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Abstract—Hyperspectral images (HSI) features rich spectral
information in many narrow bands but at a cost of a relatively low
spatial resolution. As such, various methods have been developed
for enhancing the spatial resolution of the low-resolution HSI (Lr-
HSI) by fusing it with high-resolution multispectral images (Hr-
MSI). The difference in spectrum range and spatial dimensions
between the Lr-HSI and Hr-MSI have been fundamental but
challenging for multispectral/hyperspectral (MS/HS) fusion. In
this paper, a multi-scale spatial fusion and regularization induced
auxiliary task (MSAT) based CNN model is proposed for deep
super-resolution of HSI, where a Lr-HSI is fused with a Hr-MSI
to reconstruct a high-resolution HSI (Hr-HSI) counterpart. The
multi-scale fusion is used to efficiently address the discrepancy in
spatial resolutions between the two inputs. Based on the general
assumption that the acquired Hr-MSI and the reconstructed Hr-
HSI share similar underlying characteristics, the auxiliary task
is proposed to learn a representation for improved generality of
the model and reduced overfitting. Experimental results on five
public datasets have validated the effectiveness of our approach
in comparison with several state-of-the-art methods.

Index Terms—Hyperspectral image (HSI); super-resolution
(SR), multi-scale spatial fusion, auxiliary task, convolutional
neural networks (CNN).

I. INTRODUCTION

Hyperspectral images (HSI) consist of contiguous bands
from across the electromagnetic spectrum, where each pixel
in the image scene is composed of a spectral vector as its
profile or signature. With the rich spectral characteristics, HSI
has been successfully applied in a wide range of applications,
such as precision agriculture [1], [2], [3], [4], target detection
[5], image enhancement [6], [7], [8], land cover analysis [9], as
well as measurement of chemical substances [10], and change
detection [11]. In fact, there is always the inevitable trade-off
between the spatial and spectral resolutions in captured the
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HSI, which means that images can not be acquired with both
high spatial and high spectral resolutions at the same time.

Recent developments in image super-resolution (SR) have
heightened the need for hyperspectral image super-resolution
(HSI-SR). Image SR aims to reconstruct a high-resolution
(HR) image from one or several low-resolution (LR) images.
Due to the high spectral dimension of HSI, the reconstructed
Hr-HSI only from Lr-HSIs usually contains spectral and/or
spatial distortion. Given the auxiliary information such as the
panchromatic (PAN) image, Red, Green, and Blue (RGB)
image, or multispectral image (MSI), the fusion-based HSI-
SR has received increasing attention recently. Originated from
image pan-sharpening [12], [13], [14], HSI-SR is a combina-
tion of Lr-HSI and Hr-MSI to create a single Hr-HSI.

Recently, various techniques have been proposed for MS/HS
fusion. Typically, the HSI SR approaches can be roughly
categorized into three classes: i.e., dictionary-based sparse
representation, maximum a-posteriori-based Bayesian, and
deep learning. In sparse representation approaches, the source
images are represented by a dictionary and the corresponding
sparse coefficients, where the matrix factorization and the
tensor factorization are most commonly used. The matrix
factorization can help to decompose high dimensional data
and fuse MS/HS data [15], [16]. Dong et al. proposed a non-
negative structured sparse representation (NSSR) [17] method
to jointly estimate the dictionary and the sparse coefficients
based on the prior knowledge of the spatial-spectral sparsity
in the source images. As the observed Lr-HSIs and Hr-MSIs
can capture the same scene as the target Hr-HSIs, they are
assuming to share the same underlying spectral materials or
endmembers. Lanaras et al. proposed the coupled spectral
unmixing (CSU) [18] method for the fusion problem, where
the Lr-HSI and Hr-MSI are alternatively unmixed to estimate
the spectral endmembers and abundances.

By extending the matrix factorization to higher-order ten-
sors, tensor factorization can extract the underlying factors in
high-order dataset [19], [20], [21]. Dian et al. proposed non-
local sparse tensor factorization (NLSTF) [19] to reconstruct
HSI-SR in a cube-by-cube manner, by assuming that each
cube is formed by a core coefficient tensor and dictionaries
of width mode, height mode and spectral mode. In [19], the
non-local spatial self-similarity of Hr-MSI is exploited through
a clustering method to constrain the spatial correlation in the
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Hr-HSI. In [22], they proposed a low tensor train rank repre-
sentation (LTTR) method by considering the Hr-HSI as a four-
dimension tensor with non-local LTTR prior from HR-HSI
to regularize the fusion problem. Various tensor factorization
based approaches have been used for the SR fusion problem,
including non-local patch tensor sparse representation [23],
and subspace-based low tensor multi-rank regularization [24],
etc. The issue of the factorization based methods is that there
is not a single unique decomposition thus it is difficult to
determine the basic elements or factorization rank. Some prior
information of the HR-HSI are introduced to regularize the
SR problem in previously mentioned work, including priors
of spectral unmixing [18], nonlocal spatial similarities [17],
sparse priors [19], and nonlocal LTTR prior [22] et al.

As a different framework, Bayesian approaches typically
estimate the posterior distribution with the maximum a pos-
teriori (MAP) based on the prior knowledge and the obser-
vation model [25], [26], [27], [28], [29]. Since the HSI-SR
problem is usually ill-posed, the Bayesian methods define
an appropriate prior distribution for the scene of interest to
regulate problem. Instead of incorporating simple Gaussian
prior, sparse representation is used as sparsity promoted Gaus-
sian to regulate the problem. Akhtar et al. [25] proposed
a Bayesian dictionary learning and sparse coding algorithm
for HSI-SR that has shown improved performance. In [26],
[27], Wei et al. introduced subspace transformation and a
regularization to cope with ill-posed inverse problem. Later, a
Sylvester equation-based explicit solution was integrated into
the Bayesian MS/HS fusion [28] to significantly decrease the
computational complexity. In [29], a method called Hysure
was proposed that use a form of vector total variation (VTV)
[30] for the regularizer. The major drawback of the Bayesian
methods is that prior assumptions of distribution, which typ-
ically derive from well-known distributions may not observe
in real-world datasets.

Different from the conventional methods, deep learning-
based methods impose fewer assumptions on the prior knowl-
edge of to-be-estimated Hr-HSI and still achieve good result
for MS/HS fusion. It has previously been used to solve the pan-
the sharpening problems [12], [31], [32], and later developed
for MS/HS fusion in non-blind fusion with both supervised
[14], [33], [34], [35], and unsupervised [36], [37] ones or
blind fusion [38]. Recent work has shown hybrid methods
by combining the deep learning with sparse representation
[39], [40]. The drawback of deep learning-based methods is
a lack of specific designs for MS/HS fusion, which often use
a generic CNNs-based framework being designed for other
tasks or different types of images, thus not effective. There
is little attention to the characteristics of HSI, for example,
spectral low-rankness. Although the low-rank property is not
focused in our work, this implies the possibility of introducing
additional regularization to HSI reconstruction.

In our paper, we first propose a novel CNN architecture to
fuse the Lr-HSI and the Hr-MSI in a progressive manner. To
address the spatial difference between the Hr-MSI and the
Lr-HSI, recent CNN-based approaches [41], [42] have up-

sampled images from the Lr-HSI to the image that has a
size of Hr-HSI. This strategy would increase computational
demand without compromising the SR performance. Second,
the regularization methods in generic CNNs-based framework
is insufficient for specific tasks or image types, additional
constraints are therefore needed to regulate HSI-SR solution.
The current deep learning-based methods have considered
only Hr-HSI as the ground-truth for the supervised task while
paying less attention on unsupervised features of the Hr-MSI.
As the Hr-MSI and the Hr-HSI are both Hr images and
capture the same scene, we exploit representation from Hr-
MSI through unsupervised learning to improve generality of
our MS/HS fusion network.

The major contributions of the proposed Multi-Scale spatial
fusion and Auxiliary Task (MSAT) are two-fold:

1. A multi-scale spatial and spectral architecture is pro-
posed, which can efficiently and effectively exploit the spatial
and spectral features from both Hr-MSIs and Lr-HSIs.

2. An auxiliary unsupervised task is proposed, which acts
as an additional form of regularization to further improve the
generalization performance of the supervised task. This can not
only significantly improve the performance of our proposed
MSAT model but also that of other CNN models when tested
on five publicly available datasets.

The remainder of this paper is organized as follows. In
Section II, a review of the related MS/HS fusion methods is
given. Section III formulates the problem of the MS/HS fusion
and details our proposed MSAT model for MS/HS fusion. In
Section IV, experimental results on five public HSI datasets
and discussions are represented. Some concluding remarks and
future directions are given in Section V.

II. RELATED WORK

A. Joint learning via progressively downsampling and upsam-
pling process

Jointly learning operation in a CNN-based model is to
combine features using the summation or concatenation of
the tensors, which normally requires tensors to have the same
spatial dimension. Since the observed Hr-MSI and Lr-HSI
have different spatial resolutions, two stages are employed
for the fusion framework, as detailed below. In the first
stage, the Hr-MSI is progressively downsampled into multi-
scales and then fused with the LrHS images of the same
spatial size. For the second phase, there are three commonly
used upsampling techniques for image super-resolution, i.e.,
pre-upsampling, post-upsampling and progressive-upsampling.
When the upsampling factor is large, the first two techniques
increase either the parameters of the network or the difficulty
of training. The progressive upsampling method, however,
allows the training to gradually shift its attention from the
large-scale structure of image to finer-scale details, instead
of having to learn all scales simultaneously. Therefore, the
architecture appears similar to the U-Net [43], which can
not only significantly reduce the learning difficulty but also
improve the performance.
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B. Multi-Task learning

Hr-HSI Hr-MSI
Shared

Representation

Fig. 1: Both the observed Hr-MSI and estimated Hr-HSI share
some common spatial representation.

Multi-task learning has improved the generalization perfor-
mance [44]. Apart from directly reconstructing Hr-HSI in a
supervised manner, we introduce an unsupervised auxiliary
task, aiming to reconstruct a Hr-MSI from the corrupted Hr-
MSI. Intuitively, the observed Hr-MSI and estimated Hr-HSI
should share similar spatial information, as shown in Fig. 1;
Otherwise, the MS/HS fusion task becomes trivial.

This shared representation is essential for estimating both
the Hr-MSI and Hr-HSI, where this feature is representative
for the Hr-MSI data and also crucial for estimating the Hr-
HSI. Directly estimating of the Hr-HSI from any given Lr-
HSI and Hr-MSI is likely an under-constrained problem. This
means solutions can be found to well fit the data but often fail
to extract the underlying patterns in the data, result in poor
generalization. Introducing an auxiliary task for reconstructing
Hr-MSI will train the model to find the solution over a small
area of the intersection of two tasks rather than on a broader
area of a single task. Therefore, this can help the network to
achieve faster and better convergence. Moreover, the auxiliary
task acts as a regularizer by introducing a reductive bias, where
the number of possible solutions can be reduced.

Hr-MSI

Shared layer

Shared layer

HSI Task layer

HSI Task

MSI Task layer

MSI Task

Fig. 2: Hard parameter sharing for multi-task learning in deep
neural networks.

Hard parameter sharing is the most commonly used ap-
proach in multi-task learning with neural networks, as shown

in Fig. 2. It is generally applied by sharing the hidden layers
between all tasks while keeping several task-specific output
layers. When training jointly, both Hr-MSI and Hr-HSI tasks
can extract mutually important features to reduce the total error
of reconstruction, i.e. enabling the shared layer to capture the
common features of both. This is equivalent to the sparse
representation-based method, e.g. the NLSTF [14] method,
that uses the non-local self-similarity of Hr-MSI to impose
the spatial constraints on the estimated Hr-HSI.

C. Denoising with the autoencoders

Given Hr-MSIs as the high-resolution images, an autoen-
coder can also be used as an auxiliary task for learning a
compressed representation of Hr-MSIs, which is then used
to impose regularization on the HSI SR. The convolutional
autoencoder is an unsupervised learning method, which first
learns the representations by performing the convolution and
downsampling on the input. These representations are then
decoded by up-sampling and convolutions to reconstruct the
original image of input. The denoising autoencoders [45], is
an extension to the classical autoencoder, which reconstructs
the input from a corrupted version of it.

D. Fusion based HSI Super-Resolution

Borrowing spatial information from the high-resolution aux-
iliary image (e.g., RGB, PAN, MSI) is commonly used in
the MS/HS fusion-based HSI-SR methods. The estimated Hr-
HSI is assumed to share the spatial information with the
auxiliary image and also similar spectral information with the
Lr-HSI. The relationship between the Hr-HSI and Hr-MSI was
analyzed in [46], where the camera spectral sensitivity that
generates the Hr-MSI was exploited from the Hr-HSI before
being applied to improve the Hr-HSI reconstruction. To exploit
correlations in both the spectral and spatial domains, the sparse
representation methods are used to estimate the key elements
of Hr-HSI in both the source images. Though these approaches
have achieved competitive performance, the handcraft prior
between the input images and the target image is needed. Most
recently, some deep learning-based methods [33], [34], [35],
[36], [37], [38], [39], [40], have gradually become popular due
to their superior performance and fewer assumptions in this
context.

III. THE PROPOSED APPROACH

For notational convenience, all Lr-HSI, Hr-MSI, and Hr-
HSI are denoted as two-dimensional matrices. Let the matrix
representing the Lr-HSI be Z ∈ RC×hw with C bands and
spatial dimension hw, and let denote Y ∈ Rc×WH the obtained
Hr-MSI with c spectral bands and spatial dimension WH. The
goal is to estimate the Hr-HSI, present as X ∈ RC×WH , with
both high spatial and spectral resolutions. In general, Hr-MSI
has much higher spatial resolution than Lr-HSI (HW � hw),
and Lr-HSI has a much higher spectral resolution than the
Hr-MSI (C � c).
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(b) MSAT architecture.

Fig. 3: The architecture of the proposed MSAT. The same yellow or green colour boxes indicates shared variables between
the supervised and unsupervised tasks.

The Lr-HSI can be regarded as a spatially down-sampled
version of the Hr-HSI:

Z = XBS (1)

where B ∈ RWH×WH represents a convolution between the
point spread function (PSF) of the sensor and the Hr-HSI band,
and S ∈ RWH×wh is a downsampling matrix.

Similarly, the Hr-MSI, e.g. a RGB/PAN image, can be taken
as a spectrally downsampled version of the Hr-HSI:

Y = RX (2)

where R ∈ Rc×C is the corresponding camera spectral re-
sponse function.

The problem of HSI-SR can be solved by learning the
mapping between X and the coupled Y, Z below in a fully
convolutional fashion using the gradient descent. The proposed
multi-task objective is represented as:

argmin
θ,ψ

‖ f(X|θ,Y,Z)− X ‖22 +γ ‖ g(Y|ψ, Ỹ)− Y ‖22

+ ηR(X) (3)

where f(X|θ,Y,Z) and g(Y|ψ, Ỹ) are the outputs of the pro-
posed network; θ and ψ are trainable parameters of two sub-
networks; γ and η denote two pre-defined trade-off parameters.
During the multi-task learning, part of θ and ψ is shared,
as illustrated in Fig. 2. The first and second terms are the
pixel-wise L2 distance between the network outputs and the
corresponding ground-truth X and Y, respectively. The final
term refers to the L2 regulation.

There are two major objectives for designing our fusion
network. One is to reduce the spatial discrepancy between the
two observed data. The other is to improve the generalization
of representation by sharing the main supervised task with an
unsupervised auxiliary task. These representations are not only
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useful to support the decision for the supervised task but also
work as a regularizer for more effective HSI SR [47].

We detail our MS/HS fusion network in Fig. 3, in which
Fig. 3a illustrates the baseline architecture and Fig. 3b a
baseline architecture extended with the proposed auxiliary
task. The construction of our model involves a top-down
pathway, a bottom-up pathway, an auxiliary task, and some
lateral connections, as introduced below.

Top-down pathway (MSI branch): In this pathway, the
given training Hr-MSI is progressively down-sampled with a
scaling factor of 2 into five hierarchical spatial levels, starting
from an image sized of 96 × 96 × 3 to 3 × 3 × 31. Often,
there are many layers that produce output maps of the same
size, which are defined in the same network stage or level. Let
Y (s−1) and Y (s) denote the input and output feature maps of
the s-th level in the MSI branch, and the relation between
Y (s−1) and Y (s) is formulated by:

Y (s−1) = Resblock(Downsample(Y (s))) (4)

where Resblock(·) and Downsample(·) denote respectively
the ResNet block and a downsample operation using a con-
volution layer with strike = 2. The highest level (s = 5) is
the feature maps extracted from the observed Hr-MSI without
downsampling.

An auxiliary task (Denoising branch): In the proposed
model (Fig. 3b), a light denoising autoencoder (DAE) is
introduced as an auxiliary task, which is trained to reconstruct
the original observation Y from its corrupted version Ỹ by
minimizing the error between the input Y and its reconstruc-
tion g(Y|ψ, Ỹ) from the corrupted Ỹ. With the presence of
noise, the DAE is forced to learn the representation of the
data, which later is able to reconstruct the original input. The
corrupted Ỹ = Y+N (µ, σ2) is used to train the DAE with the
clean version Y fed into the Encoder to extract the underlying
representation for both tasks. Formally, the representation of
Hr-MSI at multiple levels Ȳs, Ȳs−1, . . . , Ȳ0 are extracted as
follows:

Ŷs, Ŷs−1, . . . , Ŷ0 = Encoder(Ỹ ) (5)

Ẏs, Ẏs−1, . . . , Ẏ0 = Decoder(Ŷs, Ŷs−1, . . . , Ŷ0) (6)

Ȳs, Ȳs−1, . . . , Ȳ0 = Encoder(Y ) (7)

We then use features Ȳs, Ȳs−1, . . . , Ȳ0 that come after the
ReLU activation for a supervised task, and our model is trained
in an end-to-end manner.

Lateral connections between the main task and the
auxiliary task: The DAE relies on a certain number of training
(noisy) examples to learn the representations/patterns before
transferring them to the main task. Our main task should
therefore decide when to use such information and when
to forget irrelevant ones. The simple mechanism is to use
a 1×1 convolution layer. However, one problem with this
is that the main task may neglect shared representations by
setting the kernel parameters to zeros. The total loss is then
minimized by decreasing each supervised and unsupervised
loss separately. The representations learnt by the DAE thus are

of no use to the main task. To avoid this unwanted effect, we
introduce a compression mechanism by taking advantage of a
1×1 convolution layer. Concretely, the feature maps extracted
from Hr-MSI in both the denoising task and the main task are
concatenated and sent to a 1×1 convolution layer. This layer
performs dimensionality reduction and forces the main task to
utilize the information from the denoising task.

Y
(l)
fused = Conv1x1(Concatenate(Y (l), Ȳ (l))) (8)

Bottom-up pathway (HSI branch): The bottom-up path-
way hallucinates higher resolution features by up-sampling the
spatial feature maps from lower levels of the Lr-HSI.

X(s−1) = Upsample(Resblock(X(s−2))) (9)

where Resblock(·) denotes ResNet block and Upsample(·)
is a upsample operation using a transposed convolution layer.
The up-sampled map is then merged with the corresponding
top-down map by element-wise addition.

X̂(s−1) = X(s−1) + Y
(s−1)
fused (10)

The top-down pathway is rich in spatial information while
the bottom-up pathway contains a high level of spectral
information. To build a deep network without changing the
network topology, the parameters α and β control the depth
of the network. Only one residual block (α = 1, β = 1) is
used at a certain spatial levels unless stated otherwise. Our
residual block is derived from the MobileNetV1 [48], in which
the conventional 3 × 3 convolution is replaced by a 3 × 3
depth-wise separable convolution. The down-sampling and up-
sampling blocks refer to one-step convolution with stride = 2
and a transpose convolution, respectively.

IV. EXPERIMENTS

A. Experimental Database

For performance evaluation, we conduct experiments on
five public benchmark datasets: CAVE [49], Harvard [50],
ICVL [51], Chikusei [52], and a spaceborne images of Roman
Colosseum acquired by World View-2. The CAVE dataset
[49] comprises 32 indoor HSIs captured under controlled
illumination. The images have 31 spectral bands with a spatial
dimension of 512×512 pixels, and a spectral sampling gap
of 10nm from 400nm to 700nm. The Harvard dataset [50]
has 50 indoor and outdoor images, recorded under daylight
illumination, where 27 images were under artificial or mixed
illumination. With a spatial size of 1392×1040 pixels, each
HSI has 31 spectral bands, with a 10-nm spectral sampling
gap within [420, 720] nm. The ICVL dataset [51] contains
201 HSIs of real-world indoor and outdoor scenes, has 31
spectral bands each ranging from 400nm to 700nm at a 10nm
increment. We use only the top left 1024×1024 pixels for
convenience of the spatial down-sampling. The Chikusei scene
[52] is an airborn HS image taken over Chikusei, Ibaraki,
Japan. The image has a spatial dimension of 2517 × 2335
pixels, comprising 128 bands in the spectral range from 363
to 1018 nm. We select a 500 × 2210 pixel-size image from
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the top area of the original data for training. Besides, we
extract 16 non-overlapped 448 × 448 images as the testing
set. The sample images of the Roman Colosseum contain an
Hr-MSI (RGB image) of size 1676 × 2632 × 3 and Lr-
HSI image of size 419 × 658 × 8. We select 208 × 658
and 836 × 2632 pixels image from Lr-HSI and Hr-MSI for
training and the remaining for testing data. Since the ground-
truth is not available, we follow Wald’s training strategy for
simulated experiments. The original images are filtered by a 9
× 9 Gaussian smoothing kernel and downsampled by a factor
of 4. The Lr-HSI, therefore, can be treated as the ground-truth
Hr-MSI. The original HSIs from the four other databases are
used as the ground-truth images. We downsample the Hr-HSIs
by averaging the 32×32 disjoint spatial blocks to generate the
Lr-HSIs. The Hr-MSI (RGB image) of the same scene are
stimulated by down-sampling X with a spectral model using a
spectral dowmsampling matrix derived from the response of a
Nikon D700 camera. The CAVE, Harvard and ICVL datasets
are split into a training set of 20 images, 30 images, and 75
images and a test set of 12 images, 20 images and 25 images,
respectively.

To prepare the training samples, we extract 96×96 over-
lapped patches from the training images as reference Hr-HSI
images. The Hr-HSI, Hr-MSI and Lr-HSI images are sized
of 96×96×S, 96×96×3 and 3×3×S, respectively, where S
refers to the number of spectral bands in each experimental
datasets. We use a fixed weighting factor γ within [1e-3, 1e-2]
to balance the supervised loss and the unsupervised loss. When
γ is too small, i.e. 1e-4, the problem (3) reduce to solving one
single-task learning problem. On the other hand, when γ is too
large, i.e. 1e-1, the auxiliary task can prevent the primary task
from reconstructing the details.

B. Quantitative Metrics

Four quantitative picture quality indices (PQI) are utilized
for performance evaluation, which include the root-mean-
square error (RMSE), structural similarity (SSIM) [53], spec-
tral angle mapping (SAM) [54] and the relative dimensionless
global error in synthesis (ERGAS) [55].

The RMSE between the reconstructed and the original HSIs
is defined as the average RMSE of all bands, e.g.,

RMSE(X, X̂) =
1

S

S∑
i=1

RMSE(Xi, X̂i) (11)

where Xi and X̂i denote the ith band images of the
ground-truth X ∈ RNW×NH×S and the estimated Hr-HSI
X̂ ∈ RNW×NH×S , respectively, and RMSE(Xi, X̂i) =√∑N

j=1‖Xi
j−X̂i

j‖2
N where N = NH × NW . The RMSE is

commonly used to compare the difference between two images
by computing the variation in pixel values. The reconstructed
image is close to the reference image when the RMSE value
is near zero.

The structure similarity index measure is defined as the
average value of all bands, i.e.,

SSIM(X, X̂) =
1

S

S∑
i=1

SSIM(Xi, X̂i) (12)

where SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, µ

and σ are the mean intensity and the standard deviation, C1,
C2 are two constants. The SSIM is used to compare the local
patterns of pixel intensities between the two compared images
and its values is range between 0 to 1. The value 1 indicates
the reference and reconstructed images are identical.

The spectral angle mapper (SAM) is defined as an angle
between the estimated pixel x̂j and the ground truth pixel xj
over the whole image:

SAM(X, X̂) =
1

N

N∑
j=1

arcos
x̂Tj xj

‖ x̂j ‖2‖ xj ‖2
(13)

The SAM is performed on a pixel-by-pixel base. A value of
SAM equal to zero indicates no spectral distortion.

Finally, the ERGAS is defined as:

ERGAS(X, X̂) =
100

d

√√√√ 1

S

S∑
i=1

MSE(X̂i, Xi)

µ2
X̂i

(14)

where µX̂i is the mean of X̂i and MSE(X̂i, Xi) is the mean
squared error between X̂i and Xi, d is a spatial downsampling
factor. The ERGAS is used to determine the image’s quality in
terms of the normalised average error of each band. Increased
ERGAS indicates that the reconstructed image is distorted,
whereas decreased ERGAS means that the reconstructed im-
age is more similar to the reference image.

C. Training details

For hardware and software settings, all experiments are
implemented on the TensorFlow with CUDA 9.0 and cuDNN
back-ends with a GPU of NVIDIA GeForce GT 1030. We
trained the model with 40,000 iterations with a batch size of
16. The ADAM optimization [56] algorithm was used with
an initial learning rate of 0.00035, which reduces by 30%
after every 10,000 iterations. Only the flipping was used to
augment the data. Additional Gaussian noise added to the
original inputs is zero-mean with a variance within [0.05, 0.2].

D. Experimental Results

We set up our MSAT with α = 0 and β = 1 for small
training dataset of CAVE and Harvard, and α = 0 and β
= 2 for ICVL. Since our method needs training, we com-
pare the performance on the testing set instead of the full
dataset. The comparion methods include: non-local sparse
tensor factorization (NLSTF) 1 [19], non-negative structured
sparse representation (NSSR) 2 [17], and low tensor-train rank

1https://github.com/renweidian/NLSTF
2https://see.xidian.edu.cn/faculty/wsdong/HSI SR Project.htm
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(a) (b) (c) (d) (e) (f) (g)

Fig. 4: First and second row: the reconstructed images and the corresponding error images of the compared methods for
Harvard at 460nm band. Third row and Fourth row: reconstructed images and corresponding error images of the compared
methods for Harvard at 620nm band. (a) the NLSTF method [19] (RMSE = 3.33, ERGAS = 0.19, SAM = 2.34, SSIM = 0.96).
(b) the NSSR method [17] (RMSE = 3.36, ERGAS = 0.20, SAM = 2.51, SSIM = 0.96). (c) the LTTR method [22] (RMSE
= 1.87, ERGAS = 0.161, SAM = 2.27, SSIM = 0.972). (d) the HSRnet method [41] (RMSE = 3.12, ERGAS = 0.193, SAM
= 2.59, SSIM = 0.963). (e) the MoG-DCN method [42] (RMSE = 2.62, ERGAS = 0.189, SAM = 2.41, SSIM = 0.972). (f)
Proposed MSAT (RMSE = 2.37, ERGAS = 0.173, SAM = 2.38, SSIM = 0.972). (g) Ground-truth.

representation (LTTR) 3 [22] methods, which represent the
state-of-the-art sparse representation based approaches; the
hyperspectral super resolution network (HSRnet) 4 [41] and
the model-guided deep convolutional network (MoG-DCN)
5 [42] represent the state-of-the-art deep learning-based SR
methods. Table I shows the average results of the compared
methods on the CAVE testing set, where the best results are
highlighted in bold for clarity. As seen, the proposed method
achieves the better performance than all others in terms of
ERGAS, SAM and SSIM, although the RMSE is not the least.
With just a few samples used for training suggests that our
model has the potential to further improve the RMSE scores
when more training images are available.

3https://github.com/renweidian/LTTR
4https://github.com/liangjiandeng/HSRnet
5https://github.com/chengerr/Model-Guided-Deep-Hyperspectral-Image-

Super-resolution

TABLE I: Average quantitative results of the compared meth-
ods using 12 testing images on the CAVE dataset.

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑

NLSTF [19] 3.136±1.236 0.461±0.301 6.567±2.413 0.976±0.012
NSSR [17] 2.772±1.294 0.417±0.314 5.697±2.019 0.980±0.011
LTTR [22] 2.640±1.590 0.377±0.259 6.238±2.248 0.982±0.010
HSRnet [41] 3.360±1.700 0.387±0.330 4.784±1.144 0.980±0.010
MoG-DCN [42] 3.330±1.676 0.370±0.277 4.573±0.986 0.984±0.007
MSAT 3.245±1.610 0.361±0.254 4.245±0.929 0.985±0.005

The quantitative averages on the Harvard database are com-
pared in Table II. Although none of these methods can con-
sistently outperform others, the LTTR [22] seems to perform
better on the Harvard dataset. The proposed approach achieves
the competitive results in terms of RMSE and SSIM, where
the ERGAS and SAM are slightly worse than others. Fig. 4
shows a reconstructed image from the Harvard test dataset. As
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TABLE II: Average quantitative results of the compared meth-
ods over 20 testing images on the Harvard dataset.

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑

NLSTF [19] 2.658±1.303 0.314±0.206 3.362±1.720 0.974±0.014
NSSR [17] 2.520±1.237 0.340±0.217 3.228±1.596 0.975±0.014
LTTR [22] 2.187±1.147 0.340±0.213 3.093±1.292 0.979±0.011
HSRnet [41] 2.622±1.333 0.361±0.263 3.461±1.167 0.973±0.016
MoG-DCN [42] 2.208±1.126 0.349±0.238 3.393±1.497 0.979±0.011
MSAT 2.184±1.053 0.353±0.228 3.392±1.490 0.979±0.010

the NLSTF [19] method is actually a variation of the NSSR
[17] algorithm, visual inspection validates that the former
closely resembled patterns in the latter. The reconstructed
images from three deep learning-based methods also follow
the closely mirrored patterns. Among them, the LTTR [22]
and the proposed MSAT recover more spatial details of the
HSI.

Obviously, deep learning-based methods require sufficient
features by a grant from a larger amount of training data or
properties of the datasets. As a result, small training dataset,
as well as the high training/test split ratio from CAVE (20
images/12 images ≈ 62.5/37.5%) or Harvard (30 images/20
images ≈ 60/40%), will cause high variance in training of

TABLE III: Average results of the compared methods (25
testing images, 75 training images).

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑

NLSTF [19] 1.725±0.632 0.122±0.047 1.062±0.373 0.991±0.003
NSSR [17] 1.735±0.603 0.128±0.047 1.048±0.352 0.991±0.003
LTTR [22] 1.125±0.389 0.079±0.040 0.997±0.316 0.994±0.001
HSRnet [41] 1.652±0.563 0.109±0.043 1.092±0.361 0.996±0.001
MoG-DCN [42] 1.236±0.382 0.079±0.042 1.032±0.340 0.998±0.002
MSAT 1.034±0.322 0.065±0.035 0.990±0.306 0.998±0.0005

model or overfitting. Another issue is unrepresentative training
dataset, which means that the data available during training
is insufficient to capture the model, relative to the valida-
tion dataset. Without increasing the model complexity, we
randomly choose 100 images from the ICVL dataset where
75 images are used for training and remaining 25 for testing.
The performance of our method now consistently outperforms
the compared methods significantly with a more considerable
margin, as shown in Fig. 5 and Table III. As seen from Table
III, the proposed MSAT method significantly outperforms
the compared models of NLSTF [19], NSSR [17], LTTR
[22], HSRnet [41], and MoG-DCN [42] in terms of all the
four quantitative metrics. Furthermore, our model produced
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Fig. 5: The comparison of our proposed CNN-based method vs. five approaches on the testing set of 25 images from the ICVL
dataset.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 6: The reconstructed images and corresponding error images of the compared methods for ICVL at 460nm band (first two
rows) and at 620 nm (the last two rows). (a) the NLSTF method [19] (RMSE = 1.96, ERGAS = 0.13, SAM = 1.17, SSIM
= 0.99). (b) the NSSR method [17] (RMSE = 1.93, ERGAS = 0.13, SAM = 1.07, SSIM = 0.99). (c) the LTTR method [22]
(RMSE = 1.15, ERGAS = 0.085, SAM = 1.06, SSIM = 0.994). (d) the HSRnet method [41] (RMSE = 1.36, ERGAS = 0.091,
SAM = 1.07, SSIM = 0.994). (e) the MoG-DCN method [42] (RMSE = 1.13, ERGAS = 0.067, SAM = 0.098, SSIM = 0.995).
(f) Proposed MSAT (RMSE = 0.96, ERGAS = 0.05, SAM = 0.90, SSIM = 0.996). (g) Ground-truth.

consistently lower variance around the average score than all
others. In Fig. 6 and Fig. 7, we also show the reconstructed
images and the error images, where the test results are for
an outdoor image BGU 0403-1419-1 and an indoor image
objects 0924-1629 from the ICVL dataset. The NLSTF [19]
and NSSR [17] again perform worse as shown in the changed
brightness while the LTTR [22] and the proposed MSAT
approaches perform better regarding the well preserved spatial
and spectral structures. The HSRnet [41] and the MoG-DCN
[42] are still unable to surpasses the LTTR [22] in ICVL
dataset.

Table IV compares the quantitative average of all compared
methods using 16 testing images on the Chikusei dataset.
As the training and test samples are cropped from the same
image, they have common features and do not suffer from
overfitting and unrepresentative training dataset. Fig. 8 shows
the composition of test samples with bands of 70, 100, and
36 as a false-color image with the error image given in all

TABLE IV: Average results of the compared methods over 16
testing samples in the Chikusei dataset.

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑

NLSTF [19] 2.553±0.673 0.478±0.056 2.776±0.661 0.971±0.007
NSSR [17] 3.944±1.114 0.772±0.112 3.895±0.923 0.943±0.015
LTTR [22] 4.532±1.324 0.683±0.121 3.111±0.525 0.952±0.013
HSRnet [41] 2.324±0.435 0.827±0.163 2.938±0.486 0.970±0.005
MoG-DCN [42] 1.355±0.259 0.483±0.060 2.642±0.316 0.989±0.001
MSAT 0.934±0.116 0.475±0.053 2.090±0.303 0.992±0.001

three channels. As seen, the three sparse representation-based
approaches perform worse compare to deep learning-based
methods. The proposed method significantly outperforms three
sparse representation-based methods with a large margin while
still perform better than the HSRnet [41] and the MoG-
DCN [42]. The composition image obtain from the proposed
method is closet to the ground-truth, while other methods show
obvious unsatisfactory reconstruction.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 7: The reconstructed images and corresponding error images of the compared methods for ICVL at 540nm band (first two
rows) and at 620 nm (the last two rows). (a) the NLSTF method [19] (RMSE = 1.75, ERGAS = 0.07, SAM = 0.64, SSIM
= 0.98). (b) the NSSR method [17] (RMSE = 1.69, ERGAS = 0.07, SAM = 0.60, SSIM = 0.99). (c) the LTTR method [22]
(RMSE = 1.26, ERGAS = 0.548, SAM = 0.69, SSIM = 0.992). (d) the HSRnet method [41] (RMSE = 1.48, ERGAS = 0.067,
SAM = 0.62, SSIM = 0.990). (e) the MoG-DCN method [42] (RMSE = 1.22, ERGAS = 0.534, SAM = 0.68, SSIM = 0.993).
(f) Proposed MSAT (RMSE = 1.19, ERGAS = 0.04, SAM = 0.64, SSIM = 0.993). (g) Ground-truth.

The fusion result on real spaceborne HS dataset is shown
in Fig. 9. As the ground-truth Hr-HSIs are unavailable, we
follow the procedure of training and measure the performance
by comparing the result image with upsampled image of Lr-
HSI. As seen, the result image obtained from our proposed
method is much closer to Lr-HSI and Hr-MSI. Furthermore,
Fig. 10 compares the performance of three deep learning-based
HS/MS fusion methods over the validation set. The HSRnet
[41] performs worst among the three methods, while the MoG-
DCN [42] cannot outperform our smaller-size baseline model.
An introduced auxiliary task provides a consistent gain in
generality and achieves the best performance.

E. The effectiveness of multi-scale image decomposition and
auxiliary task

We performed an ablation study to verify the effect of Hr-
MSI decomposition and the proposed auxiliary task used in
training on the CAVE dataset, where the L2 regularization
is turned off for a fair comparison in these evaluations. We

denote w/o 3×3 as the case without Hr-MSI decomposition to
the spatial size of 3×3 whilst keeping other settings the same.
We observed that the more scales the Hr-MSI is decomposed,
the better performance it delivers. As shown in Fig. 11, the
lowest reconstruction loss in both the training and validation is
achieved when the Hr-MSI is decomposed into the maximum
scales of five, of which the final scale has a spatial size equal
to the that of the Lr-HSI. Reducing one level of decomposition
may result in performance degradation. Each smaller scale
of the image contains features to approximate the original
image, and the early applying of the joint-training can help
to refine information in a coarse-to-fine manner. Although the
Lr-HSI does not decompose further from the size of 3×3,
the results shown in Fig. 11 suggest that joint learning from
smallest levels would reduce the reconstruction error. Finally,
the combination of both five-level decompositions and an un-
supervised loss induced by the auxiliary task has significantly
outperformed all others after about only 10 epochs during
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Fig. 8: The HSI-SR results on the Chikusei dataset of all competing methods. First and Fourth row: the false-color image with
bands (70, 100, 36). Second and Fifth row: the corresponding error images compared to the ground-truth.

the training or about 5 epochs during the validation. The
turbulences at 8 and 15 epochs indicate the outlier of the
unsupervised features from the auxiliary task. Although they
do not degrade the final performance, reducing noise level in
the auxiliary task or global learning rate can avoid these spikes.

Table V shows the testing results with and without the
auxiliary task on the ICVL dataset. As seen, the introduced
auxiliary task does improve the overall performance in both
shallow and deeper networks. The accuracy, however, does not
improve further while increasing the number of the residual
blocks. One possible reason here is that our lightweight model
can sufficiently fit with the 75 training images, thus increasing
the depth of the model can not produce further improvement.

TABLE V: Average performance of the Baseline network
(without the proposed auxiliary task) and MSAT (with the
auxiliary task) over testing images of the ICVL dataset.

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑

Baseline (β = 1) 1.368±0.450 0.086±0.043 1.043±0.327 0.994±0.0012
MSAT (β = 1) 1.154±0.336 0.072±0.035 0.998±0.314 0.995±0.0010

Baseline (β = 2) 1.258±0.328 0.079±0.038 1.041±0.347 0.998±0.0005
MSAT (β = 2) 1.034±0.322 0.065±0.035 0.990±0.306 0.998±0.0005

To further demonstrate the effectiveness of multi-scale re-
construction, we include comparisons with other CNN-based
methods, such as SRCNN [57] and VDSR [58], where pre-
upsampling is used. The SRCNN [57] model has only 3 simple
convolutional layers while the VDSR [58] contains 20 convo-
lutional layers. In addition, we re-conduct experiments with a
more powerful architecture based on the ResNet, namely HSI-
ResNet, with the same configurations as the ResNet including
the number of blocks, optimization method of network train-
ing, epoch number, training and testing samples etc. The HSI-
ResNet does not fuse Lr-HSI and Hr-MSI at multi-stages as we
have done in the proposed MSAT model. As shown in Fig. 12,
the Lr-HSI is spatially upsampled before concatenated with the
Hr-MSI. The CNN network consists of five residual blocks,
which has a similar depth as our model. Table VI illustrates
that progressive fusion at multiple stages has obviously the
advantage over a single-stage fusion.

F. Tuning the noise level in denoising autoencoder

We trained several denoising autoencoders with different
noise levels to understand the qualitative effect of the noise
through different datasets. The variation of RMSE, ERGAS,
SAM, and SSIM value when varying the noise levels from
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Fig. 9: The Hr-MSI (RGB) and Lr-HSI images are of the left bottom area of Roman Colosseum acquired by World View-2.
The composite image of the HS image with bands 5-3-2 as R-G-B is displayed.
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Fig. 10: Comparison of the proposed MSAT to two deep
learning-based methods (HSRnet [41] and MoG-DCN [42])
over the validation set in the Roman Colosseum dataset.

TABLE VI: Quantitative results on CAVE dataset. Our base-
line indicate that our model do not include auxiliary task.

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑
SRCNN [57] 4.320±2.216 0.543±0.407 6.165±1.466 0.961±0.018
VDSR [58] 4.135±2.151 0.492±0.372 5.983±1.360 0.970±0.014
HSI-ResNet 3.960±1.873 0.435±0.308 5.328±1.196 0.977±0.007
Our Baseline 3.454±1.692 0.384±0.252 4.810±1.066 0.981±0.006

0.0 to 0.3 for CAVE, Harvard, ICVL, Chikusei, and Roman
Colosseum datasets are shown in Fig. 13. As can be seen from
the figure, as the value of noise increases, the performance
metric also begins to improve, then plateau, and then degrade
for all datasets. The appropriate noise levels were discovered to
be dependent on the quality of collected images as well as the
number of training samples. Adding a large amount of noise
to noisy images could degrade the performance. The images
in the CAVE dataset, for example, are clean and contain
fewer noises than those in the Harvard and the ICVL datasets.
Therefore, applying a large noise level (σ = 0.2) leads to
improve performance for the CAVE dataset, while increasing
errors for the Harvard and the ICVL. As the training set for
the Chikusei and Roman Colosseum datasets is limited, only
the top part of an image is used, the smaller noise level of
0.05 is the most appropriate.

G. Robustness to noise

In practice, noise from various aspects can corrupt Lr-HSIs
and Hr-MSIs even during image acquisition, transmission, and
compression. To test the noise robustness of all compared
methods, we add the Gaussian noise to the Lr-HSI and Hr-
MSI inputs and then fuse them to produce a HR-HSI. The
SNRs of the noisy Lr-HSI and Hr-MSI are set to 20dB and
25dB, respectively. The quality metric values in the noisy
case are shown in Table VII and visually compared with
those noise-free ones (as referred to Table I) in Fig. 14.
As seen, the performance of NLSTF [19], NSSR [17], and
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Fig. 11: The training and validation loss of model with different level of decomposition and with/without unsupervised loss.

Fig. 12: HSI ResNet model.

LTTR [22] methods drops faster than three deep learning-
based methods in all four metrics and degenerates sharply in
the SAM measure. The RMSE of the LTTR [22] increases
from 2.640±1.590 to 4.064±1.913 by 53.9% ± 20.3% while
our proposed approach is more robust, increasing only from
3.245 ± 1.610 to 4.282 ± 1.712 or by 31.9% ± 6.1%. The
architecture of the MoG-DCN contains autoencoders that are
robust to noise. The RMSE of the MoG-DCN [42] increases
from 3.330± 1.676 to 4.390± 788 by 31.9%±6.6%.

TABLE VII: Quantitative results of a noisy case on the CAVE
dataset.

Method RMSE↓ ERGAS ↓ SAM↓ SSIM↑
NLSTF [19] 4.806 ±1.873 0.695 ±0.275 20.065±7.070 0.851±0.047
NSSR [17] 4.900±1.642 0.714±0.329 19.062±7.092 0.850±0.053
LTTR [22] 4.064±1.913 0.577±0.259 15.621±5.811 0.902±0.051
HSRnet [41] 4.582±1.845 0.577±0.350 10.078±3.929 0.894±0.058
MoG-DCN [42] 4.390±1.788 0.546±0.274 9.528±3.253 0.902±0.056
MSAT 4.282±1.712 0.490±0.254 9.436±3.085 0.902±0.050

H. Feature map

Differing from RGB images, HSIs have the characteris-
tics of high spectral resolution across many narrow bands.
Therefore, it is not straightforward to interpret the meaningful
feature maps at lower layers, which typically display features
in a spatial manner. To visualise the features learn from our
CNN-based network, we select one testing image from the
CAVE dataset, running on a forward path to show the learnt
feature maps from the fifth (top) block in Fig. 15. It is worth
noting that the transposed convolutions are used when up-
sampling the input feature map at each stage. This is a well-
known operation which may introduce severe checkerboard
artifacts and tend to be most prominent with a higher up-
sampling scale factor [59]. The checkerboard pattern can be
observed in the feature maps of Fig. 11b and Fig. ??, where
they have shown that the feature maps extract from the model
without the unsupervised loss will suffer more from horizontal
and vertical stripes in the final prediction. By contrast, the
feature maps from the model with the proposed additional
unsupervised loss can successfully suppress such artifacts.

V. CONCLUSION

In this paper, we have presented an effective CNN-based
method for fusing the observed Lr-HSIs and Hr-MSIs to
reconstruct the HSI-SR. By decomposing the Hr-MSIs into
multiple spatial scales, the discrepancy between the observed
Lr-HSI and Hr-MSI is facilitated, which allows our model to
be able to gradually learn the high-resolution features from Lr-
HSIs and spatial-reduced feature from Hr-MSIs. In addition,
we integrating with a proposed auxiliary task in the training
procedure can help to improve the generalization capability of
the CNN models. The proposed auxiliary task does not only
regulate the model from overfitting, but also redirect the main
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(a) An example of RGB image bgu-0403-1523 from the ICVL dataset.

(b) Feature maps from 32 channels learned by fifth block without unsupervised loss. Each channel has the size of 96 × 96 pixels. Feature
maps at (row, column) (1,2), (1, 7), and (4, 4) still suffer checkerboard artifacts.

(c) Feature maps from 32 channels learned by fifth block with unsupervised loss. Each channel has the size of 96 × 96 pixels. Only feature
map at (row, column) (4, 5) has a checkerboard artifact.

Fig. 15: Visualization of feature maps learned by the fifth block of our reconstruction network: (a) 3 channels of the observed
RGB image; (b) Without using the proposed unsupervised auxiliary loss. (c) With the unsupervised auxiliary loss.

task to learn representations with sped-up and better model
convergence. Furthermore, the auxiliary task deriving from
the denoising autoencoder is more resistant to noise than all
compared methods. Our testing results on five public datasets
have demonstrated that the proposed method can provide
improvements over the-state-of-the-art methods in term of both
objective assessment and subjective visual quality. In future
research, we plan to study an adaptive balance between the
primary task and the proposed auxiliary task though training.

In addition, a natural progression of this work is to investigate
other auxiliary tasks for improving the performance of primary
task.
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