels such

as ships and submarines. More recently, due to their rapidly improving capabilities,

uncrewed autonomous vessels have started being more widely used, with tow vessels

such as autonomous underwater vehicles (AUVs) [14][15] and uncrewed surface vessels

(USVs) [16][17].

1.4 AutoNaut USV and Thin-Line Array

The AutoNaut wave-propelled USV, Figure 1-4, presents a novel tool for wide-area

persistent passive acoustic monitoring. It fits somewhere between a sonobuoy and

a standard tow vessel in terms of its capabilities, with convenient deployment and

autonomous operation. Combined with renewable power for sensor payloads, it offers

reduced risk and cost compared to crewed vessels, and is capable of mission durations

up to months in length [17]. The low acoustic profile of the propulsion method makes

them uniquely suited to passive acoustics as self-noise is much less of an issue than is

typically the case with towed arrays deployed from powered vessels.

The Seiche digital thin line array (DTLA) was developed as a low-profile array to

reduce drag and allow deployment from lower-power vessels. It is tens of metres in

length and can be configured for up 32 hydrophones, making it a perfect companion to

the AutoNaut for passive acoustic monitoring.
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Figure 1-4: AutoNaut Uncrewed Surface Vessel [18]

There are, however, some inherent challenges to implementing passive acoustic mon-

itoring techniques from a towed array behind a wave-propelled USV. The method of

propulsion exacerbates the problem of array shape uncertainty, potentially introducing

problems for localisation algorithms which require accurate knowledge of the sensor

positions. This can lead to sub-optimal performance, inaccuracies and mis-detections.

In addition to this, the limited tow power also necessitates a shorter array which has

implications on the tow depth and operating frequencies at which the array can be

used.

1.5 Aims and Objectives

The aim of the research presented in this thesis is:

To investigate and demonstrate passive acoustic monitoring capabilities from a

wave-propelled uncrewed surface vessel

To this end the following objectives will be completed:

1. Array shape estimation algorithm

(a) Develop a method to estimate array shape from Autonaut trial data, as the

array is too long for a controlled experiment in a water tank

(b) Use the method to quantify array shape in the field

24



CHAPTER 1. INTRODUCTION

2. Perform passive array beamforming on trial data

(a) Demonstrate that bearing estimation is feasible from this vessel

(b) Quantify the performance

(c) Quantify improvement offered by array shape estimation

3. Develop simulation model

(a) Incorporate the array motion

(b) Model a sound source

(c) Capture accurate acoustic propagation

(d) Validate against experimental data

4. Use the model to investigate array designs

(a) Non-acoustic sensor placement

(b) Propose optimal design for a future array

1.6 Thesis Outline

The thesis is structured with Chapters 2 and 3 presenting the relevant background

theory and literature:

Chapter 2 covers the fundamental acoustic theory required to understand the con-

tent of this thesis, spanning acoustic signals, Fourier domain analysis and underwater

propagation.

Chapter 3 describes the techniques used in the processing of hydrophone arrays.

An exploration of bearing estimation methods is presented with an analysis of their

performance. This leads into a review of the approaches to the challenge of array shape

estimation and an examination of their applicability to a wave-propelled vessel.

The novel contributions are introduced in Chapter 4, 5, 6 and 7, as follows:

Chapter 4 presents the developed simulation process for both acoustic and non-

acoustic data, and the simulated datasets used in subsequent chapters are introduced.

Chapter 5 describes the development of the particle filtering based array shape

estimation process with an analysis of its application to simulated data. This objective

is an especially relevant topic for a morphing sensor array, as is the case here, with

ongoing active research into this field in defence research [19].
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Chapter 6 describes the experimental data from the Unmanned Warrior ’16 trial.

This data is then used as experimental validation for the simulation process introduced

in Chapter 4. Finally, the results of applying the array shape estimation algorithm

presented in Chapter 5 are assessed and examined, as well as the results of applying

various bearing estimation algorithms.

Chapter 7 details a simulated study on the optimal configuration of non-acoustic

sensors for an array in the absence of acoustic data, using the tools developed in Chapter

4 and Chapter 5.

Chapter 8 presents the conclusions and findings of this work, as well as suggestions

for follow-on work.
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Chapter 2

Fundamentals of Underwater

Acoustics

This section describes the underwater acoustics theory and concepts required to un-

derstand this thesis.

2.1 Acoustic Waves

Acoustic waves are mechanical vibrations that travel through a medium. In water they

propagate as a longitudinal pressure wave, alternately compressing and expanding the

medium. Mathematically their propagation is described by the scalar wave equation

which describes the local pressure deviation in time and space [20],

∂2p

∂t2
− c2

∂2p

∂x2
= 0 (2.1)

where p is the local pressure deviation from ambient, t is time, x is the spatial coordinate

and c is the speed of sound. This is derived through linearisation and manipulation

of the continuity equation, the Navier-Stokes equation and the general heat transfer

equation, and assumes a quiescent fluid medium. One of the most simple solutions to

this equation is known as d’Alembert’s solution. In 1-D the general solution is

p(x, t) = F (x− ct) +G(x+ ct) (2.2)

where F and G are arbitrary functions, determined by the boundary and initial condi-

tions. This solution describes both the wave in the positive direction (the F function)

and the negative direction (the G function), so to allow a general orientation of the
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coordinate system, the pressure for a free field plane wave can be written as

p(x, t) = F (nx− ct) (2.3)

where n is a unit vector describing the direction of propagation. A time harmonic plane

wave of frequency, f , is usually written [20] in complex form as Equation 2.4.

p(x, t) = A(x, t)ej(2πft−2πfx/c+φ) (2.4)

where A is the amplitude and φ is some arbitrary starting phase. The physical quantity

is described by the real part of this function. Splitting up the exponent into a signal

term and a propagation term results in Equation 2.5.

p(x, t) = A(x, t) ej(2πft+φ)︸ ︷︷ ︸
signal

ej(−2πfx/c)︸ ︷︷ ︸
propagation

(2.5)

Abbreviating the signal term to s(t) and using the angular frequency, ω = 2πf , we

arrive at the simplified 1D wave equation for a monochromatic plane wave, Equation

2.6.

p(x, t) = A(x, t)s(t)e−j(ωx/c+φ) (2.6)

2.1.1 Frequency and Wavelength

The frequency of a wave is the number of full periods of oscillation occurring per second,

expressed in Hz. The relation between the frequency and the wavelength of an acoustic

wave can be described as

f =
c

λ
(2.7)

where λ is wavelength in m and c is propagation speed in m/s, which is dependent on

the medium (expanded upon in Section 2.3.2). This can also be expressed as angular

frequency, ω in rad/s, which is related to frequency as

ω = 2πf (2.8)

2.1.2 Phase Angle

The phase angle specifies in radians where in its cycle the wave is at some reference

point (typically at t = 0). A sine wave starting at t = 0 would be described as having

a phase of zero whereas one starting at a quarter of a wavelength would have a phase

of π
2 rad, all the way up to a phase of 2π rad which would be brought forward a full
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Amplitude

λ

t

Figure 2-1: Sinusoidal waves with a π/2 phase offset between them

cycle. This angle can be used to describe the offset between two sinusoids of the same

frequency, as shown in Figure 2-1, where the grey sinusoid is offset from the black by

a phase of −π
2 rad.

2.1.3 Amplitude

The amplitude of a wave is the peak deviation from zero. In acoustics, this is defined

as the deviation from the hydrostatic pressure of the medium and is often expressed in

decibels (dB) as the sound pressure level (SPL),

SPL = 10 log

(
prms

2

pref2

)
= 20 log

(
prms

pref

)
(2.9)

where prms is the root mean square (RMS) value of the pressure deviation and pref is

the reference pressure which, for underwater applications, is assigned a value of 1µPa.

2.1.4 Fourier Domain Representation

More complicated waveforms can be described using a decomposition into monochro-

matic waves, as illustrated in Figure 2-2 where the signal on the left is composed of

the three on the right. The Fourier transform (FT) is a mathematical operation which

decomposes a function into its constituent frequencies. For a function of time, this will

result in a complex-valued series of frequency components. Their magnitudes represent

the amount of that frequency in the original signal and their angles are the phase offset

of that frequency. This is defined as

F{u(t)} = U(f) =

∫ ∞

−∞
u(t)e−j2πftdt (2.10)

where u(t) is the function of time and U(f) is the resulting FT spectrum, a function

of frequency. F is used to denote the Fourier transformation. Conversely, the function
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Figure 2-2: Example signal made up of three sinusoids

u(t) can be obtained from U(f) through an inverse Fourier transform (IFT), as defined

in Equation 2.11.

F−1{U(f)} = u(t) =

∫ ∞

−∞
U(f)ej2πftdf (2.11)

In practice, the time series data will be finite is length and discretely sampled in

time, therefore the discrete Fourier transform (DFT) operation is used, defined as

U(k) =
N−1∑
n=0

u(n)e−j2πkn/N , k = 0, . . . , N − 1 (2.12)

This is most commonly implemented using the efficient fast Fourier transform (FFT)

implementation. This converts the finite sequence, u(n), into the equal length sequence,

U(k). The number of points used for the DFT, N , determines the frequency resolution

of the resulting spectrum, defined as fs/N , i.e. the larger the number of points, the

better the resolution (limited by the number of data points available).

Another limitation of discretely sampled data is a phenomenon known as the

Nyquist-Shannon sampling theorem, which states that any frequency component above

half the sampling frequency(known as the Nyquist frequency) is indistinguishable from

a lower frequency component [21]. This is illustrated for two discretely sampled si-

nusoids in Figure 2-3, where one sinusoid is at a frequency, f1, below the Nyquist

frequency and then the higher frequency sinusoid is at fs + f1.
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Figure 2-3: Aliasing illustration, with “x” denoting the sampling points

Figure 2-4: Illustrative frequency decomposition for the case presented in Figure 2-2

2.1.4.1 Fourier Domain Time Shifting

A basic property of the FT is the principle that a shift in the time domain of τ is

interpreted as a complex phase shift in the Fourier domain, as in Equation 2.13.

F{u(t− τ)} = e−j2πfτU(f) (2.13)

2.1.4.2 Power Spectral Density

The power spectral density (PSD) is a measure of the signal’s power versus frequency,

defined as

Suu(f) = lim
T→∞

1

T
|UT (f)|2 (2.14)

It is useful for characterising a signal’s frequency content and can be can be visualised

in a PSD plot. For example, the Figure 2-4 would be the simplified PSD plot of the

example in Figure 2-2, with a spike in magnitude at each of the frequencies. This

is useful for analysing the frequency content of data and can be used to detect the

presence of a signal. In real data there’s some frequency content at all frequencies, as

in the example shown in Figure 2-5, which shows the PSD of a recording of a humpback

whale call.
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Figure 2-5: Example PSD plot(Humpback whale call [22])

Figure 2-6: Example spectrogram (Humpback whale call [22])

2.1.4.3 Short-Time Fourier Transform

It is often useful to view how the frequency content changes as a function of time,

which can be computed using a short-time Fourier transform (STFT). This splits the

data into overlapping, windowed subsequences and computes each of their FTs,

U(τ, f) =

∫ ∞

−∞
u(t)w(t− τ)e−i2πftdt (2.15)

where u(t) is the data being transformed and w(t − τ) is the window function used

to reduce artefacts at the edges of each data segment (often a Hann window). As

previously stated, the length of the subsequences relates to the frequency resolution

(larger FT, better resolution). However, it also relates to the temporal resolution, so

clearly there is a compromise that needs to be made when selecting the parameters for

a STFT [23].

The power estimate of the STFT, is known as a spectrogram and can show the

time-varying frequency component magnitudes, useful for the detection of signals and

visualising data. The spectrogram of the same humpback whale call can be seen in

Figure 2-6, showing the frequency modulation in its call.
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2.2 Passive Sonar Equation

Central to the theory for passive sonar is the passive sonar equation. It provides

a systematic way of computing the signal-to-noise ratio (SNR) [24] which describes

whether a sound source will be detected given the propagation of the emitted wave and

the noise present in the scenario.

The sound source radiates a signal with a source level (SL), a measure of the SPL

at a distance of 1m. This is reduced in intensity by a transmission loss (TL) from the

sound propagating through the water to the receiver, resulting in the signal receive

level (RL),

RL = SL− TL (2.16)

Finally, the SNR is computed as a ratio of this RL to the noise level (NL) at the

receiver. As all the quantities are in dB this is computed as another subtraction,

resulting in the passive sonar equation for a single hydrophone:

SNR = SL− TL−NL (2.17)

The following two sections will go into more detail on the estimation of the propa-

gation losses and the causes of noise.

2.3 Acoustic Wave Propagation

2.3.1 Propagation Losses

There are several mechanisms by which the amplitude of an acoustic wave is reduced

as it travels. The two main mechanisms of TL are through geometric spreading and

absorption.

TL = TLgeom +TLabsorption (2.18)

2.3.1.1 Geometric Spreading Loss

The geometric spreading loss occurs because as an acoustic wave travels further from

its source, its power is spread over a larger area, defined as a ratio of intensities:

TLgeom = 10 log10

(
I0
I

)
(2.19)
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Figure 2-7: Spherical spreading

r
2r

A

4A

Figure 2-8: Illustration of the increased surface area from spherical geometric spreading
loss

where I is the acoustic intensity, defined as the power, P , per unit area, A, as in

Equation 2.20, and I0 is the source acoustic intensity at r = 1m.

I =
P

A
(2.20)

Spherical spreading assumes the sound is propagating uniformly in all directions,

illustrated in Figures 2-7 and 2-8. Inserting the formula for the area of a sphere in

Equation 2.20 results in

I =
P

4πr2
(2.21)

showing that the area the source power, P , is spread over changes as a function of r2.

The ratio of intensities then becomes

I0
I

=
4πPr2

4πPr20
=
r2

r20
(2.22)

and with r0 = 1, Equation 2.19 is equal to 10 log10(r
2) = 20 log10(r).

After a certain range, spherical spreading can no longer be assumed accurate as

the sound waves will be reflected from the sea surface and the seafloor. A simple
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Figure 2-9: Cylindrical spreading

approximation is therefore to assume that the sound power is distributed uniformly

over the surface of a column of height h, i.e. Acyl = 2πhr. Illustrated in Figure 2-9,

this is known as cylindrical spreading and leads to an equation where TLgeom varies

proportional to r, resulting in half the spreading loss of the spherical case.

TLgeom =

20 log10 r if spherical

10 log10 r if cylindrical
(2.23)

where TL is the transmission loss in dB and r is the distance the wave has travelled in

m.

2.3.1.2 Absorption Loss

The other term in Equation 2.18 is the absorption loss of the transmission medium,

which varies depending on frequency, temperature, salinity, acidity and pressure. This

is caused by energy absorption from particle motion and from chemical excitation. The

range dependant coefficient, α, can be calculated using an accurate empirically-derived

formula, shown in Equation 2.24 [25], which can then be used to predict the attenuation

over the distance.

α = α1 + α2 + α3 (2.24)

with the boric acid contribution

α1 = 0.101
f1f

2

f21 + f2
e(pH−8)/0.57 (2.25)

f1 = 0.91

(
S

35

)2

eT/33 (2.26)
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Figure 2-10: Attenuation due to absorption for representative conditions of depth =
100m, pH = 8, salinity = 35ppt and temperature = 10oC, with the respective contri-
butions from boric acid, magnesium sulphate and water

the contribution from magnesium sulphate

α2 = 0.56

(
1 +

T

76

)(
S

35

)(
f2f

2

f22 + f2

)
e−z/4.9 (2.27)

f2 = 46.6eT /18 (2.28)

and finally the freshwater absorption

α3 = A3P3f
2 (2.29)

A3 = 4.937×10−4 − 2.59×10−5T + 9.11×10−7T 2 − 1.5×10−8T 3, for T ≤ 20oC

(2.30)

A3 = 3.964×10−4 − 1.146×10−5T + 1.45×10−7T 2 − 6.5×10−10T 3, for T > 20oC

(2.31)

P3 = 1− 3.83×10−2z + 4.9×10−4z2 (2.32)

where f is the frequency(kHz), pH is the acidity, S is the salinity in ppt, T is the

temperature in oC and z is the depth(km).

The resulting attenuation coefficient, α, is in dB/km and can be used to estimate

36



CHAPTER 2. FUNDAMENTALS OF UNDERWATER ACOUSTICS

the propagation loss due to absorption as

TLabsorption = αr × 1×10−3 (2.33)

Figure 2-10 shows how the attenuation coefficient varies with frequency for some rep-

resentative conditions. As can be seen, the attenuation from absorption is less than

1dB/km for all frequencies below 10kHz, indicating that the geometric spreading will

dominate the transmission loss at low frequencies.

2.3.2 Refraction and the Sound Speed Profile

The propagation speed of an acoustic wave is a property of the transmission medium.

For sea water this varies between roughly 1450m/s and 1570m/s based on the temper-

ature (T ), salinity (S) and pressure (p) [26]. For typical conditions of T = 10◦, S = 35

and p = patm, a value of c = 1490m/s can be used [27].

In practice, these three properties vary with depth beneath the surface of the sea,

resulting in a non-linear sound speed profile (SSP), an example of which is shown in

Figure 2-11. At the sea surface, the effect of water temperature dominates, hence the

higher sound speed that comes with higher temperature. As the temperature gradually

decreases towards 1km depth, the sound speed also decreases. This then increases with

depth as the temperature levels off and pressure increases, causing an increase in sound

speed.

Figure 2-11: Non-linear sound speed profile for the Pacific ocean and the Atlantic
ocean [28]
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A variation in sound speed is important to take into account when considering

underwater acoustic propagation as it causes acoustic waves to refract and follow a

curved path between source and receiver [29]. There are numerous phenomena which

arise from this. One often exploited is known as the SOFAR channel, which is a

horizontal layer of water whose axis is at the depth where the sound speed is at its

minimum. The bending of the acoustic waves back towards this depth results in a

region in which low frequency sound waves can travel for many more kilometres than

they otherwise would. In certain other circumstances it can also be a detriment, such

as a surface duct. If the sound speed is decreasing towards the surface, as is typical in

winter conditions, sound is refracted upwards and can become trapped near the surface.

2.3.3 Multipath Reflections

Not only does an acoustic wave potentially travel in a curved path between source and

receiver, but it can also travel to it via multiple separate paths. The wave can reflect off

the sea floor and the sea surface a number of times before reaching the receiver. This is

referred to as multipath propagation, with the 0th order path being direct, the 1st order

path having reflected off only one surface, 2nd order off two surfaces etc. as illustrated

in Figure 2-12. Typically the higher order the multipath, the weaker the signal as some

energy is usually lost in each reflection and in the extra distance travelled.

Source

Receiver

Direct Path
1st Order
2nd Order

Figure 2-12: Illustration of direct path and first and second order multipaths

The arrival of the same signal can complicate the received signal’s information. For

example, a sound arriving at a receiver via both direct paths and a surface reflection

produces a phenomenon know as the Lloyd’s mirror interference patterns [30]. The

arrivals of the two signals on the receiver cause constructive or destructive interference

based on the relative position of the source, resulting in an interference pattern. This

has implications for the detectability of a signal.
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2.3.4 Propagation Models

The complicated propagation characteristics of underwater sound are often modelled

using a number of different methods [31][32]. The sound field underwater can be de-

scribed using the time-independent form of the wave equation, known as the Helmholtz

equation: (
∇2 +

ω2

c2

)
ø(r, ω) = 0 (2.34)

where ∇2 is the Laplace operator. Each method uses different assumptions and tech-

niques to find solutions to this equation to obtain an estimate of the wavefield.

2.3.4.1 Ray Tracing

The most intuitive method, known as ray tracing, follows the trajectory of individual

rays of sound from the source and determines the pressure along these lines using the

solution to the wave equation introduced in Equation 2.4. A system of ray equations

is used to compute the curvature and beamwidth of each ray as a function of arc

length [33].

Given launching angles, the source position and the sound speed, this results in an

amplitude function and a phase function which can be coherently summed at a point

of interest for many simulated rays to estimate the TL [34]. This also captures the

effects of different angles of arrival from source to receiver and the effects of reflec-

tions off the seabed and sea surface. A commonly used implementation of this is the

Bellhop program [35] which has been implemented efficiently in Fortran, Matlab and

Python, in conjunction with the Bounce model to include the effects of seafloor reflec-

tions [33]. Unlike the other methods listed, Bellhop can be used relatively efficiently

with broadband signals [36] as you can use the time difference of arrival to estimate

the propagation of multiple frequencies simultaneously.

2.3.4.2 Normal Mode Theory

Normal mode theory considers the wave equation as range and depth dependent func-

tions, assuming all the energy is trapped as stationary waves in the waveguide between

the seabed and the sea surface [37]. The acoustical field in the vertical direction is

generated as a sum of normal modes, taking into account soundspeed and density dis-

continuities. The method used to estimate it in the horizontal direction depends on

the range-dependence of the environment, with increasing complexity for increasing

range-dependence [32]. The number of modes to include in the solution scales linearly

with frequency making this method well-suited for low frequencies.
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2.3.4.3 Parabolic Equation Models

Parabolic equation methods derive a solution from the Helmholtz equation considering

only the outgoing wave, reducing it to an initial value problem. The wave field is then

calculated to the required distance step-by-step [32]. The computational requirements

increase with the square of the frequency so this method is generally used for frequencies

of <1kHz.

2.4 Ambient Noise

Any acoustic waves received by a hydrophone that are not signals of interest can be

considered noise. The background, or ambient, noise in the ocean varies with frequency

and location due to a wide range of causes, depicted in Figure 2-13. These vary from

natural physical processes, marine life and anthropogenic sources, and can be split into

three approximate frequency bands.

2.4.1 Low Frequency(10Hz-500Hz)

The reduced attenuation of low frequency sound causes the SPL of ambient noise to

be significantly greater at lower frequencies. Occupying this low frequency range are

natural and biological sources such as large marine mammals and seismic waves from

earthquakes. However, the anthropogenic contributions are increasingly prevalent, due

to the vast increase in shipping activity. Although natural noise sources have remained

fairly constant, commercial shipping ambient noise levels in the ocean have increased

by about 3.3dB per decade for the past 70 years [38].

2.4.2 Medium Frequency (500Hz-25kHz)

In the medium frequency range, the dominant source of natural ambient noise is ocean

surface waves, depending on the sea state [39]. Precipitation can have a large effect too,

causing a marked increase towards the higher frequency end of the band for rainfall and

with a very broad peak at 3kHz [40]. Anthropogenic noise such as active sonar, small

boats and machinery also contribute. Another very troublesome source of noise are

snapping shrimp, which are present in various bays around the world. They produce

extremely loud, broadband noise which spans the entire spectrum and makes acoustic

measurement of other sources in the vicinity all but impossible [41].

40



CHAPTER 2. FUNDAMENTALS OF UNDERWATER ACOUSTICS

2.4.3 High Frequency (>25kHz)

At very high frequencies the attenuation of sound is extremely high, therefore any noise

sources will be in the immediate vicinity of the receiver. Nearby active sonar and marine

mammals’ echolocation calls [42] are the main sources of sound at these frequencies,

with thermal noise being the other contributor. When all other noise sources have

been removed, the only remaining sound is the thermal agitation of seawater molecules

which puts the limit on acoustic detection sensitivity.
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Figure 2-13: Wenz Curve [43], originally from [44]
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Chapter 3

Passive Array Processing

An array of hydrophones offers certain benefits over the use of a single hydrophone.

Through the application of processing algorithms it is possible to spatially filter the

data to increase the SNR of a signal of interest, enumerate the number of sources with

impinging signals and estimate the bearing to these sources.

3.1 Bearing Estimation

For a plane wave from a sound source in the far field, a linear array allows estima-

tion of the bearing to a target sound source through the use of direction of arrival

(DOA) estimation algorithms. There are various literature reviews of DOA algo-

rithms [45][46][47][48][49][50], which highlight some of the most prominent methods

of estimation. These algorithms are presented here, with examples of their use and an

assessment of their advantages, disadvantages and suitability to the problem.

3.1.1 Cross-Correlation

A simple but fundamental processing method using two sensors, the cross-correlation

can provide an estimate of the DOA to an impinging sound source using the data from

two hydrophones and knowledge of their relative locations. The core concept relies

on the assumption that a wavefront will be registered by the closest hydrophone at a

certain point in time and then by the second hydrophone at a later point in time. The

cross-correlation, defined in Equation 3.1, gives a measure of the similarity between

two signals as a function of the lag, τ , of one signal relative to the other.

r12(τ) =
1

T − τ

∫ T

τ
u1(t)u2(t− τ)dt (3.1)
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d

θ
cτ

Wavefront

1 2

Figure 3-1: Geometric considerations to estimate DOA from the time delay

where T is the observation interval, τ is the lag or time delay between the signals,

and um is the time series data received on the mth hydrophone. This function can

then be used to provide an estimate of the time difference of arrival between the two

hydrophones using the location of the maximum:

τ̃ = argmax
τ

{r12(τ)} (3.2)

Using this estimated time delay, a direction to the impinging sound source can be

estimated using trigonometry, as in Figure 3-1,

θ = cos−1

(
cτ̃

d

)
(3.3)

where c is the propagation speed, d is the inter-sensor distance and τ̃ is the estimate

for the inter-sensor time delay.

Equivalently, the cross-correlation can be computed in the Fourier domain. Using

the fact that complex conjugation in the Fourier domain is equivalent to a time reversal

in the time domain, cross-correlation can be computed as

S12(f) = U1(f)U2(f)
∗ (3.4)

where U(f) = F{u(t)} and ∗ refers to the complex conjugate. This is termed the

cross power spectral density (CPSD). This is linked to the PSD described in the previ-

ous chapter except it describes the relationship between the frequency content of two

signals.

The cross-correlation can then be computed using the inverse Fourier transform of

this function:

r12(τ) = F−1{G12(f)} (3.5)

The point at which this function reaches a maximum provides an estimate of the time
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delay.

Another related concept is coherence. The coherence1 function, C12(f), is a measure

of how closely one signal corresponds to another at each frequency and is defined as

C12(f) =
|S12(f)|2

S11(f)S22(f)
(3.6)

where S11(f) and S22(f) are the auto-PSD for u1(t) and u2(t) respectively. This will

vary between 0 and 1 for any given f , with 1 being perfect coherence.

This Fourier domain formulation of the cross-correlation function allows the use of

weights to be applied to modify the shape of the r12(τ) function [51][52], leading to the

generalised cross-correlation function, G12 in Equation 3.7.

G12(f) = U1(f)U2(f)
∗W (f) (3.7)

where W (f) is the weighting function. As before, the cross-correlation function is

computed as r12(τ) = F−1{G12(f)}.
The choice of weighting function depends on the specific characteristics of the sig-

nals and noise, but the most commonly applied is the phase transform (PHAT) weight-

ing [50][53][10], where the weighting is equivalent to the reciprocal of the cross-spectrum

magnitude,

GPHAT(f) =
U1(f)U2(f)

∗

|U1(f)U2(f)∗|
(3.8)

This leaves only the phase information and has the effect of reducing the spreading

of the correlation peak, but is found not to perform well in channels dominated by

multipath [54].

The cross-correlation method is often only used for source localisation with widely-

spaced sparsely distributed hydrophones [55][56][9] or small arrays with few hydrophones

[57]; however, the concepts involved provide the building blocks for the processing al-

gorithms of even larger multi-sensor arrays.

3.1.2 Array Signal Model

The subsequent multi-sensor array processing methods described all assume a com-

monly used narrowband model which arises through consideration of the acoustic wave

equation, described in Section 2.1, extended into the x and y dimensions for each sen-

sor [46]. The wavefield measured at a receiver due to a narrowband source from a given

1Technically this is the magnitude-squared coherence but the two terms are used interchangeably
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θ2

y

x

Receiver(x, y)

s2(t)

s1(t)

θ1

+θ

Figure 3-2: Illustration of a sensor and two sources in 2D

bearing can be described as in Equation 3.9.

uq(t) = exp(−jω(x sin θq + y cos θq)/c)sq(t) (3.9)

= a(θq)sq(t) (3.10)

where x and y are the Cartesian co-ordinates of the receiver, sq(t) describes the signal

for source q and θq is its bearing, measured clockwise from the positive y direction

(North) as in Figure 3-2.

The steering factor, a(θ), can then be formed for each sensor and grouped into

the steering vector. Placing sensor one at the origin and defining the rest of the

sensors’ positions relative to it results in a steering vector generalised to arbitrary

array geometries, as

a(θ) =
[
1, exp(−jωr1(θ)/c), . . . , exp(−jωrK(θ)/c)

]T
(3.11)

where rk(θ) = xk sin θ + yk cos θ, and K is the number of sensors.

For Q sound sources each at their own respective bearings, this can be extended

to a vector of signal waveforms and a steering matrix, as in Equations 3.12 and 3.13

respectively.

s(t) =
[
s1(t), . . . sQ(t)

]T
(3.12)
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θ

d
1 2 ... K

Wavefront

Figure 3-3: Uniform line array

A =


a1(θ1) a1(θ2) . . . a1(θQ)

a2(θ1) a2(θ2) . . . a2(θQ)
...

...
. . .

...

aK(θ1) aK(θ2) . . . aK(θQ)

 (3.13)

Including an additive white noise vector term, n(t), this then results in the final ar-

ray data model for multiple narrowband sources in the same frequency band, Equation

3.14.

u(t) = As(t) + n(t) (3.14)

3.1.3 Covariance Matrix

Building upon the cross-correlation theory discussed earlier in this chapter, the covari-

ance matrix2, R, is of core importance to array processing. It describes the relationship

between the signals received on each of the sensors with that of every other sensor.

Along the diagonal is the variance of each sensor with the off-diagonal elements being

the covariances of each sensor pair:

R =


r1,1 r1,2 . . . r1,K

r2,1 r2,2 . . . r2,K
...

...
. . .

...

rK,1 rK,2 . . . rK,K

 (3.15)

where r1,2 is the covariance between the 1st and 2nd sensor. The lower triangle of

off-diagonal elements are equal to the complex conjugate of those in the upper trian-

gle (r1,2 = r∗2,1), hence the matrix is always Hermitian (equal to its own conjugate

transpose).

2Also known as the spatial covariance matrix, cross-covariance matrix or sample covariance matrix
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Mathematically the covariance matrix is defined as

R = E{u(t)uH(t)} (3.16)

= AE{s(t)sH(t)}AH + E{n(t)nH(t)} (3.17)

where E{} denotes the statistical expectation. Simplifying the signal covariance matrix,

E{s(t)sH(t)}, to S and the noise covariance matrix, E{n(t)nH(t)} to σ2I this results

in the following

R = ASAH + σ2I (3.18)

where σ2 is the variance of the noise and I is the identity matrix.

In a practical application the covariance matrix is not known and there is limited

discretely sampled data. Therefore in practice, an estimate of the cross power spectral

density matrix is used, or cross-spectral matrix (CSM) for short. This can be estimated

a number of ways and a commonly used technique is Welch’s method [58]. The STFT

of the data is taken to produce the complex valued observations for each frequency, ω,

at each time step, n, which are then averaged across time to produce a statistically

consistent estimate of the true CSM which takes into account correlations from multiple

sources [59]. Note, this is the same as the intermediate step when computing a cross-

correlation in the Fourier domain, except computed for all sensor pairs.

R̂(ω) =
1

N

N∑
n=1

U(n, ω)UH(n, ω) (3.19)

where N is the total number of observations, U(n, ω) is the STFT data from each

sensor and H denotes the conjugate transpose. This produces a K ×K CSM for each

frequency. For continuous estimation of time-varying signals, a moving average can be

used which will result in a CSM for each time step and at each frequency, R̂(n, ω).

3.1.4 Beamforming

Beamforming is a term for steering the transmission or reception of a sensor array. By

weighting the received data from each sensor in such a way that they coherently sum

in a desired direction one can increase the gain of impinging signals from that bearing.

The output signal from beamforming a narrowband signal at frequency, ω, in a given

direction, θ, is given by

y(t, θ, ω) =

P∑
p=1

wT
k (θ, ω)uk(t, ω) = wH(θ, ω)u(t, ω) (3.20)
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Figure 3-4: Illustration explaining beampattern terminology for a six-sensor array at a
single frequency steered to 0o

where w(θ, ω) is the vector of complex-valued weights applied to steer the beam in the

direction θ and modify the beampattern and uk is the kth sensor’s data. The estimated

output power in a given direction can therefore be estimated as

P (θ, ω) = E{|y(t, θ, ω)2|} = wH(θ, ω)E{u(t, ω)uH(t, ω)}w(θ, ω)

= wH(θ, ω)R(ω)w(θ, ω)
(3.21)

3.1.4.1 Array Response

An important feature of the power estimates of DOA algorithms is the angular and

frequency dependency of the produced spatial spectrum, which will affect the ability

to resolve a target in space. This is described as a beampattern, illustrated for a single

frequency in Figure 3-4. The main lobe is the maximum power peak in the steered

direction, with grating lobes which are ambiguities caused by spatial undersampling.

Then there are side lobes, which are lower gain peaks at other bearings, and nulls,

which are the minima in between peaks, both of which are a function of the array

aperture.

Beampattern Assuming a planar incoming wave, the beampattern can be computed

for a given frequency by computing the expected phase differences based on the array
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(a) d, L (b) d, 2L (c) 2d, L

Figure 3-5: Example array response with spacing d and array length L for a range of
angles and frequencies

geometry and summing,

G(θ) = 20log10

(
1

K

K−1∑
k=0

ej2πfkd sin(θ)/cej2πfkd sin(ϕ)/c

)
(3.22)

where K is the number of sensors, f is the frequency, d is the inter-sensor distance, θ

is the beamsteering angle, ϕ is the angle and c is the speed of sound. When computed

for multiple frequencies this can be viewed as a frequency response plot, examples of

which are shown in Figure 3-5.

Main Lobe The main lobe width can be described using either the half power beam

width (HPBW), the width of the beam at half the maximum gain, or the first null

beam width (FNBW), the angle between the first nulls either side of the main lobe,

described for a broadside detection in Equations 3.23 and 3.24 [60].

HPBW = 0.891
c

dKf
(3.23)

FNBW = 2
c

dKf
(3.24)

As can be seen in Figure 3-5, this results in a decrease in the bearing resolution as

frequency decreases.

Side Lobes With an increasing numbers of equally-spaced sensors, K, the number

of side lobes increases and the level of the side lobes decreases, as illustrated in Figures

3-5a and 3-5b. The peak of the first side lobe occurs either side of the main lobe at an
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angle of

θs = ±3π

K
(3.25)

with a gain of

G

(
±3π

K

)
≊

1

K sin (3π/2K)
(3.26)

Grating Lobes The concept for grating lobes is the spatial equivalent to the Nyquist-

Shannon sampling theorem, described in Section 2.1.4. In this case, it depends on the

wavelength of the frequency of interest and the spatial sampling. Grating lobes occur

when the wavelength of the signal is a multiple of the distance travelled between sensors

in the direction of the wave:

θ = sin−1

(
nc

fd

)
(3.27)

where θ is the perceived bearing of the nth grating lobe. Similarly Equation 3.28 shows

the maximum inter-sensor spacing to avoid aliasing at a given frequency [60].

d =
c

f(1 + sin(θ))
=

λ

1 + sin(θ)
(3.28)

Thus, a spacing of λ/2 results in a beampattern that will not alias at any steer direction.

Ambiguity The final point to note on array response is that for a linear array, there

is a rotational ambiguity about the axis of the array, as illustrated in Figure 3-6. This

results in an inability to determine with confidence the precise DOA to a sound source

without other knowledge. In practice a towed linear array will be nominally horizontal,

which reduces it to a left-right ambiguity for incoming horizontal plane waves.

3.1.4.2 Conventional Beamformer (Bartlett)

The most basic beamforming algorithm is the conventional, or Bartlett [61], beam-

former. This uses weights equivalent to the steering vector for the angle and frequency

of interest, as in Equation 3.29. Note, the denominator of this weight is purely for

scaling, to limit the output gain to unity.

wbartlett(θ, ω) =
a(θ, ω)√

aH(θ, ω)a(θ, ω)
(3.29)

This weighting results in the power estimate,

Pbartlett(θ, ω) =
aH(θ, ω)R̂(ω) a(θ, ω)

aH(θ, ω)a(θ, ω)
(3.30)
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(a) (b)

Figure 3-6: Example array response in 2D (a) with corresponding 3D response (b)
showing the rotational ambiguity

This method is very commonly used due to its ease of implementation. However, it

suffers from a broad main lobe in its beampattern, especially at low frequencies. That

and the relatively prominent sidelobes limit its capability to resolve closely spaced

sound sources.

3.1.4.3 Capon’s Beamformer

Capon’s beamformer, commonly referred to as minimum variance distortionless re-

sponse (MVDR), is the most notable extension to conventional beamforming. As op-

posed to the conventional algorithm which simply maximises the power in a desired

direction, MVDR attempts to reduce the noise power in all other directions while

maintaining the power in the steered direction [62]. This results in the weighting,

wmvdr(θ, ω) =
R̂

−1
(ω)a(θ, ω)√

aH(θ, ω)R̂
−1

(ω)a(θ, ω)

(3.31)

The use of the data to adapt the weights in order to provide the estimate puts this in

a category known as adaptive beamforming.

Inserting this into Equation 3.21 results in the power estimate for Capon’s beam-

former,

Pmvdr(θ, ω) =
1

aH(θ, ω)R̂
−1

(ω)a(θ, ω)
(3.32)

This provides a significant improvement in the beampattern with a reduction in

the magnitude of the sidelobes and a narrower mainlobe width compared to the con-

ventional beamformer, improving its capability to resolve closely spaced sources, as
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Figure 3-7: Comparison of the conventional beamformer and the MVDR beamformer
with three sources at various bearings(denoted by the “x”s) for a 10 sensor uniform
linear array (ULA) with spacing λ/2 and an SNR of 20dB

shown in Figure 3-7. This is at the cost of computational efficiency as the algorithm

requires inversion of the covariance matrix. The potential for such a significant increase

in performance has inspired a lot of research into developing extensions and principles

to aid the design of an optimal adaptive beamformer [63]. It is very commonly used,

with experimental examples on a number of arrays, stationary [8], towed [64] and vol-

umetric [65].

The main causes of degradation in performance for this algorithm are inaccurate

estimation of the covariance matrix and uncertainty in the steering vector. Inaccurate

estimates of the covariance matrix from computation with limited samples can result in

significant degradation in performance, potentially rendering it worse in performance

than the conventional beamformer. This can happen as a result of the matrix becoming

singular and therefore not able to be accurately inverted. A common remedy for such

a situation is a method known as diagonal loading [66][67], where some value is added

to the diagonal elements of the covariance matrix. A sensible method for selecting such

a value is the standard deviation of the diagonal elements of the covariance matrix [68]

as in Equation 3.33, which can be used as an indication of the covariance matrix error.

γDL = std(diag(R̂)) (3.33)

where γDL is the diagonal loading value and std denotes the standard deviation. This

is incorporated into the beamforming process by adjusting the covariance matrix prior
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to beamforming,

R̃ = R̂+ γDLI (3.34)

where I is the identity matrix. Another proposed method is termed spatial smoothing

and involves averaging across subarrays in the covariance matrix [69], in order to make

the matrix full rank.

The characteristics of the noise environment also have an effect on the SNR increase

from applying the MVDR beamformer. For example, reverberant conditions tend to

significantly reduce the SNR gain [70].

3.1.5 MUSIC and Other Subspace Algorithms

While similar in implementation to beamforming algorithms, subspace algorithms, such

as the popular multiple signal classification (MUSIC) algorithm [71], are slightly dif-

ferent in concept to the beamforming algorithms already described. As opposed to

a power maximisation or minimisation, they arise through considering the geometric

structure of the covariance matrix. The concept is that the eigendecomposition of the

covariance matrix, as described in Equation 3.35, can be split into two subspaces: a

signal subspace, with eigenvectors V s and eigenvalues Λs, and a noise subspace, with

eigenvectors V n and eigenvalues Λn, as in Equation 3.37.

R = ASAH + σ2I (3.35)

= V ΛV H (3.36)

= V sΛsV
H
s + V nΛnV

H
n (3.37)

The MUSIC algorithm uses the fact that the covariance matrix is necessarily Her-

mitian and therefore symmetric, meaning the set of eigenvectors, V , is guaranteed to

be an orthogonal matrix. Assuming there are Q incident waves on the array, the sub-

space spanned by the eigenvectors corresponding to the largest Q eigenvalues can be

denoted as the signal subspace and the noise subspace spanned by the K−Q remaining

eigenvectors. Minimising the Euclidean distance between the steering vector and the

noise subspace can then provide a spatial pseudo-spectrum for DOA estimation,

PMUSIC(θ, ω) =
1

aH(θ, ω)V n(ω)V
H
n (ω)a(θ, ω)

(3.38)

The prior knowledge of the number of sources effectively allows precise minimisation

of the noise components of the data, resulting in a significant increase in the detection
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Figure 3-8: Comparison of the conventional beamformer, the MVDR beamformer and
the MUSIC algorithm with three sources at various bearings(denoted by the “x”s) for
a 10 sensor ULA with spacing λ/2 and an SNR of 20dB

capabilities of this algorithm, as shown in Figure 3-8, where the peaks are even more

distinct than those of MVDR.

There are a number of extensions to the MUSIC algorithm, most notably the Root-

MUSIC algorithm, which is a computationally more efficient polynomial-rooting version

of the algorithm [72][73] and the Min-Norm algorithm, which is effectively a weighting

applied to the MUSIC algorithm. This weighting resulted in an algorithm that exhibits

lower bias and better resolution when applied to ULAs [74], however not so with arrays

with arbitrary geometries [75].

Another subspace algorithm of note is the estimation of signal parameters via rota-

tional invariance technique (ESPRIT) algorithm, which is distinct in that it does not

require a search step, thereby making it computationally significantly faster and result-

ing in a single value for the DOA estimate rather than a spatial spectrum. However,

it requires a specific type of array geometry, with the array split into sensor doublets

in order to implement it [76][77].

One of the main drawbacks of using a subspace technique is the requirement to

know the dimension of the signal subspace, which is to say the number of sources

impinging on the array. For circumstances where this cannot be assumed beforehand,

the problem of source enumeration has been approached a number of ways [78][79],

often using information criterion or the eigenvalues of the covariance matrix [80][81].
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(a)

(b)

Figure 3-9: (a)MUSIC pseudo-spectrum assuming a straight array for a 10-sensor ULA
with increasing levels of “bow” amplitude in the array. The ‘x’s indicate the true
bearing to the source. (b) The corresponding bow amplitudes.

3.1.6 Effects of Inaccuracies

To fully access the benefits of the high resolution DOA algorithms requires highly

accurate sensor position information. Figure 3-9a shows the effect of a perturbed,

bow-shaped array on the MUSIC pseudo-spectrum assuming a straight array when

formulating the steering vector. The amplitude of the bow-shape being just a fraction

of the wave-length, λ/20, results in a significant reduction in the gain of the detection

peak. At even higher levels of perturbation, the detections start to deviate slightly

from the true bearings.

A common rule of thumb is that sensor positions need to be known to within λ/10

to ensure a loss of less than 1dB in array gain for conventional beamforming [82].

As can be seen from Figure 3-10, for an array with a bow-shape of amplitude λ/10

the advantage of increased gain with MVDR and MUSIC is mostly lost, although the

resolution improvement remains. Also notable is the loss of the large performance

difference between MVDR and MUSIC, present in Figure 3-8, with their resolution
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Figure 3-10: Comparison of DOA algorithm spectrums assuming a straight array for a
10-sensor ULA with a λ/10 bow in it

and gain being mostly equivalent.

3.2 Array Shape Estimation

The steering vector is core to successful implementation of the DOA algorithms. In-

accurate steering vectors can result in degraded performance with reduced array gain,

bearing errors and spurious detection peaks [83][84]. This therefore requires precise

knowledge of the location of each of the sensors in the array.

3.2.1 Array Models

For ULAs, there are a number of often used array models assumed in array shape

estimation methods. These vary by the number of parameters they use to describe the

array shape. The most basic involves simplifying the array to a bow shape [85][86][87],

as in Figure 3-11, parametrised with α as the bow parameter and β as the angle at

a specific position on the array. This allows the array shape to be defined with two

dimensions in 2D space and 4 dimensions in 3D space (azimuth, elevation and bow

parameter in horizontal and vertical plane). This is often useful for use with an array

being perturbed by a manoeuvring vessel as the array will often follow the path of the

vessel. Extending this concept further is the use of spline interpolation or curve fitting

[88][89] to approximate the array shape. This offers slightly more flexibility in terms of

the array shapes it can define, but is still limited by the order of the polynomial used.

Another model is known as a piecewise linear model [90][91][92][93][94], where
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α
β

Figure 3-11: Bow-shape parametrised array model

θ1

θ2

θ3

x

y

d

Figure 3-12: Piecewise linear array model

the array is composed of sensors with linear joints, as in Figure 3-12. With a fixed

inter-sensor distance, d, this allows an K hydrophone array to be defined by K − 1

parameters{θ1, θ2, . . . , θK−1}, in 2D space and 2(K − 1) in 3D space. This parametri-

sation is useful for allowing unusual shapes.

Array shape estimation algorithms can be broadly split into techniques that use:

non-acoustic data, such as heading sensors and depth sensors; acoustic data, either from

opportunistic sources or from calibration sources placed in the water; or a combination

of the two.

3.2.2 Non-Acoustic Methods

One of the earliest examples of spatial sensor-based estimation [95] provides a mathe-

matical basis for the estimation of the shape of an array from heading and depth sensors

placed along it. There are various examples of methods estimating the shape as an in-

terpolated spline in experiments and simulation [96][89], as well as combining heading

sensor data with a Kalman filter to improve the robustness to sensor failure [97]. As

would be expected, however, all of these methods require a well-instrumented array to
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be effective.

A further improvement was made introducing the water-pulley model [98], derived

from the Paidoussis equation [99], given in Equation 3.39 [100]. This partial differential

equation describes a flexible cylindrical body of circular cross-section with an incom-

pressible fluid flowing around it at a uniform velocity and takes into account inertial

forces, bending stiffness, drag and tow speed.

Cylinder inertial force︷ ︸︸ ︷
m
∂2y

∂t2
+

Fluid mass inertial force︷ ︸︸ ︷
M

[
∂

∂t
+ U

∂

∂x

]2
y +

Bending stiffness︷ ︸︸ ︷
EI

∂4y

∂x4

+

Tension stiffness due to longitudinal drag︷ ︸︸ ︷
∂

∂x

[[
1

2
ct

[
L− x

d

]
+

1

2
c′t

]
MU2 ∂y

∂x

]

+

Damping term due to transverse drag︷ ︸︸ ︷
1

2π
cn
MU

d

[
∂y

∂t
+ U

∂y

∂x

]
= 0

(3.39)

where m is the cylinder linear mass, M is the fluid linear mass, d is the cylinder

diameter, E is the cylinder elastic modulus, I is the cylinder moment of inertia, ct

is the tangential drag coefficient and cn is the normal drag coefficient, U is the flow

velocity in the x direction, L is the cable length, and (x, y) are the spatial coordinates

of the cable.

Assuming a flexible array with a free end and whose length is far greater than its

diameter, the small-diameter Paidoussis equation is derived,

ct(ξ − 1)
∂2η

∂ξ2
+ cn

(
∂η

∂τ
+
∂η

∂ξ

)
= 0 (3.40)

In practice, the ratio ct/cn ≈ 0 which then results in the simplified water-pulley model,

∂η

∂τ
+
∂η

∂ξ
= 0 (3.41)

where τ = tU/L, η = y(t, x)/L and ξ = x/L. This describes that the effects of the

motion of the tow vessel propagate down the array undamped at close to the tow

speed [101]. It has been demonstrated in simulation combined with depth sensors

and compasses using a Kalman filter [91] and various methods have also incorporated

the tow vessel GPS co-ordinates into the estimation, using the water-pulley model to

estimate the resulting dynamics of the array [101][85].

Aside from the traditional use of auxiliary compasses and pressure sensors, it has

also been demonstrated that the hydrostatic pressure at a hydrophone can be measured
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using optical fibre hydrophones, which can then be interpolated to estimate array

shapes in the vertical plane [102].

3.2.3 Acoustic Data-Driven Methods

Another style of array shape estimation involves the use of the acoustic data gathered

on the hydrophones. This reduces the need for extra compasses or depth sensors as

it uses data that would always be gathered in circumstances where knowledge of the

sensor positions is advantageous.

3.2.3.1 Iterative Approaches

The first type of acoustic data-driven methods is the iterative method.

One style of iterative method involves maximising some cost function related to the

array sensor positions to get a maximum likelihood estimate. This cost function has

been implemented as a beamformer power output [103], or a spatial spectrum peak

sharpness with conventional beamforming [104] and MVDR [105]. Some methods use

sources in unknown locations [106][107], although these often require knowledge of one

of the sensor’s positions and the direction to another sensor in order to operate. The

use of calibration sources in known locations gets around this requirement [108][109]

but is often more practical for a one-off sensor position estimates.

Another iterative method in the literature is somewhat different and based on the

assumption of a nominally straight array [110]. The time delay measurement from

underwater lightbulb explosions in approximately known positions is estimated, and

an iterative linearised inversion method is used to find the simplest array shape con-

sistent with the data (i.e. with the least curvature). The optimal configuration of the

calibrating sources has also been considered [82], looking at the effects of parameter

errors, measurement errors, source positions and number of sources. This sensitivity

study is formulated for the general cases of static seabed mounted horizontal line arrays

(HLAs) and dynamic vertical line array (VLA), and is predominantly focused on the

optimal design of an array sensor localisation system.

For continual estimation, a source or multiple sources can be constantly pinging in

known locations as in [111], which utilises two sparker sources and a tail sensor on each

array to estimate the shape of a number of streamers being towed behind an AUV. This

also shows an investigation into different configurations of available data, finding that

using both sources and the tail sensors significantly outperforms alternatives, as would

be expected. Near-field calibrating sources and their multipath arrivals have also been

used [112] with a maximum likelihood estimator that works well at high SNR and in
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the presence of multipath, approaching the Cramer Rao lower bound (CRLB).

A distinctly different iterative approach is known as subspace fitting. This is more

similarly related to the subspace beamforming algorithms, utilising the same concept

of array model as detailed in Section 3.1.5. Again similarly, these are based on splitting

the sample covariance matrix into subspaces and fitting the signal subspace [113][114]

or utilising both subspaces [93]. This method has also been generalised for use with

non-plane waves in the near-field [115], approaching the CRLB for high SNR. It also

investigates the effect of the DOAs of the references sources, finding that they need to

be separated by at least 15o and ideally at broadside to the array.

3.2.3.2 Direct Inversion Methods

The more computationally efficient style of estimation is to perform a direct inversion.

This requires taking some measurement of either inter-sensor phase difference or time

delay and then using it to compute an estimate of the hydrophones’ relative positions.

The eigendecomposition of the CSM (introduced in Section 3.1.3) can be used to

provide estimates of the inter-sensor phase differences, as introduced in [116], which

provides a generalised basis for the use of eigenvectors in three distinct cases of prop-

agation, with and without multipath. This often used technique [117][118] is referred

to as the eigenvector method and uses the eigenvector corresponding to the maximum

eigenvalue as an estimate of the complex components of an impinging signal. This can

then be used to compute the angle of the complex value as an estimate of the phase,

ϕ̂ = arg(v1) (3.42)

where ϕ̂ is the set of phase estimates for each hydrophone’s data and v1 is the K × 1

column eigenvector corresponding to the maximum eigenvalue of R̂. This maximum-

likelihood estimate can then be used to compute the relative locations of each hy-

drophone assuming a piecewise linear model:

xk =
k∑
i=2

l̂i−1,i cos θ +
k∑
i=2

(d2 − l̂2i−1,i)
1/2 sin θ (3.43)

yk =
k∑
i=2

l̂i−1,i sin θ +
k∑
i=2

(d2 − l̂2i−1,i)
1/2 cos θ (3.44)

where l̂i−1,i = (λ/2π)ϕ̂i−1,i, d is the inter-sensor distance and θ is the impingement

angle of the incoming wave. It has been shown to have a lower RMS error than the

iterative beamformer output sharpness method detailed above [90]. This method has
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also been extended to decrease the computational cost of the eigendecomposition with

long arrays [92]. Using the knowledge that the estimation bias and variance is not

significantly affected by the number of sensors, the array can be partitioned and each

subarray processed instead. A more recent implementation of the eigenvector technique

is demonstrated in [94] with single and double near-field calibrating sources. In this

case, the top two eigenvectors are used as estimates for the phase differences from two

spatially separated impinging sound sources. This requires sources to be spectrally or

temporally disjoint to ensure a non-singular covariance matrix.

Another method similar to the eigenvector technique is presented in [119], using

a Hidden Markov model to introduce temporal continuity to the estimates. This in-

corporates statistical likelihood when considering the acoustic estimates used to infer

the array shape, which is modelled as piecewise linear. It is shown in simulation to

outperform maximum likelihood methods at low SNR.

Experimentally there have also been examples of opportunistic sources used for

array shape estimation, using cross-correlations of ship noise [120] and time-averaged

ambient ocean noise [121].

3.2.3.3 Data Fusion

Some of the limitations of the above methods can be alleviated using a combination of

techniques. This can be achieved by using the acoustic estimates when available and

combining with compasses and depth sensors based on the statistical likelihood of their

accuracy. One such example uses ambient noise field directionality mapping fused with

heading sensor data to estimate an bow-shaped array travelling through a turn [86].

Unlike previous methods, it uses a stochastic noise field model that captures discrete

and distributed noise sources as opposed to a deterministic system model.

3.2.4 Summary

The array shape estimation algorithms presented here each make their own assump-

tions in order to solve the problem with the available data. However, many of these

assumptions do not necessarily hold true for a wave-propelled vessel.

Bow-shape Parametrising the array as a bow shape may be too simplistic for the

potentially chaotic shape induced by the wave-propulsion.

Vessel motion extrapolation Due to the unpredictable and relatively slow nature

of the vessel motion, methods using the water-pulley model may not be applicable.
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Assumption of horizontal array The often reasonable assumption that the array

is oriented in the horizontal plane, which is often used to simplify estimation, may not

be appropriate and the array may need to be estimated in 3D space.

A new method may be required, aiming to tackle these extra challenges and building

upon the techniques discussed here.
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Chapter 4

Simulation Model

To aid the development of processing algorithms and assess the performance capabil-

ities of system configurations, a modelling and simulation process was developed for

application to an array deployed behind a wave-propelled USV. This is introduced

here as it will be used throughout the thesis for illustrative purposed but a detailed

validation exercise is included in Section 6.3.

4.1 Overview

The aim is to simulate the data received on hydrophones with an array of arbitrary,

dynamic shape, receiving the acoustic emissions of single or multiple moving sources

in the presence of additive noise.

The process, as described in Figure 4-1, involves cycling through each acoustic

source and generating their signal using the specified frequency content and power.

The displacement between the source and each hydrophone for each time step is used

to compute the time delays and transmission losses, which can then generate the de-

layed and scaled time series for each hydrophone. The noiseless data is produced as a

summation of each of these signals. The final step is to add noise to each hydrophone’s

data series.
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Figure 4-1: Flow diagram of the simulation process
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p(xq(t), t)

p(xk(t), t)

|xk(t)− xq(t)|

Figure 4-2: Illustration of a sensor and a source in 2D in the vertical plane

4.2 Acoustic Data Modelling

4.2.1 Source Signal

A source with index q is modelled as an omnidirectional point projector with position,

xq, which can vary with time, t.

xq(t) = [xq(t), yq(t), zq(t)]
T (4.1)

The wavefield at this position can be described as

p (xq(t), t) = Aq(t)sq(t) (4.2)

where sq is the time varying function describing the source signal and Aq is the mag-

nitude in Pa converted from the SL, i.e. Aq = 10 exp(SLq/20). For example, a tonal

source signal could be modelled as s(t) = sin(ωt+φ), where ω is the angular frequency

and φ is some arbitrary starting phase.

4.2.2 Propagation

4.2.2.1 Linear Ray Model

Considering a single arrival of a wave from a source at xq to a single hydrophone

positioned at xk, the wavefield at this hydrophone would then be described as

pq (xk(t), t) = Aq,k(t)sq (t− τq,k(t)) (4.3)
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where τq,k(t) is the temporal delay and Aq,k(t) is the reduced amplitude from propaga-

tion losses. For the simplest case of a straight direct path, the delay can be computed

by calculating the 3D Euclidian distance between the source and the hydrophone, and

dividing by the propagation speed,

τq,k(t) =
|xk(t)− xq(t)|

c
(4.4)

with c as the propagation speed in m s−1. The adjusted amplitude can be calculated

using Equation 4.5, where TL is estimated using the range and the equation for trans-

mission loss with spherical propagation from Section 2.3.1.

Aq,k(t) = 10((SLq(t)−TLq,k(t))/20) (4.5)

Extended to Q acoustic sources this results in a summation of temporally-varying

delayed signals,

p(xk(t), t) =

Q−1∑
q=0

Aq,k(t)sq (t− τq,k(t)) (4.6)

4.2.2.2 Bellhop

For a more physically accurate representation, the Bellhop raytracing algorithm, de-

scribed in Section 2.3.4, can be used to compute the time delays and transmissions

losses for each source. This uses knowledge of the water column depth, sound speed

profile and seabed properties to model the path from source to receiver, including any

reflected paths. These can then be considered as individual arrivals, including as many

orders of propagation as necessary. The example in Figure 4-3 shows the paths com-

puted using Bellhop considering 4 orders of multipath with a uniform sound speed

profile. The implementation used comes from the Ocean Acoustics Library [122].

Including the extra arrivals estimated by the Bellhop model into Equation 4.6 results

in

p(xk(t), t) =

Q−1∑
q=0

M−1∑
m=0

Aq,k,m(t)sq (t− τq,k,m(t)) (4.7)

where Aq,k,m and τq,k,m are the adjusted magnitude in Pa and time delays in seconds

respectively, for the mth multipath between the sensor at xk and the source at xq.

4.2.3 Surface Reflections

Reflections from an oscillating sea surface have been considered as an additional tempo-

rally varying time delay on surface reflected paths resulting in an adjusted time delay,
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Figure 4-3: Example of the different paths that travel from a source at a depth of 40m
to a receiver at a depth of 25m and a range of 500m, generated using the BELLHOP
model

τ̃q,k,m(t) = τq,k,m(t) +Ar sin 2πfrt (4.8)

where Ar and fr is the amplitude in metres and frequency in Hz of the time delay

deviation caused by the surface motion. While not necessarily a physically accurate

model of the sea surface, this can emulate the effect of a reflective but slowly varying

sea surface, capturing the decrease in coherence between surface-reflected and non-

surface-reflected arrivals. The parameters can be approximated using knowledge of the

wave peak period and wave height.

4.2.4 Doppler Shift

The Doppler shift associated with moving sources is implicitly captured through the

method of delaying signals in the time domain. The delay and scaling is applied to

each step of the time series of the source’s signal which is then interpolated back onto

the regularly sampled time step, as illustrated in Figure 4-4.

4.2.5 Noise

The final step to go from the acoustic wavefield to the final simulated data is to add

noise:

uk(t) = p(xk(t), t) + nu,k(t) (4.9)

where

nu,k(t) ∼ N
(
0, σ2u

)
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Figure 4-4: Illustration of the time varying delay interpolation for capturing Doppler
shift
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θk,k+1

k

k + 1

ψk,k+1

Figure 4-5: Compass simulation with compass between two hydrophones. Compass
indicated by the black rectangle.

and σ2u is the variance of the noise. Noise is typically modelled as spatially white ad-

ditive Gaussian, defined by a noise level, NL, in dB. This is converted to variance as

σ2u = 10NL/10. The noise can also be spectrally filtered in the frequency domain prior

to summation to provide coloured noise, to give a more accurate representation of the

noise spectral profile. This can be given as a noise PSD in dB/Hz, NL(f). Spatial

and temporal whiteness of noise is a common assumption that is not necessarily cor-

rect, as there is typically some directionality and temporal variability in experimental

situations, but this was not chosen to be explored in this iteration of the simulator.

4.3 Non-Acoustic Sensor Modelling

The other outputs of the model are the physical sensor measurements which are mod-

elled as the true orientation/depth of the array at the sensor position in the presence

of additive Gaussian noise.

4.3.1 3-axis Compass Measurements

Consider the cth compass positioned between the kth and the (k + 1)th hydrophone.

The simulated reading in degrees for heading, θ, and tilt, ψ, for a 3-axis compass posi-

tioned here is modelled as the direction from the kth hydrophone to the next adjacent

hydrophone in the presence of additive noise, nθ,k and nψ,k,

θc(t) = tan−1

(
yk+1(t)− yk(t)

xk+1(t)− xk(t)

)
+ nθ(t) (4.10)

ψc(t) = tan−1

(√
(xk+1(t)− xk(t))2 + (yk+1(t)− yk(t))2

(zk+1(t)− zk(t))

)
+ nψ(t) (4.11)
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where

nθ(t) ∼ N
(
0, σ2θ

)
and

nψ(t) ∼ N
(
0, σ2ψ

)
The noise is defined by the compass sensor variance in heading, σ2θ , and tilt, σ2ψ. For

a compass co-located with the kth hydrophone, the sensor output is modelled as the

average of the directions to the adjacent hydrophones either side.

4.3.2 Pressure Measurements

Similarly to the compass reading, the reading from a pressure sensor positioned at the

kth hydrophone is simulated using the precise array z position at the sensor location

converted to bar and in the presence of noise, nh,k.

hc(t) = 0.1zk(t) + nh,c(t) (4.12)

where

nh,c(t) ∼ N
(
0, σ2h

)
and σ2h is the pressure sensor variance in bar.

4.4 Simulated Acoustic Results

Two simulated datasets were generated for use in the subsequent chapter for the de-

velopment of the estimation algorithm and demonstration of the model. These were

generated to have an idealised resemblance to the experimental data which is discussed

in Chapter 6. To that end, the level of perturbation is roughly comparable, as well as

the range to the source, the configuration of the array and the frequencies of the emit-

ted signal. The first dataset utilises the linear ray propagation model and the second

uses the Bellhop model with more complicated multipath propagation.

4.4.1 Simulation Parameters

4.4.1.1 Array

In the simulation an 8-hydrophone array with an inter-hydrophone spacing of 0.23m is

used, which is dynamically perturbed, as shown in Figure 4-6 and Figure 4-7. These

plots represent the variation with time of the array in the xy and xz planes as a surface.

This motion is generated using a sinusoidally varying level of perturbation, between
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Figure 4-6: Variation in time of the x and y positions of the array for the simulation
datasets

straight and a single cycle of a sinusoid with a peak-to-peak distance of 0.1m (“s”

shaped). The heading, pitch and roll of the array are also varying sinusoidally with

different frequencies to emulate a dynamically perturbed array. This array is placed at

the origin in x and y, and with a tail depth of 10m.

4.4.1.2 Source

The simulation features a single moving source travelling from xq = [−90, 40,−40]m

to xq = [90, 40,−40]m over the course of two minutes. The source is producing tonal

signals at 370Hz, 790Hz, 1540Hz, 1640Hz and 1740Hz, each with a SL that increases

from 110dB at t = 0s up to 139dB at t = 120s.
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Figure 4-7: Variation in time of the x and z positions of the array for the simulation
datasets

4.4.1.3 Noise

The noise is generated using filtered Gaussian noise with the spectral profile obtained

from an averaged section of experimental data from the trial data set used in Section

6, shown in Figure 4-8.

4.4.2 Simulator Outputs

Figure 4-9 shows the simulated non-acoustic data for the heading, pitch and pressure

for non-acoustic sensors positioned at the head end of the array, with σc = 2o and

σh = 0.05m.

The spectrogram for the simulated acoustic data from each dataset can be seen

in Figure 4-10, showing the increasing power of the source signals towards the end

of the dataset. Also visible is the the interference pattern caused by the multipath

propagation in the second dataset, Figure 4-10b, which is not present in the first,

Figure 4-10a.

The beamformer output at a single frequency for the three beamforming algorithms

introduced in Chapter 3 can be plotted as a waterfall plot as in Figure 4-11. This

shows how the power estimate varies as a function of time and bearing. The difference

in resolution is clearly visible between the methods, with a clear detection peak at all

bearings in both Figure 4-11b and 4-11c but a much broader peak in Figure 4-11a. In

Figures 4-11d, 4-11e and 4-11f there are two dominant peaks due to the multipath: one

for the direct path and one for the surface reflected multipath. Again, these are more

prominently visible with MVDR and MUSIC due to their increased bearing resolution.
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Figure 4-8: Noise PSD from experimental data

4.5 Summary

Presented in this chapter is a simulation process, capable of simulating the output of

a hydrophone array in the presence of multiple moving sound sources. The array can

be varied in shape, capturing the effects of Doppler shift and allowing investigation of

perturbed arrays. The propagation model used can be selected as either a linear ray

model, where only the direct path to the sensor is considered, or using the Bellhop

propagation model, which can accurately capture more complicated paths between the

sensors and the sound source. This takes into account the sound speed profile of the

water column, as well as interaction with a reflective sea surface and sea floors, and the

resulting multipath arrivals. The effect on these multipath arrivals of a non-stationary

reflective sea surface is also modelled. Finally, the ambient noise is modelled as additive

spatially white Gaussian which can be specified as a PSD to allow for spectrally varying

noise power.

The simulated datasets used in the subsequent chapter for array shape estimation

method validation are also introduced here, produced as an idealised dataset resembling

the experimental dataset. Further results from this simulator will be presented in

Chapter 6, with validation of its accuracy to experimental data.
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(a) Heading

(b) Pitch

(c) Pressure

Figure 4-9: Simulated non-acoustic data for head-end compass and pressure sensors for
simulation dataset
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(a) Linear ray path model

(b) Bellhop model

Figure 4-10: Spectrogram of simulated data
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(a) Conventional (b) MVDR (c) MUSIC

(d) Conventional (e) MVDR (f) MUSIC

Figure 4-11: Beamformer results for the simulated data set at 1540Hz. (a-c) linear
ray model, (d-f) Bellhop model with multipath. Each horizontal slice displays a time
instance of beamformed data, with the color axis showing the estimated power in a
different bearing from the array.
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Chapter 5

Hierarchical Particle Filtering for

Array Shape Estimation

Following on from the discussion of array shape estimation algorithms from Chapter 3,

a method of estimating the shape of a towed array has been developed to address the

challenges associated with deployment from a wave-propelled USV. The main points

to address were to allow full freedom in the shape of the array, to estimate the array

in 3 dimensions and to be able to operate with an unpredictable tow vessel.

5.1 Recursive Bayesian Estimation

A recursive Bayesian estimation technique was employed with a particle filtering repre-

sentation, to combine all the available data sources. This allows incorporation of many

different data types and provides an analysis tool for investigating the effectiveness of

the configuration of the array’s non-acoustic instrumentation for estimating its shape.

The algorithm assumes the state of the array can be modelled as a Markov pro-

cess, i.e. that the state of the array at a given time instance depends only on the

state at the previous time step [123]. The general principle of a particle filter is to

approximate a multivariate probability density function (PDF) by maintaining a set of

particles. Each of these particles represents a possible solution in a multi-dimensional

space, where the state describes the position and velocity of certain points along the

array. At each time step they are drawn from a proposal density, known as the prior

distribution. Each particle has a corresponding importance weight which relates to its

likelihood and is updated according to observations. These weights approximate the

posterior probability distribution which is then used to provide the subsequent time

step’s proposal distribution and the process continues recursively for all subsequent
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y
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z
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k = 0
1

2
...

K-1

Figure 5-1: Array coordinate frame

time-steps. This process is known as sequential importance resampling. The benefit of

such a method is that by discarding particles in positions with low likelihood you can

efficiently approximate a non-linear probability distribution without having to densely

sample the entire space.

The method detailed in this section was developed using [123][124] for reference and

uses elements from each of the methods described in Section 3.2.

5.2 The Proposed Algorithm

5.2.1 Array State Model

The array has been represented as K nodes with the kth node as in Figure 5-1. Acous-

tic data collected at hydrophones positioned on these nodes contains information on

their relative positions and there are also L non-acoustic sensors which can provide

measurements of depth, heading and tilt for that point in the array.
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(xk, yk, zk)

żk

ẋk

ẏk

Figure 5-2: State vector for individual node

The state equation for an array with K nodes is:

z = [x0,x1, . . . ,xK−1]
T (5.1)

where

xk = [xk, yk, zk, ẋk, ẏk, żk]
T (5.2)

with T denoting the transpose and ẋ is the rate of change of x. This vector, zk,

describes the positions and velocities at each node as in Figure 5-2.

5.2.1.1 Curse of Dimensionality

As a result of the proposed array state model, the dimensionality of the space to be

searched increases as K × 6. As the effectiveness of a particle filter is determined by

the sampling density, this would result in a rapid decrease in efficiency with increasing

array length [125]. The particles are distributed more sparsely, making it more likely

that the importance weights will degenerate. Weight degeneracy is when only a few

weights are significant and all others are close to zero, hence providing an inaccurate

representation of the posterior distribution. This is commonly known as the “curse of

dimensionality”.

This effect has been investigated and there are various methods that have been used

to attempt to alleviate the effects of it [125], one of which is the concept of partitioning

the space into lower dimensional subspaces [126][127]. These subspaces are loosely

coupled and can interact with each other but each of them has their own particle filter

for approximating their distribution. In the context of array shape estimation this

concept can be used to separate the various sources of data so that their likelihood

functions are only considered at the point when they are most relevant. For example,

a compass situated between two hydrophones does not explicitly constrain the array

away from its location. This applies even more so to inter-hydrophone acoustic time

delay measurements, which only give information of the relative positions between two
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hydrophones. The state space can therefore be split into the array state space (herein

referred to as the global space) and K inter-node relative spaces.

5.2.2 Procedure

The procedure will be described generally in this section, with extra detail on the

likelihood functions and prior distributions provided in subsequent sections.

The algorithm maintains the set of particles which are defined in global space in

Equation 5.3, where the subscript n denotes the time step and M the number of

particles.

Zn =
{
z(0)
n , z(1)

n , . . . ,z(M−1)
n

}
(5.3)

with corresponding weights

W n =
{
W (0)
n ,W (1)

n , . . . ,W (M−1)
n

}
(5.4)

Each global space particle represents a possible state for the array, with its fit to the

sensory data described by its weight.

The procedure, which is summarised in Figure 5-3, is as follows:

0. Initialise the particle filter The initial step is to populate the global space with

M particles. The spatial coordinates of the state vector span an infinite space so

it is necessary to draw from a more limited distribution in likely positions. For an

array with a single compass, one such method of achieving this would be to draw

the spatial coordinates from a limited space around points based on the initial

pitch and heading measurements of the compass,

x
(m)
k,0 ∼ U (x̂k − χ/2, x̂k + χ/2)

y
(m)
k,0 ∼ U (ŷk − χ/2, ŷk + χ/2)

z
(m)
k,0 ∼ U (ẑk − χ/2, ẑk + χ/2)

ẋ
(m)
k,0 , ẏ

(m)
k,0 , ż

(m)
k,0 ∼ U(−vmax, vmax)

(5.5)

where

x̂k = rk cos(ψ) cos(θ)

ŷk = rk cos(ψ) sin(θ)

ẑk = rk sin(ψ)

(5.6)
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Figure 5-3: Flow diagram of the particle filtering procedure for array shape estimation
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rk is the length along the array of the kth node, ψ and θ are the compass pitch

and heading respectively, and χ is the limit of the initial search space

1. Split into relative spaces The particles in global space are split into inter-node

relative particle spaces, ∆Xk,n by taking the difference between adjacent nodes

as in Equation 5.7 for the kth node.

∆x
(m)
k,n = x

(m)
k+1,n − x

(m)
k,n (5.7)

∆x
(m)
k,n =



∆x
(m)
k,n

∆y
(m)
k,n

∆z
(m)
k,n

∆ẋ
(m)
k,n

∆ẏ
(m)
k,n

∆ż
(m)
k,n


(5.8)

This results in K − 1 sets of particles in inter-node relative space, where each

particle represents a possible relative position. The set of particles for the kth

adjacent pair of nodes is thus

∆Xk,n =
{
∆x

(0)
k,n,∆x

(1)
k,n, . . . ,∆x

(M−1)
k,n

}
(5.9)

with corresponding weights

wk,n =
{
w

(0)
k,n, w

(1)
k,n, . . . , w

(M−1)
k,n

}
(5.10)

2. Compute importance weights in relative spaces For each particle com-

pute the weight, w
(m)
k,n , in each relative space using the product of each likelihood

function based on any sensor measurement with a relative inter-node measure-

ment (acoustic phase delay measurements, ϕk, and the measurements from any

co-located 3-axis compasses, θk,n and ψk,n) and the prior knowledge of the array

spacing, dk. If no compasses are present P
(
θk,n, ψk,n | ∆x

(m)
k,n

)
= 1.

w
(m)
k,n = P

(
∆x

(m)
k,n | ϕk,n, θk,n, ψk,n; dk

)
= P

(
ϕk,n | ∆x

(m)
k,n

)
P
(
θk,n, ψk,n | ∆x

(m)
k,n

)
P
(
∆x

(m)
k,n ; dk

) (5.11)

3. Relative space systematic resampling Each relative space ∆Xk,n is then
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resampled with probabilities proportional to each of their weights, wk,n, to obtain

equally weighted new particles, ∆X̄k,n with corresponding weights w̄k,n = 1/M .

The resampling algorithm is described in Section 5.2.3.

4. Reassemble into the global space The relative space particles are sampled

into global space by cumulatively summing each space to produce the elements

of each new particle in global space, z̄
(m)
n .

z̄(m)
n =


z̄
(m)
0,n

z̄
(m)
1,n
...

z̄
(m)
K,n

 =


0+∆x̄

(m)
0,n∑1

k=0∆x̄
(m)
k,n

...∑K−1
k=0 ∆x̄

(m)
k,n

 (5.12)

For convenience, the centroid of each global particle is then aligned to [x, y] =

[0, 0] as there is no tightly constraining information globally locating the array in

horizontal space.

z̃(m)
n = z̄(m)

n − 1

K

K−1∑
k=0

x̄
(m)
k,n ·



1

1

0

0

0

0


(5.13)

5. Compute importance weights in global space The weights for each global

particle is computed based on the measurements of globally relevant sensor data

(the fit of the covariance matrix Rn and each depth sensor’s reading, hn) and

the rigidity of the array through an allowable curvature, σκ.

W (m)
n = P

(
Rn | z̃(m)

n

)
P
(
hn | z̃(m)

n

)
P
(
z̃(m)
n ;σκ

)
(5.14)

6. Global space resampling Resample Z̃n with probabilities proportional to their

weights, W n, to obtain equally weighted new particles, ¯̄Zn with corresponding

weights W̄ n = 1/M .

7. Propagate particles Propagate each global particle to the next time step, n+1,
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by applying normally distributed random acceleration to each node.

x
(m)
k,n+1 = ¯̄x

(m)
k,n + ¯̇̄x

(m)
k,n∆t

y
(m)
k,n+1 = ¯̄y

(m)
k,n + ¯̇̄y

(m)
k,n ∆t

z
(m)
k,n+1 = ¯̄z

(m)
k,n + ¯̇̄z

(m)
k,n ∆t

ẋ
(m)
k,n+1 =

¯̇̄x
(m)
k,n + a∆t, a ∼ N (0, σ2a)

ẏ
(m)
k,n+1 =

¯̇̄y
(m)
k,n + a∆t, a ∼ N (0, σ2a)

ż
(m)
k,n+1 =

¯̇̄z
(m)
k,n + a∆t, a ∼ N (0, σ2a)

(5.15)

8. Repeat Repeat from step 1 for all subsequent time steps

5.2.3 Resampling Methods

There are a number of methods for the importance resampling steps in the method

described above. The three most popular algorithms for this purpose are systematic

resampling, residual/stratified resampling and multinomial resampling [124]. They all

provide comparable performance [128] and systematic resampling is the most straight-

forward to implement and so is the method that has been implemented here[129].

5.2.4 Priors

The array physical properties are included in the method as probability distributions

in each of the weight calculation steps.

5.2.4.1 Inter-node displacement

The inter-node distance is modelled as a one-sided Gaussian distribution about the

nominal inter-node distance, d. This gives a maximum probability at the inter-node

distance but allows for the rigidity of the array to be encoded into the model, as nodes

are allowed to bend closer than the nominal distance between each other. The result is

a sphere of equal probability centred on the reference node, shown in Figure 5-4. It is

computed as in Equation 5.16 and included at the relative space weight computation

step.

P
(
z
(m)
k,n ; dk

)
=


exp

(
−
(
dk−d

(m)
k,n

)2

2σ2
d

)
, d

(m)
k ≤ dk

0, elsewhere,

(5.16)
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Figure 5-4: Inter-node distance probability distribution. In 3D, it would resemble a
sphere of equal probability around the central node.

where

d
(m)
k,n =

∥∥∥[∆x(m)
k,n ,∆y

(m)
k,n ,∆z

(m)
k,n

]∥∥∥ . (5.17)

Selection of the σd parameter is ad hoc but allows slightly more flexibility in shape

than a piecewise linear model.

5.2.4.2 Array Rigidity

The rigidity of the array is included in the method as a Gaussian prior computed using

the curvature, κk,n, at each point along the array, under the assumption that a straight

array is the most likely state.

P
(
z̃(m)
n ;σκ

)
=

K−2∏
k=1

exp

−κ(m)
k,n

2

2σ2κ

 (5.18)

This is computed using three adjacent nodes and the equation for a circumscribed

circle, which is defined as

κ
(m)
k,n =

2
∥∥∥a(m)

k,n × b
(m)
k,n

∥∥∥∥∥∥a(m)
k,n

∥∥∥∥∥∥b(m)
k,n

∥∥∥∥∥∥a(m)
k,n − b

(m)
k,n

∥∥∥ (5.19)
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Figure 5-5: A compass measurement PDF. In 3D space, this resembles a cone.

where

a
(m)
k,n =

x
(m)
k−1,n

y
(m)
k−1,n

z
(m)
k−1,n

−

x
(m)
k+1,n

y
(m)
k+1,n

z
(m)
k+1,n



b
(m)
k,n =

x
(m)
k,n

y
(m)
k,n

z
(m)
k,n

−

x
(m)
k+1,n

y
(m)
k+1,n

z
(m)
k+1,n


σκ can be selected as one third the maximum allowable bend radius in metres. This

property is generally more loosely constraining than the information from the acoustic

data or the orientation sensors, so it is less critical to have an extremely accurate

estimate. It has been found that it is better to over-estimate the σκ as under-estimating

will cause the weights to degenerate and the method to fail, whereas over-estimating

slightly does not necessarily degrade the performance as much.

5.2.5 Relative Space Likelihood Functions

5.2.5.1 Compass Measurements

A 3-axis compass likelihood function is a Gaussian distribution centred on the compass

sensor’s reading of heading, θ, and tilt, ψ, with the standard deviation calculated using

the sensor measurement variance, σ2θ and σ2ψ.
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P
(
θk,n, ψk,n | z(m)

k,n

)
= exp

−
(
θk,n − θ

(m)
k,n

)2
2σ2θ,k

 exp

−
(
ψk,n − ψ

(m)
k,n

)2
2σ2ψ,k

 (5.20)

where

θk,n(t) = tan−1

(
yk+1,n(t)− yk,n(t)

xk+1,n(t)− xk,n(t)

)
(5.21)

ψk,n(t) = tan−1

(√
(xk+1,n(t)− xk,n(t))2 + (yk+1,n(t)− yk,n(t))2

(zk+1,n(t)− zk,n(t))

)
(5.22)

In 3D space, this is a cone shaped distribution with its point on the reference node

extending in the direction of the sensor’s reading, as shown in Figure 5-5.

5.2.5.2 Inter-Hydrophone Acoustic Phase Difference Estimate

The phase difference between subsequent hydrophones can be estimated and used to

provide information in the relative space. Under the assumption that a single arrival

in a given frequency band is received from a source, the eigenvector method can be

used as an estimate of the phase offset, ϕ, between two hydrophones, as described in

Section 3.2.3.2.

The likelihood of a given particle is then given by equation 5.23. This results in a

plane of equal probability determined by the angle of arrival of the wavefront, as shown

in Figure 5-6.

P
(
ϕk,n | ∆z

(m)
k,n

)
=

Q−1∏
q=0

exp

−
(
ϕk,n,q − ϕ

(m)
k,n,q

)2
2σ2ϕ,k,n,q

 (5.23)

where ϕ
(m)
k,n,q is the expected inter-hydrophone phase difference for the mth particle and

{f0, f1, . . . , fQ−1} is the set of known sound source frequencies.

The expected inter-node distance is computed using the vector projection of the

incident wave vector, νn,q, onto the vector joining the two adjacent hydrophones,

νn,q =

∆x
(m)
k,n

∆y
(m)
k,n

∆z
(m)
k,n

 · νn,q
∥νn,q∥

(5.24)
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Figure 5-6: Inter-node phase difference probability density in x and y. Extends verti-
cally up and down into the z plane, resulting in a plane of equal probability.

where νn,q =

xq,nyq,n

zq,n

. This can then be converted to the expected phase delay as

ϕ
(m)
k,n,q =

2πfνn,q
c

(5.25)

The relation between the standard deviation, σϕ,k,n,q, and the SNR in dB can be

estimated using Monte Carlo simulations, and found to follow a negative exponential

of the form,

σϕ,k,n,q = 0.707× 10−0.05SNRk,n,q (5.26)

This was computed using 1000 Monte-Carlo (MC) runs with varying bearing to the

source and SNRs. Figure 5-7a shows the raw data points and Figure 5-7b shows the

standard deviation of the measurement error at each SNR with the corresponding curve

fit.

5.2.6 Global Space Likelihood Functions

5.2.6.1 Depth Sensor Measurements

The depth likelihood is computed using a Gaussian distribution about the sensor read-

ing. For a depth sensor co-located with the kth node and with a sensor variance of σ2h,k,
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(a) (b)

Figure 5-7: Monte Carlo simulations with corresponding curve fit

this is given by

P
(
hn | z(m)

n

)
=

K−1∏
k=0

exp

−
(
hk,n − z

(m)
k,n

)2
2σ2h,k

 (5.27)

where hk,n is the depth sensor reading. Note, nodes without depth sensors present are

set to unity.

5.2.6.2 Beamformer Likelihood

Another way of incorporating the information from the acoustic data is to use the

output from a beamforming algorithm, similar to the use of the sharpness in some of

the shape estimation methods described in Section 3.

Using the position of the source relative to the array, the expected angle of arrival

of the direct path and the surface reflected path can be used to generate two steering

vectors for the array. This can be done for each global particle and can then be used

to estimate the output power using a beamforming algorithm. This will result in a

maximum for the true array shape and will act as a measure of the fit of the covariance

matrix to the particle.

Similarly to Equation 5.24, the steering vector can be computed for each global

particle using the vector projection of the incident wave vector onto the hydrophone
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positions, but this time for the whole array:

ξ(m)
n,q = exp

(
i2π

f

c

(
ζ(m)
n · νn,q

∥νn,q∥

))
(5.28)

where the spatial coordinate matrix of the particle is defined as
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 (5.29)

This can then be used to estimate the beamformer power output, for example, using

the MUSIC algorithm, P
(m)
MUSIC,n, which can be converted to a likelihood as

P
(
P (m)
n | z(m)

n

)
= exp(α(P (m)

n − β)) (5.30)

where α and β are tuning parameters which are empirically set. Although more ad hoc

than using the inter-hydrophone acoustic phase differences, this method can perform

equally well and has the advantage of being able to utilise information from both direct

path and multipath of a source.

5.3 Simulation Results

5.3.1 Example

As an example case to illustrate the output of the method, it has been applied to some

long-range, linear ray path simulated data, with an acoustic source increasing in SNR as

time goes on. Figure 5-8 shows the estimates in x and y with the corresponding ground

truth and slices through the estimates at certain points. The colour of the estimate

surface corresponds to the spread of the distribution at each node, which is the 1st to

the 99th percentile of the estimate. This is shown in the slices in the right hand figures

which shows the [1, 10, 30, 50, 70, 90, 99] percentiles, as well as the ground truth. As the

SNR increases, the estimate gets more tight around the ground truth, until at a certain

point the estimate has completely converged and no further performance increase is

possible. The corresponding results for x and z is shown in Figure 5-9. Due to the

reduced information from the acoustic data and the increased variance introduced by

the depth sensor locating it in vertical space, the spread is consistently fairly broad.
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Figure 5-8: (x, y) estimates for an example case. Left is ground truth and central is the
corresponding estimate. On the right are slices of the estimate showing the distribution
around the ground truth.
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Figure 5-9: (x, z) estimates for long range source test case. Left is ground truth and
central is the corresponding estimate. Below are slices of the estimate showing the
distribution around the ground truth.
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5.3.2 Close Range Source

The simulation test cases introduced in the previous chapter have been used to verify

and assess the performance of the algorithm in different scenarios using different types

of data for estimation. These resemble the experimental trial being investigated in

Chapter 6, each with a different propagation model.

5.3.2.1 Linear Ray Model Dataset

Using the simple, direct path simulation the information from the acoustic data can

be included using either the inter-hydrophone phase delay, Figures 5-11 and 5-12, or

using the beamformer likelihood, Figures 5-13 and 5-13. As can be seen comparing

the two results in Figure 5-11 and Figure 5-13, including multiple frequencies into the

estimation slightly increases the accuracy of the result and also enables an accurate

estimate at a lower SNR (earlier time). Using the beamformer likelihood instead of the

phase offset yields comparable results, although slightly less accurate, similarly with an

improved performance when utilising multiple frequencies. As shown in Figures 5-12

and 5-14, the spread in the xz plane is mostly broad for each of the scenarios, due to

the lack of constraining information in the z axis.

5.3.2.2 Multipath Dataset

As shown in Figure 5-15b, due to the tilt of the array, the multipath simulation dataset

has two distinct arrivals; one due to the direct path and the other due to the surface-

reflected multipath. The presence of this multipath arrival renders the phase measure-

ments inaccurate so the beamformer output has to be used to include the acoustic data

into the estimation.

Using just the direct path beamformer output with this data set yields similar re-

sults to those of the previous dataset, as shown in Figures 5-16 and 5-17. However,

incorporating both the direct path and the multipath drastically improves the estima-

tion in both xy and xz, offering better results than any other scenario or configuration.

5.4 Summary

Presented in this chapter is a novel method for shape estimation of a perturbed hy-

drophone array in operation. A particle filtering technique is used to probabilistically

combine all the available sensor data and scenario information to produce an estimate

of the array’s motion with bounds on the confidence of the estimate. The methods are

94



CHAPTER 5. HIERARCHICAL PARTICLE FILTERING FOR ARRAY SHAPE
ESTIMATION

(a) (b)

Figure 5-10: (a)Spectrogram and (b)MUSIC beamformer output for 1540hz for the
close-range, direct-path-only simulation dataset

detailed for incorporating the sensor data from 3-axis compasses and pressure sensors

as well as two methods of including acoustic data depending on the propagation type.
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Figure 5-11: Close-range, direct-path-only dataset array (x, y) positions for ground
truth(left) and array shape estimates using inter-hydrophone phase offsets for one fre-
quency(middle) and for all frequencies(right)
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Figure 5-12: Close-range, direct-path-only dataset array (x, z) positions for ground
truth(left) and array shape estimates using inter-hydrophone phase offsets for one fre-
quency(middle) and for all frequencies(right)
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Figure 5-13: Close-range, direct-path-only dataset array (x, y) positions for ground
truth(left) and array shape estimates using beamformer likelihood for one fre-
quency(middle) and for all frequencies(right)
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Figure 5-14: Close-range, direct-path-only dataset array (x, z) positions for ground
truth(left) and array shape estimates using beamformer likelihood for one fre-
quency(middle) and for all frequencies(right)
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(a) (b)

Figure 5-15: (a)Spectrogram and (b)MUSIC beamformer output for 1540hz for the
multipath, undulating-surface simulation dataset
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Figure 5-16: Multipath, undulating-surface dataset array (x, y) positions for ground
truth(left) and array shape estimates using beamformer likelihood on just the direct
arrival for one frequency(middle) and for all frequencies(right)
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Figure 5-17: Multipath, undulating-surface dataset array (x, z) positions for ground
truth(top) and array shape estimates using beamformer likelihood on just the direct
arrival for one frequency(middle) and for all frequencies(bottom)
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Figure 5-18: Multipath, undulating-surface dataset array (x, y) positions for ground
truth(left) and array shape estimates using beamformer likelihood on both the direct ar-
rival and the surface multipath for one frequency(middle) and for all frequencies(right)
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Figure 5-19: Multipath, undulating-surface dataset array (x, z) positions for ground
truth(top) and array shape estimates using beamformer likelihood on both the di-
rect arrival and the surface multipath for one frequency(middle) and for all frequen-
cies(bottom)

104



CHAPTER 6. EXPERIMENTAL ANALYSIS OF UNMANNED WARRIOR ’16
TRIAL

Chapter 6

Experimental Analysis of

Unmanned Warrior ’16 Trial

This chapter describes the experimental data used to investigate the use of a passive

acoustic array deployed from a wave-propelled USV. The data from a sea trial is used

for validation of the simulator described in Chapter 4 and to provide estimates of the

array shape in operation using the method described in Chapter 5.

6.1 Overview

The Unmanned Warrior 2016 trial was a large scale demonstration that took place in

the Minch sea channel off the coast of Scotland, shown in Figure 6-1. Its aim was to

showcase the capabilities of the current state-of-the-art in uncrewed and autonomous

maritime technology. Over 50 aerial, surface and underwater systems took part, one

of which was an Autonaut USV, pictured in Figure 6-2a. This vessel was deployed

equipped with an 8 hydrophone Seiche DTLA, which was instrumented with a compass,

attitude, pressure and temperature (CAPT) module at the tail end. In the water nearby

was a SAAB AUV with sound projectors emitting acoustic signals throughout the test.

The entire dataset spans over two hours but a two minute section at the closest

point between the two vessels is used for subsequent processing, where the acoustic

emissions are most prominently detected.
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Figure 6-1: Map of trial location showing the GPS tracks of the two vessels

(a) (b)

Figure 6-2: (a) Autonaut and (b) Digital Thin Line Array
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Figure 6-3: (top) AUV GPS track in UTM coordinates with the start of the Autonaut
track set at the origin. (bottom) The track for the 2 minute section of data used for
the analysis.

6.2 Hardware

6.2.1 AUV

The AUV followed a consistent straight track travelling at between 2-2.5m/s, as shown

in Figure 6-3. It surfaced a number of times during the trial for a GPS lock and then

used a Doppler velocity logger to accurately estimate its position when submerged.

During the two minute section of data it was travelling as in the bottom panel in Figure

6-3, at a depth of 40m. Throughout the trial projectors on the AUV were emitting

a series of continuous tonal signals and a frequency modulated signal, as described in

Table 6.1.
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Table 6.1: AUV emission frequencies and source levels

Centre frequency, Hz Source level, dB re. 1µPa Modulation

190 129 -
370 124 -
790 127 -

1640 132
FM so energy is spread

over 100Hz spaced frequencies

6.2.2 Autonaut

The Autonaut vessel used was a 5m vessel with a stated design speed of 1-3 knots (0.5-

1.5m/s) depending on conditions. During the trial, it travelled at an average speed of

roughly 0.25m/s, along the track shown in Figure 6-4. Being wave-propelled, the track

is slightly more erratic than that of the AUV.

6.2.3 DTLA

The towed Seiche DTLA is designed specifically for deployment from smaller low-

powered vessels and so is just 20mm in diameter to reduce drag. It features 8 hy-

drophones spaced 0.23m from each other and each hydrophone was sampled at a rate

of 12kHz. This gives the array a maximum operating frequency of 6000Hz and a max-

imum beamforming operating frequency of 3261Hz.

6.2.3.1 CAPT Module Data

The non-acoustic instrumentation on the array consisted of a single CAPT module,

located at the tail-end of the array 90mm from the end hydrophone. This module

consists of a pressure sensor for depth and a 3-axis compass sensor capable of measuring

the heading and tilt of the array. The error on each of the sensors has been assumed

Gaussian and the standard deviation set to a third of the full-scale error. As such, the

compass has an error standard deviation of 3o and the pressure sensor error standard

deviation is 0.05bar.

As can be seen by comparing Figure 6-5a to Figure 6-5b, the general trends in the

heading of the array and the heading of the vessel match up but the magnitudes are

largely different. Figures 6-5c and 6-5d also match up consistently, with a greater tilt

on the array resulting in an increase in depth.

108



CHAPTER 6. EXPERIMENTAL ANALYSIS OF UNMANNED WARRIOR ’16
TRIAL

Figure 6-4: (top) Autonaut GPS track in UTM coordinates with the start of the track
set at the origin. (bottom) The track for the 2 minute segment of data used for further
analysis.
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(a)

(b)

(c)

(d)

Figure 6-5: (a) AutoNaut heading and sensor readings for the tail (b) heading, (c) tilt
and (d) depth. Line colour corresponds to the GPS track of figure 6-4. The shaded
section shows the 2 minute segment of data used in the analysis.

110



CHAPTER 6. EXPERIMENTAL ANALYSIS OF UNMANNED WARRIOR ’16
TRIAL

(a)

(b)

(c)

Figure 6-6: Sensor readings for the tail (a) heading, (b) tilt and (c) depth, corresponding
to the grey area on Figure 6-5
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Figure 6-7: AUV and Autonaut GPS track for the two minute segment used in the
analysis

6.3 Simulated Data Validation

The dataset from the trial was used as validation for the simulator described in Section

4. Two simulation datasets were produced with slightly different parameters.

6.3.1 Parameters

The array position was set to a straight array positioned at the origin and oriented

according to the CAPT sensor data, shown in Figure 6-6. The sound source was

set according to Table 6.1 with a position at the relative displacement between the

Autonaut and AUV, as in Figure 6-7. The noise spectral profile was set according to

the average level of a 20 second portion of data with no signals present, the same as

that in Figure 4-8. The Bellhop model parameters used were a water column depth of

103m, with a linearly increasing SSP from 1500 m/s at the surface to 1502 m/s at the

seafloor.

The first simulation dataset was produced with a stationary reflective sea surface

and the second dataset had a sea surface oscillating with a period of 8s and amplitude

of 1m, as would be consistent with the location and time of year [130].
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(a) (b) (c)

Figure 6-8: Spectrograms for (a)the experimental data, (b) simulated data with reflec-
tive stationary sea surface and (c) simulated data with reflective slowly oscillating sea
surface

6.3.2 Results

6.3.2.1 Spectrograms

Figure 6-8 shows a comparison of the spectrograms from the experimental data and the

two simulation datasets with a bin width of 10Hz. The interference pattern resulting

from the interaction of the direct path and the multipath can be seen in each plot and

fairly closely matches.

Figure 6-9 shows the result of computing the spectrogram with a much finer 1Hz

bin width and zooming in on one of the frequencies of interest. The detection is doppler

shifted from 1540Hz up to roughly 1542Hz before 60s and down to 1538Hz after, which

is accurately captured in both simulation sets. The bleeding of the signal into adjacent

bins which occurs in the experimental data can also be seen to occur in the oscillating

sea surface dataset, albeit to a slightly higher degree.
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(a) (b) (c)

Figure 6-9: Close up spectrograms for (a)the experimental data, (b) simulated data
with reflective stationary sea surface and (c) simulated data with reflective slowly
oscillating sea surface

Table 6.2: Beamformer parameters

Bin width 10Hz
Time window 0.2s

Overlap 0.1s
Moving average N 10

Expected number of sources (MUSIC parameter) 2

6.3.2.2 Beamforming

Applying the MUSIC beamformer to each dataset with the parameters in Table 6.2

yields the results in Figure 6-10. The output from the simulator bears a strong re-

semblance to the experimental data, falling somewhere in between the two datasets

when examining the features of the result. This is to be expected as the oscillating sea

surface simulation dataset follows a sinusoidal pattern whereas in reality the surface

perturbations would be more random, with periods of stationarity.

The two detections are clearly visible in each dataset, caused by the direct path and

the surface reflected multipath. The effect of an oscillating sea surface is a decrease

in the coherence between the direct path and the surface-reflected multipath, causing

the two detections to be far more distinct. The Doppler shift on the signals along

with the different path lengths also reduces the coherence between the direct and the

multipath, although to a lesser extent. This is also the cause of the reduced magnitude

spot at around 70s, which corresponds to the closest point of approach. At this point

the interference between the two coherent arrivals causes a drop in the beamformer

estimate magnitude, visible in the experimental data and the first simulation dataset

but not in the second.
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(a) (b) (c)

Figure 6-10: MUSIC beamformer power estimate at 1540Hz with a 10Hz for (a)the
experimental data, (b) simulated data with perfectly reflective stationary sea surface
and (c) simulated data with slowly oscillating sea surface
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Some points of difference between the experimental results and the simulation are

the increased magnitude between 0s and 40s at a bearing of around 45o. This is caused

by sea surface noise, occuring at that bearing because of the tilt on the array. Also, in

the simulation datasets the detections occur at a greater magnitude earlier than those

of the experiment. This is probably because of the reduced omnidirectionality of the

real sensors and projector used in the trial.

6.4 Array Shape Estimation

In order to investigate the motion of the array in operation, the method described in

Section 5 has been applied to the data from this trial. The four configurations for the

available data described in Table 6.3 were used to examine the effect of incorporating

more data into the method. Taking the rule of thumb of < λ/10 sensor position

uncertainty (as described in Chapter 3) results in a target of 0.046m for the array

design frequency of 3250Hz.

Table 6.3: Shape estimation configurations

Configuration 1 2 3 4

Frequency(s) 1540Hz
1540Hz,
1640Hz,
1740Hz

1540Hz
1540Hz,
1640Hz,
1740Hz

Beamformer output
Direct path
only

Direct path
only

Direct path
and multi-
path

Direct path
and multi-
path

6.4.1 Method Parameters

The parameters in Table 6.4 were used for the shape estimation algorithm. They were

decided based on the trial data in the following ways:

� The acceleration and velocity standard deviations were selected using the mo-

tion of the boat, which was travelling with a mean speed of 0.22m/s and an

acceleration standard deviation of 0.07m/s2 during the 2 minute section of data.

� The inter-element standard deviation was selected as a low value to keep the

inter-element distance fairly close to nominal.

� The curvature standard deviation is based on the bend radius of the array when

stored on a storage drum which is roughly 0.25m. This translates to a curvature

of 4m−1 so setting that to the 3σ results in σ =1.3m−1.
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� The beamformer likelihood parameters were found through empirical testing of

different parameters in simulation with a dataset representative of the dataset.

Table 6.4: Array shape estimation parameters

Acceleration standard deviation 0.07m/s2

Velocity standard deviation 0.07m/s
Inter-element d standard deviation 0.05m

Curvature standard deviation 1.3m−1

Beamformer likelihood α 0.07
Beamformer likelihood β 20

N 200000

6.4.2 Results

6.4.2.1 Array Shape Comparison

Figure 6-11 shows the comparison of the array shape estimates in (x, y). In terms of

the spread of the estimate the result is consistent with that of the simulated results

presented in Chapter 5, with the best quality estimate generated from the result in-

corporating all the high frequencies with both the direct and the multipath. Figure

6-12 show a reduced ability to resolve in the (x, z) plane, again consistent with simula-

tion, but also show an improvement with the increased amount of incorporated data.

Looking at the deviation from a nominally straight array for Configuration 4, shown in

Figure 6-13, shows that the array generally seems to be mostly straight, with periodic

sections of larger perturbation.

6.4.2.2 Beamformer Output Comparison

The MUSIC spectrum was computed for the array assuming a straight array oriented

according to the heading sensor (herein referred to as the uncompensated result), as

in Figure 6-10a. The steering vector was then compensated with the array shape es-

timate and then the MUSIC spectrum was computed again using this new steering

vector. Figure 6-14 shows the difference in the maximum spectrum values between

uncompensated and compensated for each configuration. The increase in MUSIC spec-

trum output suggests that the compensated shape is closer to the true shape than a

straight array assumption. Configuration 4 has the highest average increase and the

most consistent increase, displayed in the bottom graphs that show the histograms of

the difference. Again, this also suggests that configuration 4 is the best estimate of the

array shape in operation especially in that section of the dataset. These results are
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Figure 6-11: Array shape estimates for experimental data in x and y. (Far left) 1540Hz
with direct path only, (middle left) all high frequencies with direct path only, (middle
right) 1540Hz with direct and multipath and (far right) all high frequencies with direct
and multipath
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Figure 6-12: Array shape estimates for experimental data in x and y. (Top) 1540Hz
with direct path only, (upper middle) all high frequencies with direct path only, (lower
middle) 1540Hz with direct and multipath and (bottom) all high frequencies with direct
and multipath
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Figure 6-13: Array deviation in m from a straight line in (x, y) (top) and (x, z) (bottom)
for Configuration 4

Table 6.5: Beamforming result mean increase, dB

Frequency, Hz Configuration
1 2 3 4

790 0.139 0.142 0.169 0.162
1540 0.140 0.161 0.120 0.163
1640 0.117 0.150 0.104 0.150
1740 0.084 0.130 0.068 0.157

also summarised in Table 6.5, which shows the mean increase in beamformer output

across the dataset, and Table 6.6, which shows the maximum increase achieved.

6.4.2.3 Configuration 4 Examination

Figures 6-15 show a closer observation of the the configuration 4 estimate, with slices

showing more detail for some of the more perturbed instances where the MUSIC spec-

trum increase is greatest. In the (x, y) plane, the results suggest that the array oscillates

with a period of 2 − 3 s, which could correspond to the waves that are propelling the

boat. The perturbation of the array appears predominantly to bow with an amplitude

of < 0.1m.

Flickbook The array shape estimation result for Configuration 4 is also shown as a

flickbook in the bottom right-hand corner of the even numbered pages of this thesis.
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Figure 6-14: Difference between the maximum pre-compensation and post-
compensation MUSIC spectrum value for (Far left) 1540Hz with direct path only,
(middle left) all high frequencies with direct path only, (middle right) 1540Hz with
direct and multipath and (far right) all high frequencies with direct and multipath.
Middle and bottom figures are histograms of the number of time samples each beam-
former output difference is observed.
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Table 6.6: Beamforming result maximum increase, dB

Frequency, Hz Configuration
1 2 3 4

790 3.11 2.56 3.47 4.48
1540 4.85 4.33 4.40 5.80
1640 3.88 4.14 2.80 3.71
1740 4.00 3.86 3.04 4.13

This has been downsampled by a factor of 4 to roughly match the true velocity of motion

when used as a flickbook. There are randomly distributed fixed points included, moving

at approximately the array’s velocity to give some frame of reference to the motion of

the array.

6.4.2.4 Beamformer Performance

Looking at the performance of each of the implemented beamforming techniques on

experimental data, the improvement of both MVDR and MUSIC over the conventional

beamformer is very evident, shown in Figure 6-16. The conventional beamforming

resolution is too low to discern between the direct path and the multipath whereas the

other beamformers have clearly distinct detections. The performance between MVDR

and MUSIC is much closer, although the result from MUSIC is slightly clearer.

6.5 Summary

This chapter presents the validation of the simulation process described in Section 4

using experimental data. It was found to match consistently and accurately captures

the effects of Doppler shift, complicated propagation patterns and realistic surface

reflections.

Application of the array shape estimation method results in an increase of up to

5.8dB in the output of the MUSIC beamformer output spectrum. The results presented

here suggest that in operation the array deployed from the Autonaut is perturbed into

a mostly low order “bowing” shape with an amplitude of < 0.1m, which oscillates

with a period of 2-3s. The deviation from a nominally straight array is found to be

below the 0.046m target for sensor positional accuracy for roughly 80% of the period

of high confidence, suggesting that a straight array assumption is mostly acceptable at

this length of array. The tilt of the array, however, is found to introduce a multipath

arrival which would not be present when operating with a horizontal array, which will

complicate interpretation of the bearing estimation results.
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(a) xy

(b) xz

Figure 6-15: Zoomed in portion of array shape estimate in x and y for experimental
data using all high frequencies with direct and multipath, with slices of certain sections
that show some of the largest levels of perturbation
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(a) Conventional (b) MVDR (c) MUSIC

Figure 6-16: Beamformer method comparison for the experimental data for 1540Hz.
Colourbar limits are -10dB and +20dB of the median.
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Chapter 7

Simulated Array Configuration

Study

Acoustic data suitable for array calibration will not always be available in operation or

in an experimental trial. There may be a lack of information regarding a sound source’s

location or perhaps the computational power available will not be adequate for accurate

estimation. In the case of a highly perturbed array this could result in a significant

decrease in the beamforming performance and inaccurate bearing detections. In these

circumstances, the efficient use of non-acoustic sensors to measure the heading and tilt

at key points of the array can alleviate this.

This chapter considers the configuration of non-acoustic sensors for an array de-

ployed from a wave-propelled vehicle. This is carried out using simulated datasets with

varying orders of perturbation and then estimating the certainty with which one could

estimate the shape of the array using the method described in Section 5. The case

presented here is limited to the array used in the experimental trial discussed in the

previous chapter but acts as a demonstration of the capabilities of the method as a

design analysis tool.

7.1 Simulated Datasets

Three datasets were simulated with 3 varied levels of perturbation:

� 1st order (bow-shape), Figure 7-1a

� 2nd order (S-shape), Figure 7-1b

� 3rd order (M-shape), Figure 7-1c
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These were selected based on the experimental array shape estimate results, which

suggested mostly 1st and 2nd order perturbations for those conditions. These were

simulated for an 8-hydrophone array with 0.23m spacing, the same as used in the

experimental trial, and were varied sinusoidally from no deformation to a maximum

perturbation amplitude of 0.1m, shown in Figure 7-1. As with previous analysis nodes

are present on each of the hydrophones.

7.1.1 Array Configurations

The configuration of the non-acoustic instrumentation on the array was varied from a

sparse distribution (tail sensor only), to a densely populated array (a CAPT module

at each node). Each of these sensors had a error variance equal to that of the sensors

on the physical array.

7.1.2 Results

The analysis is carried out using the array shape estimation particle filtering technique

without incorporating any acoustic data, i.e. using only the readings from the 3-axis

compasses and the depth sensors positioned at select nodes.

As in previous sections, results are displayed as coloured surface plots with green

indicating≤ 0.05m certainty in the estimate, i.e. λ/10 for the operating frequency of the

array, which results in a < 1dB reduction in conventional beamforming performance.

Each of the results figures features a single time instance of the array at its most

perturbed with the spread about the true position in the top row, and then surface

plots for (x, y) and (x, z) in the next two rows.

7.2 Single Tail Non-Acoustic Sensor

Using just a single tail CAPT module, the performance of shape estimation is effectively

limited by the rigidity of the array. Only the overall orientation of the array can be

inferred which would cause a slight performance drop for a low order perturbation, as

shown in Figure 7-2d, but has significantly reduced the performance in the 2nd and 3rd

order perturbation cases. This is the configuration of the array

7.3 Head and Tail Non-Acoustic Sensors

A sensor at the head and the tail of the array offers improved performance in the case

of 1st order perturbation, where the angle of the array between the two sensors varies
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7-1: Ground truth of simulated data for each level of perturbation. (Left col-
umn) 1st order perturbation, (middle column) 2nd order perturbation and (right col-
umn) 3rd order perturbation. (a-c) a single time instance at the array’s most perturbed,
(d-f) xy data for each point in time and (g-i) xz data for each point in time.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7-2: Array shape estimates using only tail sensor for datasets with each level
of perturbation. (Left column) 1st order perturbation, (middle column) 2nd order
perturbation and (right column) 3rd order perturbation. (a-c) a single time instance
at the array’s most perturbed state, (d-f) xy data for each point in time and (g-i) xz
data for each point in time.
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smoothly. Again, higher orders suffer in performance. This configuration would be

sufficient for the majority of the experimental trial data used in the previous chapter.

7.4 Head, Middle and Tail Non-Acoustic Sensors

With an extra sensor placed in the midpoint of the array it is possible to accurately

capture the shape of both 1st and 2nd order perturbations. While the spread of the

estimate in the second order case is less than optimal, the shape and motion of the array

can be seen to be fairly accurately captured by the mean estimate of the array shown

in Figure 7-4e, suggesting that it would provide suitable performance for that case.

For the experimental dataset, this configuration would ensure an accurate estimate

throughout.

7.5 Densely Instrumented

As would be expected, fully instrumenting the array with CAPT modules at all nodes

allows accurate estimation of the array for all cases and even provides decent perfor-

mance in the xz plane. The accuracy of the estimate in the xz plane is limited by the

depth sensor variance, hence it is not as accurate as in the xy plane. From a practical

stand-point this configuration would be inefficient and expensive both financially and in

terms of resources, as it would use more energy to run the sensors and more computer

power to process them.

7.6 Discussion

Non-acoustic sensors use up resources and energy, and complicate the fabrication of

an acoustic array so finding the minimum number required is an important step for

designing an array. Arrays being towed by powered vessels can often operate with just

a single heading sensor to give orientation information and then assume a straight array

or interpolate between the vessel heading and the array heading. For a wave-propelled

vessel, the chaotic nature of propulsion complicates this procedure. The experimental

array estimate results from Section 6 suggest that the array is predominantly 1st order

perturbations with occasional 2nd order, so for this 1.61m long array a head-middle-tail

configuration would be optimal. It is likely that rougher sea conditions would increase

the order of perturbations, so that would allow for an increased envelope of operating

conditions.

The case considered here is a single instance of operation of an array of a certain
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7-3: Array shape estimates using sensors at both the head and tail of the array
for datasets with each level of perturbation. (Left column) 1st order perturbation,
(middle column) 2nd order perturbation and (right column) 3rd order perturbation.
(a-c) a single time instance at the array’s most perturbed state, (d-f) xy data for each
point in time and (g-i) xz data for each point in time.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7-4: Array shape estimates using sensors at the head, middle and tail of the
array for datasets with each level of perturbation. (Left column) 1st order perturbation,
(middle column) 2nd order perturbation and (right column) 3rd order perturbation.
(a-c) a single time instance at the array’s most perturbed state, (d-f) xy data for each
point in time and (g-i) xz data for each point in time.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7-5: Array shape estimates using sensors at every node along the array for
datasets with each level of perturbation. (Left column) 1st order perturbation, (middle
column) 2nd order perturbation and (right column) 3rd order perturbation. (a-c) a
single time instance at the array’s most perturbed state, (d-f) xy data for each point
in time and (g-i) xz data for each point in time.
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length. Conceivably, in a more rough sea state the order of perturbation could be

higher than that of the UW ’16 trial. Furthermore, a longer array would theoretically

present further challenges to shape estimation, as the level of perturbation increases

with length. This methodology can be used as a tool to aid the design of such an array,

allowing it to operate as efficiently and effectively as possible.
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Chapter 8

Conclusions

This research presents the first investigation into the use of passive acoustic bearing es-

timation techniques from a towed hydrophone array deployed from an AutoNaut USV.

It has been demonstrated that beamforming techniques can successfully be applied

to acoustic data gathered from such a vessel, allowing bearing estimation to a sound

source of interest.

A simulation process was developed for generating the received acoustic data from

multiple moving sound sources on an array with a temporally varying shape. This

utilised a selection of propagation models and included undulating surface reflections

and a spectrally varying noise profile. The output data was validated with experimental

data, showing that it accurately captured the effects of Doppler shift, the interference

patterns from multiple arrivals and the propagation path of surface-reflected multipath

rays.

In order to investigate the performance of a towed array in operation from the

AutoNaut, an array shape estimation algorithm was developed, specifically aiming to

address the associated challenges. This was based on partitioned recursive Bayesian

estimation and fused all the available data from the non-acoustic and acoustic sensors

into a 3D estimate of the array shape with bounds on the confidence of the estimate.

This was validated using simulated data with varying configurations.

The experimental data from the Unmanned Warrior ’16 trial was used as a case

study to investigate the performance of the towed array in operation. Various beam-

forming algorithms were demonstrated successfully on the acoustic data, with the de-

tection results matching the expected bearings. Further investigation into the motion

of the array using the shape estimation algorithm suggested that the array was oscil-

lating at a and periodically deforming into a bowed shape with a typical amplitude of

less than 0.1m. When compensated for this resulted in an increase of up to 5.8dB in
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the output spectrum of the MUSIC bearing estimation algorithm. The results suggest

that for an array of this length in these operating conditions the assumption of straight

array is sufficient for bearing estimation, without a significant drop in performance.

However, the tilt on the array was found to introduce a surface-reflected multipath

detection in the beamformer output spectrum which would not have been present in

horizontal operation. This could pose a challenge to interpretation of the detection

results.

Finally, the use of the array shape estimation algorithm as a tool for array design

was demonstrated using simulated data to decide the optimal configuration of non-

acoustic sensors for shape estimation. Based on the results of the experimental data,

the optimal configuration for an array of that length would be non-acoustic sensors

at the head, middle and tail of the array. This could be necessary in rougher wave

conditions as the array shape is likely to be perturbed into a higher order shape with

a higher amplitude.

8.1 Recommendations and Future Work

The following are suggestions of future work that are either in the process of being

investigated or would be of interest following on from this work:

Further experimental investigation Although a conclusion of this work is that

the straight array assumption is sufficient in the studied experimental case, the work

presented here has implications for operation in a rougher sea state or with the use of

a longer array. Further research is needed into the array shape over a broader range of

operating conditions and array lengths.

Real-time in-situ operation One of the advantages of an autonomous surface vessel

is the connectivity with operators on a support vessel or on shore, so a follow-on to

this work would be to develop real-time in-situ operation of beamforming, detection

and shape estimation.

Ambient-noise array shape estimation The versatile nature of the array shape

estimation algorithm allows inclusion of any available information in the operating

scenario. An interesting untapped source could be the use of ambient noise in the

estimator to allow for shape estimation in circumstances where there are no sources of

opportunity present.
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8.1. RECOMMENDATIONS AND FUTURE WORK

The work presented in this thesis together with these recommendations represent a

significant step towards fully realising the potential of the passive acoustic monitoring

capabilities of the AutoNaut USV.
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[129] T. Li, M. Bolić, and P. M. Djurić, “Resampling Methods for Particle Filtering:

Classification, implementation, and strategies,” IEEE Signal Processing Maga-

zine, vol. 32, no. 3, pp. 70–86, 2015.

[130] “Hindcast - MetOceanView.” https://app.metoceanview.com/hindcast/.

148

https://app.metoceanview.com/hindcast/

	Acknowledgements
	Preface
	List of Figures
	List of Symbols
	List of Acronyms
	Introduction
	Passive Underwater Acoustic Sensing
	Applications
	Marine Mammal Monitoring
	Port and Harbour Security
	Anti-Submarine Warfare

	Deployment methods
	Bottom Deployed
	Buoy-Mounted
	Towed

	AutoNaut USV and Thin-Line Array
	Aims and Objectives
	Thesis Outline

	Fundamentals of Underwater Acoustics
	Acoustic Waves
	Frequency and Wavelength
	Phase Angle
	Amplitude
	Fourier Domain Representation

	Passive Sonar Equation
	Acoustic Wave Propagation
	Propagation Losses
	Refraction and the Sound Speed Profile
	Multipath Reflections
	Propagation Models

	Ambient Noise
	Low Frequency(10Hz-500Hz)
	Medium Frequency (500Hz-25kHz)
	High Frequency (>25kHz)


	Passive Array Processing
	Bearing Estimation
	Cross-Correlation
	Array Signal Model
	Covariance Matrix
	Beamforming
	MUSIC and Other Subspace Algorithms
	Effects of Inaccuracies

	Array Shape Estimation
	Array Models
	Non-Acoustic Methods
	Acoustic Data-Driven Methods
	Summary


	Simulation Model
	Overview
	Acoustic Data Modelling
	Source Signal
	Propagation
	Surface Reflections
	Doppler Shift
	Noise

	Non-Acoustic Sensor Modelling
	3-axis Compass Measurements
	Pressure Measurements

	Simulated Acoustic Results
	Simulation Parameters
	Simulator Outputs

	Summary

	Hierarchical Particle Filtering for Array Shape Estimation
	Recursive Bayesian Estimation
	The Proposed Algorithm
	Array State Model
	Procedure
	Resampling Methods
	Priors
	Relative Space Likelihood Functions
	Global Space Likelihood Functions

	Simulation Results
	Example
	Close Range Source

	Summary

	Experimental Analysis of Unmanned Warrior '16 Trial
	Overview
	Hardware
	AUV
	Autonaut
	DTLA

	Simulated Data Validation
	Parameters
	Results

	Array Shape Estimation
	Method Parameters
	Results

	Summary

	Simulated Array Configuration Study
	Simulated Datasets
	Array Configurations
	Results

	Single Tail Non-Acoustic Sensor
	Head and Tail Non-Acoustic Sensors
	Head, Middle and Tail Non-Acoustic Sensors
	Densely Instrumented
	Discussion

	Conclusions
	Recommendations and Future Work




