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ABSTRACT In hyperspectral image (HSI) classification, there are challenges of the spatial variation in
spectral features and the lack of labeled samples. In this paper, a novel spatial residual blocks combined
parallel network (SRPNet) is proposed for HSI classification. Firstly, the spatial residual blocks extract
spatial features from rich spatial contexts information, which can be used to deal with the spatial variation
of spectral signatures. Especially, the skip connection in spatial residual blocks is conducive to the back-
propagation of gradients and mitigates the declining-accuracy phenomenon in the deep network. Secondly,
the parallel structure is employed to extract spectral features. Spectral feature learning on parallel branches
contains fewer independent connection weighs through parameter sharing. Thus, fewer parameters of the
network require a lesser number of training samples. Furthermore, the feature fusion is conducted on the
multi-scale features from different layers in the spectral feature learning part. Extensive experiments of three
representative HSI data sets illustrate the effectiveness of the proposed network.

INDEX TERMS Feature fusion, hyperspectral image classification, parallel network, spatial residual blocks.

I. INTRODUCTION
Hyperspectral image contains abundant spatial and spectral
information, which can provide a lot of useful information for
image classification and target detection [1]. With rich spatial
and spectral information, it is possible to distinguish the sub-
stances which are difficult to be identified in the traditional
wide-band remote sensing [2]–[4]. Nowadays, HSI has been
successfully used in many fields [5]–[10], such as agriculture
science, environmental management, image segmentation,
target detection, land-cover mapping, and object recognition.
However, there are still some challenges in HSI classification
[11]–[14]:

(1) A large number of spectral dimensions cause the
curse of dimensionality. Although a large number of spectral
dimensions provide a great amount of useful information,
there are generally close correlations between spectral bands,
especially adjacent ones, which lead to information redun-
dancy. The overall classification performance even declines
with the increasing number of bands, forming the so-called
Hughes phenomenon.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jeon Gwanggil .

(2) The number of labeled samples is scarce. With the
increase of spectral dimension, more training samples are
needed correspondingly. However, the labeled HSI sam-
ples are not easy to obtain, which is time-consuming and
expensive.

(3) The huge spatial variation in spectral features. Due to
the difference of atmospheric conditions at different times,
acquisition system states, levels of soil moisture, reflectance
and lighting conditions, the obtained spectral curves of the
same ground objects may be different, while the different
ground objects may present similar spectral curves. Thus,
the HSI data in high-dimensional space have the characteris-
tics of nonlinear separability, which called spatial variability.

To better use the abundant information of HSI, plenty of
algorithms are proposed, including unsupervised and super-
vised learning algorithms [15]–[18]. Unsupervised learning
algorithms, such as K-means [19], extract information from
unlabeled samples according to the sample distribution. The-
oretically, K-means can overcome the challenge of scarcity
labeled samples. However, the performance of K-means is
affected by the choice of clustering centers. Unfortunately,
there is no way to ensure the best choice of initial clus-
tering centers. Therefore, K-means is rarely used for the
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classification of HSI in recent years. Supervised learning
algorithms including k-nearest neighbor (KNN), support vec-
tor machine (SVM), convolutional neural network (CNN)
and so on. These methods use a set of labeled data as
input and aim to train a model that can get corresponding
output according to the input. KNN is generally consid-
ered as the simplest classification method that utilizes the
Euclidean distance to compute and evaluate the similarity
between the training samples and the testing samples [20],
[21]. However, KNN has high computational costs and weak
generalization ability when the training set is small. SVM
tries to learn the maximum-margin hyperplane among all
the samples. Thus, through the hyperplane, the data can be
best separated in the high dimensional feature space [22].
SVM has great advantages in solving the task of nonlinear
high-dimensional data classification with small samples [23].
However, SVM does not utilize the spatial information of
HSI, it is not conducive to the improvement of classification
accuracy.

Due to the increase attention to the spatial information
of HSI, CNN has become the popular method for the HSI
classification [24]–[29]. It has been proved that CNNs can
simultaneously extract both spatial and spectral features of
HSI to produce precise classification results. As can be seen
in [30], a two-channel deep CNN that contains two branches
has been proposed. One of the branches is the spectral feature
extraction channel, and the other is the spatial feature extrac-
tion channel. However, the two-channel network separates
spectral feature learning from spatial feature learning, which
may lead to the loss of some useful spatial-spectral correlative
information during the fusion processing between spectral
features and spatial features. To tackle this problem, the 3-D
CNN was proposed, which takes raw HSI cube data without
any pre-processing or post-processing as input [31]. Such
networks can extract spatial information and spectral infor-
mation in turn, and no longer separate the learning processes
of spatial and spectral information. However, using 3-D data
as the input increases the computation of deep networks.
To solve this problem, [32] designs a parallel network com-
posed of branches with the same structures to extract specific
spectral features. Besides, the network contains only one spa-
tial convolutional layer, which further simplifies the structure
of the network. However, the spatial feature learning with
a shallow layer may lose some useful spatial information,
and the simple integration of features in the parallel network
also loses some useful spectral information. Although this
network is very fast, its classification performance is not very
ideal. Besides, with the networks going deeper, the classi-
fication performances may become worse, which called the
declining-accuracy phenomenon. Thus, [33] designs spectral
and spatial residual blocks to learn the spectral information
and spatial information, respectively. The residual connec-
tion makes gradient backpropagation easier and more sta-
ble, and relieve the declining-accuracy phenomenon in deep
networks. However, the pooling operation after the spatial
residual blocks may lose some useful spatial information.

And the classification step uses only the deepest features,
which also may lose some useful spatial information.

In order to mitigate the declining-accuracy phenomenon
and gain ideal classification performance, this paper proposes
a spatial residual blocks combined parallel network (SRPNet)
for HSI classification. The major contributions of this paper
are summarized and listed below.

(1) The proposed spatial residual blocks can extract abun-
dant spatial features to deal with spatial variability. In addi-
tion, the skip connection between two convolutional layers
can relieve the declining-accuracy phenomenon in the deep
network.

(2) The parallel structure in the spectral feature learning
part has fewer trainable parameters, which can reduce the
required training samples.

(3) Feature fusion integrates multi-scale features of differ-
ent layers to gain richer information in the spectral feature
learning part, which can improve the classification perfor-
mance.

(4) Extensive experiments on different cases illustrate that
the proposed network is more stable and has competitive
performance, especially on the tasks of small training sample
numbers.

The rest content of the paper is arranged as hereafter.
In part II, there is a detailed description of the proposed SRP-
Net. Part III reports the setting and results of experiments.
Part IV makes the conclusion of the paper.

II. THE PROPOSED SRPNet
The overall architecture of SRPNet is shown in Figure 1.
Assuming that raw HSI data contain n labeled pixels which
presented as Xlabeled = {x1, x2, · · · , xn} ∈ <1×1×H , and
then Ylabel = {y1, y2, · · · , yn} ∈ <1×1×L denotes corre-
sponding labels, whereH and L denote the number of spectral
bands and land-cover categories, respectively. To make use of
the rich spatial information, the pixels surrounding the target
are taken into account, forming the 3-D input data cubes.
Therefore, the input are Xin =

{
x′1, x

′

2, . . . , x
′
i

}
∈ <w×w×H ,

where w× w refers the spatial size of input data cubes, and i
denotes the number of input samples.

In the SRPNet, there are three main parts. Firstly, the
spatial feature learning part extracts spatial features through
two spatial residual blocks. Then, the spectral feature lean-
ing part extracts spectral features from divided data through
parallel branches. And feature fusion is adapted in this part.
Finally, the classification part concatenates all the outputs of
all parallel branches and does classification through a soft-
max activation. To prevent overfitting, there are some batch
normalization (BN) and ReLU activation after convolutional
layers.

A. PIXEL-WISE MAPPING
In order to reduce the spectral redundancy, a convolu-
tional layer with 1 × 1 kernel size is used to perform
pixel-wise nonlinear mapping on spectral channels. This
operation transforms the spectral channels into spectral
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FIGURE 1. Block diagram of the SRPNet architecture.

features. Through this step, this layer gets the output
Xout from input Xin. The process can be performed
as follows

xi′′ = 8(x′i), (1)

Xout =
{
x1′′, x2′′, · · · , xi′′

}
∈ <w×w×Hout , (2)

where x′i = [x1
′

i , x
2′
i , . . . , x

H ′
i ], xi′′ = [x1

′′

i , x
2′′
i , . . . , x

Hout ′′
i ].

Hout refers the number of output channels along the spec-

tral dimension. xh
′

i , h = 1, 2, . . . ,H and xhout
′′

i , hout =
1, 2, . . . ,Hout denote the i-th input and output channels,
respectively. 8(·) refers non-linear mapping algorithm. Let
whouth denote the weight, b

h
hout denote the bias. Thus, the non-

linear mapping algorithm can be performed as

xhout
′′

i =

H∑
h=1

whouthx
h′
i + b

h
hout . (3)
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FIGURE 2. The structure of spatial residual block.

B. SPATIAL RESIDUAL BLOCKS
To extract spatial features, two spatial residual blocks with
the 3 × 3 kernel size are utilized after the convolutional
layer. Through skip connection, the gradients of the upper
layers can be quickly propagated back to the lower layers,
which makes the training process of the model more conve-
nient and stable. Therefore, the skip connection can alleviate
the declining-accuracy phenomenon when the network going
deeper.

The spatial residual block is shown in Figure 2. The filter
bank hp+1 in the (p + 1)-th layer contains d convolutional
kernels of size 3 × 3. The value of d equals to the number
of channels of Xp. The spatial size of Xp+1 and Xp+2 stay
at w × w using padding. The Conv-BN function FP+1(Xp)
and FP+2(Xp+1) denote the (p + 1)-th and the (p + 2)-th
spatial convolutional layer which followed with the batch
normalization (BN) fBN (·). Thus, the architecture of spatial
residual block is expressed as

FP+1(Xp) = fBN
(
Xp∗hp+1 + bp+1

)
, (4)

Xp+1
= R

(
Fp+1

(
Xp)) , (5)

Xp+2
= R

(
Xp
+ Fp+2

(
Xp+1

))
, (6)

where bp+1 represents the bias of the (p+ 1)-th layer. R (·) is
the ReLU activation function. Xp+1 and Xp+2 represent the
input and output feature cubes of the (p+ 1)-th layer.

C. BAND PARTITIONING
Deep networks often have a surprising amount of param-
eters. The training process of deep models requires high
computing resources. Especially, in the proposed network,
to learn more sufficient features, there are a large amount of
channels in the spatial feature learning part, which require a
lot of computation. To reduce the number of network trainable
parameters and optimize the calculation, the parallel network
contains parallel branches of parameter sharing is used to
extract spectral features in the spectral feature learning part.
In addition, fewer trainable parameters require lesser training
samples.
Before spectral feature learning, the band partitioning

operation is used to evenly divide input data into blocks along
spectral dimension channels (shown as d in Figure 2). The
band partition operation is expressed as

{B1,B2, . . . ,Bnb} = 9(X′′′, nb), (7)

FIGURE 3. The structure of parallel branches, where ks3 denotes the
kernel size is 3. ks5 denotes the kernel size is 5. Ci , i = 1, 2, 3, 4 denotes
the number of output channels of the i -th convolutional layer in parallel
branch.

where X′′′ =
{
x1′′′, x2′′′, · · · xi′′′

}
∈ <w×w×d refers the

output of the spatial feature learning part. 9 (·, ·) is the band
partitioning function that splits X′′′ into nb blocks with non-
overlapping adjacent channels {Bi}

nb
i=1 of equal width q, and

q = d
/
nb.

D. PARALLEL BRANCHES
After band partitioning operation, nb parallel branches are
used to extract the spectral features of the nb data blocks
{B1,B2, . . . ,Bnb}, respectively. All the parallel branches in
the parallel network have the same structure, which includes
four 1-D convolutional layers. And the ReLU activation is
used after every convolutional layer. The parallel branches
share all the parameters and reduce network computing. The
structure of one parallel branch is shown in Figure 3.

Furthermore, due to the strong correlation between dif-
ferent layers, hierarchical features can provide useful sup-
plementary information for classification. To make use of
the complementary information, themulti-scale features from
convolutional layers of the parallel branch are fused. The
process of feature fusion can be represented as

Xfused = [L4, f (L3) , f (L2) , f (L1)] , (8)

where Xfused represents the result of feature fusion on the
parallel branch. [·] refers the concatenation of outputs from
different convolutional layers in the parallel branch. f (·)
denotes the maxpooling function based on the channels.
Li, i = 1, 2, 3, 4. refers the i-th layer of the parallel branch.
Finally, features of every parallel branch are merged for

classification.

E. CLASSIFICATION
After spatial and spectral feature learning, all the extracted
features are transported to the classification part. Firstly,
the dropout strategy is utilized to make the activation value
of some neurons stop working with a certain probability
through randomness. Dropout enhances the generalization of
the model and improves the classification performance of the
network. Then, a dense layer is used to extract the correla-
tion between the previously extracted features by nonlinear
changes and map features to the output space. Finally, there
is a softmax layer used for classification.
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F. TRAINING OF THE NETWORK
The model parameters are updated through the back-
propagating loss which is expressed as

Loss = −
M∑
i=1

L∑
l=1

Pdata (l|xi) log (Pmodel (l|xi)) , (9)

where M denotes the amount of training samples. L denotes
the total number of output ground-truth classes.Pdata(class =
l|xi) denotes observed conditional distribution of the i-th
sample. P model(class = l|xi) denotes model conditional
distribution of the i-th sample.

Obviously, the observed conditional distribution
Pdata(class = l|xi) satisfies the following distribution

Pdata(class = l|xi) =

{
1, if |yi| = l
0, otherwise

(10)

where yi denotes the corresponding ground-truth label of xi.
Thus, loss function could be written as

Loss = −
M∑
i=1

log (P model (yi|xi)). (11)

During backpropagation, the derivative g of formula (11)
is requiredwhen updating themodel parameters. Specifically,
the mini-batch which contains m samples is selected fromM
training data. Then the gradient can be written as

g =
∂Loss
∂θ
=

1
m
∇θ (−

m∑
i=1

log(P model(yi|xi)), (12)

where θ denotes the initial parameters of the model, and ∇
refers the derivative operator.

Then the model parameters θ is upgraded according to
the loss value in every iteration by use Adaptive Moment
Estimation(Adam), which is shown in (13) and (14).

1θ = −ε

∧
s√
∧
r + δ

, (13)

θ = θ +1θ, (14)

where
∧
s = s

/
(1− pt1) refers the bias-corrected first moment

estimate. s = ρ1s+ (1− ρ1)g refers the biased first moment
estimate.

∧
r = r

/
(1− pt2) denotes the bias-corrected bias sec-

ond moment estimate. r = ρ2r + (1 − ρ2)g2 denotes the
biased second moment estimate. ε denotes the step size.
ρ1, ρ2 ∈ [0, 1) denote the moment estimation of exponential
decay rate. t denotes the time step.
The training process is shown in Algorithm 1.

III. THE EXPERIMENTAL SETTING AND RESULTS
ANALYSIS
A. DATA SETS
To evaluate the classification performance of the presented
network, experiments are conducted on three representative
HSI data sets: Indian pines data set(IN), The University of
Pavia data set(UP), and Salinas data set.

Algorithm 1 Adaptive Moment Estimation of Model
Input: mini-batch size m, maximum number of iterations
N , training data cubes {Xi, yi}Mi=1.
1: while iteration < N do
2: Choose one mini-batch {Xi, yi}mi=1.
3: Calculate the mini-batch loss value by using formula

(11).
4: Update the model parameters by using formula (12),
(13) and (14).
5: end while
Output: Trained model

IN: It is a HSI data set of the Indian Pines test site,
which captured through the Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS) in 1992. It contains 16 ground-
truth classes and 220 spectral channels, and the wavelengths
range from 0.2µm to 2.4µm. Its spatial size is 145×145, and
the resolution is 20 m per pixel.
UP: It is a HSI data set of Northern Italy, which captured

through the Reflective Optics System Imaging Spectrometer
(ROSIS). It contains 9 ground-truth classes. Its spatial size
is 610 × 340 and the resolution is 1.3m per pixel. After
removing absorption bands, there remain 103 bands and the
wavelengths range from 0.43µm to 0.86µm.
Salinas: It is a HSI data set of Salinas Valley, which cap-

tured through the AVIRIS. Its spatial size is 512×217 and the
resolution is 3.7m per pixel. It contains 224 spectral channels
and 16 ground-truth classes.

In the IN data set, since there are only 10249 labeled
samples, 20% of the labeled samples are randomly selected
for training, and the rest 10% for validation, 70% for testing.
As to UP and the Salinas data set, since the labeled samples
are more than 40 thousand, 10% of the labeled samples are
randomly selected for training, and the rest 10% for valida-
tion, 80% for testing. Tables 1-3 list the amounts of labeled
samples for training, validation, and testing on three data sets.

B. EXPERIMENTAL SETTING
Different sizes of input patches contain different amounts
of information, which may influence the classification per-
formance. To test the impact of different input patch sizes,
experiments were set on our model with different input cube
sizes. Considering that the overall accuracy (OA) can reflect
the overall classification performance of methods, the OA
that defined in (15) is used as the evaluation index.

OA =

L∑
i=1

ti

L∑
i=1

si

, (15)

where ti, i = 1, 2, . . . ,L represents the amount of the test
samples that correctly classified in the i-th class, si, i =
1, 2, . . . ,L denotes the amount of the test samples in the i-th
class. L denotes the number of land-cover categories.
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TABLE 1. The assignment of train, VAL and test samples in the IN data set
(20%, 10%, 70%).

TABLE 2. The assignment of train, VAL and test samples in the UP data
set (10%, 10%, 80%).

The results of OA on different data sets with different patch
sizes are shown in Table 4. According to Table 4, the larger
the patch size is, the better the classification performance is.
However, when the patch sizes are equal or larger than 7× 7,
the improvement of classification performance is negligible.
In addition, the larger the patch size is, the more computation
of the network is. After multiple comparing, we chose the
input patch size of 7× 7 for all data sets. Moreover, to make
a fair comparison, the input size was fixed as 7 × 7 for all
models.

In addition, since different data sets have different spectral
channels, the different number of parallel branches were set
for different data sets. There are 10 parallel branches in the
proposed network for IN data set classification, and 8 parallel

TABLE 3. The assignment of train, VAL and test samples in the Salinas
data set (10%, 10%, 80%).

TABLE 4. OA on IN, UP and Salinas with different patch sizes.

branches for UP, 14 parallel branches for Salinas, respec-
tively. Furthermore, the adapted learning rate set is 3×10^-4.

C. RESULTS AND ANALYSIS
The proposed SRPNet was compared with the other four
excellent performed models: BASS Net [32], SSRN [33],
3D-CNN[34], and SSUN[35]. Moreover, three self-compare
experiments were conducted to access the reasonability of
spatial residual blocks, parallel structure, and feature fusion.
The three experiments were under the situation that the pro-
posed networkwithout feature fusion, without spatial residual
blocks and without parallel structure, respectively. In the
experiments of the network without feature fusion, the feature
fusion on the spectral feature learning part was removed.
In the experiments of the network without spatial residual
blocks, all the skip connections in spatial residual blocks were
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TABLE 5. OA, AA, and k of different models on the IN data set (20% train, 10% VAL, and 70% test).

removed. In the experiments of the network without parallel
structure, only one spectral learning branch was set in the
spatial feature learning part.

Three commonly used evaluation indicators are adopted to
evaluate the classification performance, namely OA, average
accuracy (AA) that defined in (17), and kappa (k) that defined
in (19). AA demonstrates the model classification perfor-
mance in every category. As for k, it reflects the consistency
of classification results, and its values ranging from −1 to
1. The higher the value of k, the better the classification
performance is.

ai =
ti
si
, (16)

AA =

L∑
i=1

ai

L
, (17)

pe =

L∑
i=1

ti × si

L∑
i=1

si ×
L∑
i=1

si

, (18)

k =
OA− pe
1− pe

, (19)

where ti, i = 1, 2, . . . ,L represents the amount of the test
samples that correctly classified in the i-th class, si, i =
1, 2, . . . ,L denotes the amount of the test samples in the i-th
class. L denotes the number of land-cover categories.

The experiment results are shown in Tables 5 to 7, and the
best result of every row is marked in bold. It can be seen
that, in all three experiments, the proposed SRPNet achieved
the best classification performance with the highest value of
OA, AA, and k. In the three self-compare experiments, the
classification results of the network without feature fusion,
without residual and without parallel structure are worse than
the SRPNet. These results show that the SRPNet achieves
the best performance only when all residual blocks, parallel
branches, and feature fusion are set.

Figures 4-6 show the visualized results of different meth-
ods in IN, UP, and Salinas data set, respectively. Since all the
methods perform well, there are only little differences in Fig-
ures 4-6. In order to better distinguish the difference between
the compared methods and ours, white boxes are utilized to
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TABLE 6. OA, AA, and k of differet models on the UP data set (10% train, 10% VAL, and 80% test).

TABLE 7. OA, AA, and k of different models on the Salinas data set (10% train, 10% VAL, and 80% test).
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FIGURE 4. Visualized results of different methods for IN (a) Ground truth labels. (b)–(i) Visualized results of BASS Net [32], SSRN [33], 3D-CNN [34],
SSUN [35], without feature fusion, without residual blocks, without parallel branches and SRPNet (20% training, 10% validation, and 70% testing).

FIGURE 5. Visualized results of different methods for UP. (a) Ground truth labels. (b)–(i) Visualized results of
BASS Net [32], SSRN [33], 3D-CNN [34], SSUN [35], without feature fusion, without residual blocks, without
parallel branches and SRPNet (10% training, 10% validation, and 80% testing).
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FIGURE 6. Visualized results of different methods for the Salinas. (a) Ground truth labels. (b)–(i) Visualized results of BASS Net
[32], SSRN [33], 3D-CNN [34], SSUN [35], without feature fusion, without residual blocks, without parallel branches and SRPNet
(10% for training, 10% for validation, and 80% for testing).

illustrate where the pixels were misclassified. It can be seen
from the Figures 4-6, the samples misclassified by SRPNet
are the fewest.

As shown in Tables 8 to 10, the more the training sam-
ples we have, the better the classification performance is.
Especially for the UP and Salinas data sets which contain
more labeled samples than the IN data set, the classification
accuracy is close to 100% when the ratio of training samples
is 20%. In addition, it is worth pointing that when the propor-
tion of training samples is 20%, the classification accuracy
of SSRN and SSUN on the Salinas data set is slightly higher

than ours. Actually, it is predictable. With the increase of
training samples, deeper networks usually show better per-
formance. However, when the proportion of training samples
increased from 10% to 20%, there is little improvement in
classification accuracy. However, for HSI, the acquisition of
labeled samples is expensive and time-consuming, which puts
forward requirements for HSI classification network with
fewer labeled training samples. Therefore, there is no need to
pay a high cost for little improvement. That’s why we chose
10% training samples as the primary comparison experiment
on UP and Salinas data sets. Through those tables, it can be
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TABLE 8. OA on IN data set with different training data.

TABLE 9. OA on UP data set with different training data.

TABLE 10. OA on Salinas data set with different training data.

seen that the proposed SRPNet can obtain better performance
under different training sample proportions. This demon-
strates that our model is more stable and has competitive
performance, especially on the tasks of small training sample
numbers.

IV. CONCLUSION
In this paper, a novel spatial residual blocks combined parallel
network is proposed for HSI classification. Spatial residual
blocks are presented to mitigate the decreasing-accuracy phe-
nomenon. In the spatial feature learning part, there are a
larger number of channels, which can extract more specific
features. In the spectral feature learning part, the parallel
branches with the same structure and shared parameters
are proposed to decrease the trainable parameters and opti-
mize the computation. Furthermore, Feature fusion is utilized
to integrate multi-scale features of different layers to gain
richer information for improving classification performance.

Extensive experiments on three representative HSI data sets
demonstrate that the proposed SRPNet is more stable and has
the competitive performance.
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