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Abstract 

This paper presents a new method using a Convolutional Long Short-Term Memory (ConvLSTM) network to predict the future sensor signals 

for cutting tool bending moment in milling. Tool bending moment is directly correlated to cutting forces and can be used for tool condition 

monitoring. Bending moment from a sensory tool holder was obtained and transformed into uniform sized time-frequency domain data to be used 

as frame inputs to the network. Future frames of sensor signals are predicted and validated by comparing the predicted frames with the ground 

truth. The investigations show the potential of the proposed method for predicting future signals which can be used for tool condition monitoring. 

 
© 2022 The Authors. Published by ELSEVIER B.V.  

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 

Peer-review - Peer-review under responsibility of the International Programme committee of the 55th CIRP Conference on Manufacturing 

Systems 
 Keywords: Deep learning; End milling; machining; Sensors 

 

1. Introduction 

Real-time monitoring of the status of the cutting tool has 

great significance; cutting tool and workpiece wastage and 

machine downtime can be reduced, thus reducing economic 

losses [1]. Being able to closely monitor the status of the cutting 

tool and progression of the wear is extremely beneficial to 

machining operators and has gained significant attention in 

recent years. 

The domain of predictive analytics involves the use of 

statistical techniques and other predictive algorithms to predict 

the future by examining past and present time series data. With 

the increased volume and quality of data, more complex and 

efficient models need to be developed. Traditionally, physical 

models of systems have been used to provide predictions on the 

remaining useful life of different systems. However, these are 

not feasible for complex systems [2]. 

For predictions/classification involving time series data, 

deep learning architectures are becoming increasingly popular 

and the performance is improving [3]. Recurrent Neural 

Networks (RNNs), specifically Long Short-Term Memory 

(LSTM), are mainly used for problems involving sequence 

prediction. Examples of sequence prediction problems are; 

language translation, predicting future frames of a video and 

weather forecasting [4].  

Recent studies within the domain of predictive algorithms 

and machine learning have often used manual feature extraction 

and reduction for the inputs to these algorithms. Whilst 

effective, handcrafted approaches rely on expert knowledge on 

the signal source and correct filtering techniques for the signal 

type [5]. Use of these methods is labour intensive and time 

consuming. Manually selecting the wrong features can 

influence the effectiveness of the model since extracted features 

directly determine the performance of the classification or 

prediction models. Deep learning is capable of providing a new 

approach to operate directly on the raw data and automatically 

learn and extract features without needing specific domain 

knowledge [6]. 

One of the most prominent frameworks for deep learning, 

particularly for classification problems, is the Convolutional 

Neural Network (CNN), which has been used in cases for tool 

condition monitoring/remaining useful life prediction [7], [8]. 

Although, some information may be lost between time steps as 

sequential and temporal dependency are not considered as data 
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is not treated as time series but rather as static spatial data. To 

deal with time series data, RNNs, specifically LSTM networks, 

are popular as they can capture long-term dependencies and 

nonlinear dynamics of time series data [9].  

Deep learning methods have been widely used for 

classification and identification problems within the domain of 

manufacturing. Petruschke et al. [10] compared the use of CNN 

and RNN to identify energy states for machine tools; achieving 

over 95% accuracy for each method classifying states into 

labels ‘standby’, ‘operational’, and ‘working. Hu et al. [11] 

used a combination CNN-LSTM model to predict energy 

consumption in additive manufacturing; using slices from the 

CAD models to generate images at each layer.  

For quality assessment within resistance spot welding, 

Stavropoulos et al. [12] propose an online monitoring system 

using video data obtained from an infrared camera. They test a 

variety of machine learning classification models. 

Papacharalampopoulos et al. [13] integrate an LSTM model 

into their online monitoring system Digital Twin for laser 

powder bed fusion.  

Cutting forces have been identified as the direct predictor of 

machining conditions including tool wear [14]. Being able to 

predict cutting forces in a time series scenario allows for 

monitoring cutting tool condition and the workpiece precision.  

In this paper, ConvLSTM models are applied to time series 

data obtained from a sensory tool holder that records the tool 

bending moments in two dimensions during machining. The 

aim is to be able to predict the future signals from the sensors 

based on an input sequence.  

The following section describes the deep learning model 

used to predict frames for the future bending moment signal. 

The methodology for data collection and analysis is described 

in section 3. In sections 4 and 5 the results are presented and 

discussed in detail followed by conclusions and future work in 

section 6. 

2. Deep learning for series prediction 

Recurrent neural networks are specialised networks used to 

process sequential or time series data of varying length, e.g. in 

the format of a video, audio, language, etc. [15]. The main 

feature of using these networks is that the structure can store 

and memorise historical information about the inputs. They 

essentially operate as a loop, where information is passed from 

each step to the next. However, RNNs do run into a problem 

with exploding or vanishing gradients, where if the gradient is 

too small, the weight parameter updates tend towards zero, and 

if it is too large, the model weights will become too large and 

eventually become ‘Not a Number (NaN)’ [3]. 

In order to address the problem of exploding or vanishing 

gradient in Recurrent Neural Networks (RNNs), the Long 

Short-Term Memory (LSTM) network was introduced [16].  

In comparison to standard RNNs, LSTMs are capable of 

learning long-term dependencies within the data. The LSTM 

layer consists of multiple connected LSTM cell blocks. 

Compared to RNNs, LSTMs have a much more complex 

structure within the LSTM module, composed of various 

connections and gates that allow information to be regulated 

and flow through. The forget gate, input gate, and output gate 

can decide which information is forgotten, added, and passed 

along within the LSTM module, therefore ensuring relevant 

information moves along time steps to make predictions. The 

Convolutional LSTM (ConvLSTM) was proposed by Shi et al. 

[4] for the task of precipitation nowcasting. In this architecture, 

the matrix multiplication within the LSTM cell is replaced with 

a convolutional operation. 

CNNs are best suited for working with image inputs. 

LSTMs are good at working with time series data as these 

networks can hold onto information from previous time steps 

and use this for decision making. However, they are not ideal 

for working with inputs that have a spatial structure. For 

sequential images that are spatiotemporal, such as frames in a 

video, a model that combines the two and can find both spatial 

and temporal correlations is ideal. As the multiplication within 

the LSTM cell is replaced with a convolutional operation in the 

ConvLSTM cell, the output keeps the same spatiotemporal 

dimension as the input, rather than outputting 1D feature 

vectors. 

The input for a ConvLSTM has five dimensions; samples, 

time steps, channels, rows, and columns. The general structure 

of a ConvLSTM model includes combinations of ConvLSTM 

layers. As it has multiple stacked ConvLSTM layers, it has a 

strong representational power which makes it suitable for 

giving predictions in complex dynamical systems [4]. 

Typically, after a ConvLSTM layer, the data is fed through a 

batch normalisation layer. The output for this model is a 

combination of both an LSTM and a convolution layer output 

and has the same dimension as the input. 

3. Methodology 

3.1. Data collection 

The dataset for this model was obtained from a set of 

machining experiments performed on a Bridgeport vertical 

machining centre (VMC 610XP). In total, six machining 

experiments were performed and cutting tool bending moment 

was collected using a SPIKE® wireless sensory tool holder at 

a frequency of 2.5 kHz. The experiments were end milling 

straight cuts along the length of a 50 × 50 × 150 mm block of 

Inconel 718 using climb milling strategy and flood cooling 

condition. Six uncoated cemented tungsten carbide end milling 

tools with 12 mm diameter end mills and varying cutting 

geometry were used. Two levels of helix angle (30° and 45°) 

and three levels of rake angles (4°, 8° and 12°) were used for a 

full factorial design of experiments. The machining parameters 

were 60 m/min cutting speed and 0.03 mm/tooth feed per tooth 

with 3 mm radial depth of cut and 1 mm axial depth of cut.  

Uncoated tools allow for accelerated tool wear which affects 

the tool bending moment and hence the cutting forces. The tool 

wear was monitored periodically, and the experiments were 

stopped once tool flank wear, VB, reached 300 µm. 

3.2. Data preprocessing 

Previous work has shown that the tool bending moment is 

affected by the tool wear and can potentially be used for tool 

wear monitoring [17]. For the input data to the ConvLSTM 
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network, the bending moment in both the X and Y directions 

are combined into one signal by taking the absolute bending 

moment using the Pythagorean theorem. The resulting signals 

are then split into samples of 0.5 seconds which are then each 

normalised locally between 0 and 1. This will remove the 

impact of signal amplitude and the overall signal trend over the 

tool lifetime allowing for generalization of the method.  

The main methods for signal processing and feature 

extraction are time domain, frequency domain, and time-

frequency domain. Here time-frequency domain analysis is 

used in the form of Continuous Wavelet Transform (CWT). 

This enables transforming the signal sections into a matrix 

which can be represented as an image to be used as the input 

for the ConvLSTM network. This preprocessing step involves 

elements of feature selection prior to the analysis within the 

ConvLSTM network, where further feature engineering is 

performed on the generated images.  

Fig. 1 illustrates the bending moment signal for three passes 

of the cutting tool. The corresponding continuous wavelet 

transforms for each signal is taken from a 0.5 second section in 

the middle of the pass which has been locally normalized.  The 

signal from a new tool is shown in row (a) whilst the signal 

from a tool with ~300 µm wear is provided in row (c). Row (b) 

provides an example of a tool with some degree of wear but 

well in advance of reaching the end of life criterion.  The CWT 

uses a logarithmic frequency axis, and the time in seconds is 

along the x axis. The position and colour of each pixel indicates 

the time, frequency and amplitude of the signals.  

As the signal sections are normalized before performing 

CWT, the magnitude in the transformed images displays the 

relative intensity of certain frequency bands compared to other 

sections of the signal. For example, in the final machining pass 

(c) in Fig. 1 the magnitude of the central band is more 

significant compared to the others. Thus, showing that the 

CWTs of bending signals at different stages of the cutting tool 

life can be distinguished from each other. 

For the application to signal prediction, each CWT image 

generated becomes a frame within a sequence of length 10 

frames and each image is converted to a single channel image. 

The dimensions are reduced to 64 × 64 in order to reduce the 

computational intensity for training. Any signal below 90 

frames was padded evenly on either side with non-machining 

signal and were split into sequences of 10 frames. The input to 

this form of network is represented as a 5D tensor, thus the 

input lengths of the signals must be equal. 

For each experiment with a cutting tool, between 8 and 15 

passes were reached. In total, 621 sequences of 10 frames were 

obtained from all machining data and used for training and 

validation. 

The data is processed and filtered using Matlab, and 

implementations of the models are in Python with 

Tensorflow/Keras. 

3.3. ConvLSTM structure 

A total of 12 ConvLSTM networks were developed and 

tested. Comparisons were made between different ConvLSTM 

structures with varying number of stacked ConvLSTM layers 

and kernel sizes.  

 

Fig. 1. Plots of the absolute bending moment signal and corresponding CWT 

images for machining Inconel 718 with (a) new, (b) worn and (c) near end of 

life cutting tools. 

The input dataset was split into 80% training and 20% 

validation. In order to predict the next frame, the dataset 𝑥 

(originally sequence of length 𝑛), will be reduced to frames 1 

to 𝑛 − 1, and will be shifted by one to create dataset 𝑦, which 

will be frames 2 to 𝑛 . So that an input frame 𝑥𝑛  will be 

predicting frame 𝑦𝑛+1. 

As mentioned in section 2, the ConvLSTM network consists 

of multiple ConvLSTM layers followed by batch normalisation 

layers sandwiched together in different amounts. Each layer 

has varying parameters within followed by a 2D convolutional 

layer. Each ConvLSTM layer had tanh activation and hard 

sigmoid recurrent activation. Binary cross-entropy was used as 

the loss function, with the ‘Adam’ optimiser. To reduce 

computational requirements in the purpose of comparing these 

combinations, a maximum of four ConvLSTM layers were 

used in each model. 

The kernel size specifies the height and width of the 

convolutional window in the layer and can determine how 

much information is captured. One too large will just result in 

the system becoming fully connected, and too small and it 

cannot capture all information [18]. The different kernel sizes 

tested were (3,3), (5,5) and (7,7). Different combinations of 

these kernel height and widths were used in 2-, 3- and 4-layer 

networks. In total 12 network structures were trained on the 

dataset. Each network will be referred to by the kernel sizes, 

e.g. a network with 3 ConvLSTM layer kernel sizes of (3,3), 

(5,5) and (7,7) will be referred to as 3-5-7. 

Each ConvLSTM network was trained for at most 100 

epochs with an input batch size of 5 sequences, chosen to 

reduce computational resources. For a few models, based on 

the plots of the training and validation loss at each epoch, there 

was a point where the validation loss overlapped and became 



4 Author name / Procedia CIRP 00 (2019) 000–000 

larger than the training loss, implying that the network is 

overfitting to this dataset. Techniques such as dropout layers, 

of which a value of 0.4 was used, were implemented in the 

ConvLSTM layers to attempt to counteract overfitting. 

4. Results 

After training, the networks performance in sequence 

prediction can be tested visually and with comparison metrics 

to determine how close the sequence prediction is to the ground 

truth. As the sequence input length is 10; for a random sequence 

from the validation dataset, the first 5 frames were used to 

predict the following 5 frames. This is a rolling prediction and 

from predicted frame 6, frame 7 will be predicted, and so on.  

An example sequence prediction is shown in Fig. 2 and Fig. 3. 

These figures display a 10 frame input sequence, where frames 

6-10 are predicted based on the previous frame in the sequence.  

There are different metrics that can be used to determine 

image similarity between the frames predicted and the ground 

truth frames. Each metric mentioned in this section has been 

applied to the predicted frames and the corresponding ground 

truth frames for 10 sets of validation sequences and mean 

values taken; from this, an idea of the consistency for the frame 

prediction for each model can be shown.  

Standard metrics are used to compare the images pixel by 

pixel, including pixel-wise root mean squared error (RMSE), 

which is one of the most commonly used metrics for 

comparison [19]. 

The average pixel-wise RMSE for the five frames predicted 

by the six best performing models compared to the actual 

frames was calculated as shown in Fig. 4. This demonstrated 

that error increases as the time distance between the current 

signal frame and the predicted frame increases. With the 

moving window as the signals are generated during machining, 

the quality of the prediction increases.  

Alongside this standard method, the structural similarity 

(SSIM) index was used for comparison, which is based on the 

human vision system and assesses the images based on 

luminance, contrast, and structural similarity [19]. As shown in 

Fig. 5, the SSIM indicates a maximum of 65% similarity 

between the predicted signal for the first frame which drops to 

45% for the fifth frame. This is comparable to the results from 

the pixel-wise mean squared error.  

5. Discussion 

Visually, from sequence predictions such as that in Fig. 2 

and Fig. 3, the ConvLSTM can predict some of the main 

features within the CWT images. However, there are 

improvements that can be made, particularly following the first 

two frame predictions. It is clear that the predicted sequences 

suffer from low resolution, which increases for each following 

prediction. This is due to the fact that future predictions are 

based on frames that have been generated by the model and 

hence, the prediction quality deteriorates as the time distance 

between the frames increases. However, in practice with real 

time data, the prediction accuracy is expected to increase as the 

modelling progresses.  

 

Fig. 2. Example sequence prediction for ConvLSTM network 5-3-3 for 

machining experiment using a tool with 30° helix and 12° rake angles. 

 

Fig. 3. Example sequence prediction for ConvLSTM network 3-3-3-3 for 

machining experiment using a tool with 30° helix and 4° rake angles. 

The sequence shown in Fig. 3 does display the correct 

locations and an increase in the magnitude in the main 

frequency bands, but it highlights the limitation in the frame 

prediction and struggles to predict the signals at the end of the 

machining pass. Potentially, this can be overcome by 

increasing the number of image sequences from the current 5 

and training data at the expense of computational power. 

The ConvLSTM proposed in this study has shown potential 

in identifying the main frequencies and features present and 

their formation across each time period. However, it lacks the 

ability to determine the correct magnitude of the signals. The 

accuracy of the predictions tapers off after the second frame 

prediction and as it gets farther away from the current frame. 

As the input sequences are only single channel images (initially 

greyscale), increasing to three channels will present different 

results. The different frequency bands and patterns in the CWT 

will be more prominent in different channels and the 

convolutional operation within the ConvLSTM layers would 

have a greater chance of being able to extract these bands and 

channels. However, this will provide more variables for 

computation and increases the complexity of the model. 
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Fig. 4. Average pixel-wise RMSE for six different network structures over ten 

sample sequence predictions from the validation dataset. Pixel values for each 

image were in the range of 0 to 255. 

 

Fig. 5. SSIM for six different network structures. 

A lower RMSE and higher SSIM indicate better prediction 

performances. Comparing the RMSE between the predicted 

and ground truth frames for the different model structures, the 

first frame predicted has the most consistently low error 

between the different models. Interestingly for the 3-layer 

networks the second frame prediction has a smaller error. 

Based on this metric, models 3-3 and 5-5-3-3 have the most 

consistently low pixel-wise RMSE across all frames for 

sequences predicted. Model 5-3-3 however had the lowest 

standard deviation for each frame and a moderately low value 

for every frame, implying that this model has a greater 

consistency in the repeatability of the frame prediction. There 

was also smaller variation between the metric values for the 

frames, showing less resolution being lost in frame predictions 

further in the future. 

Since, RMSE is an average value over the entire image, it 

gives a general difference between the ground truth and 

prediction frames. However, it can easily miss similarities in 

finer details. This is evident when comparing results in Fig. 3 

where the overall RSME for this model is lower than that in 

Fig. 4. but the predictions appear worse visually. 

Alongside the six best performing models shown, other 

combinations of kernel sizes in the ConvLSTM layers were 

tested. Those that did not finish with a layer with a (3,3) kernel 

and exclusively used (7,7) or (5,5) kernel sizes performed very 

poorly in comparison. As the input images are of dimensions 

64 × 64, using large kernel sizes means that information is 

easily lost. The main frequency bands in the CWT images only 

correspond to at most 5 pixels high. Smaller kernel sizes are 

needed to pick up these features. If the input dimensions are to 

be increased, the kernel sizes will have to be scaled. Previous 

research on the combinations of kernel sizes in layers 

highlights that the use of multiple kernel sizes is advantageous 

and kernels must be of a suitable size to capture the 

‘movement’ of the features [18]. 

Some overfitting due to the dataset size was detected as the 

validation loss started to increase above the training loss after 

50 epochs. The main solution would be to increase the input 

dataset size, which has been shown to improve the prediction 

RMSE [20]. This work has demonstrated that despite the 

experimental dataset containing cutting tools with different tool 

geometries, the model is capable of extracting and predicting 

prominent features of the input CWT sequences to a reasonable 

degree. Thus, there is potential for these trained models to be 

used with input datasets not necessarily of the same cutting tool 

geometry. 

The analysis indicates the feasibility of using ConvLSTM 

for predicting sensor signals as transformed time-frequency 

domain signal frames. The prediction is based on immediate 

data collected for a very short period of time in the future. This 

would provide enough time for the processing and control 

systems to make decisions and prevent potentially expensive 

damages to the workpiece and the machine tool. The current 

analyses are based on a small set of data which are compacted 

into frames of 64 × 64 pixels. Evidently, compacting the signals 

would mean losing potentially valuable information about the 

machining condition and further investigation is required to 

identify and optimize the size of the images to ensure minimum 

loss whilst preventing issues with computational power and 

long-term data storage.  

To incorporate a tool condition monitoring aspect to this 

model, it should be extended to include a classification network 

to determine the status of the cutting tool based on the 

predictions. Fig. 6 Outlines how the current model can be 

extended to include tool wear classification by incorporating a 

CNN directly after the ConvLSTM. Both the ConvLSTM and 

CNN will need to be pretrained on the same datasets, with the 

input training data to the CNN being CWT images labelled with 

the tool wear status. Future frame predictions from the 

ConvLSTM can then be input into the CNN to provide a tool 

wear classification label. 
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Fig. 6. Proposed ConvLSTM-CNN model 

6. Conclusions and future work 

Tool bending moment as a function of cutting forces has 

been identified a direct indicator of cutting tool condition and 

wear. Being able to predict bending moment allows for tool 

condition forecasting during machining. A new approach has 

been proposed in which the time-frequency domain 

transformation of bending moment signal is treated as a 

sequence frame and deep learning algorithms are used to 

predict future frames, e.g. transformed signals. In this paper 

Convolutional Long Short-Term Memory (ConvLSTM) 

networks were successfully developed and implemented for 

sequence prediction of tool bending moment signal data. 

Different combinations of kernel sizes and ConvLSTM layers 

were used and the prediction results between these was 

compared. 

The models clearly show the ability to predict future frames 

of bending moment signals based on an input sequence. The 

analyses indicate that the kernel size and epochs have direct 

impact on prediction accuracy. However, there is also a risk of 

overfitting. Future work will focus on: 

 

• Training the network using a larger dataset and investigate 

the impact of dimension and depth of signal frames. 

• Extending the time distance between the predictions from 

100 ms in this study to a few seconds and minutes to obtain 

longer term predictions for the cutting tool signal. 

• Developing and testing a hybrid approach where signals 

and transformed frames can be used together. 

• Assessing the inverse transformation of the predicted CWT 

frames to the sensor signals. 

• Inclusion of a classification algorithm to incorporate 

cutting tool wear prediction on the predicted frames. 

 

The next steps in this work beyond improving the model and 

increasing the amount of data is to integrate this algorithm into 

a system for online tool condition forecasting using a 

combination of deep learning and physics-based methods. 

Moreover, the tool bending moment can be correlated with the 

workpiece geometrical accuracy within a comprehensive 

machining monitoring system.  
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