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Abstract: Variations in the quantity of plankton impact the entire marine ecosystem. It is of great
significance to accurately assess the dynamic evolution of the plankton for monitoring the marine
environment and global climate change. In this paper, a novel method is introduced for deep-sea
plankton community detection in marine ecosystem using an underwater robotic platform. The
videos were sampled at a distance of 1.5 m from the ocean floor, with a focal length of 1.5–2.5 m. The
optical flow field is used to detect plankton community. We showed that for each of the moving
plankton that do not overlap in space in two consecutive video frames, the time gradient of the
spatial position of the plankton are opposite to each other in two consecutive optical flow fields.
Further, the lateral and vertical gradients have the same value and orientation in two consecutive
optical flow fields. Accordingly, moving plankton can be accurately detected under the complex
dynamic background in the deep-sea environment. Experimental comparison with manual ground-
truth fully validated the efficacy of the proposed methodology, which outperforms six state-of-the-
art approaches.

Keywords: image motion analysis; image processing; optical flow; underwater robotic

1. Introduction

Plankton are organisms that live in oceans and fresh water [1] that play an important
role in the material and energy recycling within the marine food chain [2]. The study of
plankton community and plankton itself is indispensable for understanding of marine
resources and the impacts of climate change on ecosystems [3]. In addition, the number of
plankton is a key indicator of carbon and energy cycling [4], and of great significance to
species diversity and ecosystem diversity [5]. From the early 19th century to date, many
examples of large-scale sensor equipment were used to solve the challenge of getting
reliable high-resolution estimates of plankton abundance at depth [6]. Acoustic and
optical techniques for the in-situ observation of zooplankton are currently popularly
used for plankton distribution assessment. Although acoustic-based observation has
outstanding advantages of high observation frequency, it has inaccurate quantification and
usually requires the combination of optical image analysis or other traditional sampling
of zooplankton. In recent years, a series of advances were made in computer vision [7],
including hyperspectral imaging [8], principal component analysis of images [9,10], and
deep learning [11–13] for image classification [14]. As marine plankton is small and
uneven in size, it is difficult to describe it quantitatively, such as with inventory and
abundance statistics.
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At present, a lot of plankton detection methods are proposed that often rely heavily
on the use of sophisticated underwater instruments. J. Craig et al. [15,16] constructed an
ICDeep system, based on the Image Intensified Charge Coupled Device (ICCD) camera,
to assess the quantity of low-light bioluminescent sources in the marine environment.
Philips et al. [17] created a marine biological detector, where a Scientific CMOS (SCMOS)
camera was used to image the organisms before conducting statistical analysis of the
plankton abundance. With the development of the computer vision, multitarget tracking-
enabled automatic analysis was gradually applied to this field [18]. Kocak et al. [19]
proposed to use the active contour (snake) models to segment, label, and track images of
the snake model for the classification of the plankton. Luca et al. [20] also presented an
automatic plankton counting method, which mainly used the interframe difference and the
intersection of the bounding boxes to perform multitarget matching. The aforementioned
methods achieved some results in automatic analysis and counting. However, there are
still some challenges due to the particularity and complexity of plankton’s own form and
passive movement mode. Applying machine vision techniques to underwater images
or videos is a feasible way to study plankton at present. Underwater plankton imaging
has the capacity to detect patterns of the plankton distributions that we would be unable
to be tackled by sampling with nets. [21]. Therefore, we consider applying machine
vision technology to underwater images or videos is currently a feasible method for
studying plankton.

Underwater robots play an important role in various video surveillance tasks including
data collection. A mobile robot that can be fixed on a rotatable axis would be advantageous
because it provides 360◦ visual coverage instead of using a fixed image camera installed in
a predetermined direction. These mobile robots capture unprecedented shots of marine life
in dangerous environments inaccessible to humans. A submarine can push and control
the underwater robot to complete the collection of deep-sea data and store the data in the
computer for analysis. Some underwater robots are shown in Figure 1.

In this paper, we propose a deep-sea plankton detection method based on the Horn–
Schunck (HS) optical flow [22]. The optical flow is the instantaneous velocity of the pixel
movement of the moving object on the image plane. The advantage of the optical flow
method is that the motion vectors can be estimated by the optical flow vector accurately.
In this way, one can detect the plankton and easily analyze statistically its volume using
image processing and machine vision. The research on plankton can be specifically divided
into density, position, number, individual and total volume, etc. In the case where the
spatial position of plankton does not coincide in two consecutive frames, the presence
or absence of plankton should be determined according to the following conditions: the
time gradient maps at the plankton’s location in two consecutive optical flow fields will
be opposite to each other, and the horizontal and vertical gradients of the plankton at
that location are equal and their direction is the same. Since the connected components
are marked as the location of plankton, the number of connected components can be
regarded as the number of plankton. By using this method, we firstly count the number of
plankton in the video, followed by a statistical analysis. Various comparative experiments
are carried out to benchmark with other methods to fully demonstrate the effectiveness of
the proposed methodology.
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Figure 1. Underwater robot pattern: submarine can push and control underwater robot to complete collection of deep-sea
data, then store data in computer for analysis.

2. The Proposed Method
2.1. Principle

The deep ocean floor is clear and suitable for video acquisition with active lighting.
During the video acquisition process, the camera position and shooting angle change with
the movement of the submersible, making the plankton detection task a moving target
detection problem under complex and dynamic backgrounds. Two consecutive optical
flow field matrices derived from three consecutive video frames in a video are employed.
For fast-moving plankton (plankton does not overlap in space in two consecutive frames),
the two consecutive optical flow values at the position where the plankton is located are
opposite. In practice, the amount of grayscale change is often close to 0. Therefore, the two
consecutive optical flows are approximately opposite to each other, and we discuss this
situation by setting two thresholds in the experiment section. We use this property to map
out the location of the plankton. Figure 2, hereafter provides an overview of the proposed
method, which consists of three modules.
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Figure 2. Main processing blocks of proposed algorithm. Module 1 is for preprocessing, whilst Module 2 performs 3D
convolution on video frame to extract dense optical flow. Module 3 is a dual threshold setting to determine whether a
plankton is contained at a specific location or not(see Section 3.3).

As shown in the Module 1 of Figure 2, grayscale images are obtained by weighting
three channels of the input frames. In module 2, three convolution operations are per-
formed on two consecutive frames to produce three different gradients(see Figure 3), which
correspond to three different convolution kernels. The details of the convolution process
are shown in Figure 3 to illustrate this process. We find that the time gradients of the
two optical flow fields derived from three consecutive frames of images are opposite in
numerical value and direction in the corresponding positions of plankton in the middle
frame. In the following description, the time gradients of the two consecutive optical
flow fields are represented by ∇t and ∇′t. The horizontal gradients of the two consecutive
optical flow fields derived from three consecutive frames are equal in magnitude and
direction in the corresponding positions of plankton in the middle frame. Similarly, the
vertical gradients are also equal. In the following description, the horizontal gradients of
the two optical flow fields are represented by ∇x and ∇′x, the vertical gradients are ∇y
and ∇′y. Finally, Module 3 is for dual thresholding, which is explained separately when
discussing the parameters later.
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Figure 3. Three convolution kernels corresponding in time and space. Two consecutive frames are
used to form a 3D matrix whose size is (height + 1)× (width + 1)× 2. Size of filter is 2× 2× 2. Result
of each operation is gradient of the pixel at upper-left corner of convolution kernel.

2.2. Proof

In the HS optical flow method, the constraint equation of optical flow can be estab-
lished as Equation (2) according to the premise of the optical flow method: invariance of
gray level [22]. Three first-order differences are used to replace the horizontal, vertical,
and time gradients. Let the gray value at plankton’s position in the middle frame be Ix,y,t,
where the subscripts x and y are the pixel index, and t is the time index. The position of
plankton changes with the movement of ocean current and the camera lens. As shown in
Figure 4, the plankton is small-sized, so its position in frame t doesn’t overlap in frame
t + 1. When it changes from position 1 to position 2, the gray value corresponding to
position 2 of plankton at frame t − 1 is the background gray value Ix,y,t−1. In a similar
way, when the position of plankton changes from position 2 to position 3, the gray value
corresponding to position 2 at frame t + 1 becomes the background gray value Ix,y,t+1.
Based on the characteristics of deep-sea underwater video, the background around the
plankton is invariant in time, i.e.,:

Ix,y,t−1 = Ix,y,t+1 (1)

(t-1)th frame t-th frame (t+1)th frame

position 1 position 2 position 3

Figure 4. Position of plankton in three consecutive frames.

∇xu +∇yv +∇t = 0 (2)

The time gradients at the plankton’s positions in the two adjacent optical flow fields are:

∇t =
1
2
(Ix,y,t − Ix,y,t−1 + Ix+1,y,t − Ix+1,y,t−1) (3)
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∇′t =
1
2
(Ix,y,t+1 − Ix,y,t + Ix+1,y,t+1 − Ix+1,y,t) (4)

Based on Equation (1), the background gray value Ix,y,t−1 = Ix,y,t+1, ∇t = −∇′t , the
time gradients of the two optical flow fields derived from three consecutive frames of
images are opposite in the corresponding positions of plankton in the middle frame.

The horizontal gradients of the plankton’s location in the two optical flow fields are:

∇x =
1
2
(Ix+1,y,t − Ix,y,t + Ix+1,y,t−1 − Ix,y,t−1) (5)

∇′x =
1
2
(Ix+1,y,t+1 − Ix,y,t+1 + Ix+1,y,t − Ix,y,t) (6)

The same way, based on Equation (1), we can get that ∇x = ∇′x, i.e., the horizontal
gradients of the two optical flow fields derived from three consecutive frames are equal in
the corresponding positions of plankton in the middle frame. In the same way, we can get
∇y = ∇′y.

In fact, in the process of proof, the time and space gradients are estimated in a 2× 2× 2
cubic neighborhood by taking the mean.

Then, we iterate n times for gray gradient relaxation by setting the initial conditions
as v0 = v′0 = 0 and u0 = u′0 = 0.

∆ = (
∇xun +∇yvn +∇t

α2 +∇2
x +∇2

y
) (7)

un+1 = un −∇x∆ (8)

vn+1 = vn −∇y∆ (9)

The parameter α2 reflects the smoothness constraints of the HS optical flow algorithm;
∆ is an iteration factor in the process of the iterative algorithm;∇x and∇y are the horizontal
and vertical gradients, and u and v are the horizontal and vertical optical flow field
matrices, respectively.

The relationships of Equations (7)–(9) are represented by a series, where the number
of iterations is n. Let’s substitute Equations (7)–(9), the new formulas are as follows:

un+1 = un −∇x(
∇xun +∇yvn +∇t

α2 +∇2
x +∇2

y
) (10)

vn+1 = vn −∇y(
∇xun +∇yvn +∇t

α2 +∇2
x +∇2

y
) (11)

where un+1 and un are two horizontal optical flow fields before and after the n-th iteration,
vn+1 and vn are two vertical optical flow fields before and after the n-th iteration. We can
derive un+1 = −u′n+1, vn+1 = −v′n+1. When n = 0, we have:

v1 = v0 −∇y(
∇xu0 +∇yv0 +∇t

α2 +∇2
x +∇2

y
) (12)

v′1 = v′0 −∇′y(
∇′xu′0 +∇′yv′0 +∇′t

α2 +∇′2x +∇′2y
) (13)

v1 and v′1 are the two consecutive vertical optical flow field at the first iteration. If the time
gradients of the last two optical flow fields are opposite, that is∇t = −∇′t , we can get: v1 = −v′1.

When n = k, vk+1 = −v′k+1. That is, Equations (14) and (15) are opposite:

vk+1 = vk −∇y(
∇xuk +∇yvk +∇t

α2 +∇2
x +∇2

y
) (14)
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v′k+1 = v′k −∇
′
y(
∇xu′k +∇

′
yv′k +∇

′
t

α2 +∇′2x +∇′2y
) (15)

where vk+1 and v′k+1 represent the previous and the next vertical optical flow field matrix
at the (k + 1)th iteration, respectively.

When n = k + 1, we can show that vk+2 = −v′k+2

vk+2 = vk+1 −∇y(
∇xuk+1 +∇yvk+1 +∇t

α2 +∇2
x +∇2

y
) (16)

v′k+2 = v′k+1 −∇
′
y(
∇′xu′k+1 +∇

′
yv′k+1 +∇

′
t

α2 +∇′2x +∇′2y
) (17)

By adding Equations (16) and (17), and substituting vk+1 = −v′k+1, ∇x = ∇′x and
∇y = ∇′y into Equation (16) and Equation (17), respectively, we have:

vk+2 = −v′k+2 (18)

Therefore, for fast-moving plankton, the values of the vertical optical flow field
matrices of the space position where the plankton is located are opposite from each other:
v = −v′, and the same applies horizontally: u = −u′.

2.3. The Volume of Plankton

Based on the above proof, one can calculate the number of pixels where plankton is
located, and then multiply the actual size of a pixel to obtain the area of plankton. The
resolution of the known image is height× width. According to camera internal reference, the
actual range of our field of view is about W m by H m. The calculation of the actual area is
given by:

S = N × (W/width)× (H/height) (19)

where N is the number of pixels, and S is the corresponding actual surface. A method of
approximate calculation is adopted here. Firstly, we can get the radius of a circle that has
the same area as the plankton, and then calculate the volume of the sphere based on that
radius. The advantage of this method is that we can get the 3D volume of an irregular
object only by its area [23]. In addition, we can predict the type of plankton based on the
estimated size, laying the foundation for the later identification of plankton types. The
volume can be calculated by:

V =
4
3
× π−

1
2 × S

3
2 (20)

The proposed method adds its own theoretical innovation on the basis of the original
optical flow method and was proved mathematically. In this way, the complexity and
passive motion patterns of plankton are well-solved, and the accuracy improves as the
above problems are solved.

3. Experimental Results and Analysis

The data capture was provided by the China National Deep Sea Center. The data
set was obtained by an underwater robotic nondestructive testing system carried by a
deep-sea manned submersible. The camera’s technical specifications are: resolution: 1080i
HDTV; minimum illumination: 2l ux; optical zoom: 10 times; digital zoom: 12 times;
aperture range: 3.2 mm–32 mm; video aspect ratio: 16:9 or 4:3. In this study, three
six-minute videos of the plankton community from appearing to disappearing from the
screen were selected, which were obtained from a submarine on the western Pacific sea
mountain slope, and the diving depths are 2741.88 m and 5555.68 m, corresponding to 76
and 77 dives, respectively. The reason why the three videos are selected is that plankton
appeared more frequently in them. Due to the complexity of the deep-sea environment
and the irregular camera movement, the background is complex and dynamic. In this case,
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using high-precision image processing technology to study the plankton community from
appearing to disappearing from the screen can effectively distinguish sedimentary clouds
and plankton community in images. Examples of deep-sea plankton images are shown in
Figure 5 and the details of data set including diving number, date, diving time, longitude,
latitude and depth are shown in Table 1.

Figure 5. Example images of deep sea plankton.

Table 1. Details of datasets including diving number, date, diving time, longitude, latitude,
and depth.

Diving Number Date Diving Time Longitude Latitude Depth

76 17 July 2014 8.95 h 155.32◦ E–155.34◦ E 15.50◦ N–15.52◦ N 2741.88 m

77 21 July 2014 10.33 h 154.58◦ E–154.59◦ E 15.70◦ N–15.72◦ N 5555.68 m

3.1. Number and Volume of Plankton

Processing the recorded video of a complete plankton community from appearing to
disappearing from the screen, the results obtained are shown in Figure 6. Figure 6a shows
the variation of the number of plankton in three six-minute videos, and Figure 6b shows
the variation of the volume of the corresponding three videos. The process of plankton
appearing in front of the camera to disappearing is shown in Figure 6c,d. In the first 30 s of
Figure 6c, the amount of plankton is small and the detection results are more accurate. We
can see that the amount of plankton rises in the last 30 s of Figure 6c. For dense particle
clouds, overlap, and hence, occlusion occurs frequently, which leads to relatively low
average accuracy and recall rates.
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Figure 6. (a) Number of plankton in three six-minute videos. (b) Total volume of plankton in three six-minute videos.
(c) Number of plankton in a period. (d) Volume of plankton in a period.
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The actual volume curve of plankton in the video is shown in Figure 6b,d. We can
see that the volume curve and the quantity curve of plankton generally follow the same
trend. At the 40th second in Figure 6c, the plankton community moves away from the
camera and then comes back, resulting in a smaller scene and a smaller overall volume due
to perspective. So, we can see that the volume curve goes down and then goes up from
Figure 6d.

3.2. Comparison with Six Target Detection Methods

The proposed method is compared with six state-of-the-art methods for performance
evaluation. The results are shown in Figure 7, where Figure 7a represents some original
images of the video, including sediment clouds, plankton, and uneven backgrounds. Top-
Hat transform [24] is used to detect the location of the plankton in the image as shown in
Figure 7b, the weakness of this algorithm is that there are some missed cases. Figure 7c and
Figure 7d show the detection results of the frame difference method [25] and the motion
estimation and image matching method [26], respectively. We show the result from the scan
line marking method [27] in Figure 7e results from the simple block-based sum of absolute
differences flow (SD) method [28], and the Lucas–Kanade (LK) optical flow method [29]
are given in Figure 7f,g. The weakness of the above three methods is that there are a few
false positives, and both Figure 7c,e detected the sediment cloud in the background by
mistake. The result of Figure 7h is obtained using the proposed method. After comparing
with the manual ground truth, we find that the plankton detected by the proposed method
is more consistent with the original image in Figure 7a.

We take 20 images of the video, and the data are cleaned by manual counting to get
the ground-truth. Then, we compare the number of plankton, recall rate, precision rate,
and F1-score of the seven methods. When using 10 frames in the first 30 s of the video,
the amount of plankton is small and the detection results are more accurate, the average
accuracy rate is 0.901, the average recall rate is 0.955, and F1-score is 0.927. In addition, the
equations and related symbols are shown in Table 2 and Equations (21)–(23). The results
are shown in Tables 3 and 4. Taking 10 frames in the last 30 s of the video, the amount of
plankton is high. For dense particle clouds, overlap can easily occur, and hence, occlusion
occurs frequently, so the average accuracy and recall rates are relatively low, i.e., 0.895 and
0.943, respectively, and the F1-score is 0.918, The results are shown in Tables 5 and 6. In
addition, we randomly selected 10 frames from the video for testing. The experimental
results are shown in Tables 7 and 8. The performance of the proposed method is still very
good. We use bold font to highlight the best results in each category in Tables 4, 6, 8 and 9.

Precision =
TP

TP + FP
(21)

Recall =
TP

TP + FN
(22)

F1 =
2Precision× Recall
Precision + Recall

(23)

Table 2. Confusion Matrix.

Relevant Nonrelevant

Retrieved True Positives (TP) False Positives (FP)

Not Retrieved False Negatives (FN) True Negatives (TN)
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Figure 7. Location of plankton detected with seven different methods: (a) original image; (b) Top-Hat transform; (c) frame
difference method; (d) motion estimation and image match; (e) scan line marking method; (f) simple block-based sum of
absolute differences flow (SD); (g) Lucas–Kanade (LK) optical flow method, and (h) proposed method.

Table 3. In first 30 s, comparison of number of detected plankton using seven methods and
Ground-Truth.

The Ten Frames: 1 2 3 4 5 6 7 8 9 10 Mean std

Top-Hat 10 12 9 15 17 18 18 22 24 22 16.7 4.9

Frame difference 20 22 18 22 21 17 19 15 17 14 18.5 2.7

Image match 26 24 23 21 24 17 15 15 16 16 19.7 4.1

Scan line marking 11 7 8 9 10 9 10 9 9 8 9.0 1.1

SD 17 13 11 11 13 13 12 10 12 10 12.2 1.9

LK 17 14 13 13 13 13 12 11 11 10 12.7 1.8

Proposed method 16 14 12 12 12 11 12 10 11 10 12.0 1.7

Ground-Truth 14 13 12 12 11 12 11 9 10 9 11.3 1.6
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Table 4. In first 30 s, comparison of recall rate, precision rate, and F1-score of seven methods.

The Ten
Frames: 1 2 3 4 5 6 7 8 9 10 Average

Top-Hat
Precision 0.9 0.85 0.89 0.73 0.59 0.61 0.56 0.36 0.42 0.41 0.632

Recall 0.64 0.92 0.67 0.92 0.91 0.92 0.91 0.89 1 1 0.878
F1 0.75 0.88 0.76 0.81 0.72 0.73 0.69 0.51 0.59 0.58 0.73

Frame
difference

Precision 0.65 0.55 0.61 0.5 0.52 0.65 0.56 0.53 0.59 0.57 0.573
Recall 0.93 0.92 0.92 0.92 1 0.92 1 0.89 1 0.89 0.939

F1 0.77 0.69 0.73 0.65 0.68 0.76 0.72 0.66 0.74 0.69 0.712

Image
match

Precision 0.54 0.54 0.49 0.52 0.46 0.65 0.67 0.53 0.56 0.56 0.552
Recall 1 1 0.92 0.92 1 0.92 0.91 0.89 0.9 1 0.946

F1 0.7 0.7 0.64 0.66 0.63 0.76 0.77 0.66 0.69 0.72 0.7

Scan line
marking

Precision 0.82 0.86 0.88 0.78 0.9 0.89 0.9 0.89 0.89 0.88 0.869
Recall 0.64 0.46 58 0.58 0.82 0.67 0.82 0.89 0.8 0.78 0.704

F1 0.72 0.6 0.7 0.67 0.86 0.76 0.86 0.89 0.84 0.83 0.778

SD
Precision 0.76 0.92 0.91 0.91 0.77 0.85 0.83 0.8 0.75 0.8 0.83

Recall 0.93 0.92 0.83 0.83 0.91 0.92 0.91 0.89 0.9 0.89 0.893
F1 0.84 0.92 0.87 0.87 0.83 0.88 0.87 0.84 0.82 0.84 0.86

LK
Precision 0.76 0.86 0.85 0.85 0.85 0.85 0.83 0.73 0.82 0.8 0.82

Recall 0.93 0.93 0.92 0.92 1 0.92 0.91 0.89 0.9 0.89 0.921
F1 0.84 0.89 0.88 0.88 0.92 0.88 0.87 0.8 0.86 0.84 0.868

Proposed
method

Precision 0.81 0.93 1 1 0.92 1 0.83 0.8 0.82 0.9 0.901
Recall 0.93 1 1 1 1 0.92 0.91 0.89 0.9 1 0.955

F1 0.87 0.96 1 1 0.96 0.96 0.87 0.84 0.86 0.95 0.927

Table 5. In last 30 s, comparison of number of detected plankton using seven methods and
Ground-Truth.

The Ten Frames: 1 2 3 4 5 6 7 8 9 10 Mean std

Top-Hat 22 17 17 16 13 12 13 12 9 18 14.9 3.6

Frame difference 28 28 30 24 30 15 28 28 27 24 26.2 4.2

Image match 22 22 25 26 31 27 32 28 31 24 26.8 3.5

Scan line marking 13 15 14 11 16 15 19 15 15 13 14.6 2.0

SD 16 21 22 23 23 23 22 23 20 17 21.0 2.4

LK 16 22 23 22 23 23 21 23 20 18 21.1 2.4

Proposed method 15 21 22 21 22 21 21 22 19 16 20.0 2.4

Ground-Truth 19 19 19 18 21 18 21 21 18 15 18.9 1.8

3.3. Discussion of Parameters

For each imaging system, there is a depth of field within which the closest field objects
and farthest field objects are all in focus. If we deploy the system in air, the light intensity
for the near field object and far field object should not be different in theory. However,
when deployed in seawater, the light intensity changes as the light propagates in the
water from near-field to far-field because of scattering caused by seawater and particles
in the seawater. Therefore, during the experiment, there are two situations that need to
be discussed. Firstly, ’grayscale invariance’ is one of the prerequisites of the HS optical
flow method, but in actual operation, the amount of grayscale change is often close to 0
but not equal to 0. Therefore, the threshold β1 is set to handle this situation, as shown in
Equation (24).
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Table 6. In last 30 s, comparison of recall rate, precision rate, and F1-score of seven methods.

The Ten
Frames: 1 2 3 4 5 6 7 8 9 10 Average

Top-Hat
Precision 0.77 0.94 0.94 0.93 0.92 0.92 0.92 0.92 1 0.77 0.903

Recall 0.89 0.84 0.84 0.83 0.57 0.61 0.57 0.52 0.5 0.93 0.762
F1 0.83 0.89 0.89 0.88 0.7 0.73 0.7 0.66 0.67 0.84 0.827

Frame
difference

Precision 0.64 0.64 0.6 0.71 0.65 0.93 0.71 0.71 0.59 0.58 0.676
Recall 0.95 0.95 0.95 0.94 0.95 0.78 0.95 0.95 0.88 0.93 0.923

F1 0.76 0.76 0.74 0.81 0.77 0.85 0.81 0.81 0.71 0.71 0.78

Image
match

Precision 0.82 0.82 0.72 0.65 0.67 0.63 0.63 0.71 0.55 0.58 0.678
Recall 0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.95 0.94 0.93 0.945

F1 0.88 0.88 0.82 0.77 0.79 0.75 0.76 0.81 0.69 0.71 0.789

Scan line
marking

Precision 0.92 0.93 0.93 1 0.94 0.93 0.95 0.93 0.93 0.92 0.938
Recall 0.63 0.74 0.68 0.61 0.71 0.78 0.86 0.67 0.78 0.8 0.726

F1 0.75 0.82 0.79 0.76 0.81 0.85 0.9 0.78 0.85 0.86 0.82

SD
Precision 0.94 0.85 0.82 0.74 0.87 0.74 0.91 0.87 0.85 0.82 0.841

Recall 0.79 0.94 0.94 0.94 0.95 0.94 0.95 0.95 0.94 0.93 0.893
F1 0.86 0.89 0.88 0.83 0.91 0.83 0.93 0.91 0.89 0.87 0.88

LK
Precision 0.94 0.82 0.78 0.77 0.87 0.74 0.95 0.87 0.85 0.78 0.837

Recall 0.79 0.94 0.95 0.94 0.95 0.94 0.95 0.95 0.94 0.93 0.928
F1 0.86 0.88 0.86 0.85 0.91 0.83 0.95 0.91 0.89 0.85 0.88

Proposed
method

Precision 1 0.85 0.82 0.86 0.91 0.81 0.9 0.91 0.95 0.94 0.895
Recall 0.79 0.95 0.95 1 0.95 0.94 0.9 0.95 1 1 0.943

F1 0.88 0.9 0.88 0.92 0.93 0.87 0.9 0.93 0.97 0.97 0.918

Table 7. Comparison of number of detected plankton from 10 randomly selected frames.

The Ten Frames: 1 2 3 4 5 6 7 8 9 10

Top-Hat 19 34 1 47 45 3 3 0 0 2

Frame difference 281 260 10 159 143 15 13 8 10 12

Image match 78 129 12 106 120 16 15 11 9 14

Scan line marking 8 119 1 51 99 7 4 2 2 3

SD 172 195 0 83 124 1 5 1 1 9

LK 163 190 0 86 121 1 5 1 1 10

Proposed method 94 105 0 71 89 1 7 1 1 5

Ground-Truth 87 94 1 66 76 2 6 1 1 5

∣∣u + u′
∣∣ < β1 or

∣∣v + v′
∣∣ < β1 (24)

Secondly, when there is no plankton and the optical flow happens to be small, if the
values of the optical flow are not the opposite but the sum still conforms to Equation (24),
the threshold β2 needs to be set to solve this situation, as shown in Equation (25).

− uu′ > β2 or − vv′ > β2 (25)

The best threshold value is obtained by traversing the range value, the scope of β1
is 0.05 to 0.35, step size is 0.05, the scope of β2 is 3–9, and the step length is 1. Then, the
original images and all those resulting from different thresholds are represented by vectors.
At last, we calculate the cosine similarity between two images, that is the calculation of
cosine distance between two vectors; the larger the cosine distance between the two vectors,
the more similar the two images are. The results are shown in Table 9.
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Table 8. Comparison of recall, precision, and F1-score of detected plankton from 10 randomly selected frames.

The Ten
Frames: 1 2 3 4 5 6 7 8 9 10 Average

Top-Hat
Precision 0.95 0.88 1.00 0.94 0.89 0.67 1.00 0.00 0.00 1.00 0.733

Recall 0.21 0.32 1.00 0.66 0.53 1.00 0.50 0.00 0.00 0.40 0.462
F1 0.34 0.47 1.00 0.78 0.66 0.80 0.67 0.00 0.00 0.57 0.529

Frame
difference

Precision 0.28 0.35 0.1 0.38 0.49 0.13 0.38 0.13 0.10 0.33 0.267
Recall 0.92 0.96 1.00 0.91 0.92 1.00 0.83 1.00 1.00 0.80 0.934

F1 0.43 0.51 0.18 0.54 0.64 0.23 0.52 0.23 0.18 0.47 0.393

Image
match

Precision 0.90 0.70 0.08 0.57 0.58 0.13 0.33 0.09 0.11 0.29 0.378
Recall 0.80 0.96 1.00 0.91 0.92 1.00 0.83 1.00 1.00 0.80 0.922

F1 0.85 0.81 0.15 0.70 0.71 0.23 0.47 0.17 0.20 0.43 0.472

Scan line
marking

Precision 0.94 0.73 1.00 0.88 0.71 0.29 1.00 0.50 0.50 0.67 0.722
Recall 0.86 0.93 1.00 0.68 0.92 1.00 0.67 1.00 1.00 0.40 0.846

F1 0.90 0.82 1.00 0.77 0.80 0.45 0.80 0.67 0.67 0.50 0.738

SD
Precision 0.47 0.46 0.00 0.72 0.57 1.00 1.00 1.00 1.00 0.56 0.678

Recall 0.93 0.95 0.00 0.91 0.93 0.50 0.83 1.00 1.00 1.00 0.805
F1 0.62 0.62 0.00 0.80 0.71 0.67 0.91 1.00 1.00 0.72 0.705

LK
Precision 0.50 0.47 0.00 0.72 0.57 1.00 1.00 1.00 1.00 0.50 0.676

Recall 0.94 0.95 0.00 0.94 0.91 0.50 0.83 1.00 1.00 1.00 0.807
F1 0.65 0.63 0.00 0.82 0.70 0.67 0.91 1.00 1.00 0.67 0.705

Proposed
method

Precision 0.88 0.86 0.00 0.89 0.81 1.00 0.86 1.00 1.00 1.00 0.830
Recall 0.95 0.96 0.00 0.95 0.95 0.50 1.00 1.00 1.00 1.00 0.831

F1 0.91 0.91 0.00 0.92 0.87 0.67 0.92 1.00 1.00 1.00 0.820

Table 9. Select best threshold by comparing cosine distance between two vectors.

Threshold: 0.05 0.10 0.15 0.20 0.25 0.30 0.35

3 0.050 0.059 0.065 0.069 0.072 0.074 0.076
4 0.048 0.057 0.062 0.066 0.069 0.072 0.074

5 0.047 0.055 0.061 0.065 0.068 0.070 0.072

6 0.046 0.054 0.059 0.076 0.069 0.066 0.070

7 0.045 0.053 0.058 0.062 0.065 0.067 0.069

8 0.044 0.052 0.057 0.061 0.064 0.066 0.068

9 0.044 0.051 0.056 0.060 0.063 0.065 0.067

As shown in Figure 8, Figure 8a is the original image, Figure 8c represents the result
of using the threshold β2, and the one without the threshold β2 is shown in Figure 8b.

3.4. Time Complexity Comparison

The time complexity comparison of the proposed method and six state-of-the-art
methods is provided in Table 10. We select a one-minute video of 1440 frames and calculate
the computation time to measure the time complexity of difference methods. Although
the proposed method doesn’t have great advantage in term of the time complexity, it
outperforms other methods in accurate detection of plankton. In terms of the detection
efficiency, some experimental comparisons were carried out. Based on the same one-minute
video, the computation time and recall rate of the following four different strategies are
compared, respectively. We sample pixels at intervals of 1, and take interval frames from
full sequence at intervals of 1 frame. According to the results shown in Table 11, the
interval between pixels has a weak influence on the error of the result, where the recall rate,
precision rate, and F1-score are the closest to the original image’s result, and the detection
efficiency is improved by greatly reducing the calculation time.
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(a)

(b)

(c)

Figure 8. Comparison with or without threshold: (a) original image; (b) one without threshold β2,
and (c) result of using threshold β2.
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Table 10. Time complexity comparison of proposed method and 6 state-of-the-art methods in a 1-min video of 1440 frames.

Top-Hat Frame Difference Image Match Scan Line Marking SD LK Proposed Method

3478 s 176 s 13,149 s 4476 s 989 s 1070 s 1112 s

Table 11. Time complexity comparison of different sampling in a 1-min video of 1440 frames.

A Total of 116 Plankton
Take Interval Frames from full Sequence

Quantity Precision Recall F1 Calculation Time

Pixel interval sampling 81 0.86 0.6 0.71 137 s

All the pixels 30 0.83 0.23 0.36 618 s

A Total of 116 Plankton
Full Sequence

Quantity Precision Recall F1 Calculation Time

Pixel interval sampling 110 0.95 0.91 0.93 436 s

Full sequence 113 0.97 0.95 0.96 1112 s

4. Conclusions

Detection of plankton plays an important role in the exploration and research of deep-
sea areas. Variations in the quantity and spatial distribution of plankton determine the
function of the entire marine ecosystem. In this paper, we introduce a method for deep-sea
plankton community detection in marine ecosystem with an underwater robotic platform.
Compared with that of traditional methods, our method simultaneously improves the
precision and recall of plankton detection. The obtained results and the proved theory
provide a scientific basis for studying the material cycle and energy flow of deep-sea
ecosystems. For our future work, with a view to strengthening the proposed solution, we
aim to improve our plankton detection approach, and then conduct studies for plankton
recognition and identification of their species.
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