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Abstract
Offshore wind turbine blades significantly differ from their onshore counterparts. With the increasing sizes, the hostile
weather operational conditions, and the need to protect them against damage and breakdown, structural dynamics analysis is
an essential and popular approach. An accurate and computationally simple model is desirable in the application of online
structural health monitoring. For example using a digital twin of such structure. Free vibration investigation is a fundamental
step for the analysis of structural dynamics. When a rotating blade deflects either in the plane of rotation or perpendicular to
it, the centrifugal force on each blade exerts inertia force along the blade span, which has the effect of stiffening the blade and,
as a result increasing the natural frequencies compared with the stationary ones. However, the influence of different blade
parameters on the flap-wise vibrations is not very well understood. In this paper, the blade of horizontal axis wind turbines
(HAWT) is modelled using different beam theories to pursue the effect of adding the different parameters on the dynamic
modal characteristics. The examined models have been used to determine the natural frequencies and mode shapes of the
National Renewable Energy Laboratory (NREL) 5-MWwind turbine. Results demonstrate that increasing angular velocity has
a significant impact on the natural frequencies and mode shapes. The rotary inertia is found to impact the free vibration
responses of the studied blades. Moreover, increasing hub radius, pre-cone and pitch angles are found to have less influence
on the natural frequencies. Compared to the other investigated methods, Bernoulli’s based algorithms are found to produce
less accurate results
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Introduction

The blade is considered one of the most critical components
in a wind turbine due to the unpredictable external forces
such as the atmospheric environment and varying opera-
tional conditions. The challenge is further complicated as
the size of the blade becomes larger and as the wind turbines
are constructed in more difficult terrains.1,2 Blades are a
major contributor to the downtime of wind turbines and
account for over 41% of total failures.3 Therefore, vibration
analysis has been and continues to be a subject of immense
importance because it leads to understanding the dynamic
characteristics of wind turbine blades. Natural frequencies
and mode shapes play an essential role in the design and
control of these structures. The blade is usually modelled as
a rotating beam. The out-of-plane bending vibration of the
Euler-Bernoulli beam is examined in,4 which uses the
variational iteration technique. Natural frequencies and
mode shapes of a rotating beam are studied for various
angular velocities and different taper ratios. The flexural
free vibration analysis of a double tapered Euler-Bernoulli
is investigated in.5 The differential transform method
technique is used to solve the governing differential
equation. The centrifugal force is incorporated in order to
find its effect on the dynamic characteristics. A composite
Timoshenko beam (TB) with single delamination travelled

by a constant amplitude moving force is modelled in.6 The
governing differential equation of motion is derived, and
the effects of shear deformation and rotary inertia have been
accounted for. Eigen-values technique and Ritz method
were used to obtain the dynamic response under the action
of moving force. The mechanical behaviour of the de-
lamination layers is modelled by a piecewise-linear spring
foundation.6 The flap-wise bending vibration of a rotating
tapered Rayleigh beam is analysed in.7 The integral
equation method was developed to determine the natural
frequencies. The influences of hub radius, rotational speed,
taper ratio and rotary inertia on the natural frequencies are
elucidated. The horizontal axis wind turbine blades were
developed with varying cross-section that gradually twists
from circular at the root to different aerofoil profile along
the blade span. These types of blades are usually installed
on the hub with a pre-cone angle and a pitch angle during
the operation process. The contributions of pre-cone angle
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and the pre-twist angle variation on the kinetic and strain
energy, the influences of centrifugal force and rotary inertia
are addressed in.8 Hamilton’s principle in combination with
differential transform method is used,9 the free vibration
analysis of a Timoshenko beam featuring in the direction of
the transverse bending-lateral bending-torsion coupling is
analysed based on energy expressions. Thus, the kinetic and
the potential energy are used to incorporate the rotary in-
ertia, shear deformation, rotational speed, hub radius and
bending-bending-torsion coupling deformation. The work
in10 reports the development of a vibration monitoring
system to estimate the deflection at the tip of the blade,
especially in cases when the blades begin to vibrate ex-
cessively. Analytical methods are used in 11 to investigate
the forced vibration of the symmetric cracked Timoshenko
beam under harmonic excitations. The response displace-
ment and the rotating angles of a coupled bending and
torsional vibrations of the cantilever Timoshenko beam are
studied. Analytical methods are used in11 to investigate the
forced vibration of the symmetric cracked Timoshenko
beam under harmonic excitations. The response displace-
ment and the rotating angles of a coupled bending and
torsional vibrations of a cantilever Timoshenko beam are
studied. The TB is divided into several segments due to the
existence of cracks.11 The general form of Green’s func-
tions of each beam segment with the unknown boundary
conditions is derived. The study described the matching
conditions of the cracked cross-section and the relationship
between the boundaries of the beam segments. The dam-
aged cross-section is modelled as a mixture line-spring, and
the compliances are determined through the Paris equation.
The study found that the depth, location and number of
cracks have significant effects on the natural frequencies of
the TB. Also, the location of cracks can be easily positioned
by the discontinuity of the beam response. If the wind
turbine blade has a long span, it is appropriate to simplify
the blade as a non-uniform beam. In each blade section, the
shear centre may not be coincident with the beam centroid,
which leads to a coupled bending and torsional vibration.
There have been several studies examining the influences of
coupled vibrations on the dynamic response. The differ-
ential transform method is applied in11 to solve the coupled
partial differential equations.12 A non-linear beam model
based on the geometrically exact beam theory is used in13 to
build the wind turbine blade. Taking the NREL 5MW wind
turbine blade as an example, the free vibration analysis is
used to investigate the dynamic analysis under periodic
unsteady inflows.

As stated, due to the externally applied force from a
precise atmospheric environment and varying operational
conditions, the free vibration analysis of the wind turbine
blade is the first issue that should be addressed accurately to
find the modal parameters. Numerous studies with different
approaches have been carried out to investigate the flap-
wise vibration of rotating beams. Some studies have
adopted Euler-Bernoulli rotating-beam theory4,5 or even
non-rotating Bernoulli beam due to its simplicity. Timo-
shenko beam theory which added the rotary inertia and
shear deformation was also considered for vibration
analysis.6,7 Rayleigh beam theory14,15 is among the main
methods used as it investigates free vibration by considering

the rotary inertia, which is found to have an influence on the
dynamic characteristics and forced response of wind turbine
blades. The work in8 uses Rayleigh beam theory and in-
corporates the influence of the pitch and pre-cone angles on
the dynamic characteristics of the horizontal axis wind
turbine blade in the flap wise direction. The study in13 is
adopted the geometrically exact beam theory to find the
natural frequencies and corresponding mode shapes in the
flap-wise and edge-wise directions to find the deflection
response in both directions. Despite the significant con-
tribution being made to analyse the flap-wise vibration,
there are some shortcomings. The aforementioned
studies4,5,6,7 did not achieve accurate free vibration results
that would predict the dynamic response of the blade.
However, unless a comprehensive dynamic model takes
into account parameters such as centrifugal forces, rotary
inertia, gravity, angular velocity, hub radius, pre-cone and
pitch angles, the supplying input data to model-based
control would be inaccurate. A significant advance was
made in8 by scrutinising the effects of harmonic excitation
due to the gravitational force, pre-cone and pitch angles, in
addition to the other parameters. However, a shortcoming in
the study was not applying the comparison of methods on a
blade with the same geometry. Furthermore, despite
mentioning the significant effects of pitch and pre-cone
angles with increasing the rotating speed, the results did not
clarify these effects or the mentioned factors’ effect on the
high natural frequencies. The work in13 is found the natural
frequencies of a single blade at zero rotation speed.
However, the natural frequencies without considering the
influences of centrifugal force and different values of ro-
tation speed would not be accurate and sufficient as a
comprehensive model.

In this study, the comparison between different beam
theories is established for the model of modern wind turbine
blades. The finite element code is written using the spec-
ification of 5MW NREL blade for structural modelling and
simulation studies. Modal properties, including the natural
frequencies, translational mode shapes, angular mode
shapes, modal scale factor and modal shape correlation
coefficient, are compared. The effect of changing the blade
parameters, including hub radius, pitch and pre-cone an-
gles, on the blade performance is investigated. The effect of
increasing the angular velocity on the modal parameters is
also studied.

Derivation of the governing equations

In this study, the horizontal axis wind turbine blade under
the flap-wise vibration is considered. The effect of rotary
inertia, centrifugal force, and the effect of pre-cone and
pitch angles are included. The blade deformation can be
expressed by the superposition of static displacement-time
independent- and dynamic displacement due to the influ-
ence of angular velocity and axial component of gravity
force. The blade is modelled by a cantilever beam with
variable cross-sections. One end of the blade is fixed to a
rigid hub with radius R, and the other is free. The blade is
considered to rotate at an angular velocity V. The blade
undergoes flap-wise bending vibration, and the governing
equation can be obtained by using the variational principle.
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The blade being considered in this study is shown in
Figure 2. The Z-axis is along the hub’s central axis; the X-
axis is along the spanwise of the blade, and Y-axis follows
the right-hand rule. The total kinetic energy of the hori-
zontal axis wind turbine blade due to the flap-wise
vibration is

Κ ¼ K1 þ Κ2 þ Κ3 (1)

The first term is due to the flap-wise bending, expressed
as

K1 ¼ 1

2

Z L

0

ρAðxÞ
�
∂wðx,tÞ

∂t

�2

dx (2)

The second expression of the kinetic energy results from
the rotary inertia of the blade, as follow

K2 ¼ 1

2

Z L

0

"
ρIðxÞ

�
∂2wðx,t�
∂x∂t

�2

þ ρI ∗ðxÞV2

�
∂wðx,tÞ
∂x

�2�
dx

(3)

where
I ∗ ¼ IðxÞcos2ðfÞ and f is the pre-cone angle.
The last term of the kinetic energy is resulted from

adding the effects of pre-cone and pitch angles, and comes
from the fact that the axis of rotation is not parallel with the
flap-wise direction of the blade.8

Κ3 ¼ 1
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In the above equations: ρ, represents the blade density,
AðxÞ its cross-sectional area in the flap-wise direction at
distance x relative to the blade span, IðxÞ blade moment of
inertia, L is the blade length, V angular velocity of the
blade, f pre-cone angle, θp pitch angle, wðx,tÞ is the flap-
wise bending displacement.

The first term of the kinetic energy equation (1) is due
to the flexural vibration of the flap-wise direction and is
identical to the Bernoulli, Timoshenko and Rayleigh
beam theories. The second and third terms are due to the
rotary inertia of the blade. These terms are ignored in the
Euler-Bernoulli theory. The second term is found in the
Timoshenko beam theory. The fourth term comes from the
fact that the axis of rotation is not parallel with the flap-
wise span by the effect of pre-cone and twist angle of the
blade.8

The potential energy of the HAWT blade is

U ¼ U1 þ U2 (5)

The strain energy of the blade due to flap-wise bending is

U1 ¼ 1

2

ZL
0

EIðxÞ
�
∂2w
∂x2

�2

dx (6)

The potential energy due to the centrifugal force is

U2 ¼ 1

2

ZL
0

TðxÞ
�
∂w
∂x

�2

dx (7)

with

TðxÞ ¼ 1

2

ZL
x

ρAðxÞ��V2ðRþ x cosðfÞÞ�� gcosðVtÞ	dx
(8)

where TðxÞ is the axial force due to the centrifugal tension
force at a distance x from the centre of rotation. The in-
fluence of the centrifugal force on the static displacement of
the turbine blade almost concentrates on the axial and flap-
wise direction. E is the modulus of elasticity, g is the
gravitational acceleration, R is the hub radius.

The virtual work of the applied distributed force, f ðx,tÞ,
is given by

δwðtÞ ¼
Z L

0

f ðx,tÞδwdx (9)

where, f ðx,tÞ is the external distributed load along the blade
span.

Noting that the operation of variation is commutative
with respect to both integration and differentiation. So, the
variation of kinetic and potential energy can be written as

δΚ ¼ δ
Z t2

t1

ðK1 þ Κ2 þ Κ3Þdt (10)

δU ¼ δ
Z t2

t1

ðU1 þ U2Þdt (11)

Hamiton’s principle can be stated as

δ
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ðK � U þ wÞdt ¼ 0 (12)

δw ¼ 0 at t ¼ t1 and t ¼ t2:

Thus,
The governing equation of motion is obtainable as
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With the boundary conditions at x=0

w ¼ 0,
∂w
∂x

¼ 0 x¼0 ¼ 0j

and at x=L
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Free vibration analysis

There are many methods that may be used to find the free
vibration analysis of rotating beams. Most of those methods
are applied for beams with certain cross-sections. There-
fore, they cannot be applied to the blade with various and
complicated cross-sections. Approximate methods such as
Galerkin residual approach can be adopted. The governing
equation (13) together with approximate solution wðx,tÞ is
employed to formulate the weak form as
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(15)

where, φi is the trail function, and i =1,2,…N
The flap-wise deflection and the slop due to flexural

vibration of the wind turbine blade are approximated by a
weighted linear combination of trail functions16

wðx,tÞ ¼
XN
j¼1

φjðxÞujðtÞ (16)

where, uj is the joint displacement, and j=1,2,…N
The second derivatives of the trial solution are expressed

as

∂2wðx,tÞ
∂x2

¼
XN
j¼1

∂2φjðxÞ
∂x2

ujðtÞ (17)

∂2wðx,tÞ
∂t2

¼
XN
j¼1

φjðxÞ
∂2ujðtÞ
∂t2

(18)

substituting equations (14), (15) and (16) into equation (13)
and integrating with respect to x from 0 to L , the general
form of the matrix equation of an N degree of freedom
system subjected to excitation force may be obtained with
the following expression:

½M �



€U

�
þ ½C�



_U

�
þ ½K�fUg ¼ fFg (19)

where ½M � and ½K� are positive-definite mass and stiff-
ness matrices respectively, ½C� is the damping matrix,
fUg, f _Ug and f €Ug are columns matrices of linear dis-
placement, velocity and acceleration, respectively, fFg a
column matrix of the excitation forces or moments. The
natural frequencies in the flap wise direction and the
corresponding mode shapes would be calculated by
assuming:

uj ¼ Xje
iωt , _uj ¼ iXje

iωt , €uj ¼ �ω2Xje
iωt (20)

where Xj is a vector of order n representing the modal
function, i ¼ ffiffiffiffiffiffiffi�1

p
, t is the time variable, andω is a constant

identified to represent the frequency of flap wise vibration of
the vectorXj. Substituting equations (20) into equation (19), a
set of ordinary differential equations of modal functions and
frequencies are obtained. For free vibration, the blade
equation (19) can be written as (Equation. (21)):

M €U þ C _U þ KU ¼ 0 (21)

From equations (20), we get�
K þ iωC � ω2M

�
X ¼ 0 (22)

If the damping matrix C is neglected, the undamped
modal equation can be expressed as (Equation (23)):

�ω2X þM�1 KX ¼ 0

M�1KX ¼ λX (23)

where the eigenvalues λj ¼ ω2
j

The previous equations yield the n eignsolutions:

ðλ1,X1iÞ, ðλ2,X2iÞ, ðλ3,X3iÞ, …………ðλn,XniÞ
The governing equation of the flap-wise deformation

equation (15) is transformed to the general form of the matrix
equations for free vibration of N degree of freedom system as
indicated in equation (23) which it is represented the funda-
mental equation to form the pertinent equations to determine the
natural frequencies and mode shapes configuration of the wind
turbine blades. The elements of mass and stiffness matrices are
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where

kðxÞ ¼ � 1
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ρAðxÞ�2 cosð2˘Þ þ cos

�
2
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˘� θp

��
þ 2 cos

�
2θp

�þ cos
�
2
�
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��� 6
�
V2

I∗, TðxÞ as indicated in equations (3) and (8),
respectively.

The global mass and stiffness matrices can be con-
structed once the elementary value of mass and stiffness
from equations (24) and (25) were obtained.

Figure 1 shows the computational procedure that fol-
lowed in order to programming the free vibration analysis.

Applicability of Euler-Bernoulli, Rayleigh and Timo-
shenko beam theories in fap-wise deformation

If the first two terms of equation (13) are considered, and
the rest parts are neglected, the Euler-Bernoulli beam’s
governing equation for the forced flap-wise vibration of
non-uniform and non-rotating beam is obtained as
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If the third term of equation (13) is added, the Euler-
Bernoulli rotating beam’s governing equation for the forced
flap-wise vibration of non-uniform beam is obtained as
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where, f ðx,tÞ is the external distributed load along the beam
span.

The governing equation for a rotating Rayleigh beam
can be expressed directly from equation (13) by neglecting
the terms of the effect of pre-cone and pitch angles to be as
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If the shear deformation and rotary inertia are consid-
ered, the procedure, presented by Timoshenko beam theory.
The governing equation for the forced flap-wise vibration of
non-uniform beam is obtained as16
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For free vibration equation (29) reduces to
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(31)

where G denotes the modulus of rigidity of the material and
8 is a constant, known as Timoshenko’s shear coefficient,
which depends on the shape of the cross-section.

Shear correction value of wind turbine blade

Timoshenko beam theory is based on the concept of a
characteristics response to shear force. The theory adopts
the correction shear factor that compensates for the as-
sumption of a constant shear strain over the cross-section.
The shear factor is a reciprocal value that primarily depends
on the shape of structure cross-section, on the other hand,
Timoshenko suggested constant value of shear coefficient
depending on the shape of cross-section; for the symmetric
beam with a rectangular section, it is 0.83, whilst with a
circular cross-section it is 0.9.17 This correction value is
defined as the average shear strain within a section to the
shear strain at its centroid.18 The study19 adopted many
methods to evaluate the shear correction values. All the
values are estimated according to the aspect ratio of the
cross-section; the value of the circular cross-section is 0.9
and this value decreases with decreasing the ratio of aspect
ratio to 0.286.19

The primary design drivers for large wind turbine blades
are blade fatigue, as wind blades are required to be certified
for 20 years of life span. Moreover, the natural modes of
vibration, which are determined by its physical behaviour
are inherent to the dynamic system, need to be predicted
with accurate values. The forces on the blade element are
assumed to calculate by means of the dimensional of each

Figure 1. Free vibration computational procedure.
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aerofoil characteristic along the spanwise direction of the
blade.20 Based on the technical report,21 the blade is divided
into 17 different elements considering the coincident
aerofoil in each element,22 as shown in Figure 2. According
to the Composite Material Fatigue Database,23 the elastic
material property data andmass density are listed in Table 1.

Properties for triaxial material, which are denoted as SNL
Triax, were determined by averaging the test-derived data
for the uni-axial and double bias material.23 Splines were
drawn for mass and stiffness along the blade span according
to data,21 as shown in Figure 3 and Figure 4 are clarified the
complicated distribution of blade mass and stiffness along
the blade span. In this study, the correction shear factor
starting at the value of 0.9 as the first section is circle cross-
section and decreasing according to the chord and thickness
of different blade aerofoils.21

Comparison and correlation between mode shapes

It is possible to identify the structure condition from the
variation of modal-based indices such as the frequency
and mode shapes. The aim is to obtain the baseline of
structure modal parameters when it is perfectly healthy.

Table 1. Material Property Data Selected from Doe/MSU Database.23

Laminate Definition Volume fraction % EL (GPa) ET (GPa) υLT GLT (GPa) p (Kg/ m3)

E-LT-5500/EP-3 54 41.8 14.0 0.28 2.63 1920
Saertex/ep-3 44 13.6 13.3 0.51 11.8 1780
SNL Triax 27.7 13.65 0.39 7.2 1850

EL and ET : longitudinal and transverse modulus of elasticity, υ : Poisson’s ratio, G: shear modulus, ρ: mass density.

Figure 3. the mass per unit length (ρA) distribution along the spanwise of NREL 5MW blade.21

Figure 4. the flap-wise flexural rigidity (EI) distribution along the spanwise of NREL 5MW.21

Figure 2. Division of the blade into 17 elements.21
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However, when any changes of these parameters occur, it
may be possible to derive the causes which bring about the
change.

The mode shapes are spatially distributed character-
istics that include information about the structure. The
first index for quantifying the comparison between the
pairs of mode shapes is Modal Scale Factor(MSF). This
technique represents the slope of the individual points of
mode shapes which these points should be close to the
straight line through which they will have a slope of ±1.
The MSF index for the mode shape and its counterpart is
as24

MSFðX ,AÞ ¼
PN

j¼1ðΨXÞjðΨAÞjPN
j¼1ðΨAÞjðΨAÞj

(32)

Where ΨX,ΨA are the mode shapes vectors that used for
comparing, N is the number of degrees of freedom for both
X ,A, j is the mode number, and depending on which mode is
taken as the reference one:

MSFðA,XÞ ¼
PN

j¼1ðΨAÞjðΨXÞjPN
j¼1ðΨXÞjðΨXÞj

(33)

If fΨAg≡ fΨAg then MSFðX ,AÞ ¼ MSFðA,X Þ ¼ 1,
and the two modes will be perfectly correlated.

In the second case, they differ by a simple scalar mul-
tiplier fΨAg ¼ γfΨAg and

MSFðX ,AÞ ¼ γ whilst MSFðA,X Þ ¼ 1
γ

The second index is the Modal Shape Correlation Co-
efficient (MSCC) and this provides the correlation of two
pairs of the mode shapes.

MSCCðA,X Þ ¼
PN

i¼1ðΨXÞjðΨAÞj
2�PN

i¼1ðΨXÞjðΨXÞj
��PN

i¼1ðΨAÞjðΨAÞj
�
(34)

The MSCC values of two mode shapes are always be-
tween 0 and 1. If the two modes are perfectly correlated,
thenMSCC ¼ 1, and for different modes, a value close to 0
should be obtained due to the orthogonality of the mode
shapes.

Results and discussion

The flowchart of the algorithm that used in this study is shown
in Figure 1. The National Renewable Energy Laboratory
(NREL) 5MWreference wind turbine is chosen to validate the
previous equations and analysis. It is an upwind three-blade
horizontal-axis multi-megawatt wind turbine. Based on the
technical report21 the blade is divided into 17 different ele-
ments considering the coincident aerofoil in each element, as
shown in Figure 2. The rotor radius and the hub diameter of
the blade are about 63m and 3m, respectively. The pre-cone
and pitch angles are 2:5° and 0°, respectively. And the rotor
speed is 12.1 RPM21. According to the Composite Material
FatigueDatabase,23 the elastic material property data andmass
density are listed in Table 1. Properties for triaxial material,
which are denoted as SNL Triax, were determined by aver-
aging the test-derived data for the uni-axial and double bias
material.23 Splines were drawn for mass and stiffness distri-
butions according to data,21 as shown in Figures 3 and 4.

The first 10 natural frequencies results of a single 5MW
NREL blade with adopting different theories at zero rota-
tion speed and without aerodynamic forces are compared
together and with data from8,13,25 are listed in Table 2. The
results showed a good agreement of five models with the
literature results, which indicated the appropriateness of the
presented models using the finite element code.26

The data in Table 2 shows the first 10 natural frequencies
of the NREL 5MWat zero rotational speed. The comparison
is made between the natural frequencies by applying the
different beam theories: Rayleigh, rotating Bernoulli, non-
rotating Bernoulli beams, and with the blade parameters
such as pitch, pre-cone angles and gravitational force
component, for the same geometry and material properties
of NREL-5MW HAWT blade. The comparison is made
against the BModes and FASTcodes, and from,8,13,25 it was
found that the results obtained by the present study agree
well with the numerical results calculated from other in-
vestigations. The fundamental frequencies by adopted
different theories in this study have approximately the same
value, which indicates that ignoring the influence of cen-
trifugal force at the stationary value, lead to the same results
in the fundamental mode. In the same Table 2, there is a
significant change in the second and third frequencies for

Table 2. Natural frequencies (Hz) for the first 10 modes at angular speedV =0 RPM Rayleigh beam, rotating Bernoulli beam, non-rotating
Bernoulli beam and Rayleigh beam with adding the pitch and pre-cone angles effects and results from8,23,25 of NREL-5MW HAWT blade.

Method
Mode
NO.

Natural freqs
With blade
parameters
Present

Rayleigh
(Hz)
Present

BModes(Hz)
[20]

FAST(Hz)
[20]

[16]
(Hz)

[20]
(Hz)

[10]
(Hz

Bernoulli
Present

Rot-
Bernoulli
Present

Timoshenko
Present

1 0.680 0.680 0.69 0.68 0.673 0.68 0.727 0.681 0.681 0.678
2 1.985 1.985 2.00 1.94 1.926 1.98 3.060 3.059 1.960
3 4.543 4.543 4.69 4.43 4.427 4.66 3.915 3.914 4.427
4 8.132 8.132 8.168 8.167 7.808
5 12.674 12.674 12.763 12.762 11.980
6 18.031 18.031 18.210 18.209 16.774
7 24.214 24.214 24.529 24.528 22.185
8 31.323 31.323 31.856 31.855 28.199
9 39.565 39.565 40.160 40.159 36.876
10 48.194 48.194 49.974 49.973 40.022
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Table 3. The effect of increasing hub radius (0–6 m) on the first 10 natural frequencies (Hz) at angular speedV =12.1 RPM of NREL-5MW
HAWT blade.

Radius (m) Mode No 0 2 3 4 5 6

1 0.762957 0.766002 0.767519 0.769034 0.770545 0.772053
2 2.071668 2.075022 2.076697 2.07837 2.080042 2.081713
3 4.626922 4.630292 4.631975 4.633659 4.635341 4.637023
4 8.214347 8.217784 8.219502 8.221219 8.222936 8.224653
5 12.75037 12.7537 12.75537 12.75703 12.75869 12.76036
6 18.10221 18.10547 18.1071 18.10873 18.11036 18.112
7 24.27965 24.28283 24.28443 24.28602 24.28762 24.28921
8 31.38531 31.38849 31.39008 31.39167 31.39326 31.39485
9 39.62018 39.62329 39.62484 39.62639 39.62795 39.6295
10 48.25511 48.2586 48.26034 48.26209 48.26383 48.26558

Table 4. The first 10 frequencies (Hz) VS the changing in rotor speed V (0–25 RPM) of NREL-5MW HAWT blade.

Angular speed Mode No 0 2.5 5 10 12 12.1 15 20 25

1 0.680874 0.684626 0.695748 0.738362 0.762118 0.765242 0.803784 0.886296 0.980913
2 1.98517 1.988989 2.0004 2.045396 2.071327 2.074184 2.118209 2.215993 2.335441
3 4.543338 4.547043 4.558138 4.602226 4.627877 4.629449 4.674693 4.774116 4.898674
4 8.132802 8.136483 8.147513 8.191461 8.217115 8.216925 8.264097 8.36454 8.491616
5 12.67489 12.6784 12.68893 12.73093 12.7555 12.75287 12.80056 12.89723 13.02018
6 18.03164 18.03505 18.04528 18.08616 18.11008 18.10465 18.15402 18.24849 18.36905
7 24.21415 24.21748 24.22746 24.26733 24.29068 24.28204 24.3336 24.42601 24.5442
8 31.32392 31.32723 31.33714 31.37675 31.39996 31.38769 31.44263 31.53459 31.65236
9 39.56532 39.56853 39.57814 39.61654 39.63904 39.62251 39.68041 39.76953 39.88364
10 48.19454 48.19817 48.20906 48.25262 48.27818 48.25772 48.32523 48.42686 48.55748

Table 5. Effects of pitch angle (�30 to 30) on the first ten natural frequencies (Hz) at angular speedV =12.1 RPM of NREL-5MWHAWT
blade.

Pitch angle Mode No �30 �20 �10 0 10 20 30

1 0.758405 0.761911 0.764193 0.764984 0.764193 0.761911 0.758405
2 2.071056 2.072284 2.073088 2.073367 2.073088 2.072284 2.071056
3 4.626638 4.627145 4.627478 4.627594 4.627478 4.627145 4.626638
4 8.213143 8.213396 8.213564 8.213622 8.213564 8.213396 8.213143
5 12.74748 12.74762 12.74771 12.74774 12.74771 12.74762 12.74748
6 18.09724 18.09731 18.09735 18.09737 18.09735 18.09731 18.09724
7 24.27222 24.27224 24.27226 24.27227 24.27226 24.27224 24.27222
8 31.37506 31.37506 31.37506 31.37506 31.37506 31.37506 31.37506
9 39.60662 39.60659 39.60657 39.60657 39.60657 39.60659 39.60662
10 48.23834 48.23832 48.23831 48.23831 48.23831 48.23832 48.23834

Table 6. Effects of pre-cone angle (�5 to 5) on the first 10 natural frequencies (Hz) at angular speed V =0 RPM of NREL-5MW HAWT
blade.

Pre-cone angle
Mode NO �5 �3 �1 0 1 3 5

1 0.764733 0.764861 0.764926 0.764934 0.764926 0.764861 0.764733
2 2.073275 2.073323 2.073347 2.07335 2.073347 2.073323 2.073275
3 4.627554 4.627575 4.627586 4.627587 4.627586 4.627575 4.627554
4 8.2136 8.213612 8.213618 8.213619 8.213618 8.213612 8.2136
5 12.74773 12.74773 12.74774 12.74774 12.74774 12.74773 12.74773
6 18.09736 18.09737 18.09737 18.09737 18.09737 18.09737 18.09736
7 24.27226 24.27227 24.27227 24.27227 24.27227 24.27227 24.27226
8 31.37506 31.37506 31.37506 31.37506 31.37506 31.37506 31.37506
9 39.60656 39.60657 39.60657 39.60657 39.60657 39.60657 39.60656
10 48.23831 48.23831 48.23831 48.23831 48.23831 48.23831 48.23831
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Figure 5. Mode shapes of the first six modes of NREL-5MW HAWT blade Timoshenko, Non-rotating Bernoulli Rotating Bernoulli,
Rayleigh, with blade parameters.
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both rotating and non-rotating Bernoulli theory. According
to equations (26) and (28) the rotary inertia effect is not
included, and, as a result, it has a significant impact on the
second and third modes. However, this impact becomes less
in the higher modes.

To investigate the effect of hub radius and rotor angular
velocity on the natural frequencies and corresponding mode
shapes of the blade equations (24) and (25) are utilised. The
results in Table 3 show that the natural frequencies in the
first 10 modes are increased slightly and barely noticeable
with increasing the hub radius from 0 to 10m at a constant
angular velocity = 12.1RPM. According to equation (8), it
could be interpreted as increasing of hub radius leads to
change in the centrifugal force.

The second parameter, whose variation results in a
considerable effect, is the angular velocity. The results in
Table 4 show the influence of angular velocity from 0 to 25
RPM on the first 10 natural frequencies of the Rayleigh
model. The angular velocity directly affects the centrifugal
force and rotary inertia and, in general, on the stiffness
matrix, as indicated in equations (13) and (25). In the case of
the 5MW wind turbine, where the blade rotating at 12.1
RPM, Table 4 shows that the fundamental mode frequency
increases by 10% compared with the fundamental frequency
for a non-rotating blade at rotating speed 0 RPM in the same
Table 4. Typically, centrifugal stiffening results in an increase
of the first natural frequency in the out-of-plane direction.
This effect becomes low in the higher modes, as shown in the
same table. It indicates that the influence of centrifugal
stiffening becomes progressively less in the higher modes.

The effects of the blade parameters such as the pitch and
pre-cone angles are shown in Table 5 and Table 6. However,

although these angles have contributions on the blade
stiffness matrices, their effects on the natural frequencies
are barely noticeable. Moreover, the minimum effects of
pre-cone and pitch angles have approximately the same
influence, which decreases in the higher modes.

Figure 5 shows the first six mode shapes for Rayleigh,
rotating Bernoulli, non-rotating Bernoulli and Timoshenko
beams, and blade parameters such as pitch, pre-cone angles,
and gravitational force component at angular velocity = 0
RPM. The mode shapes from different theories are super-
imposed on the same figure to show the shape comparison. The
figures show that the fundamental mode has the same path line
in all adopted theories. The discrepancy was clearly noticed in
the second and third modes. However, this agrees with the
discrepancy in natural frequencies in the same modes and
confirms that the rotary inertia significantly impacts the second
and thirdmodes. As in Table 2 and Figure 5, it can be seen from
mode number four that the effect of rotary inertia is signifi-
cantly decreasing, and its influence on the dynamic charac-
teristics become less important in all modes higher than mode
four. In Figure 5 it is possible to see that not only the degree of
corresponding between the pairs of mode shapes is achieved,
but also the nature of any discrepancies which do exist. It can
be pointed out that the blade parameters such as pitch and pre-
cone angles have not affected the mode shapes. Furthermore,
the rotating and non-rotating- Bernoulli methods have also the
same mode shapes, which indicate that the existence of rotary
inertia with their counterparts theories has an impact on the
mode shapes. This elucidates that the influence of adding
centrifugal force has no effect at a stationary value of angular
velocity, whilst the rotary inertia has an impact on the first three
of natural frequencies and mode shapes.

Table 7. The first 10 natural frequencies (Hz) variation as a function of rotor speed V = (0–25 rpm) of NREL-5MW HAWT blade.

The first 10 natural frequencies with increasing the rotor speed of HAWT blade with effects of pre-cone& twist angles

rotating Speed Mode NO. 0 2.5 5 10 12 15 20 25

1 0.680874 0.684734 0.69617 0.739946 0.76432 0.807028 0.891473 0.988143
2 1.98517 1.9891 2.000843 2.047126 2.073786 2.121962 2.222351 2.344832
3 4.543338 4.547153 4.558576 4.603959 4.630356 4.678524 4.780768 4.90877
4 8.132802 8.136594 8.147957 8.193226 8.219648 8.268028 8.371428 8.502185
5 12.67489 12.6785 12.68936 12.73264 12.75795 12.80438 12.90396 13.03056
6 18.03164 18.03515 18.0457 18.08783 18.11249 18.15777 18.25511 18.37931
7 24.21415 24.21758 24.22787 24.26897 24.29304 24.33727 24.4325 24.55428
8 31.32392 31.32733 31.33755 31.37838 31.4023 31.44629 31.54107 31.66245
9 39.56532 39.56863 39.57854 39.61814 39.64134 39.68398 39.77585 39.89347
10 48.19454 48.19828 48.2095 48.25441 48.28076 48.32926 48.43402 48.56868

The first 10 natural frequencies with increasing the rotor speed of HAWT blade by Rayleigh-Ritz theory

rotating Speed Mode NO. 0 2.5 5 10 12 15 20 25

1 0.680874 0.684626 0.695748 0.738362 0.762118 0.803784 0.886296 0.980913
2 1.98517 1.988989 2.0004 2.045396 2.071327 2.118209 2.215993 2.335441
3 4.543338 4.547043 4.558138 4.602226 4.627877 4.674693 4.774116 4.898674
4 8.132802 8.136483 8.147513 8.191461 8.217115 8.264097 8.36454 8.491616
5 12.67489 12.6784 12.68893 12.73093 12.7555 12.80056 12.89723 13.02018
6 18.03164 18.03505 18.04528 18.08616 18.11008 18.15402 18.24849 18.36905
7 24.21415 24.21748 24.22746 24.26733 24.29068 24.3336 24.42601 24.5442
8 31.32392 31.32723 31.33714 31.37675 31.39996 31.44263 31.53459 31.65236
9 39.56532 39.56853 39.57814 39.61654 39.63904 39.68041 39.76953 39.88364
10 48.19454 48.19817 48.20906 48.25262 48.27818 48.32523 48.42686 48.55748
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Table 7 shows the first 10 natural frequencies by the
Rayleigh method and with adding the effect of pitch and
pre-cone angles as functions with increasing rotor speed. It
can be noticed that the influences of pitch and pre-cone
angles on the first 10 natural frequencies are barely no-
ticeable. On the complex structure such as the blade in this
study, the natural frequencies are closely spaced, so it is
more difficult to identify the discrepancies or the correlation
between the modes and their counterparts. The additional
information of mode shapes is represented in Figure 6. The
lowest six mode shapes are shown in the figure for Rayleigh
blade with adding pitch and pre-cone effect at angular
speed = 0 RPM and with its counterpart at angular speed =
12.1 RPM. There is a significant impact of rotating speed on
the mode shapes, and the deviations of the points from the
expected line are systematic along the blade span in all six
mode shapes. Figure 7 shows the angular mode shapes for
the first five modes. There is no deviation along the blade
span for all four mode shapes. It can be noticed that there are
no discrepancies between them at angular velocity =
12.1 RPM and the stationary value. It can be noticed the
significant deviation with angular speed = 25 RPM in the
first four mode shapes compared with 0 RPM and
12.1 RPM.

There is a range of blade pitch angles required for power
control. Table 8, Table 9 and Table 10 show the effect of
different pitch angles on the first 10 frequencies. Table 8
shows the influence of increasing the pitch angle on the
natural frequencies at angular velocity = 0 RPM. The table
shows fixed frequencies values for each mode that are
exactly the same as the values of Table 2. At angular ve-
locity = 0 RPM, there is no effect of centrifugal force on the
natural frequencies as expected.

Table 9 shows the influence of changing the pitch angle at
angular velocity = 15 RPM. The frequency values are in-
creasing by increasing the rotational speed. Furthermore,
these frequency values are slightly changing with changing
the pitch angle, and this change becomes less and less in the
higher modes. According to Table 10, the natural frequencies
become higher by around 30% at angular speed = 25 RPM
comparing to Table 8. As in Table 9, the changes in fre-
quencies with changing the pitch angle are barely noticeable
in the lower and higher modes at rotational speed =25 RPM.

Figure 8 shows the comparisons between the first 10
frequencies values for all the adopted theories against the
frequencies of the Rayleigh theory for each of the modes
included in the comparison. From the figure, it can be seen
the degree of correlation between the counterparts of the

Figure 6. The first, second, third and fourth mode shapes of NREL-5MW HAWT blade at rotation speed=25 RPM, at rotating speed
=12.1 RPM, at rotating speed = 0 RPM.
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results. Furthermore, it can be noticed that the Rayleigh
model without the effect of control angles is closely cor-
related with the Rayleigh model with the effect of blade
control angles. Furthermore, there is a high level of

correlation in the Timoshenko model compared with the
Rayleigh model.

Whilst Figure 9 shows the natural frequencies at dif-
ferent rotation speeds versus counterparts frequencies at

Figure 7. The angular mode shapes of NREL-5MW HAWT blade at rotation speed = 25 rpm, at rotating speed = 12.1 rpm, at rotating
speed = 0 rpm.
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rotational speed = 0 rpm. As illustrated, the frequencies are
coincident with the stationary values along the line 45°,
which indicates no apparent discrepancies between them.
However, some positive identification of each mode with its
counterpart can be achieved clearly by the mode shape
correlation method.

The results of MSF are demonstrated in Figure 10 for
the first three mode shapes in the case of rotational
velocity = 012.1 and 15 RPM. Although the three modes in
different pairs of modes are correlated and close to one for

counterparts values, the figure shows the scalar multiplier γ
becomes less when comparing the modes at 12.1 RPM ro-
tating speed with 15 RPM. It reveals that this parameter gives
small sensitivity of MSF index as it represents the slope of the
best straight line through the pairs of comparing mode shapes
points.

Figure 11 shows theMode Shape Correlation Coefficient
index results of the pairs of the first three mode shapes for
quantifying the comparison between them at different ro-
tational speeds. The MSCC results are not significantly

Table 8. Effects of pitch angle (-30°to 30°) on the first ten natural frequencies (Hz) at angular speed V =0 RPM of NREL-5MW HAWT
blade.

Pitch angle Mode No �30 �20 0 10 20 30

1 0.680255 0.680255 0.680255 0.680255 0.680255 0.680255
2 1.983365 1.983365 1.983365 1.983365 1.983365 1.983365
3 4.539208 4.539208 4.539208 4.539208 4.539208 4.539208
4 8.125409 8.125409 8.125409 8.125409 8.125409 8.125409
5 12.66336 12.66336 12.66336 12.66336 12.66336 12.66336
6 18.01524 18.01524 18.01524 18.01524 18.01524 18.01524
7 24.19214 24.19214 24.19214 24.19214 24.19214 24.19214
8 31.29545 31.29545 31.29545 31.29545 31.29545 31.29545
9 39.52935 39.52935 39.52935 39.52935 39.52935 39.52935
10 48.15072 48.15072 48.15072 48.15072 48.15072 48.15072

Table 9. Effects of pitch angle (�30°to 30°) on the first ten natural frequencies (Hz) at angular speedV =15 RPM of NREL-5MW HAWT
blade.

Pitch angle Mode No �30 �20 0 10 20 30

1 0.796578 0.801763 0.806295 0.805129 0.801763 0.796578
2 2.116362 2.118316 2.120033 2.11959 2.118316 2.116362
3 4.672611 4.673495 4.674271 4.674071 4.673495 4.672611
4 8.259576 8.260074 8.260512 8.260399 8.260074 8.259576
5 12.79214 12.79246 12.79274 12.79266 12.79246 12.79214
6 18.14084 18.14106 18.14126 18.14121 18.14106 18.14084
7 24.31483 24.315 24.31515 24.31511 24.315 24.31483
8 31.41746 31.41759 31.4177 31.41767 31.41759 31.41746
9 39.64772 39.64782 39.6479 39.64788 39.64782 39.64772
10 48.28517 48.28525 48.28532 48.2853 48.28525 48.28517

Table 10. Effects of pitch angle (-30°to 30°) on the first ten natural frequencies (Hz) at anngular speedV =25 RPM of NREL-5MWHAWT
blade.

Pitch angle Mode No �30 �20 0 10 20 30

1 0.965086 0.976939 0.987245 0.984599 0.976939 0.965086
2 2.333463 2.338383 2.342701 2.341588 2.338383 2.333463
3 4.899912 4.902251 4.904307 4.903777 4.902251 4.899912
4 8.49193 8.493274 8.494456 8.494151 8.493274 8.49193
5 13.01707 13.01795 13.01871 13.01852 13.01795 13.01707
6 18.36145 18.36207 18.36261 18.36247 18.36207 18.36145
7 24.5311 24.53156 24.53196 24.53185 24.53156 24.5311
8 31.633 31.63335 31.63366 31.63358 31.63335 31.633
9 39.85668 39.85696 39.8572 39.85714 39.85696 39.85668
10 48.5241 48.52433 48.52452 48.52447 48.52433 48.5241
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deviated which all values are close to unity. The MSCC
values of mode shapes at 0 RPM counterpart of mode
shapes at 15 RPM exhibit more deviation comparing with
values of mode shapes at 12.1 rpm counterpart of mode
shapes at 15 RPM. However, MSCC results are very close
to the unity, and any small sensitivity may bring a change in
the structural characteristics.

An alternative approach to comparing the mode shapes is
by making an x-y plot to represent each element in the mode
shape vector, such as is shown in Figure 12. The first six

mode shapes of the Rayleigh model with and without the
effect of pitch and pre-cone angles are represented in this
figure. Each individual type of point on this figure is related
to a specific degree of freedom. It could be noted that all the
points in all the first six modes lie close to a straight line
passing through the origin, which indicates the two models
are perfectly correlated.

The data is represented in Figure 13 to compare the first
six mode shapes of the Rayleigh and Timoshenko models in
the case of the translational mode shapes Figure 13 a and

Figure 8. first 10 natural frequencies of the 5 MW wind turbine blade by different theories.

Figure 9. frequencies of various rotational speed vs. the stationary values
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Figure 10. The deviation of first three mode shapes by applying Modal Scale Factor index, blade at rotating speed=12.1 RPM, blade at
rotating speed =0 RPM comparing with rotational speed =15 RPM

Figure 11. The deviation of first three mode shapes by applying Mode Shape Correlation Coefficient index, blade at rotating
speed=12.1 RPM, blade at rotating speed =0 RPM comparing with rotational speed =15 RPM

Figure 12. The comparison of 5 MW blade mode shapes, Rayleigh model with control angles effect vs Rayleigh model without control
angles effect.
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Figure 14. MAC index of translational mode shapes of 5 MW
blade, correlation of Rayleigh and Blade with adding the control
angles models.

Figure 15. MAC index of angular mode shapes of 5 MW blade,
correlation of Rayleigh and Blade with adding the pitch and pre-
cone angles effect.

Figure 13 . a. The comparison of 5 MW blade of translational mode shapes, Rayleigh model vs Timoshenko model b. The comparison of
5 MW blade of angular mode shapes, Rayleigh model vs Timoshenko model.
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Figure 17. a. MAC index of angular mode shapes of 5 MW blade, correlation of Rayleigh models at 0 RPM and 25 RPM. b, correlation of
Rayleigh model with and without the blade control angles effect at 0 RPM.

Figure 18. a. MAC index of translational mode shapes of 5 MW blade, correlation of Rayleigh model and rotating Bernoulli model at
0 RPM.b, correlation of angular mode shapes of Rayleigh model and rotating Bernoulli model at 0 RPM.

Figure 16. a. MAC index of translational mode shapes of 5 MW blade, correlation of Rayleigh models at 0 RPM and 25 RPM.b, correlation
of Rayleigh model with and without the blade control angles effect at 0 RPM.
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angular mode shapes Figure 13 b. It is clear that there are
discrepancies from the straight line in angular mode shapes.
The deviations of the points from the expected line are
systematic in some way in the second, three and fourth
modes which indicates the existence of a correlation be-
tween them. There is a deviation in mode one, which infers
that the effect of shear deformation may affect the angular
mode shape due to the existence of shear angle. The dis-
crepancy is increased in mode six in the same figure, which
indicates the effect of shear in the higher modes.

Figure 14 and Figure 15 represent the MAC for the
translational and angular mode shapes data of the Rayleigh
model comparing with adding the blade parameters such as
pre-cone and pitch angle effect. The figures show that the
data from the two models are perfectly correlated in the case
of translational mode shapes Figure 14, and angular mode
shapes Figure 15. From Figures 14 and 15, it could be
noticed that only the first six modes are included. The MAC
matrix is symmetric, and there are non-zero off-diagonal
numbers that indicate that some of the mode shapes appear
to exhibit a degree of correlation with each other, which
may not be expected since the orthogonality between non-
diagonal modes is predictable. However, the orthogonality
property can only be translated to a perfect condition when
all the degrees of freedom are included in the comparison.

Figure 16 and Figure 17 represent the MAC matrices of
the Rayleigh model with rotating speed = 0 RPM and
25 RPM in the case of translational and angular mode
shapes. The correlation was slightly different in both fig-
ures. There are discrepancies in the matrix values around
the diagonal comparing with the MAC matrix of the
Rayleigh model in the case of translational and angular
mode, as shown in Figures 16(b) and 17(b). It could be
interpreted as the modes appear to exhibit a different degree
of correlation between each other.

Figure 18 represents the MAC index of the rotating
Bernoulli model comparing with the Rayleigh model at
rotating speed = 0 RPM. In Figure 18 a, the matrix rep-
resents the translational mode shapes whilst 18 b represent
the angular mode shapes. Both of them exhibit poor cor-
relation in modes two and three. The MAC index of
Timoshenko theory comparing with Rayleigh theory is
showed in Figure 19 a and b in case of translational and

angular mode shapes. The figures show a perfect correlation
between the two models.

Conclusion

The flap-wise vibration of the NREL-5MW HAWT blade
was investigated. All the blade parameters are included in
this study, such as the centrifugal force, gravitational axial
component, rotary inertia, pitch angle, pre-cone angle and
hub radius. Subsequently, the Rayleigh, Timoshenko, ro-
tating and non-rotating Bernoulli theories are used with the
same model, same blade geometry, same material properties
and the same choice of degrees of freedom as an effective
way to make a clear comparison between them. The aim is
to develop an accurate model that has clearly explained that
for precise condition monitoring, a comprehensive dynamic
model ensure the accuracy in determining the natural fre-
quencies and corresponding mode shapes. The comparison
procedures between the chosen models are based on the
modal data. According to the obtained results, the following
points are concluded:

1. Comparison of natural frequencies is made by
tabulation of all chosen models results. The simi-
larity of natural frequencies has been confirmed. The
results clearly indicate that the free vibration anal-
ysis in the flap-wise direction is approximately the
same in the case of the Rayleigh method and the
model, which includes the blade control angles such
as the pitch and pre-cone angles. Also, the results
showed that increasing the angular velocity has a
significant effect on the natural frequencies, whilst
the influence of increasing the hub radius has less
effect. The pitch and pre-cone angles have minimal
influence on the natural frequencies. An important
conclusion is that Bernoulli theory does not produce
accurate results.

2. The second way to compare the theories is by
plotting the natural frequencies for each mode in-
cluded in the comparison. The frequencies values
plot of the Rayleigh method with blade control
angles effect versus the Rayleigh without the control
angles effect are exactly coincident along the lone

Figure 19. MAC index of 5 MW blade. a, correlation of translational mode shapes of Timoshenko and Rayleigh models; b, correlation of
angular mode shapes of Timoshenko and Rayleigh models.
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45°, which indicates that there are no discrepancies
between them. On the other hand, there is some
discrepancy in the frequencies plot of Timoshenko
versus Rayleigh.

3. The comparison between the mode shapes is per-
formed by plotting the deformed shape of each
adopted theory along the blade span and overlaying
the plots on each other for the first six mode shapes
to show the points of similarities and differences.
The mode shapes figures show a similarity in the
fundamental mode where it has the same path line in
all adopted theories. The discrepancy was clearly
noticed in the second and third modes of Bernoulli
and rotating-Bernoulli. However, this agrees with
the discrepancy in natural frequencies in the same
modes and confirms that the rotary inertia signifi-
cantly impacts second and third modes.

4. Another way that is adopted to compare the different
mode shapes is by making x-y plot. This comparison
was convenient to verify the Rayleighmodel, where all
individual points on the plot lie close to the straight line
passing through the origin. Also, there is the incon-
sistency of Timoshenko versus Rayleigh in the first six
mode shapes plot in the case of angular mode shapes,
which indicates the influence of shear deformation.

5. In the goal to reinforce the conclusion and to validate
the most accurate model, many different types of
comparison were achieved and not just to rely on one.
The MSF indicate sensitivity as an index, and the
deviation of the corresponding mode shapes can be
adopted to compare the effect of different parameters.
The comparison between the mode shapes using
MAC provides a measure of similarity of the pair-wise
eigenvectors/mode shapes. Using The MAC index
gives the same conclusion, and the shortcoming of
Bernoulli theory in the first and second modes is
clearly noticed. The MAC index indicates the corre-
lation in the Timoshenko mode shapes values com-
pared with Rayleigh. Useful means of quantifying the
degree of correlation between different theories. The
Timoshenko theory has the influence of angular mode
shapes, which indicates the effect of shear deformation
to predict the vibrational behaviour of wind turbine
blades and their dynamic characteristics.
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Appendix

Nomenclature

L Blade length (m)
D Rotor diameter (m)
E Modulus of elasticity (N/m2 )
A Blade cross-sectional area (m2)
I Blade Moment of inertia (m4)
K Kinetic energy (J)
U Potential energy (J)
W Work due to external distribution force (J)
w Flap- wise displacement (m)
f External force (N)
t Time (s)
R Hub radius
g Gravitational acceleration (m/s2)
T Axial force due to the centrifugal tension force (N)
u Flap- wise deflection (m)

x Distance relative to the blade span(m)
φ The trail function
M Mass matrix
K Stiffness matrix
C Damping matrix
U Columns matrix of linear displacement
_U Columns matrices of velocity
Ü Columns matrices of acceleration
F Column matrix of the excitation forces and/or

moments
λ Eigenvalues
X Eigenvector
ρ The blade density(kg/m3)
V Angular velocity of the blade (rad/s)
Θp Pitch angle (rad)
˘ Pre-cone angle(rad)
ω Natural frequency(rad/s)
HAWT Horizontal axis wind turbine
TB Timoshenko beam
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