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Abstract

Proper comprehension of academic texts is important for students in higher education.

The CoAST platform is a virtual learning environment that endeavours to improve reading

comprehension by augmenting theoretically, and lexically, complex texts with helpful an-

notations provided by a teacher. This thesis extends the CoAST system, and introduces

machine learning models that assist the teacher with identifying complex terminology,

and writing annotations, by providing relevant definitions for a given word or phrase.

A deep learning model is implemented to retrieve definitions for words, or phrases of a

arbitrary length. This model surpasses previous work on the task of definition modelling,

when evaluated on various automated benchmarks.

We investigate the task of complex word identification, producing two convolutional

based models that predict the complexity of words and two-word phrases in a context

dependent manner. These models were submitted as part of the Lexical Complexity

Prediction 2021 shared task, and showed results in a comparable range to that of other

submissions.

Both of these models are integrated into the CoAST system and evaluated through an

online study. When selecting complex words from a document, the teacher’s selections,

shared a sizeable overlap with the systems predictions. Results suggest that the tech-

nologies introduced in this work would benefit students, and teachers, using the CoAST

system.

2



Contents

1 Introduction 7

2 Literature Review 10

2.1 Complex Word Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Lexical Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Definition Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Virtual Learning Environments . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Reading Comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Original System 21

3.1 Technologies Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Interface and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Complex Word Identification and Annotations . . . . . . . . . . . . . . . . . 22

3.4 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Complex Word Identification 24

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Single Word Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Multi-Word Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.3 Ablation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Definition Modelling 34

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.4 Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.5 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3



5.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.2 Retrieval Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.3 Automated Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.4 Discriminative Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Coast System 50

6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.1 Highlighting System and Parsing . . . . . . . . . . . . . . . . . . . . 50

6.1.2 Integration of Complex Word Identification . . . . . . . . . . . . . . . 51

6.1.3 Integration of Definition Modelling . . . . . . . . . . . . . . . . . . . 52

6.1.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 Sub Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Discussion 61

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Conclusion 66

List of Figures

1 How CoAST mediates the student-content-teacher interaction . . . . . . . . 7

2 Example of an annotated document in the CoAST system . . . . . . . . . . 8

3 Transactional Relationships in Higher Education . . . . . . . . . . . . . . . 17

4 Interface for adding posts to CoAST . . . . . . . . . . . . . . . . . . . . . . 21

5 Original CWI example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 CWI single word model architecture . . . . . . . . . . . . . . . . . . . . . . 27

7 CWI multi-word model architecture . . . . . . . . . . . . . . . . . . . . . . . 28

8 MSE CWI for both models across different complexities . . . . . . . . . . . 29

9 Collocation filter used for identifying phrases . . . . . . . . . . . . . . . . . 51

10 Example of CWI within CoAST . . . . . . . . . . . . . . . . . . . . . . . . . 51

11 Example of Definition Modelling within CoAST . . . . . . . . . . . . . . . . 53

12 Pre-Test example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

13 Test example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4



14 Post-Test example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

15 Contexts taken from the document for the selected word for the participant

to view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

16 Box plot showing the percentage of words selected as difficult by the par-

ticipants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

17 Interface for adding references to a document in CoAST . . . . . . . . . . . 64

List of Tables

1 CompLex dataset for the LCP 2021 shared task. Each cell displays the

values for the number of instances / unique words. . . . . . . . . . . . . . . 24

2 CWI linear regression feature experiments on validation data . . . . . . . . 25

3 CWI single word model results . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 CWI results for multi-word model . . . . . . . . . . . . . . . . . . . . . . . . 30

5 CWI results for the different MWE formations. A-N: Adjective-Noun. N-N:

Noun-Noun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 CWI ablation experiments, analysing the effectiveness of different features . 31

7 CWI multi-word model ablation experiments . . . . . . . . . . . . . . . . . . 32

8 Definition Modelling Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9 Precision@K values, measuring the percentage of target definitions present

in the top-k retrievals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10 Evaluation Results across various metrics. . . . . . . . . . . . . . . . . . . . 43

11 Results for WSD and WiC tasks. *: 0-shot . . . . . . . . . . . . . . . . . . . 44

12 Incorrect top-ranking predictions with low levels of uncertainty . . . . . . . . 47

13 Incorrect top-ranking predictions with high levels of uncertainty . . . . . . . 48

14 Percentage of words selected in the pre-test and the average percentage

of correct answers, on each document . . . . . . . . . . . . . . . . . . . . . 57

15 The percentage of words that participants selected, or did not select, in the

pre-test, that they got correct in the post-test . . . . . . . . . . . . . . . . . 58

16 The percentage of words highlighted as complex by the teacher, that were

also highlighted by the model. The total number of words or phrases se-

lected by the teacher as complex is given on the right column . . . . . . . . 58

17 The percentage of words that were highlighted as complex by the teacher,

or by auto, that the participants got correct . . . . . . . . . . . . . . . . . . . 58

5



18 P@K values for definitions provided by the teacher, when ranked against

the entire index by DDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

List of Equations

1 Min-Max Normalization Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Similarity Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Definition Modelling Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Negative sample Size for Hard Negative Sampling . . . . . . . . . . . . . . . . . 38

5 Negative CT Sampling Loss Function . . . . . . . . . . . . . . . . . . . . . . . . 39

6



1 Introduction

Proper comprehension of academic texts is essential for students in higher education.

However, many students in the UK show low-levels of literacy, with around 20% of grad-

uates displaying literacy capabilities at, or below, level 2 (based on data from 2012)

(Kuczera et al., 2016). These students will likely be unfamiliar with much of the com-

plex language used in academic discourse. CoAST (Collaborative Augmentation and

Simplification of Text) (Shardlow et al., 2021b) is a Virtual Learning Environment (VLE)

that aims to help bridge this linguistic gap through a combination of the teacher’s peda-

gogical knowledge, and machine learning tools. Teacher’s are able to upload key texts to

the CoAST system and provide explanatory annotations for various terms in a document,

which can then be viewed by their students.

Teacher
Complex

Document
CoAST

Annotations

Definitions
and

Complex Words

Annotated
Document

Student

Figure 1: How CoAST mediates the student-content-teacher interaction

This sort of platform is useful for any student whose vocabulary is acting as a bot-

tleneck to their comprehension of academic literature. English Foreign Language (EFL)

learners, in particular, are a group that would benefit from a system such as CoAST. Nat-

urally, these students will often have difficulty reading and comprehending English text.

Issues understanding the meaning of certain words, and new unfamiliar words, were rea-

sons given by the majority (32% and 29% respectively) of participants, in a study with

university level EFL learners, when asked about the source of their reading difficulties

(Qrqez and Ab Rashid, 2017). These difficulties may dissuade students from developing

a reading habit, and effect their engagement with the literature, limiting further language

acquisition (Feng et al., 2013; Qrqez and Ab Rashid, 2017). Providing additional assis-

tance with the reading process can help break this cycle. Although this can be done in the

classroom, students are able to access web-based VLEs when they choose, and come

back to the text and its explanations to continually consolidate their understanding.
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Figure 2: Example of an annotated document in the CoAST system

Results from prior work involving CoAST showed the system enhanced the student-

teacher-content interrelationship, improving the readers comprehension of difficult texts

(Shardlow et al., 2021b). While such a system is beneficial for students, its effective-

ness is dependent on the annotations that are provided by the teacher. Ensuring these

annotations are comprehensive, and available for a range of texts, would be challenging

for teachers, who will also have to prepare material for in-classroom teaching. Making

CoAST less difficulty to properly utilize is important, as ease of use is one of the key

factors in the adoption of VLEs (Babi, 2012; Davis, 1985).

This project aims to automate aspects of the annotation process in CoAST. The

added assistance reduces the difficulty of locating, and providing explanations for com-

plex words, and consequently enables teachers to annotate documents at a faster rate.

This is achieved through the integration of machine learning models. These models are

responsible for identifying complex text within the document, and providing the teacher

with applicable definitions when writing an annotation for a complex word or phrase.

Often when students encounter challenging text they use Google to try and obtain

an appropriate definition (Shardlow et al., 2021b). This relies on the student finding the

correct definition that applies in the given context, and retaining it in memory. This can

detract from the reading process, and if the text is particularly difficult for the student it

may not be feasible. Furthermore, explanations for phrases and domain-specific terms

may be hard to find or interpreted incorrectly. CoAST augments the student’s reading

experience with tailored explanations to simplify the reading process, a diagram depicting

this interaction is given in figure 1.

This thesis begins with a review of the relevant literature. A section describing the

technologies in place in the original CoAST system has been included, to convey the

relevant parts of CoAST that were already functional prior to this project. This work makes

three individual contributions, and the methodology and results are described separately
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for each of them. These contributions are as follows:

• A system used for the identification of complex words and two-word phrases. This

involves two neural networks with a convolutional based architecture. These models

use various features to make context-dependant predictions on the complexity of a

word or phrase. CoAST previously featured a rudimentary word frequency based

system, for identifying potentially complex words. This contribution looks at creat-

ing a more accurate model that is able to deal with phrases and out-of-vocabulary

words.

• A retrieval system for selecting definitions for words or phrases in a given context.

This model does not rely on a pre-defined sense inventory and instead attempts to

select the most appropriate entry from an index of 79,030 definitions. Consequently,

the model is able to select definitions for words or phrases that are not present in a

typical dictionary.

• The integration of the two previously mentioned contributions into CoAST. Various

features have been implemented to enable these models to function in a seamless

manner. A online study is used to evaluate the effectiveness of the models at aid-

ing CoAST’s goals as a VLE, of improving reading comprehension, and language

acquisition.

Finally, sections 7 and 8 look at the body of work as a whole, and discuss potential areas

for improvement.
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2 Literature Review

The research in this review is centred around addressing the following requirements:

1. Identify text within a document that a student may find difficult to understand

2. Provide the teacher with explanatory suggestions for complex text that would aid

the understanding students understanding

3. Understand the needs of the CoAST platform and its users

The literature covered involves multiple distinct areas of research spanning the fields

of technology and education. As such, each area has been reviewed and presented

independently.

We look at the task of Complex Word Identification, in accordance with requirement

1, and examine key features and techniques used in this task. Literature on the tasks

of Lexical Simplification and Definition Modelling is subsequently explored. These tasks

both present methods that could be applied to improve a readers understanding of a text.

Finally, we review work on Virtual Learning Environments and reading comprehension.

These two topics are central to CoAST and help examine the requirements of a online

platform that aims to improve reading comprehension, why such a system is necessary,

and what proper comprehension involves.

2.1 Complex Word Identification

Complex Word Identification (CWI) is the task of identifying words that the reader may find

difficult to understand. Accurately identifying complex words is crucial for many down-

stream simplification tasks (Shardlow, 2014). Simplifying words that the target audience

finds easy to understand will often make the text more difficult or less meaningful (Paet-

zold and Specia, 2017; Carroll et al., 1998).

A common feature used for CWI is the frequency that a given word appears in lan-

guage. Words that are used at a higher frequency are more likely to be recognised and

understood by a reader (Carroll et al., 1998; Rayner and Duffy, 1986). Many corpora

have been used to measure word frequencies with varying accuracy at estimating word

complexity. Corpora that are representative of the everyday language use of the target

demographic lead to word frequencies that are better predictors of complexity, and other

psycholinguistic features such as age-of-acquisition (AoA) (Paetzold and Specia, 2016).
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AoA refers to the age at which a lexical item is typically acquired (Hernandez and li,

2007) and is a feature that shows a correlation to word complexity (Quijada and Medero,

2016). Many estimates of word frequency are based on materials aimed at adult read-

ers and therefore do not match the cumulative frequency with which readers have been

exposed to words (Kuperman et al., 2012); therefore, using AoA as a feature alongside

word frequency values may lead to better complexity estimations.

Word length in terms of number of characters, although not a reliable feature on its

own, is often used with other features to estimate word complexity. A word’s length corre-

lates to its perceived complexity (Shardlow, 2013). A possible reason for this relationship

may be due to a negative correlation between a word’s length and its frequency (Bentz

and Ferrer-i Cancho, 2016) in line with Zipf’s law of abbreviation (Zipf, 1935).

The character sequences in complex words differ from those seen in simpler words

(Popović, 2018). To investigate this relationship Popović used a mulitnomial Naive Bayes

Classifier to estimate which n-gram combinations were the best predictors for word com-

plexity. These experiments found that the combination of 2-grams and 4-grams yielded

the highest overall accuracy, especially when less training data was available. 5-grams

were the most accurate for the classification of simple words. The 5-gram configura-

tion may be capturing the entire root of many simple words due to their shorter length.

Incorporating word structure into CWI should aid prediction accuracy. Additionally, work-

ing with a system that does not function under the notion of probabilistic independence

between n-grams would be more appropriate (Popović, 2018).

Using multiple features together can provide better complexity predictions than any

singular feature individually. The CAMB system (Gooding and Kochmar, 2018) aggre-

gated 20 different features, including many of those mentioned previously, with an Ad-

aBoost classifier. Additional features include word n-grams represented as matrix of

token counts, part of speech tags and psycholinguistic features such as concreteness

and imageability taken from the MRC database (Wilson, 1988). CAMB was the best per-

forming system at the CWI Shared Task 2018 (Yimam et al., 2018) with an average F1

score of 0.8417 indicating the effectiveness of this approach. Experiments found that

n-grams contributed the most individually to the classification framework with the highest

Gini coefficient.

For the classification of phrases the CAMB system opted for a greedy approach,

labelling all phrases as complex. This baseline outperformed labelling the phrase as
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complex if a number of words were found to be complex by their word-based classifier,

and a n-gram based classifier. Phrases are notoriously difficult to represent due to the

shifts in meaning that can take place when multiple words are used as an item (Shwartz

and Dagan, 2019; Sag et al., 2002). These sorts of phrases, which can not be inter-

prated through a composition of their constituent words, are referred to as Multi-Word

Expressions (MWEs) (Rayson et al., 2010). From manually annotated datasets such as

CWIG3G2 (Yimam et al., 2017) we can see that many phrases show a complexity that

cannot be directly derived from their component words. As many different types of word

formations can be types of MWEs they can not all be treated in the same way. Categoriz-

ing these phrases based on their linguistic patterns can allow models to more accurately

estimate the complexity of MWEs (Gooding et al., 2020).

Recently, deep neural networks have surpassed many of the previous manual feature

engineering based approaches to CWI (Gooding and Kochmar, 2019a; Pan et al., 2021;

Bani Yaseen et al., 2021). These networks consist of multiple layers of neurons that are

tuned to produce representations that allow predictions to be made about the task at

hand. Convolutional Neural Networks (CNN), are a type of neural network, which were

originally used on computer vision tasks (Lecun et al., 1998) with a 2D convolution matrix,

but have since proved effective in other domains (Conneau et al., 2016; Abdel-Hamid

et al., 2014).

Using just word embeddings as inputs, a 1D CNN approach to CWI ranked between

7th and 12th (depending on the corpus) in the English set of the 2018 CWI Shared

Task, with an average F1 score of 0.817 (Aroyehun et al., 2018). Including additional

morphological and linguistic features can further boost the performance of these models

(Sheang, 2019). Despite promising results, these approaches have used averaged fea-

tures from the left and right hand sides of the target word, limiting their ability to properly

assess the context. This leads to a loss of potentially important information, as averages

don’t account for specific distances or lexical-semantic interrelations between the target

word and other text in the sentence (Flynn and Shardlow, 2021).

Transformer based language models, use a process known as self-attention to learn

weightings that attribute importance to different portions of the input sequence allowing

long-term token level dependencies to be captured (Vaswani et al., 2017). Fine-tuning

transformer models such as BERT (Devlin et al., 2019), which are trained on a large set

of corpora, has lead to state-of-the-art results in many tasks including CWI. The best

12



performing systems in the Lexical Complexity Prediction 2021 Shared task (Shardlow

et al., 2021a), made use of an ensemble of transformer based language models to pro-

duce complexity estimations for words and phrases (Pan et al., 2021; Bani Yaseen et al.,

2021).

Various features and techniques that are used for the task of CWI, have been ex-

plored in this section. The research highlighted the importance of using word frequency

values taken from an appropriate corpus. The SUBTLEX-UK corpus (van Heuven et al.,

2014), seemed appropriate for this purpose, as it consists of subtitles taken from British

television programs, making it more representative of everyday colloquial speech. AoA

is another feature that is particularly useful for CWI, especially when used alongside fre-

quency values, as it may allow models to better approximate the cumulative frequency

with which the reader has been exposed to words.

Work by Aroyehun et al. (2018) and Sheang (2019), suggested that a convolutional

based network would be a suitable approach for the task of CWI. The CNN using word

embeddings as features saw reasonable performance, which improved with the addition

morphological and linguistic features by Sheang (2019). This work still lacked many of

the features discussed previously, notably AoA, character-level sequence information,

and frequency values taken from a corpus consisting of everyday language.

2.2 Lexical Simplification

Lexical Simplification (LS) is a sub-task of text simplification, the goal of these tasks is

to make text more accessible. LS focuses on performing simplification at a word-level,

where complex words are identified and replaced with simpler alternatives (Paetzold and

Specia, 2015). Much of the seminal work (Carroll et al., 1998) on this task utilized hand-

curated lexical resources, such as WordNet (Miller, 1995), to obtain a list of synonyms for

a given word. Word sense disambiguation (WSD), is a task that focuses on identifying the

sense in which a word is used (Pal and Saha, 2015), and is used within many LS pipelines

to filter out any candidates that don’t match the sense of the target word. Once a list of

applicable candidates has been obtained they must then be ranked by their simplicity,

and suitability to the context. This stage employs many of the techniques used in CWI.

One way of generating candidate substitutions is through the use of word embed-

dings. These are vector representations of words based either on their co-occurrence

with other words or the context in which they occur (Lavelli et al., 2004). Due to their
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distribution these vectors can be used to find similar words based on cosine similarity.

The REC-LS system (Gooding and Kochmar, 2019b), produced substitution candi-

dates using word embeddings, alongside the lexical resources WordNet and The Big

Huge Thesaurus1. Contextual embeddings from the ELMo language model (Peters et al.,

2018), are then used to perform WSD, filtering out candidates that are not semantically

similar in the given context.

The transformer model BERT (Devlin et al., 2019) is pre-trained with the objective of

predicting masked out words within in a sequence. The LSBERT system (Qiang et al.,

2020) takes advantage of this training task, for the producing suitable candidate substitu-

tions. By masking the target complex word, and concatenating the an un-masked version

of the sentence, LSBERT is able to produce a probability distribution of the masked word

that considers both the target word and its context. This system achieved state-of-the-art

results on LS tasks, Qiang et al. (2020) highlighted the possibility to improve the model

through fine-tuning Bert on a simple English corpus.

LS can be an effective method of improving reading comprehension for second lan-

guage learners, or people with neurological conditions such as dyslexia, and other read-

ers with low levels of literacy (Rets and Rogaten, 2021; Rello et al., 2013b,a; Watanabe

et al., 2009).

2.3 Definition Modelling

The term Definitions Modelling (DM) was formally introduced by Noraset et al. (2016) as

“the task of generating a definition for a given word and its embedding”. Seminal ap-

proaches to this task investigated the use of definitions, which can be seen as a direct

expression of word meaning, as a proxy to evaluate the validity of the semantic distribu-

tion displayed in word embeddings (Dinu and Baroni, 2014; Noraset et al., 2016). Noraset

et al. approached DM as a word-to-sequence task, using a recurrent neural network ar-

chitecture to predict the probability of a definition, given a word embedding. This method

also employed the use of a character level CNN, to capture how certain affixes modify the

meaning of the root word, and hypernym embeddings which were used as an additional

input vector.

Using individual static word embeddings to generate definitions fails to account for

the polysemous nature of many words or phrases which require additional context to
1https://words.bighugelabs.com/
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infer their meaning. Additional studies attempted to address this by disambiguating the

sense of the target using its surrounding context before generating a definition (Gadetsky

et al., 2018).

More recently language models such as BERT (Devlin et al., 2019) have been used to

produce dynamic embeddings that capture the context of words. Chang and Chen (2019)

reformed DM as a ranking task, learning to map word representations to the vector space

of definitions encoded via the Universal Sentence Encoder (USE) (Cer et al., 2018). This

method primarily used static fastText word embeddings (Bojanowski et al., 2016) with the

addition of contextualised BERT embeddings to allow the model to disambiguate between

word senses. The main objective of this work was to investigate the interpretability of

contextualised embeddings and the extent to which they capture word sense information.

The training and evaluation of this model was done on the Oxford dictionary dataset,

which contains a substantially larger amount of examples than previous datasets used

for DM.

Although Chang and Chen’s approach showed sizeable improvements compared to

previous work on DM, their model still struggled to generalise to words that were not

present in the training data. A possible reason for this lack of generalisation may be due

to an inaccurate representation and distribution of definitions in vector space. Only a

subset of words present in a definition are relevant to the word being defined (Noraset

et al., 2016), with many unrelated definitions sharing similar phraseology such as “In

relation to...”. Consequently, encoders such as the USE, which are trained for semantic

similarity type tasks, may be sub-optimal for DM. This approach is also not able to deal

with phrases, due to the lack of a fastText embedding, and can only utilize the first three

tokens of a BERT embedding.

By treating a sentence containing the target word as input and a definition as the

desired output, Bevilacqua et al. (2020) utilized the pre-trained sequence-to-sequence

language model BART (Lewis et al., 2019) for the task of DM and WSD. This approach

employed an additional token to denote the target span allowing their model to work

with phrases of an arbitrary length. Through the fine-tuning of BART, their model is able

to take advantage of the knowledge learnt during pre-training to produce definitions for

words or phrases not present in the training data, or in a typical dictionary. This system

is evaluated on the same Oxford dictionary corpus as Chang and Chen (2019) showing

some improvements when working with unseen words, on the automated benchmarks.
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The assessment of natural language generation models through the use of automated

metrics has been shown to be unreliable in contrast to human judgements (Novikova

et al., 2017; Sellam et al., 2020). Many of these metrics also become increasingly in-

consistent for sentences, such as definitions, that are often short and vary in length (Sun

et al., 2019). Furthermore, as there are many correct but lexically dissimilar ways of

defining a word, differences in scores between high quality systems may reflect biases or

flaws in the metric, rather than true performance (Gehrmann et al., 2021). These factors

make it difficult to quantitatively assess the performance of generation based approaches

to DM on unseen words, where memorization of the gold definition isn’t possible (Bevilac-

qua et al., 2020).

It is likely that (Bevilacqua et al., 2020)’s system is more adept than the automated

benchmarks suggest. With their human evaluation showing much more impressive re-

sults, able to produce definitions that were superior to gold definitions in the SamplEval

corpus 51.3% of the time. One of the main focuses of this work is the application of DM

to discriminate between word senses, with the model achieving state-of-the-art results on

this task. Unlike this system, most other WSD approaches are limited to a pre-defined

sense inventory, which doesn’t reflect how humans perform this task, nor the non-discrete

nature of semantics (Bevilacqua et al., 2020).

Much of the mentioned literature focuses on DM as a proxy for the assessment and

interpretability of linguistic representations. With the recent increase in proficiency on

this task, the use of DM as a tool for improving reading comprehension has become

plausible. With models that are able to tailor definitions to a specific context and produce

explanations for phrases, there is the clear application of this task as a method of read-

ing assistance. However, the potential for misinformation is a pertinent obstacle in the

unsupervised deployment of such a system. When these generative models possess in-

sufficient information to correctly define a word, they are forced to extrapolate its meaning

from the context, sometimes leading to deceptive errors, a phenomenon referred to as

hallucinations (Xiao and Wang, 2021; Bevilacqua et al., 2020).

Approaching DM as a ranking, or retrieval based task, would likely reduce the like-

lihood of deceptive errors in the models output. Natural language generation models

have many more degrees of freedom than retrieval systems, which are limited to the sen-

tences in their index. Recently, the use of dense neural networks have seen success in

the field of information retrieval, particularly with the task of open-domain question an-
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swering (QA). The Dense Passage Retriever (DPR) (Karpukhin et al., 2020) utilized two

BERT-based encoders, to encode queries and passages in the same low-dimensional

and continuous space, allowing for efficient retrieval through a maximum inner product

search. This method saw state-of-the-art results on the task of open-domain QA, and

DM could essentially be viewed as a question answering task.

2.4 Virtual Learning Environments

Virtual Learning Environments (VLEs) have been defined as online applications that en-

able various kinds of interaction between students and their tutors (JISC, 2002). The

quality and usability of VLEs are key factors affecting the student and teacher’s satis-

faction when using these products (Babi, 2012). Similar findings are reported from the

Technology Acceptance Model (TAM) (Davis, 1985) in which perceived usefulness and

perceived ease of use are found to be major determinants for the actual use of a particular

system.

LEARNER TEACHER

CONTENT

Support

ProficiencyIndependence

MEANINGFUL
LEARNING

Figure 3: Transactional Relationships in Higher Education

The reliance on VLEs in education has increased dramatically over the years, partic-

ularly with the move to blended and distance learning during the COVID-19 pandemic.

Education is formed from the transactional relationship that takes place between between

students, teachers and content (see figure 3) (Anderson and Garrison, 1998). Each of
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the different elements of this interaction have certain advantages and disadvantages. Hu-

mans are able to incite enthusiasm and engagement in a subject, while using their content

expertise to diagnose and rectify issues the learner is having; content is readily available

24-hours a day, making learning more accessible, and allowing the learner to return to

the same consistent information and repeat a task/activity multiple times (Stein, 2014).

VLEs, if implemented properly have the ability to enhance the student-content-teacher

interrelationship. The use of interactive systems can make content more engaging, and

integrating the teachers pedagogical knowledge with existing content in response to sys-

tem and user feedback can help personalize the learner’s experience.

VLEs are able to provide a multimodal environment not available through the medium

of printed text. Utilizing these multiple formats for improving reading comprehension can

increase engagement and promote understanding (Ortlieb et al., 2014). Reading in the

context of education is primarily a student-content interaction, although many students

may require some assistance with their understanding of a document. This will be es-

pecially true of second language learners. In a study investigating the role of VLEs

in improving reading comprehension amongst English Foreign Language (EFL) learn-

ers, students in the virtual group showed the most progression. Their performance was

compared against a control group and a blended learning group (Meulenbroeks, 2020).

Blended learning involving both instructional support in the classroom, and assignments

through VLEs, can also be beneficial for EFL learners reading comprehension (Behjat

et al., 2012; Szymańska and Kaczmarek, 2011).

It is essential that VLEs are easy to use and navigate. There are often technical

difficulties for both students and teachers affecting the uptake of these systems. The

preparation of sufficient online content can also be difficult for teachers to manage, while

also providing in-classroom teaching (McCown, 2010). Students with dyslexia may ben-

efit from the tools that VLEs can provide, but many of these systems are often difficult to

use and information dense, in terms of their content and interface (Sennett, 2016; Habib

et al., 2012).

It is important that these learning environments adhere to accessibility guidelines,

and provide tools to access pronunciations and definitions for various special ambiguous

words, in order to benefit these students (Habib et al., 2012). With proper design and

development, VLEs can be a useful tool for supporting the acquisition of language, and

other learning, for people from all backgrounds.
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2.5 Reading Comprehension

Comprehension, which is the main objective of the reading process, can be defined as

“the act of constructing meaning with oral or written text” (Kamil et al., 2010, p. 200).

Reading comprehension involves the convergence of multiples processes. Landi et al.

(2013) considers this to begin with the decoding of a word into speech, and the retrieval

of its meaning. The reader must then connect multiple words together to decipher the

meaning conveyed by a sentence. Finally, to obtain an overall understanding of the text,

multiple sentences and paragraphs must be linked together and conceptualized as a

whole (Landi et al., 2013). Readers can struggle at different steps of this process, how-

ever the higher-level components of comprehension depend on an understanding of the

lexical components of a piece of text (Perfetti and Adlof, 2012; Shankweiler et al., 1999).

Those with cognitive disorders such as dyslexia will often have difficulty with the initial

decoding step of reading, yet display normal comprehension in terms of oral language

(Shankweiler et al., 1999; Landi et al., 2013).

The engagement with the literature, and a students motivation towards reading, af-

fects their reading frequency which inevitably plays a key role in their comprehension

and acquisition of language (Guthrie et al., 1999). In a study investigating reading com-

prehension amongst English foreign language learners 51% of students attributed their

reasons for not reading to a lack of habit, with 25% reporting the difficulty of the text as

their reason. For the majority of students these difficulties were attributed to ambiguous

or unfamiliar words (Qrqez and Ab Rashid, 2017). It could be argued that the difficulty of

many texts leads to a self perpetuating feedback loop in which complexity, and the fre-

quency of unknown words dissuades the student from reading which prevents any further

language acquisition.

If student’s struggle to understand the content of a text or the literature has little per-

sonal meaning to them they may disengage (Kamil et al., 2010, p. 675), and ultimately

“engaging with any text relies on realizing its potential for meaning” (Halliday and Hasan,

1976 cited in Bunch et al., 2014). In an experiment investigating the relationship between

text difficulty and mind wandering, which could be seen as the opposite of engagement,

Feng et al. (2013) found a significant positive correlation (B=.110, SE=.039, p<.01); ad-

ditionally, mind wandering was only significantly impactful to reading comprehension on

difficult texts (B=−.625, SE=.158, p<.001) (Feng et al., 2013). A similar study supported

these findings while reporting that topic interest helps mediate the effect of a text’s diffi-
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culty on mind wandering (Soemer and Schiefele, 2019).

According to Fillmore and Fillmore (2012) the language used in complex academic

texts differs in many ways to that of colloquial speech. This poses a problem for stu-

dents that are second language learners or have an inadequate level of literacy, who

won’t have had a chance to encounter the complex and information dense language of

many academic texts. Furthermore, providing these students with simplified versions of

texts will likely prevent them from obtaining a full grasp of the language used in academic

discourse. It is to be expected that many of these students will require some form of in-

structional support in order to learn how to procure the information that is conceptualized

in these texts (Fillmore and Fillmore, 2012).
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3 Original System

This work is built on top of the pre-existing CoAST system (Shardlow et al., 2021b).

In order to properly convey my contribution to the project this section will explain the

functionality that was already in place.

3.1 Technologies Used

• Angular: The front-end of CoAST runs under an Angular framework. This is used

for the creation of dynamic web applications with TypeScript and HTML.

• Node.js: The back-end runs on Node.js, a server side runtime that uses JavaScript.

• MongoDB: CoAST uses MongoDB as its database.

3.2 Interface and Functionality

CoAST features a log in and sign up page which allows users to register as either a

student, teacher or admin. Students are able to view documents with annotations that

the teachers have added. Teachers and Admins are able to add documents and perform

annotations. Figure 4 depicts the interface used for adding posts to CoAST. Addition-

ally, there is an Analytics page which allows non-student users to view details of words

students have clicked on, and posts that students have viewed.

Figure 4: Interface for adding posts to CoAST
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3.3 Complex Word Identification and Annotations

CoAST already had some limited CWI functionality set up. This system worked using a

frequency thresholding method. Teachers are able to choose from 3 difficulty settings, for

which the text is highlighted. At start-up, words and their frequency values found in text

file, are loaded into different arrays based on their difficulty/frequency. When a difficulty

level is selected by the teacher a request is sent to the back-end server and the docu-

ment’s text is parsed, word by word. If a word does not exist in the array corresponding

to the selected difficulty then it is flagged as complex and sent back to the client, where

it is highlighted. A consequence of this mechanism is that all words not present in the

frequency list are flagged as complex. This may cause simple words to be incorrectly

highlighted, leading to a seemingly inconsistent selection.

Figure 5: Original CWI example

Figure 5 demonstrates the pitfalls of the CWI in the original version of CoAST. Here the

beginner difficulty is selected, which highlights words that would be deemed complex on

all difficulty levels. From the figure we can see that the only word highlighted is “cannot”.

Despite this being a fairly simple word, it is a uncommon variant of the contraction “can’t”,

and therefore has a low enough frequency to be featured on the beginner setting.

Many words in language can be modified through the addition of a prefix or a suffix.

Words in a document may be present in the frequency list with a high frequency, but
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with modifications, meaning these words will be incorrectly highlighted. Furthermore,

the parsing in place only splits the document into words based on spaces so words with

punctuation will be flagged as complex even if they exist in our frequency file, with a high

frequency, without said punctuation. When the document is received by the back-end it

is converted to lowercase characters, however the same operation is not performed on

words from the frequency file, which could also lead to some edge cases. Words on our

front-end are also parsed to remove any punctuation or symbols, as this has not been

performed on the backend these words will not be highlighted despite being flagged as

complex. Because of these factors many words are missed out by the system. The

majority of words flagged as complex are high frequency words in our file but used with

punctuation.

As this system relies on a frequency threshold, it would be unfeasible to perform

CWI on phrases, due to the number of possible combinations. The front-end does allow

teachers to add their own annotations for phrases. However, the document is iterated

word by word so the annotations for phrases will never be seen and these phrases will

not be highlighted. This is a particularly pertinent issue for CoAST as domain-specific

phrases are often difficult for students to understand. Another issue with our parsing and

highlighting system is that when the difficulty level is changed by the teacher, new difficult

words are added on top of the words already highlighted. If the teacher originally selects

the beginner difficulty, then decides a higher difficulty is appropriate they won’t be able to

see any change, as the beginner words are not removed.

Teachers are able to provide annotations for words by typing into a text box on the

sidebar of a document. These annotations are stored in the database and presented to

the student when they log in and view the document.

3.4 Further Work

The previous subsection identified some issues that will need to be addressed as part of

this project. CWI is a key component of this work, and in section 4 we will discuss the

implementation of a new system that is more robust, accurate, and capable of handling

phrases. Changes to CoAST to allow for any new functionality, and the resolution of

current issues, will be covered in section 6.1. Additionally, Infrastructure and UI changes

will need to be made in order to properly integrate the new CWI and annotation assistance

technologies.
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4 Complex Word Identification

The following gives an explanatory overview of the complex word identification (CWI)

system used within CoAST. The code for these models has been provided on GitHub2.

The work in this section is largely taken from a paper (Flynn and Shardlow, 2021) I

have previously published as part of the Lexical Complexity Prediction (LCP) 2021 shared

task (Shardlow et al., 2021a). Some passages have been reproduced verbatim from this

paper (Flynn and Shardlow, 2021).

4.1 Methodology

4.1.1 Dataset

This work makes use of the CompLex dataset (Shardlow et al., 2020). Many of the

previous datasets for CWI used binary annotations to denote word complexity. How-

ever, Human judgements of complexity exist on a continuous scale. CompLex provides

complexity annotations for individual words and phrases on a 5-point Likert scale that is

normalised between 0 and 1. Excerpts from three domains (Bible, Europarl and Biomed)

are used in this dataset.

The LCP 2021 shared task (Shardlow et al., 2021a) utilized CompLex to compare the

performance of various models on the complexity estimation of single words and two-

word phrases. Details of the train/dev/test used for the training and evaluation of the

models is provided in table 4.1.1.

Task Train Dev Test
Single Words 7662 / 3478 429 / 213 917 / 429
Multi Words 1517 / 1270 99 / 76 184 / 142

Table 1: CompLex dataset for the LCP 2021 shared task. Each cell displays the values
for the number of instances / unique words.

4.1.2 Features

Both model use a range of features that were selected based on previous work and

through exploring their effectiveness on the validation data with a linear regression model.

Details of these experiments are given in table 2. The Base features refer to: log frequen-

cies (Subtlex), AoA, word length, syllable count and corpus type. These features as well
2https://github.com/robflynnyh/CNN-LCP-Shared-Task-2021/blob/main/models.py
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as additional embeddings that were included in the final model are explained below:

Word Frequency values are taken from the SUBTLEX-UK database (van Heuven et al.,

2014). Logarithmic Zipf frequencies were chosen for this task, based on previous work

on CWI (Zampieri et al., 2016), and the Zipfian distrubution displayed in language (Zipf,

1949). Additionally, the experiments using linear regression showed significantly higher

results when using logarithmic frequencies.

Age of Acquisition values, estimating the age at which a word is typically acquired (Ku-

perman et al., 2012; Brysbaert, 2012).

Word-Level Features measuring the length, and number of syllables of the target word

(Brysbaert, 2012).

Corpus Type is included and represented to the models in the form of a one-hot embed-

ding. Our dataset includes extracts from three different sources, which may vary in their

complexity.

Pre-trained Embeddings representing word and character sequences. 50d GloVe (Pen-

nington et al., 2014) word embeddings were chosen as initial experiments conducted with

the training data showed that GloVe embeddings with higher dimensions yielded lower

accuracy’s. Both types of embeddings were also tested with the final model with similar

results. To represent character sequences and allow inferences to be made about words

sharing similar morphologies, Char2Vec 3 50d character embeddings are also used.

Features Pearson MSE R2
Frequency(Web1t) 0.3087 0.0174 0.0782
Frequency(Subtlex) 0.3206 0.0175 0.0736
Log Frequency(Subtlex) 0.6814 0.0102 0.4580
Syllables 0.3286 0.0170 0.1017
Word Length 0.1589 0.0185 0.0207
Base 0.7136 0.0094 0.5045
GloVe 300D 0.7246 0.0091 0.5189
GloVe 50D 0.7291 0.0089 0.5308

Table 2: CWI linear regression feature experiments on validation data

4.1.3 Preprocessing

Firstly all the feature sets have to be normalized within in a similar range that is close

to zero. Only the distribution of a feature is useful to a model. If each feature given is

on a different scale then features with a higher mean will initially be weighted higher,

decreasing performance and increasing the training time. Our model will use ReLu as
3https://github.com/IntuitionEngineeringTeam/chars2vec
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its activation function with the formula: f(x) = max(0, x). Because of the nature of

this function, features with a high mean will be disproportionately represented within the

hidden units of the network.
xi −min(x)

max(x)−min(x)
(1)

To scale the features between 0 and 1, while maintaining their original distribution, the

Min-Max formula (Shown in equation 1) is used on all of the linguistic features, other than

the word length. In retrospect, this could also be applied to the word length feature by

taking the longest length word as the max value. Instead word lengths are divided by 10,

which puts them in a similar range to the other features.

Before any features are extracted, all the non-alphanumeric characters are removed

from the data. This is to prevent any words which would over-wise have had an associ-

ated feature, being classed as out-of-vocabulary due to the presence of a symbol. For

example, hyphenated words will likely not have an associated frequency value, however

their component words might.

Both models take as inputs the features for the target word(s), and the averaged

features for the left and right context of the target text. For target word/s positioned at

the beginning or end of a sentence a zero vector of size 107 is constructed and used for

the left or right context. For out-of-vocabulary words a zero vector is used for the word

embeddings and other features are imputed using the mean values from their datasets.

For each sentence, or instance, the vectors for the target text and its context are

stacked to produce a 3x107 matrix (left context — token — right context) for single words

or a 4x107 matrix for the multi-word model (left context — token 1 — token 2 — right

context).

4.1.4 Models

Both models are produced using the Keras library4 (version 2.4.3). The data was pro-

cessed via a batch size of 50 and both models are configured with early stopping set to

1000, and model checkpointing based on the validation loss.

Single-Word Model

This model is used to produce complexity estimations for individual words. It takes 3

feature sets as inputs in a 3× 107 matrix. Features for the target word act as the second
4https://keras.io/
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Figure 6: CWI single word model architecture

input; averaged features for the left and right contexts of the target word are used for the

first and third inputs respectively. The inputs are fed to a 1D convolutional layer which

adds zero padding to each side, effectively creating a 5 × 107 matrix. This layer uses a

kernal size of 3 with 150 output filters and ReLu as its activation function. Global max

pooling and a flatten operation is applied over the output of the convolution followed by

batch normalization. Three dense layers with sizes of 150 (ReLu), 50 (ReLu) and 1 (Lin-

ear) are then used with a Dropout of 0.5 applied before each dense layer. The final linear

layer gives us a complexity prediction for the target word.

A diagram depicting the model’s architecture is given in figure 6. Mean squared error

is used as the loss function and Stochastic Gradient Descent as the optimizer, with a

learning rate of 0.01 and momentum of 0.6 with Nesterov accelerated gradient enabled.

Multi-Word Model

For multi-words a second model is used to assess the complexity of two word phrases.

This model is designed to build a representation of each phrase, which is then fed to the

pre-trained single-word model. The dataset for single words is significantly larger than the

data available for phrases. The use of both models allows the multi-word model to take

advantage of the information learnt through training on single words. Figure 7 depicts the

architecture of this model.

Features for the averaged left context, target word one, target word two and the av-

eraged right context are used as inputs for this model. For each target word a 3 × 107
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Figure 7: CWI multi-word model architecture

matrix is produced by taking an average of the other target word and the left or right

context, depending on its positioning. This weights the other target word higher than the

rest of the context. These two matrices are then used as inputs for two 1D convolutional

layers. Each layer has a filter size of 214 but is otherwise the same as the convolutional

layer used in the single-word model. Global Max Pooling followed by Dropouts of 0.3,

and dense layers with 107 neurons and ReLu activation are applied to the outputs of the

convolutions. These outputs are then concatenated along the last axis to form a layer

with a size of 214. This is then fed to two dense layers with ReLu activation and sizes of

214 and 107. Dropouts of 0.5 are used before each dense layer.

The final output of size 107 is then concatenated along the first axis with the original

left and right contexts to form the input for a pre-trained single word model with training

enabled. This model uses the Adam optimizer with default parameters and MSE as the

loss function.

4.2 Results and Analysis

4.2.1 Single Word Model

As shown in Figure 8 the single word model struggles to accurately predict values for

words of a high complexity, and also displays difficulties for words of a complexity of

less than 0.1. The training and evaluation data contains less examples of very simple

or complex words. This may cause the model to skew its predictions closer to the av-
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Figure 8: MSE CWI for both models across different complexities

erage displayed in the training data, if insufficient data is available to make a confident

estimation. The complexity of these extremities is often highly dependant on the context,

making them more challenging to assess.

Corpus Pearson MSE R2
All 0.7389 0.0074 0.5398
Bible 0.7085 0.0085 0.4948
Biomed 0.7828 0.0087 0.6050
Europarl 0.6807 0.0055 0.4562
JUST-BLUE 0.7886 0.0062 0.6172

Table 3: CWI single word model results

Table 3 presents the results for this task on each of the domains and the task as

a whole. The prediction accuracy varies significantly across the different sources. Re-

sults from the best performing team in the LCP shared task are given for comparison

(Bani Yaseen et al., 2021).

As the model only uses an average of the features present in the left and right context

of the target word, it is unable to differentiate between tokens that are influential to the

target words complexity and ones that are not. Because of this equal weighting of words

in the context, the models accuracy can be negatively affected by an abundance or lack

of stop words in the sentence. Very complicated or simple words in sentence that are

not related to the target word, and don’t share a similar complexity can also cause the

model to over- or under-predict the target word’s complexity. The mechanism by which the

model assesses the context may partly explain the variance in accuracy on each domain.

Interestingly, the sub-analysis showed that the model shows a better correlation for those

tokens without a word embedding, yielding a Pearson correlation of 0.7804 and a MSE

of 0.0071. Generally these out-of-vocabulary words are more complex so the model is

using the lack of a word embedding as a feature when making predictions. Although this
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shows a better correlation overall it could lead to false positives in specific cases where

the out-of-vocabulary word is of a low complexity.

4.2.2 Multi-Word Model

Corpus Pearson MSE R2
All 0.7611 0.0102 0.5770
Bible 0.7173 0.0113 0.5106
Biomed 0.7980 0.0141 0.6317
Europarl 0.5799 0.0060 0.3089
DeepBlueAI 0.8612 0.0063 0.7389

Table 4: CWI results for multi-word model

As shown in Figure 8 the multi-word model is much less accurate for very simple

MWEs of a complexity less than 0.1. However, for more complex words the predictions

remain fairly accurate. This model is able to asses the way in which the words in a phrase

interact with each other and to some degree the rest of the sentence. This additional con-

textual information may increase the model’s capacity to evaluate more complex words.

Only 1.65 percent of phrases in the training data were of a complexity of less than or

equal to 0.1 which could explain the inaccuracy in this range.

Table 4 presents the results across each of the different domains present in the

dataset. Results from the best performing team in the LCP shared task are given for com-

parison (Pan et al., 2021). The model used for MWEs makes use of a fine-tuned instance

of the single-word model. Consequentially, incorrect associations from the single-word

model may have been carried over to this model. The results show a similar variance

across domains to task 1, although it struggles more significantly on the Europarl sub-

corpus. Compared to the other domains, Europarl’s complexity values show a much

smaller standard deviation than the other sub-corpora (0.093 compared to 0.196 and

0.152, on biomed and bible). The variation of complexities may play a role in the models

effectiveness at making accurate predictions across the domains.

MWE Type Pearson MSE R2
A-N (115) 0.7654 0.0115 0.5801
N-N (56) 0.7414 0.0091 0.5293

Table 5: CWI results for the different MWE formations. A-N: Adjective-Noun. N-N: Noun-
Noun.

Table 5 presents the results across different MWE formations. The number of occur-

rences of each part-of-speech formation is denoted in brackets, MWE types with less
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than 10 occurrences were omitted from the table. The model performs marginally better

on Adjective-Noun MWE formations. It is likely that the complexity of Noun-Noun phrases

is often more ambiguous, as adjectives do not usually have as much impact on a phrases

meaning compared to nouns.

4.2.3 Ablation Experiments

To investigate the contribution of each of the features used in the models, the single-word

model has been re-trained using the same parameters, with various features removed.

Table 6 shows the results of each experiment using different feature sets, the results for

the entire model are also given for reference.

Features Pearson MSE R2
Char2Vec 0.3465 0.0143 0.1185
AoA 0.6002 0.0104 0.3589
Freq 0.6199 0.0100 0.3829
Base Excluding Freq 0.6620 0.0091 0.4369
Freq + AoA 0.7004 0.0084 0.4832
GloVe 50D 0.7179 0.0080 0.5077
All Excluding Glove50D 0.7231 0.0079 0.5136
Glove 50D + Char2Vec + Freq 0.7250 0.0077 0.5248
Base Excluding Corpus 0.7326 0.0075 0.5326
All Excluding Char2Vec 0.7336 0.0075 0.5340
All Excluding Corpus 0.7366 0.0075 0.5383
Base 0.7393 0.0074 0.5458
All 0.7389 0.0074 0.5398

Table 6: CWI ablation experiments, analysing the effectiveness of different features

The Base features refer to: frequency, AoA, word length, syllable count and corpus

type. Freq is used as an abbreviation of frequency. From these tests we can see that

the model actually performs marginally better when only using the Base feature set, a

surprising result. From the Base features the frequency values are the most informative

with AoA falling close behind, when used together they act synergistically. The GloVe

50D embedding is the most effective individual feature, and reasonable results can start

to be seen with the inclusion of frequency values and the character embeddings. It is

clear that the corpus type also provides additional useful information, that aids prediction

accuracy, with a drop in the R2 score being displayed upon its removal from the base

features set.

The higher performance on the base set, is likely due to insufficient training data,

or rather the amount additional information that the embeddings provide regarding our
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data does not justify the increased dimensionality. When the number of dimensions is

increased the volume of space that the data occupies also grows, this sparsity makes it

difficult to make generalisations from our data. The amount of data required for a task

grows exponentially with the amount of dimensions that the data takes on, this phenom-

ena has been coined the “curse of dimensionality” (Bellman, 1957).

When using this model within CoAST the corpus type feature will not be available.

The model using all the features is not as effected that effected by the removal of the

corpus type. Although the difference here is negligible, its performance is better than the

base set with corpus type removed.

To further investigate the performance of the base features the Multi-Word model has

been retrained, results from these models are given in table 7. Once again the base

Features Pearson MSE R2
Base 0.7854 0.0097 0.5993
Base Excluding Corpus 0.7279 0.0116 0.5211
All 0.7611 0.0102 0.5770
All Excluding Corpus 0.7362 0.0113 0.5299

Table 7: CWI multi-word model ablation experiments

feature set actually shows the best performance on the multi-word model. Corpus type is

a very sizeable contributer to performance in the base set, with the Pearson correlation

dropping by 0.0575 upon its removal, suggesting each domain has a varied set of phrases

that differ in complexity. Out of the feature sets without corpus type, we see a similar trend

to the single-word model, with All marginally outperforming the base set.

Overall for use in CoAST the results suggest that there will be relatively little differ-

ence between using all features or just the base set (both without corpus type). The data

that we test on here however is relatively clean with most words existing in our frequency

or AoA datasets, which are the biggest contributors to the performance with the base

set. There are 400,000 Glove Embeddings for different words compared to 160,021 fre-

quency values or 51,715 AoA values. The Char2Vec embeddings also provide data for

every word as they are generated to represent the character sequence. These additional

features will likely be valuable in a use cases such as CoAST where they can provide

some information about unknown words or misspellings, on which to base the predic-

tions. Although, there has not been a sub-analysis done on the performance with these

two features sets on words that have missing values in our datasets.
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4.3 Discussion

Overall both models produced reasonable results, in a comparable range to other ap-

proaches to this task. The effectiveness of the base feature set was a surprising finding of

the ablation experiments, although this was partly dependent on the corpus type feature,

which would not usually be available. The character embeddings contributed fairly little

to the models performance, finding alternative ways to represent character sequences to

the model would potentially be more effective.

The models may have worked better with a larger amount of data. Most CWI datasets

are produced using binary annotations, which makes them difficult to directly use for this

task. However, pre-training the models on more datasets could potentially bring some

performance gains.

The multi-word model was able to leverage the datasets from both tasks, to identify

two word phrases. This is typically a more challenging than the assessment of single

words, due to the difficulty of properly representing MWEs. Including a part-of-speech

feature may lead to some improvements with this model, by helping it deal with different

MWE formations, for which the model shows different accuracy. Due to the architecture

design and the dataset, this model is not able to assess phrases with more than two

words. It would be useful to make predictions for phrases of an arbitrary length, which

would require a different architecture.

Both models are able to assess the context of the target text when making predictions.

Although, as the left and right contexts are given as an average, all words are weighted

equally regardless of their relevance to the target text. Because of this equal weighting

of words, the models are able to adjust their predictions based on the general complexity

of the sentence but are unable to fully capture the relevant context. Consequently, long

sentences with a large number of highly frequent words, such as conjunctions, will lose a

lot of the important semantics when being assessed by the model. Adding a mechanism

that could weight each word in the context based on certain features may offer some im-

provements in this area. However, other architectures, such as BERT (Devlin et al., 2019)

are more suited to this approach, using an attention mechanism to produce embeddings

that capture large amounts of contextual information. Fine tuning such a model for CWI,

with the inclusion of features such as word frequency, could produce representations that

contain more useful and relevant information.
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5 Definition Modelling

Previous work on the task of definition modelling (DM) (Bevilacqua et al., 2020) has seen

success with the use of natural language generation systems, with the clear benefit of not

being restricted to a vocabulary of definitions. Such approaches however are susceptible

to “hallucinations”, causing the model to infer a incorrect definition from the context of

the sentence, when lacking adequate knowledge of the target text. These hallucinations

can appear to be rather convincing and have the potential to cause the user to mistake

an incorrect definition for a real one. For this reason a retrieval based approach towards

this task was taken based on the supposition that the model’s restricted vocabulary may

reduce the prevalence of convincing but false definitions, making it a more appropriate

choice for the CoAST use case.

Rather than producing, or selecting simplified versions of text, through Lexical Sim-

plification, a DM system has been chosen to produce the annotations in CoAST. Com-

prehensive definitions function as explanations which can provide readers with a more

in-depth and robust understanding of a word or phrase. Additionally, some phrases, es-

pecially domain-specific academic terms, cannot be easily simplified on a word-to-word

basis.

5.1 Methodology

5.1.1 Model Architecture

The model developed as part of this work, which will be referred to as DDR (Dense

Definition Retriever), is a type of dense retrieval network and is used for the retrieval of

definitions. Dense retrieval networks utilize deep neural networks to encode queries and

documents in the same low-dimensional space (Luan et al., 2020; Xiong et al., 2020).

This allows the desired document (in this instance a definition) to be retrieved using a

nearest neighbours search between an encoded query and an index of pre-encoded

documents.

DDR employs a dual-encoder architecture using two seperate BERT base (Devlin

et al., 2019) encoders. The encoders ECT and ED are initialized using the weights of the

question and passage encoders from the dense passage retrievers multiset checkpoint

(Karpukhin et al., 2020). The model is trained with the objective of maximising the similar-

ity between the encoded representation of a context—target (CT ) pair and its respective
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definition (D). These representations are obtained by taking the output of the [CLS] token

(the first token in the sequence) from the last layer of both encoders. The CLS token is

generally referred to as the “pooled output” because it is used to denote the start of a

sequence, and by the last layer it is able to capture the necessary context from the rest

of the sequence due to self-attention. Similarity in this case is defined as the dot product

between these two representations:

sim(CT,D) = ECT (CT ) · ED(D) (2)

The BERT model is trained to recognise the [SEP] token as a denotation of a sep-

arate sentence as part of its pre-training objectives. In order to distinguish the text we

want defined from its surrounding context this [SEP] token is utilized with CT pairs being

passed to ECT in the format: [CLS] Context [SEP] Target Text.

In line with previous literature on the training of dense retrieval networks (Karpukhin

et al., 2020; Li et al., 2019; Xiong et al., 2020), negative sampling is used as a contrastive

learning approach for the training of DDR. In terms of this task a negative sample is any

CT pair or D that is not matched with its target counterpart. For the initial five epochs of

training in-batch sampling is used to reduce computation by reusing every definition in the

batch as a negative sample for every other item in the batch. This results in BatchSize−1

negative samples for each item in the batch. Section 5.1.4 provides more details on the

different negative sampling techniques used and the justifications for doing so.

After the outputs from both encoders have been obtained a batch-wise matrix multipli-

cation is performed between ECT (CT ) and ED(D) which provides dot products between

each CT pair and its positive and negative samples. A softmax operation is then applied

over the first axis of this output, which produces a probability distribution for the definitions

given as samples for each CT pair. Negative Log Likelihood is used as the objective func-

tion, with the model aiming to maximise the likelihood of a positive example and minimize

the likelihood of all negative samples through training. This process leads to vector space

in which CT pairs are in close proximity to any appropriate definitions. The loss function

that is used throughout the majority of training is depicted below (Karpukhin et al., 2020):

− log
esim(CTi,D

+
i )

esim(CTi,D
+
i ) +

∑n
j=1 e

sim(CTi,D
−
i,j)

(3)
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5.1.2 Datasets

A comparative overview of each of the datasets is given in table 8. The majority of training

is performed on the CHA dataset (Chang and Chen, 2019) which consists of CT pairs and

definitions taken from oxfordictionaries.com. CHA features 79,030 unique definitions

and a train/dev/test split. For the purposes of evaluation 1000 unique words are selected

at random and removed from the dataset to form a testing dataset called CHAU . The

remaining dataset, which will be referred to as CHAS , contains words and definitions in

its test split that are present in the training split but are presented in a different context.

CHAU consists of unseen words not present in the networks training data.

Additional training is carried out on the SEMCOR Word Sense Disambiguation training

dataset (Raganato et al., 2017) using definitions retrieved from WordNet to construct an-

other training corpus, which will be referred to as SEMWSD. Words belonging to synsets

containing less than 4 lemmas and words present in CHAU are removed from this corpus,

leaving 152,799 examples with 13,302 unique definitions. Note this is a different set of

data to the SEM dataset constructed by Bevilacqua et al. (2020) which utilized the full

SEMCOR corpus (Miller et al., 1993)

HEI++ (Bevilacqua et al., 2020) is a dataset contructed for the evaluation of DM on

standalone adjective-noun phrases. Despite only training on individual words HEI++ is

utilized to test the model’s ability to map phrases to definitions not present in the train-

ing corpora. Definitions in this dataset are handwritten to a high standard by an expert

lexicographer.

Instances Definitions
Dataset Train Dev Test Train Dev Test
CHAS 538321 76016 146366 75663 31900 36188
CHAU — — 24848 — — 2521
SEMWSD 152799 — — 13302 — —
HEI++ — — 713 — — 713

Table 8: Definition Modelling Datasets

5.1.3 Inference

In order to efficiently retrieve definitions at inference time the FAISS (Johnson et al.,

2017) library is used to index all the definitions from the CHA dataset. FAISS is a library
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designed for performing similarity searches over large indexes of data and is able to scale

efficiently to work with billions of vectors.

To process our data the HuggingFace datasets library5 is used, which allows us to

produce a dataset from a .csv file containing all our definitions with the columns em-

bedding and text. This dataset is then iterated, processing each entry with the trained

encoder ED, and mapping the outputted vector to the column “embedding”. After all the

definitions have been encoded an index optimized for approximate nearest neighbours

search is applied to our dataset. Now the top-k nearest definitions can be retrieved for

a given CT pair by passing the the output of ECT (CT ) to our dataset and performing a

search.

5.1.4 Sampling Techniques

This section will give an overview of the different sampling techniques used to obtain neg-

ative samples. The quality of negative samples used during training is key for maximising

the convergence of retrieval models (Xiong et al., 2020). If a negative sample is too trivial

to differentiate from the correct definition then the model will receive uninformative train-

ing signals, and therefore little learning will take place. Conversely, if a negative sample is

too similar to the correct definition then there becomes an increased risk that the sample

is a false positive (Li et al., 2019; Xiong et al., 2020). Essentially meaning that the use

of the negative sample in the context of the CT pair would be equally as appropriate as

the “correct” definition given by the dataset. This is problematic as the model may be

penalized for attributing a high probability to a suitable definition, which would encourage

over-fitting to the training set.

In-Batch Sampling: As specified in section 5.1.1 the in-batch sampling technique

is employed for the first five epochs of training. Although this method is initially compu-

tationally efficient it becomes continuously less effective as training progresses. This is

because as the model starts to adapt to the task the probability of an informative sample

being present in the batch decreases. Lack of informative samples will lead to a decreas-

ing gradient of the cost function which means the rate of improvement of the model will

decrease. The other sampling methods discussed below are used in conjunction with this

sampling method.

Hard Negative Sampling: Hard negative samples refer to samples that are difficult
5https://huggingface.co/docs/datasets/
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for the model to differentiate from the gold definition. To continually select more challeng-

ing negative samples the FAISS (Johnson et al., 2017) library is used to select definitions

that the model has placed in a similar vector space to each CT pair at its current stage

of training. The proximity of definitions in vector space is supposed to represent their

semantic similarity, however while the model is not fully trained there will be many in-

accuracies in the arrangement of these vectors. By using these definitions as negative

samples the model is able to learn a more appropriate placement of their vectors through

the training signals it receives.

In a similar fashion to the method detailed in section 5.1.3 each definition in the

dataset is passed to the encoder ED and the resulting outputs are indexed through FAISS.

The top-k definitions for each CT pair in the dataset are then retrieved to be used as neg-

ative samples. This process is continually repeated each epoch to retrieve samples that

will be challenging for the model. Between 1 and 4 hard negative samples (0 < k < 5)

were used for each CT pair, depending on the computing resources available.

During training hard negative samples for each CT pair are appended to the end of

the batch of ED; consequently, all positive and negatives serve as negatives for every

other item in the batch resulting in a negative sample size per CT pair of:

Negatives = (BatchSize×HardNegatives)− 1 (4)

Despite this sampling method being effective we eventually run in the problem of

false negatives being selected as hard negatives. These false negatives can either be

completely synonymous or applicable but less specific than the target definition. This is a

weakness of this method of negative sampling; however, this problem is more pronounced

with the task of definition modelling where there are many applicable ways to define a

word and there will often be some ambiguity between a word and a list of candidate

definitions. Increasing the number of hard negatives used helps to temporarily delay this

issue, presumably by reducing the impact of a false negative being present.

WordNet Sampling: While training on the SEMWSD corpus, the lexical database

WordNet (Miller, 1995) is utilized to select additional definitions from the target words

synset as hard negative samples. Synsets are groups of word senses that refer to similar

concepts6. This sampling technique is used to help train the model to disambiguate
6https://wordnet.princeton.edu/
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between different word senses and to partially avoid the issue of false positives as it is

taken on assumption that WordNet senses are mostly distinct.

Hard Negative CT Sampling: Many definitions share a large lexical overlap, and

as previously discussed there are many overly general definitions that could potentially

be applied to multiple CT pairs. To try to combat this issue we experimented with a

different training approach, marginalizing over positive and negative CT pairs for each

definition in the batch. This process follows a similar methodology to the selection of

hard negative samples, except CT pairs are indexed and retrieved rather than definitions.

Hard negative CT sampling led to some improvements in terms of the validation loss

however this improvement began to plateau after a few epochs. This sampling method

is still prone to the retrieval of false positives. Additionally, it is a very computationally

expensive process to perform every epoch as 538,321 CT pairs have to be processed

by ECT and indexed, compared to 75,663 definitions. The loss function used for this

sampling method is detailed below in equation 5. This is the same loss function as stated

previously in equation 3, except for the inversion of CT samples and definitions.

− log
esim(Di,CT+

i )

esim(Di,CT+
i ) +

∑n
j=1 e

sim(Di,CT−
i,j)

(5)

5.1.5 Training Details

The model was trained for 30 epochs in total using the Adam optimizer (Kingma and Ba,

2014). For the initial 5 epochs the in-batch sampling method was used with a learning

rate of 1e − 5. For the rest of training the learning rate was decreased to 1e − 6, using

hard negative sampling for 15 epochs in total, and training for 5 epochs with each of the

other methods. Because our system uses in-batch samples as a contrastive learning

approach, larger batch sizes were more effective, this is demonstrated in previous work

with the Dense Passage Retriever (Karpukhin et al., 2020). For the majority of epochs

a batch size of 24 was used, however this was scaled up or down depending on the

hardware available:

• T4 GPU: With this GPU a batch size of 12 was used with a hard negative sample

size of 3. The in-batch sampling training was also performed on this device, using

a batch size of 30. Training with the T4 took approximately 12 hours per epoch.
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• V100 GPU: With this device a batch size of 24 was used, with 3 hard negative

samples per item in batch. Training with the V100 took approximately 6 hours per

epoch.

• V3-8 TPU: Some of the training was performed on a TPU. This allowed the batch

size to be scaled to 72 with 4 hard negative samples per item in batch. Due to

the TPU’s ability at handling matrix multiplication, training was substantially quicker,

taking 40 minutes per epoch.

As new negative samples were retrieved after each checkpoint an additional 40-60 min-

utes per epoch was added to the training process. The model was written and trained

using the Pytorch Lightning7 framework, which makes it easier to switch between TPU

based devices and GPU’s throughout training.

5.2 Results and Analysis

DDR’s performance on this task is presented in comparison with the two most recent

pieces of work on DM. Section 5.2.1 provides an in-depth explanation of the metrics that

have been used.

The Chang model (Chang and Chen, 2019) is a retrieval based model that uses

BERT’s (Devlin et al., 2019) contextualised embeddings in conjunction with FastText (Bo-

janowski et al., 2016) word embeddings to map words in context to their respective def-

initions. The GEN model (Bevilacqua et al., 2020) takes a natural language generation

based approach to DM by fine-tuning BART (Lewis et al., 2019) on multiple datasets to

generate a definition from a CT pair. More details on these model and their approaches

to this task are provided in section 2.3.

5.2.1 Evaluation Metrics

Average Precision at K (P@K) is a metric used to measure the percentage of correct

definitions that are given in the top-k retrievals. Results for K = {1, 5, 10} are used to

compare retrieval precision against previous systems.

The BLEU (Papineni et al., 2002) metric measures the average precision of n-gram

matches between the target reference (gold definition) and the selected candidate. The

BLEU-4 implementation from the NLTK library (Loper and Bird, 2002) is used, which
7https://github.com/PyTorchLightning/pytorch-lightning
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calculates scores for up to 4 n-grams using uniform weights. As many definitions share

similar phraseology, such as “In relation to...”, BLEU may give high scores to candidates

that are conceptually unrelated to the target definition.

ROUGE (R-L) (Lin, 2004) functions in a similar fashion to BLEU, but focuses on recall

rather than precision. The longest sequence of words that appear in both the target

definition and the candidate are used to calculate scores for this metric. ROUGE is

therefore susceptible to many of the inaccuracies of BLEU.

METEOR (MT) (Banerjee and Lavie, 2005) improves on some of the problems with

BLEU and R-L by treating words that share the same base form (the root of a word,

without the addition of prefix or suffix) on WordNet as equal, and stemming the words

that do are not match before evaluating them. The recall of word and n-gram alignment

is measured by this metric.

BERTSCORE (BS) (Zhang et al., 2019a) is a more recent metric on which Bevilacqua

et al. (2020) reported the results of their sytsem. Contextualised embeddings are utilized

by BS to address many of the pitfalls of string, n-gram and heuristic based metrics. Pair-

wise cosine similarity and inverse document frequency are used to compute weighted

recall scores between candidates and target definitions. BS is well-correlated with hu-

man judgements on machine translation and image captioning tasks, in comparison to

previous metrics, and shows a robustness against adversarial data on the PAWS dataset

(Zhang et al., 2019b,a). However, it is important to note that the accuracy of automated

metrics varies depending on the task (Fabbri et al., 2021; Gehrmann et al., 2021).

5.2.2 Retrieval Precision

Task Model P@1 P@5 P@10

CHAS

Chang (base) 63.3 74.0 77.1
Chang (large) 62.4 73.2 76.3
GEN-CHA 67.9 72.9 74.7
GEN-UNI 55.5 63.1 65.8
DDR 74.1 93.5 95.2

CHAU

Chang (base) 2.3 7.4 11.4
Chang (large) 2.5 8.2 12.4
GEN-CHA 6.5 16.8 22.0
GEN-UNI 7.4 18.0 23.8
DDR 18.9 45.0 56.4

HEI++ DDR 35.9 64.2 71.8
DPR 30.3 50.0 56.5

Table 9: Precision@K values, measuring the percentage of target definitions present in
the top-k retrievals.
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In terms of retrieval precision, DDR boasts impressive gains over previous work on

DM. For each dataset we can see a continuous improvement between P@1 and P@10.

This suggests that the definitions are sensibly arranged in vector space, and the selection

of a target definition is non-stochastic. As the GEN models are not retrieval based sys-

tems Bevilacqua et al. (2020) encoded defintions from all datasets, using the Sentence-

BERT model (Reimers and Gurevych, 2019), and employed a similarity based ranking

strategy to compare retrieval precision on this task.

On the CHAS dataset we see a improvement of 18.1 percentage points at P@10 with

a precision of 95.2%, for the most important result of P@1, DDR maintains a respectable

precision of 74.1%. As stated in section 5.1.2, the CHAS test set is used to examine

model performance on previously seen words, presented in a different context. With

DDR training on 30,903 unique words, its ability to consistently retrieve target definitions

on CHAS is encouraging. However, the objective of any machine learning model should

be to apply knowledge that has been accrued throughout training to data with different

characteristics. While words on this dataset are given in a different context, and often

used in a different sense, a higher level of precision should be expected on this testing

split.

When evaluating precision on unseen words in the CHAU split we continue to see sig-

nificant gains, which speaks to DDR’s ability to generalize to this data. This improvement

can be seen across all K values, doubling the results seen from previous work, with the

majority of target definitions being featured in the top-10 retrievals.

To test DDR’s retrieval precision on the HEI++ dataset the similarity between ECT (CT )

and its encoded target definition ED(D) is computed, and ranked against all definitions

present in our index. Despite not being trained on phrases, or any of the definitions

present in HEI++, results from this dataset are still reasonable, especially when com-

pared to performance on CHAU . Part of this precision is likely due to the lack of sense

ambiguity displayed by phrases. Both the adjective and the noun in these lexical items

offer the model further contextual clues about the meaning of the text we want defined.

Nevertheless, from these results we can see that DDR is able to deal with phrases. The

models ability to rank unseen target definitions above those seen in training, which it pre-

sumably has some bias towards, is also promising for the CoAST use case. Ideally it

should be possible for teachers to add any new definitions they provide throughout the

annotation process to DDR’s index.
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The Dense Passage Retriever (DPR) (Karpukhin et al., 2020) model has been used as

a baseline for the HEI++ dataset. This model is trained for question-answering tasks, and

was used to initialize DDR weights at the start of training. It is therefore a good benchmark

to see how well DDR has adapted to the task of DM. HEI++ features standalone phrases,

and the lack of context makes it possible to evaluate DPR on this dataset, as there is no

way to specify the target of a sequence. The results from DPR were obtained by phrasing

the input as “What is the definition of ‘target phrase’?”, and otherwise following the same

methodology as with DDR. DM could be viewed as a question answering task, so DDR’s

improvements over the baseline, which become more pronounced for higher values of K,

are reassuring.

5.2.3 Automated Evaluation

Many of the top-ranked retrievals that are not listed as a target definition may still ac-

curately define their CT pairs, to some extent. To measure the similarities between the

top-1 retrievals and their target definitions we employ the remaining automated evaluation

metrics discussed in section 5.2.1. Results on these metrics are given in table 10. The

random baseline given by Bevilacqua et al. (2020) is recorded here to help illustrate some

of the inaccuracies displayed by each metric. Definitions from each test set are randomly

sampled for each CT pair to produce this baseline.

Task Model BLEU R-L MT BS

CHAS

Random 0.2 10.8 3.2 68.1
Chang (base) 74.7 78.3 - -
GEN-CHA 76.2 78.9 54.8 93.0
GEN-UNI 66.9 72.0 47.0 90.7
DDR 78.7 79.2 77.9 93.1

CHAU

Random 0.3 11.0 3.2 68.2
Chang (base) 7.1 19.3 - -
GEN-CHA 8.1 28.7 12.7 76.7
GEN-UNI 8.8 29.4 13.5 76.8
DDR 36.5 36.0 34.0 79.1

HEI++

Random 1.6 12.7 0.4 73.4
DPR 40.0 39.4 35.5 81.0
GEN-UNI 6.3 26.3 15.1 78.9
DDR 44.6 44.6 41.7 83.2

Table 10: Evaluation Results across various metrics.

Instances where DDR has selected the target definition will inevitably receive a per-

fect score, hence the models performance on CHAS is unsurprising given its precision

of 74.1% on P@1. Recall scores from the GEN models on the BS metric suggest this

system is able to perform at higher standard when given the ability to freely generate defi-
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nitions. On the CHAU testing split we continue to see marginal to sizeable improvements,

depending on the metric. DDR’s results on this split give the impression that many of the

selected definitions are still relevant, despite its retrieval precision of 18.9%.

The higher recall scores given by BS for the random baseline on HEI++ demonstrates

that this metric is still prone to many inaccuracies. Definitions in HEI++ were all authored

by one person so BS may be capturing some of the stylistic similarities between each

definition. If we sample random definitions from all the different datasets, rather than just

the test set that we are evaluating on, the BS value drops to 69.72.

The results on HEI++ show that DDR’s top retrievals are rated higher than its base-

line of the results from DPR. The difference in scores seems to mainly reflect the 5.7%

difference in P@1 precision. GEN-UNI’s results on this dataset display a similar pattern

to those on CHAU , which are both quite poor. Due to the limitations of the metrics, it is

difficult to make a conclusive judgement regarding GEN-UNI’s true performance on this

dataset. In many respects GEN-UNI’s results are impressive, despite the low scores, as

it is not able to generate a perfect match. If DDR’s perfect matches are removed from

the evaluation it gets a much lower BS value of 73.8. Although this is not a fair compari-

son, with a much higher probability of completely incorrect definitions with all the perfect

matches removed.

5.2.4 Discriminative Tasks

Results on the Word in Context (WiC) (Pilehvar and Camacho-Collados, 2019) and Word

Sense Disambiguation (WSD) (Raganato et al., 2017) tasks are provided in table 11.

Both of these tasks are designed to measure a models ability to disambiguate between

different word sense, an important aspect of DM.

Model WiC (%) WSD (F1)
Chang (base) 68.6 —
GEN-UNI 71.1 76.3/73.0*
DDR 66.8 69.9
Baseline 50.0 63.4

Table 11: Results for WSD and WiC tasks. *: 0-shot

WiC is binary classification task in which a model is presented with a target word in

two different contexts and has to predict whether both instances refer to the same word

sense. The baseline given for this task is a random one. For the prediction of binary labels

a similar methodology to Chang and Chen (2019) is taken, to allow for an apt comparison.
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The top 3 definitions for each WiC are retrieved by DDR and the label TRUE is outputted

if a definition occurs in both sets. Results on this task are disappointing, demonstrating

that despite a higher retrieval accuracy DDR struggles with sense disambiguation. The

reported average human-level accuracy on this task is 80% (Pilehvar and Camacho-

Collados, 2019).

The WSD task measures a models ability to predict the correct WordNet sense. The

baseline given for this task is the Most Frequent Sense (MFS) heuristic. MFS predicts

the highest occurring sense in the tasks training corpus for each word (Raganato et al.,

2017). GEN-UNI’s results are reported on for the ALL set, which DDR is evaluated on,

and in a zero-shot setting. The zero-shot setting covers lemmas that were not featured in

the SEMCOR corpus (Miller et al., 1993), which was part of GEN-UNI’s training data.

On this task definitions for each of the target words lemmas are retrieved from Word-

Net and passed to ED. A softmax operation is then applied over the dot product between

the output of ED(D) and the encoded CT pair. This allows the model to discriminate be-

tween word senses, by selecting the word sense corresponding to the definition assigned

with the highest probability. DDR’s accuracy for the WSD task is relatively poor in com-

parison to the state-of-the-art results reported by GEN-UNI. Interestingly, if lemmas that

are featured during training on the SEMWSD corpus are removed from this evaluation, we

see a much higher F1 score of 79.2%. However, as words featuring less than 4 lemmas

were not included in this corpus this further demonstrates that DDR does have trouble

discriminating between words with many senses.

Results on both these tasks highlight an area of improvement for DDR. When tested

on the WiC task, the GEN-CHA model which is trained solely on the CHA dataset displays

a lower accuracy of 69.2%. Similar results are seen on the WSD task where the GEN-UNI

model sees a 8 point increase in F1 score in the zero-shot setting, compared to their GEN-

SEM model trained on one dataset. Indicating that training on wider selection of corpora

would lead to an improved ability to deal with sense ambiguity. A sizeable portion of the

retrieval inaccuracies produced by DDR are likely due to these sense misinterpretations.

It is therefore plausible that advances here would incite significant gains on the precision

of retrievals.
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5.3 Future Work

Results from the evaluation demonstrate that the described methodology is an effective

approach towards the task of DM. In particular, the gains seen with the retrieval of unseen

words and phrases are promising. The performance seen on the discriminative tasks

however, is somewhat disappointing. This section will discuss some potential changes to

the training process that could potentially lead to some improvements with the model.

Self-Referential Definitions: Many definitions in the training data contain the target

word which they are defining. For example, one of the definitions for Parmesan given in

the CHA dataset is “of a dish cooked or served with parmesan”. These self-referential

definitions are quite commonplace in dictionaries and are problematic for two reasons.

Firstly, they often lack any information that would be useful to the reader, which is ob-

viously undesirable. Secondly, they are likely damaging to the training process, as the

model will learn to favour string matches over actual semantics. This is a form of shortcut

learning, where a model learns decision rules that often work on the training data, but do

not transfer well to real-world scenarios (Geirhos et al., 2020).

Shortcut learning limits a models ability to generalize, and may cause DDR to retrieve

definitions containing the target word instead of more informative alternatives. The CHA

training set features 36,432 definitions that contain the target word, which is 6.77% of the

total data. Removing these examples from the training data would help prevent this type

of shortcut learning from taking place, this would likely require retraining the model from

scratch.

Datasets: Training on a wider range of datasets would lead to a performance in-

crease. This can be seen in the results reported by Bevilacqua et al. (2020), where the

GEN model shows sizeable gains on the discriminative tasks when trained on a wider

selection of corpora. Seeing a wider range of examples helps models build more robust

representations. Additionally, there are a limited number of definitions compared to the

number of corresponding CT pairs. The CHA dataset contains 79,030 unique definitions,

with SEMWSD featuring 13,302. When training with 3 hard negative samples, on the

CHA dataset, ED is exposed to 1,614,963 definitions per epoch. This may have led to

ED over-fitting to the definitions. Training on a wider corpora would also help alleviate

this.

Sampling Techniques: Informative negative samples became increasingly tricky to

consistently obtain towards the end of training. As the model relies on these samples to
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improve, better methods of obtaining them would lead more robust and accurate results.

Cross-encoders are a type of classifier, that are more effective than dual encoders

due to their ability to perform attention over both sequences. They are much less effi-

cient however, making them unsuitable to use when marginalizing over large numbers of

candidates. For the task of Open-Domain Question Answering Qu et al. (2021) utilized

a cross-encoder to filter out potential false negative when selecting samples to train their

dual-encoder. This is done by only selecting negatives that are classified as incorrect by

the cross-encoder, which due to its capability, are more likely to be true negatives. This

is obviously quite a resource intensive method of training, however cross-encoders can

also be used to improve precision at inference time by re-ranking candidates. A similar

methodology could also be employed for the task of DM.

Data Augmentation could be used as a method of reliably producing negative sam-

ples. This can be done through the use of simple rules that change the meaning of a

definition through the addition of words such as “not”, or by replacing key words with

antonyms. Language models are generally bad at handling negation (Hosseini et al.,

2021), which is important for many tasks including DM, so using negated samples as

negatives could lead to some performance gains. Selecting data transformations that

cause the smallest perturbations in vector space, whilst still changing the meaning of the

definition, would be most effective.

Target Text Prediction Gold
Run Organize and initiate a campaign or

other course of action
Organize implement or carry out

Discourse A written or spoken discourse express-
ing considered thoughts on a subject

A formal discussion of a topic in
speech or writing

Plea a serious urgent or heartfelt request a request made in an urgent and emo-
tional manner

Phase The property of matter that is respon-
sible for electrical phenomena existing
in a positive or negative form

Each of the electrical windings or con-
nections of a polyphase machine or cir-
cuit

Industrial Relating to or characterized by industry Of a disease or injury contracted or
sustained in the course of employment
especially in a factory

Table 12: Incorrect top-ranking predictions with low levels of uncertainty

Incorrect predictions for which the model displays high uncertainty are more likely to

be be true negatives. One way of approximating model uncertainty is through the use

of dropout at inference time, a technique known as Monte-Carlo (MC) Dropout (Gal and

Ghahramani, 2016). This involves performing N forward passes with dropout enabled,

and using the variation between results as a measure of uncertainty. For this task, this
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Target Text Prediction Gold
Moorish Looking or sounding bizarre or unfamil-

iar
Relating to or characteristic of the
moors

Donnybrook A race similar to the derby run else-
where

A scene of uproar and disorder a
heated argument

Corporatism A complex system of beliefs The control of a state or organization
by large interest groups

Symptomatic Lacking distinctive or interesting fea-
tures or characteristics

Serving as a symptom or sign espe-
cially of something undesirable

Aground Of wind or tide opposed to ones de-
sired course

With reference to a ship on or on to the
bottom in shallow water

Table 13: Incorrect top-ranking predictions with high levels of uncertainty

could either be the variation in SoftMax probability or the variation in rank for a given

definition.

It is also possible to approximate uncertainty by measuring the disagreement between

an ensemble of multiple models. MC Dropout actually works in a similar fashion. Dur-

ing training when dropout is used, different sets of parameters are exposed to the data

each epoch. When MC Dropout is used at inference time, it can show the disagreement

between these different parameter sets. This process can also help detect an out-of-

distribution sample, where a CT pair vector can be positioned equally, very distant, from

a large number of definitions, hence small perturbations to the vector will cause a com-

plete shift in the retrieved definitions.

By only selecting negative samples that display a high degree of variation, many false

negatives could be avoided. Standard Error (SE) and Coefficient of Variation (CV) would

likely be good measures of quantifying such variation. Examples of top-ranked incorrect

model predictions, rated with low and high levels of uncertainty are given in tables 12

and 13. These were obtained from the CHAU dataset, by performing 10 forward passes

over each instance with a dropout of 0.1 applied to each layer of ECT . SE and CV values

were obtained by recording the variation and mean values of the SoftMax probabilities of

each prediction, and predictions were ranked by their mean value. Samples with a SE of

less than 1.0 and CV of less than 30.0 are classed as low uncertainty. Recent work has

suggested that it is sufficient to only apply dropout to the final layer of the network, which

would reduce the computational requirements of such an approach (Cohen et al., 2021).

A large proportion of these low uncertainty predictions are false negatives, as they

are applicable to the target word and similar to the gold definition. The examples given in

the tables have been selected randomly from the results. Without manually labelling false

positives in the dataset it is not possible to produce a more quantitative analysis, which
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would allow for less arbitary threshold values for SE and CV to be selected. Additionally,

if accurate threshold values were obtained this technique could be employed at inference

time, to re-rank predictions based on uncertainty, potentially improving the results (Cohen

et al., 2021; Penha and Hauff, 2021).
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6 Coast System

The main contributions of this work, in the tasks of CWI and DM, have been previously

discussed and evaluated independently of the CoAST system. In this section these tech-

nologies will be integrated into CoAST. Additionally, we cover changes that have been

made to CoAST, to resolve the prior issues discussed in section 3.3. An online study is

conducted to evaluate the CoAST platform with the addition of this work’s contributions.

The code for CoAST is available on GitHub8

6.1 Methodology

6.1.1 Highlighting System and Parsing

A new highlighting and parsing system has been added to address some of the issues

discussed in section 3.3. The requirements of this system are to allow text of an arbitrary

length to be highlighted, and to allow for complex words to removed when the difficulty

level is decreased. As DIVs used for highlighting text change the structure of the docu-

ment, a copy of the original content needs to be maintained.

A Class named highlightManager takes the document as input and builds an array

containing JSON objects for each character. This JSON object contains any additional

formatting that came before the character, whether the character is highlighted, fields to

store DIVs that start or end highlights and the character itself. The document is split into

characters; to avoid edge cases where there are double spaces or a new line between

words that stop them being highlighted these characters are stored in the formatting

attribute of the next character and their JSON object is removed. A copy of the documents

text is obtained by mapping all the character attributes from the array of JSON objects

to a new array, and joining them all into one string which is stored as the document

property in the Class. All this allows the document to be rendered with all its formatting

and highlights, while storing an additional copy of the document where each character’s

index corresponds to an element in the array.

When text that needs to be highlighted is sent to highlightManager, the indexes for

each position where it occurs in the document property are found. DIVs denoting high-

lighted text are then added to the character objects at the start and end of each words,

and the document is rendered by combing all attributes in our object array into a string
8https://github.com/MMU-TDMLab/CTAS
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Figure 9: Collocation filter used for identifying phrases

Figure 10: Example of CWI within CoAST

which is applied to the page. If the difficulty level is changed then the our character object

array can be reset to remove all the highlights, and new words can be highlighted.

6.1.2 Integration of Complex Word Identification

The CWI system takes into account each word’s context, so the text from our document

needs to be split into sentences. Punctuation (excluding hyphens) is then removed from

each sentence. To identify phrases, the part-of-speech based collocation filter displayed

in figure 9 is used (Manning and Schutze, 1999). Although more comprehensive methods

do exist, this method was chosen as a quick and simple way of identifying phrases. A

library named en-pos9 is used to label parts-of-speech.

Each sentence is split into strings of words, and phrases are identified and joined into

one string. These strings are then used to create instances of a Class called WordMan-

ager, which is responsible for storing each string and its features. Section 4.1.2 describes
9https://github.com/FinNLP/en-pos
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the features required by our model. Features for each word are retrieved and used to cre-

ate an array with a length of 107. For strings that have been identified as phrases each

WordManager instance creates two child instances which lookup and store features for

each word individually.

The JavaScript implementation of TensorFlow is used to load the CWI model on the

Node.js backend. To obtain complexity predictions each sentence and its instances of

WordManager are iterated. For each piece of text the features corresponding to words to

the left and right hand side of the target text are combined with the targets features to form

a tensor which is passed to our model. Once the complexity values for each word/phrase

are retrieved the results are passed back to the client where they are highlighted. Fig-

ure 10 gives an example of a document that has been processed by this system and

highlighted for the user, on the beginner difficulty.

6.1.3 Integration of Definition Modelling

Interface

Definition modelling has been integrated into the annotation system in a way that is de-

signed to enhance the teacher’s user experience. Many definitions retrieved by the model

will be appropriate but the teacher may still want to edit them to better suit the text, or to

simplify some of the words within the definition. For each query the top three definitions

are retrieved for the teacher to view, this increases the probability that a valid definition is

present, without overloading the teacher with too many choices.

An example of the DM system within CoAST is provided in figure 11. When the

teacher selects some text on the page and clicks the “Selected Text” button a popup

containing the definitions appears. The sentence containing the target word is taken from

the document and provided in the popup, to give the teacher some context while selecting

a definition. When a definition is selected it is inserted into the text box, allowing the

teacher to make any changes before submitting the annotation.

Implementation

The DM system is ran within a Flask server which allows us to run Python Code. The

Node.js backend can communicate with this server through GET and POST requests.

When a user selects some text on the page and clicks the “Selected Text” button, the text

and its index within the DIV containing the documents text is retrieved. This positional

index is used to obtain the surrounding context from the target text, which will be needed
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Figure 11: Example of Definition Modelling within CoAST

by the model. A JSON object is created to store the text and its context, which is sent to

the backend server, and then to the Flask server. The text is first tokenized, then inputted

to the model and the top 3 definitions are retrieved and sent back to the client. As shown

in figure 11 these definitions are then displayed to the user in a pop-up. The context that

was obtained earlier is provided at the bottom of this popup for the user’s convenience.

6.1.4 Experimental Design

In order to assess the CoAST system a study will be conducted. This study will look at

whether the models that have been integrated into CoAST aid the teacher in identifying

complex words and writing annotations, and whether these annotations improve the par-

ticipants understanding and vocabulary. To gauge each participants prior knowledge a

pre-test will be conducted. The test will involve reading a document that will be presented

with, or without annotations, followed by a post-test in which participants will match words

to definitions given in a list.

There will be 4 sets of tests involving different methods of annotating the docu-

ment. One where the teacher provides annotations without any assistance (referred to

as teacher), and another where the teacher is able to utilize the DM and CWI system
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while writing annotations (assist). There will also be a test where the annotations are

provided solely by the automated system without the teacher (auto), and a control test,

where there is no annotations (control). Rather than assigning participants into groups,

each participant will conduct all 4 tests, as there may be a limited number of participants

available.

The test environment for the study has been integrated into the CoAST system and

allows for the creation of tests by teachers or admins, and implements the test for students

to take. For the purposes of the study, tests for 4 different documents have been added,

which have been annotated with the methods discussed previously. After each test is

completed, an entry is saved to the database, recording the text selected as difficult in

the pre-test and the answers selected during the post-test by the participant.

Figure 12: Pre-Test example

For each document the CWI system is able to select up to 1.5x the number of text

items selected by the teacher. Words and phrases are selected by complexity in descend-

ing order, and text with a predicted complexity of less than 0.3 is excluded. The 1.5x limit

is given, as setting an arbitrary complexity threshold could cause a large amount of terms

to selected for certain documents, making the test process arduous for the participants.

Selecting 50% more complex words helps account for: proper nouns that have been in-

correctly selected; words which are the same but with morphological alterations; and,

“pseudo” phrases that have been incorrectly identified by the collocation filter and hence

will not be included in the post-test. For the document annotated in auto mode, the DM

54



model relies on the words selected by the CWI model, hence the additional words also

help prevent inaccuracies in the words selected affecting the DM system.

Pre-Test

For the pre-test each participant is asked to select any words or phrases from a list, that

they do not understand. This list is produced by taking all the words that the CWI system,

and the teacher have highlighted as complex when producing the test. An example of

the pre-test for one of the document’s is displayed in Figure 12. Right clicking any of the

words or phrases produces a popup, providing the participant with sentences from the

document containing the text.

Figure 13: Test example

Test

Figure 13 shows an example of one of the tests. While reading the document, the par-

ticipant is able to click any of the highlighted text and view the annotations given. Each

document contains text taken from linguistic research papers. Linguistic papers were se-

lected as we have access to a teacher with linguistic expertise to perform the annotation

process. Additionally, it is unlikely that the participants will be familiar with all the terminol-

ogy used in these papers, as many of them will be from a computer science background.

It is important that the selected documents are challenging for the participants because

It will make it easier to measure the affect of each annotation process.

Post-Test
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Figure 14: Post-Test example

As shown in figure 14, in the post-test the participant is required to select a definition

from a list for each question. The same words and phrases used in the pre-test are also

used here, allowing us to gauge the impact that reading the annotations has had on the

participants vocabulary. From the control document, with no annotations, we should also

be able to see the extent at which a participant selecting a word they do not know in the

pre-test, correlates to selecting the incorrect definition in the post-test.

Figure 15: Contexts taken from the document for the selected word for the participant to
view

For each question/word the number of definitions to choose from is limited to ten, as

choosing from a larger number would become too challenging and time consuming. Sen-

tences containing each target word are displayed to the user upon clicking its button, to

provide the participant with some context when making their decision. These sentences

are displayed in a popup which is shown in figure 15.
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6.2 Results and Analysis

In total 10 participants took part in the study completing 39 tests across the 4 docu-

ments (teacher, assist, control and auto). Participants were able to complete the tests

for each document independently; one of the participants failed to complete the tests for

the teacher document within the given timeframe. A box plot showing the distribution of

the average percentage of words selected by the participants as difficult in the pre-test is

given in figure 16.

Figure 16: Box plot showing the percentage of words selected as difficult by the partici-
pants

The teacher document was perceived to be significantly more difficult than any of the

others, with participants selecting 43.21% of the words on average. It is not possible

to reliably account for this difference in text difficulty, as the number of participants is

relatively small. Hence, this document has been excluded from the rest of the analysis.

One of the participants did not complete the test for this document,

Document Words Selected in Pre-test Correct Answers
Assist 22.16 82.98
Auto 15.88 81.76
Control 15.20 78.40

Table 14: Percentage of words selected in the pre-test and the average percentage of
correct answers, on each document

From table 14 we can see that the participants performed worse on the control doc-

ument. The percentage of words selected in the pre-test is given for comparison in this

table. Participants perceived the assist document as slightly more difficult than the others,

although figure 16 shows that there is a significant overlap between the pre-test results
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Document Correct Given Selected Correct Given Not Selected
Assist 65.58 85.84
Auto 67.08 84.48
Control 58.71 80.24

Table 15: The percentage of words that participants selected, or did not select, in the
pre-test, that they got correct in the post-test

across each of the documents. Despite the average percentage of pre-test selections

being higher on the assist document, the post-test results are not effected, suggesting

that the participants performance may have mediated by the annotations.

Table 15 shows that participants are more likely to incorrectly match a word to a defi-

nition in the post-test, if they selected that word as difficult in the pre-test. Therefore, the

percentage of pre-test selections can be seen as an indicator of text difficulty. Partici-

pants showed a lower accuracy on the control document in the post-test, this is further

pronounced for words that they perceived to be complex.

Document Overlap (%) Number of Teacher Selections
Assist 88.46 25
Control 70.59 15
Auto 47.06 17

Table 16: The percentage of words highlighted as complex by the teacher, that were also
highlighted by the model. The total number of words or phrases selected by the teacher
as complex is given on the right column

Document Correct by Teacher Correct by Auto
Assist 80.80 83.14
Control 75.33 79.52
Auto 75.88 86.40

Table 17: The percentage of words that were highlighted as complex by the teacher, or
by auto, that the participants got correct

From table 17 we can see that participants on the assist document show around a

5 percentage point increase in accuracy over the other documents, for words that were

highlighted as complex, and annotated by the teacher. Assuming that the words high-

lighted by the teacher were of a similar difficulty on each of the documents, this suggests

that participants performed better when presented with annotations written by the teacher

using the assistive models.

Participants attained more correct answers for words that were highlighted as com-

plex by auto on all of the documents. The CWI model is assumably less accurate than

the teacher at identifying complex words, which is likely the reason for this effect. Par-

ticipants got more answers correct on the auto document, when they were provided with
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the models annotations. From table 16 we can see that there is a much lower overlap

between the teacher’s, and model’s selections, on the auto document. While the annota-

tions given by the model may have had some effect on the participants performance, this

improvement is likely because the model selected easier words on this document.

The teacher identified a greater number of complex words when provided with the

models predictions in table 16. Additionally, there is a larger overlap between the teach-

ers, and the models selections on the assist document.

6.2.1 Sub Analysis

It would be desirable if DDR is able to interpret new definitions provided by the teacher,

and apply them in different contexts. This was tested to an extent in section 5.2.2 with the

HEI++ dataset, however this only included examples for standalone phrases, real-word

examples with context are likely to be far more ambiguous.

To measure the capability of DDR at generalizing to definitions outside of its training

distribution, definitions provided for the experiment have been ranked against the entire

index of definitions used by DDR. As the number of annotations used in this analysis is

relatively small, the results cannot be taken conclusively, although it is useful to see the

general trends in the data. Definitions provided by the teacher are encoded by ED, and a

dot product is performed against ECT (CT ). This is then ranked against the dot products

of all the definitions returned by DDR. The results are shown in table 18.

Mode P@1 P@3 P@10 P@20 Total Annotations
Teacher 12.5 18.75 31.25 43.75 15
Assist 34.62 76.92 80.77 84.62 25

Table 18: P@K values for definitions provided by the teacher, when ranked against the
entire index by DDR

For many words, there may be a selection of perfectly suitable definitions definitions

in DDR’s index. Hence, low precision’s for P@1 or P@3 are not necessarily bad, how-

ever the definition provided by the teacher should at least be within the top 20 retrievals.

Definitions that are not within this range either represent a misinterpretation of the con-

text and target word, or a misinterpretation of the teacher’s definition. Values for P@3

are given as this is the number of results that are retrieved for the teacher when using

CoAST.

Results are reported for the document annotated by the teacher with assistance from

both models (Assist), and the document annotated solely by the teacher (Teacher). In
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the Assist mode the teacher is able to select definitions that are provided by DDR, if they

are appropriate. Therefore, as many of the definitions given may be taken directly from

DDR the retrieval precision is higher on this annotation mode. This does show, for this

particular document, DDR is either able to retrieve an appropriate definition, or correctly

interpret a custom definition, 76.92% of the time for P@3. It can therefore be assumed

that the majority of the definitions shown to the teacher were of relevance.

On the document annotated by the teacher, when the retrieved definitions are factored

out, we can see much lower precision. This means that DDR is not able to reliably

retrieve a custom definition. Only 18.75% of the teachers definitions are featured within

the top-3 retrievals. However, from the Assist mode we can see that the majority of

the definitions for P@3 are probably relevant anyway. For P@20 there is a precision

of 43.75%, suggesting that just over half of the time DDR will misinterpret the given

definition, or the target text. From viewing the retrievals it seems that DDR will rank

a custom definition higher, if it shares words, or synonyms of words to that of its top

ranked retrievals. This is to be expected, but the results do suggest that ED is somewhat

overfitted to the definitions it has been exposed to during training.
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7 Discussion

This thesis has explored the use of machine learning based tools within the context of a

VLE, aiming to improve reading comprehension and language acquisition through their

application. The findings and contributions from the work on CWI and DM are summa-

rized as follows:

1. Complex Word Identification

The task of CWI is investigated in this work. It may not be immediately apparent

to a teacher using a system such as CoAST, which words, or phrases, their stu-

dents might struggle with. This portion of the project implements two convolutional

based neural networks, trained to identify complex words and two-word phrases, in

a context-dependant manner.

The results from the evaluation on the CompLex dataset (Shardlow et al., 2020)

indicate our approach is reasonably effective. From the study conducted in section

6.2 we can see that the models predictions for complex words share a sizeable

overlap with the teachers selections. On the assist document where the teacher is

able to view the highlighted predictions, more words are annotated by the teacher,

and a larger overlap of 88.46% is seen with the CWI models predictions. These

results suggest that the CWI models improve the teachers ability to identify complex

terminology and, are a helpful addition to the CoAST system.

2. Definition Modelling

A dense retrieval network is trained to retrieve definitions based on a word or phrase

given in context, this model is referred to as DDR. Definition modelling is applied to

the CoAST system to assist the teacher in writing annotations.

Results from the automated evaluation demonstrate the effectiveness of our ap-

proach. In particular, the model shows sizeable gains over previous work when

dealing with words not seen during training. DDR displays worse performance than

other work at discriminating between word senses, when evaluating on the tasks of

WSD and WiC. In the study conducted involving CoAST the document annotated

by the teacher with the assistance of the DM model saw slightly better results. From

the sub analysis (section 6.2.1) we can see that DDR is able to retrieve a relevant

definition for the teacher the majority of the time. DDR shows a relatively low pre-

cision when retrieving definitions given by the teacher, suggesting that adding new
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definitions to the models index may not be effective due to overfitting.

This project as a whole looked at using machine learning tools to assist the teacher with

the identification of complex terminology, and with the writing of helpful annotations within

CoAST. The aim of the CoAST system is to improve the student’s reading comprehension,

and encourage language acquisition, it is therefore important that the contributions of this

project further this goal.

Both the CWI and the DM models were evaluated independently of CoAST, with the

results showing that these technologies work effectively at the tasks they were trained

for. Research on NLP for education is often evaluated through various benchmarks,

and comparisons with human gold-standard labels, without assessing its functioning in a

educational environment (Litman, 2016).

The online study in section 6.2 was conducted to extrinsically evaluate the NLP tech-

nologies produced in this work within the context of the CoAST system. Results from

this study suggest that the assistive technologies integrated into CoAST (CWI and DM)

allow the teacher to identify, and annotate, more complex terminology in a document.

When using the assistive features the teacher provided more annotations, many of which

were suggested by DDR, and the words selected as complex shared a large overlap

with the CWI models suggestions. Consequently, it is likely that the application of these

technologies does indeed improve the ease of use of CoAST and the annotation pro-

cess. However, further evaluation with more teachers using the system would be useful

to better understand the degree to which the assistive technologies benefit the teacher.

Results from the analysis with CoAST suggested that the participants perceived the

assist document to be slightly more difficult than the others in the pre-test. Despite this,

participants on the assist document attained more correct answers on average in the

post-test, for words which were provided with annotations. This suggests that the CoAST

system would be beneficial for students, and their comprehension of difficult texts. How-

ever, this improvement was not statistically significant given the number of participants.

The words that were featured in the pre- and post- test are those that were selected

as complex by the teacher or the model. Consequently, the participants accuracy on the

post-test, and the percentage of selections in the pre-test, will have been mediated by

the accuracy with which complex words were identified in each document. The teacher’s

selections of complex words will likely be more consistent than the models across the

different documents. If the words selected by the CWI model are more understandable
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on one document, then participants will do better on that document. This is a flaw in the

test design. Only using the teachers selections for the post-test, and annotating a random

selection of them, would have made it easier to isolate the effect of each annotation mode,

and the difficulty of each document.

The difference in results between each document may have been more pronounced

with a different experimental format. Multi-choice questions were used for the post-test,

which would potentially allow participants to deduct the correct answer from knowledge

of the other definitions they have to choose from. This may lead to a cumulative effect

where participants will get more of the words they consider difficult correct, the easier

they find the document as a whole, and the less definitions they have to actually choose

from. Some of the errors made by participants are due to selecting an incorrect definition,

that is similar to the target one. For example, in the Assist document the definitions for

bilingualism, bi, multilingual experience, multilingual identities, multilingualism and mul-

tilinguals were often confused with each other. Documents where participants have to

choose from lots of similar terms, will likely see more incorrect answers. A free form

answering style post test would be a better approach, which would have avoided these

issues, however this would be more resource intensive, requiring the marking of 1203

answers.

It is difficult to assess the effect that the annotations on the auto document, produced

solely by DDR, had on the participants results. The participants found the words selected

as complex by the CWI model easier than the teacher’s selections, on all of the docu-

ments. Additionally, it seems that the model identified complex words with less accuracy

on the auto document (the models predictions shared a lower overlap with the teach-

ers). It is therefore not possible to tell whether the participants performed well because

of DDR’s annotations, or because the CWI model selected easier words. Presenting def-

initions selected by DDR for the teacher’s complex word selections, rather than the CWI

model’s, would have been a better approach, allowing the auto and assist documents to

be directly compared.

7.1 Future Work

When annotations are added to a term within CoAST they are displayed for every in-

stance of the term within the document. This poses is a problem if a document contains

two senses of a word and the teacher wants to provide different annotations for each of
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them. Additionally, the CWI system provides the client with the same complexity predic-

tions for every instance of a given term in a document. Individual predictions for each

word instance are produced by the model, however, these are averaged, and it is this

average that is used by CoAST. Both of these issues would require further changes to

the highlighting system implemented in CoAST, to allow different instances of words to

be treated differently. Changes to the way annotations are stored within the database

would also have to be made, to reflect the index of their associated words in the docu-

ment. Ensuring that the user interface of CoAST is not over complicated by allowing for

this functionality would be important, and potentially challenging.

Figure 17: Interface for adding references to a document in CoAST

Academic documents generally contain many in-line citations, which are often high-

lighted as complex terms in CoAST. This can be problematic if a document contains

many citations which are highlighted, detracting from any legitimately highlighted com-

plex words. Rather than train a model to identify, and exclude these citations, it would be

useful to provide users with a link to the work that the citation is referencing. As part of

this work the interface for retrieving references was implemented within CoAST, which is

displayed in figure 17. This uses an API10 to retrieve a list of references, and their URL’s,

when given the URL of a PDF document. The additional functionality off identifying these

citations within the document, and providing links to them has not been implemented.

The index of used by DDR is limited to definition’s belonging to individual words,

although some of these may also be applicable to various phrases. Additionally, Some of

the definitions in the index may also be of poor quality, or contain complex terminology.
10https://ref.scholarcy.com/api/
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When a teacher adds a new definition for a word or phrase in CoAST it would be useful if

this definition could be retrieved by DDR for a similar word in the future. From experiments

conducted in this work it seems that the model has a limited ability to generalize to new

definitions. Experimenting with different sampling techniques and expanding the training

corpora of the model would likely help reduce this overfitting.
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8 Conclusion

The CoAST platform is designed to enhance the students reading experience, improve

reading comprehension, and encourage language acquisition, by enriching theoretically,

and lexically complex texts with the teachers pedagogical knowledge. This thesis has

investigated machine learning models, that can be applied within CoAST to assist the

teacher in identifying, and annotating, complex and potentially unfamiliar terminology.

We reached the following conclusions:

• Words and phrases identified by our CWI model shared a sizeable overlap with

terms the teacher also considered to be complex. The model was assessed as part

of the Lexical Complexity Predication 2021 shared task, with results in comparable

range to the other submissions. Results from this work support its use in CoAST

and suggest that the teacher is able identify more terms that may be difficult for

students, when exposed to the models suggestions.

• Our approach to the task of definition modelling is effective, able to retrieve defi-

nitions for words with a precision of 74.1%, and handle arbitrary length phrases.

When used within CoAST this model can function to assist the teacher with writing

annotations, by suggesting suitable definitions. The sub-analysis in section 6.2.1

demonstrated that the majority of retrieved definitions were useful for the teacher.

• Results from our study with CoAST suggest that these technologies would benefit

teachers, and students, using such a system. The generalizability and reliability

of our results is limited by the sample size. Additionally, a different experimental

design may be needed to eliminate potentially confounding variables. This thesis

contributes to work on the development of VLEs and demonstrates that machine

learning technologies have the potential to, enhance the usability of these systems

and, collaborate with teachers to improve the learning experience that VLEs pro-

vide.
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Alexander R. Fabbri, Wojciech Kryściński, Bryan McCann, Caiming Xiong, Richard

Socher, and Dragomir Radev. 2021. SummEval: Re-evaluating Summarization Evalu-

ation. Transactions of the Association for Computational Linguistics 9:391–409.

Shi Feng, Sidney D’Mello, and Arthur C Graesser. 2013. Mind wandering while reading

easy and difficult texts. Psychonomic bulletin & review 20(3):586—592.

Lily Wong Fillmore and Charles J Fillmore. 2012. What does text complexity mean for

english learners and language minority students. Understanding language: Language,

literacy, and learning in the content areas pages 64–74.

Robert Flynn and Matthew Shardlow. 2021. Manchester metropolitan at SemEval-2021

task 1: Convolutional networks for complex word identification. In Proceedings of the

15th International Workshop on Semantic Evaluation (SemEval-2021). Association for

Computational Linguistics, Online, pages 603–608.

Artyom Gadetsky, Ilya Yakubovskiy, and Dmitry Vetrov. 2018. Conditional generators of

words definitions. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers). Association for Computational

Linguistics, Melbourne, Australia, pages 266–271.

69



Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation: Repre-

senting model uncertainty in deep learning.

Sebastian Gehrmann, Tosin Adewumi, Karmanya Aggarwal, Pawan Sasanka Ammana-

manchi, Aremu Anuoluwapo, Antoine Bosselut, Khyathi Raghavi Chandu, Miruna Clin-

ciu, Dipanjan Das, Kaustubh D. Dhole, Wanyu Du, Esin Durmus, Ondřej Dušek, Chris
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V. Kuperman, H. Stadthagen-González, and M. Brysbaert. 2012. Age-of-acquisition rat-

ings for 30,000 english words. Behavior Research Methods 44:978–990.

Nicole Landi, Stephen J. Frost, W. Einar Mencl, Rebecca Sandak†, and Kenneth R. Pugh.

2013. Neurobiological bases of reading comprehension: Insights from neuroimaging

studies of word-level and text-level processing in skilled and impaired readers. Reading

& Writing Quarterly 29(2):145–167.

Alberto Lavelli, Fabrizio Sebastiani, and Roberto Zanoli. 2004. Distributional term rep-

resentations: An experimental comparison. In Proceedings of the Thirteenth ACM

International Conference on Information and Knowledge Management . Association for

Computing Machinery, New York, NY, USA, CIKM ’04, page 615–624.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to

document recognition. Proceedings of the IEEE 86(11):2278–2324.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-

hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2019. BART: denoising

sequence-to-sequence pre-training for natural language generation, translation, and

comprehension. CoRR abs/1910.13461.

Jia Li, Chongyang Tao, Wei Wu, Yansong Feng, Dongyan Zhao, and Rui Yan. 2019. Sam-

pling matters! an empirical study of negative sampling strategies for learning of match-

ing models in retrieval-based dialogue systems. In Proceedings of the 2019 Confer-

ence on Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association for

Computational Linguistics, Hong Kong, China, pages 1291–1296.

Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries. In Text

Summarization Branches Out . Association for Computational Linguistics, Barcelona,

Spain, pages 74–81.

Diane Litman. 2016. Natural language processing for enhancing teaching and learning.

72



In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI Press,

AAAI’16, page 4170–4176.

Edward Loper and Steven Bird. 2002. Nltk: The natural language toolkit. In In Proceed-

ings of the ACL Workshop on Effective Tools and Methodologies for Teaching Natu-

ral Language Processing and Computational Linguistics. Philadelphia: Association for

Computational Linguistics.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. 2020. Sparse,

Dense, and Attentional Representations for Text Retrieval. arXiv e-prints page

arXiv:2005.00181.

Christopher D. Manning and Hinrich Schutze. 1999. Foundations of statistical natural

language processing. MIT Press, Cambridge, Mass.

Linda J. McCown. 2010. Blended courses: the best of online and traditional formats.

Clinical Laboratory Science: Journal of the American Society for Medical Technology

23(4):205–211.

Ralph Meulenbroeks. 2020. Suddenly fully online: A case study of a blended university

course moving online during the covid-19 pandemic. Heliyon 6:e05728.

George A. Miller. 1995. Wordnet: A lexical database for english. Commun. ACM

38(11):39–41.

George A. Miller, Claudia Leacock, Randee Tengi, and Ross T. Bunker. 1993. A semantic

concordance. In Human Language Technology: Proceedings of a Workshop Held at

Plainsboro, New Jersey, March 21-24, 1993.

Thanapon Noraset, Chen Liang, Larry Birnbaum, and Doug Downey. 2016. Defini-

tion modeling: Learning to define word embeddings in natural language. CoRR

abs/1612.00394.
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Abstract

We present two convolutional neural networks
for predicting the complexity of words and
phrases in context on a continuous scale. Both
models utilize word and character embeddings
alongside lexical features as inputs. Our sys-
tem displays reasonable results with a Pearson
correlation of 0.7754 on the task as a whole.
We highlight the limitations of this method
in properly assessing the context of the target
text, and explore the effectiveness of both sys-
tems across a range of genres. Both models
were submitted as part of LCP 2021, which fo-
cuses on the identification of complex words
and phrases as a context dependent, regression
based task.

1 Introduction

Complex Word Identification (CWI) involves iden-
tifying words that the reader may find difficult to
understand. A word’s complexity can depend on
many factors and differ according to context. Fur-
ther, assessment of the complexity of named enti-
ties can require some degree of general knowledge,
making CWI a challenging task (Shardlow, 2013).
Accurately identifying complex words is important
for many downstream simplification tasks, mak-
ing literature more accessible for people with con-
ditions such as dyslexia (Rello et al., 2013), and
the assessment of a text’s readability as a whole
(Dubay, 2004).

Our methodology plans to extend on previous
convolutional network based approaches to CWI
(Aroyehun et al., 2018; Sheang, 2019). With the
goal of producing a system that is able to better
model the complexities of phrases and unfamiliar
words, within the English language.

Previous shared tasks on CWI addressed the
problem as a binary and probabilistic classification
type task, although human judgements on word
complexity are not binary and exist on a continuous

scale. Lexical Complexity Prediction (LCP) 2021
tries to address this and uses an augmented version
of CompLex (Shardlow et al., 2020), a dataset an-
notated with a 5-point Likert scale. CompLex also
features context-specific annotation, with words
receiving different annotations depending on their
context. The dataset provides annotations from
three different domains: Bible, Biomed and Eu-
roparl (Shardlow et al., 2021).

The code for this task is available on GitHub1.

2 Related Work

Word frequency is a commonly used feature in
CWI (Gooding and Kochmar, 2018; Kajiwara and
Komachi, 2018); words that appear frequently in
language are more likely to be recognised and un-
derstood by the reader (Carroll et al., 1998). For
the purpose of identifying medical terminology that
may be unfamiliar to the lay reader, Elhadad (2006)
leveraged lexical frequencies while also explor-
ing the potential of other features such as word
familiarity ratings from the MRC Psycholinguistic
Database (Coltheart, 1981).

More recently lexical and psycholinguistic fea-
tures have been utilized by machine learning tools,
resulting in improved accuracy on these tasks.
Through the use of an enseble-based voting method
the CAMB system (Gooding and Kochmar, 2018)
achieved state-of-the-art results in the 2018 CWI
shared task (Yimam et al., 2018), employing a total
of 27 lexical, morphological and psycholinguistic
features. The CAMB system however does not con-
sider the target words context, opting for a “greedy”
approach towards phrase classification, marking all
phrases as complex.

Aroyehun et al. (2018) explored the use of convo-
lutional neural networks (CNN) for CWI using only

1https://github.com/robflynnyh/
CNN-LCP-Shared-Task-2021

https://github.com/robflynnyh/CNN-LCP-Shared-Task-2021
https://github.com/robflynnyh/CNN-LCP-Shared-Task-2021
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the word embeddings of the target words and the av-
eraged embeddings of the left and right contexts as
inputs. They contrasted the results against a feature
engineering approach using decision tree learning
finding that both methods achieved competitive re-
sults. However, their decision tree method was
marginally more accurate than their CNN for most
of the datasets. Integrating lexical features along-
side word embeddings can lead to further improve-
ments in accuracy making this a more competitive
approach, and outperforming many previous deep
learning methods for CWI (Sheang, 2019).

By framing CWI as a sequence labelling task,
Bi-directional long short-term memory (BiLSTM)
networks have produced state-of-the-art results on
the CWIG3G2 dataset (Yimam et al., 2017; Good-
ing and Kochmar, 2019). BiLSTM networks are
able to capture long-term word and character level
dependencies allowing these models to consider
a large amount of contextual information. Mod-
elling the complexity of phrases has proven to be
a more challenging and complex task compared to
individual words (Gooding and Kochmar, 2019).

3 Implementation

3.1 Features
Below a description of the features used by both
models is given:
Frequency: Word frequencies are taken from
the SUBTLEX-UK word frequency database (van
Heuven et al., 2014). Logarithmic Zipf frequency
values were chosen based on previous results from
this metric (Zampieri et al., 2016) and the Zip-
fian distribution that is displayed in language (Zipf,
1949).
Age of Acquisition: Age of Acquisition (AoA)
values, estimating the age at which a word is typi-
cally acquired. (Kuperman et al., 2012; Brysbaert,
2012).
Word-level Features: Target word length and
number of syllables are used as features (Brysbaert,
2012).
Corpus Type: As the dataset includes extracts
from three different sources of potentially vary-
ing complexity, the corpus type was included and
represented as a one-hot embedding.
Pre-trained Embeddings: 50d GloVe (Penning-
ton et al., 2014) word embeddings, and 50d
chars2vec2 embeddings representing a word’s char-

2https://github.com/
IntuitionEngineeringTeam/chars2vec

acter sequence are used. 50d GloVe embeddings
were chosen as embeddings with more dimensions
showed worse performance on the training data.
Which suggests that the 50d embeddings capture
sufficient information needed for this task. Char-
acter embeddings allow inferences to be made be-
tween words with similar morphologies.

3.2 Preprocessing

Firstly min-max normalization is applied to the
features taken from datasets, and word length is
divided by 10. Non-alphanumeric characters are
removed from the sentences before any features are
extracted.

Both models take as inputs the features for the
target word, and the averaged features for the left
and right contexts of the target text. If the target
word or words are positioned at the beginning or
end of the sentence a zero vector of size 107 is used
for the left or right context. For out-of-vocabulary
words a zero vector is used for the word embedding
and other features are imputed using mean values
from their respective datasets. Finally the vectors
for the target text and its context are stacked to
produce a 3x107 matrix (left context — token —
right context) for single words or a 4x107 matrix
for MWEs (left context — token 1 — token 2 —
right context).

3.3 Models

This section provides a description of the archi-
tecture and hyperparameters used for both models.
The models were produced using the Keras library
version 2.4.3. Each of the models were trained
with a batch size of 50, early stopping of 1000 and
model checkpointing based on the validation loss.

3.3.1 Single Word Model
For single words a 1D convolutional network fol-
lowed by three fully connected layers is used. The
model takes three inputs, an average of the features
for left and right contexts is used for the first and
third inputs respectively, and the features of the
target word is used as the second input. The con-
volutional layer pads the inputs and uses a kernel
size of 3 with 150 output filters and ReLu as the
activation function. Global Max Pooling and a flat-
ten layer followed by batch normalization is then
applied to the output of this layer. Three dense
layers with sizes of 150 (ReLu), 50 (ReLu) and 1
(Linear) are then used with a Dropout of 0.5 ap-
plied before each dense layer. Mean Squared Error

https://github.com/IntuitionEngineeringTeam/chars2vec
https://github.com/IntuitionEngineeringTeam/chars2vec
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Figure 1: Depiction of multi-word model architecture

(MSE) is used as the loss function and Stochastic
Gradient Descent as the optimizer, with a learning
rate of 0.01 and momentum of 0.6 with Nesterov
accelerated gradient enabled.

3.3.2 Multi-Word Model
For multi-words a second model is used to assess
the complexity of two word phrases. This model
acts as an adapter with the output being fed into a
pre-trained single word model, allowing the model
to take advantage of the data for single words and
MWEs. Figure 1 gives an overview of the model
architecture.

Features for the averaged left context, target
word one, target word two and the averaged right
context are used as input for the model. A convolu-
tional layer with a similar architecture to task one
is used for each of the target words. For the two
convolutional layers the other target word is aver-
aged with either the left or right context depending
on its positioning, weighting the other target word
higher than the rest of the context.

Each convolutional layer uses a filter size of 214
but is otherwise the same as in task one. Global
Max Pooling followed by Dropouts of 0.3 and
dense layers with 107 neurons and ReLu activa-
tion are applied to the outputs of the convolutions
which are then concatenated along the last axis.
Two dense layers with ReLu activation and sizes
of 214 and 107 are then applied with a Dropout of
0.5 before each layer. This final output of size 107
is then concatenated along the first axis with the
original left and right contexts to form the input

for a pre-trained single word model with training
enabled. This model uses the Adam optimizer with
default parameters and MSE as the loss function.

4 Results

Task Pearson MSE R2
Task 1 0.7389 0.0074 0.5398
Task 2 0.7754 0.0079 0.5989

Table 1: Results for both tasks

This section will discuss and evaluate the perfor-
mance of both models. Participants were ranked
according to the Pearson correlation coefficient of
their submissions. Table 1 presents the results for
each of the tasks with task 1 evaluating individual
words and task 2 covering both single and two word
Multi-Word Expressions (MWEs).

4.1 Single Word Model Results

Figure 2: MSE across different complexities
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As shown in Figure 2 the single word model
struggles to accurately predict values for words of
a high complexity, and also displays difficulties for
words of a complexity of less than 0.1. The train-
ing and evaluation data features less examples of
very simple or complex words. The complexity of
these extremities is often highly dependant on the
context, making them more challenging to assess.

Corpus Pearson MSE R2
All 0.7389 0.0074 0.5398
Bible 0.7085 0.0085 0.4948
Biomed 0.7828 0.0087 0.6050
Europarl 0.6807 0.0055 0.4562
JUST-BLUE 0.7886 0.0062 0.6172

Table 2: Results for individual words

Table 2 presents the results for this task on each of
the domains and the task as a whole. The prediction
accuracy varies significantly across the different
sources. Results from the best performing team are
given for comparison (Shardlow et al., 2021).

As the model only uses an average of the features
present in the left and right context of the target
word, it is unable to differentiate between tokens
that are influential to the target words complexity
and ones that are not. Because of this equal weight-
ing of words in the context, the models accuracy
can be negatively affected by an abundance or lack
of stop words in the sentence. Very complicated or
simple words in sentence that are not related to the
target word, and don’t share a similar complexity
can also cause the model to over- or under-predict
the target word’s complexity. The mechanism by
which the model assesses the context may partly
explain the variance in accuracy on each domain.

Interestingly, our sub-analysis showed that the
model shows a better correlation for those tokens
without a word embedding, yielding a Pearson cor-
relation of 0.7804 and a MSE of 0.0071. Generally
these out-of-vocabulary words are more complex
so the model is using the lack of a word embedding
as a feature when making predictions. Although
this shows a better correlation overall it could lead
to false positives in specific cases where the out-of-
vocabulary word is of a low complexity.

4.2 Multi-Word Model Results

As shown in Figure 2 the multi-word model is much
less accurate for very simple MWEs of a complex-
ity less than 0.1. However, for more complex words

the predictions remain fairly accurate. This model
is able to asses the way in which the words in a
phrase interact with each other and to some degree
the rest of the sentence. This additional contextual
information may increase the model’s capacity to
evaluate more complex words. Only 1.65 percent
of phrases in the training data were of a complexity
of less than or equal to 0.1 which could explain the
inaccuracy in this range.

Corpus Pearson MSE R2
All 0.7611 0.0102 0.5770
Bible 0.7173 0.0113 0.5106
Biomed 0.7980 0.0141 0.6317
Europarl 0.5799 0.0060 0.3089
DeepBlueAI 0.8612 0.0063 0.7389

Table 3: Results for MWEs

MWE Type Pearson MSE R2
A-N (115) 0.7654 0.0115 0.5801
N-N (56) 0.7414 0.0091 0.5293

Table 4: Results for the different MWE formations.
A-N: Adjective-Noun. N-N: Noun-Noun.

Table 3 presents the results across each of the differ-
ent domains present in the dataset. The model used
for MWEs makes use of a fine-tuned instance of
the single-word model; consequentially incorrect
associations from the single-word model may have
been carried over to this model. The results show a
similar variance across domains to task 1, although
it struggles more significantly on the Europarl sub-
corpus. Compared to the other domains, Europarl’s
complexity values show a much smaller standard
deviation than the other sub-corpora (0.093 com-
pared to 0.196 and 0.152, on biomed and bible).
The variation of complexities may play a role in
the models effectiveness at making accurate predic-
tions across the domains.

Table 4 presents the results across different
MWE formations. The number of occurrences of
each part-of-speech formation is denoted in brack-
ets, MWE types with less than 10 occurrences
were omitted from the table. The model performs
marginally better on Adjective-Noun MWE forma-
tions.
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5 Discussion

In this paper, we presented two convolutional
neural networks used as an approach to single-
word and multi-word complex word identification.
Both models achieved reasonable results, achiev-
ing scores in a comparable range to the majority of
other submissions.

Multi-Word CWI is a more challenging task com-
pared to the assessment of single words; the multi-
word model was able to utilize the datasets of both
tasks, and its predictions show a Pearson’s corre-
lation score of 0.7611. Our system is only able to
process two-word MWEs, which for this task is not
an issue. However, in other use cases the ability
to assess longer MWEs would be useful. Given
a dataset with annotations for longer MWEs the
model could potentially be adapted to work with
three or four word sequences.

Both models are able to assess the context of the
target text when making predictions; although, as
the left and right contexts are given as an average,
all words are weighted equally regardless of their
relevance to the target text. Because of this equal
weighting of words, the models are able to adjust
their predictions based on the general complex-
ity of the sentence but are unable to fully capture
the relevant context. Adding a mechanism that
could weight each word in the context based on
certain features may offer some improvements in
this area. Attention based models such as BERT
(Devlin et al., 2019) are able to attend to each to-
ken in a sequence to produce embeddings that cap-
ture large amounts of contextual information. Fine-
tuning such a model on CWI tasks could produce
embeddings that contain more useful and relevant
information.
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