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On notation

Kröger-Vink notation

In this work, point defects are described using Kröger-Vink notation: a
point defect consists of a (atomic) species A, occupying site X with relative
charge Q = 𝑞𝐴 − 𝑞𝑋 . A positive relative charge is indicated by superscript
‘●’ symbols, the number of which is equal to the magnitude of the charge.
A relative negative charge is indicated with ‘′’ symbols in an analogous
fashion. ‘×’ is used to indicate no charge associated with the defect. We
have exclusively indicated a vacant site using an italic V, to avoid confusion
with vanadium defects. The notation is summarised in the schematic
below

Ax

q
A

atomic species
X

defect site

i.e. Li, O, V (vacancy) i.e. Li, O, i (interstital)

Q
relative charge

Q = -ve Q = 0 Q = +ve

Lorem ipsum

Lorem ipsum

sd

-1 = ′ +1 = •

+2 = ••
…

×

-2 = ′′
…

Miscellaneous

Concentrations are indicated with square brackets, i.e., the concentration
of defect 𝑋 would be given as [𝑋].
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Abstract

Suitably cost-effective energy storage will aid in the migration to a low carbon global energy economy. In an
attempt to access such technology, recent years have seen a great deal of research into enabling a step change
in the performance of lithium-ion batteries. One perceived route to achieving this is an all-solid-state battery,
in which the flammable liquid electrolyte used in commercial battery technologies is replaced with a solid
that has a high lithium-ion conductivity. Such batteries may have improved energy density and reliability as
compared to the current state-of-the-art. Optimising the properties of these solid-electrolytes for successful
incorporation into a battery cell has proved challenging, and a commercially viable all-solid cell has yet to be
produced. Within this thesis, we argue for a full understanding of point defect chemistry to learn more about
the performance and properties of crystalline solid electrolytes. In doing so we discuss these solid-state ionic
materials through the lens of semiconductor defect chemistry, highlighting the importance of considering the
coupling between defect populations via the electronic chemical potential, or rather the Fermi energy. We
show how perturbations to the Fermi energy (facilitated by aliovalent doping) affect the concentrations of
all charged defects in the system, questioning the validity of the commonly held assumption that the charge
imbalance introduced by aliovalent dopants is compensated by changing concentrations of mobile-ion defects.
This leads to potential difficulties in assigning a simple composition-property relationships. This approach
reveals that the lithium-ion conductor Li3OCl is, from a defect chemistry perspective, a somewhat poor can-
didate solid electrolyte and that the garnet ion conductor Li7La3Zr2O12 (LLZO) has a more complex than
previously considered doping response. We then build on this model to examine electronic carrier popula-
tions in LLZO, discussing possible non-negligible electronic conductivity, which has been linked to battery
failure owing to a bulk lithium reduction process. Finally, we explicitly consider dopant-driven changes in
defect–host-framework interactions which result in modulations to the potential energy surface for lithium
ion transport in the superionic conductor Li10GeP2S12. To close, we briefly discuss the practical and theo-
retical challenges posed by modelling the point defect chemistry of solid electrolytes more fully. It is hoped
that this work will inspire more considerations of the equivalence between a picture of defect chemistry in
functional materials that invokes charge-neutral defect reactions and one which considers a system where the
concentrations of all charged defects are coupled.
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Preface: the pressing need for an energy revolution

“There is no square mile of earth’s inhabitable surface that is not beautiful
in its own way, if we men will only abstain from wilfully destroying that
beauty.”

—William Morris, 1881

“I want you to act like the house is on fire, because it is.”
—Greta Thunberg, 2019
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Figure 1: Left, variation in global
land and ocean surface tempera-
ture from 1880 to 2020, based on
temperature departure from the
average 20th century temperatures
[1]. Right, historical carbon diox-
ide emissions from global fossil
fuel combustion and industrial
processes from 1880 to 2020 [2].

The world stands on the brink of irreversible ecological collapse [3]; it has
been posited that anthropogenic action has put Earth on track to its sixth
great mass extinction [4, 5]. One major factor contributing to this situation
is the continued high consumption of fossil fuels by industrialised nations.
The combustion of fossil fuels produces greenhouse gases, such as CO2,
which are well known to be a driving factor behind a global rise in temper-
ature (see Figure 1). This global heating effect has already begun causing
climate instability such as an increased frequency of extreme weather
events including wildfires and floods [6–8], and appears to be a driving
factor behind potentially catastrophic changes in the global climate such
as the collapse of the Gulf Stream [9]. Figure 2 shows the change in CO2

emissions for a range of global regions between 1990 and 2017. Despite a
modest decrease from some nations, overall, global CO2 emissions con-
tinue to increase. Bold action is required to prevent the worst outcomes of
climate collapse.
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Figure 2: Increase in CO2 emissions
from fuel combustion worldwide
between 1990 and 2017, by indi-
cated region [10].
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There is an apparent lack of public and political appetite for widespread
reductions in energy consumption, illustrated by Figure 3, which shows
a clear upward trend in global energy usage per year between 2000 and
2018, despite predictions from as early as the 19th century of rising tem-
peratures associated with increased fossil fuel consumption [11]. This
consistent increase in energy consumption perhaps stems from so-called
“optimism-bias” observed in humans, where one assumes the worst out-
comes of a disaster will not affect them personally [3, 12], or possibly the
politicisation of positive climate action [13–16]. Whatever the cause, with-
out a change in mindset leading to a major shift in either primary energy
sources, or large reductions in energy usage—or ideally, both—this situ-
ation will eventually become unsalvageable [17]. The strategy that most
governments seem to be pursing is turning to sources of energy that do
not produce greenhouse gases so as to maintain ever-increasing energy
consumption while preventing further CO2 emissions.
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Figure 3: Primary energy consump-
tion worldwide from 2000 to 2019
[18].

A global transition to low-carbon primary energy sources requires
accompanying advances in effective energy storage, primarily because re-
newable energy sources that are not geographically restricted, such as solar
and wind power, are typified by their reliance on inconsistent weather pat-
terns. Mass uptake of these energy sources coupled with effective storage
could end our reliance on fossil fuels by building a resilient low-carbon
grid [19–21]. A particularly promising energy storage solution is lithium-
ion batteries; the faith global governments have in such technology is
evidenced by the widespread growth in large battery research consortia
[22, 23]. Lithium-based electrochemical energy storage materials are the
focus of this dissertation, and we will discuss some of the opportunities
and challenges presented by their continued development in the next
chapter.
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1
Lithium batteries

1.1 The state of the art & material bottlenecks

Figure 1.1: Structure of graphite.
Carbon atoms are shown in grey,
covalent bonds are indicated with
solid lines. The offset layers of
hexagonally arranged carbon are
held together by Van der Waals
forces.

Lithium’s low weight and electropositivity contribute to the relatively high
energy density of lithium-based energy storage: lithium batteries are able to
deliver a large amount of energy for an acceptable weight or volume “cost”.
This high energy density has enabled the widespread uptake of evermore
impressive portable electronics powered by lithium-based electrochemical
energy storage. In many ways, however, elemental lithium is ill-suited to
being directly incorporated into a battery: it is highly reactive in atmo-
spheric conditions making it difficult and dangerous to process on a large
scale and batteries with lithium-metal components tend to exhibit very
poor performance over multiple electrochemical cycles [1–3]. These issues
have been circumvented by the development of intercalation batteries,
which function via transfer of lithium ions to and from host electrodes,
in which the intercalant (Li+) moves in and out of the structure without
affecting the structural integrity of the electrode material [4, 5].1 1 The intercalation mechanism,

involving the storage and release of
lithium ions from a host structure
results in the term “lithium-ion”
battery. Analogously, if a battery
were to have a lithium anode, it
would be termed a “lithium-metal”
battery.

Intercalation materials are crystalline structures with relatively open
channels through which intercalant ions can migrate. One archetypal
intercalation material is the carbon allotrope graphite, which is comprised
of two-dimensional “honeycomb” layers of covalently-bonded carbon
atoms with adjacent layers held together by Van der Waals interactions
(Figure 1.1). The intercalant can be accommodated between the C6 layers
and reversibly removed to recover pure graphite again.

MX6 octahedra

 

interstitial layer

Figure 1.2: Structure of layered
MX2. MX6 octahedra are shown
grey, with the chalcogenide ions
highlighted in red. The interstitial
sites that can accommodate lithium
are shown with unfilled circles.

Another key class of intercalation materials in the context of lithium-
ion batteries are the layered transition metal dichalcogenides with the
general formulaMX2, whereM is some transition metal and X is some
chalcogenide. These contain layers of close-packed planes of chalcogenide
ions with interstitial octahedral and tetrahedral sites. Every-other layer of
octahedral interstitials is occupied by transition metal ions, with the rest
left vacant. These vacant octahedral sites can host intercalant ions. The
generalised structure of layeredMX2 materials is shown in Figure 1.2.

For the purposes of this work, we consider each battery cell to be com-
prised of three components: two electrodes, the cathode and the anode;
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and the electrolyte. Both the anode and the cathode are intercalation
compounds—typically graphite andMX2 electrodes respectively. The
cathode is the material with a higher reduction potential with respect
to the reference electrode of metallic lithium. During discharge, lithium
ions are released at the anode and travel via the electrolyte to the cathode.
The electrolyte is an electronic insulator by design, whereas the anode
and cathode are electronic conductors. The electrons associated with the
lithium released from the anode are forced round an external circuit where
they can perform work. The free energy change on transfer of lithium
from the anode to the cathode defines the maximum work that can be ex-
tracted from the battery. This mechanism is summarised schematically in
Figure 1.3.

The first commercial lithium-ion battery entered the market in the
early 1990s [6], enabled by John Goodenough’s characterisation of the
excellent cathodic properties of layered LiCoO2 (an example of anMX2
intercalation material) [7]. Goodenough’s work does not stand apart from
all others: the concept of a rechargeable lithium battery was first demon-
strated in the 1970s by Stanley Whittingham, using lithium metal and
layered TiS2 as the anode and cathode respectively [8, 9]. While it was an
exciting proof-of-concept this lithium-metal cell had poor long-term per-
formance. A great deal of work then centered around developing battery
chemistries that were resilient over many cycles, i.e., that were suitably
rechargeable. This ultimately led to the development of the lithium-
graphite intercalation technologies used in modern batteries originally
developed by Akira Yoshino [6, 10]. The significance of this technol-
ogy is reflected by the fact that Yoshino, Goodenough and Whittingham
were awarded Nobel Prize for Chemistry in 2019 for the development of
lithium-ion battery technology[11].

To this day, the majority of lithium-ion batteries are based around

Figure 1.3: Schematic showing
the architecture of a conventional
lithium-ion cell. Lithium ions
move down the lithium chemical
potential gradient on discharge;
while charging, the reverse process
is driven by an external potential.
Simultaneously, electrons flow
round an external circuit driven by
the electronically insulating nature
of the electrolyte.

lithium flow

on discharge

TM layer

g

layer

raphite

anode

Li Li 

external circuit
electron flow

on discharge 

cathodeelectrolyte
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LiCoO2 or its structural analogues [12]. The discharge process of a
LiCoO26 intercalation cell can be represented as the oxidation of the
lithium in the anode

LiC6 ⇌ Li+ + C6 + e− (1.1)

and the reduction of cathode,

CoIVO2 + Li+ + e− ⇌ LiCoIIIO2. (1.2)

2 The reverse reactions, driven by an external potential occur on charging. 2 It is not actually possible to
reversibly cycle a full lithium per
formula unit from a LiCoO26 cell,
some fraction of lithium will instead
be intercalated/deintercalated [13]

While there are multiple commercial lithium battery cathodes, they all
contain transition metals—known for their variable oxidation states—
that are able to reversibly accommodate electrons facilitating lithium
intercalation, analogous to the process described by Equation (1.2) [12,
14–16].

Despite the success of the lithium–cobalt–oxide/graphite cells, there are
ever increasing demands on the energy density of battery technology: the
portable electronics industry needs smaller, lighter batteries that can run
ever more powerful components; electric vehicles need to increase their
single-charge range to encourage consumers to move away from petrol-
based vehicles; and batteries must become more efficient for cost-effective
incorporation across energy grids [17–19]. To meet these challenges re-
search has tried to identify different lithium battery chemistries that can
improve on contemporary technology. One particularly tantalising route
to improved energy density is to use a lithium-metal anode, doing away
with the excess weight associated with carbon in graphite-intercalation
anodes [1–3].3 3 Consider simple theoretical

capacities of a graphite anode as
compared to a lithium anode:
according to the equation

𝐶specific = 𝑥F
𝑛𝑀 , (1.3)

where x is number of transferred
electrons, F is the Faraday constant,
n is the number of moles of elec-
troactive component and 𝑀 is the
molecular weight of that component
[20]. LiC6, has a specific capacity of
372mAh g−1, whereas the specific
capacity of lithium metal anodes
are approximately an order of
magnitude higher at 3860mAh g−1.

Conventional electrolytes represent a significant bottleneck to sta-
bilising lithium-metal anodes. The electrolyte is typically a mixture of
a lithium salt, such as LiPF6, and an organic solvent, often a mixture of
ethylene carbonate and dimethyl carbonate (EC:DMC/LiFP6). Such elec-
trolytes are low cost, easy to prepare, and have high ionic conductivities
(∼0.01 S cm−1) [21]. On the first cycle of a lithium-metal battery, they
react to form a passivating layer on the surface of lithium, which ensures
the cell remains chemically stable over multiple cycles.4 The issues arise

4 a similar layer, known as the solid–
electrolyte interface, or SEI, forms
on graphite anodes also

on subsequent cycles. Repeatedly stripping and replating a lithium metal
anode does not occur homogeneously across the anode surface. Over
multiple cycles these inhomogeneities grow, forming lithium dendrites,
which can eventually provide an electrical contact between the anode
and the cathode, causing the cell to short-circuit. While the factors and
mechanisms that control lithium dendrite growth are somewhat more
complicated than this simple picture, it remains the case that conventional
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liquid electrolytes offer little meaningful mechanical resistance to dendrite
propagation [22].55 Dendrite growth also occurs in

intercalation batteries, but because
lithium metal is not present in
these systems, lithium dissolution
needs to occur via some means first,
which tends to significantly delay
dendrite-driven cell failure.

These organic-solvent–based electrolytes are also highly flammable,
and battery fires are a common cause of concern [23]. If battery fires occur
during the operating life of the battery they can put the end user at risk.
This has caused a number of media scandals for portable electronics
companies [23, 24]. End-of-life battery fires are another issue. Improper
disposal of flammable batteries can not only lead to fires at waste disposal
sites, but also, it makes it more challenging to recycle the increasingly
precious elemental components of the battery [23, 25]. These concerns
are particularly acute considering it is of great interest to society to see an
increase in battery usage. Additionally, the batteries that are envisaged to
power grid-based energy-storage systems and cars are far larger than the
majority of lithium-ion batteries used today, and this physical scale-up
exacerbates the safety concerns surrounding current battery technologies
[3, 17, 19, 26].

The fluid nature of liquid electrolytes also allows for the transport of
species other than lithium ions. Cell degradation can occur via transition
metal dissolution [27, 28]; transition metal ions can be solvated at the
electrolyte–cathode interface and transported to the anode. Not only does
this remove redox-active species from the cathode, reducing its ability to
intercalate more lithium, but the deposited transition metal ions can take
part in side reactions, which typically result in the loss of cyclable lithium
[29, 30]. One final undesirable feature of fluid electrolytes we will discuss
is the build-up of concentration gradients within the electrolyte. As both
lithium and its counter-ion can move in a conventional electrolyte, high
current densities can strongly polarise this solution: if the concentration of
Li+ counter-ion at either electrode surface reaches zero, lithium will cease
to conduct and the battery will fail. Conversely, at the other electrode, if
the concentration of salt becomes too high locally, it can precipitate out of
the organic solvent. These processes limit—for example—the charging rate
of a battery [31, 32].

In principle, all the issues outlined with these conventional electrolytes
can be addressed by replacing them with a solid–state electrolyte [33].
Indeed this route to next-generation lithium energy storage is currently a
huge area of research, which we will explore in the next section.

1.2 Solid electrolytes for next-generation energy storage

The ideal all-solid-state lithium battery offers great improvements over the
current state-of-the-art lithium-ion batteries, including higher energy den-
sities, increased safety, a wider range of operating conditions and longer
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Figure 1.4: Schematic showing the
architecture of a solid state lithium-
metal cell. On discharge, lithium
ions move through the solid elec-
trolyte towards the electrode with
the lower lithium chemical poten-
tial. Simultaneously, electrons flow
round an external circuit owing to
the electronically insulating nature
of the solid electrolyte.

Li 
TM layer

solid electrolyte cathode Li-metal

  anode 

external circuit

electron flow on

discharge

Li flow on discharge

device lifetimes. Many of these advantages stem from the nature of solid
inorganic ion conductors, which have been proposed as a replacement for
conventional liquid electrolytes [27, 33].6 Consider the limitations of con- 6 All solid electrolytes discussed in

this report are crystalline inorganic
materials, other classes of solid
electrolyte such as glasses [34] and
polymer electrolytes [35] are also
being investigated for commercial
application.

ventional electrolytes discussed in Chapter 1: there are issues surrounding
dendrite propagation leading to cell failure, facilitated by the lack of me-
chanical resistance offered by the liquid electrolyte. Ceramic electrolytes
have sufficient mechanical hardness to, in principle, suppress this growth
[36]. Not only could this extend operating lifetimes of intercalation batter-
ies, but also enable stable higher energy–density lithium–metal batteries.
Additionally, solid electrolytes are typically comprised of a rigid host
framework through which lithium ions can migrate [37, 38]. This frame-
work should hold counter–ions fixed in place, preventing transition–metal
dissolution and electrolyte polarisation [39]. Finally, ceramic solid elec-
trolytes are highly thermally stable, suggesting they should be operative
over a range of working conditions—such as conditions under which sol-
vent electrolytes might freeze—and inflammable, circumventing the safety
concerns with modern batteries. A schematic of an all solid-state battery is
shown in Figure 1.4.

Despite this promise, solid–state batteries are yet to be widely com-
mercially available. Solid-ion conduction was first observed by Michael
Faraday in the 1830s after Alessandro Volta had shared with him the pro-
genitor of modern batteries, the Voltaic pile [40]. It is only now, some
thirty years after the commercialisation of the first lithium-ion batter-
ies that commercial prototype solid–state batteries are beginning to be
produced [41, 42]. This is because the road to lithium solid electrolytes
that deliver on the promise outlined above has been long and arduous.
A key reason for the late-term interest in lithium solid electrolytes was
the comparatively slow development of the field of solid state ionics. After



10 COMPUTATIONAL MODELLING OF DEFECTS IN BATTERY MATERIALS

thio-LISICON
LixM1 yMyS4

Agyrodite
Li7PS6

LGPS
Li10GeP2S12

10 12

10 8

10 4

100

Io
ni

c 
co

nd
uc

tiv
ity

/ 
S 

cm
1

Li5AlS4
Li6PO5Cl

Li9.6P2S12

Li3.25Ge0.25P0.75S4 Li6PS5Br Li9.54Si1.74P1.64S11.3Cl0.5

LISICON
LixM1 yMyO4

Garnet
LixM2M3O12

Perovskite
Li3xLa2/3x 1/3x 2xTiO3

10 12

10 8

10 4

100

Io
ni

c 
co

nd
uc

tiv
ity

/ 
S 

cm
1

Li4SiO4

Li5La3Ta2O12
Li0.34Nd0.55TiO3

Li3.53(Ge0.75P0.25)V0.3O4
Li6.4La3Zr1.4Ta0.8O12 Li0.34La0.51TiO2.94

Figure 1.5: Ionic conductivities of
a range of lithium solid electrolyte
structural families, each with a
general composition or key parent
compound shown on the x-axis, as
compared to the conductivity of
a conventional liquid electrolyte,
EC:DMC/LiFP6, shown as a grey
dashed line. The data used in this
plot was taken from refs [49] and
[37].

early work by Faraday on the ionic conductivity of PbF2 and Ag2S [43] in
the 19th century, it was not until the 20th century, after Carl Tubandt’s
characterisation of silver transport in AgI2 in 1921 [44], that Ag4RbI5 was
shown to have an ionic conductivity of 0.2 S cm−1 in the 1960s [45]. This
work set the precedent for solid ion–conductors that could be truly com-
petitive with liquid conductors, and gave rise to the practical investigation
of solid ion conductors for technological applications. 7 Analogous lithium7 Ag4RbI5 itself has been used in a

range of batteries [46, 47], though
never deployed commercially. iodides were also investigated, and while their ionic conductivities were

not considered high enough for widespread commercial deployment, LiI
found use as an electrolyte in pacemaker batteries [48].

Over the subsequent decades, fast lithium ion–conductors have in-
deed been discovered and huge steps have been taken towards their
optimisation for eventual use in a solid-state battery. One of the early
promising examples was the lithium garnet Li7La3Zr2O12 (LLZO). First
studied for battery application in 2007, the discovery of LLZO has paved
the way for oxide lithium-ion conductors exhibiting fast-ion conduction
(∼1 × 10−3 S cm−1) [50]. Additionally, many fast-ion conducting lithium
thiophosphates have been characterised as solid ion conductors, one of
the most prominent perhaps being Li10GeP2S12 (LGPS). First noted in
2011 [51], chemical derivatives of LGPS have now reached conductivities
as high as ∼2.5 × 10−2 S cm−1 [52]. These are just two examples of many.
Other notable materials include other oxides: perovksite based conduc-
tors [53], LISICON materials [54] and other garnets [55, 56]; and sulfide
ion conductors including the agyrodites [57, 58] and thio–LISICONs
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(such as LGPS) [59]. Additionally there is an exciting class of halide based
lithium ion conductors [60] rediscovered as candidate solid-electrolytes
after applying modern synthesis techniques to known materials [61], and
some mixed anion ion–conductors such as the lithium antiperovskites
[62, 63]. In addition, still more novel ion conductors are being discovered
which present exciting optimisation challenges [64–66]. A range of solid
lithium-ion conducting electrolyte families and their ionic conductivities
are shown in Figure 1.5.

Despite their high ionic conductivities, it has not been simple to incor-
porate these known solid electrolytes into lithium batteries. For example,
engineering suitable electrode–solid-electrolyte interfaces is highly chal-
lenging. For the few solid lithium ion conductors that are stable in contact
with lithium metal, there is often a poor interface between the electrode
and the electrolyte—solid electrolytes cannot “wet” the surface of lithium
anode in the same way that a liquid electrolyte would, leading to high re-
sistance at the solid-solid interface [67]. If, on the other hand, the solid
electrolyte is not stable in contact with lithium metal, as with liquid elec-
trolytes, reactions will occur at the interface. The products of these degra-
dation reactions can reduce overall cell performance. The fast-lithium
ion conductor LGPS, for example, degrades to Li3P, Li2S, and Li–Ge al-
loys at the Li-LGPS interface. This SEI-like layer of degradation products
increases cell resistance [68].

Additionally, while the non-flammable nature of ceramics is a clear
advantage over conventional electrolytes, the highly conductive sul-
phide solid electrolytes such as LGPS often decompose to form toxic
and flammable H2S [26, 69]. This serves as an illustration of some of the
less obvious challenges of deploying solid–state batteries. Just because they
are not flammable, does not mean that safety risks will not occur from
products of their degradation during operation.

A final challenge involved in engineering a stable solid-state lithium cell
has been lithium dendrite formation, despite the hope that the mechanical
properties of solid electrolytes would suppress their growth and propa-
gation. The widely invoked Monroe and Newman model suggests that a
solid electrolyte with twice the shear modulus of lithium metal (4.8GPa
at 298K) should prevent a dendrite-induced short-circuit [36], yet even
LLZO, with a shear modulus of ∼100GPa [70], still seemingly cannot
avoid this failure mechanism [71–73]. Counter-intuitively, polymer elec-
trolytes with similar shear moduli to lithium metal have been engineered
which can seemingly prevent dendrite growth [74], clearly showing that
mechanical properties alone are not sufficient to prevent dendrite-driven
cell failure, which has led to a host of dendrite formation mechanisms in
ceramic electrolytes being proposed [75]. One such mechanism is dis-
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cussed in Chapter 7.
All this paints a rather convoluted picture: on the one hand, solid-state

batteries promise increased energy density over lithium-ion technology
because their mechanical properties should suppress dendrite growth in
lithium metal cells, and yet faced with the reality of an operative cell, these
mechanical properties alone, clearly do not deliver. Additionally, the safety
concerns around lithium-ion batteries are supposedly removed when
using an inflammable ceramic electrolyte, and yet many of the fastest
lithium conducting electrolytes evolve flammable, toxic gas on exposure
to air and moisture. Despite this, the first prototype solid state batteries
aimed at a wide market are being produced, and electronics industry
giants continue to back the technology [76]. This situation is perhaps
summed up best by Michael Faraday, a key enabler of both solid state
ionics and battery technology, when he said

“ But still try, for who knows what is possible. ” [77]

A full understanding of solid-state electrolytes is clearly lacking, but their
promise is great, and the weight of ongoing scientific research in this area
relays a belief that the issues with these technologies can be solved. In the
next chapter, we argue for a full understanding of point defect chemistry
as a means to learn more about the performance of solid electrolytes, in
the expectation that characterising these properties and processes will
pave the way to the development of more robust lithium solid electrolytes.
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2
Point defects in solid electrolytes
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Figure 2.1: intrinsic point defects
on a 2D lattice: a vacancy, an ion
missing from its lattice site; an
interstitial, an ion sitting on a site
that does not constitute a formal
lattice site; an antisite, an ion that
has substituted for the species which
usually occupies that site.

Crystals contain microscopic deviations from their underlying symmetry
because of the entropic contribution of such defects to the free energy
[1]. Defects that can be spatially associated with a single crystallographic
site, or interstitial position between crystallographic sites, are termed
point defects.1 Examples of point defects include vacancies, a missing 1 For the purposes of this disser-

tation, unless otherwise stated,
the term defect refers to point (as
opposed to extended) defects, and
defects are discussed for the case of
systems with a finite band gap (as
opposed to metals).

atom; interstitials, a species filling a void between crystallographic sites;
or an antisite defect, a species that occupies a site with which it is not
formally associated with.2 These are all intrinsic defects and are illustrated

2 We highlight that sometimes an
antisite is considered as a pair of
substitutional defects, i.e. 𝑋𝑌 + 𝑌𝑋.
Throughout this work, we would
refer to this as two antisite point
defects as opposed to a single
antisite.

in Figure 2.1. A dopant ion, whether it occupies an interstitial site, or
replaces a native ion, is referred to as an extrinsic defect [1].

2.1 Defect engineering

Defect engineering, i.e., tailoring the nature and populations of point de-
fects present in a material via different doping or synthesis strategies, can
be used to optimise the performance of solid electrolytes. The classical pic-
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ture of ion transport in solid electrolytes involves the continuous creation
and annihilation of mobile-ion point defects in a percolating network
[2]. These defects can either be transient, thermally generated defects or
persistent defects created by off-stoichiometry in the host material. This
off-stoichiometry may be intrinsic, i.e, a result of specific synthesis condi-
tions, or a result of extrinsic doping. Within this defect-mediated transport
model, the concentration of mobile defects, [𝑋mobile], strongly affects ionic
conductivity, 𝜎ionic,

𝜎ionic = [𝑋mobile]𝑞𝜇mob.
𝑋 . (2.1)

In the above equation, 𝑞 is the carrier-charge and 𝜇mob.
𝑋 is the mobility

of mobile-ion defects [3]. Attempts to optimise the ionic conductivity
of solid-state electrolytes via defect engineering therefore often target
increased concentrations of mobile-ion defects, [𝑋mobile], or an increased
mobility of the mobile ions 𝜇mob.

𝑋 .

2.1.1 Increasing the concentration of mobile defects

One common strategy for increasing the concentration of mobile-ion de-
fects is aliovalent doping. Aliovalent doping involves the substitution of
native ions for extrinsic species of unlike charge. In solid electrolyte ma-
terials, it is typically assumed that aliovalent doping strategies drive the
formation of charge-compensating mobile-ion vacancies or interstitials
[4–8]. For example, silicon doping in the sodium-ion solid electrolyte
Na3PS4 has been suggested to drive an increase in sodium interstitial con-
centration: substituting Si4+ for P5+—a subvalent doping strategy—forms
a Si′P defect which is expected to be charge compensated by the formation
of a Na●i defect. A sufficient Si doping concentration is therefore expected
to lead to meaningful increases in ionic conductivity via an increase of
[𝑋mobile] in Equation (2.1) [9, 10]. Doping Na3PS4 with chlorine to form
Cl●S defects or tungsten to formW●P—supervalent doping—is similarly
predicted to increase [𝑉 ′

Na] and therefore increase ionic conductivity. Both
doping strategies have been shown to successfully increase Na-ion conduc-
tivity in Na3PS4[9–12].

In LLZO, supervalent doping is broadly compensated by an increase
in [𝑉 ′

Li], or equivalently a reduction in total lithium content. Not only
does this increase the concentration of mobile-ion defects, but it has
been argued reducing the lithium content causes a “frustration” in the
geometric arrangement of lithium ions. This frustration stabilises the high-
conductivity cubic phase relative to the low conductivity tetragonal phase
as the lithium can no longer order in a way that is commensurate with
the underlying structural symmetry, reducing the enthalpic stabilitsation
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of the tetragonal phase from lithium ordering [13]. This illustrates how
changing the mobile-ion defect concentration can have implications for
solid electrolyte performance beyond increases in the ionic conductivity
via Equation (2.1).

2.1.2 Defect–driven carrier mobility changes

Varying the supervalent dopant species used to achieve a stable cubic-
LLZO sample can have a notable effect on the distribution of lithium. This
is true even in instances where the dopants share the same formal charge,
such as Al3+ and Ga3+ used to form, e.g, Al●●Li [14, 15]. Observations such
as these imply that defect engineering, whether intentionally or otherwise,
can also be used to modulate the underlying potential energy surface for
mobile-ion transport in addition to tailoring the number of ionic charge
carriers. In other words, rather than increasing [𝑋mobile], we can target an
increased value of 𝜇mob.

𝑋 .3 3 Doping strategies which directly
substitute for the mobile ion, in
this case lithium, have also been
suggested to negatively impact the
total ionic conductivity: sufficiently
high concentrations of dopant will
begin to block lithium transport
if this substitution occurs within
the percolation network [16, 17].
This can increase the tortuosity
of lithium transport and decrease
the fraction of lithium which is
connected to the macroscopic
transport network [18].

Defect-driven modulations to the potential energy surface for mobile-
ion transport can either be due to structural effects or interatomic inter-
actions between stationary framework defects and mobile-ion defects.
For example, intrinsic PGe antisites in LGPS cause local structural rear-
rangements which create “body-centred cubic-like” motifs and seem to
increase lithium-ion conductivity [19, 20]. Body-centre cubic ion percola-
tion networks have been noted as a key feature of high ionic conductivity
lithium electrolytes as it allows for transport via a percolating network of
tetrahedral sites, as opposed to alternating octahedral–tetrahedral hops.
Alternating octahedral–tetrahedral hops are typically associated with
higher energy intermediate positions, and therefore higher barriers for ion
hopping [21]. It is also possible that this increase in lithium-ion conductiv-
ity observed on intrinsic antisite defect formation in LGPS is related to an
increase in mobile ion conductivity often observed in solid electrolytes on
increasing host-framework antisite disorder [22–25]. For example, based
on ab initiomolecular dynamics studies (AIMD) of the lithium agyrodite
Li6PS5Br, Sadowski and Albe have proposed that Br●S antisites introduce
an electrostatic perturbation which cause the formation of mobile lithium
interstitials (and bound vacancies) activating long-range transport which
is not observed in the anion-ordered system [26].

Of course, more direct electrostatic interactions between framework
defects and mobile ion defects can also affect ion transport in solid elec-
trolytes. For example an electrostatic “trapping” interaction between O′

Cl

and Li●i defects in the lithium antiperovskite ion conductor Li3OCl are
predicted to slow lithium ion-conductivity [5, 27]. A more subtle elec-
trostatic interaction that we investigate directly in this dissertation (see
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Chapter 8) is the so-called solid-electrolyte inductive-effect. This solid-
electrolyte inductive-effect is often invoked to explain anomalous ionic
conductivity trends in solid electrolyte materials including Na11Sn2PnS12
(Pn = P, Sb) [28], Na3P1-xAsxS4 [29], Li4-xSn1-xSbxS4 [30], and LiM2(PO4)3
(M = Zr, Sn) [31]. This model stems from a growing base of evidence
that the seemingly anomalous reduction in ionic conductivity on isova-
lent doping of Sn4+ for Ge4+ in LGPS could be explained by a differing
electronegativities of germanium and tin. This model argues that a more
electronegative cation (in this case Ge4+), will draw more electron density
from the sulfur ions, weakening the S2− – Li+ interaction, relative to a less
electronegative cation (Sn4+). The result is a reduced activation barrier
for single lithium-ion hopping in the germanium system, or rather an
increased value of 𝜇mob.

𝑋 in Equation (2.1) relative to the tin system [32,
33].

2.2 Calculating defect concentrations

To understand what defects are important in impacting the material prop-
erties of solid electrolytes, we must ascertain which defects are present in
high enough concentration to meaningfully impact performance. The con-
centration of a given defect is a function of its formation energy, Δ𝐸𝑋𝑞

f ;
the concentration of defect 𝑋 in charge state 𝑞 is given by

[𝑋𝑞] = 𝑁𝑋𝑔𝑋𝑞 exp(−Δ𝐸𝑋𝑞
f

𝑘B𝑇 ) (2.2)

where 𝑁𝑋 is the density of sites on which the defect could form, 𝑔𝑋𝑞 is
the intrinsic degeneracy of the defect (e.g. spin degeneracy) [34], 𝑘B is
the Boltzmann constant, and 𝑇 is the temperature. When studying the
defect properties of crystalline materials it is common practice to calculate
the energies of charge-neutral defect reactions such as the formation
of a Frenkel pair, or a Schottky defect [5, 6, 27, 35, 36]. Taking Li2O as
an example, the formation of a lithium Frenkel pair, a stoichiometry-
preserving vacancy–interstitial pair for a constituent element, is written
as,

Li×Li → 𝑉 ′
Li + Li●i . (2.3)

The formation of the Schottky pair, is written as,

2Li×Li + O×
O → 2𝑉 ′

Li + 𝑉 ●●O + Li2O. (2.4)

It is clear that these reactions have a common product, 𝑉 ′
Li, and therefore

they are thermodynamically coupled when forming in the same system.
This coupling means we cannot reliably quantify defect concentrations
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within a model in which all defects form in charged balanced reactions.
For example, in the synthesis of an oxide conductor, if we alter the oxygen
partial pressure during synthesis, it will change the formation energy of
the oxygen vacancy [37], as this will change the Schottky pair formation
energy, and both the Schottky and Frenkel pair share 𝑉 ′

Li as a common
product, this must also affect the thermodynamic equilibrium of the
Frenkel pair formation reaction.4 4 We stress that despite difficulties

calculating coupled defect concen-
trations within a “defect-reaction”
model, defect reactions remain a
powerful tool for understanding the
defect chemistry of solid-state ionic
systems. In Chapter 5, we discuss
how key features of the defect and
doping chemistry of antiperovskite
solid electrolytes in the context of
ionic conductivity can be ascribed
to a preference for Schottky defect
formation as opposed to Frenkel
defect formation in these materials.

Instead of deriving charge-neutral defect reactions from chemical
intuition and calculating their reaction energies, it is possible to calculate
the formation energies of all point defects as a function of atomic chemical
potentials during synthesis (or other representative conditions) [38]. In the
general case, the formation energy of defect 𝑋 in charge state 𝑞, is given by

Δ𝐸𝑋𝑞
f = 𝐸𝑋𝑞 − 𝐸host + ∑

𝑖
𝑛𝑖𝜇𝑖 + 𝑞𝐸Fermi. (2.5)

In the above, 𝐸𝑋𝑞 − 𝐸host is the energy difference between defective and
host materials, ∑ 𝑛𝑖𝜇𝑖 accounts for the energy cost to exchange 𝑛 atoms
of kind 𝑖 with their reservoir chemical potential 𝜇𝑖.5 𝜇𝑖 is set by synthesis 5 For example, this term for defect

𝑋𝑞
𝑌 is 𝜇𝑋 − 𝜇𝑌 .conditions (see Section 4.1.2). 𝑞 and 𝐸Fermi denote the defect charge state

and the Fermi level respectively.6 This term is the electronic analogy of the 6 The Fermi energy is typically
defined relative to the valence
band maximum of the material in
question, i.e. if 𝐸Fermi ≈ 0, it lies
close to the valence band maximum.
Alternatively, if 𝐸Fermi ≈ 𝐸g, it
lies near the conduction band
minimum.

previous term, and represents the energy cost for exchanging 𝑞 elemental
charges with the electronic chemical potential [38].7 The appropriate value

7 For example, for a 𝑉 ●●O defect, this
term would be 2𝐸Fermi.

of 𝐸Fermi is derived by observing the condition of charge neutrality.
Determining the equilibrium Fermi energy consists of finding a self-

consistent solution to Equation (2.2) for all defect species, under the con-
straint of overall charge neutrality at a given set of 𝜇𝑖 [39]. The condition
of charge neutrality can be expressed as

0 = ∑
𝑋𝑞

𝑞[𝑋𝑞] + [e′] − [h●]. (2.6)

The first term is the sum over the charge contributions from all defects,
[e′] is the concentration of free electrons, and [h●] the concentration of
free holes. Electron and hole concentrations (which will be small, but
cannot be assumed to be negligible in solid-state electrolytes [40–43]) are
calculated as functions of the Fermi energy and the bulk density of states
𝑔(𝐸),

[e′] = ∫
∞

𝐸g

1
exp[(𝐸 − 𝐸Fermi)/𝑘B𝑇 ] + 1𝑔(𝐸) d𝐸 (2.7)

[h●] = ∫
Evbm

−∞
1 − 1

exp[(𝐸 − 𝐸Fermi)/𝑘B𝑇 ] + 1𝑔(𝐸) d𝐸. (2.8)

Taking all this together defines a set of coupled linear equations
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that need to be solved under the constraint of charge neutrality (Equa-
tion (2.6)) to solve for defect concentrations. In practice this can be
achieved by determining the value of the Fermi energy at thermodynamic
equilibrium by defining an initial value of the Fermi energy, solving Equa-
tions (2.2), (2.5), (2.7) and (2.8), assessing whether the condition of charge
neutrality is met (Equation (2.6)), and if not, adjust the Fermi energy
accordingly, until a satisfactory solution is found [44]. This calculation
methodology often leads to this approach being labeled as determining
a self-consistent Fermi energy. We will relate this model to a defect reac-
tions model, and give a simple example of how we might determine the
self-consistent Fermi energy in the next section.

2.3 Mapping the self-consistent Fermi energy model onto defect re-
actions

A hypothetical system in which only two defects of opposing charge can
form can be used to show how the self-consistent Fermi energy model can
reduce to a model which considers defect reactions. Consider a fictitious
lithium solid electrolyte within which the only defects that can form are
lithium vacancies and interstitials, or equivalently, Frenkel defects. The
Frenkel-pair formation reaction can be broken down into two steps, or
half-reactions: first, a lithium-ion is reduced, removed from a lattice site
and moved to an external reference,

LiLi + e− → 𝑉 ′
Li + Li(s). (2.9)

Second, a lithium atom is moved from the external reference, ionised, and
occupies an interstitial site:

𝑉i + Li(s) → Li●i + e−. (2.10)

As reactions 2.3, 2.9 and 2.10 form a closed thermodynamic cycle, the
energy of reaction 2.3 is given by the sum of the energies of reactions 2.9
and 2.10

Δ𝐸(2.3) = Δ𝐸(2.9) + Δ𝐸(2.10). (2.11)

Δ𝐸(2.9) and Δ𝐸(2.10) are given by

Δ𝐸(2.9) = 𝐸𝑉 ′
Li − 𝐸host + 𝜇Li − 𝐸Fermi (2.12)

Δ𝐸(2.10) = 𝐸Li●i − 𝐸host − 𝜇Li + 𝐸Fermi. (2.13)

The first two terms in Equations (2.12) and (2.13) are the energies of the
defective material and the host material respectively. 𝜇Li is the lithium
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chemical potential, and 𝐸Fermi the Fermi energy (c.f. Equation (2.5)).
As before, the appropriate value of 𝐸Fermi is derived by observing the
condition of charge neutrality. In the present case where only lithium
interstitials and vacancies can form, the material will be charge neutral
when

[𝑉 ′
Li] = [Li●i ] (2.14)

in which case the Fermi energy is “pinned” at the value where8 8 assuming that the degeneracies of
the two defects are equivalent

Δ𝐸(2.9) = Δ𝐸(2.10) (2.15)

or alternatively,

Δ𝐸𝑉 ′
Li

f = Δ𝐸Li●i
f (2.16)

and therefore determining the Fermi energy is simply a case of solving a
pair of linear simultaneous equations (see Figure 2.2).

EFermi

E
f

"pinned" Fermi energy

Lii

VLi

Δ

Figure 2.2: Defect formation ener-
gies as a function of Fermi energy
for a system in which only lithium
vacancies and interstitials can form.
The vertical dashed line shows the
pinned Fermi energy.

2.4 Variable defect charge states

Until now, we have assumed that defects can only form in charge states
which correspond to the charge of the atoms added to or removed from
the system during defect formation, e.g., the removal of one O2− results
in a net positive charge of 2+, therefore, we have formed a 𝑉 ●●O defect.
Although solid electrolytes do not typically contain ions normally consid-
ered to have variable oxidation states9 this does not preclude them from 9 This is in part, by design, as redox

active framework atoms would
be associated with undesirable
electronic conduction.

containing defects with varied charge states. In Chapter 6 we discuss the
variable charge state of oxygen vacancies in LLZO. Experimental work
has previously noted the formation of colour centres in samples of LLZO
prepared under highly reducing conditions, suggesting electrons trapped
at 𝑉O sites [45], i.e. stable 𝑉 ●O / 𝑉 ×

O defects. We confirm the stability 𝑉 ●O /
𝑉 ×
O defects under lithium-rich synthesis conditions, where the Fermi level

is high, reducing the formation energies of the neutral and singly charged
vacancy relative to the fully ionised defect (see Equation (2.5)) [46]. It
has since been suggested that these trapped electrons could facilitate local
electronic conductivity changes that could cause lithium deposits to form
in the electrolyte which could eventually result in dendrite formation and
cell failure [47].

Care must also be taken when assuming defect charge states in wide-
bandgap oxides such as many solid electrolytes. Ionisation of such materi-
als will often result in hole localisation on oxygen ions, corresponding to
the reduction of an oxide ion from OII to OI [48, 49]. This process is ob-
served in LLZO when calculating the properties of e.g. 𝑉Li. At small values
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of 𝐸Fermi, 𝑉 ×
Li is stabilised relative to the “expected” 𝑉 ′

Li [46] this is because
when the Fermi energy is small and the formation of negatively charged
defects is disfavoured (see Equation (2.5)), and so as opposed to forming a
𝑉 ′
Li defect, the charge imbalance introduced on the formation of a lithium

vacancy is accommodated by the oxidation of an oxide ion.
The potential for defects to show variable charge states suggests best

practice approaches should consider a range of possible defect charge
states and not just those expected from chemical intuition. The relative
stability of different defect charge states can be assessed via their ther-
modynamic transition levels, which are defined as the energy at which
the charge state of defect 𝑋 transforms between 𝑞 and 𝑞′, (𝑋, 𝑞/𝑞′). The
transition level is calculated as

𝐸(𝑋, 𝑞/𝑞′) = Δ𝐸𝑋𝑞
f − Δ𝐸𝑋𝑞′

f
𝑞′ − 𝑞 . (2.17)
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Figure 2.3: Example transition
level diagram for a defect with
three possible charge states: 0, +1
and +2. The top plot shows the
Δ𝐸𝑋𝑞

f (𝐸Fermi) relationship for each
of these charge states, the bottom
plot shows how these data would
conventionally be displayed on a
transition level diagram: only the
Δ𝐸𝑋𝑞

f (𝐸Fermi) relationship for the
stable defect is shown at each value
of 𝐸Fermi.

A plot of all defect formation energies, in all charge states as a function of
Fermi energy is termed a transition level diagram. As these plots become
increasingly difficult to interpret as more defects in more charge states are
added, conventionally, one line is plotted per defect, and for any given
Fermi energy, only the lowest energy charge state is shown. Figure 2.3
shows an example transition level diagram for defect 𝑋 with three poten-
tial charge states, 𝑋×, 𝑋● and 𝑋●●, of which 𝑋● is not stable at any value
of 𝐸Fermi.

2.5 Modelling aliovalent doping response

Studying the full point defect chemistry of a material, and modelling the
aliovalent doping response provides a means to predict whether different
doping strategies will prove successful in improving ionic conductivity. It
can often be difficult to predict whether or not a particular aliovalent dop-
ing strategy for enhancing ionic conductivity in solid electrolytes will be
successful a priori [50]. In Chapter 5 we discuss conditions for aliovalent
doping to successfully increase the ionic conductivity of a lithium solid
electrolyte in which the diffusion processes are mediated by the transport
of mobile-ion defects in depth. One key condition for a successful alio-
valent doping strategy discussed therein is that it should preferentially
increase the concentrations of charge-carrying mobile defects ahead of
immobile defects. We can assess whether this is the case by slightly modi-
fying the methodology discussed so far in this chapter. We can include the
charge contribution from a hypothetical dopant 𝑀 with charge state 𝑟 in
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Figure 2.4: Middle, transition
level diagram in which the Fermi
energy is pinned by the formation
of lithium Frenkel defects. In the
absence of other complicating
factors, it should be possible to dope
this system to form either a lithium
excess or deficit. The left panel
shows a transition level diagram in
which the Fermi energy is pinned
by mobile lithium vacancies and
some immobile framework defect,
for example, a system in which a
lithium-anion Schottky pair is lower
energy than the Frenkel pair. This
system could potentially be doped
to achieve a lithium deficit, but
doping to form a lithium excess
will predominantly reduce [𝑉Li]
and increase [𝑋immobile]. The right
panel shows a system in which the
Fermi energy is pinned by lithium
interstitials and a negatively charged
immobile framework defect which
could be doped effectively to form
a lithium excess, but not a lithium
deficit such as a system dominated
by anti-Schottky defect chemistry.

the condition of charge neutrality, eq. (2.6),

𝜌 = ∑
𝑋𝑞

𝑞[𝑋𝑞] + [e′] − [h●] + 𝑟[𝑀𝑟] (2.18)

= 0.

Importantly in the dilute-defect-limit the doping response does not de-
pend on the dopant species or insertion site, only the product 𝑟[𝑀𝑟]. This
allows us to approximate which defect concentrations change most dra-
matically when the material is doped on introducing a fixed concentration
of dopant. If a dopant with excess charge is introduced, in effect, this adds
an additional defect species to the self-consistent Fermi energy solution,
which will mean that the other defect concentrations must change in order
to restore charge neutrality. The formation energies of all charged de-
fects are a function of the Fermi energy (Equation (2.5)), i.e., this doping
response is not limited to mobile ion defects.

The net effect of adding a supervalent dopant is to increase the Fermi
energy, which, in a lithium solid electrolyte, will indeed decrease the for-
mation energy of the lithium vacancy and increase the formation energy
of the interstitial (see Equations (2.9) and (2.10)) causing a net reduc-
tion in lithium content. Alternatively, one can increase the concentration
of lithium interstitials by doping with a subvalent dopant, which will
decrease the Fermi energy. However, as the Fermi energy is necessarily
perturbed by the introduction of a charged dopant, the formation energy
of all charged defects in the system must change (see Equation (2.5)),
not just mobile-ion point defects. Therefore it cannot be assumed that
under all accessible chemical potential synthesis regimes that a particu-
lar aliovalent doping strategy will cause an increase in ionic conductivity
commensurate with the predicted change in ionic charge carrier concen-
tration.

On doping a lithium ion solid electrolyte with dopant 𝑀 with relative
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Figure 2.5: The middle panel shows
a transition level diagram in which
the Fermi energy is pinned by
lithium Frenkel defect formation.
The left panel shows the same,
however, an immobile defect 𝑋𝑞

where 𝑞 > 1 is lower energy at
lower values of 𝐸Fermi, and as such,
after doping to form a lithium
excess, eventually, this defect will
form in preference to the lithium
interstitial, reducing the expected
increase in total lithium content.
The right panel shows the opposite
situation to the left hand panel
panel: some defect 𝑋𝑞<−1 becomes
lower energy at high values of
𝐸Fermi, complicating the response
to a doping strategy designed to
reduce the total lithium content.
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charge 𝑟, to assume

[𝑀𝑟] ≈ 𝑟[𝑉 ′
Li] (2.19)

where 𝑟 > 0 and,

[𝑀𝑟] ≈ 𝑟[Li●𝑖 ] (2.20)

where 𝑟 < 0 is only appropriate if the Fermi energy is pinned by mobile-
ion Frenkel disorder under all relevant synthesis chemical potential
regimes.10 This cannot be guaranteed, and in the complex ternary or10 An example of this is Na3PS4: as

previously discussed both doping
for interstitials and vacancies has
proved successful in increasing
ionic conductivity and theoretical
studies of defects in Na3PS4 find
that the Fermi energy is pinned
by Frenkel disorder under all
conditions [43].

quaternary chemical space that many solid electrolytes inhabit, immobile
defects with similar formation energies to mobile ion defects will “com-
pete” to neutralise the dopant charge [46]. For example, in a material in
which the Fermi level is pinned by the formation of a Schottky pair as
opposed to the Frenkel pair, anion vacancies will form in preference to the
lithium interstitial on subvalent doping. In LGPS, under many synthesis
conditions, P●Ge defects have a lower formation energy than Li●𝑖 defects at
relevant Fermi energies [19, 20]. Under such conditions in LGPS, the pre-
dominant response to introducing a net negative charge via doping will be
to form immobile framework defects as opposed to increasing the concen-
tration of mobile ion point defects. These considerations are represented
pictorially in Figure 2.4.

In Chapter 6, we discuss how in LLZO, under all synthesis conditions,
the Fermi energy is pinned by Frenkel disorder, however, under select
synthesis conditions, the formation energy of Li′′′Zr antisite is low enough
such that an increase in Fermi energy will reduce its formation energy
as to be lower than that of the 𝑉 ′

Li defect. As the gradient of the defect-
formation-energy–Fermi-energy relationship is given by the defect charge
(see Equation (2.5) or Figure 2.3), any increase in Fermi energy will re-
duce the formation energy of the Li′′′Zr defect by three times the amount
that the lithium vacancy formation energy will be decreased by. In other
words, even if a small amount of dopant causes a reduction in lithium con-
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tent, this will shortly be offset by an increase in [Li′′′Zr ] on further doping
[46], this scenario is outlined in Figure 2.5. All this said, it may be that
the defect formation energies as a function of Fermi energy are such that
approximations (19) and (20) hold, but this cannot be known for certain
without modelling the defect response to doping. The approach outlined
in this section should allow us to predict what doping strategies will be
more effective for modulating the concentrations of mobile ion defects.

2.6 Closing remarks

The bulk of the original work in this thesis involves applying the method-
ologies discussed above to a variety of solid electrolytes:

• In Chapter 5, we establish the native defect chemistry of the lithium
solid electrolyte Li3OCl and model the response of the native defect
concentrations to both supervalent and subvalent doping to compare
the efficacy of the two doping strategies for improving ionic conductiv-
ity.

• In Chapter 6, we take a similar approach as we did for Li3OCl to in-
vestigate the defect chemistry of LLZO, paying special attention to
the defect chemistry of oxygen vacancies which have previously been
proposed as having an impact on the total conductivity of LLZO [51].

• In Chapter 7 we extend our study of the defect chemistry of LLZO to
examine how the defect chemistry affects electronic conductivity, which
has been implicated in dendrite–driven failure mechanisms in LLZO
based solid state batteries [40].

• Finally, in Chapter 8, we examine alterations to the mobile-ion defect
mobility as a consequence of the solid electrolyte inductive effect in
Sn-doped LGPS.

The next two chapters discuss the basics of the theory and methodology
behind the quantum-mechanical approaches used to calculate the nec-
essary inputs for the equations laid out in this chapter such as the defect
formation energies. This is then followed by a discussion of some ancillary
methodology used to further analyse the implications of the the presence
of point defects in the materials studied.
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3
Practicable solutions to Schrödinger’s wave equation for solid-state
systems

The principle goal of the quantum mechanical calculations presented in
this work is to facilitate the solution of the equations described in Chap-
ter 2. Due to the work of many quantum physicists in the early twentieth
century, these variable terms in these equations are calculable via the
Schrödinger equation,

𝐻Ψ ({R𝐼 , r𝑖}) = 𝐸Ψ ({R𝐼 , r𝑖}) . (3.1)

In the above, 𝐻 is the Hamiltonian operator, 𝐸 is the total energy, and
Ψ ({R𝐼 , r𝑖}) is the wave function [1]. The wave function describes a
system of nuclei with positions {R𝐼} and electrons described by {r𝑖}.
Once the wave function is known, many useful physical properties of that
system can be calculated. The significance of this work was perhaps best
summarised by Paul Dirac when he declared,

“ The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus completely known
… ”. [2]

However, solving the Schrödinger equation for realistic materials is not
trivial: themany-bodyHamiltonian is comprised of terms that are simulta-
neously dependent on the interactions between all particles in the system:

𝐻 = −

𝑇nuc

⏞⏞⏞⏞⏞
∑

𝐼

ħ2

2𝑀N
∇2

𝐼 −

𝑇elec

⏞⏞⏞⏞⏞⏞⏞
− ∑

𝑖

ħ2

2𝑚e
∇2

𝑖 +

𝑉elec-elec
⏞⏞⏞⏞⏞⏞⏞1
2 ∑

𝑖≠𝑗

e2

|r𝑖 − r𝑗|
−

𝑉nuc-elec
⏞⏞⏞⏞⏞⏞⏞
∑

𝑖
∑

𝐼

e𝑍𝐼
|r𝑖 − R𝐼 | +

𝑉nuc-nuc
⏞⏞⏞⏞⏞⏞⏞1
2 ∑

𝐼≠𝐽

𝑍𝐼𝑍𝐽
|R𝐼 − R𝐽 | (3.2)

where ħ is the reduced Planck’s constant,1 𝑖 is the electronic index, 𝐼 is the 1 ħ = ℎ
2𝜋

nuclear index, ∇2 is the Laplacian operator, e is the electron charge, 𝑚e is
the rest mass of an electron, 𝑍 is the nuclear charge and 𝑀N is the mass
of the nucleus. As more electrons and nuclei are added to our system, we
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increase the number of coupled, non-linear equations that must be solved
to reach a solution, vastly increasing calculation complexity and rendering
analytical solutions impossible. Dirac’s quote concludes

“ … and the difficulty is only that the exact application of these laws leads
to equations much too complicated to be soluble. ”

Computationally tractable solutions must therefore make approximations.
The first approximation invoked is the Born-Oppenheimer approxi-

mation originating from the mass difference between a nucleon and an
electron (𝑀N ≈ 2000 𝑚e). Because of this large difference we consider
nuclear motion to be negligible on the timescale of electronic motion
[3]; Ψ ({R𝐼 , r𝑖}) becomes Ψ ({r𝑖}). 𝑇nuc is now zero and nuclear posi-
tions define the fixed external potential, 𝑉nuc-elec. The Born-Oppenheimer
Hamiltonian can be written as

𝐻 = 𝑇elec + 𝑉elec-elec + 𝑉nuc-elec. (3.3)

Ψ (r
1
, r

2 
, r

3 
)

χ (r
1
) χ (r

2
) χ (r

3
)

Figure 3.1: The Hartree ap-
proximation assumes that the
3n-dimensional wave function,
Ψ(r1, r2, r3) can be satisfactorily
approximated by the product of n
3-dimensional single-particle wave
functions, 𝜒(r1)𝜒(r2)𝜒(r3).

To further reduce the parameter space associated with an exact solution
to the Schrödinger equation, early quantum chemical approaches were
based on the assumption that the many-body wave function, Ψ({r𝑖}) can
be approximated as the product of a set of non-interacting, one-electron
wave functions, {𝜒(r𝑖)}

Ψ ({r𝑖}) ≈ 𝜒1(r1)𝜒2(r2) … 𝜒𝑛(r𝑛). (3.4)

See Figure 3.1 for an illustration of this approach. This approximation is
named for its progenitor, Douglas Hartree [4]. Each of these one-electron
wave functions will be defined by a one-electron Hamiltonian, ℎ̂, such that

ℎ̂𝑖𝜒𝑖(r𝑖) = 𝜀𝑖𝜒𝑖(r𝑖), (3.5)

and ℎ̂ has the form

ℎ̂𝑖 = −

̂𝑡elec
⏞⏞⏞⏞⏞ħ2

2𝑚e
∑

𝑖
∇2

𝑖 +

𝑣nuc-elec
⏞⏞⏞⏞⏞
∑

𝐼

e𝑍𝐼
|r𝑖 − R𝐼 | . (3.6)

This has removed the 𝑉elec-elec term from our Born-Oppenheimer Hamil-
tonian (Equation (3.3)); the total energy of this non-interacting system is
the sum of the one-electron energies.

Rather than ignoring electron-electron interactions entirely, we can
instead treat our independent electrons moving in a Coulombic potential
created by the presence of all the other electrons in the system. We can
obtain an average interaction by using the electron density 𝜌(r), given



PRACTICABLE SOLUTIONS TO SCHRÖDINGER’S WAVE EQUATION FOR SOLID-STATE S Y STEMS 33

by the square of the wave function. We label the energy contribution
from this interaction the Hartree energy. In an illustrative helium-like
(two-electron) system, the Hamiltonian in our eigenequation for electron
one thus includes the terms in our previous Hamiltonian above, with an
additional term to account for the interaction of electron one with this
mean-field, 𝑣Hartree,

Ψ (r1, r2 , r3 )

χ (r1) χ (r2) χ (r3)

V
H

Figure 3.2: With reference to Fig-
ure 3.1, our independent electron
treatment can be improved by a
solution where each electron is
influenced by the potential arising
from its interaction with the mean-
field created by all other electrons,
𝑉H.

𝐻1 = ̂𝑡elec + 𝑣nuc-elec −

𝑣Hartree

⏞⏞⏞⏞⏞⏞⏞
∫ 𝜌(r2)

|r1 − r2|dr (3.7)

𝜌(r2) = |𝜒2|2. (3.8)

See Figure 3.2 for an illustration of this approach.
It is clear that solving the Schrödinger equation in this formalism is still

non-trivial: to evaluate the Hamiltonian and determine the wave function
of either electron we must know the potential produced by the other
electron, which is dependent on its wave function. Solutions are obtained
iteratively using the following procedure:

• Calculate the electron density, {𝜒𝑖}2, of our system given a set of trial
one-electron wave functions, {𝜒𝑖}.

• Solve Equation (3.7) given {𝜒𝑖}2.

• Solve Equation (3.6) for each one-electron Hamiltonian, producing
{𝜀𝑖} and a new trial wave function, {𝜒𝑖}′.

• Repeat until {𝜒𝑖} and {𝜒𝑖}′ match within some specified tolerance.

Solving the Scrödinger equation in such a manner relies on the variational
principle: the ground state energy of the system is always lower than or
equal to the energy produced by a trial Hamiltonian. This means that
when we reach a self-consistent minimum (i.e when {𝜒𝑖} = {𝜒𝑖}′), we
have reached the ground state.

To provide valid solutions to the Schrödinger equation, the system
wave function must obey the Pauli exclusion principle, i.e. Ψ({r𝑖}) must
change sign if any two electrons are exchanged [5]. The Hartree product
(Equation (3.4)) does not obey the Pauli exclusion principle; work by John
Slater and Vladamir Fock identified what would come to be known as a
Slater determinant ensures conformity with the Pauli exclusion principle
by construction [6, 7]. Slater determinants have the form

Ψ({r𝑖}) = 1√
𝑛!

∣
∣
∣
∣
∣
∣

𝜒1(r1) 𝜒2(r1) … 𝜒𝑛(r1)
𝜒1(r2) 𝜒2(r2) … 𝜒𝑛(r2)

⋮ ⋮ ⋱ ⋮
𝜒1(r𝑛) 𝜒2(r𝑛) … 𝜒𝑛(r𝑛)

∣
∣
∣
∣
∣
∣

(3.9)
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where 1/
√

𝑛! is the normalisation factor for an n electron system. A given
single-particle wave function can only be included once in a Slater deter-
minant, otherwise, the determinant would become zero over all space. In
other words, a Slater determinant requires that all orbitals are occupied by
no more than two electrons of opposite spins.

Minimising the energy of a Slater determinant—observing that the
orbitals must be normalised, and orthogonal2—with respect to the single2 These conditions are often com-

bined into the term orthonormality. particle wave functions yields the Hartree-Fock equations [7]:

[ ̂𝑡elec + 𝑣nuc-elec − 𝑣Hartree] 𝜒𝑖(r) − 𝑣Ex(r𝑖)𝜒𝑗(r𝑖) = 𝜀𝑖𝜒𝑖(r) (3.10)

𝑣Ex(r𝑖) = e2 ∑
𝑗≠𝑖

∫ 𝜒∗
𝑗(r′)𝜒𝑖(r′)
|r − r′| dr′. (3.11)

𝑣Ex(r𝑖) is the exchange potential. Exchange interactions have no classi-
cal analogue, but for our purposes it can be considered as a stabilising
contribution to the total energy on accounting for Pauli repulsion [8].

This mean-field approach has a key limitation. Electrons do not move
independently of the other electrons in the system, there is correlation
between the position of electrons due to their mutual Coulomb repulsion.
Accounting for correlation further alters the energy from the purely classi-
cal interaction between electrons and the mean-field of the system and is
not accounted for in pure Hartree-Fock approaches.

3.1 Density functional theory

Owing to the complexity of the many-body wave function, Hartree-Fock
theory approximates a fully interacting system with a fictitious one in
which there is no correlation between the spatial positions of electrons.
Density Functional Theory (DFT) circumvents the need for such an
approximation by presenting a method to calculate the exact system
energy in terms of a 3-dimensional electron density as opposed to a 3n-
dimensional wave function.

In the 1960s, Pierre Hohenberg and Walter Kohn established the re-
lationship between electron density (𝜌(r)) and total energy forming the
theoretical basis for DFT by proving two key theorems [9],

1 An external potential, 𝑉ext (𝑉nuc-elec in Equation (3.3)), and hence the
total energy, is a unique functional of the ground state electron density.

In other words, the electron density is uniquely defined by the interactions
between electrons and nuclei: the external potential 𝑉ext. Internal energy
(𝑇elec + 𝑉elec-elec) is independent of this interaction, and therefore, the
relationship between internal energy and electron density is defined by a
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universal functional 𝐹[𝜌(r)]

𝐸[𝜌(r)] ≡ ∫ 𝜌(r)𝑉ext(r)𝑑r + 𝐹[𝜌(r)]. (3.12)

The second theorem states

2 The variational principle is valid for this energy functional, 𝐸[𝜌(r)],
such that for the correct ground-state electron density, the energy
functional is minimal and as such, equal to the total, exact ground state
energy of the system.

This means that (unlike Hartree-Fock theory) DFT can be used to solve
for total energy using a self-consistent field approach with respect to
the electron density (as opposed to the wave function). Hohenberg and
Kohn had proved that the exact energy could be solved using the electron
density as opposed to the wave function, but they did not provide a means
to do so.

A practical approach followed the next year developed by Kohn and
Lu Jeu Sham. The Kohn-Sham approach proposes that the interacting
many-body electron density, 𝜌(r), which can be written as

𝜌(r) = ∑
𝑖

|𝜓𝑖(r𝑖)|2, (3.13)

can be represented by an auxiliary system of non-interacting “Kohn-
Sham” single-electron orbitals, 𝜙𝑖, with the same ground-state density as
that of the interacting system [10]

𝜌(r) = ∑ |𝜙(r𝑖)|2. (3.14)

Kohn-Sham orbitals need not resemble conventional electronic orbitals,
they can be any set of functions that recover the many-body electron
density.

Partitioning energy as a functional of density gives

𝐸[𝜌(r)] = 𝑇 [𝜌(r)] + 𝐸ext[𝜌(r)] + 𝐸H[𝜌(r)] + 𝐸Ex[𝜌(r)] + 𝐸C[𝜌(r)]
(3.15)

where 𝑇 [𝜌(r)] is the electron kinetic energy, 𝐸ext[𝜌(r)] is the external en-
ergy, 𝐸H[𝜌(r)] is the Hartree energy, i.e. the energy contribution from the
classical electrostatic interactions between electrons, and 𝐸Ex[𝜌(r)] and
𝐸C[𝜌(r)] are the exchange and correlation energies respectively. The form
of the interacting density kinetic energy functional, 𝑇 [𝜌(r)] is not known,
however, the kinetic energy for the non-interacting Kohn-Sham single
particle system (𝑇KS[𝜌(r)]) can be calculated exactly as in the Hartree-Fock
method, likewise for the Hartree energy. All remaining energy contribu-
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tions arising from the non-classical interactions between electrons are
collected in a single term 𝐸Ex-C[𝜌(r)] (the exchange-correlation energy). In
other words, the 𝐸Ex-C[𝜌(r)] term contains the energy contributions from
errors associated with the non-interacting Kohn-Sham model,

𝐸Ex-C[𝜌(r)] = (𝑇 [𝜌(r)] − 𝑇KS[𝜌(r)]) + (𝐸elec-elec[𝜌(r)] − 𝐸H[𝜌(r)])
(3.16)

Slater determinants are again used to describe the total wave function.
The one-electron Kohn-Sham equations can be written similarly to the
Hartree-Fock equations as

𝐻KS

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[𝑇KS + 𝑉H + 𝑉ext + 𝑉Ex-C] 𝜙𝑖(r) = 𝜖𝑖𝜙𝑖(r). (3.17)

Unlike Hartree-Fock theory, in principle the effects of electron exchange
and correlation are fully accounted for in DFT. In practice, however, the
form of 𝑉Ex-C is unknown, and approximations must be made.

3.2 Approximating exchange & correlation energies

Selecting an appropriate exchange-correlation functional is one of the
most important considerations at the beginning of any DFT study. Re-
markably, relatively simple approximations to 𝐸Ex-C can produce suffi-
ciently accurate results in many cases. The simplest of these approxima-
tions is the local density approximation (LDA). Under this regime, it is
assumed that the exchange-correlation energy contribution is equal to that
of a homogeneous electron gas (HEG) with the same local density as the
system of interest [10]

𝐸LDA
Ex-C = ∫ 𝐸HEG

Ex-C [𝜌(r)]dr. (3.18)

For a HEG, exchange can be calculated exactly [11, 12],

𝐸HEG
X [𝜌(r)] = 3

4 ( 6
𝜋 )

1
3

𝜌 4
3 (r). (3.19)

The equivalent calculation for correlation cannot be performed ana-
lytically. It is instead calculated by fitting to high-precision quantum
Monte Carlo simulations of uniform electron gases [13]. Despite the
inherently non-local nature of exchange and correlation, systems with
well-distributed electron density, such as metals, are well modelled with
LDA approaches.

For systems with electron density that varies more strongly over space,
a range of “gradient-corrected” exchange-correlation functionals have been
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developed to introduce a degree of non-locality into Kohn-Sham DFT.
These functionals not only include a dependence on the local density,
but also the first derivative of the density, giving rise to the name gener-
alised gradient approximation (GGA) functionals, termed a “semi-local”
functional. GGA functionals can be represented generally as

𝐸GGA
Ex-C = ∫ 𝐸HEG

Ex-C [𝜌(r)]𝐹HEG
Ex-C [𝜌(r), Δ𝜌(r)]dr (3.20)

where 𝐹Ex-C[𝜌(r), Δ𝜌(r)] is the gradient correction term. There are many
different ways this term can be parameterised leading to a wide variety
of GGA functionals that can be broadly categorised into those which are
derived by fitting to experimental parameters, and those which are derived
from physical constraints, such as the highly popular PBE [14] and PBEsol
functionals [15]. GGA functionals perform well over a range of solids,
reproducing properties such as lattice parameters with small errors [16].
This level of theory has a great appeal on modern computing architectures
with a respectable accuracy–cost trade-off, enabling studies involving
vast quantities of DFT calculations containing useful information with
comparatively little computational and researcher effort [17–19].

3.3 Solving the Schrödinger equation for an infinite crystal: period-
icity, Bloch theorem & plane waves

On an experimental length scale, a crystal will contain a vast number
of electrons—easily on the order of Avagadro’s constant. Even within
the approximate model of Kohn-Sham DFT, such a system cannot be
modelled directly. To approximate behaviour on longer length scales,
we can exploit the periodicity of crystalline materials and instead model
an infinite system. Because our material is crystalline, a single unit cell
should contain all the information necessary to represent the infinite
material: the properties of all other unit cells are related by symmetry. This
approximation holds as long as the system of interest has negligible size
effects.3 3 Astute readers will notice that the

presence of point defects introduces
size effects as it breaks the periodic
symmetry assumed for a perfect
crystal; dealing with point defects
within periodic DFT is discussed in
section 4.1.

The geometric arrangement of atoms in a macroscopic crystal is de-
scribed by the positions of the atoms in the unit cell, the crystallographic
basis, and the lattice vectors a, b and c. The lattice vectors describe all
possible periodic images of the unit cell

R = 𝑛1a + 𝑛2b + 𝑛3c (3.21)

where 𝑛1, 𝑛2 and 𝑛3 are integers. The lattice is unchanged when translated
by the lattice vectors; if the positions of the crystallographic bases within
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Figure 3.3: Modelling a periodic
function with a Fourier series: the
left-most panel shows a “square”
function we are trying to model; the
second panel from the left shows
that function overlaid by a with a
Fourier series of the form

∑
𝑛

sin(2𝑛 − 1𝑥)
2𝑛 − 1

where 𝑛 ≤ 2; the third panel shows
the same scenario for 𝑛 ≤ 20; the
right-most panel shows the same
again, but for 𝑛 ≤ 200. For each
of the Fourier series, a difference
plot (w.r.t to the function to be
modelled) is included beneath.

the unit cell are r, then

r + R = r. (3.22)

Likewise, any function 𝑓(r) that shares the periodicity of the lattice trans-
lated by R will not change:

𝑓(r + R) = 𝑓(r) (3.23)

this includes, for example, the external potential exerted on the electrons
by the nuclei.

In an infinite, periodic solid, electronic (Kohn-Sham) wave functions
are no longer described by chemical orbitals, but are instead Bloch func-
tions, 𝜓k [20]:

𝜓k = 𝑢(r)k exp (ikr) . (3.24)

The Bloch function is a product of the basis function 𝑢(r)k which shares
the periodicity of the crystal lattice, and exp (ikr), a plane wave.4 k is the4 i =

√
−1

wave vector; the set of all values of k form a space known as reciprocal-
space. Like a real-space crystal lattice, the corresponding reciprocal space
lattice is periodic, and as such, there is a discrete unit of reciprocal space
that contains all values of k that will return a unique solution to Equa-
tion (3.24). This is known as the Brillouin zone, and is the reciprocal space
equivalent of the primitive cell. Further discussion of the physical signifi-
cance of k and the Brilloiun zone can be found in Section 4.2.4.

Within periodic DFT, we solve for the set of periodic functions that
minimises the total energy in a normalised sum over all values of k. To
ensure calculations remain accurate without excess computational cost, we
exploit the fact that the wave function varies smoothly within reciprocal
space: sampling an equally spaced grid of points (the Monkhorst-Pack
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method [21]), the k-point mesh density is systematically increased until
convergence criteria are met.

The periodic function 𝑢(r)k can be constructed from a Fourier series (a
superposition of harmonically related sine and cosine waves, plane waves).
𝑢(r)k can be written as

𝑢(r)k = ∑
𝐺

𝑐k,G exp (iGr) (3.25)

where 𝑐k,G are the Fourier expansion coefficients, and exp (iGr) is a plane
wave with wave vectors G that are reciprocal lattice vectors of the crystal.
As more terms are added to the Fourier series, the “Bloch wave” and
therefore the electron density are described with increasing accuracy (see
Figure 3.3). The point at which the expansion is truncated is typically
determined via convergence testing: some property of interest is calculated
with respect to a plane wave cutoff kinetic energy, which is proportional to
|k + G|2,

1
2 |k + G|2 < 𝐸cut. (3.26)

𝐸cut is set at the value which further increases in the basis set size no
longer return a meaningful charge in a target property (typically total
energy). Combining Equations (3.24) and (3.25), gives us an expression
for the wave function of a periodic system

𝜓k = 𝑢(r)k exp (ikr) , (3.27)

= ∑
G

𝑐k,G exp (iGr) exp (ikr) (3.28)

= ∑
G

𝑐k,G exp [(iG + k) r] . (3.29)

3.4 The core electrons

Sudden changes in electron density are hard to capture using a plane-wave
basis set. This is illustrated in Figure 3.3 where it is clear that even when
our Fourier series contains 200 plane waves, the areas surrounding the
steep gradients in the function to be modelled are comparatively poorly
described. This is problematic in chemical systems when describing the
region around the nucleus where there are strong oscillations in the elec-
tronic wave functions (and therefore, the electron density).5 Modelling 5 Orthonormal wave functions have

a high number of nodes near the
nucleusthese core states directly is not only resource-intensive but also fairly un-

informative for our purposes as the chemical properties of the elements
are typically determined by their valence electrons. Therefore, rather than
model these states directly, a pseudopotential can be used. The pseudopo-
tential represents a “frozen-core” approximation for the nucleus and core
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electrons; the core acts as a combined potential that influences the valence
electrons, generating a pseduo–wave-function ̃𝜓 that is smooth and node-
less [22] but accurately captures the wave function of the valence electrons.
The pseudopotentials are constructed from all-electron calculations of
independent atoms in such a way that they are transferable between other
calculations, i.e. once a pseudopotential is parametersised for a given el-
ement with a given exchange-correlation functional, in principle, this
calculation need not be repeated.

Within a true pseudopotential approach, information about the core
electrons is lost, however, all-electron calculations are resource-intensive.
A compromise between the two is found in the projector augmented wave
(PAW) method, in which the pseudopotenial is constructed in such a
way that some transformation operator, 𝜏 , can recover the all electron
(Kohn-Sham) wave function [23]

𝜙(r) = 𝜏 ̃𝜙(r). (3.30)

The PAWmethod is adopted for all DFT calculations in this work.

3.5 Failings of DFT in the description of defective systems

Given an atom with 𝑛 electrons, during ionisation or electron addition
(common during the formation of charged defects), the intermediate state
can be described as a statistical mixture of the 𝑛 electron atom and the
𝑛 ± 1 electron atom,

𝐸(𝑛) = (1 − 𝜔)𝐸𝑛 + 𝜔𝐸𝑛+1 (3.31)

n - 1 n n + 1
number of electrons

en
er

gy

DFT energy

exact energy

Figure 3.4: Plot showing the rela-
tionship between the DFT energy
as a function of the number of elec-
trons as compared to the exact E(n)
relationship.

where 𝜔 has a value of 0 ≤ 𝜔 ≤ 1 and represents the statistical weight
of the 𝐸𝑛+1 state. 𝐸(𝑛) is therefore linear between integer occupation
numbers and discontinuous at integer values. LDA and GGA calcula-
tions do not capture this 𝐸(𝑛) dependence correctly owing to the self-
interaction error present in local and semi-local Kohn-Sham–DFT. Within
the Hartree potential, the classical electrostatic interaction between each
Kohn–Sham electron 𝜙(r𝑖) and all other electrons {𝜙(r𝑗≠𝑖)} is dependent
on the full electron density, {𝜙(r𝑖)}2, including the density contribution
of the electron 𝜙(r𝑖), hence the term self-interaction error. This behavior
will artificially stabilise partially–occupied (delocalised) solutions to elec-
tron addition/removal in defect calculations as opposed to lower energy
integer occupation solutions [24] . The 𝐸exact(𝑛) and 𝐸DFT(𝑛) relation-
ships are compared in Figure 3.4.

The continuous nature of the 𝐸DFT(𝑛) relationship foreshadows an
additional issue inherent in local and semi-local DFT approaches. The
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band gap, 𝐸g of a material can be written as,6 6 Equivalently, the band gap can be
defined as

𝐸g = 𝐸I − 𝐸A. (3.32)

where 𝐸I and 𝐸A are the ionisation
and electron affinity energies
respectively.

𝐸integer
g = [𝐸(𝑛 − 1) − 𝐸(𝑛)] − [𝐸(𝑛) + 𝐸(𝑛 − 1)]. (3.33)

For the exact Ex-C functional, 𝐸integer
𝑔 is equal to

𝐸derivative
g = [𝜕𝐸

𝜕𝑛 ∣
𝑛+𝛿

− 𝜕𝐸
𝜕𝑛 ∣

𝑛−𝛿
] . (3.34)

For local and semi-local DFT, 𝐸integer
g ≠ 𝐸derivative

g , owing to the continuous
nature of 𝐸DFT(𝑛), which has its origins in the self-interaction error, and
the fictitious nature of the Kohn-Sham orbitals [25]. The result is LDA and
GGA are consistent in underestimating the band gaps of semiconductors.
Corrections to the local and semi-local DFT approaches recovering the
linear response of the 𝐸(𝑛) can improve both the relative stability of
localised and delocalised solutions and the description of the band gap
[26].

3.5.1 Hybrid-DFT

n - 1 n n + 1
number of electrons

en
er

gy

DFT energy

Hartree-Fock 
energy

Figure 3.5: Plot showing the rela-
tionship between the Hartree-Fock
(HF) energy as a function of the
number of electrons as compared to
the exact E(n) relationship and the
DFT reported energy.

Where GGA artificially stabilises delocalised wave functions, Hartree-Fock
theory over-stabilises localised solutions [24, 25]. Therefore, combining a
fraction of exact Hartree-Fock exchange with the DFT Ex-C energy can
theoretically restore the expected linear response to electron addition/ion-
isation [27]. This hybrid DFT-Hartree-Fock approach (hybrid-DFT) can
improve both the description of the band gap and the relative stabilities
of localised and delocalised solutions [28]. Hybrid-DFT functionals are
generally described by

𝐸hybrid
Ex-C = 𝛼𝐸HF

Ex + (1 − 𝛼)𝐸DFT
Ex-C (3.35)

where the 𝛼 parameter is the fraction of exact exchange mixing. To reduce
the expense associated with the calculation of exact exchange, a range
approximation is often employed such that we assume the exchange en-
ergy at long distances can be satisfactorily described by a GGA functional,
and consider exact exchange at only short ranges. Such screened hybrid
functionals take the form

𝐸s-hybrid
Ex-C (𝛼, 𝜔) = 𝛼𝐸HF

Ex (𝜔) + (1 − 𝛼)𝐸DFT,SR
Ex (𝜔) + 𝐸DFT,LR

Ex (𝜔) + 𝐸DFT
C (3.36)

Where 𝜔 is a range-screening factor. Accordingly, these functionals tend to
a full hybrid description as 𝜔 → ∞ and GGA as 𝜔 → 0; a very popular
implementation for modelling defect chemistry in crystal systems is the
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Heyd–Scuseria–Ernzerhof functional (HSE06) [29, 30]. In HSE06 𝜔 is
0.11 a−1

0 and 𝛼 is 0.25 and the the PBE functional is used to calculated the
GGA Ex-C contributions. While ultimately a form of error cancellation,
hybrid functionals have been shown to provide significant improvements
over purely local-based approaches. In particular, HSE06 can accurately
reproduce the experimental band gaps of many semiconductors [31,
32], while also providing reasonable descriptions of localised charge
carriers [33]. The disadvantage is that hybrid-DFT calculations demand
significantly more computational resources, meaning their indiscriminate
use is often prohibited.
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4
Methodology

4.1 Methodological considerations for defect modelling

We now turn to the practicalities of solving the equations set out in Chap-
ter 2 using DFT. Let us begin by restating the equations for the concentra-
tion and formation energy of defect 𝑋 in charge state 𝑞 ([𝑋𝑞] and Δ𝐸𝑋𝑞

f

respectively)1 1 A reminder of the terms in these
equations
𝑁𝑋 site degeneracy
𝑔𝑞 (intrinsic) degeneracy
𝑘B Boltzmann constant
𝑇 temperature
𝐸𝑋𝑞

tot total energy of defective
material

𝐸bulk
tot total energy of the bulk
material

𝑛𝑖 number of ions of kind 𝑖 that
form the defect

𝜇𝑖 chemical potential of ions of
kind 𝑖 that form the defect

𝑞 defect charge state
𝐸Fermi Fermi energy

[𝑋𝑞] = 𝑁𝑋𝑔𝑞 exp(−Δ𝐸𝑋𝑞
f

𝑘B𝑇 ) (4.1)

Δ𝐸𝑋𝑞
f =

Δ𝐸𝑋𝑞

⏞⏞⏞⏞⏞⏞⏞(𝐸𝑋𝑞
tot − 𝐸host

tot ) +
𝜇ion

⏞∑
𝑖

𝑛𝑖𝜇𝑖 +
𝐸Fermi

⏞𝑞𝐸Fermi . (4.2)

In this section, we will discuss the practical approach taken to calculate
defect formation energies in this work, including a discussion of potential
sources of error in the methodology and how they are accounted for via a
termwise examination of Equation (4.2).

4.1.1 “Raw” defect energies, Δ𝐸𝑋𝑞

r= ∞ r= 3ar= a

host motif

defect motif

calculation cell

a

Figure 4.1: The left-hand panel
shows a 2D representation of the
system we are trying to model:
𝑟defect−defect = ∞. The middle
panel illustrates the issue with
using a symmetry reduced structure
to model the defect: it results in
short defect-defect separations,
and therefore large defect-defect
interactions. The right-hand panel
shows a compromise between the
two approaches, a 3 × 3 supercell of
the primitive cell.

The use of periodic DFT and the study of point defects appear to be at
odds with one another; typical DFT calculations of extended crystalline
systems exploit symmetry to approximate experimentally relevant length-
scales by modelling an infinite system (see Section 3.3). The use of a sym-
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metry reduced input structure will cause issues when modelling a defect:
periodic repetitions of the calculation cell give rise to spurious energy
contributions from the interactions between the periodic images of the
defect. The energy contributions from these unphysical interactions will
decay as the separation between defect images increases, meaning we can
minimise these energy contributions using an expansion of smaller cells, a
supercell (Figure 4.1). The supercell method is widely used for modelling
point defects due to its conceptual simplicity and broad applicability to
different materials [1–3].

In principle, we would incrementally increase the size of the supercell
until the Δ𝐸𝑋𝑞 term in Equation (4.2) becomes constant with respect
to further increases in supercell size. At this point, we would deem the
interaction between defect images satisfactorily minimised. However, the
Coulomb interaction between defect images is relatively long-ranged [4,
5], meaning impractically large calculation cells are needed to entirely
remove this energy contribution (other interactions, such as structural
effects, can be accommodated for on typical DFT calculation length scales
[6]). Therefore, in addition to utilising a supercell, an image-charge correc-
tion is added to the calculated energy to restore the dilute limit.

Treating defect images as point charges, their interaction can be calcu-
lated as

𝐸M = −𝑞2𝛼
2𝜖𝑟 (4.3)

where 𝑞 is the defect charge, 𝛼 is the Madelung constant, 𝑟 is the distance
between the charges, and 𝜖 is the dielectric constant2 [8]. This approxi-2 The dielectric constant is com-

prised of charge screening contribu-
tions from the ions and electrons.
These terms are additive within the
Born-Oppenheimer approximation

𝜖 = 𝜖ionic + 𝜖elec. (4.4)

The two terms are calculable within
density functional perturbation
theory [7].

mation allows us to directly calculate the electrostatic interaction between
defect images, and include it in Equation (4.2). However, the finite size of
our supercell perturbs the charge density from that of the bulk material
meaning that the interaction between periodic images of the defect can-
not be treated as point charges screened by the ideal dielectric medium of
the bulk [9, 10]. A model proposed by Lany and Zunger, applies a scaling
factor to Equation (4.3) accounting for this non-ideal screening [6].

𝐸LZ
icc = [1 + 𝑐sh(1 − 𝜖−1)] 𝑞

2𝛼
2𝜖𝑟 . (4.5)

In the above 𝑐sh is the “shape factor” of the cell, which has been calculated
for a range of common supercells [11]. It was noted that for a cubic sys-
tem, this prefactor often reduces ≈ 2/3, leading to a pleasingly simple
correction term, yet one that remains robust [6, 12]. This method was
generalised for anisotropic systems by Murphy and Hine by utilising a
dielectric tensor as opposed to a single dielectric constant [13]; both the
Lany and Zunger image-charge correction and the Murphy and Hine
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extension are used in this work.

4.1.2 Atomic chemical potentials, 𝜇ion

Synthesis conditions offer a means to control defect chemistry. Consider
some material 𝐴2𝐵3: if the amount of element 𝐴 were to be restricted
during the synthesis of 𝐴2𝐵3, then the formation of 𝑉 ×

𝐵 may proceed as

𝐵×
𝐵 → 𝑉 ×

𝐵 + 𝐵(s). (4.6)

However, if 𝐴 were in excess, the vacancy formation could instead proceed
via the reaction

𝐵×
𝐵 + 2

3𝐴(s) → 𝑉 ×
𝐵 + 1

2𝐴2𝐵3(s). (4.7)

These two cases, each defined by the respective reactions, will give dif-
ferent vacancy formation energies. Within the models used for studying
the defect properties of solid electrolytes in this dissertation, the variable
‘abundance’ of constituent elements during defect formation is accounted
for by the 𝜇ion term in Equation (4.2) (the equation for the formation en-
ergy of defect 𝑋 in charge state 𝑞). This is not a free variable, it is bounded
by the stability limits of the host material [14].

Consider, as an example, Li2O. Its formation is defined by the reaction

2Li(s) + 1
2O2(g) ⇌ Li2O(s). (4.8)

The chemical potential 𝜇𝑖 (where 𝑖 = Li or O) is the rate of change of free
energy with the number of atoms of 𝑖 that are added to the system. When
reaction eq. (4.8) is in equilibrium, the free energy is at a minimum, and so
the sum over chemical potentials is 0,

2𝜇Li + 𝜇O − 𝜇Li2O = 0 (4.9)

2𝜇Li + 𝜇O = 𝜇Li2O. (4.10)

We define our chemical potentials such that 𝜇𝑖 = 𝐸0
𝑖 + Δ𝜇𝑖 where 𝐸0

𝑖 is
the elemental reference energy (its DFT calculated energy in its standard
state), and Δ𝜇𝑖 defines the deviation from this reference energy owing to
differing growth conditions. We can then write

2(𝐸0
Li + Δ𝜇Li) + (𝐸0

O + Δ𝜇O) = (𝐸0
Li2O + Δ𝜇Li2O) (4.11)

2Δ𝜇Li + Δ𝜇O = (𝐸0
Li2O + Δ𝜇Li2O) − 2𝐸0

Li − 𝐸0
O⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Δ𝐸Li2O
f

(4.12)

2Δ𝜇Li + Δ𝜇O = Δ𝐸Li2O
f . (4.13)
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Equation (4.13) highlights the mutual dependence of Δ𝜇Li and Δ𝜇O.
These elemental chemical potentials are also further bound by the con-
straints

Δ𝜇Li ≤ 0, and Δ𝜇O ≤ 0. (4.14)

Outside of these bounds Li2O is unstable with respect to decomposition
to form one of the pure elements. Taking Equations (4.13) and (4.14)
together, we can therefore write the oxygen-rich–lithium-poor limit as

Δ𝜇O = 0 eV, (4.15)

therefore.

Δ𝜇Li = Δ𝐸Li2O
f

2 . (4.16)

and the lithium-rich–oxygen-poor limit as

Δ𝜇Li = 0 eV, (4.17)

and

Δ𝜇O = Δ𝐸Li2O
f . (4.18)

The existence of competing phases adds further bounds on reasonable
limits for Δ𝜇𝑖. In the present case, the formation of lithium peroxide
should be avoided, and as such, Δ𝜇Li and Δ𝜇O are subject to the addi-
tional constraint

2Δ𝜇Li + 2Δ𝜇O ≤ Δ𝐸Li2O2
f . (4.19)

For any binary compound 𝐴𝑥𝐵𝑦, the limits described can be generalised
as

𝑥Δ𝜇𝐴 + 𝑦Δ𝜇𝐵 = Δ𝐸𝐴𝑥𝐵𝑦
f (4.20)

𝑝Δ𝜇𝐴 + 𝑞Δ𝜇𝐵 ≤ 𝐸𝐴𝑝𝐵𝑞
f (4.21)

Δ𝜇𝐴 ≤ 0 (4.22)

Δ𝜇𝐵 ≤ 0. (4.23)

For ternary systems and above, the number of independent variables
and equations defining their limits increases. However, the solving for
the chemical potential limits remains a number of simultaneous linear
equations in a number of variables, and so is soluble and amenable to
programmatic solution. We have used the Chemical Potential Limits
Analysis Program (CPLAP) to automate the solution [15].
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4.1.3 Electronic chemical potential 𝐸Fermi

Defect formation does not, in general, only involve adding or removing
neutral atoms. It may also involve adding or removing electrons, and the
energetic cost of this must also be included in the defect formation en-
ergy. The chemical potential of the electrons added to or removed from
the system during defect formation is given by the Fermi energy. It is both
conventional and useful to define the Fermi energy in reference to the en-
ergy of the highest occupied state in the valance band of the host material,
the valence band maximum (VBM), such that Δ𝐸Fermi = 𝐸Fermi − 𝐸host

vbm .
Charged point defect calculations in periodic DFT, however, introduce
a mismatch between the Kohn-Sham eigenvalues in the host and defect
cells. When calculating the energy of a system with a net charge (𝑞 ≠ 0) a
uniform charge applied over the whole calculation cell is introduced that
neutralises the overall charge of the cell, while only interacting weakly with
the “real” charge associated with the defect.3 The result is that the energies 3 This uniform background charge is

known as a jellium.of the defective cell and the host cell are solved with respect to a different
reference electrostatic potential, causing the mismatch in the band en-
ergies of the material [10]. This shift is unphysical; we would expect the
bulk-like properties of the defect cell to be identical to the host cell (see
Figure 4.2). A correction must therefore be applied to align the position of
the VBM in the two calculations, restoring the bulk characteristics of the
region in the defect supercell that is far from the defect. Potentials, 𝑉 , can
be aligned according to

x

V
V

bulk

V
X,q

V
offset

Figure 4.2: In some arbitrary
material, the average electrostatic
potential of a bulk calculation in
𝑥 is shown by a dotted grey line.
The potential of the same cell
containing defect 𝑋𝑞 is shown in
red, where the offset between the
electrostatic potential in host cell
and the bulk region of the defective
cell is labelled as 𝑉offset.

𝐸𝑋,𝑞
pot = 𝑞[𝑉 𝑋,𝑞 − 𝑉 bulk], (4.24)

allowing direct comparison of the total energies of the two systems. In
practice, to obtain these potentials, an average is taken over core potentials
of all ions not in the immediate vicinity of the defect in both cells [6].

4.1.4 Reevaluating the equation for defect formation energy

We can now reformulate Equation (4.2) to include terms that account for
the methodology used in this work,

Δ𝐸𝑋𝑞
f = Δ𝐸𝑋𝑞 + ∑

𝑖
𝑛𝑖(𝐸0

𝑖 + Δ𝜇𝑖) + 𝑞(𝐸Fermi + 𝐸host
vbm + 𝐸𝑋𝑞

pot ) + 𝐸icc

(4.25)

where the changes as compared to the previous version are the decom-
position of 𝜇𝑖 into the reference energy of the element 𝐸0

𝑖 and the shift
in chemical potential due to growth conditions Δ𝜇𝑖. Similarly, the elec-
tron chemical potential is now made up of contributions from a reference
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energy, 𝐸host
vbm and a shift in that energy Δ𝐸Fermi, corrected for the mis-

alignment of electronic energy levels 𝐸𝑋𝑞
pot , and with an image charge

correction added, 𝐸icc.

4.2 Additional methods

4.2.1 Structure optimisation

Kohn-Sham DFT relies on approximations for the quantum mechanical
properties of electrons: the charge density returned by a Kohn-Sham
DFT calculation is sensitive to the choice of functional (along with many
other calculation parameters), and as such, the forces between atoms
are unlikely to match experimentally reported structures, even at 0 K. It
is therefore best practice to relax our calculation cell using our chosen
exchange-correlation functional before attempting to extract meaningful
data. This will prevent contributions to the DFT-calculated total energy
arising from spurious forces between the atoms. To ensure we are solving a
local minimisation problem we take an experimental structure as our trial
structure, calculate the force on each atom, perturb the ionic configuration
to reduce the calculated forces, and repeat until the forces are reduced to
within some specified tolerance (∼0 eVÅ−1).44 A typical value used in this work is

0.001 eVÅ−1
The Hellmann-Feynman theorem states that the force on any fixed

nucleus in a system of nuclei and electrons can be obtained from classical
electrostatics [16, 17]. The force can therefore be estimated directly from
the charge density, which is available from DFT. Once there are zero net
forces on each ion, the minimum energy ionic configuration has been
reached. The Hellmann-Feynman theorem also allows for the optimisa-
tion of cell shape and volume, as well as ionic positions.

One must be careful when following such a ‘complete’ structural relax-
ation owing to the potential inadvertent introduction of Pulay stress: lattice
volume changes can result in an incomplete plane-wave basis set introduc-
ing small errors into the stress tensor [18]. Pulay stress can be avoided in
one of two ways, both of which have been employed in different instances
in this work: the energy of a series of fixed-volume DFT calculations can
be fit to an equation of state to obtain an equilibrium volume, sidestepping
the issue of using a volume dependent basis set entirely, or the plane-wave
energy cutoff is raised significantly above the value determined during
convergence testing, minimising Pulay stress.

4.2.2 Nudged elastic band

The nudged elastic band (NEB) method is used to investigate potential
energy surfaces, typically concerned with finding transition states energies
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Figure 4.3: Left An arbitrary po-
tential energy surface in which a
more red contour indicates a higher
energy, and blue contours indicate
a low energy traversed with a linear
interpolation (grey), a nudged elas-
tic band minimised pathway, using
the interpolated path as an initial
guess (blue), and the same pathway
subjected to a climbing image al-
gorithm to find a local maxima in
the pathway (red); right the energy
associated with that pathway, with
the energy profile represented by
the same colour as the pathway
shown on the plot above.
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and structures. It is often used as a means to investigate the motion of
point defects. It requires a reasonable “guess” at what the pathway for
ionic motion might look like. A typical NEB workflow involves defining
endpoints for ionic motion and relaxation of those endpoints. Once the
endpoint geometries are known, some interpolation scheme is used to
generate images along a pathway between them. This interpolation is often
linear, however, some more sophisticated methods are available including
pre-minimisation using simple potential models [19, 20].

The images along the pathway are then allowed to relax. To prevent the
structures from simply collapsing into the endpoints, the images are linked
to their adjacent images by a spring force, much like they were held to-
gether by a taut elastic band. The minimisation of the replicas takes place
simultaneously, resulting in the ‘band’ locating the pathway of minimum
energy for the migrating ion. The minimisation is guided by a force pro-
jection comprised of the spring forces along the band, and the ‘real’ forces
acting on the ions perpendicular to the band. The highest energy image
is often subject to an inverse force when it is close to the transition state
to find the true minimum energy pathway for single ion migration, this is
known as ‘climbing image’ NEB (CI-NEB) [21]. The differences between
NEB and CI-NEB are represented pictorially in Figure 4.3.

4.2.3 Bader charge partitioning

DFT calculations output the electron density, which means to assign
charges to atoms, we need to associate some volume of the charge density
with each atom. There are a range of charge-partitioning schemes, the
one used in this thesis is Bader charge analysis [22]. Within this scheme,
we define an atomic volume as a region of space that lies within all zero-
flux surfaces surrounding a maximum in the charge density, taken as
the position of the nucleus. We can then assign the atomic partial charge
as the difference between the integral of the charge density over space
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Figure 4.4: 2D representation of the
Bader charge partitioning scheme.

that occupies each atomic volume (number of electrons) and the nuclear
charge,

𝑞 = 𝑍 − ∫
Ω

𝜌(𝑟)dr (4.26)

where Ω is the atomic volume. This approach to partitioning charge is
illustrated in Figure 4.4.

4.2.4 Band structure

Figure 4.5: 1D chain of 1s basis
functions where n is the lattice
point index and 𝜒 is a 1s basis
function associated with each lattice
point (as indicated) by the subscript
index.

...
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A band structure refers to a plot of the electronic eigenvalues (energies) as
a function of the wave vector k. Consider a 1D chain of hydrogen atoms
with spacing 𝑎 and lattice points indexed by 𝑛, each 1𝑠 basis function is
labelled 𝜒𝑛. This scenario is illustrated in Figure 4.5. The Bloch sum over
these bases is given by

𝜓k = ∑
𝑛

exp (ik𝑛𝑎)𝜒𝑛. (4.27)

When k = 0,

𝜓0 = ∑
𝑛

exp (0)𝜒𝑛 = ∑
𝑛

𝜒𝑛 = 𝜒0 + 𝜒1, … , + 𝜒𝑛 (4.28)

we reach a solution where all basis functions are in-phase, which corre-
sponds to a maximally bonding interaction. Taking k as 𝜋/a,

𝜓 𝜋
𝑎

= ∑
𝑛

exp (𝜋i𝑛)𝜒𝑛 = ∑
𝑛

(−1)𝑛𝜒𝑛, (4.29)

all basis functions are out of phase with their nearest neighbours, which
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corresponds to a maximally antibonding solution. Evaluating k for any
value outside the range |k| ≤ 𝜋/a returns a non-unique result: this range
of k is the first Brillioun zone (see Section 3.3).

E

k
0 π/a

...

...

Figure 4.6: Band structure for a 1D
hydrogen chain. Values of k ∼0
are low energy in-phase solutions,
values at ∼ 𝜋/a are high energy
out-of-phase interactions.

The band structure for a 1D hydrogen chain is shown in Figure 4.6. The
band structure contains useful information for understanding electronic
conductivity. The curvature or dispersion of a band can be used to calcu-
late electronic carrier effective mass 𝑚∗, which is related to the mobility of
an electron (or hole) 𝜇 by

𝜇 = e𝜏
𝑚∗ (4.30)

where 𝜏 is the average scattering time [23, 24]. The calculation of 𝜏 is non-
trivial, and so effective masses are often taken as an indicator of potential
electron and hole mobility (see Chapter 7 for more discussion of electron
and hole mobility in solid state electrolytes). 𝑚∗ is often calculated as

ħ
𝑚∗ = d2𝐸(k)

dk2 , (4.31)

where d2𝐸(k)/dk2 is the curvature of the band relevant for the charge
carrier in question, i.e. for a dilute concentration of free electrons, we
would take the band curvature at the conduction band minimum [24].
The band dispersion is determined by the overlap between neighboring
bases. Simply, if we compress the distance between lattice points, the
bonding interactions will strengthen, and the antibonding interactions will
destabilize further. This will result in larger changes in energy for the same
change in k.

4.2.5 Density of states

We can collect the states over a given energy range together, and sum them
to give a Density of States (DOS) (𝑔(𝐸)) which gives us another way to
represent the electronic structure of our material. Pictorially, we can see
how a DOS arises from a band structure in Figure 4.7: it is proportional to
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Figure 4.7: Evolution of the density
of states (right) for a 1D hydrogen
chain from its band structure (left).
The density of states has two peaks,
corresponding to small energy
range which describes the most
bonding states, and likewise for the
antibonding states.

the reciprocal gradient of the band structure,

𝑔(𝐸) ∼ ( dk
d𝐸 )

−1
. (4.32)

This also means that qualitative information can be drawn from the DOS
about band dispersion, and electron mobility: a wide, flat DOS indicates
a sharp gradient in the band dispersion, indicating disperse bands with
mobile electrons, whereas sharp changes in the DOS indicate flat bands
and localised states.

4.2.6 Bonding analysis

Figure 4.8: Relationship between
the COOP (right), density of states
(middle) and band structure (left)
for a 1D hydrogen chain. The
COOP is positive for bonding
interactions, negative for anti-
bonding interactions, and ∼ 0 for
non-bonding interactions.
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DFT is a somewhat “bonding-agnostic” approach, in that the outputted
charge density does not tell us anything directly about the nature of the
bonding interactions in the calculated system. In addition, assigning
chemical character to the Bloch functions is not intuitive: despite the
useful nature of modelling an infinite system in Bloch functions, how
these relate to a chemical picture is not obvious.

Considering that both a linear combination of atomic orbitals (LCAO)
and a set of plane waves are an appropriate basis set for solving the
Schrödinger equation, and the Hohenburg and Kohn theorems tell us
that there is only one ground state electron density, despite the fact it is
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expressed in a different basis, there must be some transformation that can
be applied between these descriptions [25],

Ψplane-wave = ΨLCAO = ∑
𝑖

𝑚
∑

𝑛
𝑐𝑖𝜙𝑖. (4.33)

In the LCAO basis, 𝑛 is the 𝑛th basis function in the set of all basis func-
tions 𝑚, and 𝑐𝑛,𝑖 is the mixing coefficient of the hydrogenic orbital, 𝜙𝑖.
Within an LCAO basis set, orbitals can be related to different atoms ex-
plicitly, which allows us write an atom or orbital projected density of states
(pDOS) as

pDOS𝑖(𝐸) =
𝑚

∑
𝑛

|𝑐𝑛
𝑖 |2𝛿(𝐸 − 𝐸𝑖). (4.34)

Additionally, we can define an overlap population between orbitals 𝑖 and 𝑗,
𝑃𝑖𝑗,

𝑃𝑖𝑗 = 𝑆𝑖𝑗
𝑚

∑
𝑛

𝑐∗
𝑖𝑗𝑐𝑛𝑗 (4.35)

where 𝑆𝑖𝑗 is the overlap integral between 𝜙𝑖 and 𝜙𝑗. An overlap population
weighted DOS, or “Crystal Orbital Overlap Population” (COOP) can then
be written as

COOP𝑖𝑗(𝐸) = 𝑆𝑖,𝑗
𝑚

∑
𝑛

𝑓𝑐∗
𝑛𝑖𝑐𝑛𝑗𝛿(𝐸 − 𝐸𝑖) (4.36)

in which 𝑓 is the occupation number of orbitals we compute the COOP
between [26]. The relationship between the band structure, density of
states, and COOP of a linear chain of hydrogen is shown in Figure 4.8.
To show how orbital topology can affect the COOP, we also compare the
schematic COOP for a linear hydrogen chain, and a “kinked” hydrogen
chain in Figure 4.9.

COOP

E

0- +

Figure 4.9: Comparison of the
COOP between nearest neighbour
(1-2) interactions (black) and next-
nearest neighbour (1-3) interactions
(red) for a “kinked” hydrogen
chain. The maxima of the red curve
are lower, as the distance between
centres are increased, reducing
the magnitude of the overlap
population.

To summarise the general characteristics of these curves, positive re-
gions are bonding, negative regions are antibonding, the amplitudes are
related to the number of states in that energy interval and the magnitude
of the overlap (illustrated by the smaller maxima for the 1-3 interactions
in Figure 4.9) The integral up to the Fermi energy (iCOOP) gives a proxy
metric for bond-order. Equivalently, we can consider the energy contribu-
tion associated with each bond to the total energy, and we resolve a related
metric, the “Crystal Orbital Hamilton Population” (COHP), the integral
of which (iCOHP) up to the Fermi level gives a proxy metric for the bond
energy [27]. To access this information starting from a periodic Kohn-
Sham orbital description, the output wave function is first converted to a
linear combination of atomic orbitals solution using the code LOBSTER
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[25].
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Context

This work concerns the defect chemistry and aliovalent doping response
of the antiperovskite-structured candidate solid–electrolyte Li3OCl. De-
spite potential issues surrounding synthesisability [1], this material serves
as exemplar for studying the defect chemistry and doping response of an-
tiperovskite solid-electrolytes owing to the apparent commonality between
key features of the defect chemistry of this material and other compo-
sitions with the same structure. In antiperovskite solid-electrolytes and
structurally related materials, it is often found that the charge-carrying in-
terstitial has a much higher mobility than the vacancy, but the mobile-ion
Frenkel pair typically has a significantly higher formation energy than the
mobile-ion Schottky defect [2–7]. This suggests the concentration of va-
cancies is higher than the concentration of interstitial in undoped antiper-
ovskites. These observations have led to the suggestion of two different
doping strategies to increase ionic conductivity: increase the concentration
of the majority charge carrier—the mobile-ion vacancy—via supervalent
doping [8], or to increase the concentration of the mobile-ion interstitial to
the point where it becomes the majority charge carrier to exploit its high
mobility via subvalent doping [9]. In this chapter we assess the expected
efficiency of these two proposed doping strategies for increasing the ionic
conductivity. We also touch on whether the general features of the defect
chemistry of Li3OCl are indeed applicable to other antiperovskite solid
electrolytes.

We argue that the asymmetric doping response of Li3OCl is a conse-
quence of a lower energy Schottky defect as opposed to Frenkel pair, or
rather than the Fermi energy is pinned by the formation of 𝑉 ′

Li and 𝑉 ●Cl
defects. With the caveat that the lowest energy negative defect can also
be O′

Cl. Crucially, the 𝑉 ′
Li remains low energy at the self consistent Fermi

energy, whereas the energy of the lithium interstitial is typically ∼1 eV
higher, therefore, subvalent doping will primarily be charge compensated
by the formation of 𝑉 ●Cl defects, and supervalent doping will be compen-
sated by a combination of 𝑉 ′

Li and O′
Cl defects, depending on the chemical

potential regime. As the low energy Schottky defect appears common
across antiperovskites solid electrolytes, this result, in the absence of other
complicating factors, should be general. Harnessing the high mobility of
the mobile interstitial within this structural family remains tantalising for
battery applications, yet proves challenging.

This chapter follows the same structure as the associated preprint
(see statement of authorship), however, it has been edited to remove
information that is redundant within the context of this thesis and to
better reflect the overall narrative of this dissertation.
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5.1 Introduction

The effectiveness of aliovalent doping to enhance ionic conductivity in
lithium-ion solid electrolytes through increasing the concentrations of
charge-carrying mobile defects depends on two conditions. First, aliova-
lent doping should preferentially increase the concentrations of charge-
carrying mobile defects ahead of competing immobile defects: doping
should preferentially increase the concentration of either lithium vacan-
cies or lithium interstitials. Second, any increase in the concentration of
charge-carrying defects should produce a corresponding increase in ionic
conductivity. This may not be the case if the ionic conductivity has some
dependence on defects other than those being targeted through doping.
In solid electrolytes that contain more than one charge-carrying defect
species, increasing the concentration of the minority defect species may
have little practical effect on the overall ionic conductivity. Alternatively,
where there are strong interactions between dopant atoms and oppositely
charged mobile defect species, these mobile defects may be kinetically
trapped, resulting in a net decrease in ionic conductivity [8, 9]. These po-
tential complications mean that aliovalent doping of solid electrolytes is
not guaranteed to produce a significant increase in ionic conductivity, and
predicting the effectiveness of a specific aliovalent doping strategy requires
characterising the response to doping of all relevant defects in the system
of interest.

Figure 5.1: The antiperovskite
crystal structure. In the case of
Li3OCl, the red sites are occupied
by lithium ions, the grey sites by
chlorine, and the blue by oxygen.

One lithium-ion solid electrolyte for which a number of aliovalent
doping schemes have been proposed is the antiperovskite Li3OCl [8–
12] (Fig. 5.1). Li3OCl has been widely studied following initial reports
of room-temperature ionic conductivities up to ∼1 × 10−3 S cm−1[13].
This reported high ionic conductivity is notable because the lithium ions
in Li3OCl are crystallographically ordered; this is in contrast to other
high–ionic-conductivity lithium-ion solid electrolytes, such as lithium
thiophosphates, in which lithium is typically disordered, with this disorder
thought to be integral to their fast ion diffusion [14–19].

In Li3OCl, ionic conductivity is attributed to the diffusion of mobile
point defects—specifically lithium vacancies and lithium interstitials [2,
20–22]. Lithium vacancies and interstitials in Li3OCl are both predicted
to be mobile at room temperature, with calculated diffusion barriers of
∼0.3 eV and ∼0.15 eV, respectively [2, 20–22]. While these diffusion
barriers indicate that lithium interstitials are significantly more mobile
than lithium vacancies, calculated defect-pair formation energies give a
lower formation energy for 𝑉Li + 𝑉Cl Schottky pairs (1.0-1.6 eV) than for
𝑉Li + Lii Frenkel pairs (1.9-2.5 eV) [21, 23, 24], making lithium vacancies
the expected dominant charge-carrying defect species in undoped Li3OCl.
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Both supervalent and subvalent doping strategies have been proposed
to enhance the ionic conductivity of Li3OCl [8, 9, 12, 20, 21, 25, 26]. Su-
pervalent doping—e.g., where a cation such as Mg2+ or Al3+ replaces
Li+—has been proposed as an effective route to increase the concentration
of lithium vacancies [8, 12, 20, 21, 25, 26], while subvalent doping—e.g.,
where an anion such as S2− replaces Cl−—has been proposed as an effec-
tive route to increase the concentration of lithium interstitials [9].

Several of the characteristic properties of Li3OCl—a high degree of
crystallographic ordering of mobile ions; low Schottky-pair formation en-
ergies, giving much higher concentrations of mobile vacancies than mobile
interstitials; and higher mobilities for these interstitials than for corre-
sponding vacancies—are shared by a number of other antiperovskite and
structurally-related solid electrolytes [2–7]. Understanding the effective-
ness of different aliovalent doping schemes in Li3OCl is useful, therefore,
not only because it may help direct the optimisation of ionic conductivity
for this one material, but also because it can provide more general insights
into doping responses for this class of solid electrolytes.Figure 5.2: The interstitial sites

considered in the antiperovskite
crystal structure. Anion intersti-
tials are shown in split grey-blue
at ( 1

4 , 1
4 , 1

4 ) and ( 1
2 , 0, 0), and the

lithium “dumbell” interstitialcy
defect as described by Emly et al.
[21] is shown in red. For consis-
tency with the literature we refer
to this defect simply as a lithium
interstitial.

In this chapter, we describe a hybrid density-functional theory (DFT)
study of Li3OCl that considers all native vacancy, interstitial, and anion
antisite defects [27, 28], which we have performed in order to characterise
the native defect chemistry of Li3OCl, and to model the effect of super-
valent and subvalent doping on native defect concentrations and ionic
conductivity. The positions of the interstitial defects considered are shown
in fig. 5.2. Under all considered synthesis conditions, we predict lithium
vacancies to be present in much greater concentrations than lithium inter-
stitials, in qualitative agreement with previous studies [3, 8, 9, 24, 29, 30],
and confirming 𝑉Li as the dominant charge carrier in nominally stoichio-
metric samples.

For doped Li3OCl, supervalent doping is predicted to increase the
concentration of both 𝑉Li and OCl, with the preferentially formed defect
depending on synthesis conditions, while subvalent doping is predicted
to preferentially increase the concentration of 𝑉Cl ahead of Lii under all
considered synthesis conditions. Supervalent doping is predicted to be
effective at increasing the ionic conductivity, particularly under Li-poor
synthesis conditions. Subvalent doping at moderate doping levels, how-
ever, is predicted to decrease the room-temperature ionic conductivity, due
to two complementary effects. First, subvalent doping at low-to-moderate
dopant concentrations decreases the concentration of lithium vacancies
more rapidly than it increases the concentration of lithium interstitials.
Second, increasing the number of lithium interstitials formed under syn-
thesis conditions causes increased “quenching” of lithium vacancies when
cooling to room temperature through recombination of 𝑉Li as 𝑉Li + Lii
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Frenkel pairs. Although sufficiently high levels of subvalent doping are
predicted to increase ionic conductivity relative to undoped Li3OCl, the
ionic conductivity thus obtained is significantly lower than predicted for
supervalent doping at equivalent dopant concentrations. We therefore do
not expect subvalent doping to be a practical doping strategy for increas-
ing the ionic conductivity of Li3OCl.

5.2 DFT calculation methodology

To calculate defect formation energies in Li3OCl, we have performed a se-
ries of hybrid-DFT calculations using the plane-wave DFT code VA SP [31,
32] using the HSE06 hybrid functional [33]. All calculations used a plane-
wave basis cutoff of 520 eV and defect calculations were performed using
a 3 × 3 × 3 supercell of the Li3OCl unit cell. Interactions between core
and valence electrons were described using the projector augmented wave
method [34] with cores of [H] for Li, [He] for O and [Ne] for Cl. To avoid
spurious forces associated with Pulay stress, equilibrium volumes were
calculated using a series of constant volume calculations and fitted to the
Murnaghan equation of state [35]. Geometry optimisations were deemed
converged when all atomic forces were smaller than 1 × 10−3 eV/Å. Su-
percell calculations used a 2 × 2 × 2 Monkhorst-Pack grid for sampling
k-space.

Our calculations predict a lattice parameter for Li3OCl of 3.82 Å, which
slightly underestimates the experimental value of 3.91 Å [13] but is in good
agreement with previous DFT calculations [12]. Our calculated value for
the band gap of Li3OCl of 6.6 eV compares well to previously calculated
values of 6.4 eV [12, 21]; To the best of our knowledge the band gap of
Li3OCl has not yet been measured experimentally.

5.3 Defining a “synthetically accessible” chemical potential space for
Li3OCl

To calculate defect formation energies, and hence predict defect con-
centrations, it is necessary to define the accessible ranges of chemical
potentials for the elemental species involved in the formation of each de-
fect. In most defect studies, the relevant region of chemical potential space
is constrained by the thermodynamic stability limits of the system under
study with respect to competing phases [27]. Li3OCl, however, is not ther-
modynamically stable, but is metastable with respect to formation of Li2O
and LiCl [21, 36]. Here, we follow the approach of Emly et al. and assume
that the degradation of Li3OCl to form Li2O is kinetically suppressed,
and therefore construct a metastable phase diagram with Li2O removed
as a competing phase [21]. The assumption that Li3OCl is metastable
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with respect to decomposition to Li2O and LiCl is supported by a recent
force-field–based atomistic modelling study that predicts excellent kinetic
stability of Li3OCl with respect to this decomposition pathway [37], al-
though experimental synthesis of phase-pure crystalline Li3OCl remains
extremely challenging [5]. We have used the code CPL AP to identify this
initial chemical potential region [38].
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Figure 5.3: Two-dimensional
projections of the “synthetically
accessible” 3D chemical potential
space for Li3OCl. a) {Δ𝜇Li, Δ𝜇O}
projection. b) {Δ𝜇Cl, Δ𝜇O} pro-
jection. For our defect and doping
response calculations we con-
sider the maximally lithium-rich
and lithium-poor limits: Li-rich
→ {Δ𝜇Li = −2.00 eV, Δ𝜇Cl =
−2.19 eV, Δ𝜇O = −1.32 eV}; Li-
poor→ {Δ𝜇Li = −2.23 eV, Δ𝜇Cl =
−1.75 eV, Δ𝜇O = −1.08 eV}.

Li3OCl is typically synthesised at 300-360 °C and under vacuum [13],
therefore, to define a “synthetically accessible” chemical potential range
for Li3OCl we further restrict the region of predicted metastability by con-
sidering chemical potentials corresponding to these synthesis conditions,
via

Δ𝜇O(𝑇 , 𝑃 ) = 1
2 {𝐶𝑝(𝑇 − 𝑇0) − 𝑇 [𝑆0 + 𝐶𝑝 ln

𝑇
𝑇0

+ 𝑘B ln
𝑃
𝑃0

]} (5.1)

where 𝑇 and 𝑃 are synthesis temperatures and pressures respectively
and 𝑘 is the Boltzmann constant. We use the experimental value for the
oxygen standard entropy, 𝑆0 = 205 J/mol/K [39], and assume that oxy-
gen behaves as an ideal gas and use 𝐶P = 7

2 𝑘B for the constant-pressure
specific heat capacity per diatomic molecule [39–41]. The resulting “syn-
thetically accessible” range of elemental chemical potentials defines a
three-dimensional region of {𝜇O, 𝜇Cl, 𝜇Li} chemical-potential space with
six vertices (fig. 5.3). Within these six limiting conditions, we explicitly
consider the maximally lithium-rich and lithium-poor conditions, corre-
sponding to {Δ𝜇Li = −2.00 eV, Δ𝜇Cl = −2.19 eV, Δ𝜇O = −1.32 eV}
(Li-rich) and {Δ𝜇Li = −2.23 eV, Δ𝜇Cl = −1.75 eV, Δ𝜇O = −1.08 eV}
(Li-poor).

5.4 Intrinsic defect chemistry of undoped Li3OCl

We first consider the formation energies and equilibrium concentrations
of native defects in undoped, nominally stoichiometric, Li3OCl. Fig-
ure 5.4 shows formation energies of native defects in Li3OCl as a function
of Fermi energy (transition level diagrams), under Li-poor and Li-rich
conditions (upper panels), and the corresponding equilibrium defect con-
centrations (lower panels). Under Li-poor conditions, the dominant defect
species are lithium vacancies, 𝑉Li, and chlorine vacancies, 𝑉Cl, which is
qualitatively consistent with previous predictions of Li3OCl as being pre-
dominantly 𝑉Li + 𝑉Cl Schottky-disordered [21, 23, 24]. The dominant
𝑉Li + 𝑉Cl Schottky disorder can also be assigned directly from the defect
formation energies plot (fig. 5.4(a)), which shows the equilibrium Fermi
energy is pinned by the 𝑉 ′

Li–𝑉 ●Cl defect pair. Under Li-rich conditions,
chlorine vacancies, 𝑉 ●Cl, are the dominant positively charged defect species.
The dominant negatively charged defect, however, is now the oxygen–
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Figure 5.4: Transition level dia-
grams (top row) and defect concen-
trations (bottom row) for defects in
Li3OCl under Li-poor (left column)
and Li-rich (right column) synthe-
sis conditions (see fig. 5.3), at 360 °C.
The dashed line marked on the
transition level diagrams is the po-
sition of the self-consistently deter-
mined Fermi energy; defect charge
states are given by the gradient. For
the defect concentration plots we
show only those defect species with
concentrations [𝑋] > 1 × 102 cm−3

under Li-rich or Li-poor conditions.
Defect species with concentrations
[𝑋] < 1 × 102 cm−3 under all con-
ditions are not shown in the bottom
plots.

chlorine antisite, O′
Cl. From a charge- and mass-balanced defect reaction

perspective the system is no longer best characterised by 𝑉Li+𝑉Cl Schottky
disorder, and the lowest energy defect-formation reaction is

Li2O + 2Cl×Cl → O′
Cl + 𝑉 ●Cl + 2LiCl. (5.2)

This different classification can again be assigned from the plot of Fermi-
energy dependent defect formation energies, where the Fermi energy is
now pinned by the O′

Cl–𝑉 ●Cl defect pair (fig. 5.4, right hand column).
The presence of anion disorder in Li3OCl in the form of OCl anti-

sites, particularly under Li-rich conditions, has potential implications for
lithium transport. O′

Cl + Cl●O antisite pairs have been predicted via ab initio
molecular dynamics to enhance lithium diffusion relative to a perfectly
anion-ordered reference system [20]. Anion framework disorder has also
been associated with increased ionic conductivity in other antiperovskites
[42, 43] and in other lithium-ion solid electrolytes [18, 44, 45]. Synthesis
protocols that increase the degree of host-framework–disorder in Li3OCl,
or in other antiperovskites, may therefore provide alternative routes to
improving the ionic conductivities of these materials beyond purely modi-



66 COMPUTATIONAL MODELLING OF DEFECTS IN BATTERY MATERIALS

fying lithium stoichiometry.
Although symmetric O/Cl disorder has been predicted to give in-

creased lithium transport [20], our calculations predict that O–Cl antisites
in Li3OCl do not form in stoichiometry-preserving Cl●O + O′

Cl pairs, but
instead there is a large excess of O′

Cl antisites. Previous ab initiomolecular
dynamics simulations have predicted that isolated O′

Cl defects electrostat-
ically trap lithium interstitials, thereby suppressing lithium diffusion [9,
24]. In undoped Li3OCl, however, lithium vacancies are the dominant
charge-carrying lithium defect species under all conditions, with lithium
interstitial concentrations several orders of magnitude lower. Any trapping
of lithium interstitials by O′

Cl is therefore expected to have a negligible
effect on the net ionic conductivity of undoped Li3OCl.

5.5 Supervalent and subvalent doping response in Li3OCl

We now consider how the intrinsic native defect concentrations in Li3OCl
respond to aliovalent doping. Figure 5.5 shows, again, the Fermi-energy
dependent defect formation energies and equilibrium defect concentra-
tions in as-synthesised Li3OCl, but now compares these “stoichiometric”
defect concentrations with those predicted for an effective supervalent
dopant concentration of 𝑟[𝑀𝑟] = 1018 cm−3. Supervalent doping under
Li-poor conditions principally increases the concentration of lithium va-
cancies, which are the lowest formation energy negatively-charged defect
species in the parent undoped material—the system therefore behaves
qualitatively as predicted by simple lithium-defect charge-compensation
models. Supervalent doping under Li-rich conditions principally increases
the concentration of the O′

Cl antisite, which is now the lowest formation
energy negatively-charged defect species. Under Li-rich conditions, there-
fore, supervalent doping produces a smaller increase in lithium vacancy
concentration than predicted by simple models that assume direct charge-
compensation by lithium defects.

The equivalent analysis for the case of subvalent doping is also shown
in fig. 5.5. Under both Li-rich and Li-poor synthesis conditions, subva-
lent doping gives only a modest increase in the concentration of lithium
interstitials, and the principal effect is instead to increase [𝑉 ●Cl]. We also
observe a significant decrease in the lithium vacancy concentration. Al-
though lithium interstitials are expected to be more mobile than lithium
vacancies, this analysis suggests the potential for a regime where subva-
lent doping causes a net decrease in ionic conductivity due to the decrease
in the dominant charge-carrying lithium-defect species, i.e., lithium va-
cancies. We return to this point in more detail in section 5.6 where we
quantify how ionic conductivities are predicted to vary as a function of
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supervalent or subvalent dopant concentrations.
To illustrate the difference in predicted behaviour between a mobile-

ion point defect charge-compensation model and our self-consistent
model, we consider the doping response of Li3OCl as a function of effec-
tive dopant concentration, 𝑟[𝑀𝑟], for both a simple “lithium-only” charge
compensation model, where only charge-carrying lithium defects change
concentration in response to doping, and for our full model, where all
defects re-equilibrate. Figure 5.6 shows the predicted doping response for
these two models, for supervalent doping and subvalent doping at a range
of dopant concentrations, under Li-rich and Li-poor synthesis conditions.
Here, we have considered a maximum dopant concentration equivalent
to ∼ 4% of lithium sites, which is a similar dopant/defect concentration
to that used in previous ab initiomolecular dynamics studies of doping in
Li3OCl [9, 20]. Because our model assumes that defects behave ideally our
results are expected to be quantitatively accurate only at low dopant and
defect concentrations. At high dopant or high defect concentrations, non-
ideal defect–defect interactions may make a significant contribution to
defect chemical potentials, causing defect concentrations to deviate from
the dilute-limit behaviour modelled here [46, 47]. We expect, however,
that general trends regarding the relative response of different defects to
doping will be qualitatively correct even at these high dopant concentra-
tions.

The only case where the simple “lithium-only” defect model gives ap-
proximate quantitative agreement with the full model, with respect to
the change in concentrations of charge-carrying lithium defect species,
is for supervalent doping under Li-poor synthesis conditions (fig. 5.6). In
this case, the lowest formation energy negatively-charged defect species
in the undoped system is the lithium vacancy, which therefore shows the
strongest enhancement in concentration under supervalent doping. Under
Li-poor conditions, the dominant negatively-charged defect species in the
undoped system is the oxygen–chlorine O′

Cl antisite, which is now pref-
erentially enhanced by supervalent doping. This suppresses the increase
in lithium vacancy concentration relative to that predicted by the simple
“lithium-only” model.

Under subvalent doping, the two models give even more strongly
divergent predictions; the lithium-only defect model underestimates
the doping threshold at which a significant increase in concentration of
lithium interstitials is observed by several orders of magnitude. This effect
can be understood by considering the conventional “Schottky pair” de-
scription of defect chemistry in Li3OCl; the dominant positively charged
defect species is the chlorine vacancy, 𝑉 ●Cl, and subvalent doping there-
fore principally increases the concentration of this non-charge-carrying



DEFECT CHEMISTRY AND ALIOVALENT DOPING RESPONSE IN LI3OCL 69

Figure 5.6: Defect concentrations
as a function of effective dopant
concentration (𝑟[𝑀𝑟]) shown for
both supervalent dopants (left col-
umn), and subvalent dopant (right
column), for Li-poor (top row)
and Li-rich (bottom row) synthesis
conditions, at 360 °C. The solid lines
show defect concentrations when all
defect concentrations are allowed to
vary as the dopant concentration is
increased, the dotted lines show the
case when only the concentration
of lithium defects are allowed to
change.

109

1013

1017

1021

[X
q
]

/ 
cm
−
3

Li-poor Li-poor   

109 1013 1017 1021

|r[Mr]| / cm−3

109

1013

1017

1021

[X
q
]

/ 
cm
−
3

Li-rich  

109 1013 1017 1021

|r[Mr]| / cm−3

Li-rich  

VLi
VLi-Li only

Lii
Lii-Li only

VCl
VCl-Li only

OCl
OCl-Li only

VO
ClO

supervalent doping subvalent doping

host-framework defect ahead of the minority Li●i defects.

5.6 Defect mediated ionic conductivity in Li3OCl

We next consider how the variation in native defect concentrations un-
der different synthesis conditions, and the associated varying response to
supervalent and subvalent doping, affects the ionic conductivity of doped
Li3OCl. We assume lithium diffusion is effected by dilute populations of
lithium vacancies and lithium interstitials, which allows us to neglect cor-
relation effects and also allows us to express the total ionic conductivity as
a sum over contributions from lithium vacancies and lithium interstitials
respectively:

𝜎 = [𝑉Li]
𝑘B𝑇 𝐷∗

𝑉Li
+ [Lii]

𝑘B𝑇 𝐷∗
Lii . (5.3)

The self-diffusion coefficients for each defect species are estimated from
the dilute limit expression for independent defect hopping

𝐷∗
𝑋 = 1

6𝜈0𝑎2 exp(−Δ𝐸𝑋
𝑘B𝑇 ) , (5.4)

where 𝜈0 is the attempt frequency, which we set as a characteristic value of
1 × 1013 Hz for both lithium vacancies and lithium interstitials, and 𝑎 is



70 COMPUTATIONAL MODELLING OF DEFECTS IN BATTERY MATERIALS

Li-rich  

Li-poor  

109 1013 1017 1021

|r[Mr]| / cm−3

109 1013 1017 1021

|r[Mr]| / cm−3

105

109

1013

1017

1021

[X
q
]/

 c
m
−
3

Li-rich  

10−14

10−12

10−10

10−8

10−6

10−4

σ
/ 

S 
cm
−
1

Li-poor  

109 1013 1017 1021

|r[Mr]| / cm−3

109 1013 1017 1021

|r[Mr]| / cm−3

σ,T* = 298 K
σ,T* = 663 K

[VLi],T* = 298 K
[Lii],T* = 298 K
[VLi],T* = 663 K
[Lii],T* = 663 K

σ,T* = 298 K
σ,T* = 663 K

[VLi],T* = 298 K
[Lii],T* = 298 K
[VLi],T* = 663 K
[Lii],T* = 663 K

105

109

1013

1017

1021

[X
q
]/

 c
m
−
3

10−14

10−12

10−10

10−8

10−6

10−4

σ
/ 

S 
cm
−
1

supervalent doping

subvalent doping

Figure 5.7: The top four panels show, under supervalent doping, ionic conductivities (top row) and lithium interstitial
and lithium vacancy concentrations (bottom row) as a function of effective doping concentration 𝑟 [𝑀𝑟] for Li-rich and
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the hop distance [48] which we take as nearest-neighbour Li–Li distance
of 2.67 Å. Δ𝐸𝑋 is the potential energy barrier for defect species 𝑋 to
hop between adjacent defect sites, for which we use the barrier heights
calculated by Emly et al. of Δ𝐸Li𝑖 = 0.17 eV, Δ𝐸𝑉Li

= 0.34 eV [21], which
gives a ratio 𝐷∗

Lii/𝐷∗
𝑉Li

≈ 103 at 𝑇 = 298K.
To calculate the ionic conductivity of Li3OCl using eq. (5.3) we re-

quire the lithium vacancy and lithium interstitial concentrations under
typical operating conditions. Crucially, these defect concentrations can
differ from the values predicted under typical synthesis conditions (300-
360 °C under vacuum) that we have presented in sections 5.4 and 5.5. Both
lithium vacancies and lithium interstitials are highly mobile even at room
temperature, and some proportion of lithium vacancy–interstitial pairs
will recombine as the temperature is decreased. Electron and hole pairs
may also recombine upon cooling, although in a wide-gap system such
as Li3OCl, this is expected to have a negligible effect on the Fermi level
position and therefore on defect populations.

To model the change in lithium defect concentration upon cooling
from synthesis temperatures to room temperatures, we perform a two-
stage calculation. We first calculate equilibrium concentrations for all
defect species at a typical synthesis temperature of 360 °C. We then fix the
concentrations of all anionic defect species, which are considered to be
“frozen in” during cooling [37, 49], and recalculate the lithium vacancy
and interstitial concentrations and electron and hole concentrations a
pseudo-equilibrium temperature 𝑇 ∗ = 298K.

Figure 5.7 shows calculated lithium vacancy and lithium interstitial
concentrations and corresponding ionic conductivities (via eq. (5.3)) for
Li3OCl synthesised under Li-poor and Li-rich conditions, as a function
of supervalent and subvalent effective dopant concentrations. To illustrate
the effect of cooling from synthesis conditions to room temperature on
lithium defect concentrations and on the ionic conductivity, we show data
calculated for full equilibration under synthesis conditions (𝑇 = 663K;
dashed lines) and for partial re-equilibration at room temperature (𝑇 ∗ =
273K; solid lines).

For undoped Li3OCl we predict ionic conductivities of 4.2 × 10−10 S cm−1

under Li-poor synthesis conditions and 6.7 × 10−10 S cm−1 under Li-rich
synthesis conditions. In both cases the contribution to the ionic conductiv-
ity from lithium interstitials is negligible (∼ 10−14 S cm−1). Our calculated
ionic conductivities (∼5 × 10−10 S cm−1) are much lower than those pre-
viously reported for experimental samples of nominally stoichiometric
Li3OCl (10−3-10−6 S cm−1) [13, 50]. One possible reason for this discrep-
ancy is that previous experimental data might not have been obtained
for phase-pure “stoichiometric” Li3OCl. Li3OCl is extremely challenging
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to synthesise, as indicated by the small calculated region of metastability
under typical synthesis conditions (fig. 5.3), and it has been suggested that
samples reported in the literature as Li3OCl may in fact be competing hy-
drated phases, such as Li2OHCl [1, 5], which are predicted to have higher
total conductivities than pristine Li3OCl [51].

Considering the effect of aliovalent doping on ionic conductivity, su-
pervalent doping produces a monotonic increase in the concentration
of lithium vacancies, and therefore also produces a monotonic increase
in ionic conductivity. The quantitative effect of supervalent doping on
ionic conductivity depends on synthesis conditions. Under Li-poor con-
ditions, where lithium vacancies are the highest concentration native
defect species, the ionic conductivity behaves almost entirely as predicted
by assuming direct charge-compensating formation of lithium vacan-
cies. Under Li-rich conditions, however, where the dominant negatively
charged native defect species is the oxygen–chlorine antisite O′

Cl, this
non–charge-carrying defect species is preferentially formed. The positive
effect of supervalent doping on ionic conductivity is therefore suppressed,
and higher effective dopant concentrations are needed for a given increase
in ionic conductivity than predicted by a simple lithium-defect charge-
compensation model.

In contrast to the monotonic increase in ionic conductivity produced
by supervalent doping, subvalent doping causes the ionic conductivity to
decrease at moderate effective dopant concentrations under all synthesis
conditions. High dopant concentrations are needed to achieve a net in-
crease in ionic conductivity relative to undoped Li3OCl through subvalent
doping. This behaviour is a consequence of two factors. First, although
subvalent doping increases the concentrations of all positively-charged de-
fect species, it also decreases the concentrations of all negatively-charged
defect species, including lithium vacancies. Because, in the undoped sys-
tems, the concentration of lithium vacancies is significantly higher than
that of lithium interstitials, low-to-moderate levels of subvalent dop-
ing decrease the concentration of lithium vacancies by a much greater
extent than they increase the concentration of lithium interstitials. In as-
synthesised Li3OCl, this effect gives a minimum in ionic conductivity
when [𝑉Li] 𝐷∗

𝑉Li
= [Lii] 𝐷∗

Lii [52].
The second cause of a reduced room-temperature ionic conductivity

under subvalent doping is recombination of 𝑉 ′
Li+Li

●
i Frenkel pairs when

the system is cooled. The Frenkel pair formation energy in Li3OCl is high
(our calculated value is 2.6 eV), which indicates a strong enthalpic driving
force for lithium vacancy–interstitial pairs to recombine. Because lithium
vacancies and lithium interstitials recombine in a 1:1 ratio, this Frenkel-
pair recombination is limited by the concentration of the minority lithium
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defect species. In undoped Li3OCl, the concentration of lithium intersti-
tials is low and lithium vacancies are present in large excess. Frenkel-pair
recombination therefore has a negligible effect on the lithium vacancy
concentration and a corresponding negligible effect on the net ionic con-
ductivity. Subvalent doping, however, under all synthesis conditions,
increases the concentration of lithium interstitials and decreases the con-
centration of lithium vacancies. As the concentrations of these two defects
become more equal, an increasing proportion of lithium vacancies are re-
moved through Frenkel-pair recombination, and the ionic conductivity is
progressively reduced. This effect is strongest when the concentrations of
lithium vacancies and lithium interstitials are equal; nearly all the lithium
vacancies and interstitials recombine, greatly reducing the concentra-
tions of these charge carrying defects, and giving a sharp decrease in ionic
conductivity. For effective dopant concentrations above this threshold,
the concentration of lithium interstitials under synthesis conditions now
exceeds that of lithium vacancies, and the room temperature lithium in-
terstitial concentration and ionic conductivity both increase with effective
dopant concentration.

The different ionic conductivity responses to supervalent versus sub-
valent doping, under lithium-rich and lithium-poor conditions, are com-
pared graphically in fig. 5.8. As noted above, subvalent doping is predicted
to give no net increase in ionic conductivity except at very high dopant
levels. Even at sufficient subvalent doping levels to produce a net increase
in ionic conductivity, the resulting conductivity increase remains orders of
magnitude smaller than for supervalent doping at comparable dopant con-
centrations, and we conclude, therefore, that subvalent doping to increase
lithium interstitial concentrations is not an effective strategy for enhancing
the ionic conductivity of Li3OCl. Our analysis also indicates that subvalent
doping will be maximally effective under Li-poor synthesis conditions, due
the associated low formation energy of 𝑉Li.

5.7 Summary and Discussion

To characterise the native defect chemistry of Li3OCl, and to quantify the
effect of supervalent and subvalent doping on native defect concentrations
and on ionic conductivity, we have performed a hybrid density-functional-
theory study of the defect chemistry and aliovalent-doping response of
Li3OCl that considers all native vacancy, interstitial, and anion antisite
defect species within a self-consistent thermodynamic model. In un-
doped Li3OCl, under Li-poor conditions, the dominant negatively defect
species is 𝑉 ′

Li and the dominant positively charged defect species is 𝑉 ●Cl,
which is qualitatively consistent with previous descriptions of Li3OCl
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Figure 5.8: Predicted room-
temperature ionic conductivity of
Li3OCl under Li-rich and Li-poor
synthesis conditions as a function
of supervalent or subvalent effective
dopant concentration, 𝑟 |𝑀𝑟|.

as being [𝑉Li + 𝑉Cl] Schottky-disordered [3, 21, 30, 53]. Under Li-rich
conditions, the dominant defect species are O′

Cl and 𝑉 ●Cl. The change in
highest concentration negatively-charged defect from 𝑉Li to OCl illustrates
the potential limitations of considering the defect chemistry of solid elec-
trolytes only in terms of simple Schottky or Frenkel-pair defect formation
reactions.

Supervalent doping is predicted to most strongly increase the concen-
trations of both 𝑉 ′

Li and O′
Cl. The defect species with the higher concen-

tration in the relevant undoped system undergoes the largest increase,
and supervalent doping is therefore predicted to most effectively increase
the concentration of lithium vacancies under Li-poor synthesis condi-
tions. Subvalent doping principally increases the concentration of chlorine
vacancies ahead of lithium interstitials under all considered synthesis con-
ditions, due to the much higher concentration of chlorine vacancies with
respect to lithium interstitials in undoped Li3OCl.

The quantitatively different response of these competing defect species
to supervalent or subvalent doping can be characterised in terms of a
“doping-response efficiency”, 𝜂𝑋 , which we define as the change in con-
centration of a defect species, Δ[𝑋], for a fixed effective dopant con-
centration, 𝑟 [𝑀𝑟], divided by the change in concentration if the doping
response were purely due to defect 𝑋 in charge state 𝑞′, i.e.,

𝜂𝑋 = −𝑞′Δ [𝑋]
𝑟 [𝑀𝑟] . (5.5)

This gives a measure of how many additional defects of defect species 𝑋
are introduced or removed per dopant. Figure 5.9 shows calculated values
of 𝜂𝑋 for 𝑉Li and OCl with 𝑞′ = −1 and for 𝑉Cl and Li●i with 𝑞′ = +1 for
an effective dopant concentration of 𝑟 [𝑀𝑟] = ±1018 cm−3 for both super-
valent and subvalent doping. The calculated values of 𝜂𝑉Li

and 𝜂Lii reflect
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efficiency, 𝜂𝑋 , (eq. (5.5)) for 𝑉Li,
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poor conditions (top row) and
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an effective dopant concentration
𝑟[𝑀𝑟] = ±1018 cm−3. � indicates
defect concentrations that increase
upon doping, and � indicates defect
concentrations that decrease upon
doping.

the strong asymmetry in the doping response of the lithium vacancy and
interstitial. Supervalent doping under lithium-poor conditions strongly
increases the concentration of lithium vacancies, indicated by 𝜂𝑉Li

≈ 1.
For supervalent doping under lithium-rich conditions, 𝜂𝑉Li

remains high,
but is now smaller than 𝜂OCl

, reflecting the preferential formation of OCl

antisites. For subvalent doping, 𝜂Lii < 10−8 under all conditions; at these
dopant concentrations, subvalent doping has a negligible effect on the
concentration of lithium interstitials and instead principally increases the
concentration of Cl vacancies (𝜂𝑉Cl

≈ 1). In the case of Li3OCl, then, the
doping-response efficiency, 𝜂𝑋 , provides an intuitive description of the
strongly asymmetric response to supervalent versus subvalent doping.

One practical consequence of the asymmetric doping response of
Li3OCl is the qualitatively different response of the ionic conductivity un-
der supervalent versus subvalent doping. Supervalent doping produces a
monotonic increase in lithium vacancy concentration, and a correspond-
ing monotonic increase in ionic conductivity. Subvalent doping, in con-
trast, produces a decrease in ionic conductivity at low-to-moderate dopant
levels due to two complementary effects. First, at low-to-moderate subva-
lent doping levels the primary effect of subvalent doping is to decrease the
concentration of lithium vacancies, rather than increase the concentration
of lithium interstitials (Figure 5.9). Second, by increasing the number of
lithium interstitials formed under synthesis conditions, a greater number
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of lithium vacancies are removed when cooling to room temperature due
to recombination of 𝑉Li as 𝑉Li + Lii Frenkel pairs. For sufficiently high
dopant levels, subvalent doping is predicted to give an increase in ionic
conductivity relative to undoped Li3OCl. This net positive contribution
to the ionic conductivity, however, only occurs when the effective dopant
concentration is much larger than the lithium vacancy concentration in
the undoped material, 𝑟 [𝑀𝑟] ≫ [𝑉Li]undoped.

The strongly asymmetric doping response of Li3OCl with respect to
supervalent versus subvalent doping can be understood as a consequence
of the low formation energy of positively charged 𝑉Cl defects with re-
spect to Lii defects (fig. 5.4); equivalently, this effect can be considered
to be a consequence of the dominant 𝑉Li + 𝑉Cl Schottky disorder that
characterises the lithium defect chemistry in this system. Under Li-poor
conditions, the Fermi energy is pinned by the 𝑉Li + 𝑉Cl pair; 𝑉Li and 𝑉Cl

are present in approximately equal concentrations, and Lii concentra-
tions are several orders of magnitude lower, corresponding to a classical
Schottky-disordered system. Under Li-rich conditions, the Fermi energy
is pinned by the OCl + 𝑉Cl pair and the dominant defect species are OCl

and 𝑉Cl rather than lithium disorder. Under these conditions, however,
the concentration of 𝑉Li is still several orders of magnitude larger than the
concentration of Lii, and the lithium defect chemistry can still be consid-
ered within the schema of 𝑉Li + 𝑉Cl Schottky disorder.

Because the response of a specific defect species to aliovalent doping
scales with the concentration of that defect species in the undoped sys-
tem, Schottky disorder implies a much higher doping-response efficiency,
𝜂𝑋 , for 𝑉Li than for Lii—which is indeed the case for Li3OCl (cf. fig. 5.9).
This leads to [𝑉Li] decreasing much more rapidly than [Lii] increases un-
der subvalent doping. Schottky disorder also indicates a relatively high
𝑉Li + Lii Frenkel pair formation energy, which means a strong enthalpic
driving force for Frenkel-pair recombination when cooling from syn-
thesis temperatures to room temperature. Both of the effects that cause
ionic conductivity to decrease or only moderately increase in response to
subvalent doping are therefore consequences of Li3OCl being a “Schottky-
disordered” solid electrolyte. By extension, we therefore expect other
principally Schottky-disordered solid electrolytes, including other an-
tiperovskite solid electrolytes [2–7], to have analogous asymmetric doping
responses.

One of the limitations of the study presented here is that we consider
dopants as ideal, i.e, they affect the defect chemistry of Li3OCl only
through their effect on the the Fermi energy. In reality, direct dopant–
defect interactions may be significant [8, 9, 54, 55]. For example, super-
valent dopants, such as Mg2+, are predicted to kinetically trap lithium
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vacancies [8], which will reduce ionic conductivities relative to the values
presented in this work. Despite this limitation, we expect our results to
accurately describe quantitative trends for different synthesis conditions
and doping strategies for Li3OCl.

This study also illustrates how the defect chemistry and doping re-
sponse of solid electrolytes may be more complex than implied by simple
mass- and charge-compensating defect formation schemes, and demon-
strates how a more complete description that accounts for varying syn-
thesis conditions and thermodynamic competition between defect species
can be found by considering a full set of defects within a self-consistent
thermodynamic model.
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Context

Similarly to Chapter 5, this chapter discusses the defect chemistry and
doping response of a lithium solid-electrolyte. In this instance we in-
vestigate the garnet-structured material LLZO. This study is not exactly
analogous to the previous chapter for a number of reasons. First, we do
not attempt to directly draw a relationship between ionic conductivity and
defect concentration. While it is true that modulating the concentration
of mobile ion point defects in LLZO will likely influence the ionic con-
ductivity [1, 2], in the previous chapter we assumed defect-mediated ionic
conductivity in which it is appropriate to approximate conductivity as a
series of discrete hops of point defects. The lithium transport mechanism
in LLZO is thought to be highly correlated, complicating the relationship
between charge carrier concentration and ionic conductivity [3, 4]. Addi-
tionally, we do not model the response to subvalent doping. Most doping
strategies used for LLZO-based solid electrolytes are supervalent, which is
typically used to stabilise the high-conductivity cubic phase of LLZO [5].

One key point of note in both this chapter and the next, is that we
study the defect chemistry of the tetragonal phase of LLZO. Tetragonal
LLZO is crystallographically ordered whereas the higher conductivity
cubic phase has a disordered arrangement of lithium ions. We do this
because in an ordered system, we can capture the formation energies
of all symmetrically equivalent defects from a single formation energy
calculation. In a disordered material, defect formation energies should be
computed as some kind of average over all accessible microstates, which
rapidly becomes computationally intractable, especially when using a
hybrid DFT functional to accurately capture the properties of defect states
(see Section 3.5). Studying the defect chemistry of a disordered material
using hybrid DFT represents a large overhead in both researcher and
computational effort, as not only are the calculations much more resource
intensive, but each defect calculation needs to be inspected to ensure, e.g.,
reasonable electron/hole localisation behaviour. We choose to characterise
the defect chemistry of the ordered tetragonal phase of LLZO with hybrid-
DFT which should accurately capture defect and electronic structure
properties. We assume that this gives insight into the defect chemistry of
cubic LLZO also, even if the results are only quantitatively accurate for the
ordered material.

This chapter follows the same structure as the associated paper (see
statement of authorship), however, it has been edited to remove informa-
tion that is redundant within the context of this thesis and to better reflect
the overall narrative of this dissertation.
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6.1 Introduction

Figure 6.1: Structure of the lithium
stuffed garnet Li𝑥M3M′

2O12 as
shown down the b-axis. All lithium
sites are shown in red (in realistic
materials, some subset of these sites
will be occupied), MO8 polyhedra is
shown in grey, and M′O6 polyhedra
are shown in blue.

The lithium-stuffed garnets with the formula Li𝑥𝑀3𝑀 ′
2O12 (structure

shown in Figure 6.1) are promising lithium solid electrolytes with ionic
conductivities as high as 1 × 10−3 S cm−1 and good electrochemical stabil-
ity [5, 6]. The garnet crystal structure has an unusual network of lithium
diffusion pathways, consisting of interlocking rings. Each ring comprises
alternating tetrahedral and octahedral lithium sites for a total of 12 sites,
with the tetrahedral sites connecting adjacent rings [7]. These “ring-like”
features are highlighted in Figure 6.2. The possible combinations of cations
𝑀 and 𝑀 ′ and potential different differing lithium content represents a
large chemical space, with an equally large range of properties [8]. Iden-
tifying chemical compositions with optimal conductivities, however,
remains a challenge, and requires an understanding of both lattice-cation
substitution and lithium stoichiometry, and how these compositional
parameters together affect lithium transport [2, 9–11].

Figure 6.2: Li𝑥M3M′
2O12 as shown

down the 111 crystal axis. All
lithium sites are shown in red (in
realistic materials, some subset of
these sites will be occupied), atoms
are shown in grey, and M′ atoms are
shown in blue. The connectivity of
the lithium percolation network is
shown with red lines.

Aliovalent doping is often used to optimise the ionic conductivity of
lithium garnets. Supervalent doping of garnets has been particularly suc-
cessful in Li7La3Zr2O12 (LLZO) following the realisation that inadvertent
aluminium doping from synthesis apparatus produces a dramatic increase
in room-temperature ionic conductivity by stabilising a high ionic conduc-
tivity cubic phase (typically unstable at temperatures below 600 K [12])
with respect to the poorly conducting tetragonal phase [3]. The transition
from the tetragonal to cubic phase of LLZO is associated with a redistribu-
tion of the lithium sublattice within a single lithium “ring” (see Figure 6.2)
and the onset of lithium disorder; the lithium sublattices in the cubic and
tetragonal phases of LLZO are illustrated in Figure 6.3. This effect was
explained by aluminium substituting for lithium, introducing a doubly
positive net charge, which would be compensated by the formation of
lithium vacancies [13],

[Al●●Li ] = 2[𝑉 ′
Li]. (6.1)

Subsequent efforts to optimise the ionic conductivity of doped LLZO
have seen a number of supervalent dopants proposed. These include
other small cations, such as gallium, that directly substitute lithium [14];
larger cations, such as tantalum or niobium, that substitute zirconium or
lanthanum on the 𝑀 or 𝑀 ′ sites [15]; and anions, such as fluorine, that
substituted for oxygen [16]. All of these doping strategies can be classified
as supervalent doping and target the same doping response: an increased
lithium vacancy concentration.

Despite the attractive simplicity of this direct–charge-compensation
model, it ignores other defect species that may form under specific syn-
thesis conditions or in response to doping. A number of studies have
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suggested that oxygen vacancies may play a significant role in the defect
chemistry of lithium garnets [17, 18], and Kubicek et al. have confirmed
the presence of oxygen vacancies in a range of nominal LLZO composi-
tions, using isotope-exchange techniques, with estimated oxygen vacancy
concentrations as high as 2.5% [19]. In much the same way as a [Al●●Li ] de-
fect, a charged oxygen vacancy will require a compensating defect to form
to maintain macroscopic charge neutrality. The presence of oxygen vacan-
cies has been proposed to affect lithium stoichiometry through a Schottky
pair mechanism:

2Li×Li + O×
O ⇌ 2𝑉 ′

Li + 𝑉 ●●O . (6.2)

This defect equilibrium suggests that low Δ𝜇O synthesis conditions (high
temperatures or low oxygen–partial-pressures) may produce lithium
deficient materials. Furthermore, the appearance of 𝑉 ′

Li in both Eqns. 6.1
and 6.2 highlights the coupling between the intrinsic defect chemistry of
lithium-stuffed garnets and their response to supervalent doping.
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Figure 6.3: lithium distribution in
the two polymorphs of LLZO. In
cubic-LLZO, top panel, all sites
are partially occupied. The bottom
panel shows the lithium distribution
in tetragonal-LLZO. Symmetrically
distinct sites are labelled with
different numbers, interstitial sites
are denoted with and i, and the
connectivity between rings is shown
with grey arrows. This figure is
redrawn from [2]

In previous studies of defects in lithium garnets, framework cationic de-
fects, such as 𝑀 and 𝑀 ′ vacancies, are often assumed to be negligible [18]
but this is not a priori guaranteed under all synthesis conditions. In addi-
tion, simple defect–charge-compensation models usually assume defects
exist in only one formal charge state—e.g. −1 for lithium vacancies, or
+2 for oxygen vacancies—[20] when in reality defects may adopt a range
of charge states as a function of Fermi energy [21–24]. A more complete
thermodynamic defect model should therefore consider a broad range of
native defects in all accessible charge states.

To better understand the native defect chemistry and doping response
of lithium garnet solid electrolytes, we have performed a computational
study of a broad range of defects in LLZO. We have used hybrid DFT to
calculate formation energies for a range of intrinsic defects, including
lithium, oxygen and zirconium vacancies and interstitials, lanthanum
vacancies, and cation antisites. These defect formation energies are used to
construct a self-consistent thermodynamic model of defect concentrations
as a function of synthesis conditions. We find a rich defect chemistry that
includes not just lithium and oxygen defects, but also significant numbers
of cation antisite defects. Oxygen vacancies exhibit 0, +1, and +2 charge
states, and under reducing conditions act as colour-centers by trapping
electrons. We have also modelled the response to supervalent doping and
find that lithium vacancies do not exclusively compensate these charged
species under all chemical potential regimes: under Li-rich/Zr-poor
conditions donor doping is primarily compensated by LiZr antisites, and
lithium stoichiometries can strongly deviate from the values predicted by a
“vacancy–compensation” model.
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6.2 Methods

Calculations presented in this chapter used the screened hybrid functional
HSE06 [25]. All calculations were carried out in the 96 atom primitive
cell of tetragonal LLZO. While typically we would use a supercell expan-
sion to minimise the interaction between defect images in periodic DFT
calculations (see Section 4.1), a large primitive cell combined with com-
putationally intensive hybrid functionals put the consideration of larger
expansions beyond reasonable computational limits. LLZO calculations
used a 2×2×2 Monkhorst-Pack k-point mesh. For our defect calcula-
tions, we have considered lithium vacancies and interstitials, 𝑉Li and Lii;
oxygen vacancies and interstitials, 𝑉O and Oi; lanthanum and zirconium
vacancies, 𝑉La and 𝑉Zr; zirconium interstitials. Zri; and a range of cation
anti-sites: LaZr, Zr

oct
Li , Zr

tet
Li , ZrLa, LiLa, La

oct
Li and LiZr. A superscript oct or

tet denotes a defect located at an octahedral or tetrahedral lithium site, re-
spectively. Preliminary calculations using the GGA functional PBEsol [26]
gave a difference in formation energy for 𝑉 oct

Li and 𝑉 tet
Li of <0.05 eV, and we

therefore considered these Li vacancies to be energetically equivalent for
our subsequent HSE06 calculations.

To restrict the available chemical potential space to values that are, in
principle, experimentally accessible, we consider only chemical potentials
for which LLZO is thermodynamically stable with respect to competing
phases. We have considered the set of competing phases identified by
Canepa et al. [27], and have calculated the thermodynamic stability regime
using the code CPL AP [28].

DFT calculations were performed with valence electrons described
by a plane-wave basis set with a cutoff of 520 eV. Interactions between
core and valence electrons were described using the projector-augmented
wave (PAW) method [29], with cores of [H] for Li, [Xe] for La, [Kr] for
Zr and [He] for O. Optimised lattice parameters for LLZO, competing
phases, and elemental references were obtained by performing a series
of constant-volume geometry optimisation calculations, and fitting the
resulting energy–volume data to the Murnaghan equation of state [30].

6.3 Intrinsic defect chemistry

The predicted region of thermodynamic stability of LLZO spans a range
of values that can be broadly characterised along an oxygen-rich/metal-
poor to oxygen-poor/metal-rich axis. Figure 6.4 shows calculated defect
concentrations at three illustrative sets of chemical potentials, in each case,
we also show a defect transition-level diagram (bottom panels). Defect
concentrations are calculated at a representative synthesis temperature
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Li] = [𝑉Li] − [Lii].
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of 1500K [5]. We assume that defect populations at synthesis are “frozen
in” when the system is cooled to operating temperatures. This is justified
on the grounds that, with the exception of the lithium interstitials and
vacancies, kinetic barriers for defect reorganisation are large, preventing
the system from re-equilibrating at low temperatures [31]. Lithium ions
are mobile at operating temperatures, and we can therefore expect some
recombination of lithium interstitials and vacancies, reducing the popula-
tions of these defects, to reflect this, reported lithium defect concentrations
are given as a net value, i.e. [𝑉 ∗

Li] = [𝑉Li] − [Lii]. Unless lithium can ex-
change with an external source, however, the net lithium stoichiometry,
and the equilibrium Fermi energy, are both fixed at their high temperature
values.

Under oxygen-rich conditions the defects with the highest concentra-
tions are 𝑉Li, LiLa, LaZr, LiZr, and ZrLi. Intermediate chemical potentials
give similar defect concentrations, with lithium vacancies and metal anti-
sites dominating. Under oxygen-poor/metal-rich conditions the concen-
tration of 𝑉O increases, becoming the dominant defect species. Lithium
vacancy and metal anti-site concentrations, however, remain high.

The analysis above considers a two-dimensional projection of the
four-dimensional {O, Li, La, Zr} chemical potential space. At a fixed
value of Δ𝜇O, varying the metal chemical potentials can cause a change
in the dominant cation defect. For example, moving from lithium-
rich/zirconium-poor to lanthanum-poor/zirconium-rich conditions at
constant 𝜇O causes the dominant antisite defects to change from LiZr and
LiLa to ZrLi and ZrLa.

6.4 Variation in lithium stoichiometry

Tuning the lithium stoichiometry in lithium-stuffed garnets is a popular
synthesis strategy to improve their ionic conductivities [10, 13, 15, 32]. A
key question concerning the defect chemistry of these materials, therefore,
is to what extent might their lithium stoichiometries differ from formal
values as a function of synthesis conditions, due to native defect formation
[10]. As described in the previous section, the range of chemical poten-
tials under which LLZO is predicted to be thermodynamically stable can
be characterised as lying between oxygen-rich/metal-poor and oxygen-
poor/metal-rich limits. Of the component elements, the chemical potential
of oxygen is perhaps most sensitive to synthesis conditions, and most eas-
ily controlled by varying temperature or oxygen partial-pressure during
synthesis. Because oxygen vacancies might be expected to result in a net
positive charge, it has been suggested that increasing the concentration
of oxygen vacancies could cause a corresponding increase in [𝑉Li], poten-
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tially reducing lithium stoichiometries below their nominal values (e.g.
Eqn. 6.2) [10, 19].

Previous quantitative analyses of the relationship between oxygen
vacancies and lithium vacancies have used defect models that include
only oxygen and lithium defect species [10, 18, 19] considering only fully
charged and neutral defects [20]. In the previous section, however, we
have shown that considering a broad range of defects in LLZO, in all
charge states, reveals a more complex defect chemistry (Fig. 6.4). In par-
ticular, cation antisites are formed in concentrations comparable to [𝑉O]
under all thermodynamically accessible synthesis conditions. The pres-
ence of these additional defects means the relationship between oxygen
and lithium stoichiometries is likely to be more complex than is predicted
by charge-compensation schemes that assume only lithium point-defect
concentrations can change in response do aliovalent doping.

To illustrate the effect of examining a “full” set of defects , we have
calculated the lithium vacancy concentration as a function of oxygen
chemical potential using two models. The first is a “lithium–oxygen”
model, where we include only oxygen vacancies, lithium vacancies, and
lithium interstitials. The second is an “all-defects” model that includes all
the defects discussed in the previous section. For each model, we have
performed a series of self-consistent Fermi energy calculations along a line
in chemical potential space from oxygen-rich to oxygen-poor conditions.
The predicted oxygen vacancy and lithium vacancy concentrations in each
case are shown in Fig. 6.5.

Figure 6.5: Predicted 𝑉Li and
𝑉O concentrations as a function
of Δ𝜇O, from two comparative
models: “lithium-oxygen” model,
which only considers 𝑉O, 𝑉Li,
and Lii (all charge states) and
“full” model including all defects
considered in this current work.
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The lithium–oxygen model predicts two regimes: at high Δ𝜇O, the
concentrations of lithium vacancies and of oxygen vacancies are both ap-
proximately independent of Δ𝜇O, and the ratio of [𝑉Li] ∶ [𝑉O] is ∼ 2 ∶ 1,
as expected from simple charge neutrality arguments (Eqn. 6.2). The ob-
servation that the vacancy concentrations in this regime are independent
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of Δ𝜇O can be understood by considering the corresponding changes in
the defect transition level diagrams (e.g. Figure 6.4). Being constrained by
the region of thermodynamic stability for LLZO means a decrease in Δ𝜇O

is coupled to an increase in Δ𝜇Li. As Δ𝜇O decreases, the Fermi energy
increases (pinned by the 𝑉Li/Lii crossing point). The formation energies of
𝑉Li, Lii, and 𝑉O (the latter in the +2 charge state) remain unchanged from
their values at high Δ𝜇O, and these defect concentrations are therefore
also unchanged. At lower values of 𝜇O, a second regime is predicted, in
which decreasing Δ𝜇O causes both 𝑉Li and 𝑉O concentrations to increase.
This change in behaviour occurs when the Fermi energy becomes suffi-
ciently high that the lowest energy 𝑉O charge state changes from +2 to +1.
Further decreases in Δ𝜇O are no longer fully compensated by increases in
the Fermi energy, and the 𝑉O energy starts to decrease. Because the dom-
inant 𝑉O charge state in this regime is +1 the [𝑉Li] ∶ [𝑉O] ratio decreases
towards 1 ∶ 1.

The “full” model has a similar overall shape, showing two general
regimes of behaviour. The 𝜇O-independent regime is broader, however,
than for the lithium–oxygen model, and lithium vacancy concentrations
are higher, i.e. somewhat decoupled from the 𝑉O concentrations. This
is because the model now includes additional positive defects, such as
Zr●●●Li and Zr●La, with low formation energies. The transition to the Δ𝜇O-
dependent regime occurs at a lower value of Δ𝜇O than in the lithium–
oxygen model, and oxygen and lithium vacancy concentration are less
tightly coupled. This, again, is due to the presence of other defects, par-
ticularity cation antisite defects, which buffer the response of system to
changing Δ𝜇O.

By performing this analysis across the full four-dimensional ther-
modynamic stability region of LLZO, we can calculate the full range of
variation in lithium stoichiometry under all thermodynamically acces-
sible synthesis conditions. Although the concentrations of individual
defects vary with changing thermodynamic conditions, the net variation
in lithium stoichiometry is small. We predict the minimum and maximum
lithium stoichiometries of LLZO under thermodynamic equilibrium to be
𝑥Li = 6.9975 and 𝑥Li = 7.00125.

A simple sum over all lithium-defects does not, however, account for
possible differences in mobility for lithium present as different defect
species. For example, under lithium-rich/zirconium-poor conditions we
predict high concentrations of LiZr antisites. The binding energy of lithium
at a zirconium site can be estimated from the “Frenkel-pair” formation
energy for LiZr → Lii + 𝑉Zr, which we calculate as Δ𝐸 = +3.42 eV. For
comparison the Frenkel-pair formation energy for LiLi → Lii + 𝑉Li is
Δ𝐸 = +1.02 eV. The much larger energy cost to remove lithium from
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a zirconium site, than from a lithium site, suggests that lithium present
as LiZr is strongly bound to the lattice-cation site, and is therefore not
available as a mobile charge-carrier. This effect is not, however, expected
to significantly affect lithium-ion conductivities, as within the regime of
thermodynamic stability the maximum number of lithium ions trapped as
LiZr antisites remains a small proportion of the total lithium (≤ 0.002%).

A second factor that might effect lithium-ion mobilities is possible clus-
tering of 𝑉 ′

Li and Li●i to form associated defect pairs. Charged lithium va-
cancies and interstitials are expected to exhibit a mutual Coulombic attrac-
tion, giving a favourable negative defect association energy. Formation of
a defect complex, however, decreases the number of independent defects
in a system, and therefore decreases configurational entropy. Whether an
equilibrium population of defects consists predominantly of bound com-
plexes or of independent defects depends on the balance of these energetic
and entropic contributions. These thermodynamic considerations give the
approximate condition that for defect pairs to be predominantly associated
at equilibrium, the defect-pair binding energy, 𝐸binding, defined as

𝐸binding = 𝐸pair − ∑
𝑋𝑞

Δ𝐸𝑋𝑞
f , (6.3)

should be greater than the formation energy, Δ𝐸𝑋𝑞
f , of the individual

defect species. If the inverse is true, and Δ𝐸𝑋𝑞
f > 𝐸binding, these defects

will be predominantly dissociated at equilibrium [33].
To assess this behaviour in LLZO, we have calculated formation en-

ergies for 𝑉Li–Lii defect pairs separated by 4.16 Å and by 6.13 Å. 4.16 Å
corresponds to the shortest 𝑉Li–Lii distance at which these defects do
not simply recombine during geometry optimisation, while 6.13 Å is the
largest possible separation in the 96 atom primitive cell.1 These calcu-1 Calculations performed using

PBEsol in a 192 atom conventional
cell indicate that 𝑉Li–Lii pairs
separated by more than 4.16 Å
give a converged “well-separated”
energy.

lations give a defect-pair association energy of 0.09 eV. Comparing the
energy of the “associated” defect pair directly with the separate 𝑉 ′

Li and Li●i
formation energies gives a defect-pair association energy of 0.19 eV.

6.5 Oxygen vacancy charge states and diffusion

Although the oxygen-vacancy concentration is not predicted to directly
affect the lithium-vacancy concentration, except under oxygen-poor
conditions, we do predict a wide range of equilibrium concentrations for
oxygen vacancies, varying from a slightly oxygen-rich material ([O∗

i ] =
2.56 × 1013 /cm3) to an oxygen-poor material ([𝑉 ∗

O ] = 6.53 × 1017 /cm3

across the LLZO thermodynamic stability region. Oxygen vacancies
have previously been suggested to affect the electronic, optical, and ion-
conduction properties of lithium-garnets [17, 19]. In this section, we first
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examine the electronic properties of oxygen vacancies, and then consider
their capacity to diffuse through the garnet lattice, thereby potentially
contributing to net ionic conductivities.
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Figure 6.6: Density of states for
structures containing oxygen
vacancies in 0, +1, and +2 charge
states. The valence-band maximum
is aligned to 0 eV. The grey line
indicates the position of the Fermi
level.

The simple “Schottky-pair” charge-compensation model of oxygen
vacancy formation (Eqn. 6.2) considers oxygen vacancies to have a for-
mal charge of +2. Our calculations predict that at low Δ𝜇O the favoured
oxygen-vacancy charge state is +1, or even 0; oxygen vacancy formation
leaves behind one, or two, electrons to be accommodated within the host
lattice. In oxides containing reducible cations, such as TiO2, excess elec-
trons from donor defects, such as 𝑉O, are typically accommodated by re-
ducing these cations (e.g. for TiO2 this formally corresponds to reduction
from Ti4+ to Ti3+ [34, 35]). LLZO does not contain any cations normally
considered to have alternate accessible oxidation states, We find that excess
electrons from 𝑉O formation can be trapped at the vacant oxygen site to
form occupied defect states lying deep in the band gap (Fig. 6.6), i.e. oxy-
gen vacancies act as F-centers under reducing, or n-type, conditions. This
behaviour is consistent with the experimental observations of Wolfen-
stein et al. who observed colouration of LLZO samples heated in (highly
reducing) molten lithium, associated with the appearance of a character-
istic electronic paramagnetic resonance signal proposed to correspond to
unpaired electrons trapped at color centres [17].

Kubicek et al. have proposed that diffusion of oxygen vacancies in
LLZO may contribute to net ionic conductivities [19]. To evaluate the
capacity for diffusion by 𝑉O, we have performed climbing-image nudged-
elastic-band (CI-NEB) calculations [36] on the six symmetry inequivalent
𝑉O diffusion pathways between nearest-neighbour oxygen-site pairs.
We find the lowest diffusion barrier is 0.73 eV, which is similar to the
barriers in high-temperature oxide-ion conductors [37, 38]. This suggests
oxygen conduction does not make a significant contribution to net ionic
conductivities under typical battery operating conditions, in agreement
with the experimental analysis of Kubicek et al [19]. Oxygen vacancies
may, however, diffuse through the host structure during high-temperature
sintering.

6.6 Response to supervalent doping

Having evaluated the native defect chemistry of LLZO as a function of
synthesis conditions, we now consider the response to extrinsic doping by
supervalent species. Here, we scale the predicted doping response using
a generic “2+” dopant, such as a trivalent cation at a lithium site, 𝑀●●

Li .
Within a simple charge compensation model (Equation (6.1)) each dopant
is expected to produce two charge-compensating lithium vacancies. Fig-
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Figure 6.7: (a) Increase in lithium
vacancy concentration as the
amount of dopant 𝑀●●

Li per formula
unit is increased for two different
sets of chemical potentials. (b) and
(c) Transition level diagrams for the
two cases in (a). In each diagram
we show the Fermi level position
after supervalent (dashed vertical
black line) doping (0.15 𝑀●●

Li per
formula unit). For clarity, here we
only show the 𝑉Li (red line), Lii
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formation energies.

ure 6.7(a) shows the calculated excess lithium vacancy concentration,
relative to the corresponding undoped system, under two sets of chem-
ical potentials. In the first example (Δ𝜇Li = −1.8 eV, Δ𝜇Zr = −6.2 eV,
Δ𝜇La = −5.2 eV, Δ𝜇O = −1.6 eV) the doping response exactly follows the
prediction of the simple charge-compensation model. Additional lithium
vacancies are introduced in a 2:1 ratio to the number of 𝑀●●

Li dopants.
In the second example, however, (Δ𝜇Li = −2.1 eV, Δ𝜇Zr = −8.4 eV,
Δ𝜇La = −6.5 eV, Δ𝜇O = −0.7 eV), the number of excess lithium-vacancies
is significantly lower than expected, with a negative deviation from the
previous 2:1 ratio that becomes larger with increasing dopant concentra-
tion.

These contrasting behaviours can be understood by examining the
transition level diagrams in each case, and considering the effects of
changing the Fermi level when introducing dopants. Figs. 6.7b and 6.7c,
respectively, show the two transition level diagrams for each set of chem-
ical potentials. For clarity we only show the relevant lowest formation-
energy defects: 𝑉Li, Lii, and LiZr. These two figures also show the self-
consistent Fermi level calculated for the undoped system ([𝑀●●] = 0)
and for [𝑀●●] = 0.15 / formula unit. In both cases, when undoped, the
Fermi energy is pinned slightly below the 𝑉Li / Lii crossing point. Adding
donor dopants to the system increases the Fermi energy. In the absence of
low-energy competing defects (Fig. 6.7b) this decreases the 𝑉Li energy, and
increases the Lii energy, resulting in an increased concentration of lithium
vacancies. In the second case, the Δ𝜇Li chemical potential is relatively high
compared to Δ𝜇Zr, and increasing the Fermi level through doping causes
the Li′′′Zr formation energy to fall below that of 𝑉 ′

Li. For sufficiently high
dopant concentrations, therefore, the Fermi energy is shifted high enough
that LiZr becomes the dominant negative defect. Further supervalent
doping will now increase the amount of lithium in the system, as the con-
centration of LiZr increases more rapidly than that of 𝑉Li. These lithium
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defects are not expected to contributed to the total lithium conductivity
(see the discussion of LiZr binding in the previous section).

6.7 Summary and discussion

In this chapter, we have considered the defect chemistry of the prototypi-
cal lithium-stuffed garnet LLZO, by performing hybrid density-functional
theory calculations on a broad range of defects, and calculating self-
consistent defect concentrations as a function of component chemical
potentials and dopant concentrations. For the native defects, we find a
rich family of defect species, including lithium and oxygen vacancies and
interstitials, which have been discussed previously [18–20, 39], and cation
antisites; such as LiLa, LaZr, LiZr, and ZrLi, which are often neglected when
considering the defect chemistry of lithium-garnets. Under all conditions
except extremely oxygen-poor (reducing) conditions, cation anti-site de-
fects are the highest concentration defect species after 𝑉Li and Lii. The
existence of multiple native positive and negative defect species means the
net lithium stoichiometry is somewhat insensitive to synthesis conditions,
or rather oxygen chemical potential during synthesis. We predict that in
undoped LLZO under equilibrium conditions the lithium stoichiometry
deviates from its nominal value of 𝑥Li = 7 by only +0.00125/−0.0025.

Under strongly reducing conditions, oxygen vacancies are stable in +1
or neutral charge states, and act as colour-centres by trapping electrons.
We predict the lowest barrier for oxygen vacancy diffusion is 0.73 eV,
which suggests that vacancy-mediated oxygen conduction is not signifi-
cant at typical battery-operating temperatures, in agreement with previous
experimental analysis [19], although oxygen vacancies may readily diffuse
during high-temperature sintering of samples.

We also find that the response to supervalent doping depends on ther-
modynamic conditions, and broadly depends on a balance between
lithium and zirconium chemical potentials. Under relatively low 𝜇Li /
high 𝜇Zr conditions, supervalent doping produces proportionate numbers
of charge-compensating lithium vacancies, as is often commonly assumed
(e.g. Eqn. 6.1). Under relatively high 𝜇Li / low 𝜇Zr conditions, however,
supervalent doping is chiefly compensated by LiZr anitsites, and lithium
stoichiometries strongly deviate from those predicted by mobile-ion point
defect compensation models. This result means that synthetic recipes that
use doping to tune the lithium stoichiometry in LLZO may not be able
to assume direct compensation by lithium vacancies, as the dominant
charge-compensating defect can vary with synthesis conditions.
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7
Low electronic conductivity of LLZO from first principles
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Context

In 2019, a relationship was drawn between non-negligible electronic
conductivity and dendrite-driven failure in lithium solid-electrolyte bat-
tery cells [1]. It was proposed that some population of mobile electrons
within the solid-electrolyte could reduce Li+ to lithium metal, creating
sites for the nucleation of lithium deposits which could then grow to form
an electrical contact between the anode and the cathode. Ultimately, this
would cause the battery to fail by short circuit. One of the proposed high–
electronic-conductivity solid-electrolytes was LLZO. Analogously to mo-
bile ions, the conductivity of electronic charge carriers is a product of their
mobility and concentration. The concentration of free electronic carriers
in a material with a finite bandgap can be calculated from a knowledge
of the point defect formation energies [2]. Combining the results in the
previous chapter with an approximate model for the mobility of electronic
carriers in LLZO, in this chapter we predict the bulk electronic conduc-
tivity of LLZO using computational methods. Not only is this relevant in
the context of potential dendrite-driven failure mechanisms, but also, the
electronic conductivity of solid electrolytes should be minimal to prevent
current leakage occurring via direct transport of electrons between the
electrodes, via the solid electrolyte [3, 4].

This study has gained some additional urgency based off the recent sug-
gestion that point defect formation within the bulk can indeed be linked
to a non-negligible electronic conductivity in sulfide solid electrolytes [5].
In this work it is implied that this prediction may be extensible to other
solid electrolytes such as LLZO. We find in our study of the electronic
conductivity of LLZO that this material has all the properties of an ex-
cellent electronic insulator. By extension, it is likely that non-negligible
electronic conductivity in LLZO is associated with extended defects [6].
Our calculated electron and hole mobilities only consider a single source
of potential carrier scattering, and so these are ultimately an upper limit
estimate for electron and hole transport in LLZO. We find, however, that
ultimately the limiting factor for any potential electronic conductivity in
bulk LLZO is a vanishgly small carrier concentration under operating con-
ditions. While it may prove interesting to study the atomistic mechanisms
for electron transport in LLZO in greater depth, this will likely be a more
fruitful pursuit at extended defects.

This chapter follows the same structure as the associated preprint
(see statement of authorship), however, it has been edited to remove
information that would otherwise be redundant owing in the context of
this thesis and to better reflect the overall narrative of this dissertation.
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7.1 Introduction

The principal requirement for a practical solid-electrolyte is fast ion-
conduction. As a consequence, significant research effort has been ex-
pended on developing an understanding of the physical principles that
govern fast lithium-ion transport [7–12] and on the discovery of new
highly-conducting solid electrolytes [13–17]. Other material properties
are also desirable for the practical use of a solid electrolyte, including
good electrochemical stability over a wide voltage operating range [18],
sufficient mechanical strength to impede dendrite propagation [19], and
low interfacial and grain boundary resistivities [20, 21]. The development
of practical solid electrolytes for use in all–solid-state batteries therefore
requires a clear understanding of a broad range of relevant material prop-
erties in candidate materials, and how these properties may be controlled
by tuning synthesis conditions or through targeted chemical modification
[22–24].

One additional property that can affect solid electrolyte performance
is electronic conductivity. An ideal solid electrolyte should have mini-
mal electronic conductivity to avoid gradual self-discharge [3, 4]. Non-
negligible electronic conductivities have also been suggested as a possible
contributing factor in lithium dendrite growth processes wherein mo-
bile Li+ is directly reduced to metallic Li0 within the solid-electrolyte
bulk [1, 25, 26].1 These dendrites can grow to provide an electrical con- 1 An analogous degradation pro-

cess due to reduction of Na+ to
Na resulting from electronic con-
duction has been discussed for
Na-beta-alumina [27, 28].

tact between the electrodes, causing the battery to fail by short circuit.
Recent work by Han et al. has shown that this “bulk” dendrite growth is
more prevalent in solid electrolytes with high electronic conductivities
[1], leading to the suggestion that electronic conductivity is a critical pa-
rameter that determines the degree to which a given solid electrolyte is
susceptible to this dendrite nucleation and growth process. On this basis,
Han et al. have proposed empirical upper limit thresholds for total elec-
tronic conductivity for a solid electrolyte to resist dendrite growth via this
bulk nucleation mechanism of 10−10 S cm−1 and 10−12 S cm−1 at current
densities of 1mA cm−2 and 10mA cm−2, respectively [1].

Despite the potential impact of non-zero electronic conductivities
on the practical use of solid electrolytes in all–solid-state batteries—
particularly in cells that use lithium-metal anodes—a detailed charac-
terisation of solid electrolyte electronic conductivities, and their depen-
dence on factors such as synthesis conditions and sample stoichiometry,
is lacking for many materials. Experimental measurements of electronic
conductivities are usually performed on polycrystalline otherwise mor-
phologically complex samples, and non-negligible electronic conductivity
values are typically attributed to contributions from grain boundaries or
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surfaces [26, 29], with any residual bulk contributions considered to be
negligible. While it may be the case that for many solid electrolytes their
macroscopic electronic conductivities are dominated by “extrinsic” contri-
butions, i.e., those arising from to surfaces and grain boundaries, it is still
useful to characterise the “intrinsic” bulk electronic conductivities of solid
electrolytes. As one example, if the bulk electronic conductivity is small
with respect to surface and grain boundary contributions then this bulk
value provides a lower limit to the net macroscopic electronic conductivity
that might be obtained even under “optimal” morphological control (e.g.,
through sintering or surface treatment). Solid electrolytes with bulk elec-
tronic conductivities that are higher than the threshold values proposed
by Han et al. therefore may be fundamentally incompatible with lithium
metal anodes because they are inherently susceptible to internal dendrite
nucleation, irrespective of any subsequent processing [30].

The direct experimental measurement of solid electrolyte bulk elec-
tronic conductivities can be technically challenging, and has been reported
for only a few cases [3]. Bulk electronic conductivities, alternatively, can
be calculated entirely from first principles using schemes based on elec-
tronic structure methods. These computational models are defined in
terms of relevant thermodynamic conditions, i.e., elemental chemical po-
tentials and temperature, and net stoichiometry. First-principles models
can therefore be used to map how bulk electronic conductivities vary as a
function of experimental variables, such as synthesis conditions or deliber-
ate extrinsic doping, which in turn can give insight into how experimental
synthesis protocols might be optimised to limit the impact of residual bulk
electronic conductivities on overall electrolyte performance.

In this chapter, we calculate the bulk electronic conductivity of the
lithium garnet solid electrolyte tetragonal-Li7La3Zr2O12 (LLZO), as a
function of synthesis conditions (via the component chemical potentials)
and aliovalent (supervalent) doping. We find that electrons and holes in
LLZO have low mobilities (<1 cm2 V−1 s−1) and electronic carrier popu-
lations are vanishingly small under standard operating conditions in both
undoped and doped samples. These factors suggest that the bulk electronic
conductivity of LLZO is not sufficiently high to cause lithium-dendrite for-
mation during cell operation by direct reduction of lithium ions to lithium
metal within the bulk material. We therefore conclude that non-negligible
electronic conductivities measured in experimental lithium garnet sam-
ples, and any associated potential for dendrite nucleation and growth, are
likely due to contributions from extended defects or surfaces, and that
morphological control is therefore critical to limit lithium dendrite growth
due to electronic conductivity.
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7.2 Theory

In this section, we reframe the discussion in Chapter 2 to explicitly discuss
electronic conductivity in the context of defect chemistry, however, many
principles of the key remain the same. The electronic conductivity 𝜎elec, of
a semiconductor is given by

𝜎elec = e[e′]𝜇mob
elec + e[h●]𝜇mob

hole , (7.1)

where [e′] and [h●] are the concentrations of free electrons and holes re-
spectively, e is the magnitude of charge of each carrier species (the elemen-
tary charge), and 𝜇mob

e and 𝜇mobh are the electron and hole mobilities.
For wide-gap materials, such as solid electrolytes, the thermal energy at
room-temperature is insufficient to generate free carriers by directly excit-
ing electrons from the valence band to the conduction band. The presence
of point defects, however, can produce free charge carriers by pinning the
Fermi level close to the conduction-band or valence-band edge increasing
the number of thermally generated electrons or holes, respectively [31, 32].
Aliovalent doping can also shift the position of the Fermi energy within
the band gap. By varying synthesis conditions and doping protocol, there-
fore, the Fermi energy could move close enough to either the valence- or
conduction-band edge that the population of thermally generated elec-
tronic charge carriers is sufficiently high to give a non-negligible electronic
conductivity [30].

Electron and hole carrier concentrations can be calculated as functions
of the Fermi energy, 𝐸Fermi, and the bulk electronic density of states, 𝑔(𝐸);

[e′] = ∫
∞

𝐸g

1
exp[(𝐸 − 𝐸Fermi)/𝑘B𝑇 ] + 1𝑔(𝐸) d𝐸 (7.2)

[h●] = ∫
Evbm

−∞
1 − 1

exp[(𝐸 − 𝐸Fermi)/𝑘B𝑇 ] + 1𝑔(𝐸) d𝐸. (7.3)

where 𝑘B is the Boltzmann constant and 𝑇 is the temperature [33]. Point
defect concentrations are given by

[𝑋𝑞] = 𝑁𝑋
0 exp(Δ𝐸𝑋,𝑞

f [𝐸Fermi, Δ𝜇𝑖]
𝑘B𝑇 ) , (7.4)

where 𝑁𝑋
0 is the density of available sites for defect 𝑋, Δ𝐸𝑋,𝑞

f is the
formation energy of defect 𝑋 in charge-state 𝑞, which in turn depends
on the Fermi energy, 𝐸Fermi, and Δ𝜇𝑖 are the chemical potentials of any
atomic species added to or removed from the system when forming each
defect [34, 35]. Equations 7.2, 7.3, and 7.4 are coupled by a common Fermi
energy, which itself is constrained by the requirement that the system
is net charge-neutral—the charge-density contributions from electrons,
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holes, and any charged point-defects must sum to zero;

𝜌(𝐸Fermi) = ∑
𝑋𝑞

𝑞[𝑋𝑞] + [h●] − [e′] = 0 (7.5)

where 𝜌(𝐸Fermi) is the charge density. Calculating equilibrium carrier
concentrations under specific synthesis conditions—which define the
external chemical potentials—consists of finding a self-consistent solution
to Equations 7.2, 7.3, and 7.4, subject to the charge-neutrality constraint
expressed in Equation 7.5 [34, 36].

The effect of extrinsic dopants can be accounted for by including an
additional term in Equation 7.5 [36, 37]. For a dopant 𝑀 with relative
charge 𝑟 and fixed concentration [𝑀𝑟], 𝜌(𝐸Fermi) becomes

𝜌(𝐸Fermi, 𝑟[𝑀𝑟]) = ∑
𝑋𝑞

𝑞[𝑋𝑞] + [h●] − [e′] + 𝑟[𝑀𝑟]. (7.6)

In the dilute-defect limit there is no direct interaction between dopants
and native defects, and the doping response does not depend explicitly
on the choice of dopant species and insertion site but only on the product
𝑟[𝑀𝑟]. The necessary inputs to solve Equations 7.2–7.6 are the reference
elemental chemical potentials, which are restricted by the condition that
the defect host material must be thermodynamically stable with respect to
likely degradation products, the native defect formation energies, and the
electronic density of states for the non-defective system.

The mobilities of the electron and hole charge carriers—𝜇mob
elec and

𝜇mob
hole , respectively are dependent on the effective mass of the carrier: a

renormalisation of the carrier mass accounting for the periodic potential
experienced by the carrier in the crystal, 𝑚∗, and the frequency of scat-
tering events which can change the direction or energy of the carrier. For
example, in ionic systems, when an ion is displaced, a significant amount
of charge is displaced also. This can cause a local electric field significant
enough to alter the motion of the electron. This process is known as opti-
cal phonon scattering [38]. Interactions between a dynamic lattice and an
electronic charge carrier are known as polarons, a form of quasiparticle,
which will have a different mobility to that of a “free” electron with effec-
tive mass 𝑚∗. Robust methodologies for calculating polaron mobilities
has been an intense subject of research for condensed matter physiscts
for some decades now [39–41]. Building on the work of Herbert Fröh-
lich, Richard Feynman managed to frame the problem of how to calculate
polaron mobility as an alternate quasiparticle which acted as an electron
(with renormalised mass) interacting with a mass via a harmonic spring
[42, 43]. The mobility of this quasiparticle is dependant on the strength of
the interaction between the ionic motion and the electron, characterised
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by the dimensionless “coupling-constant” 𝛼,

𝛼 = 1
4𝜋𝜖0

1
2 (1

𝜖 − 1
𝜖e

) e2

ħΩ (2𝑚∗Ω
ħ )

1/2
(7.7)

where 𝑚∗ is the electron or hole effective mass, 𝜖0 is the permittivity of
free space, 𝜖 is the total dielectric response of the material, and 𝜖e is the
electronic dielectric response. Ω is an average over the vibrational frequen-
cies of the scattering phonons weighted by the amount of charge displaced
by the ionic motion. These phonon frequencies can be derived from the
output of the dielectric constant calculations. A large value of 𝛼 (𝛼 >> 1)
indicates strong electron-phonon interactions. Temperature dependant
mobility can then be calculated as a function of 𝛼 [41]. The solution for
temperature dependant mobility is, however, non-trivial. We have used the
implementation in the open-source JULIA package POL ARONMOBILIT Y
[44]. Importantly, however, as the approach used here to calculating car-
rier mobilities considers only one scattering process we obtain an upper
limit value for the carrier mobilities in a perfect crystal.

7.3 Carrier concentrations
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Figure 7.1: Chemical potential
stability region of LLZO in the
{Δ𝜇Li, Δ𝜇O} plane. The dark red
region is constricted by Equation
7.8 to represent synthesis conditions
ranging from 𝑇 = 1000 to 1500K
and 𝑃O2

= 1 to 1 × 10−10 atm.

The predicted region of thermodynamic stability of LLZO described in
Chapter 6 spans a range of values in four-dimensional chemical-potential
space that can be broadly characterised along an O-rich/metal-poor→O-
poor/metal-rich axis. To further restrict this region to values correspond-
ing to typical synthesis conditions, we relate the oxygen chemical potential
to the synthesis pressure, 𝑃 , and temperature, 𝑇 , via

Δ𝜇O(𝑇 , 𝑃 ) = 1
2{𝐶𝑝(𝑇 − 𝑇0) − 𝑇 [𝑆0 + 𝐶𝑝 ln

𝑇
𝑇0

+ 𝑘B ln
𝑃
𝑃0

] },

(7.8)

using the experimental value for the oxygen standard entropy, 𝑆0 =
205 Jmol−1 K−1 [45]. Assuming oxygen behaves as an ideal gas, we use
𝐶𝑝 = (7/2) 𝑘B for the constant-pressure specific–heat-capacity per di-
atomic molecule. This approach reproduces well experimentally tabulated
values of Δ𝜇O(𝑇 , 𝑃 ), with a maximum error of ∼15meV at the higher
end of the temperature range under which LLZO is typically synthesised
(1500K) [46, 47]. The full thermodynamic-stability region of LLZO (as
discussed in Chapter 6) is limited by the additional constraints we place
on the oxygen chemical potential, corresponding to synthesis temperatures
of 1000 to 1500K, and oxygen partial pressures of 1 to 1 × 10−10 atm. The
reduced synthetically accessible chemical potential volume is plotted in
the {Δ𝜇Li, Δ𝜇O} plane in Fig. 7.1.
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Figure 7.2: the top six panels show [e′] and [h●] carrier concentrations at six sets of chemical potentials (each set corresponds
to a vertex of the estimated chemical potential stability region that LLZO can be synthesised within). The chemical poten-
tials used to calculate defect concentrations are shown above each plot. The carrier concentrations are calculated at 1500K
initially, the concentrations of all defects other than lithium vacancies, interstitials and electron and hole concentrations
are then fixed to these high temperature values for subsequent, lower temperature solutions. All carrier concentrations are
given for both a undoped sample, and a sample containing 0.15 per formula unit of some dopant 𝑀2+. The bottom six
panels show the transition level diagrams calculated at each set of chemical potentials for which carrier concentrations are
calculated.
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While LLZO is typically synthesised at high temperature (up to
1500K), we are ultimately interested in predicting the electronic con-
ductivity at much lower temperatures corresponding to typical operating
conditions—approximately 298K. We assume that host-framework point-
defects, i.e. those involving La, Zr, or O, formed during synthesis are
“frozen in” during subsequent cooling to operating temperatures. The
kinetic barriers for the reorganization of such defects within the host-
framework are large, which prevents the system from fully re-equilibrating
at low temperatures on experimentally relevant timescales [48]. Because
LLZO is a fast-ion solid electrolyte, with highly-mobile lithium interstitials
and vacancies, we do, however, expect 𝑉Li and Lii defects to re-equilibrate
during cooling. Electron and hole populations are similarly expected to
re-equilibrate on experimentally-relevant timescales [49, 50].

To obtain electron and hole carrier concentrations under operating
conditions, as a function of initial synthesis conditions, we therefore
first calculate self-consistent defect and charge-carrier concentrations
for the relevant range of elemental chemical potentials at a characteristic
synthesis temperature of 1500K. We then fix the concentrations of all
defects, except for 𝑉Li and Lii, and recompute “pseudo-equilibrium” defect
and charge-carrier populations at a range of lower temperatures to predict
how carrier concentrations change during sample cooling. For this second
calculation, we impose the constraint that there is no lithium exchange
with the surroundings during cooling, i.e., the net lithium stoichiometry is
set by the high-temperature synthesis conditions.

To illustrate the effect of varying synthesis conditions on the result-
ing carrier concentrations, we consider six chemical potential “limits”,
which correspond to the vertices of the estimated synthetically-accessible
chemical-potential space. These chemical-potential limits can be con-
sidered as two groups depending on whether they can be broadly char-
acterised as O-rich/metal-poor or O-poor/metal-rich. Fig. 7.2 shows the
calculated pseudo-equilibrium electron and hole carrier-concentrations as
a function of the re-equilibration temperature, for each of these limits. For
each set of synthesis conditions (elemental chemical potentials) we present
data for undoped LLZO, with only intrinsic defects present, as well as for
aliovalently-doped LLZO, where we introduce a concentration of 0.15 per
formula unit of a generic supervalent dopant with relative charge 𝑟 = +2.
Defect transition level diagrams and respective self-consistently calculated
Fermi energies are also plotted in Fig. 7.2.

Under O-rich/metal-poor conditions (Fig. 7.2; top row) we predict
p-type conductivity (i.e. [h●] > [e′]), but this can become slightly n-
type when the system is cooled. In contrast, under O-poor/metal-rich
conditions (Fig. 7.2; second row), we predict strong n-type behaviour.
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The total number of charge carriers (summing both electrons and holes)
under O-rich/metal-poor conditions, however, is smaller than under
O-poor/metal-rich conditions. These low carrier concentrations are as-
sociated with a “mid-gap” Fermi energy: within the considered chemical
potential space, the minimum calculated Fermi energy is 2.67 eV, and
the maximum calculated Fermi energy is 3.78 eV (Fig. 7.2, bottom two
rows) and the calculated band gap, aligned to the valence band maximum,
ranges from 0 to 5.9 eV. Ultimately, we predict low room temperature car-
rier concentrations under all synthesis conditions and doping protocols.

7.4 Electronic conductivity

Figure 7.3: The electronic band
structure of tetragonal LLZO
calculated using HSE06, plotted
along a high symmetry path in the
Brillouin zone according to the
Bradley and Cracknell notation
[51]. The coloured points mark
the band edges used to calculate
the effective masses, with numeric
labels indicating the corresponding
entry in Table 7.1.
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The electronic conductivity is given by the products of carrier concen-
trations and carrier mobilities summed over contributions from both
electron and hole carriers (Eqn. 7.1). For the carrier mobilities, we are
interested in these values under typical cell operating conditions, which
we take as 298K. Our model assumes that the carrier mobilities do not
vary with changes in synthesis conditions or doping levels. The carrier
mobilities therefore act as fixed scaling factors that can be used to convert
carrier concentrations—which do vary according to synthesis conditions
and doping levels—into electronic conductivities.

Table 7.1: Curvature effective
masses, 𝑚∗, for holes and electrons
determined by a parabolic fit to
LLZO band edges [52], and the
relevant crystallographic direction
for transport. Numbers indicate
the corresponding features in the
electronic band structure (Fig. 7.3).

Carrier Direction 𝑚∗ No.
electron Γ ⟶ N 2.35 1
electron Γ ⟶ Z 2.41 2
hole N ⟶ P 2.39 3
hole N ⟶ Γ 21.44 4

To solve for polaron mobility we first determine the electron and hole
effective masses. Carrier populations in wide-gap materials such as LLZO
are low compared to conventional semiconductors, and we therefore
calculate “curvature” effective-masses at the conduction band minimum
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(CBM) and valence band maximum (VBM) [53]. The band-structure
for tetragonal-LLZO is shown in Fig. 7.3, and the resulting curvature
effective masses are given in Table 7.1. The lowest effective mass found for
charge carriers in LLZO at the band edges is 2.35 𝑚e. Using these data to
calculate room-temperature carrier mobilities yields a maximum value (for
both holes and electrons) of 0.2 cm2 V−1 s−1 [41].
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Figure 7.4: Effective “room tem-
perature” (298K) electronic con-
ductivities for LLZO synthesised
under O-rich/metal-poor (top
panel) and O-poor/metal-rich
(bottom panel) conditions, as a
function of {𝑉Li,Lii} and {e−/h●}
pseudo-equilibration temperature.
Conductivities are calculated via
Eqn. 7.1), using the electronic car-
rier concentrations in Fig. 7.2 and
the previously calculated maximum
room-temperature electron and hole
carrier mobilities of 0.2 cm2 V−1 s−1.
Solid lines show results for undoped
LLZO, and dashed lines show re-
sults under supervalent doping with
𝑀2+ at a concentration of 0.15 per
formula unit.

The results above predict that under all considered synthesis condi-
tions, carrier concentrations are relatively high at the initial synthesis
temperature of 1500K, but decrease by many orders of magnitude as the
temperature is reduced under pseudo-equilibrium conditions. The signif-
icance of this decrease in carrier concentrations can be seen more clearly
by plotting approximate electronic conductivities (via Eqn. 7.1) by scaling
these predicted carrier concentrations by the previously calculated maxi-
mum room-temperature carrier mobility of 0.2 cm2 V−1 s−1. The resulting
“room-temperature” intrinsic (undoped) and extrinsic (doped) electronic
conductivities are plotted in Fig. 7.4 for both O-rich/metal-poor and O-
poor/metal-rich conditions, as a function of the temperature at which the
e′/h● and 𝑉Li/Lii populations re-equilibrate. In both cases, the high carrier
concentrations for as-synthesised samples (1500K) correspond to room-
temperature electronic conductivities well in excess of the threshold values
proposed by Han et al. For these high bulk electronic conductivities to be
observed under operating conditions, however, would require that the
electron and hole carrier populations do not re-equilibrate during, or after,
sample cooling. Re-equilibration of the electron and hole carrier popu-
lations (and the lithium vacancy and interstitial populations), however,
greatly reduces the carrier concentrations (Fig. 7.2) and the corresponding
room-temperature electronic conductivities are predicted to be well below
the threshold values proposed for intrinsic bulk lithium-dendrite growth.

7.5 Summary and Discussion

Minimising the electronic conductivity of lithium solid electrolytes is
crucial to the effective operation of a solid state battery. In recent years.
non-negligible electronic conductivity has been linked to lithium-dendrite
growth in lithium solid electrolytes, leading to cell failure [1, 25]. This
raises the question of whether the intrinsic electronic conductivity of
various solid state electrolytes makes them fundamentally incompatible
with a lithium metal anode. Motivated by this proposal, and to provide
an estimate of the room-temperature bulk electronic conductivities of
lithium-garnet solid electrolytes, we calculate the electronic conductivity
of the lithium-conducting solid electrolyte LLZO, as a function of synthe-
sis conditions and doping protocol.
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We find that electronic carriers have low mobilities (<1 cm2 V−1 s−1)
owing to large hole and electron effective masses and strong electron–
phonon interactions. While the electronic carrier populations predicted
under typical synthesis conditions (∼1500K) are sufficiently high that
the corresponding room-temperature electronic conductivities would be
well in excess of the threshold values proposed by Han et al., these elec-
tronic carrier populations decrease significantly under subsequent sample
cooling. At room-temperature, assuming full re-equilibration of e′/h●

carriers (and 𝑉Li/Lii defects), carrier concentrations are predicted to be
negligible, giving room-temperature electronic conductivities that are
well below the threshold values of Han et al. This result is consistent with
recent experimental data that gave a much lower electronic conductivity
for single-crystal samples of LLZO than previously reported for poly-
crystalline samples [3]. We note, however, that in experimental samples
there may be additional contributions to electronic conductivity from
electronic charge carriers that are thermally excited at high temperature
(e.g., directly after synthesis) and then kinetically trapped during cool-
ing, to give non-equilibrium carrier populations with higher electronic
conductivities than we predict here.

In the context of understanding the possible contribution of elec-
tronic conductivity to dendrite nucleation and growth, one limitation
of the present study is that it considers only bulk properties. Real-world
solid electrolytes possess surfaces and (typically) grain boundary inter-
faces, which may contribute to net electronic conductivities or otherwise
promote lithium-dendrite growth. Previous theoretical work has ob-
served dramatic band-gap reductions at LLZO surfaces (𝐸bulk

g = 5.46 eV,
𝐸surface

g = 2.19 eV) [29] and a recent combined experimental and theoret-
ical study predicts similar narrowing at grain boundaries (𝐸bulk

g = 6 eV,
𝐸gb

g = 1 to 3 eV) [6]. Such band-gap narrowing is expected to greatly in-
crease the number of free charge-carriers at thermal equilibrium (cf. Equa-
tions (7.2) and (7.3)), potentially giving high local electronic conductivities
that may facilitate dendrite nucleation and growth. Grain boundaries and
surfaces may also exhibit non-bulk defect populations. Local variations
in defect standard chemical potentials can drive defect segregation to (or
from) these regions, causing local shifts in the electrostatic potential (band
bending) and increasing (or decreasing) local free carrier populations rel-
ative to the bulk [54, 55]. Lithium nucleation has been observed at grain
boundaries in LLZO in recent experimental studies [6, 26], which illus-
trates the likely critical role of sample morphology on dendrite growth
in lithium garnets, and underscores the need for the development of new
theoretical methods that can accurately model equilibrium defect and free
carrier populations at interfaces, such as grain boundaries and surfaces.
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Evidence for an inductive effect in the lithium solid electrolyte LGPS
on isovalent doping

Statement of Authorship

The following chapter concerns the article entitled Evidence for a
Solid-Electrolyte Inductive Effect in the Superionic Conductor
Li10Ge1–xSnxP2S12 published in the Journal of the American Chemical
Society (J. Am. Chem. Soc. 2020 142 (50), 21210-21219).

This paper reports on original research I conducted during the period of
my Higher Degree by Research candidature.

Personal contributions: It should be noted that these percentages only ac-
count for the computational aspect of this study, the related experimental
work was carried out by the group of Prof. Wolfgang Zeier. Formulation
of ideas (70%): I have been heavily involved with all decisive stages of
development of the project with guidance from Dr Benjamin Morgan on
the motivation for the work, after the model was originally proposed by
Prof. Wolfgang Zeier with input from Dr Morgan. Design of methodology
(80%): After carrying out the Bader calculations proposed by Dr. Ben-
jamin Morgan, all further methodological decision were taken by myself.
I designed the individual calculations and wrote bespoke post-processing
code to analyse the results with input on best practice from Dr Benjamin
Morgan. Experimental work (90%): Callum Armstrong carried out some
preliminary Bader calculations on Li10GeP2S12 and Li10SnP2S12, beyond
that, I carried out all other practical aspects of the work. Presentation
of data in journal format (60%): The first drafts of the computational
methodology and results section were written by me, with input from Dr
Benjamin Morgan. The finalised manuscript was prepared by Dr. Ben-
jamin Morgan, Prof. Wolfgang Zeier, Nicolò Minafra and myself with
input from all co-authors. I then re-contextualised the computational work



114 COMPUTATIONAL MODELLING OF DEFECTS IN BATTERY MATERIALS

for inclusion in this dissertation.

Reproduced in part with permission from J. Am. Chem. Soc. 2020 142 (50),
21210-21219. Copyright 2020 American Chemical Society.

Signed:

Date:

Context

This chapter represents a departure from the other results chapters in this
thesis. In this instance, rather than focus on the changing concentrations
of defects (and electrons and holes) in response to doping, we consider
how defect mobilities change, We do this for the lithium ions in the solid-
electrolyte LGPS and investigate how isovalent doping of Ge4+ → Sn4+ af-
fects lithium ion mobility via a possible solid-electrolyte “inductive effect”.
A key point of difference between this results chapter and the others are
that here we look at defect properties of a disordered material. When con-
sidering the mobile-ion host-framework properties of LGPS, such as the
bonding interactions between Ge/Sn and S ions, we use a pseudo-ordered
structure taken from the Materials Project [1] and assume the arrangement
of lithium ions will not influence these properties significantly. When
dealing with how doping may influence lithium-ion mobility directly we
take two different approaches. For the case of how local lithium vacancy
formation energies change depending on their distance from dopant ions,
we enumerate many possible orderings and calculate lithium vacancy for-
mation energies in these structures. In the case of the NEB calculations
used to directly probe lithium-ion mobility, we take only one example
structure for each of Li10SnP2S12 and Li10GeP2S12 and calculate the barri-
ers for lithium hopping away from both a Ge4+ ion bonded to a S2− ion,
and an Sn4+ ion bonded to a S2− ion. As this represents a minute frac-
tion of all possible lithium-ion orderings, this should be taken as merely
an indication of how dopants may modulate the barrier for lithium-ion
hopping.

The work presented in this chapter follows the same structure as the
associated paper (see statement of authorship), however, it has been
abridged to better reflect the overall narrative of this dissertation. Addi-
tionally, the associated paper is the product of a collaboration with an



EV IDENCE FOR AN INDUCTIVE EFFECT IN THE LITHIUM SOLID ELECTROLY TE LGPS ON
ISOVALENT DOPING 115

experimental group, however I felt that the computational work alone
presents a full argument for the existence of an experimentally relevant
inductive effect in Sn-doped LGPS. To reflect this, and as the rest of this
thesis is concerned exclusively with computational modelling, the experi-
mental parts of the associated paper were removed.

8.1 Introduction

1 1 3 3 1 1

2 2

22

1 111 3 3

3 3 1 1
1 1

Figure 8.1: Left LGPS unit cell
oriented along the b-axis. Lithium
ions are shown in red, sulphur in
blue. GeS4/PS4 tetrahedra in yellow,
and PS4 tetrahedra in grey. The red
line connects the lithium ions along
the “main” diffusion channel which
is formed of lithium 1 and lithium
3 sites with the lithium between
channels designated as lithium 2.
Right, the same cell oriented down
the c-axis where the red lines show
the connectivity between the main
lithium diffusion channels.

The lithium solid electrolyte Li10GeP2S12 (LGPS) and its derivatives
are of great interest to the battery materials community [1–6], their
room-temperature ionic conductivities have been reported in excess of
0.01 S cm−1 which places them as some of the highest conductivity lithium
ion solid electrolytes discovered to date [7]. Unravelling the factors that
control ionic-transport in these materials is a key research question, be-
cause such an understanding can inform the development of general
“design rules” for property-optimisation, additionally, lessons-learned
from one material can often be mapped onto other materials, aiding in
the identification and optimization of new fast-ion conducting materials
[8–10], thereby broadening the pool of candidate solid electrolytes for
future solid-state battery applications. A partial answer to the question
of what makes some solid electrolytes much faster ionic conductors than
others comes from an understanding of favorable structural motifs. Fam-
ilies of structurally related solid electrolytes, however, often exhibit room
temperature ionic conductivities that vary by several orders of magnitude,
highlighting the important role of chemical composition as a factor in
understanding ionic conductivity trends between similar solid electrolytes
[10–14].

Li10GeP2S12 adopts a tetragonal structure consisting of a framework
of GeS 4–

4 and PS 3–
4 tetrahedra that accommodate a percolating network

of lithium ions. The structure has open channels oriented along the 𝑐-
axis (fig. 8.1) that enable lithium diffusion. These c-oriented channels are
connected by cross-linked lithium sites that allow slower diffusion in the
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a–b plane (fig. 8.1) [15]. The dominant lithium diffusion process along c
consists of lithium ions moving through alternating Li(1) and Li(3) sites
[15]. The potential-energy profile for lithium diffusion between these
sites is determined by both the electrostatic interactions between lithium
ions and by the interactions between the mobile lithium ions and the
host-framework [16]. Introducing dopants can affect both the geometry
and charge-density–distribution of the host-framework and both effects
may modulate the lithium-ion potential-energy profile, resulting in either
increased or decreased lithium-ion conductivity [17].

Doping within a solid-electrolyte host-framework is a well-established
strategy for enhancing the ionic conductivities of specific solid-electrolytes
[2]. The selection of potentially beneficial framework-atom substitutions
is often guided by considering geometric models that aim to predict how
particular substitutions might affect the structure of the host-framework.
One such model, for example, considers the increase in crystal volume
that occurs when replacing small framework atoms with larger substi-
tute species. The resulting framework expansion is expected to increase
the interstitial volume available to diffusing lithium, thereby promoting
lithium conduction [18]. An alternative model considers how substitution
of specific framework atoms might affect the local geometry along crit-
ical lithium diffusion pathways, causing an expansion or contraction of
rate-limiting “bottlenecks” and thereby promoting or impeding lithium
diffusion respectively [17]. Geometric models such as these often provide
intuitive explanations for the conductivity trends observed within families
of solid electrolytes. In some notable cases, however, observed conductiv-
ity trends run counter to those predicted on geometric grounds: chemical
substitutions that would be expected to increase lithium-ion conductivities
instead give the opposite effect and decrease ionic conductivities. One ex-
ample of this contrary behavior is the isovalent doping of germanium with
the larger and more polarisable tin within the Li10GexSn1-xP2S12 system,
which was initially expected to produce an increased ionic conductivity
due to an increase in overall lattice volume, but in practice gives the op-
posite trend, with increasing tin content giving a decreased lithium-ion
conductivity [4, 17].

Krauskopf et al. have recently suggested that this “inverted” response to
chemical substitution might be explained by a so-called solid-electrolyte
“inductive effect” [17]. This model predicts that the lower electronega-
tivity of tin versus germanium causes Sn–S bonds to be more polar than
equivalent Ge–S bonds, with tin-bonded sulphur atoms therefore having
greater associated negative charge-density than the equivalent germanium-
bonded sulphur atoms. This increased negative charge for SnS4 sulfur
atoms compared to GeS4 sulfur atoms means that the electrostatic inter-
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action between these sulfur atoms and nearby lithium ions is stronger in
the tin-substituted system than in than the germanium analogue. This
increases the effective potential-energy barrier for lithium diffusion along
the Li(3)–Li(1) channels resulting in a reduced lithium-ion conductivity.
The proposed inductive effect is illustrated schematically in Figure 8.2.

E
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Х
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Figure 8.2: Schematic of the pre-
dicted difference in M−S···Li
bonding for M = Ge vs M = Sn
due to a hypothetical inductive
effect. Changes in the M−S bonding
modulate the Coulombic interaction
between S and adjacent Li+ ions. A
less electronegative cation, M cre-
ates a more polar M-S bond, leaving
more charge density on the sulphur
ion, strengthen the electrostatic
interaction between the sulphur and
lithium ions producing an increased
potential energy barrier for lithium
diffusion.

Together with the proposal by Krauskopf et al. that an inductive effect
might explain the observed lithium conductivity trend in Li10MP2S12,
solid-electrolyte inductive effects have been invoked to explain anomalous
conductivity trends in a number of other systems, including Na11Sn2PnS12
(Pn = P, Sb) [12], Na3P1-xAsxS4 [19], Li4-xSn1-xSbxS4 [20], and LiM2(PO4)3
(M = Zr, Sn) [21]. The inductive-effect model is founded on simple
chemical-bonding concepts, making it an appealing for explaining these
unexpected conductivity trends. Yet there is no direct evidence that such
an inductive effect can be expected to have an observable impact on
lithium-ion diffusion. More specifically, it is not known to what extent
varying the electronegativities of host-framework atoms within a solid
electrolyte can affect either the intra-framework bonding interactions or
the electrostatic interactions between the host framework and the mo-
bile ions; nor is it clear whether such effects, if present, can modify the
potential energy surface for lithium ion transport sufficiently to explain
observed trends in experimental solid-electrolyte conductivities.

Motivated by the question of whether the solid-electrolyte inductive ef-
fect does indeed exist, or rather, should be expected to have a meaningful
impact on lithium ion transport in solid electrolytes, we have performed
a computational study of the Li10Ge1−xSnxP2S12 system. We note a series
of subtle electronic changes produced by Ge4+ → Sn4+ substitution that are
consistent with the model proposed by Krauskopf et al: COOP/COHP
and Bader analysis show that the inclusion of lower-electronegativity tin
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produces weaker (more polar)M–S bonds within theMS 4–
4 tetrahe-

dra, calculated lithium-binding energies provide further complementary
evidence that tin-substitution increases the strength of the S2– -Li+ inter-
actions. We also show that these changes inM–S bonding and S2––Li+ in-
teractions are coupled to a modulation of the Li+ potential-energy profile
along the Li(3)–Li(1) diffusion pathway in the main diffusion channels:
substituting Ge4+ for Sn4+ gives a higher potential-energy maximum for
single–lithium-ion motion. Further calculations for the tin substituted
system, but with a fixed geometry corresponding to the germanium sub-
stituted analogue, show that tin substitution increases the height of the
lithium diffusion profile even in the absence of changes in host-framework
geometry, providing further evidence for an electronic inductive effect.

When considered together, these results provide evidence in support
of a solid-electrolyte inductive effect in the Li10GexSn1-xP2S12 system.
These data also illustrate how information about subtle changes in host-
framework bonding and framework–mobile-ion interactions arising
from framework-atom doping can be obtained through computational
techniques, and how this may provide a clearer understanding of the
chemical effects responsible for modulating ionic conductivities in families
of structurally-similar lithium-ion solid electrolytes.

8.2 Methods

DFT calculations were carried out with valence electron configurations
of Li [2𝑠1], Ge [4𝑠24𝑝2], Sn [5𝑠25𝑝2], P [3𝑠23𝑝3], and S [3𝑠23𝑝4]. All cal-
culations used the GGA functional PBEsol [22]. Calculations with a fixed
cell volume used a plane-wave cutoff of 500 eV, while calculations with
a variable cell volume used an increased cutoff of 650 eV to minimise er-
rors arising due to Pulay stress. Geometry optimizations were deemed
converged when all atomic forces were smaller than 0.01 eVÅ−1. All calcu-
lations were spin-polarized and used a Monkhorst-Pack grid for sampling
k-space, with the minimum spacing between k-points set to 0.3 −1.

To quantify charge distributions and bonding characters from our DFT
calculations, we assign net atomic-charges, calculated using the Bader
charge-partitioning methodology [23] as implemented by Henkelman et
al. [24]; additionally we calculate COOPs and COHPs using the LOBSTER
code [25–27]. Within LOBSTER , the vaspfitpbe2015 basis functions were
used to map the plane-wave basis-set onto local orbitals. To sample single–
lithium-ion diffusion potential-energy profiles along the 𝑐 channels, we
performed climbing-image nudged–elastic-band (CI-NEB) [28] calcula-
tions, using the pathfinder algorithm of Rong et al. [29] to obtain an initial
approximation of each minimum–energy-barrier path.
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To estimate changes in the S–Li interaction forM = Sn, Ge, we calcu-
lated “vertical” (unrelaxed) Li+ vacancy formation energies (Δ𝐸𝑉 ′

Li
f ) for

all lithium atoms as a function of nearest-neighbor S–Li distance, with
reference to the sulphur atoms that constitute the vertices of the SnS 4–

4

tetrahedra. The Li+ vacancy formation energies, were calculated as

Δ𝐸𝑉 ′
Li

f = Δ𝐸𝑉 ′
Li + 𝜇Li − 𝐸Fermi (8.1)

where Δ𝐸𝑉 ′
Li is given by the difference in energy between a stoichiomet-

ric defect-free supercell and an equivalent cell containing a single Li+

vacancy, with all other atoms held fixed in place.1 1 This is a truncated form of Equa-
tion (4.25) (the equation for the
formation energy of defect 𝑋 in
charge state 𝑞). In this instance, we
are not interested in how the for-
mation energy of the defect changes
with respect to chemical potential.
We are comparing the formation
energy of defects which all consist
of the removal of a single lithium
atom: proper consideration of the
lithium chemical potential will
change the absolute energy of the
formation of these defects, but the
relative difference between them
will remain the same.

Calculations of formation energies of charged defects using periodic
models, as for the lithium vacancy considered here, typically include an
image-charge energy term (𝐸icc) [30, 31], to correct for a shift in total en-
ergy due to the artificial interaction of a defect with its periodic images.
This correction requires calculation of the dielectric tensor, which is ill-
defined within a DFT framework for an intrinsically disordered system
such as LGPS. For the results presented here, we do not include an explicit
image-charge correction, and instead attempt to minimize the variation in
the neglected correction term–which scales approximately as L−3, where L
is the length of the simulation cell [32]–by performing our defect calcula-
tions in large 400 atom 2 × 2 × 2 LGPS supercells. We have estimated the
magnitude of the (neglected) image-charge correction term by performing
an explicit calculation for a 𝑉 ′

Li vacancy in a pseudo-ordered structure of
Li10GeP2S12 taken from the Materials Project, [33] using the approach of
Lany and Zunger adapted for anisotropic systems by Murphy and Hine,
[30, 31] which gives a representative value of 𝐸icc = 0.05 eV.

Because Li10GeP2S12 is intrinsically lithium-disordered, the S–Li in-
teraction may not be well characterized by considering a single lithium-
vacancy formation-energy. To account for this lithium disorder, we have
sampled the distribution of vacancy–formation-energies as a function of
(M)S–Li distance from a set of 160 lithium configurations. These repre-
sentative 160 configurations were selected from an initial set of 500,000
structures, with candidate structures selected by ranking their approximate
electrostatic energies, using the Ewald summation functionality in the
PYMATGEN python package [34].

8.3 Bond-strength indicators and changingM–S bonding interactions

To explore how the choice ofM = {Ge,Sn} affects theM–S bonding char-
acter, we have calculated iCOOPs and iCOHPs for theM–S bonds in
Li10Ge0.5Sn0.5P2S12. The iCOOP values plotted in fig. 8.3, left, show an



120 COMPUTATIONAL MODELLING OF DEFECTS IN BATTERY MATERIALS

Ge-S Sn-S
0.25

0.27

0.29

0.31

0.33

iC
O

O
P

Ge-S Sn-S

−5.5

−5.0

−4.5

iC
O

H
P 

/ 
eV

Figure 8.3: Left, iCOOP val-
ues computed for M-S bonds in
Li10Ge0.5Sn0.5P2S12, Right, iCOHP
values computed for M-S bonds in
Li10Ge0.5Sn0.5P2S12.

increased orbital overlap between the Ge-S bonds relative to the Sn-S,
correlated with a more negative iCOHP value in the more “covalent” Ge-S
bond. The iCOHP values are plotted in Figure 8.3, right, and are indicative
of bonding strength within the respectiveMS4 tetrahedra: more negative
values indicate stronger and more-covalent bonding, while more positive
values indicate weaker and more polar bonding [25–27]. The more neg-
ative values obtained for the GeS 4–

4 tetrahedra compared to the SnS –4
4

tetrahedra suggest stronger bonding interactions for these Ge–S bonds
compared to the equivalent Sn–S bonds.

Figure 8.4: Left, net atomic charges
computed for S atoms bonded to
M atoms in both Li10GeP2S12 and
Li10SnP2S12. Right, net atomic
charge “bond polarity” (difference)
computed for M-S atoms bonded to
M atoms in both Li10GeP2S12 and
Li10SnP2S12
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To investigate whether these changes in bond-strength are coupled to
a measurable change in the charge density associated with theM-bonded
S2– ions, we have also calculated net atomic-charges for the Li10GeP2S12
and Li10SnP2S12 end-members (Figure 8.4, left). This analysis assigns
larger more-negative charges to tin-bonded S2– ions in Li10SnP2S12 than
to equivalent germanium-bonded S2– ions in Li10GeP2S12. To quantify
theM–S bond polarity in Li10GeP2S12 and Li10SnP2S12, we computed
the differences in net atomic-charge values between the germanium or
tin ions and their coordinating S2– ions (Figure 8.4, right). We again
find a subtle but clear difference in bonding character between these two
end-members, with the Ge–S bonds in Li10GeP2S12 being less polar in
character than the Sn–S bonds in Li10SnP2S12, i.e., the difference in net
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atomic charges betweenM and S whenM = Sn is greater than whenM =
Ge.

These bond-strength indicators and bond polarity data together give
a coherent picture of how substituting tin for germanium in Li10MP2S12
affects theM–S bonding. Ge–S bonding is stronger and less polar than
Sn–S bonding and germanium bonded sulphur atoms in Li10GeP2S12
have smaller (less negative) associated charges than tin-bonded sulphur
atoms in Li10SnP2S12. Each of these observations is consistent with the
predictions of the inductive effect model.

8.4 Ge → Sn substitution effects on the Li-ion potential energy surface.

To corroborate the stabilizing effect of tin-substitution on nearby Li+, we
performed a further series of DFT calculations in which we computed the
Li+ vacancy-formation energies (Δ𝐸𝑉 ′

Li
f ) for a set of Li10GeP2S12 supercells

each containing one tin ion. These Li+ vacancy-formation energies give
a relative measure of the “binding energy” of Li+ at different positions
within each supercell; a larger vacancy-formation energy corresponds to
a more stable Li+ position. Figure 6a shows the resulting distributions of
calculated Li+ vacancy-formation energies, classified according to whether
the Li+ ion removed is originally located less than 3 Å of a tin-bonded
sulphur ion or not. The vacancy–formation-energies for Li+ ions close
to tin-bonded sulphur atoms are shifted to higher energies relative to the
vacancy–formation-energies for Li+ ions that sit further away, i.e. there is a
greater energy cost to remove lithium ions from Sn–S-adjacent positions.
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Figure 8.5: Computed probability
distribution of Li vacancy formation
energies in a Li10GeP2S12 supercell
containing one single Sn ion. The
blue distribution shows vacancies
far (≥3 Å) from the sulfur ions
bonded to Sn, and the orange,
those vacancies near the same S2–

ions with a distance <3 Å. The
distribution suggests that Li+ is
more strongly bound to SnS 4–

4
tetrahedra, compared to GeS 4–

4

The enhanced binding of Li+ ions near Sn-S is expected to corre-
spond to a modulation of the potential energy profile for Li+ ions moving
within these c-oriented diffusion channels. To better quantify the effect of
germanium-tin substitution on the Li+ ion potential-energy profile along
the Li(3)–Li(1) diffusion channels, we consider potential energy profiles
obtained from a series climbing-image nudged elastic band (CI-NEB) cal-
culations for a single Li+ ion moving from the Li(3) site to the Li(1) site. Li
diffusion in Li10GeP2S12 proceeds by the concerted string-like motion of
groups of lithium ions [35], and NEB pathways for individual lithium ions
therefore should not be equated with the true microscopic free-energy–
barrier for lithium motion (which determines the activation energy for Li+

conduction). In this case, however, we are interested in local differences
in the potential energy surfaces as a function of Ge → Sn substitution,
and we consider these single-Li+ NEB barriers as a proxy metric for the
“roughness” of the true many-body potential-energy surface. The CI-NEB
profiles for Li+ diffusion in Li10GeP2S12 and in Li10SnP2S12 are shown in
Figure 8.6, left panel. These profiles were computed following the stan-
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dard CI-NEB procedure, allowing all images along the diffusion path to
fully relax within the CI-NEB constraints. These relaxed CI-NEB profiles
show a larger potential energy barrier for Li(3) → Li(1) Li-movement in
Li10SnP2S12 than in Li10GeP2S12, in agreement with conductivity trends
from experiment and diffusion coefficients from previous molecular dy-
namics simulations of Li10Ge1−xSnxP2S12 [2]. This result, again, agrees
with the qualitative predictions of the solid-electrolyte inductive effect
model.

Figure 8.6: Left Nudged elastic
band calculations performed for
the Li10GeP2S12 and Li10SnP2S12
structures for a single lithium ion
moving from a site adjacent to
a (M)S-Li motif, to an adjacent
lithium site. Right, recalculated bat-
teries taking the relaxed structures
from the initial calculations have
swapped the atomic idenity of M,
e.g. Sn (Ge) refers to single point
calculations along the Li10GeP2S12
pathway, where Sn has been substi-
tuted for Ge.
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The substitution of germanium for tin in Li10GeP2S12 does not only
affect the chemical bonding and charge distribution within the host-
framework; it also changes the host-framework geometry. It is therefore
possible that even though our data provide strong evidence for a solid-
electrolyte inductive effect in Li10Ge1−xSnxP2S12, this might not be the
cause of the conductivity trend observed in experiment—instead the
observed effect may be due to the geometric effects of Ge → Sn substi-
tution [36]. To resolve the electronic and geometric contributions to the
potential-energy–barrier difference predicted for our fully-relaxed CI-
NEB calculations, we performed a second set of calculations with tin fully
substituted into Li10GeP2S12 and Ge fully substituted into Li10SnP2S12,
and with each image along the diffusion pathway held fixed at the orig-
inal geometry. In other words, we compute an approximate barrier for
Li10SnP2S12 fixed at the optimized Li10GeP2S12 cell parameters and ionic
positions, and for Li10GeP2S12 fixed at the optimized Li10SnP2S12 cell
parameters and ionic positions. If the relative potential energy barriers
for Li10GeP2S12 and for Li10SnP2S12 depend only on the difference in
host-framework geometry produced by Ge → Sn substitution, we would
expect the relative barriers from these cation-exchanged fixed-geometry
calculations to give a lower barrier for Li10SnP2S12 (computed using the
optimized Li10GeP2S12 geometries), and a higher barrier for Li10GeP2S12
(computed using the optimized Li10SnP2S12 geometries). Instead we see
the opposite trend (Figure 8.6, right panel). The approximate potential-
energy barrier is higher for Li10SnP2S12 even when the geometry of the
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diffusion pathway is that of fully relaxed Li10GeP2S12. Providing these Li
+

ion potential energy barriers are effective descriptors of the variation in
the true many-body free-energy surface in Li10Ge1−xSnxP2S12, this result
suggests that the observed conductivity trend cannot be attributed solely
to geometric effects, and that electronic effects, such as those described
by the solid-electrolyte inductive effect model, have an effect on the ionic
conductivities of the Li10Ge1−xSnxP2S12 series.

8.5 Conclusions

The solid-electrolyte inductive effect model offers a possible expla-
nation for the otherwise anomalous conductivity trend observed for
Li10Ge1−xSnxP2S12, as well as for a number of other solid electrolyte fami-
lies. This model proposes that in Li10Ge1−xSnxP2S12 the lower electroneg-
ativity of tin compared to germanium causes Sn–S bonds to be weaker
and more polar than analogous Ge–S bonds. The increased polarity of
these Sn–S bonds corresponds to a larger (more negative) charge den-
sity associated with the Sn–bonded sulphur atoms, which in turn causes
a stronger Coulombic attraction between these S atoms and nearby Li+

cations. Li+ ions adjacent to Sn-bonded S atoms are therefore expected to
be more “tightly bound”—i.e. they have lower potential energies—relative
to Li+ ions further away, than otherwise equivalent Li+ ions adjacent to
Ge-bonded S atoms. This change in S-Li interaction-strength is then pre-
dicted to change the profile of the potential energy surface for lithium
diffusion along the c-oriented one-dimensional channels, giving a higher
barrier to diffusion in Li10SnP2S12 than in Li10GeP2S12, thereby offering
an explanation for the reduced room-temperature ionic conductivity and
higher lithium-conduction activation energy observed in the Sn-doped
system experiments.

While this solid-electrolyte inductive effect model is chemically in-
tuitive, and potentially explains a number of otherwise anomalous con-
ductivity trends, there has previously been insufficient data to confirm
whether this mechanism does indeed produce a significant effect in
lithium-ion solid electrolytes, including Li10Ge1−xSnxP2S12. To address
this issue, we have conducted a DFT study of the variation in bonding
interactions lithium-ion potential-energy profile in the Li10Ge1−xSnxP2S12
series. Our calculations show that substituting Sn into Li10Ge1−xSnxP2S12
does indeed produce a decrease inM–S bonding strength, leading to an
increasing electron density on S. Binding energies corroborates a stronger
Coulombic attraction between Li+ and S2– . Additional CI-NEB DFT cal-
culations indicate that these changes inM–S and S-Li interactions are
associated with an increased potential energy barrier for Li diffusing along
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the c-oriented diffusion channels. These data are all consistent with the
predictions of the solid-electrolyte inductive effect model [36], and pro-
vide supporting evidence for the existence of this inductive effect in the
Li10Ge1−xSnxP2S12 family of superionic solid electrolytes. Finally, analysis
of the potential energy profile along the c-oriented diffusion channels for
Li10SnP2S12 fixed at Li10GeP2S12 geometries and for Li10GeP2S12 fixed at
Li10SnP2S12 geometries shows that the predictions of the solid-electrolyte
inductive effect model hold even in the absence of the structural changes
that accompany Sn-substitution in real materials, suggesting that the in-
ductive effect produces a sufficiently large perturbation to the lithium-ion
potential energy profile to be experimentally meaningful, even when de-
coupled from structural changes to the host-framework.

While the data presented here provide evidence for an experimentally
significant solid-electrolyte inductive effect in the Li10Ge1−xSnxP2S12 sys-
tem, it is unknown to what extent analogous inductive effects may be a
factor in the relative ionic conductivities of other families of solid elec-
trolytes [12, 19–21]. The Li10Ge1−xSnxP2S12 system may be an exceptional
case because of the particular geometry of the host-framework—in this
crystal structure theM-bonded S anions, i.e. those directly affected by
Ge → Sn substitution, are arranged along the sides of the main c-oriented
conduction pathways, and may therefore exhibit a particularly strong in-
fluence on Li+ ion diffusion. To what extent the inductive effect does, or
does not, play a role in controlling ionic transport in other families of solid
electrolytes therefore remains an intriguing question for future study.
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9
Closing remarks

The subject of this thesis has been to study the point defect chemistry
of emerging battery materials—specifically lithium-ion solid-state elec-
trolytes. After discussing the importance of defect engineering in solid
electrolytes for modulating both the concentration and mobility of ionic
charge carriers, we study the defect chemistry of two different solid elec-
trolytes and the response of their native defect concentrations to the in-
troduction of aliovalent dopants. This is done using a self-consistent ther-
modynamic model within which the coupling between the point-defect
equilibria are treated via the Fermi energy. Introducing a new charged
species (the dopant) into our material perturbs the condition of charge
neutrality which then influences the Fermi energy [1]. For a charged de-
fect, the formation energy is a function of the Fermi energy, and therefore,
aliovalent doping will change the concentrations of all charged defects, not
just mobile-ion defects.

In the antiperovskite solid electrolyte Li3OCl we discuss how low con-
centrations of native mobile-ion point defects—lithium vacancies and
interstitials—suggests undoped Li3OCl is likely to be a poor ionic con-
ductor. Significant improvements to the ionic conductivity via aliovalent
doping appear challenging. Aliovalent-doping–driven perturbations to
the Fermi energy do not exclusively result in an increase in mobile ion
point defects. This is particularly true when doping to increase ionic con-
ductivity via subvalent doping intended to increase the concentration of
the minority carrier, the highly mobile lithium interstitial [2]. The pre-
dominant effect of this doping strategy is an increase in the concentration
of chlorine vacancies and a reduction in the concentration the majority
charge-carrying mobile-ion defect, the lithium vacancy.

In applying this model to the lithium-garnet LLZO, we again find a
complex response to aliovalent doping, showing that there is thermo-
dynamic competition between the formation of lithium vacancies and
lithium-zirconium antisites on supervalent doping (typically used to sta-
bilise the high ionic conductivity cubic phase as compared to the low
ionic conductivity tetragonal phase). Our model therefore predicts that
composition-property relationships that are derived from the assumption
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of mobile-defect charge compensation on aliovalent doping are likely to be
inaccurate. We then extend our model of the defect chemistry of LLZO to
examine electronic carrier populations and approximate their mobilites.
In doing so we confirm that LLZO has all the qualities of an excellent
electronic insulator, and it is likely that any electronic conductivity driven
dendrite formation and associated battery failure is a consequence of con-
ductivity contributions at extended defects such as grain boundaries [3,
4].

Finally we turn to the role that dopants can play in modulating the
defect-formation energy and mobility landscape in Li10GeP2S12 and carry
out a first principles investigation of the so-called solid-electrolyte “induc-
tive effect” [5]. We find corroborating evidence that isovalent doping of a
less electronegative framework cation (Ge4+ → Sn4+) can modulate the
charge density distribution in the host-lattice enough to influence both lo-
cal defect formation energies and barriers for single-defect hopping. This
shows that even very subtle chemical changes can influence the defect
properties of solid electrolytes.

While it is hoped that the work and approach taken in this thesis in-
spires more studies which examine the point defect chemistry of solid
state electrolytes which consider the coupling between the concentrations
of all defect species when modelling the defect chemistry of solid elec-
trolytes, the spectre of how to treat the inherent disorder present in many
of the most effective solid electrolytes in a comprehensive defect model
has not gone unnoticed. In a disordered material, the energy change upon
adding or removing an ion should be computed as ensemble averages over
all thermally accessible microstates as opposed to the energy difference
between a single host and defective structure [6]. This presents a rather
fundamental challenge, while statistical mechanical models to treat disor-
der in are employed in materials modelling, these typically either require
a “brute-force” approach [6], or the generation of large training sets of
data which can be used to train predictive models [7]. Both approaches
ultimately require a large number of calculations, and as discussed in
Section 3.5, accurately modelling defect properties using DFT typically
requires the use of costly computational approaches. We anticipate that
the development of highly accurate models of defect equilibria in disor-
dered materials will require advances in both the thermodynamic formal-
ism used in constructing models and in the computational approaches
used for calculating defect energies. Meeting these challenges brings the
promise of an improved understanding of defect chemistry of current and
emerging solid electrolytes, and the potential for more accurate and prac-
tical tuning of their material properties through doping and controlled
synthetic conditions led by computational modelling studies.
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