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Abstract 

The continuous expansion of protein and genome sequence databases is an opportunity to 

identify novel enzymes with biotechnological applications. Whether applied to enzymology, 

chemical biology, systems biology, and microbiology,  database mining must be “user-friendly” so 

that experimentalists can devise focused strategies to discover the in vitro activities and in vivo 

functions of uncharacterized enzymes. We developed a suite of genomic enzymology tools 

(https://efi.igb.illinois.edu/) to 1) generate sequence similarity networks (SSNs) for exploration of 

sequence-function space in protein families (EFI-EST) and 2) provide genome context for 

members of protein families (EFI-GNT). Integrated analysis of this complementary information 

allows to generate testable hypotheses about new functions. After a brief overview of EFI-EST 

and EFI-GNT, we describe selected applications that illustrate their use. 

1 Introduction 

When this Opinion was completed (August 1, 2020), the UniProt database contained 185,561,210 

entries (Release 2020_03, June 22, 2020; https://www.uniprot.org/). The amount of information 

is “amazing”: it should not be viewed as overwhelming but as an opportunity for discovery. The 

challenge is organizing and leveraging the data.  

Most entries in the UniProt database (>80%) are assigned to at least one Pfam family and/or 

InterPro family that provides a (sometimes tentative) description of function. Sequence similarity 

networks (SSNs) are used widely for analyses of sequence-function space in protein families [1]. 

An SSN displays the results of an all-by-all pairwise sequence comparison (BLAST): each 

sequence is represented by a “node”; nodes are connected by a line (“edge”) if they share a 

minimum user-specified sequence similarity. As the sequence similarity threshold increases, the 

nodes segregate into isofunctional clusters. Mapping experimentally established functions, e.g., 

SwissProt-curated, on the SSN allows identification of clusters with known functions; 
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uncharacterized clusters may contain enzymes in novel metabolic pathways and/or identifies the 

starting points for evolution of functions for novel applications.  

In bacterial, archaeal, and fungal genomes, genes in operons and/or gene clusters are often 

functionally linked in a metabolic pathway. Thus, for an uncharacterized enzyme, genome context 

can provide information about the identity of the reaction as well as those of neighbors [2]. 

We use “genomic enzymology” [3] to describe the integration of analyses of sequence-function 

space in a protein family, together with the genome context of its members, to predict the 

enzymatic activities and the metabolic pathways in which they function. We developed a publicly 

accessible web resource (https://efi.igb.illinois.edu/) with tools that “democratize” genome 

enzymology [4-7]: 1) EFI-EST for generating SSNs (https://efi.igb.illinois.edu/efi-est/) and 2) EFI-

GNT for mining genome contexts (https://efi.igb.illinois.edu/efi-gnt/). Since EFI-EST and EFI-GNT 

were introduced in 2014, >5,200 users have submitted >44,000 jobs to EFI-EST; >1,500 users 

have submitted >14,000 jobs to EFI-GNT. The tools have been cited in >300 publications; a list 

is available on the web resource “? Training” page (https://efi.igb.illinois.edu/training/).  

We first provide brief descriptions of EFI-EST and EFI-GNT and then examples of their use for 1) 

surveying sequence-function space in protein families to identify candidate proteins with novel 

properties/functions and 2) discovering enzymes in novel metabolic pathways.  

2 EFI-EST for Generating Sequence Similarity Networks (SSNs) 

The Enzyme Function Initiative (EFI), a large-scale collaborative project supported by NIH/NIGMS 

(U54GM093342), developed strategies and tools to facilitate experimental assignment of in vitro 

activities and in vivo metabolic functions to uncharacterized enzymes discovered in genome 

projects [8]. The EFI-EST tool was developed for generating SSNs for protein families 

(https://efi.igb.illinois.edu/efi-est/). The user can specify a Pfam and/or InterPro family (using 
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Option B); the sequences are obtained from the UniProt database. For large families, EFI-EST 

uses either the UniRef90 or UniRef50 database in which sequences are conflated at 90% and 

50% sequence identity threshold, respectively. The sequences contained in UniRef90 clusters 

almost certainly are orthologues; the sequences contained in UniRef50 clusters likely are 

orthologues. UniRef SSNs contain fewer nodes and edges than UniProt SSNs so can be more 

easily manipulated with laboratory laptop/desktop computers. The total set of accession IDs 

contained in individual clusters in UniRef SSNs can be used with Option C to obtain higher 

resolution SSNs. Alternatively, the user can use BLAST to collect sequences homologous to a 

query (Option A) to examine a localized high-resolution set of sequences within a protein family.  

The user selects a minimum sequence similarity threshold (specified by an alignment score that 

is approximately the negative logarithm of the BLAST e-value) to draw edges to connect nodes, 

with the goal of segregating the dataset into isofunctional clusters of nodes. The SSN is visualized 

using Cytoscape, a platform for viewing complex networks; “node attributes” with taxonomic and 

bioinformatic information are provided. The node attributes, combined with genome context (next 

section), facilitate the choice of minimum alignment score threshold for generating isofunctional 

clusters in the SSN.  

EFI-EST also provides the “Cluster Analysis” utility that provides easy access to multiple 

sequence alignments (MSA), WebLogos (based on the MSAs), hidden Markov models (HMMs; 

based on the MSAs), tables of residue conservation, and length histograms for each cluster in 

the input SSN. The MSAs and WebLogos provide an additional information for assessing 

sequence heterogeneity/isofunctionality within the clusters. 

EFI-EST is a unique resource for generating and analyzing SSNs for protein families. As 

illustrated by the examples provided in Section 4, access to the SSNs for functionally diverse 
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protein (super)families facilitates identification of isofunctional clusters, including uncharacterized 

clusters that participate in undiscovered metabolic pathways.  

3 EFI-GNT for Generating Genome Neighborhood Networks (GNNs) and Genome 

Neighborhood Diagrams (GNDs) 

The EFI also developed the EFI-GNT tool to collect the genome neighborhoods of bacterial, 

archaeal, and fungal proteins in the clusters in an input SSN (https://efi.igb.illinois.edu/efi-gnt/). 

EFI-GNT provides two types of genome neighborhood networks (GNNs): 1) for each input SSN 

cluster, the identities and frequencies of co-occurrence of genome proximal Pfam families (with 

the descriptions providing information about possible functions), thereby assisting identification of 

the metabolic pathway in which the proteins in the SSN cluster function; and 2) for each genome 

proximal Pfam family, the identities of the query SSN clusters that identify the family, with this 

information allowing identification of orthologous SSN clusters. For each SSN cluster, a genome 

neighborhood diagram (GND) is provided for each bacterial, archaeal, and fungal protein, allowing 

visual inspection of the genome context. EFI-GNT also can be used to generate GNDs for 

homologues of a user-supplied sequence (using BLAST) or lists of user-supplied sequences.  

EFI-GNT is a unique resource for retrieving, visualizing, and analyzing genome neighborhoods 

for user-supplied sequences. As illustrated by the examples provided in Section 5, this information 

is essential for predicting metabolic pathways and guiding the design of experimental approaches 

for functional verification.  

4 Exploring Sequence-Function Space in SSNs to Identify New Functions and 

Pathways 

The ability to visualize sequence-function in a family provides permits identification of both 

functionally characterized and uncharacterized (“unknown”) clusters. The “unknown” clusters 
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(“dark matter”) may contain enzymes with novel biological functions, unexpected mechanistic 

characteristics, and useful biotechnological applications. In this section, we describe several 

analyses of sequence-function space in families using SSNs. 

4.1 Glycoside Hydrolases: GN128 

Santos and coworkers used SSNs to explore sequence-function space in the GH128 glycoside 

hydrolase family; its members catalyze hydrolysis b-1,3-glycan linkages in polysaccharides [9]. 

An initial set of sequences was collected using characterized members as BLAST queries; a 

hidden Markov model (HMM) was constructed and used to identify additional homologues. The 

sequences were used to generate both a phylogenetic tree and an SSN (Figure 1A). Comparison 

of the tree and SSN illustrates the advantage of using an SSN to visualize sequence-function 

space: the isofunctional subgroups are easier to discern as emerging clusters in an SSN than the 

closely associated branches in a tree. In the tree, five of the seven subgroups are closely related 

phylogenetically and difficult to distinguish; in the SSN, the subgroups are well-defined as the 

result of the higher density of edges that connect members of isofunctional subgroups. 

Representative members of the subgroups were selected for structural, enzymological and 

molecular dynamics studies to characterize substrate specificity and mechanism, thereby 

informing the use of this family for biotechnological applications. 

4.2 Diheme peroxidases 

Elliott, Drennan and coworkers used an SSN to explore sequence-function space in Pfam family 

PF03150, diheme cytochrome c peroxidases (23K sequences in UniProt 2020_03) [10]. This 

family contains the abundant cytochrome c peroxidases (bCCPs) that catalyze reduction of H2O2 

to H2O in the cytoplasm of Gram-negative bacteria as well as MauG that catalyzes the 

mechanistically distinct oxidation/crosslinking of two Trp residues to generate the tryptophan 
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tryptophylquinone redox cofactor in methylamine dehydrogenase. The active sites of bCCP and 

MauG differ in the identities of the residues for the heme cofactor (Met-His in bCCP and Tyr-His 

in MauG), thereby explaining the different redox potentials.  

In the SSN (Figure 1B), several additional clusters are observed, some segregated, some loosely 

associated with characterized proteins. This study focused on the emerging cluster IIIb that 

contains proteins encoded by Bulkholderia genomes that lack methylamine dehydrogenase; 

therefore, the sequences (designated BthA and BthB) were assumed to have novel functions. 

Characterization of BthA revealed that, like bCCP, it reduces H2O2 to H2O but it also generates a 

bis-Fe(IV) species found on the MauG reaction coordinate. Although the physiological function is 

unknown, the encoding gene is adjacent to one for a purple-acid phosphatase; both genes are 

upregulated during anaerobic growth, suggesting functional linkage (post-translational 

modification of the phosphatase?). The SSN contains additional segregated and emerging 

clusters, suggesting that additional functions remain to be discovered in PF03150. 

In a later study focusing on MbnH [11], an uncharacterized enzyme in PF03150 implicated in the 

biosynthesis of methanobactins [12], ribosomally-produced post-translationally modified copper-

binding natural products, Keeney, Rosenzweig and coworkers described a further analysis of 

sequence-function space in PF03150 (Figure 1C). They structurally and spectroscopically 

characterized MbnH; although they were able to detect peroxidase activity, they were unable to 

specify a precise function, speculating MbnH also might be involved in post-translational 

modification of a genomically co-occurring partner protein, MbnP. 

4.3 Rieske oxygenases 

Rieske non-heme iron-dependent oxygenases catalyze C-H hydroxylation reactions in 

natural product biosynthesis, often cis-1,2-hydroxylation of aromatic substrates but also 
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monooxygenation reactions; these proteins contain a 2Fe-2S cluster ligated by two Cys 

and two His ligands. Bridwell-Rabb and Narayan generated the SSN for PF00355 (145K 

sequences in UniProt 2020_03), using an alignment score of 65 to segregate functions 

(Figure 1D) [13]. The SSN contains segregated clusters with functionally and structurally 

determined members. This study focused on structural characterization of SxtT and GstA 

located in the same SSN cluster, both catalyzing hydroxylation of dideoxysaxitoxin, albeit 

with different regiospecificities. Many of the larger clusters (light blue) in their SSN include 

aromatic ring hydroxylases. Inspection of their SSN reveals that large areas of sequence-

function space are unexplored in PF00355. 

4.4 Nitrogenase Superfamily 

Ghenbreamlak and Mansoorabadi used an SSN to investigate functional diversity in the 

nitrogenase component 1 type oxidoreductase superfamily (PF00148; 25K sequences in UniProt 

2020_03) [14]. The members of the superfamily couple the hydrolysis of ATP to the reduction of 

their substrates. The characterized members include nitrogenase (hydrolysis of 16 ATP to 

accomplish the six-electron reduction of N2 to two molecules of ammonia and the two-electron 

reduction of two protons to H2), dark-operative protochlorophyllide oxidoreductase (DPOR) and 

bacteriochlorophyll chlorophyllide a oxidoreductase (COR) that catalyze successive ATP-

dependent two-electron reductions of intermediates in the biosynthesis of bacteriochlorophyll, and 

CfbCD that catalyzes the ATP-dependent six-electron reduction of an intermediate in the 

biosynthesis of coenzyme F430 in methanogenesis. The SSN (Figure 1E) segregates 

nitrogenases (Groups I, II, and III) from the coenzyme F430 (Group IV, CfbD) and 

bacteriochlorophyll (Group V, Bch) reductases. Notably, the SSN contains several clusters (A-A’ 

through E-E’) with uncharacterized functions. The genome neighborhoods of these clusters 
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suggest their involvement in the assembly of metalloclusters and/or the synthesis of a substrate 

for divergent homologues of nitrogenase.  

4.5 2-Hydroxyacyl-CoA Dehydratase Superfamily 

Similar to nitrogenase, members of the 2-hydroxyacyl-CoA dehydratase family (PF06050) use an 

ATP-dependent activator protein (from PF01869) to accomplish one-electron reduction reactions; 

the first characterized reactions involve formation of a ketyl radical of a thioester substrate [15]. If 

the substrate is a 2-hydroxyacyl-CoA, the ketyl radical undergoes dehydration to form the 2-enoyl-

CoA; if the substrate is benzoyl-CoA, a second ATP-dependent one-electron reduction produces 

cyclohexa-1,5-dienoyl-CoA that can be catabolized. In yet unpublished work, we discovered 

members of PF06050 that catalyze the ATP-dependent four-electron reduction of preQ0, a nitrile, 

to preQ1, a primary amine, in queuosine biosynthesis, a reaction that does not use a thioester 

substrate. 

Jeoung and Dobbek generated an SSN for PF06050 [16,17]. Using an alignment score (20; 

Figure 2A) that does not segregate the nodes into isofunctional clusters (95; unpublished), the 

SSN segregated the family based on sequence length and the number of Cys residues involved 

in coordination of the Fe-S cluster(s). Some clusters, e.g., the dehydratases and benzoyl-CoA 

reductases, contain sequences with three Cys residues that coordinate one 4Fe-4S cluster. 

Another SSN cluster contains sequences with seven conserved Cys residues that coordinate an 

8Fe-9S double cubane cluster.  

A member of the latter cluster from Carboxydothermus hydrogenoformans Z-290 (DCCPch) was 

characterized: unlike the heterodimeric hydratases and benzoyl-CoA reductase but like the preQ0 

reductase, it is encoded by a single gene; it also is encoded by an operon with an ATP-dependent 

activator/reductase (DCCP-Rch). DCCPch catalyzes the ATP-dependent reduction of acetylene 

(using dithiothreitol as the source of electrons). The structure was determined, providing the 
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structure of an unusual double cubane 8Fe-9S cluster. The identity of the substrate and 

physiological reaction is unknown. 

4.6 Flavin-dependent amine oxidases 

Several families of flavin-dependent oxidases have been described, including the large 

FAD-dependent oxidoreductase family (PF01266; 268K sequences in UniProt 2020_03) 

with both amine and alcohol dehydrogenases and the smaller flavin-dependent amine 

oxidase family (PF01593; 123K sequences in UniProt 2020_03) that includes the 

extensively characterized monoamine oxidase (MAO). Tararina and Allen generated the 

SSN for PF01593 to guide investigations of the structural bases for specificity, with the 

goal of (re)engineering specificity (Figure 2B) [18]. Members of the family share a 

bidomain structure, a flavin-binding Rossman fold domain and a substrate-binding 

domain with hotdog-like fold and helical bundle subdomains. They mapped the known 

functions to the SSN and segregated it into clusters/subgroups with different specificities. 

The subgroups differ in the sequences/structures of the substrate-binding domain; these 

were associated with changes in the entrance cavities to the active sites. They also used 

EFI-GNT to determine the genome contexts for the subgroups. As is typical for large 

families, the SSN contains many uncharacterized clusters, guiding future studies that 

would contribute to a more detailed understanding of the sequence-structure changes 

involved in the evolution of substrate specificity. 

4.7 Flavin-Dependent Aromatic Halogenases 

Lewis and coworkers used SSNs to survey substrate specificity space in the flavin-dependent 

halogenase family, with the goal of using “family-wide activity profiling” to identify candidates for 
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halogenation of unnatural substrates [19]. They proposed that sampling sequence-function space 

in the SSN is a better approach than directed evolution for accessing halogenases for synthetic 

applications. Instead of using Option B (families) to generate the SSN (PF04820, tryptophan 

halogenase; 15K sequences in UniProt 2020_03), the sequence of RebH, a 

7-chlorotryptophanase in the biosynthetic pathway for rebeccamycin, was used as the query for 

Option A (BLAST). Three large clusters were identified using a minimum sequence similarity 

threshold of 30% (alignment score 70; Figure 2C, top panel/Level 1) to draw edges); mapping of 

the characterized functions identified clusters specific for indole, phenol, or pyrrole substrates. 

Uncharacterized clusters were also present. Using a minimum sequence similarity threshold of 

40% (alignment score 140; Figure 2C, bottom panel/Level 2), the indole and phenol clusters 

further segregated into clusters with distinct substrate specificities. A set of diverse proteins were 

expressed, purified, and subjected to substrate profiling with a library of substrates. As highlighted 

in an accompanying Commentary [20], this study provides an instructive example of the use of 

SSNs for identification of candidate enzymes for synthetic potential (or, more generally, proteins 

with desired chemical and/or physical properties).  

4.8 Flavin-Dependent Amino Acid Halogenases 

Chang and coworkers used an SSN to investigate the substrate specificities of amino acid-

halogenases that are members of a novel Fe(II)/a-ketoglutarate-dependent family within the 

extremely large cupin superfamily [21]. They had discovered BesD, a novel 4-chloro-Lys 

halogenase in the pathway for alkyne-containing amino acids in Streptomyces cattleya. The 

sequence of BesD was used as the BLAST query to identify homologues. When the SSN was 

generated using a minimum alignment score threshold of 88 (Figure 2D), the sequences 

segregated into isofunctional clusters that were subjected to functional screening. The sequences 

were also analyzed using EFI-GNT, with the genome neighborhoods (GNDs) containing genes 

encoding enzymes involved in amino acid metabolism. 
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5 Using Genome Context in GNNs and GNDs to Identify New Functions and 

Pathways 

Analysis of sequence-function space in an SSN identifies clusters with uncharacterized functions; 

if the family is curated by Pfam or the other family databases integrated in InterPro, the type of 

chemical reaction catalyzed by an uncharacterized cluster may be predicted. However, the 

precise in vitro activity and in vivo function likely requires knowledge of the types of reactions 

catalyzed by functionally linked proteins in metabolic pathways. For bacterial, archaeal, and 

fungal proteins, these often can be identified from analyses of genome neighborhood context, 

because metabolic pathways frequently are encoded by proximal genes (operons and/or gene 

clusters). In this section we provide examples of the use of EFI-GNT to provide genome context 

for uncharacterized enzymes, thereby allowing the in vitro activities and in vivo functions to be 

experimentally characterized  

5.1 Catabolic Pathways for D-Apiose, a Branched Pentose in Plant Cell Walls 

Even with knowledge of the types of reactions in an uncharacterized catabolic pathway, the 

identities of the substrates and products and, therefore, the exact sequence of reactions in the 

pathway usually cannot be specified without knowing the identity of the substrate for the first 

enzyme. In bacteria, transport systems that import an extracellular solute for catabolism often are 

encoded by a genome neighborhood that also encodes the catabolic pathway. In a large-scale 

program that used ThermoFluor screening and a large physical library to identify ligands for solute 

binding proteins (SBPs) for ABC transport systems [22], three SBPs from Pfam PF13407 were 

identified that bind D-apiose [23], a branched pentose found in the rhamnogalacturonan-II 

component of plant cell walls; these SBPs were located in two SSN clusters.  
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The genome neighborhoods of the D-apiose-binding SBPs were identified using SSNs and  

GNNs. Two types of catabolic pathways were identified (Figure 3): 1) a non-oxidative pathway 

using a transketolase to convert the branched D-apiose and D-glyceraldehyde 3-phosphate to D-

xylulose 5-phosphate and dihydroxyacetone phosphate, intermediates in the pentose phosphate 

and glycolysis pathways, respectively (Figure 3A); and 2) three oxidative pathways initiated by 

oxidation/ring-opening of D-apiofuranose to D-apionate followed by an unprecedented 

oxidation/isomerization reaction involving migration of a hydroxymethyl group to generate “3-oxo-

isoapioniate” (Figure 3B). The non-oxidative pathway is present in species of Bacteroides found 

in the human gut microbiome; the nonoxidative pathways are found in bacteria in other ecological 

niches, e.g., soil.  

5.2 A Novel Catabolic Pathway for L-Ascorbate 

Stack and coworkers used SSNs and GNNs to guide discovery of a novel bacterial pathway for 

L-ascorbate catabolism in Ralstonia eutropha H16 (Cupriavidus necator ATCC17699) [24] (Figure 

4, panels A-C); the same pathway, or segments of the pathway, were identified in hundreds of 

additional bacteria species. Two similar catabolic pathways, one aerobic and one anaerobic [25], 

previously had been characterized in Escherichia coli K-12 and then found in many other bacteria. 

R. eutropha can utilize L-ascorbate as sole carbon source, but does not encode the E. coli 

pathways. RNA-Seq was used to identify genes up-regulated during growth on L-ascorbate; 11 

genes, located in three distinct gene clusters/modules, were identified. SSNs were generated for 

the protein families represented in these modules; GNNs and GNDs then were generated to guide 

the discovery of the pathway encoded by the three modules. Module 1 (Figure 4A) encodes an 

L-ascorbate oxidase to generate dehydro-L-ascorbate (a lactone) and a lactonase to generate 

2,3-diketo-L-gulonate (DKG). Module 2 (Figure 4B) encodes a DKG mutase that catalyzes an 

unprecedented benzylic acid rearrangement to generate 2-carboxy-L-lyxonolactone and a 

lactonase to generate 2-carboxy-L-lyxonate (Clx). Module 3 (Figure 4C) encodes a novel NAD+-
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dependent decarboxylase that converts Clx to L-lyxonate as well as orthologues of three enzymes 

in a previously characterized catabolic pathway for L-lyxonate that produces a-ketoglutarate [26].  

5.3 Queuine Salvage Pathways 

Yuan and coworkers used SSNs and GNNs to identify bacterial salvage pathways for queuine, a 

precursor of the modified base queuosine found in tRNAs [27]. Most eubacteria can synthesize 

queuosine de novo, via preQ0 and preQ1 intermediates, in a metabolic pathway of eight enzymes 

starting with GTP; eukaryotes and some bacteria, including pathogens such as Chlamydia cannot 

synthesize queuosine so must salvage the queuine precursor. For salvage, most members of the 

YhhQ transporter family import preQ0 and preQ1, with a tRNA guanine transglycosylase (TGT) 

exchanging a guanine with preQ1 that is further modified to generate queuosine.  

The SSN was generated for the YhhQ family. EFI-GNT was used to identify clusters with proximal 

TGT homologues but without biosynthetic genes for queuosine (Figure 5A). Focusing on species 

of Chlamydia that can salvage queuine but not preQ1, a multiple sequence alignment of its TGT 

together with homology models suggested an enlarged active site that can accommodate the 

bulkier queuine moiety, thereby explaining the structural basis for queuine salvage.  

This study also elucidated the salvage pathway by which Clostridioides difficile can use queuosine 

as a source of salvageable queuine (Figure 5B). A transporter specific for queuosine was 

identified that is under the control of a preQ1 riboswitch. The gene encoding the transporter is 

located in a three-gene operon that also encodes a nucleoside hydrolase and a member of the 

radical SAM superfamily. Enzymological characterization of the nucleoside hydrolase 

demonstrated that it is specific for queuosine, generating queuine; characterization of the radical 

SAM enzyme demonstrated that it is a lyase that frees the dihydroxycyclopentene moiety from 

queuine, liberating preQ1 that can be incorporated into tRNA with TGT and then modified to 

generate the queuosine nucleotide. 
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5.4 Pathways for Organosulfur Catabolism 

Balskus and coworkers generated the SSN for the glycyl radical enzyme (GRE) superfamily 

(IPR004184) and used this to 1) describe sequence-function space in the superfamily and 2) 

develop chemically guided functional profiling (CGFP) that maps metagenome abundance to 

isofunctional clusters (families) in the SSN [28]. In subsequent independent studies, Peck, 

Balskus, and coworkers [29] and Zhao and coworkers [30] identified a GRE involved in the 

catabolic pathway for taurine (2-aminosulfonate) in Bilophila wadsworthia found in the human gut 

microbiome. Isethionate sulfite lyase cleaves taurine to acetaldehyde and sufite, the former used 

to generate acetyl-CoA and the latter used as an electron acceptor with formation of sulfide 

(Figure 6A).  

Zhao and coworkers also discovered two members of the GRE superfamily that degrade 

dihydropropanesulfonate (S-DHPS), a microbial degradation product of 6-sulfo-D-glucopyranose 

(sulfoquinovose) that is a component of an abundant plant sulfolipid [31]. Considering the 

structure of S-DHPS, a member of the GRE superfamily could catalyze either 1) desulfuration to 

produce hydroxyacetone and sufite by HpsG, analogous to the reaction catalyzed by taurine lyase 

or 2) dehydration to produce 3-sulfopropionaldehyde by HpfG, analogous to the reactions 

catalyzed by glycerol dehydration and 1,2-propanediol dehydrate that members of the GRE 

superfamily (Figure 6B). SSNs and GNNs were used to confirm the identities of these pathways: 

the desulfuration pathway involves a GRE homologous to isethionate sulfate lyase (HpsG); the 

dehydration pathway involves a GRE homologous to both glycerol and 1,3-propanediol 

dehydratases (HpfG). 

 

 



 16 

5.5 A Pathway for Herbicide Degradation 

Cicchillo and workers used SSNs and GNNs to identify aryloxyalkanoate dioxygenases (AADs) 

for engineering herbicide resistant transgenic plants [32]. TfdA that degrades the herbicide 2,4-

dichlorophenoxyacetic acid (2,4-D) (Figure 7A) is homologous with bacterial taurine 

dioxygenases, suggesting AADs have promiscuous substrate specificities. The hypothesis was 

that divergent TfdAs that would be candidates for degrading herbicides structurally related to 2,4-

D and that these would be located in operons/gene clusters in the known Tfd pathway.  

The SSN of TfdA and bacterial homologues collected using BLAST was generated with EFI-EST; 

the SSN was used as the input for EFI-GNT to retrieve genome neighborhood context. EFI-GNT 

adds a node attribute to Color SSNs generated with the Color SSN utility that includes the 

Pfam/InterPro family identifiers of genome neighbors, allowing easy identification of nodes that 

are genome proximal to enzymes in the Tfd pathway (Figure 7B). The SSN with nodes colored 

according to the identities of genome neighbors is shown in Figure 3. Fifty-nine new 

dioxygenases were identified that were screened for herbicide degradation. The synergistic use 

of EFI-EST and EFI-GNT “simplified” the discovery of these AADs. 

6 Identification and analysis of biosynthetic gene clusters 

Although not the focus of this Opinion, several web tools are widely used for the discovery of 

biosynthetic gene clusters (BGCs), including antiSMASH [33,34], PRISM [35,36], and RODEO 

[37]. For antiSMASH and PRISM, user-specified sequenced genomes are used as the input; the 

output identifies the encoded BGCs. For RODEO, user-supplied lists of enzymes involved in the 

syntheses of ribosomally synthesized and post-translationally modified peptides (RiPPs) are used 

as input; the retrieved genome neighborhoods are mined for short precursor peptides that often 

are not identified in genome annotation.  
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EFI-EST and EFI-GNT have been used to identify genome neighborhoods that contain 

orthologues/homologues of key enzymes in natural product biosynthesis, e.g., thioamide 

synthases [38], enzymes involved in diazeniumdiolate siderophore synthesis [39], enzymes in 

endopyrrole biosynthesis [40], enzymes in polytheonamide biosynthesis [41], and flavoprotein 

monooxygenases (Baeyer-Villiger-type oxygen insertion) in polyketide synthase natural products 

[42]. In some cases, Option A of EFI-EST (BLAST using a user-specified query) is used to 

generate the SSN of homologues/orthologues in the UniProt database; EFI-GNT is used to 

visualize/analyze the BGCs. In other cases, homologues/orthologues identified by other 

approaches are used with EFI-GNT to visualize/analyze the BGCs. 

7 Summary and Outlook 

SSNs generated with EFI-EST and GNNs/GNDs generated with EFI-GNT are used by the 

enzymology, chemical biology, and microbiology communities to 1) identify “dark matter” targets 

in protein families for functional characterization (SSNs) and 2) provide functional context 

information to guide experimental verification of their in vitro activities and in vivo functions (GNNs 

and GNDs). In addition to leveraging the discovery of novel metabolic pathways, an SSN provides 

the ability to survey and broadly sample sequence-function space in a protein family for novel 

enzymatic activities and/or physical properties. The publications that describe their use, only a 

small number of which are highlighted in this Opinion, can be used to stimulate additional 

applications.  A complete list of publications is available on the web resource “? Training” page 

(https://efi.igb.illinois.edu/training/). 

The genomic enzymology tools described in this Opinion were developed with support from 

NIGMS, initially a large-scale collaborative project (U54GM093342; EFI) focused on the 

development of strategies and tools for assigning functions to uncharacterized enzymes 

discovered in genome projects and currently a Program Project (P01GM118303) focused on the 



 18 

discovery of novel metabolic pathways using the ligand specificities of transport system solute 

binding proteins to identify both the substrate for the first enzyme in the pathway and the genes 

encoding the enzymes in the metabolic pathway (genome neighbors of the transport system). 

However, dedicated support for support of bioinformatics/genomic enzymology resources such 

as EFI-EST and EFI-GNT is difficult to secure, i.e., the resource does not contribute original 

research but provides tools that facilitate research projects. As we noted in a recent Current 

Opinion in Chemical Biology [6]: “We hope that members of the community and, therefore, funding 

agencies will recognize the need to support publicly accessible genomic enzymology resources 

for leveraging sequence databases. The required investment is small compared to both the cost 

and potential impact of genome projects.” 

Conflict of interest statement 

Nothing declared. 

Acknowledgements 

The web resource that provides “democratized” community access to EFI-EST and EFI-GNT was 

originally developed with support from NIH U54GM093342 and currently is supported by NIH 

P01GM118303. R.Z. is currently supported by the European Union’s Horizon 2020 Research and 

Innovation Programme under the Marie Skłodowska-Curie Individual Fellowships Grant 

agreement H2020-MSCA-IF-2018 839116 deCrYPtion. 

 

 

 

 
 



 19 

7 References and recommended reading 

Papers of particular interest, published within the period of review, have been highlighted as: 

 

* of special interest 

** of outstanding interest 

 

1. Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC: Using sequence similarity networks for 

visualization of relationships across diverse protein superfamilies. PLoS One 2009, 

4:e4345. 

* The description of SSNs that demonstrated their importance in analyzing sequence-function 

space in protein famililes to the enzymology community. 

2. Zhao S, Sakai A, Zhang X, Vetting MW, Kumar R, Hillerich B, San Francisco B, Solbiati J, 

Steves A, Brown S, et al.: Prediction and characterization of enzymatic activities 

guided by sequence similarity and genome neighborhood networks. Elife 2014, 3. 

3. Gerlt JA, Babbitt PC: Divergent evolution of enzymatic function: mechanistically diverse 

superfamilies and functionally distinct suprafamilies. Annu Rev Biochem 2001, 

70:209-246. 

4. Gerlt JA, Bouvier JT, Davidson DB, Imker HJ, Sadkhin B, Slater DR, Whalen KL: Enzyme 

Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating 

protein sequence similarity networks. Biochim Biophys Acta 2015, 1854:1019-1037. 

5. Gerlt JA: Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence-

Function Space and Genome Context to Discover Novel Functions. Biochemistry 

2017, 56:4293-4308. 

6. Zallot R, Oberg NO, Gerlt JA: 'Democratized' genomic enzymology web tools for functional 

assignment. Curr Opin Chem Biol 2018, 47:77-85. 



 20 

7. Zallot R, Oberg N, Gerlt JA: The EFI Web Resource for Genomic Enzymology Tools: 

Leveraging Protein, Genome, and Metagenome Databases to Discover Novel 

Enzymes and Metabolic Pathways. Biochemistry 2019, 58:4169-4182. 

** A detailed description of the "democratized" EFI genomic enzymology web resource that 

includes EFI-EST, EFI-GNT, and EFI-CGFP. 

8. Gerlt JA, Allen KN, Almo SC, Armstrong RN, Babbitt PC, Cronan JE, Dunaway-Mariano D, 

Imker HJ, Jacobson MP, Minor W, et al.: The Enzyme Function Initiative. Biochemistry 

2011, 50:9950-9962. 

9. Santos CR, Costa P, Vieira PS, Gonzalez SET, Correa TLR, Lima EA, Mandelli F, Pirolla RAS, 

Domingues MN, Cabral L, et al.: Structural insights into beta-1,3-glucan cleavage by 

a glycoside hydrolase family. Nat Chem Biol 2020. 

** The phylogenetic tree and SSN for the GH128 family are compared; the subgroups are easier 

to discern in the SSN than in the tree. 

10. Rizzolo K, Cohen SE, Weitz AC, Muñoz MML, Hendrich MP, Drennan CL, Elliott SJ: A widely 

distributed diheme enzyme from Burkholderia that displays an atypically stable bis-

Fe (IV) state. Nature communications 2019, 10:1101. 

** An exploration of sequence-function space in the diheme cytochrome c peroxidase superfamily; 

an uncharacterized cluster was selected for spectroscopic characterization. 

11. Kenney GE, Dassama LMK, Manesis AC, Ross MO, Chen S, Hoffman BM, Rosenzweig AC: 

MbnH is a diheme MauG-like protein associated with microbial copper homeostasis. 

J Biol Chem 2019, 294:16141-16151. 

12. Kenney GE, Dassama LMK, Pandelia ME, Gizzi AS, Martinie RJ, Gao P, DeHart CJ, 

Schachner LF, Skinner OS, Ro SY, et al.: The biosynthesis of methanobactin. Science 

2018, 359:1411-1416. 

13. Lukowski AL, Liu J, Bridwell-Rabb J, Narayan ARH: Structural basis for divergent C-H 

hydroxylation selectivity in two Rieske oxygenases. Nat Commun 2020, 11:2991. 



 21 

**  An exploration of sequence-function space in the Rieske non-heme iron-dependent oxygenase 

superfamily 

14. Ghebreamlak SM, Mansoorabadi SO: Divergent Members of the Nitrogenase 

Superfamily: Tetrapyrrole Biosynthesis and Beyond. Chembiochem 2020. 

  An exploration of sequence-function space in the nitrogenase superfamily. 

15. Buckel W: Enzymatic Reactions Involving Ketyls: From a Chemical Curiosity to a 

General Biochemical Mechanism. Biochemistry 2019, 58:5221-5233. 

16. Jeoung J-H, Dobbek H: ATP-dependent substrate reduction at an [Fe8S9] double-cubane 

cluster. Proceedings of the National Academy of Sciences 2018, 115:2994-2999. 

** An exploration of sequence-function space in the 2-hydroxyacyl-CoA dehydratase superfamily; 

an uncharacterized cluster with a novel 8Fe-9Cys double cubane cluster was discovered 

17. Jeoung JH, Martins BM, Dobbek H: Double-Cubane [8Fe9S] Clusters: A Novel 

Nitrogenase-Related Cofactor in Biology. Chembiochem 2020. 

18. Tararina MA, Allen KN: Bioinformatic Analysis of the Flavin-Dependent Amine Oxidase 

Superfamily: Adaptations for Substrate Specificity and Catalytic Diversity. J Mol Biol 

2020. 

* An exploration of sequence-function space in the flavin-dependent amine oxidase family. 

19. Fisher BF, Snodgrass HM, Jones KA, Andorfer MC, Lewis JC: Site-Selective C-H 

Halogenation Using Flavin-Dependent Halogenases Identified via Family-Wide 

Activity Profiling. ACS Cent Sci 2019, 5:1844-1856.  

* An exploration of sequence-function space in the flavin-dependent halogenase family; the SSN 

segregated the family into clusters specific for different types of aromatic substrates. 

20. Rodriguez Benitez A, Narayan ARH: Frontiers in Biocatalysis: Profiling Function across 

Sequence Space. ACS Cent Sci 2019, 5:1747-1749. 



 22 

21. Neugebauer ME, Sumida KH, Pelton JG, McMurry JL, Marchand JA, Chang MCY: A family 

of radical halogenases for the engineering of amino-acid-based products. Nature 

chemical biology 2019, 15:1009-1016. 

22. Vetting MW, Al-Obaidi N, Zhao S, San Francisco B, Kim J, Wichelecki DJ, Bouvier JT, Solbiati 

JO, Vu H, Zhang X, et al.: Experimental strategies for functional annotation and 

metabolism discovery: targeted screening of solute binding proteins and unbiased 

panning of metabolomes. Biochemistry 2015, 54:909-931. 

23. Carter MS, Zhang X, Huang H, Bouvier JT, Francisco BS, Vetting MW, Al-Obaidi N, Bonanno 

JB, Ghosh A, Zallot RG, et al.: Functional assignment of multiple catabolic pathways 

for D-apiose. Nat Chem Biol 2018, 14:696-705. 

** SSNs and GNNs are used to discover four novel pathways for D-apiose catabolism, one redox-

neutral using a transketolase and three using a oxidoisomerase.  This study is noteworthy 

because it demonstrates the iterative use of SSNs and GNNs to discover multiple 

catabolic pathways. 

24. Stack TMM, Morrison KN, Dettmer TM, Wille B, Kim C, Joyce R, Jermain M, Naing YT, Bhatti 

K, Francisco BS, et al.: Characterization of an l-Ascorbate Catabolic Pathway with 

Unprecedented Enzymatic Transformations. J Am Chem Soc 2020, 142:1657-1661. * 

SSNs and GNNs are used to discover a novel pathway for L-ascorbate catabolism. 

25. Yew WS, Gerlt JA: Utilization of L-ascorbate by Escherichia coli K-12: assignments of 

functions to products of the yjf-sga and yia-sgb operons. J Bacteriol 2002, 184:302-

306. 

26. Ghasempur S, Eswaramoorthy S, Hillerich BS, Seidel RD, Swaminathan S, Almo SC, Gerlt 

JA: Discovery of a novel L-lyxonate degradation pathway in Pseudomonas 

aeruginosa PAO1. Biochemistry 2014, 53:3357-3366. 

27. Yuan Y, Zallot R, Grove TL, Payan DJ, Martin-Verstraete I, Sepic S, Balamkundu S, 

Neelakandan R, Gadi VK, Liu CF, et al.: Discovery of novel bacterial queuine salvage 



 23 

enzymes and pathways in human pathogens. Proc Natl Acad Sci U S A 2019, 

116:19126-19135. 

* SSNs and GNNs are used to discover two pathways for queuine salvage, one containing a novel 

radical SAM enzyme. 

28. Levin BJ, Huang YY, Peck SC, Wei Y, Martinez-Del Campo A, Marks JA, Franzosa EA, 

Huttenhower C, Balskus EP: A prominent glycyl radical enzyme in human gut 

microbiomes metabolizes trans-4-hydroxy-l-proline. Science 2017, 355. 

29. Peck SC, Denger K, Burrichter A, Irwin SM, Balskus EP, Schleheck D: A glycyl radical 

enzyme enables hydrogen sulfide production by the human intestinal bacterium 

Bilophila wadsworthia. Proc Natl Acad Sci U S A 2019, 116:3171-3176. 

** SSNs and GNNs are used to discover a pathway for taurine/isethionate catabolism in the 

human gut microbiome. 

30. Tong Y, Wei Y, Hu Y, Ang EL, Zhao H, Zhang Y: A Pathway for Isethionate Dissimilation 

in Bacillus krulwichiae. Appl Environ Microbiol 2019, 85:AEM. 00793-00719. 

** SSNs and GNNs are used to discover a pathway for taurine/isethionate catabolism in the 

human gut microbiome. 

31. Liu J, Wei Y, Lin L, Teng L, Yin J, Lu Q, Chen J, Zheng Y, Li Y, Xu R, et al.: Two radical-

dependent mechanisms for anaerobic degradation of the globally abundant 

organosulfur compound dihydroxypropanesulfonate. Proc Natl Acad Sci U S A 2020, 

117:15599-15608. 

32. Chekan JR, Ongpipattanakul C, Wright TR, Zhang B, Bollinger JM, Jr., Rajakovich LJ, Krebs 

C, Cicchillo RM, Nair SK: Molecular basis for enantioselective herbicide degradation 

imparted by aryloxyalkanoate dioxygenases in transgenic plants. Proc Natl Acad Sci 

U S A 2019, 116:13299-13304. 

** SSNs and GNNs are used to discover dioxygenases that can be used to engineer herbicide 

resistant plants. 



 24 

33. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, 

Takano E, Breitling R: antiSMASH: rapid identification, annotation and analysis of 

secondary metabolite biosynthesis gene clusters in bacterial and fungal genome 

sequences. Nucleic Acids Res 2011, 39:W339-346. 

34. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T: antiSMASH 

5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 

2019, 47:W81-W87. 

35. Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster AL, Wyatt MA, Magarvey 

NA: Genomes to natural products PRediction Informatics for Secondary 

Metabolomes (PRISM). Nucleic Acids Res 2015, 43:9645-9662. 

36. Skinnider MA, Merwin NJ, Johnston CW, Magarvey NA: PRISM 3: expanded prediction of 

natural product chemical structures from microbial genomes. Nucleic Acids Res 

2017, 45:W49-W54. 

37. Tietz JI, Schwalen CJ, Patel PS, Maxson T, Blair PM, Tai HC, Zakai UI, Mitchell DA: A new 

genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem 

Biol 2017, 13:470-478. 

38. Dunbar KL, Dell M, Molloy EM, Kloss F, Hertweck C: Reconstitution of Iterative 

Thioamidation in Closthioamide Biosynthesis Reveals Tailoring Strategy for 

Nonribosomal Peptide Backbones. Angew Chem Int Ed Engl 2019, 58:13014-13018. 

** This and the following references illustrate the use of EFI-GNT to generate GNDs to leverage 

discovery of biosynthetic gene clusters. 

39. Hermenau R, Mehl JL, Ishida K, Dose B, Pidot SJ, Stinear TP, Hertweck C: Genomics-Driven 

Discovery of NO-Donating Diazeniumdiolate Siderophores in Diverse Plant-

Associated Bacteria. Angew Chem Int Ed Engl 2019, 58:13024-13029. 



 25 

40. Niehs SP, Dose B, Scherlach K, Pidot SJ, Stinear TP, Hertweck C: Genome Mining Reveals 

Endopyrroles from a Nonribosomal Peptide Assembly Line Triggered in Fungal-

Bacterial Symbiosis. ACS Chem Biol 2019, 14:1811-1818. 

41. Bosch NM, Borsa M, Greczmiel U, Morinaka BI, Gugger M, Oxenius A, Vagstad AL, Piel J: 

Landornamides: Antiviral Ornithine-Containing Ribosomal Peptides Discovered 

through Genome Mining. Angew Chem Int Ed Engl 2020, 59:11763-11768. 

42. Ueoka R, Meoded RA, Gran-Scheuch A, Bhushan A, Fraaije MW, Piel J: Genome Mining of 

Oxidation Modules in trans-Acyltransferase Polyketide Synthases Reveals a 

Culturable Source for Lobatamides. Angew Chem Int Ed Engl 2020, 59:7761-7765. 

 

  



 26 

Legends to Figures 

Figure 1.  Sequence similarity networks for protein families discussed in the text.  Panel A 

(section 4.1), glycoside hydrolase family GH128 [9].  Reprinted with permission from Nature 

Chemical Biology.  Panel B (section 4.2), diheme cytochrome c peroxidase family [10].  Reprinted 

with permission from Nature Communications. Panel C (section 4.2), diheme cytochrome c 

peroxidase family [11].  Reprinted with permission from Journal of Biological Chemistry. Panel D 

(section 4.2), Rieske non-heme iron-dependent oxygenases [13]. Reprinted with permission from 

Nature Communications. Panel E (section 4.4), nitrogenase component 1 type 

oxidoreductase superfamily [14].  Reprinted with permission from ChemBioChem. 

Figure 2.  Sequence similarity networks for protein families discussed in the text.  Panel A 

(section 4.5), 2-hydroxyacyl-CoA dehydratase superfamily [16,17]. Reprinted with permission 

from Proceedings of the National Academy of Sciences USA.  Panel B (section 4.6), flavin-

dependent amine oxidases [18].  Reprinted with permission from Journal of Molecular Biology.  

Panel C (section 4.7), flavin-dependent aromatic halogenases [19].  Reprinted with 

permission from Journal of the American Chemical Society.  Panel D (section 4.8), flavin-

dependent amino acid halogenases [21].  Reprinted with permission from Nature Chemical 

Biology.   

Figure 3.  Catabolic pathways for D-apiose. (Section 5.1).  Panel A, nonoxidative pathway 

involving a transketolase. Panel B, oxidative pathways.   

Figure 4.  Catabolic pathway for L-ascorbate. (Section 5.2).  Reprinted with permission from 

Journal of the American Chemical Society.   
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Figure 5.  Salvage pathways for queuine (Section 5.3).  Panel A, sequence similarity network 

for the YhhQ family of transporters, colored to show genome neighborhood context.  Panel B, 

salvage pathway for queuine involving a queuosine hydrolase and a queuine lyase to generate 

preQ1.   Reprinted with permission from Proceedings of the National Academy of Sciences USA.   

Figure 6.  C-S bond cleavage reactions catalyzed by members of the glycyl radical enzyme 

(GRE) superfamily (Section 5.4).   Panel A, catabolism of taurine to acetyl-CoA.  Panel B, two 

catabolic pathways for dihydropropanesulfonate (S-DHPS), a microbial degradation product of 6-

sulfo-D-glucopyranose (sulfoquinovose).  Reprinted with permission from Proceedings of the 

National Academy of Sciences USA.   

Figure 7.  Identification of arylalkanoate dioxygenases (AADs) for engineering herbicide 

resistance   (Section 5.5).  Panel A, the reaction catalyzed by TfdA in the catabolic pathway for 

2,4-D.  Panel B, the SSN for selected members of the TauD superfamily with nodes colored to 

identify TfdAs based on genome neighborhood context. Reprinted with permission from 

Proceedings of the National Academy of Sciences USA.   
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