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Abstract

We solve a periodic supply vessel planning problem under demand and weather uncertainty, arising

in offshore of oil and gas production. Our study is motivated by the case of the Norwegian

energy operator Equinor which supplied us with data. The aim is to determine an optimal fleet

composition and a least-cost vessel schedule under uncertain demand at the installations and

uncertain weather conditions. We present a methodology incorporating a metaheuristic within a

discrete-event simulation model which, applied iteratively for the increasing values of reliability

level parameters, yields a vessel schedule of least expected cost.

Keywords: supply vessel planning; offshore logistics; uncertainty; reliable vessel schedules;

metaheuristic; discrete-event simulation; recourse.



1 Introduction

We solve a periodic supply vessel planning problem under demand and weather uncertainty, arising

in the operations of oil and gas production offshore. Our study is motivated by the case of

the Norwegian energy operator Equinor which supplied us with data. It is, however, of general

applicability. Upstream offshore oil and gas supply chain involves several layers of a large number

of suppliers from which the cargo is transported by different transportation modes (truck, rail and

sea) to supply bases. At the supply bases, the goods are consolidated for subsequent shipment

to the production and exploration installations located offshore. The transportation of cargo to

the installations and the return of cargo (rented equipment, empty load carriers, waste, etc.) are

performed by specialized vessels. The installations are usually located at large distances from the

shore, resulting in intensive long-haul maritime transportation activities. In general the offshore

installations have a very limited storage capacity, and to ensure the continuous supply of equipment

and materials, the deliveries to the installations should be performed frequently and require careful

planning.

The supply is affected by a number of uncertain factors, like weather conditions, which often

result in delivery delays. Various equipment failures and other unforeseen events may require ad

hoc deliveries. Furthermore, the demand for supplies at the installations, especially during the

exploration phase, varies significantly and is characterized by uncertain volumes and due dates.

Timeliness is vital for the installations activities as missing supplies may in the worst case cause

delays in drilling operations, or a temporary reduction or a shutdown of oil and gas production.

Taking into account the fact that the supply process takes place in a highly uncertain environment

and is associated with high transportation and shortage costs, logistics planners seek ways of

ensuring a reliable and effective supply.

Each supply base has a predefined set of installations to serve and hosts a fleet of chartered

supply vessels hired on a long-term basis to deliver the cargo. The vessel schedule is built for a

given planning period (a week in our case) and is performed repetitively over an execution horizon

(several months or a season). The execution of the schedule is often disrupted by uncertain

demand at the installations and by fluctuating weather conditions. To account for disruptions,

logistics planners perform operational modifications to the schedule and, in the worst case, may

hire spot vessels on a short-term basis. The schedule should therefore be constructed so as to

minimize its expected cost over the execution horizon after the operational modifications have

been implemented. Deterministic versions of the problem were recently studied by Shyshou et al.

(2012), Borthen et al. (2017) and Kisialiou et al. (2018a). Its stochastic variant under uncertain

weather conditions was investigated by Halvorsen-Weare and Fagerholt (2011), Norlund et al.

(2015), Norlund and Gribkovskaia (2017) and Kisialiou et al. (2018b), and the uncertain demand



was treated by Kisialiou et al. (2019). The problem in which the demand and weather uncertainties

are dealt with simultaneously is more complicated yet more realistic than when only one type of

uncertainty is considered and poses a significant methodological challenge. In this study we solve

this case for the first time. We introduce a methodology enabling the generation of vessel schedules

of least expected cost given uncertain demand and weather conditions.

1.1 The periodic supply vessel planning problem

We focus on the problem of tactical vessel planning for the fleet of supply vessels which is known

as the Periodic Supply Vessel Planning Problem (PSVPP). Fig. 1 depicts the locations of the

offshore installations on the Norwegian continental shelf served from the supply base located in

Mongstad (marked by a red circle). Each installation for a given planning period (one week in our

case) has an estimated cargo delivery demand and a delivery frequency. The total weekly cargo

demand is assumed to be evenly distributed across the deliveries. The delivery of the cargo to

the installations is performed according to a planned vessel schedule constructed for the planning

period.

Fig. 1. Map showing the offshore installations locations on the Norwegian continental shelf and
the supply base.
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The unloading time an installation depends on the amount of cargo to be delivered. Some

of the installations may be night-closed, and therefore the service can be only performed during

the installation’s opening hours. Similarly, the supply base has opening hours during which the

vessels may perform the loading operations. Each supply vessel is associated with a daily charter

cost which is the major cost contributor, and has an economic sailing speed which is used for the

computation of sailing times during the construction of the vessel schedule. The deck capacity

of a vessel is limited and the total demand of the installations visited during a voyage performed

by the vessel should not be exceeded. In addition, the vessels have different fuel consumption

rates when sailing, servicing and waiting at an installation. The turnaround time at the base,

which includes waiting and loading, is also vessel dependent. Each vessel has a set of possible

departure times from the base during the day. The specificity of the loading operations at the

base imposes restrictions such as a maximum number of vessel departures from the base during

the day (base capacity constraint). The requested delivery lead time to the installations visited

on a voyage limits the maximum voyage duration. In order to provide a continuous supply at an

installation, the departures of vessels visiting this installation should be evenly spread throughout

the planning period. A vessel schedule is performed repeatedly over several months or a season,

called the execution horizon, as both the installations and the supply base require the predictability

of vessels departures to the installations in order to manage a continuous flow of cargo along the

supply chain. For planning purposes, the installation’s total weekly demand is assumed to be

constant and is defined as an average over the execution horizon.

Fig. 2 provides an example of a weekly vessel schedule performed by a fleet of vessels (marked

V1, V2, V3), each having a set of planned voyages to be performed within the week. Each voyage

starts at the supply base according to the planned date and time, and has a set of installations

(each marked with three letters) to be visited in a given sequence. Each voyage starts from vessel

loading at the base (the turnaround time is marked as “B”), followed by the vessel departure. Due

to the repetitive nature of the schedule, the set of days in the planning period is circular, meaning

that a vessel may start its voyage at the end of the planning period (for example, the last voyage

of vessel V1) and finish it at the beginning of the next period (on Monday of the following week).

Here, for simplicity, each day is subdivided into three eight-hour time slots and for each time slot,

line 2 gives the elapsed time in hours. Each voyage has a planned end time at the base, and during

the schedule construction, so-called voyage non-overlap restrictions are imposed for each vessel to

ensure that it cannot start a new voyage until it has finished the previous one.
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Fig. 2. Example of a vessel schedule.

Below we describe some important characteristics of a vessel schedule. We define a voyage TW

as the length of time between the voyage start time and the start of loading operations for the next

voyage. Fig. 3 depicts a vessel with two voyages and the beginning of the third one. We define

slacks within a voyage (called intra-voyage slacks) and slacks between voyages (called inter-voyage

slacks). The intra-voyage slack is defined by the time span between the service completion at an

installation and the end of its TW. The inter-voyage slack is the time interval between the end of

voyage (arrival at the base) and the end of its TW (beginning of loading operations for the next

voyage).

Fig. 3. Two voyages performed by vessel 1, showing the base (B) and the installations served.
The TW of each voyage is shown at the bottom. The inter-voyage slack is represented by a thick
arrow. The TWs of installations 2 and 6 are shown at the top. One can see that service time at
these installations is less than the TW length and hence there is some intra-voyage slack (denoted
by S2 and S6).

1.2 Demand and weather uncertainty

The demand at the installations varies from week to week and from departure to departure.

The weather also varies over the schedule’s execution horizon. Uncertain demand and weather

conditions may render the execution of some of the scheduled vessel voyages impossible due to

the violation of the vessel capacity and of the planned voyage duration. Cargo not delivered as

planned may result in the postponement of the start of the planned activities at the installations

and in the impossibility of carrying out production and exploration as planned. To guarantee that

the departure of the cargo to the installations is performed according to the vessel schedule, the

planners must perform daily modifications of the planned voyages and, if necessary, plan additional

voyages using extra resources. It is therefore critical, when constructing a vessel schedule, to enforce

measures in order to reduce the probability of schedule infeasibility and hence minimize the use of

extra resources.
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The demand fluctuations over time are relatively high for some installations (drilling rigs)

due to the large volumes of cargo needed at different stages of the exploration and production

activities. Moreover, the start and the duration of activities at the installations may deviate from

the planned schedule. In addition, some ad hoc unplanned deliveries often take place. With such

demand variability, there is always a risk that the total demand of all installations visited on a

voyage will exceed the capacity of the vessel. The probability of capacity violation on a voyage

depends on the level of actual demands relative to the planned demands at the installations visited

on the voyage, and on the capacity of the vessel performing the voyage. In addition, the uncertain

installation demands result in fluctuations of service times at the installations since service duration

depends on the amount of delivered cargo. Surges in demand may therefore result in voyage TW

violations.

Another major uncertain factor lies in the weather conditions which may seriously impact the

sailing and service times and often lead to serious schedule disruptions. Weather conditions are

usually described by factors such as wind speed, wave direction and wave height, where the latter

is considered to be one of the most significant. It affects both the sailing speed and the service time

at the installations, which may lead to a violation of the voyage TW. It may even happen that

the waves are so high that the service at an installation is temporarily interrupted. A situation

in which a vessel should wait for better weather conditions to be able to start or continue the

service at an installation is called “Wait on Weather” (WOW) by the logistics planners. When the

WOW conditions last for one or several days, the departures of vessels on voyages scheduled on

these days are canceled until the weather improves. In this case the cargo of the canceled voyages

must be delivered on the days following the end of the WOW period. The arrival time at an

installation depends on the sequence of installations previously visited on the voyage and on the

day and time of the voyage start. This makes the sailing and service times to be the time- and

location-dependent uncertain parameters in the PSVPP.

In practice, a violation of a voyage TW may result from the increased service time caused by

surges in demand, or by the increased sailing and service times due to the deterioration of weather

conditions, or due to a combination of both factors. Such situations are highly likely when there

are night-closed installations in the voyage. The late arrival of a vessel at a night-closed installation

may result in a 12-hour delay of the service start since the vessel should wait for the opening of

the installation TW on the next day. In case of the violation of a voyage TW or of the vessel

capacity constraint, the schedule’s infeasibility is eliminated by applying operational modifications

consisting of visit relocations between voyages. Logistics planners differentiate between planned

voyages performed according to the schedule, and unplanned additional voyages performed either

by a free charter vessel or by a hired spot vessel to ensure the required service level. The goal of
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visit relocations is to reload part of the demand from the infeasible voyages to another planned

or unplanned feasible voyage. There are several ways of relocating visits. The primary relocation

option is to redistribute part of the demand of infeasible voyages to feasible planned voyages

departing either on the same day or on the next day. Another option is to deliver part of the

demand by an unplanned voyage performed by a charter vessel, provided that it is available

and that this voyage does not overlap with the other planned voyages of this vessel. Otherwise,

the excess demand may be delivered by a spot vessel hired on the short term. It worth noting

that modifications of the planned voyages are performed so that their number and departure

times remain unchanged. These relocation options may be applied separately or in the various

combinations, depending on the situation. Voyage modifications are applied on a daily basis in

case of infeasibility during the schedule execution, and generate additional costs, the largest being

the hiring of spot vessels due to their very high rates.

The objective of the PSVPP with demand and weather uncertainty is to minimize the expected

schedule cost computed over the execution horizon after the operational modifications have been

implemented.

1.3 Positioning within the scientific literature

Our problem belongs to the general area of supply chain resilience (Hosseini et al., 2019), and to

the family of Periodic Vehicle Routing Problems (PVRPs) (Francis et al., 2008). The literature

on stochastic PVRPs is rather scarce. The algorithms developed for the stochastic PVRP are

similar to those for the widely studied Stochastic Vehicle Routing Problems (SVRPs), see for

example Gendreau et al. (2016). Most studies on SVRPs consider only one uncertain factor,

such as stochastic demand, stochastic customers, stochastic travel time, or stochastic service time.

The solution approaches to SVRPs are subdivided into two-stage stochastic programming with

recourse, reoptimization, robust optimization, and chance-constrained programming. There exist

only a few studies on to the PSVPP with uncertainty (Halvorsen-Weare and Fagerholt, 2011 and

Norlund et al., 2015), and none has ever considered both demand and weather uncertainty.

1.3.1 Solution approaches to stochastic routing problems

Most algorithms for SVRPs use two-stage stochastic programming with recourse where, in the first

stage, routes are constructed before the information on the stochastic parameters is revealed and,

in the second stage, the first-stage solution is modified when information on uncertainty becomes

available. This corrective action is called a recourse. The expected cost of recourse is computed

assuming that stochastic parameters follow probability distributions yielding simple convolutions
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(Laporte et al., 2002), although there exist some methods incorporating Monte Carlo sampling

(Kleywegt et al., 2001; Kenyon and Morton, 2003; Linderoth et al., 2006 and Rei et al., 2010).

The reoptimization paradigm implies recomputing the routing decisions while the information on

uncertain factors is dynamically revealed during the route execution. Being a proactive approach,

reoptimization has an advantage over a priori optimization in terms of efficiency, but this may come

at the expense of added computational complexity (Gendreau et al., 2016). Robust optimization

(Ben-Tal and Nemirovski, 1999; Bertsimas and Sim, 2004; Bertsimas et al., 2011) tries to optimize

against the worst-case outcome defined by an uncertainty set. Robust optimization does not

rely on probability distributions and does not use recourse actions as in the two-stage stochastic

programming. Chance-constrained programming is similar to robust optimization but relies on

the probability distribution of uncertain parameters. It ensures that the probability of satisfying

constraints with uncertain parameters lies above a certain reliability level (Birge and Louveaux,

1997). Such an approach results in a more consistent service level and in less need for complex

recourse actions to be taken. In practice, however, the problem of defining general distributions

is computationally challenging. Analytical approximations (Nemirovski and Shapiro, 2006 and

Geletu et al., 2014) and Monte Carlo sampling (Calafiore and Campi, 2005) are often used to

approximate general distributions.

A direct application of any of the above mentioned approaches to the stochastic PSVPP is likely

to be inefficient. The most popular two-stage optimization with recourse algorithms applied to the

VRP perform relatively well assuming that the probability distributions yield simple convolutions,

which is rarely the case. Moreover, usually only one classical recourse action is applied, which

does not significantly increase the computational complexity of the second-stage problem. In our

case, however, when the demands at installations follow different probability distributions, it is

challenging to compute convolutions. Approximating the cost of recourse with several available

recourse actions involves solving a computationally hard combinatorial problem in which all options

of recourse actions implementation are assessed. Furthermore, the service and sailing times cannot

be modelled analytically (being time- and location-dependent) and hence simulation modeling is

the only practical way of approximating sailing and service times. Pure applications of robust and

chance-constrained optimization are not suitable to our problem because these methodologies do

not apply any recourse actions and may yield rather costly solutions.

1.3.2 Periodic Supply Vessel Planning Problem with uncertainty

Kisialiou et al. (2019) recently developed a heuristic for the PSVPP under uncertain demand

which combines chance-constrained optimization to control reliability level with respect to the

vessel capacity, and discrete-event simulation to compute average expected cost of solution
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after modifications. In this heuristic, multiple vessel schedules with different reliability levels

are generated by means of an adaptive large neighbourhood search (ALNS) metaheuristic with

incorporated chance constraints. Discrete-event simulation is subsequently used to assess the

average expected cost of schedule performance over the execution horizon after the application of

modifications. The combination of optimization and discrete-event simulation also has been used

in other stochastic logistics contexts, such as the Vehicle Routing Problem (Sörensen and Sevaux,

2009) and the Orienteering Problem (Bian and Liu, 2018), but in different ways.

There exist several studies dedicated to the robust PSVPP under weather uncertainty.

Halvorsen-Weare and Fagerholt (2011) have introduced a two-phase algorithm based on the set

partitioning formulation of the PSVPP, where in the voyage generation phase a robustness measure

is computed for each feasible voyage by simulation. Norlund et al. (2015) used a different two-phase

methodology in which the set partitioning model is solved for a set of voyages selected after

simulation according to a given robustness requirement. Both methods enable the generation

of solutions for small- and medium-size instances. Kisialiou et al. (2018b) developed an ALNS

metaheuristic allowing for the construction of solutions for large real-life instances incorporating

dynamic voyage slacks and thus ensuring some protection against voyage duration infeasibility.

In this approach, the slack duration is controlled by a robustness parameter, and discrete-event

simulation is used to assess the service level of schedules generated under different robustness

requirements.

1.4 Scientific contribution of the paper

Our aim is to develop a methodology for the supply vessel routing and scheduling problem

with uncertain demands, travel and service times. We modify the ALNS metaheuristic for the

deterministic PSVPP presented in Kisialiou et al. (2018a) to control voyage duration infeasibility

under uncertain weather conditions by incorporating dynamic inter- and intra-voyage slacks as

proposed in Kisialiou et al. (2018b). To control the reliability level under uncertain demand, we

apply chance-constrained programming to ensure that the probability of satisfying the capacity

constraint is above a certain level, as proposed in Kisialiou et al. (2019), in order to calculate

the expected cost of the schedule under uncertain demand and weather conditions. We develop

a simulation model and hence assess the schedule performance over its execution horizon. The

simulation model incorporates several visit relocation options applied in different combinations at

the operational level, thus ensuring the schedule feasibility in case of violation of a voyage capacity

or duration constraints during the simulation. We introduce a post-optimization procedure

incorporating a score function that accounts for the trade-off between the schedule cost and its

reliability. The score function allows selecting from the solutions with slightly different costs a

8



solution with the higher potential of yielding the lowest expected cost. The ALNS metaheuristic

and the simulation model are integrated into a single optimization-simulation decision support tool

enabling the construction of schedules of least expected cost for large-size instances under demand

and weather uncertainty. We demonstrate the performance of the developed tool on several real

instances provided by Equinor.

1.5 Organization of the paper

The remainder of this paper is organized as follows. In Section 2 we present a metaheuristic

containing mechanisms to control the reliability level against demand and weather uncertainty.

This algorithm is followed by the description of the discrete-event simulation model for the

computation of the expected cost after modifications. In Section 3 we describe the test instances

with input data, parameter tuning, and results of computational experiments. Conclusions are

presented in Section 4.

2 Optimization-simulation algorithm

We present a new methodology for the periodic supply vessel planning with combined uncertain

demand and weather conditions. We first describe the mechanisms developed to ensure a

preset reliability level in the vessel schedules followed by a metaheuristic that incorporates

these mechanisms. We introduce a special score function accounting for the schedule’s planned

cost and reliability level, and used in the post-optimization procedure incorporated in the

ALNS metaheuristic. We further develop a discrete-event simulation model to assess the

schedule performance over the execution horizon after application of operational modifications,

and to compute the schedule’s average expected total cost. Finally, we present an iterative

optimization-simulation algorithm which generates solutions with given reliability levels and

computes their expected cost.

2.1 Reliability level control

We differentiate between the voyage capacity feasibility and its TW feasibility. The capacity

feasibility of a voyage in a context of uncertain demand depends on the actual demand realization

and on the vessel capacity. In fact, one knows before the voyage starts whether vessel capacity

will be violated or not. Regarding the uncertain weather conditions, the voyage TW feasibility is

not known in advance. For this reason, to ensure a certain reliability level of the schedule with

two uncertain variables, we need to account for them during the schedule construction using two
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different approaches. In what follows we describe the mechanisms applied to control reliability

under uncertain demand and weather conditions during the schedule construction.

2.1.1 Reliability control against uncertain demand

To ensure a certain reliability level against the uncertain demand in the vessel schedule, we modify

the capacity constraint of voyage v into its chance-constrained counterpart:

P (Dv ≤ Cv) ≥ p, (1)

which sets a lower limit p on the probability that the voyage total demand Dv will not exceed

the vessel capacity Cv. In reality, the demands at the installations follow distributions belonging

to the different families (see Kisialiou et al., 2019). To compute the convolution of installation

demands on a voyage and to define the demand cumulative distribution function (CDF) Fv, we

use the fast Fourier transform algorithm and the property of the convolution theorem (Broughton

and Bryan, 2008). During the schedule construction we impose the capacity chance constraints for

all voyages:

Fv(Cv) ≥ p, v ∈ V, (2)

where V is the set of all voyages in a schedule. The parameter p is further referred to as the

demand reliability parameter.

2.1.2 Reliability control against uncertain weather conditions

Imposing chance constraints to the voyage TWs is impossible since the travel and service times

are time- and location-dependent uncertain parameters and the duration of the voyage TW is a

variable. As shown by Kisialiou et al. (2018b), the reliability of a voyage relative to uncertain

weather conditions depends on inter- and intra-voyage slacks which serve as time buffers in case of

delays accumulated along the voyage. Longer slacks ensure a higher reliability level. In this study,

in order to control the intra- and inter-voyage slack durations during the voyage construction, we

adopt a robust approach and introduce a reliability parameter α enforcing the condition

si/ti ≥ α, i ∈ NTW
v (3)

for the set NTW
v of all installations with TWs visited on voyage v and the base (see Kisialiou et al.,

2018b for more details ). We use the notation si for the intra-voyage slack at installation i with a

TW, and for the inter-voyage slack between voyage v and the next voyage of the same vessel. The
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parameter ti is calculated for the intra-voyage slack at installation i with TW as the deterministic

travel time between the departure time from the previous installation with a TW visited on the

voyage (or from the departure time from the base) and the end of service at installation i. For

the inter-voyage slack, ti is calculated as the travel time between the end of service at the last

installation i with TW visited on the voyage, and the arrival time at the base. For a voyage without

installations with TWs, condition (3) would take the form s/t ≥ α, where s is the inter-voyage

slack and t is the deterministic voyage duration. The parameter α is user-defined and guarantees

a certain minimal slack duration. The motivation behind this approach is that longer voyages

require larger inter- and intra-voyage slacks. The duration of each slack takes into account the

duration of the slacks at the installations with TW already visited on the voyage. We further refer

to α as the weather reliability parameter. The approach with slacks control implements in some

way the idea of robust optimization.

2.2 Metaheuristic algorithm

Below we describe an ALNS metaheuristic algorithm for the construction of vessel schedules with

certain values of demand and weather reliability parameters. The algorithm is an extension of the

algorithm developed in Kisialiou et al. (2018a) for the deterministic version of the problem.

2.2.1 Construction of robust vessel schedules

Algorithm 1 provides a brief pseudo-code of the ALNS metaheuristic. This algorithm is applied

for n restarts of η iterations each. The values of the demand and weather reliability parameters p

and α are used as inputs. At each restart an initial feasible solution z0 satisfying conditions (2)

and (3) is randomly generated. Solution z is defined as the current solution and, at the beginning

of each restart, is equal to z0. The best known solution found during the search is defined as

z∗. We further define solution ω∗ yielding the highest value Q∗ of the score function accounting

for the trade-off between schedule cost and its reliability level (see Section 2.2.2 for the score

function description). Further, an attempt is made to improve solution z0 within η iterations.

At the start of each iteration the current solution z is partially destroyed by removing q visits

from it. The number of visits to be removed is randomly chosen within a certain interval. The

removal of visits is performed by a destroy operator which is selected from a set ψ according to a

discrete probability distribution based on its past performance (at the beginning of a restart the

probabilities are equal). Three operators are used for partial destroying the solution: Shaw removal

(see Shaw, 1997), worst removal and random voyage removal. Each of the operators removes visits

from solution z according to its own logic. The visits removed by a destroy operator are inserted
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in a pool S and the destroyed solution is defined as z′′. An attempt is then made to repair solution

z′′ by reinserting visits from pool S back into z′′. Insertions are made by a repair operator selected

from a set ϕ. Three repair operators are used: 2-regret insertion, 3-regret insertion and deep greedy

insertion. In the case of a successful reinsertion of all visits from S back into z′′, a new solution z′

is obtained. By means of application of the destroy and repair operators a move from the space of

neighbourhood solutions N(z) to the neighbourhood space N(z′) of the solution z′ is performed.

Further, a set of improvement operators is applied to the solution z′ in an attempt to find a better

solution in its neighbourhood. These operators are applied in a given sequence while the cost of

the solution decreases. The primary aim of the improvement operators is either to reduce the fleet

size or to find a less costly fleet composition (for details see Kisialiou et al., 2018a). The selection

probability of each destroy and repair operator is recalculated after a certain number of iterations

(user-defined), based on its performance.

To ensure a certain reliability level defined by parameters p and α, conditions (2) and (3)

are checked (lines 4, 8 and 11) whenever a voyage is constructed or modified (a visit is added

or reassigned to another vessel). Such checks are implemented for each operator. We denote by

c(z) the cost of solution z. After the application of the improvement operators, the cost c(z′)

is compared with that of the best solution c(z∗) and with that of the current solution c(z). We

denote by Ω the set of solutions whose cost is higher than c(z∗) by at most ∆ (a user-defined

threshold value). If the best solution is updated (line 14), the set Ω is revised (line 15) to satisfy

the condition c(ω) ≤ c(z∗) +∆, ω ∈ Ω. If the solution has not improved, a simulated annealing

acceptance criterion is applied (line 18) which accepts solution z′ with a certain probability. After

the last iteration of the last restart, the algorithm calculates the score Qω (see Section 2.2.2) for

each solution in Ω. Finally, the algorithm returns a solution ω∗ yielding the highest score Q∗. For

more details on the ALNS heuristic for the supply vessel problem, see Kisialiou et al. (2018a).
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Algorithm 1 ALNS(α, p) for the PSVPP with uncertain demand and weather conditions

1: Set the cost of the best known solution c(z∗) =∞;
2: Set the value of the highest score Q∗ = 0;
3: for n restarts do
4: Construct initial solution z0 satisfying (2) and (3);
5: z∗ ← z0; z ← z0; c∗ ← c(z∗);
6: for η iterations do
7: z′′ ← ψ(z, q, S), remove q visits;
8: z′ ← ϕ(z′′, q, S), insert q visits while satisfying (2) and (3);
9: if S = ∅ and z′ is feasible then

10: while z′ improves do
11: Run the set of improvement operators while satisfying (2) and (3);
12: end while
13: if c(z′) ≤ c(z∗) then
14: z∗ ← z′; z ← z′;
15: Revise candidate solutions (Ω);
16: else if c(z′) ≤ c(z) then
17: z ← z′;
18: else if accept(z, z′) then
19: z ← z′;
20: end if
21: if c(z′) ≤ c(z∗) + ∆ then
22: Ω← Ω ∪ z′;
23: end if
24: end if
25: end for
26: end for
27: for each schedule ω in Ω do
28: Qω ← calculate score(ω);
29: if Q∗ ≤ Qω then
30: Q∗ ← Qω; ω∗ ← ω;
31: end if
32: end for
33: return ω∗;

2.2.2 Score function

In this section we present the motivation for the introduction of the score function and the

logic behind its parameters. Conditions (2) and (3) account for the control of reliability (or

probability of feasibility) for single voyages. We define the schedule probability of feasibility as the

average probability of both voyage TW and the capacity-feasibility of it voyages. To compute the

probability of voyage TW-feasibility we simulate the voyage under uncertain demand and weather
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conditions since the weather impact, the sailing time, and both the weather and the demand affect

the service time.

Preliminary experiments with the optimization-simulation heuristic have shown that the

schedules generated with the same given levels of reliability parameters α and p, may have a small

cost difference (below 0.1%) while having a relatively large difference in probability of schedule

feasibility (4% to 6%). We have discovered that schedules with approximately the same and high

probability of feasibility have a higher likelihood of yielding the lowest expected cost. When the

variability is high, the bottlenecks (in voyage capacity and TW) in the schedule make it more

difficult to restore feasibility. For this reason we propose a post-optimization procedure aimed

at selecting from the schedules with small costs deviations from c(z∗) a schedule having a higher

probability of feasibility.

We calculate the score based on the schedule cost, the average probability of capacity-feasibility

and TW-feasibility, and the mean absolute deviation (MAD) of voyages feasibility probabilities

(both capacity and TW) from the average feasibility probabilities. The score function Q(ω) of

schedule ω is defined as

Q(ω) = CF · SCF + TF · STF − CF · SCF − TF · STF − c(ω) · Sc(ω), (4)

where

CF is the average schedule probability of capacity-feasibility, computed as
∑

v∈V CFv/|V |;
TF is the average schedule probability of TW-feasibility, computed as

∑
v∈V TFv/|V |;

CFv is the probability of voyage v ∈ V capacity-feasibility;

TFv is the probability of voyage v ∈ V TW-feasibility;

CF is the MAD of CFv from CF , computed as
∑

v∈V (|CFv − CF |)/|V |;
TF is the MAD of TFv from TF , computed as

∑
v∈V (|TFv − TF |)/|V |;

c(ω) is the cost of solution ω;

SCF , SCF , STF , STF and Sc(ω) - the weights for CF , CF , TF , TF , c(ω) respectively. The values

of weights are defined experimentally. For the computation of CFv values we use the Fourier

transform algorithm (Bian and Liu, 2018), and TFv values are found after simulation.

2.3 Simulation modelling

We now describe how we generate the demand and weather scenarios, and explain how we

use discrete-event simulation (1) to calculate the voyage TW-feasibility probability used in the

post-optimization procedure in the ALNS heuristic, and (2) to compute the expected cost of the
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schedule after implementation of the modifications aimed at eliminating the infeasibility. The

simulation is performed for N consecutive schedule planning periods (one week in our case) which

constitute the schedule execution horizon. We consider the following types of discrete events

while simulating a voyage and a vessel schedule over the execution horizon: changes of weather

conditions (within a certain time interval), the vessel departure from the base, the vessel arrival

at an installation, the start of service at an installation, the vessel departure from an installation,

and the vessel arrival at the base.

2.3.1 Data modelling

The weather conditions are summarized by three estimates: significant wave height, wind speed,

and wave direction. The modeling of weather data is based on the approach used by Maisiuk

and Gribkovskaia (2014) and Kisialiou et al. (2018b). Prior to the start of the voyage or of the

schedule simulation, the generated weather data are analyzed for WOW situations. We assume

that no service can takes place in WOW situations when servicing an installation; the vessel should

then wait until better weather conditions materialize. If the total number of WOW hours exceeds

the historical maximum, the weather data at this location for this period are regenerated. We

use Monte Carlo simulation to generate scenarios for the demands of all installations visited in a

voyage.

2.3.2 Voyage simulation

To compute the probability of voyage TW-feasibility needed for calculation of the schedule score

value, we run simulations for all voyages in the schedule over the schedule execution horizon.

The simulation is performed for a certain number of replications, in each of which the actual

voyage duration for each planning period is defined, and the voyage TW-feasibility is checked.

The probability of voyage TW-feasibility is computed as the ratio of the number of simulation

replications for which the voyage was feasible to the total number of replications.

A voyage may be rerouted, which is performed by enumerating the sequences of visits using

a recursive branch-and-bound procedure (as in Kisialiou et al., 2018a) and calculating the voyage

duration for the revealed demand and weather scenarios. The service times at the installations

are adjusted with respect to the revealed demands and weather conditions, and the sailing times

are calculated based on the speed loss for every three-hour interval. The voyage with the sequence

of visits yielding the shortest voyage duration is then selected. In fact, rerouting may reduce the

probability of voyage infeasibility after the demand and weather conditions become known.
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2.3.3 Schedule simulation

To compute the expected cost of a schedule, we simulate its performance over its execution horizon

and apply modifications in case of infeasibility. We recall that modifications are performed daily

so that the number of the planned voyages for each day and their planned departure times are

not changed (to keep the supply predictability to the installations), although the planned voyages

may be modified and new voyages may appear. We define two types of schedule cost: the planned

schedule cost (the cost of the schedule generated by the ALNS heuristic), and the expected schedule

cost calculated as the average cost over all simulation replications. Further, we distinguish between

the planned and the simulated sailing times, the service time and the demand of the installations.

The planned sailing time corresponds to the sailing time under economic speed. The planned

service time and the planned demand are taken as an average according to the historical data for

each installation. It is assumed that the installations’ demands become known one day before the

voyage departure, and the weather conditions are known for the whole voyage duration.

Algorithm 2 presents the pseudo-code describing the general logic of the schedule simulation

model. As an input, the algorithm uses the modeled demand and the simulated weather data. The

simulation of the schedule is performed for ρ replications. We denote by S a pool of visits removed

from the infeasible voyages departing on the consecutive days which were impossible to reinsert

due to bad weather and limited base capacity. At each replication, the schedule z(α, p) generated

by the ALNS heuristic for given values of α and p is simulated for N consecutive planning periods.

For each day d = 1, . . . , D of the planning period n = 1, ..., N, the demand and weather data are

revealed for the voyages departing on days d and (d+1) mod D. The weather scenario for a voyage

is taken from the set of pregenerated scenarios. The demand for each visit of an installation on

the voyage is sampled from the corresponding probability distribution. For each planning period

n, a copy zmdfn (α, p) of schedule z(α, p) is created where the modification of voyages and creation

of new ones will take place. At the beginning of the execution horizon (n = 1 and d = 1), after the

demand and weather conditions have been revealed, the service times for the voyages departing

on days 1 and 2 are adjusted and the voyages are possibly rerouted. For the other days of the

execution horizon, the adjustment of the service times and rerouting is done only for voyages

departing on day (d+ 1) mod D. Since each planning period is circular, the voyages departing on

day 1 of period n may be modified while ensuring the feasibility of voyages departing on day D of

the previous period n − 1. In this case the voyages of the schedule zmdfn (α, p) departing on day 1

of period n are updated according to the modifications performed in period n− 1.

The set of all voyages departing on day d that are capacity- or TW-infeasible is defined as V d.

Further, an attempt is made to eliminate the infeasibility of voyages in the set V d by relocating

visits from these voyages using one of the following three options: relocation into the feasible
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planned voyages, relocation into unplanned new voyages performed by either an available charter

vessel or by a hired spot vessel (see Kisialiou et al., 2019). An attempt is made first to relocate

all visits from pool S, and only then from infeasible voyages in V d. The visit relocation procedure

is provided in Algorithm 3. The visits are relocated into feasible planned and unplanned voyages

departing on days d and (d+ 1) mod D, further referred to as target voyages. The non-relocated

visits can be stored in pool S for at most three days. Rerouting and visits relocation, applied

for the simulation of each period n = 1, . . . , N , yield the schedule zmdfn (α, p) with the modified

voyages having cost cn. After each replication i = 1, ..., ρ, the average cost cavi of schedules

zmdfn (α, p), n = 1, ..., N is computed. After the last replication the algorithm returns the expected

cost cexp(α, p) of solution z(α, p).
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Algorithm 2 Schedule simulation

1: Simulate weather data for the schedule execution horizon;
2: Model demand for the schedule execution horizon;
3: for i = 1 to ρ do
4: Pool S = ∅;
5: for n = 1 to N do
6: Schedule z(α, p);
7: Let zmdfn (α, p) be the modified schedule z(α, p);
8: for d = 1 to D do
9: if n = 1 and d = 1 then

10: Simulate demand for each visit on voyages started on days d and (d+ 1) mod D
and adjust service times;

11: zmdfn (α, p) ← Reroute voyages on days d and (d + 1) mod D based on adjusted
service times and weather scenario;

12: else
13: if n > 1 and d = 1 then
14: Update voyages of day d in zmdfn (α, p) according to modifications done on day

D in period n− 1;
15: end if
16: Simulate demand for each visit on voyages started on day (d + 1) mod D and

adjust service times;
17: zmdfn (α, p) ← Reroute voyages on day (d + 1) mod D based on adjusted service

times and weather scenario;
18: end if
19: V d ← Set of infeasible voyages departing on day d;
20: if V d 6= ∅ then
21: zmdfn (α, p)← perform visits relocation (V d, S ) (Algorithm 3);
22: end if
23: end for
24: Calculate cost cn of schedule zmdfn (α, p);
25: end for
26: Calculate cavi =

∑N
n=1 cn/N ;

27: end for
28: return cexp(α, p) =

∑ρ
i=1 c

av
i /ρ

2.3.4 Visit relocations

For visits relocations we modified the algorithm of Kisialiou et al. (2019) to account for weather

uncertainty (see Algorithm 3). The main idea of the algorithm is to relocate visits from infeasible

voyages departing on day d to other feasible voyages of day d and (d + 1) mod D. First, for all

infeasible voyages of day d included in set V d, the set U of all possible combinations of visits for

removal is generated. Combinations are generated so that for each infeasible voyage the minimal
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possible number of visits are removed in order to eliminate the infeasibility. The set of feasible

planned voyages departing on days d and (d+ 1) mod D is defined as V f. Further, the algorithm

uses the set V ch of voyages of available charter vessels able to depart on day d. The set of voyages

of spot vessels available for the departure on day d is denoted by V sp. The sets V f, V ch and V sp

are included in the set V t arg et of target voyages.

An attempt is first made to insert all visits from pool S in voyages from set V t arg et. The set of all

insertion options of visits from S into voyages of V t arg et is defined as OS. Visit insertion options are

generated in all possible combinations so that the total number of planned and unplanned voyages

considered for departure on day d do not violate the base capacity. For each insertion option

o ∈ OS we define the insertion cost c(o) and the total overlap λ(o) of voyages (measured in hours)

in case of voyage TW-violation. The insertion option yielding the least overlap λmin among all

insertion options is defined as omin. If a feasible insertion option of all visits from S (i.e., λmin = 0) is

identified, the insertion option o∗ yielding the lowest insertion cost c(o∗) is implemented. Otherwise,

the insertion option omin yielding the minimal overlap λmin is implemented. In this case, to ensure

the feasibility of voyages in V target after the visit relocation, the procedure aims at eliminating

overlaps is applied to each voyage in V inf ⊆ V t arg et containing an overlap. The aim of the procedure

is to iteratively remove from the voyage those visits yielding the largest voyage duration decrease

while an overlap remains (the procedure is based on the worst removal operator of Ropke and

Pisinger, 2006). The removed visits are stored in the pool S. The procedure first removes the

planned visits and, if the overlap has not yet been eliminated, it continues to remove from S visits

that were currently inserted. This is done to reduce the delay of visits stored in S, so that the

unperformed visits from the voyages departed on the previous days will be included in the voyages

departing on day d, while some visits from the voyages planned for departure on day d may be

performed later.

An attempt is further made to relocate visits from the planned infeasible voyages of set V d

departing on day d into voyages of set V t arg et according to one of the visit removal combinations in

U (Algorithm 4). For each combination of visits identified for removal u ∈ U , the set of all possible

removal-insertion options into voyages of V t arg et is defined as Ou. For each removal-insertion option

ou ∈ Ou, each voyage in V t arg et is checked for feasibility, and the inserted visits causing infeasibility

are gradually removed (one at a time, in non-decreasing order of their demand) until the voyage

becomes feasible. The total number of such removed visits for option ou is defined as q(ou). The

cost of the removal-insertion option ou is denoted as c(ou). The least number of non-inserted visits

for all removal-insertion options in Ou, u ∈ U , is defined as q∗. The least cost among the costs of

all removal-insertion options with the least number of non-inserted visits q∗ is defined as c∗. Thus,

by enumerating of all removal-insertion options ou ∈ Ou for all removal combinations u ∈ U , the
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removal-insertion option ou∗ yielding the least number of non-inserted visits q∗ and the least cost

c∗ is identified. Finally, the visits from infeasible voyages in V d are relocated according to the

removal-insertion option ou∗, and the non-inserted visits (if any) are inserted in pool S.

Algorithm 3 Visits relocation into voyages departing on day d

1: V f ← Find feasible planned voyages departing on day d and (d+ 1) modD;
2: V ch ← Create empty voyages of available charter vessels;
3: V sp ← Create empty voyages of available spot vessels;
4: Define set of target voyages V target ← V f ∪ V ch ∪ V sp;
5: OS ← Generate set of all possible insertion options of visits from S into voyages in V target;
6: o∗ – the least cost feasible insertion option of all visits from S;
7: c(o∗) =∞ - cost of insertion option o∗;
8: if OS 6= ∅ then
9: for each o ∈ OS do

10: Try to relocate visits according to insertion option o into voyages in V target;
11: Calculate total voyage overlap λ(o) for insertion option o;
12: if c(o) < c(o∗) then
13: o∗ ← o;
14: c(o∗)← c(o);
15: end if
16: end for
17: omin - insertion option with minimal overlap λmin = minoλ(o);
18: if λmin = 0 then
19: Implement visits relocation according to insertion option o∗;
20: else
21: Implement visits relocation according to insertion option omin;
22: V inf ← set of voyages in V target with overlap;
23: for each v ∈ V inf do
24: S ← eliminate overlap(v);
25: end for
26: end if
27: end if
28: Perform visits relocation from planned infeasible voyages (V d, S) (Algorithm 4);

2.3.5 Algorithm for the PSVPP planning under uncertain demand and weather

conditions

Algorithm 5 describes our optimization-simulation algorithm for the construction of PSVPP

schedules with different levels (α, p) of reliability and enabling the construction of a schedule

of a minimal expected cost cexp(α, p). The algorithm takes as an input the sets P and A of

the values of demand and weather reliability parameters, the parameter ρ defining the number
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Algorithm 4 Visits relocation from planned infeasible voyages departing on day d

1: Generate set U of all possible visit removal combinations u from voyages in set V d;
2: q∗ =∞ - the least number of non-inserted visits among all removal-insertion relocations;
3: c∗ =∞ - the least cost for the removal-insertion options with the least number of non-inserted

visits q∗;
4: ou∗ - removal-insertion option yielding the least number of non-inserted visits q∗ and the least

cost of insertion c∗;
5: for each u ∈ U do
6: Generate set Ou of removal-insertion options ou for visit removal combination u;
7: for each ou ∈ Ou do
8: c(ou) - cost of removal-insertion option ou;
9: q(ou) - number of non-inserted visits ou;

10: if q(ou) < q∗ or (q(ou) = q∗ and c(ou) < c∗) then
11: ou∗ ← ou;
12: q∗ ← q(ou);
13: c∗ ← c(ou);
14: end if
15: end for
16: end for
17: Relocate visits from voyages in set V d according to removal-insertion option ou∗;
18: S ← non-inserted visits for option ou∗;

of simulation replications, and the parameter N defining the length of the simulation horizon

(measured in the number of planning periods). The ALNS heuristic constructs solutions z(α, p)

for all combinations of α and p values contained in the sets A and P . All such solutions are saved

in a list R = {z(α, p) : α ∈ A, p ∈ P}. After the schedule simulation, the expected schedule cost

cexp(α, p) is saved in the list of expected costs C = {cexp(α, p) : α ∈ A, p ∈ P}. The algorithm

returns the lists R and C.

Algorithm 5 Optimization-simulation algorithm

1: Define sets A and P of α and p values;
2: ρ - the number of simulation replications;
3: N - the number of schedule executions during the simulation horizon;
4: for each p ∈ P do
5: for each α ∈ A do
6: z(α, p)← ALNS(α, p);
7: R← z(α, p);
8: Simulate schedule (z(α, p), ρ,N);
9: Save C ← cexp(α, p);

10: end for
11: end for
12: return R and C;
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3 Computational experiments

Here we describe the input data to the algorithm, the parameter tuning and the computational

experiments performed to analyze the behavior of our optimization-simulation algorithm. Both

the ALNS metaheuristic and the simulation model were coded in the C# programming language

and integrated in a single application. The experiments were conducted on a computer with 16

GB RAM, Pentium 6 core processor of 3.2 GHz and 3GB graphic processor GeForce GTX 1060,

under the Windows operating system.

3.1 Input data and parameters

The input data are subdivided into two main parts: the data for the ALNS metaheuristic and

the data for the simulation model. The instances of the PSVPP used for the experiments were

provided by Equinor and contain data on the installations, the fleets of vessels and the supply

base. For the experiments we used two instances with 14 and 26 installations and up to 10 vessels,

including three spot vessels. The schedule is constructed for a one-week planning period. For each

installation, we defined the demand CDF based on the historical data provided by Equinor for the

period corresponding to the simulation execution horizon (winter 2016-2017). For the installations

with insufficient demand observations we assumed that the demands follow a PERT probability

distribution.

The simulation of weather data is done as in Maisiuk and Gribkovskaia (2014) and Kisialiou

et al. (2018b) for the PSVPP with uncertain weather conditions. It is based on a time series

analysis of the data provided by the Norwegian Meteorological Institute (MET). The weather data

include the following three sea state estimates: significant wave height, wave direction (measured

in degrees), and wind speed. The modelling of the weather data is based on the generation of

time-series for the three estimates using a bootstrapping technique based on the data for the three

estimates. For more details on weather modelling, calculation of service and sailing durations

(based on simulated weather estimates), see Maisiuk and Gribkovskaia (2014) and Kisialiou et al.

(2018b). The main input parameters to the optimization-simulation algorithm are summarized in

Table 1.
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Table 1. The main input parameters

Parameter Description Value
n Number of restarts 3
η Number of iterations 800
p Set P of p values [0.1, 0.2, ..., 0.9]
α Set A of α values [0.0, 0.05, ..., 0.25]
ρ Number of simulation replications 1000
N Number of schedule executions within the simulation horizon 12

3.2 Training instances and parameter tuning

We tuned the values of the score function weight using 10 instances of different sizes with nine,

10, 12, 14, 16, 18, 20, 22, 24 and 26 installations among those provided by Equinor. To tune the

parameters we followed the procedure described by Ropke and Pisinger (2006) where initially the

values of parameters are defined through an ad hoc trial-and-error phase and then allowing one

parameter to take a number of values while keeping the rest fixed. The algorithm was run 15 times

for each instance to compute the average minimal expected cost. The list of parameters and their

tuned values are provided in Table 2.

Table 2. Parameters tuning results

Parameter Description Experimental value

SCF
Weight for the average schedule probability CF of
capacity-feasibility

100

STF
Weight for the average schedule probability TF of
TW-feasibility

100

SCF Weight for the MAD CF of CFv from CF 50

STF Weight for the MAD TF of TFv from TF 50

Sc(ω) Weight for the cost c(ω) of solution ω 0.000002
∆ Threshold value 300000

3.3 Experiments

We first assess the efficiency of the post-optimization analysis based on the developed score

function. For this experiment we used the same instances as for the parameter tuning. The

algorithm was run 15 times for each instance to collect statistics. For each combination of α and p

values we computed the schedules z∗ and ω∗ yielding the minimal cost C(z∗) and the highest score

Q(ω∗). Each schedule was simulated using Algorithm 2 to compute the expected costs cexp(z∗(α, p))

and cexp(ω∗(α, p)). Table 3 summarizes the results for each instance. The first column gives the
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name of the instance, where the numbers separated with hyphens are the number of installations,

the number of visits per week and the number of vessels available. The second column F z∗/F ω∗

provides the ratio of the average reliability levels for solutions z∗ and ω∗, where F z∗and F ω∗

are computed as the average of their respective values (CF + TF )/2 over all runs. The third

column F z∗/F ω∗ provides the ratio of the average of MAD of the voyage feasibility probability

for schedules z∗ and ω∗. The values of F z∗ and F ω∗ are defined as the average of their respective

values (CF + TF )/2 over all runs. The last column provides the ratio of the average expected

costs cexp(z∗(α, p)) and cexp(ω∗(α, p)). From Table 3 we can see that for each problem instance the

schedule ω∗(α, p) yields a higher average probability of feasibility and a lower average variability

of voyages feasibility probability and, as we had anticipated, a lower expected cost. On average,

the schedules with the highest score yield 2.7% a lower expected cost.

Table 3. Score function efficiency evaluation results

Parameter F z∗/F ω∗
F z∗/F ω∗ cexp(z∗(α, p))/cexp(ω∗(α, p))

9-41-4 0.92 1.25 1.03
10-43-4 0.93 1.15 1.023
12-51-4 0.929 1.18 1.031
14-59-6 0.944 1.21 1.019
16-64-6 0.975 1.17 1.024
18-67-6 0.943 1.14 1.011
20-71-8 0.956 1.16 1.035
22-76-8 0.958 1.21 1.022
22-81-8 0.948 1.11 1.028
24-81-10 0.961 1.09 1.034
26-85-10 0.971 1.16 1.027
Average 0.948 1.17 1.027

We now analyze the behavior of the schedule’s planned and the expected costs depending on the

reliability level. Figures 4 and 5 depict the mean (over 60 runs) of planned and expected schedule

costs depending on the p and α values for the instances with 14 and 26 installations, respectively.

From both figures we can see the increasing trend of the planned cost and the decreasing trend

of the expected cost while the average reliability level grows. Both costs converge, and at some

point the expected cost reaches its minimum. The minimal expected cost for the instance with 14

installations is 3, 300, 000 with p and α values of 0.7 and 0.1 respectively. The minimal expected

cost for the instance with 26 installations is 7, 100, 000 with p = 0.7 and α = 0.15. High surges in

the planned cost (around 700, 000 NOK) for both instances correspond to a fleet size increase. Up to

the point where the expected cost reaches its minimum we can observe a strong negative correlation

between the planned and expected costs. The larger planned schedule cost corresponds to a higher
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reliability level and to a lower expected cost, and vice versa. After the minimum expected cost is

reached, both the planned cost and the expected cost grow together with the fleet size increase and

still converge. The high cyclical cost surges for the instance with 26 installations (Fig. 5) occur

when for each value of p (up to 0.6) the algorithm imposes a higher requirement on the reliability

level against weather uncertainty (by increasing the value of α). Whereas for the instance with

14 installations such cost fluctuations are minor, for the instance with 26 installations they are

rather high, resulting in a fleet size increase or decrease by one vessel. Declines in the planned cost

take place when the algorithm proceeds to the next solution with a higher reliability with respect

to demand uncertainty and no reliability requirements with respect to weather. The difference in

the degree of planned costs fluctuations (for p values below 0.7) between the two instances can be

explained by the larger natural inter-voyage slacks in the schedules for the 14-installation instance.

The schedules for this instance are not as tight as those for the 26-installation instance, and hence

have a higher feasibility probability than the required minimum set by α and p.

Since both the planned and expected costs were estimated taking into account simultaneous

influence of the demand and weather variability we further analyze their separate contribution

to costs (see Figure 5). Planned cost with p = 0.1 and α = 0 corresponds to the cost without

reliability requirements imposed (planned cost with p = 0.0 is the same as with p = 0.1). The

planned cost with perfect weather i.e. with only demand reliability requirement is shown by the

green line which connects points where weather reliability parameter α is zero. As previously, we

see that the planned cost increases with higher reliability level p. The light green line depicts the

expected cost with perfect weather. We see that there are no those costs surges caused by imposed

weather reliability requirements and both lines are smooth. From the figure we can observe that

imposing weather reliability requirements (in addition to demand reliability requirements) leads

to the expected cost reduction. Regarding the minimal expected cost, the difference amounts to

100, 000 and for the case with perfect weather reaches the minimum for p = 0.7. Such relatively

small difference is explained by the fact that the schedule generated with some reliability level

against demand uncertainty is reliable against weather uncertainty as well because reliability is

achieved by reducing the number of visits on the voyage. Although, when imposing reliability

requirements against weather uncertainty not only the number of visits on the voyage matters (as

for the demand reliability level) but in addition the sequence of installations on the voyages with

time windows. In fact, which requirement is more restrictive and leads to a higher expected costs

depends on the variability level (standard deviation for example) and depends on a particular case.
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Fig. 4. Planned schedule costs and corresponding expected costs after simulation for the
14-installation instance

Fig. 5. Planned schedule costs and corresponding expected costs after simulation for the
26-installation instance

The average computational time for each combination of α and p, which is composed of the

computational times of the ALNS algorithm and the simulation model, is provided in Fig. 6. As

can be seen, the total computational time goes down as the reliability level grows. Although

the ALNS computational time reduces slightly as reliability increases, we can observe an almost

10-fold simulation time reduction for the schedule with the minimal reliability level, compared with

the schedule with the maximal reliability level. Such a reduction is due to the small number of

required recourse actions for the schedules with a higher reliability level. The total computational

time for all p and α combinations for the instances with 14 and 26 installations is 272 and 1, 850

minutes, respectively. Experiments showed that the minimum expected cost for both instances

was achieved for p values in excess of 0.6. For this reason, if the initial p value is set at 0.5, the

total computational time for the instances goes down to 71% and 65%, respectively, corresponding

to 94 and 532 minutes.
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Fig. 6. Computational time as a function of the reliability level
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4 Conclusions

We have introduced a methodology enabling the solution of large-size instances of a real-life supply

vessel planning problem with combined uncertain demands and weather conditions. Frequent

schedule disruptions may result in modifications of the planned voyages, and in additional

unplanned voyages of charter vessels or spot vessels hired on the short-term basis. While

uncertainty results in a reduced quality of service, the steps taken to eliminate disruptions generate

extra costs. We have imposed reliability requirements accounting for both demand and weather

uncertainty during the schedule construction. Our ALNS metaheuristic was used to generate a

set of vessel schedules with different levels of reliability, and incorporates a score function that

accounts for the trade-off between schedule cost and reliability level. We have further developed

a discrete-event simulation model to construct a schedule of least average expected cost, after

operational modifications applied to ensure feasibility. These modifications involve several options

of visit relocations which may be used in various combinations over the simulation horizon, based on

the revealed weather and demand data. We have performed extensive computational experiments

in order to assess the efficiency of our methodology and to illustrate its performance on real problem

instances provided by the Norwegian energy operator Equinor. The proposed methodology enables

the construction of vessel schedules of least expected cost for large-size instances under demand

and weather uncertainty.

28



References

Ben-Tal, A., Nemirovski, A., 1999. Robust solutions to uncertain programs. Operations Research

Letters 25, 1–13.

Bertsimas, D., Brown, D.B., Caramanis, C., 2011. Theory and applications of robust optimization.

SIAM Review 53(3), 464–501.

Bertsimas, D., Sim, M., 2004. The price of robustness, Operations Research 52, 35–53.

Bian, Z. and Liu. X., 2018. A real-time adjustment strategy for the operational level stochastic

orienteering problem: A simulation-aided optimization approach. Transportation Research Part

E: Logistics and Transportation Review 115, 246–266.

Birge, J.R., Louveaux, F.V., 1997. Introduction to Stochastic Programming, New York: Springer.

Borthen, T., Loennechen, H., Wang, X., Fagerholt, K., Vidal, T., 2017. A genetic search-based

heuristic for a fleet size and periodic routing problem with application to offshore supply

planning. European Journal of Transportation and Logistics 50(4), 195–204.

Broughton, A. and Bryan, K., 2008. Discrete Fourier analysis and wavelets: applications to signal

and image processing, WileyBlackwell, Oxford.

Calafiore, G., Campi, M.C., 2005. Uncertain convex programs: randomized solutions and

confidence levels. Mathematical Programming 102(1), 23–46.

Francis, P., Smilowitz, K. and Tzur, M., 2008. The period vehicle routing problem and its

extensions: Latest Advances and New Challenges. In B.L. Golden, S. Raghavan and E.A. Wasil

(eds), The Vehicle Routing Problem: Latest Advances and New Challenges. vol. 43, Operations

Research/Computer Science Interfaces, Springer, pp. 73–102.

Geletu, A., Kloppel, M., Hoffmann, A., and Li, P., 2014. A tractable approximation of nonconvex

chance-constrained optimization with non-Gaussian uncertainties. Engineering Optimization

47(4), 495–520.

Gendreau, M., Jabali, O., Rei, W., 2014. Stochastic vehicle routing problems. In: Toth, P. and

Vigo, D. (Eds.), Vehicle Routing: Problems, Methods, and Applications. MOS-SIAM Series on

Optimization, chapter 8. Philadelphia: SIAM, pp. 213–239.

Gendreau, M., Jabali, O., Rei, W., 2016. 50th Anniversary invited article - Future research

directions in stochastic programming. Transportation Science 50(4), 1163–1173.

29



Halvorsen-Weare, E. E., Fagerholt, K., 2011. Robust supply vessel planning. In J. Pahl, T. Reiners,

and S. Voß, editors, Network Optimization: 5th International Conference, INOC 2011, Hamburg,

Germany, June 13–16, 2011. Berlin Heidelberg: Springer, 559–573.

Hosseini, S., Ivanov, D. and Dolgui, A., 2019. Review of quantitative methods for supply chain

resilience analysis. Transportation Research Part E: Logistics and Transportation Review 125,

285–307.

Kenyon, A.S., Morton, D.P., 2003. Stochastic vehicle routing with random travel times.

Transportation Science 37(1), 69–82.

Kisialiou, Y., Gribkovskaia, I., Laporte, G., 2018a. The periodic supply vessel planning problem

with flexible departure times and coupled vessels. Computers & Operations Research 94, 52–64.

Kisialiou, Y., Gribkovskaia, I., Laporte, G., 2018b. Robust supply vessel routing and scheduling.

Transportation Research Part C: Emerging Technologies 90, 366–378.

Kisialiou, Y., Gribkovskaia, I., Laporte, G., 2019. Supply vessel routing and scheduling under

uncertain demand. Transportation Research Part C: Emerging Technologies 104, 305–316.

Kleywegt, A.J., Shapiro, A., Hommem-De-Mello, T., 2001. The sample average approximation

method for stochastic discrete optimization. SIAM Journal on Optimization 12(2), 479–502.

Laporte, G., Louveaux, F.V., Mercure, H., 1992. The vehicle routing problem with stochastic

travel times. Transportation Science 26(3), 161–170.

Laporte, G., Louveaux, F.V., Mercure, H., 1989. Models and exact solutions for a class of stochastic

location routing problems. European Journal of Operational Research 39(1), 71–78.

Laporte, G., Louveaux, F.V., Van Hamme, L., 2002. An integer L-shaped algorithm for the

capacitated vehicle routing problem with stochastic demands. Operations Research 50(3),

415–423.

Linderoth, J., Shapiro, A., Wright, S., 2006. The empirical behavior of sampling methods for

stochastic programming. Annals of Operations Research 142, 215–241.

Maisiuk, Y., Gribkovskaia, I., 2014. Fleet sizing for offshore supply vessels with stochastic sailing

and service times. Procedia Computer Science 31, 939–948.

Nemirovski, A., Shapiro, A., 2006. Convex approximations of chance constrained programs. SIAM

Journal on Optimization 17, 969-996.

30



Norlund, E.K., Gribkovskaia, I., Laporte G., 2015. Supply vessel planning under cost, environment

and robustness considerations. Omega 57, 271–281.

Norlund, E.K., Gribkovskaia, I., 2017. Environmental performance of speed optimization strategies

in offshore supply vessel planning under weather uncertainty. Transportation Research Part D,

57C, 10–22.

Rei, W., Gendreau, M., Soriano, P., 2010. A hybrid Monte Carlo local branching algorithm for the

single vehicle routing problem with stochastic demands. Transportation Science 44(1), 136–146.

Ropke, S., Pisinger, D., 2006. An adaptive large neighborhood search heuristic for the pickup and

delivery problem with time windows. Transportation Science 40(4), 455-472.

Shaw, P., 1997. A new local search algorithm providing high quality solutions to vehicle routing

problems. Technical Report, APES Group, Department of Computer Science, University of

Strathclyde, Glasgow, United Kingdom.

Shyshou, A., Gribkovskaia, I., Laporte, G., Fagerholt, K., 2012. A large neighbourhood search

heuristic for a periodic supply vessel planning problem arising in offshore oil and gas operations.

INFOR 50 (4), 195–204.
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