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Abstract

Probabilistic programming is a growing area that strives to make statistical analysis more

accessible, by separating probabilistic modelling from probabilistic inference. In practice

this decoupling is difficult. The performance of inference methods is sensitive to both the

underlying model and the observed data. Different inference techniques are applicable

to different classes of models, have different advantages and shortcomings, and require

different optimisation and diagnostics techniques to ensure robustness and reliability.

No single inference algorithm can be used as a probabilistic programming back-end that

is simultaneously reliable, efficient, black-box, and general. Probabilistic programming

languages often choose a single algorithm to apply to a given problem, thus inheriting

its limitations. While substantial work has been done both to formalise probabilistic

programming and to improve efficiency of inference, there has been little work that makes

use of the available program structure, by formally analysing it, to better utilise the

underlying inference algorithm. My thesis is that it is possible to improve probabilistic

programming using program analysis, and I present three novel techniques (both static

and dynamic), which analyse a probabilistic program and adapt it to make inference more

efficient, sometimes in a way that would have been tedious or impossible to do by hand.

Part I of the thesis focuses on static analysis and gives the first formal treatment of the

popular probabilistic programming language Stan. While efficient, Stan constrains the

space of programs expressible in the language. Programs must be written according to

Stan’s block syntax, which reduces compositionality. In addition, Stan does not support

the explicit use of discrete parameters. Part I introduces the probabilistic programming

language SlicStan: a compositional, self-optimising version of Stan, which supports both

discrete and continuous parameters. SlicStan uses information flow analysis and type

inference to capture conditional independence relationships in the program and transform

it for inference in Stan. The result can be seen as a hybrid inference algorithm, where

different parameters are inferred according to different inference algorithms for efficiency.

Part II shows an example of dynamic analysis. The performance of inference algorithms

can be dramatically affected by the parameterisation used to express a model. It is difficult

to know in advance what parameterisation is suitable, as it depends on the properties of

the observed data. This part demonstrates that reparameterisation can be automated

by combining effect handlers in the probabilistic programming language Edward2, with

variational inference preprocessing that searches over a space of possible parameterisations.
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Lay summary

Anna and Ben are about to play a game. Anna flips two coins without showing Ben the

result. Ben guesses whether each of the coins is heads or tails. If he guesses both correctly,

he wins. Otherwise, Anna wins. But they both agree this game is a little unfair: after

all, there is only 25% chance that Ben guesses both coins correctly! Anna flips the coins.

Attempting to make the game more fair, she gives Ben some additional information before

he makes his guess: one of the coins is tails. What are Ben’s chances of guessing the other

coin correctly? Is the game fair now?

Human intuition is notoriously misleading when it comes to such problems. And yet, we

are faced with problems of this kind often and across disciplines. From a doctor deciding

on a treatment based on their patient’s symptoms and test results, to studying the universe

based only on its projection on the night sky, we need ways to make inferences about

unobservable phenomena given only some incomplete related data.

Thankfully, we can express such questions about the uncertainty of phenomena using

probabilistic programming languages. Such languages aim to facilitate reasoning about

probabilities and making inferences. However, statistical inference is not an easy task, and

so probabilistic programming has been only partially successful in practice.

This dissertation shows that we can exploit the rich structure provided by a probabilistic

program to improve inference and to make probabilistic programming more accessible.

Program analysis techniques have long been used to improve conventional programming by

automatically detecting errors, optimising the program so it makes better use of available

resources, making it faster or more robust, or proving properties such as correctness and

safety. My thesis is that program analysis techniques can also be adapted to probabilistic

programming. I show three ways in which program analysis techniques improve automatic

inference: one automates an optimisation task that was previously the responsibility of the

user; one analyses dependencies between variables in the program to generate an efficient

hybrid inference algorithm; and one performs a program re-write that improves inference

robustness and efficiency, and which would have been impossible to do by hand.

As for Ben, he is in luck. Anna accidentally swung the odds in his favour, and he has

more than 66% chance of winning if he guesses the remaining coin is heads.
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CHAPTER 1

Introduction

Bayesian statistics provides a set of rigorous techniques that allow us to analyse and

interpret data, and to make predictions while carefully quantifying uncertainty. It has been

an invaluable tool in many areas where it is important to incorporate domain knowledge in

the modelling of the data, or where data is scarce. In Bayesian terms, we define a statistical

model that encodes our assumptions about an underlying process based on some unknown

variables and some real-world data that we observe. Through Bayesian inference (which

I will also refer to as just inference in this dissertation) we can obtain the conditional

distribution of the unknown quantities given the data, and compute expectations under it,

while rigorously keeping track of uncertainties.

But inference is not an easy task. Performing inference correctly, reliably and efficiently,

requires substantial knowledge of probability and statistics, it is an active area of research,

and it can be time-consuming even for experts. Thus, it can be difficult for non-statistical

fields to adopt Bayesian statistics, despite the benefits it has to offer.

Probabilistic programming aims to decouple modelling from inference. It promises to allow

modellers to work close to their domain of expertise, without having to implement inference

algorithms from scratch. The idea of probabilistic programming languages is to specify

a model in the form of a program, which typically (but not always) encodes the way in

which the data is believed to have been generated. This program is then automatically or

semi-automatically compiled to an inference algorithm, which can compute expectations

of interest without users having to implement computational details.

While probabilistic programming has significantly grown as an area in the past decade,

its dream to democratise Bayesian statistics is still some way ahead. Different inference

algorithms come with different constraints, advantages, and disadvantages. General

algorithms, which work with a wide range of models, typically take longer to give a reliable

result. Tailoring an algorithm to a specific problem can result in a considerably more

1



2 Chapter 1. Introduction

efficient inference, but using the same algorithm for a different model might not be possible.

Probabilistic programming languages face this same problem and are often forced into a

trade-off between generality of the modelling language and efficiency of inference.

The focus of this dissertation is on program analysis techniques for probabilistic program-

ming. Many probabilistic programming languages leverage the formal foundations on

which they have been built to compile to a particular algorithm or perform symbolic

inference. But whether the underlying program structure can be utilised to improve

inference in a program-specific manner has been largely unexplored. The main question of

this dissertation is: Can program analysis improve inference in probabilistic programming?

I claim the answer to this question is yes and I show three ways in which program analysis

of probabilistic programs can support automatic inference.

Contributions and outline of the dissertation

The dissertation is in two parts, which focus on static and dynamic analysis respectively.

Chapter 2 provides background and motivation relevant to both parts. It gives a short

introduction to Bayesian inference, covering different approaches and discussing their

advantages and disadvantages. It also gives an overview of probabilistic programming

languages, dividing them in three categories, and listing some of their strengths and

constraints. The brief Chapter 3, on the other hand, gives background on formal treatment

of programming languages that is relevant to Part I only.

Chapters 4–6 each focus on one of the three contributions of this dissertation:

(1) Chapter 4 describes the first formal treatment of the probabilistic programming

language Stan, and a semantics-preserving procedure that allows for a more compo-

sitional, self-optimising version of Stan, called SlicStan. Chapter 4 is based on the

following publication:

Maria I Gorinova, Andrew D Gordon, and Charles Sutton. Probabilistic
programming with densities in SlicStan: Efficient, flexible, and determinis-
tic. Proceedings of the ACM on Programming Languages 3, Issue POPL,
Article 35 (January 2019).

(2) Chapter 5 extends Stan/SlicStan with explicit support for discrete parameters,

through a semantics-preserving transformation that firstly marginalises out discrete

variables from the program and then re-draws them. This can be seen as an automatic

program-specific composition of two inference algorithms. Chapter 5 is based on the

following publication:
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Maria I Gorinova, Andrew D Gordon, Charles Sutton, and Matthijs Vákár.
Conditional independence by typing. ACM Transactions on Programming
Languages and Systems 44, Issue 1, Article 4 (March 2022).

(3) Chapter 6 gives a way to automatically reparameterise probabilistic models through

effect-handlers and shows how the process of finding a suitable parameterisation of a

probabilistic model can be automated through a variational inference pre-processing.

The chapter is based on the following publication:

Maria I Gorinova, Dave Moore, and Matthew D Hoffman. Automatic
Reparameterisation of Probabilistic Programs. Proceedings of the 37th
International Conference on Machine Learning (July 2020).





CHAPTER 2

Probabilistic programming

Inference and languages

What is probabilistic programming and why is it difficult? This chapter gives a brief

overview of the topic of probabilistic programming, motivating the work of this thesis and

introducing some preliminaries. It gives a gentle introduction to the idea of probabilistic

programming (§ 2.1), and discusses the process and challenges of Bayesian inference and of

probabilistic modelling itself (§ 2.2). Finally, the chapter gives background on some of the

most well-known current probabilistic programming languages, analysing their advantages,

shortcomings, and constraints (§ 2.3).

2.1 A very simple probabilistic program

Suppose Anna flips two fair coins, observes the result, and tells Ben that they are not

both heads. How does Ben’s belief about the flip result of each coin changes based on this

new information?

Anna’s flips generate one of four possible scenarios: both coins are heads, both are tails,

the first is heads and the second is tails, or the first is tails and the second is heads. But

one of these scenarios becomes impossible given the extra information Anna gives us. Each

of the two coins is heads in only one of the remaining three equally likely scenarios. Thus,

the probability that, say, the first coin is heads given they are not both heads is 1/3.

We can express such questions about the uncertainty over phenomena given observations

using probabilistic programming languages (PPLs). In general, such languages are charac-

terised by two facilities that are not usually present in conventional programming. These

are the ability to specify random variables and the ability to observe data.

5
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For example, we can express Anna and Ben’s problem as a probabilistic program:

1 c1 ∼ bernoulli(0.5)

2 c2 ∼ bernoulli(0.5)

3 bothHeads = c1 and c2

4 observe(not bothHeads)

Each coin flip is a Bernoulli random variable, which is either 1 (for heads) or 0 (for tails)

with probability 0.5. In the program above, lines 1 and 2 define these two variables,

naming them c1 and c2. Line 3 introduces a third random variable, bothHeads, which is

the logical ‘and’ between c1 and c2: it is 1 only when both coin flips result in heads, and 0

otherwise. Finally, line 4 observes the data: the coin flips did not both result in heads. A

PPL that can interpret this program will give us the conditional probability distribution

of the unobserved variables in the program given the data. In our case, that is:

p(c1, c2 | not bothHeads) =





0 if c1 = c2 = 1 or c1, c2 /∈ {0, 1}2

1/3 otherwise.

Notation and terminology More concretely, a probabilistic program defines a joint

density over some random variables. We typically divide these variables into parameters θ

and data D and write p(θ,D) for their joint distribution, which is also the product of the

prior on the parameters p(θ) and the likelihood of the data p(D | θ). We are interested in

the posterior distribution

p(θ | D) =
p(θ)p(D | θ)

p(D)
. (2.1)

Specifically, we are interested in extracting information from this distribution, in order to

answer different queries. This usually means computing expectations under this posterior

distribution, for example the expectation of a function f(θ):1

Ep(θ|D) (f(θ)) =

∫
f(θ)p(θ | D)dθ. (2.2)

The process of deriving or approximating the posterior distribution, in a form that allows

us to compute expectations under it, is what we call Bayesian inference.2

But why do we need a dedicated language to do any of this? Can we not simply use

Equations 2.1 and 2.2 to compute any expectation we like? The next sections describe

some of the challenges of performing Bayesian inference in practice and, in turn, the

challenges faced by PPLs: the languages that aim to democratise this difficult process.
1This expression assumes continuous parameters θ. For mixed discrete and continuous parameters, we

can replace the integration with an appropriate combination of integration and summation. Generally,
integration is used as a shorthand for such integration-summation combination throughout this thesis.

2This is only one way of defining “inference”. Statistical inference can more generally be understood as
deriving properties (expectations, but also confidence / credible intervals) of some underlying distribution.
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2.2 Bayesian inference

2.2.1 Deriving a solution analytically

The first question we might ask is can we not perform inference analytically. Indeed,

given the joint p(θ,D), Equation 2.1 gives us the posterior p(θ | D) = p(θ,D)
p(D) = p(θ,D)∫

p(θ,D)dθ .

But the normalising constant (also referred to as the marginal likelihood or evidence)

Z(D) =
∫
p(θ,D)dθ is not always available in a closed form and it is infeasible to

compute in the general case. Suppose, for example, that we are working with N Bernoulli

parameters θ = (θ1, . . . , θN). Then Z(D) =
∑1

θ̂1=0 · · ·
∑1

θ̂N=0 p(θ1 = θ̂1, . . . , θN = θ̂N ,D) =
∑

θ∈{0,1}N p(θ,D). The complexity of computing this expression is O(2N ), which becomes

infeasible for larger N .

What is worse is that even if we assume an oracle that gives us Z(D), computing expecta-

tions under p(θ | D) is still infeasible: Ep(θ|D) (f(θ)) =
∑

θ∈{0,1}N p(θ,D)f(θ). In practice,

such expectations are typically approximated. One way to approximate an expectation

under some p(x) is through Monte Carlo estimation (Metropolis and Ulam, 1949):

Ep(x) (f(x)) ≈ 1

I

I∑

i=1

f(x̂(i)) where x̂(i) ∼ p(x) (2.3)

In other words, if we can obtain a set of samples x̂(i) from the distribution of interest p(x),

then we can use this set to estimate the expectation of any function under p(x).

2.2.2 Rejection sampling and the curse of dimensionality

This leads us to a second idea of how to perform inference: can we not simply sample

(θ̂
(i)
, D̂(i)) from the joint p(θ,D), discard any samples where D̂(i) does not match the

actual observed data, and use the remaining samples for Monte Carlo estimation?

For instance, in the coins example, we can generate S = {(c(i)1 , c
(i)
2 , bothHeads(i))}Ii=1,

where c
(i)
1 ∼ bernoulli(0.5), c

(i)
2 ∼ bernoulli(0.5), and bothHeads(i) = c

(i)
1 ∧ c(i)2 . Rejecting

all samples such that bothHeads(i) = 1, leaving us with S ′ = {(c(i)1 , c
(i)
2 , bothHeads(i)) ∈ S |

bothHeads(i) = 0}. These remaining samples S ′ are samples from the posterior distribution

p(c1, c2 | bothHeads = 0).

This is a particular instantiation of the rejection sampling algorithm, and is a valid inference

algorithm, as (after scaling) p(θ | D) is entirely contained by p(θ,D):

p(θ̂,D) = p(D)p(θ̂ | D) ≥ Cp(θ | D) for all θ̂ and C a constant (2.4)
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Figure 2.1: Illustration of the curse of dimensionality: the ratio between some volume

of interest and a volume that contains it, diminishes as dimensionality increases. The

figure is taken from Michael Betancourt’s tutorial on Probabilistic Computation https:

//betanalpha.github.io/assets/case_studies/probabilistic_computation.html.

While simple, general, and exact, this algorithm does not scale. To see why, consider

continuous parameters θ and suppose that the prior over θ is an N -dimensional uniform

distribution between 0 and 1. Suppose also, that the data is such that the posterior of

θ is an N -dimensional uniform distribution between 1/3 and 2/3. The prior forms an

N-dimensional hypercube of side 1, and the posterior is an N -dimensional hypercube

of side 1/3 centred at the middle of the prior hypercube. Figure 2.1 shows this for

N ∈ {1, 2, 3}. Our rejection sampling algorithm would choose at random a point inside

of the big hypercube and only accept it if it is also inside the smaller hypercube. The

acceptance rate R is proportionate to the ratio between volumes of the two hypercubes:

R =
(1/3)N

1N
=

1

3N
(2.5)

Even if we are to sample from a prior closer to the posterior, say uniform between 1/3− ε
and 2/3 + ε, for any small ε, the ratio between volumes, and thus the acceptance rate, is:

Rε =
(1/3)N

(1/3 + 2ε)N
=

1

(1 + 6ε)N
(2.6)

In either case, as the dimensionality increases, the volume outside of the inner hypercube

increases exponentially, and the acceptance rate approaches 0. This is a particular

instantiation of the curse of dimensionality (Bellman, 1961; Bishop, 2006, section 1.4).

The curse of dimensionality is why many numerical and sampling methods, such as

numerical integration, rejection sampling, and importance sampling, are impractical for

problems with more than few dimensions. It also motivates the search for more effective

inference solutions, which exploit various properties of probability distributions, such as

smoothness or conditional independencies.

https://betanalpha.github.io/assets/case_studies/probabilistic_computation.html
https://betanalpha.github.io/assets/case_studies/probabilistic_computation.html
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2.2.3 Markov chain Monte Carlo inference

Markov chain Monte Carlo (MCMC) is a class of sampling algorithms, introduced by

Metropolis et al. (1953) and reviewed by Neal (1993) and Murray (2007), which perform

sampling by transitioning according to a Markov chain. This chain is carefully designed,

so that its stationary distribution is the target probability distribution (for example the

posterior distribution in the case of inference). Drawing samples according to the Markov

chain eventually converges to drawing samples from the target, which makes MCMC

methods asymptotically exact : they are exact in the presence of infinite amount of samples.

Consider the problem of sampling from some p(θ). Let π(θ | θ′) be the transition

probabilities (also referred to as kernel) of a homogeneous Markov chain. Given some initial

sample θ(0), we can generate a sequence of samples θ(1) ∼ π(θ(1) | θ(0)), θ(2) ∼ π(θ(2) | θ(1)),
. . . , θ(N) ∼ π(θ(N) | θ(N−1)). This sequence converges towards samples from p(θ), provided:

(1) the chain is ergodic, meaning it is aperiodic and it is possible to “reach” any state θ′

from any other state θ following a finite sequence steps of non-zero probability. Then,

no matter the value of the initial θ(0), π(θ(N) | θ(0)) reaches a unique stationary

distribution (also called equilibrium distribution ) π∞(θ(N)) in the limit of N →∞:

lim
N→∞

π(θ(N) | θ(0)) = π∞(θ(N)) (2.7)

π∞(θ) =

∫
π(θ | θ′)π∞(θ′)dθ′ (2.8)

(2) p(θ) is this stationary distribution: π∞(θ) = p(θ).

As long as these conditions are met, drawing samples, one by one, from π(θ(n) | θ(n−1))
is a valid sampling algorithm. When used to sample from a posterior distribution, it is

also a valid inference strategy. While MCMC guarantees exact inference in the presence of

infinitely many samples, the quality of inference in practice is hugely influenced by the

shape of the underlying distribution and the choice of kernel π(θ | θ′).

The MCMC family of sampling algorithms is very large, and a full review is out of scope

for this thesis, but is studied in detail by many probabilistic reasoning textbooks (MacKay

2003, Chapters 29 and 30; Bishop 2006, Chapter 11; Barber 2012, Chapter 27; Murphy

2012, Chapter 24). In the rest of this section, I will focus on one particular MCMC

algorithm, which is closely related to the work of this thesis: Hamiltonian Monte Carlo.
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Current sample

Proposed sample

Leapfrog step

Figure 2.2: An illustration of a single HMC iteration in a 2-dimensional parameter space.

The current sample is given an initial momentum at random; we take 10 leapfrog steps to

simulate the particle trajectory and obtain a candidate sample.

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is an MCMC algorithm introduced by Duane et al.

(1987) and popularised by Neal et al. (2011). It makes use of the gradient of the target

density function as a way to efficiently explore the underlying probability distribution.

HMC is typically applied to problems where the number of parameters in the model is

known and fixed, although extensions that work for nonparametric models have also been

recently introduced (Mak et al., 2021).

In brief, HMC works by translating the problem of sampling from a probability distribution

to exploring the dynamics of a particle in a Hamiltonian system. Suppose that the target

density p(θ) is differentiable almost everywhere. Suppose also that we are given a function

p∗(θ) that is proportionate to the p(θ); that is p(θ) = p∗(θ)
Z

for the normalising constant

Z =
∫
p∗(θ)dθ. Now consider the multidimensional surface given by − log p∗(θ). A

particle on that surface can be described by its position θ and momentum p. Its potential

energy E(θ) is given by the height of the surface at θ and its kinetic energy K(p) is given

by the magnitude of the momentum p and the mass m of the particle:

E(θ) = − log p(θ)− logZ K(p) =
1

2m
‖p‖2
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In a system with a single particle and no friction, no energy is lost and the Hamiltonian,

the sum of potential and kinetic energy, stays constant:

H(θ,p) = E(θ) +K(p)

The change of the position and momentum over time t is described by a system of

differential equations:

dθ

dt
= ∇K(p) =

1

m
p

dp

dt
= −∇E(θ)

Here ∇E(θ) =
(
∂E(θ)
∂θ1

. . . ∂E(θ)
∂θN

)
and ∇K(p) =

(
∂K(p)
∂p1

. . . ∂K(p)
∂pN

)
denote the gradi-

ents of E(θ) and K(p) respectively.

Equipped with these equations, we can simulate (run forwards in time) the “physical”

system for any initial position θ and momentum p. Now consider the MCMC transition

kernel π(θ,p, t | θ′,p′, t′), which is 1 if simulating the system between time t′ and t, starting

at an initial position θ′ and initial momentum p′, results in position θ and momentum

p, and it is 0 otherwise. As the system is deterministic, we can also recover the initial

position and momentum by simulating back in time starting from the final position and

momentum.3That is:

π(θ,p, t | θ′,p′, t′) = π(θ′,p′, t′ | θ,p, t) (2.9)

Consider the joint density pH(θ,p) = exp(−H(θ,p))
ZH

, where ZH =
∫

exp(−H(θ,p))dθdp =

Z
∫

exp(−K(p))dp is a normalising constant. As the Hamiltonian stays constant, we have

pH(θ,p) = pH(θ′,p′), giving us:

pH(θ,p)π(θ,p, t | θ′,p′, t′) = pH(θ′,p′)π(θ′,p′, t′ | θ,p, t) (2.10)

Equation 2.10 is known as detailed balance and it is a sufficient condition for showing

that pH(θ,p) is the stationary distribution of π (Murphy, 2012, Theorem 17.2.3). Thus,

simulating the sliding particle physical system produces samples from the joint density

pH(θ,p). Marginalising over p gives us:

∫ +∞

−∞
pH(θ,p)dp =

∫ +∞

−∞

1

ZH
exp(−E(θ)) exp(−K(p))dp

=
1

Z
exp(−E(θ))

∫ +∞

−∞

Z

ZH
exp(−K(p))dp

= p(θ)

3This is equivalent to simulating forwards in time starting from the final position θ′ and the reversed
final momentum −p′.
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In other words, we can obtain samples from p(θ) by augmenting the parameter space with

the momentum variables p, running a simulation of the Hamiltonian system described

above, and discarding the samples obtained for p. In practice, we need to discretise time

in order to run the simulation, which in HMC is usually done using leapfrog integration.

The error introduced by discretising the simulation is corrected with an accept/reject step

similar to the Metropolis-Hastings algorithm (Hastings, 1970).

A single iteration of HMC is visually described in Figure 2.2. In brief, obtaining a new

sample θn+1 given a current sample θn is done as follows:

(1) Sample an initial momentum p ∼ N (0,mI), where I is the identity matrix, and

compute the Hamiltonian of the system H = E(θn) +K(p).

(2) Simulate the system starting at position θn and momentum p. This step requires

E(θ) to be differentiable with respect to θ and uses the gradient ∇E(θ) to make

steps (some small ε in size) in the direction of steepest descent. After L leapfrog

steps the particle is at position θ∗ and has momentum p∗. This final position of the

particle, θ∗, is the proposed sample.

(3) Decide whether to accept (θn+1 = θ∗) or reject (θn+1 = θn) the candidate sample.

This is done based on the difference between the re-evaluated Hamilton H∗ =

E(θ∗) + K(p∗) and the initial Hamilton H. The bigger this difference, the less

accurate was the discretised simulation at approximating the behaviour of physical

system, and the less likely it is to accept the candidate sample. When the difference

is very big, we call the sample step divergent. Divergences can indicate problems with

inference and are an important diagnostics tool, as shown next and in Figure 2.3.

Advantages and shortcomings

MCMC methods are asymptotically exact: for an infinite number of samples, sampling

from the transition distribution corresponds to sampling from p(θ) exactly. In practice,

this means that to obtain a reliable approximation of a distribution, we need to sample

for a long time, until the Markov chain converges. Unfortunately, there is no way to

calculate in advance for how long we should run a given chain to achieve some desired

accuracy (Tierney, 1994; Brooks and Gelman, 1998). In particular, the geometry of the

target distribution has a dramatic effect on the performance of MCMC. Well-conditioned

distributions that have a small ratio between the variable with highest variance and the

variable with the lowest variance, will typically be easier to sample from than distributions

where this ratio is large. This leads to some pathological cases, where no number of samples

smaller than infinity provides a correct approximation of the distribution of interest.
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(a) Neal’s funnel density. (b) 10000 samples drawn with HMC.

Figure 2.3: Neal’s funnel.

For example, consider Neal’s funnel, which is a model chosen by Neal (2003) to demonstrate

the difficulties Metropolis–Hastings (Hastings, 1970) runs into when sampling from a

distribution with strong non-linear dependencies. The model defines a density over

variables x and y:

y ∼ N (0, 3) xi ∼ N (0, exp(y/2)) for i = 1, . . . , 9

The density has the form of a 10-dimensional funnel (thus the name “Neal’s funnel”), with

a very sharp neck, as shown in Figure 2.3a. MCMC methods, including HMC, have trouble

obtaining samples from the neck of the funnel, because there exists a strong non-linear

dependency between x and y, and the posterior geometry is difficult for the sampler to

explore well. Figure 2.3b shows 10000 samples drawn from Neal’s funnel using HMC.

Despite half of the probability mass being inside of the funnel, HMC is not able to explore

it fully due to its high curvature. Samples where a divergence occurred are shown in

yellow, concentrating around the region that HMC’s leapfrog integrator finds problematic.

Neal’s funnel is a typical example of the dependencies that can occur in hierarchical models

in practice, and therefore it highlights the importance of MCMC diagnostic techniques that

can detect possible inference problems. Many such techniques exist, including examining

HMC divergences, comparing the within and between variance of several different MCMC

chains, prior predictive and posterior predictive checks. In addition, there are various ways

to address inference problems, one of which, model reparameterisation, I discuss in detail

in Chapter 6. For an excellent introduction to various diagnostic techniques and ways to

address computational problems, refer to Gelman et al. (2020).
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2.2.4 Variational inference

In practice, sampling methods can be very computationally demanding, as they sometimes

require a huge number of iterations to obtain a reasonable approximation for a target

distribution. Variational inference (VI) methods (MacKay 2003, Chapter 33; Bishop 2006,

Chapter 10; Murphy 2012, Chapter 21; Blei et al. 2017) take a different approach that

trades asymptotic guarantees for efficiency. The main idea of variational inference is to use

optimisation instead of sampling, to obtain an analytical approximation to a distribution

of interest. In brief, given a tractable family of distributions, VI tries to find a distribution

from that family that best approximates the target distribution.

Consider some family Q of distributions over the parameters θ. We call variational

inference the process of finding some optimal q∗(θ) ∈ Q, such that q∗(θ) is as close as

possible to the distribution of interest, for example, the posterior p(θ | D):

q∗(θ) = arg min
q(θ)∈Q

d(p(θ | D), q(θ)) (2.11)

Here, d((p(θ | D), q(θ))) encodes the dissimilarity between p and q. Different dissimilarity

metrics can be used, but the one that is most common in variational inference is the

Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951) from q to p:

DKL(q(θ) || p(θ | D)) = Eq(θ) (log q(θ)− log p(θ | D)) (2.12)

However, we cannot directly use this metric in an objective, as we do not know p(θ | D).

Usually, the KL divergence is used to derive a lower bound for the evidence p(D). Note

that DKL(q(θ) || p(θ | D)) ≥ 0, and only equals 0 when p and q are identical. This results

is knows as Gibbs’ inequality (MacKay, 2003, Section 2.6). We derive:

DKL(q(θ) || p(θ | D)) = Eq(θ) (log q(θ)− log p(θ | D))

= Eq(θ) (log q(θ))− Eq(θ)
(

log
p(θ,D)

p(D)

)

= Eq(θ) (log q(θ))− Eq(θ) (log p(θ,D)) + Eq(θ) (log p(D))

= Eq(θ) (log q(θ))− Eq(θ) (log p(θ,D)) + log p(D)

≥ 0

And define the evidence lower bound (ELBO) as:

ELBO = Eq(θ) (log p(θ,D))− Eq(θ) (log q(θ)) ≤ log p(D) (2.13)

As log p(D) is a constant with respect to θ, minimising the KL-divergence (2.12) is

equivalent to maximising the ELBO (2.13). Assuming that we are given p(θ,D) (or, in
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the more general case, any function proportionate to p(θ | D)), and that we can efficiently

estimate expectations under q(θ), we can re-define our variational objective as maximising

the expectation lower bound:

q∗(θ) = arg max
q(θ)∈Q

[
Eq(θ) (log p(θ,D))− Eq(θ) (log q(θ))

]
(2.14)
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Figure 2.4: An example of the variational family of choice not capturing the complexity of

the target distribution. The target banana-shaped distribution is given by x ∼ N (0, 1)

and y ∼ N (−2x2, 1). The dashed white lines show the mean-field variational posterior.

There are different ways to choose a variational family Q, so that expectations under

distributions in the family are easy to compute (Bishop 2006, Chapter 10, Murphy 2012,

Chapter 21). One way that is increasingly used, and especially in the context of probabilistic

programming, is to parameterise the distribution using some set of variational parameters

φ: a distribution q(θ;φ) ∈ Q is entirely determined by its variational parameters φ. In

addition, the family Q is chosen so that distributions belonging to it are easy to sample

from. This allows us to approximate the expectations in the ELBO by Monte Carlo

averaging. Equation 2.14 becomes:

φ∗ = arg max
φ

∑

θ̂∼q(θ;φ)

[
log p(θ̂,D)− log q(θ̂;φ)

]
(2.15)
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Many modern differentiable programming frameworks, such as TensorFlow (Abadi et al.,

2015) and PyTorch (Paszke et al., 2019), can automatically differentiate through such

expressions. Thus, we can simply specify the loss to be the (negative) ELBO and

readily use a differentiable programming framework to perform optimisation. This is

usually referred to as black-box variational inference (Ranganath et al., 2014), automatic

differentiation variational inference (ADVI) (Kucukelbir et al., 2016), or (whenever we

work with minibatches of the data) stochastic variational inference (SVI) (Hoffman et al.,

2013).

Mean-field variational inference

One simple choice of a variational family is the mean-field variational family Q = {N (θ |
µ,σT I) | µ ∈ RN ,σ ∈ RN

+}, where N is the size of the parameter space. In other words,

the variational family consists of all independent multivariable Gaussian distributions. For

example, consider the model from Figure 2.4:

x ∼ N (0, 1) y ∼ N (−2x2, 1)

The mean-field variational family for this model is given by all distributions q(x, y;µx,y, σx,y) =

N (x | µx, σx)N (y | µy, σy) for µx,y ∈ R and σx,y ∈ R+.

Advantages and shortcomings

Variational inference scales: it works for very large amounts of data, and can utilise modern

frameworks and architectures to achieve fast inference. However, it trades accuracy to be

able to do so. The variational family Q is typically restricted to be potentially much simpler

than the target distribution p, and we cannot, in general, determine how far off would even

the optimal q be from this target. Figure 2.4 shows an example of a poor approximation

resulting from variational inference. The simple mean-field approximation is not able to

capture the tails of the banana-shaped distribution, which results in a poor estimation of

expectations under the inferred posterior: for example, the true expectation of y is −2,

and its standard deviation is 3, but under the variational posterior, the expectation of y is

approximately −0.4 and its standard deviation is 1.

2.2.5 Inference on graphical models

MCMC and VI both require a tractable density (or mass) function p∗(θ), which is

proportionate to the distribution of interest with respect to the parameters θ. However, it

is not typical for these algorithms to make use of further information about the structure
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Figure 2.5: Factor graph corresponding to the factorisation of a simple HMM (Eq. 2.17).

of the function p∗(θ), such as its factorisation. Information about the factorisation of the

target distribution allows us to reason about conditional independencies between variables

and develop algorithms that actively exploit the structure of a probabilistic model to make

inference more efficient.

We express the factorisation of a distribution p(θ) =
∏

i φi(θ
(i)) in terms of graphical

models (Bishop 2006, Section 8.4; Barber 2012, Part I; Murphy 2012, Chapter 20). Here,

each φi is some function on a subset of the parameters θ(i) ⊆ θ. A graphical model encodes

this factorisation through a graph, where each parameter θ ∈ θ is a separate vertex,

and dependencies between parameters appearing in the same subset θ(i) are expressed

by connections between those vertices corresponding to θ(i). In particular, factor graphs

(Frey, 2002) are bipartite graphs, with a variable vertex for each θ ∈ θ and a factor vertex

for each factor φi(θ
(i)) of p(θ). An edge exists between a variable node θ and a factor

φi(θ
(i)) if and only if θ ∈ θ(i).

For example, consider a Hidden Markov Model (HMM) with N parameters z = (z1, . . . , zN ),

N observed variables y = (y1, . . . , yN), and some given constant arrays α and β:

z1 ∼ Bernoulli(α1)

zn ∼ Bernoulli(αzn−1) for n = 2,. . . , N

yn ∼ Bernoulli(βzn) for n = 1,. . . , N

Using b(x | π) as a shorthand for the probability mass function of a Bernoulli(π) variable

x, the factorisation of the joint distribution over z and y is:

p(z,y) = b(z1 | α1)b(y1 | βz1)
N∏

n=2

b(zn | αzn−1)b(yn | βzn) (2.16)

More concretely, let’s say N = 3. Then the joint is:

p(z1, z2, z3, y1, y2, y3) = b(z1 | α1)b(z2 | αz1)b(z3 | αz2)b(y1 | βz1)b(y2 | βz2)b(y3 | βz3)
(2.17)
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Figure 2.5 shows this expressed in terms of a factor graph: round vertices are variable

nodes and square vertices are the factor nodes, b(z1 | α1), b(y1 | βz1) and so on. Shaded

variable nodes (y1, y2 and y3) denote observed variables.

Suppose we want to compute the posterior p(z | y) = p(z,y)∑
z p(z,y)

. Calculating this in the

general case requires N nested sums over the parameters z, meaning its complexity is

exponential: O(2N) But knowing the factorisation of the joint p(z,y) allows us to rewrite

the expression for computing the normalising constant Z =
∑

z p(z,y):

Z =
∑

z

p(z,y)

=
∑

z1

∑

z2

∑

z3

b(z1 | α1)b(z2 | αz1)b(z3 | αz2)b(y1 | βz1)b(y2 | βz2)b(y3 | βz3)

=
∑

z3

b(y3 | βz3)
[∑

z2

b(z3 | αz2)b(y2 | βz2)
[∑

z1

b(z1 | α1)b(z2 | αz1)b(y1 | βz1)
]]

The inner-most sum over z1 only depends on z2, and thus we can compute it independently

of z3 as a function of z2. This generalises beyond the particular value of N we chose:

Z =
∑

zN

b(yN | βzN )


∑

zN−1

b(zN | αzN−1
)b(yN−1 | βzN−1

) . . .

[∑

z2

b(z3 | αz2)b(y2 | βz2)
[∑

z1

b(z1 | α1)b(z2 | αz1)b(y1 | βz1)
]]

. . .

]

Starting from the inner-most expression
(∑

z1
b(z1 | α1)b(z2 | αz1)b(y1 | βz1)

)
, we reduce

each bracket to a function of a single variable zn+1, while summing out another variable,

zn. In other words, it takes O(22) time to compute each of N − 1 intermediate expressions,

thus the overall complexity is O(N). A huge improvement over the O(2N) from before!

Inference algorithms based on graphical models can utilise the structure of a given model

to automatically derive an efficient model-specific inference strategy, as we did by hand

above. Some algorithms, such as the sum-product algorithm (Bishop, 2006, Section 8.4.4)

are exact, but restricted to tree-structured graphical models in which computing exact

marginals is tractable. Others, like variational message-passing (Winn et al., 2005) and

expectation propagation (Minka, 2001), as used by Infer.NET (Minka et al., 2014), are

applicable to a large class of graphical models, but only provide an approximate solution.

Here, we discuss in more detail one algorithm for exact inference that relates to the work

described in Chapter 5: variable elimination.
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(b) Connect f1 (in green) to the former

neighbours of z1. The remaining factor

graph defines the marginal p(z2, z3,y).
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(red). Create a new factor f2, by summing

out z2 from the product of these factors.
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Figure 2.6: Step by step example of variable elimination.

Variable elimination

Variable elimination (VE) (Zhang and Poole, 1994; Koller and Friedman, 2009) is an exact

inference algorithm efficient in models with sparse structure. It is applicable to general

graphs, but it requires the model to be such that marginals are tractable. In particular, it

applies to any model that contains only discrete parameters of finite support.

The idea is to eliminate (marginalise out) variables one by one. To eliminate a variable z,

we multiply all of the factors connected to z to form a single expression, then sum over all

possible values for z to create a new factor, remove z from the graph, and finally connect

the new factor to all former neighbours of z. Here, “neighbours” refers to the variables

which are connected to a factor that connects to z.

Figure 2.6 shows the VE algorithm step-by-step applied to the HMM of length 3 from

before. We eliminate z1 to get the marginal on z2 and z3 (2.6a and 2.6b), then eliminate

z2 to get the marginal on z3 (2.6c and 2.6d). Finally, having obtained p(z3,y), we can sum

out z3 to obtain the normalising constant Z, which gives us the posterior p(z | y) = p(z,y)
Z

.

While the procedure shown in Figure 2.6 is optimal for this model, this would not have

necessarily been the case if we had eliminated the variables in a different order (for example,

starting from z2 would be less efficient). VE provides an optimal exact marginalisation

solution, but only with respect to a particular elimination ordering. Finding the optimal
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ordering is an NP-complete problem (Yannakakis, 1981; Arnborg et al., 1987), however

many good heuristics exist (for example minimal degree ordering (George and Liu, 1989)).

Advantages and shortcomings

In the cases when a model has a sparse structure, consisting of factors that allow for ana-

lytical marginalisation, variable elimination provides an efficient exact solution. However,

in the general case, the complexity of VE is exponential in the number of nodes.

More generally, algorithms that operate on graphical models include a large number

of approximate inference techniques. These include loopy belief propagation (Frey and

MacKay, 1998), variational message-passing (Winn et al., 2005), expectation propagation

(Minka, 2001), and other message-passing algorithms. While more general and able to

scale, these methods suffer from the same problem we saw in §§ 2.2.4: the approximated

solution might be very far off the true distribution of interest.

2.2.6 Other inference strategies

The list of algorithms presented so far is by no means exhaustive. The number of available

Bayesian inference strategies, each coming with its own set of constraints, advantages and

limitations, is too vast for it to be practical to include a full review in this dissertation.

Here, I briefly discuss a few other strategies that are less relevant to the contributions of

this work, but nevertheless provide a useful background when contemplating the challenges

of probabilistic programming.

Sequential Monte Carlo

Sequential Monte Carlo (SMC) (Gordon et al., 1993; Doucet et al., 2001; Rainforth,

2017, Chapter 6), also referred to as particle filtering, is a Monte Carlo method that is

particularly suitable for dynamic models that involve stochastic control flow and recursion.

Like MCMC, SMC is a Monte Carlo algorithm that approximates a distribution through

a collection of samples. While MCMC obtains such a collection by repeatedly mutating

a sample from the distribution, the core idea behind SMC is to independently sample

from some proposal distribution, and compute a weight associated with each such sample,

based on how likely it is that the sample is also from the target distribution. Expectations

under the target can then be computed as a weighted average of the obtained samples.

What makes SMC different to simple importance sampling (Barber 2012, Section 27.6;

Bishop 2006, Section 11.1.4), is that this sample-and-weight process is divided into stages.

The algorithm sequentially samples each random variable given the already sampled
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variables and updates the weight. This has the advantage that at every intermediate

step we can augment the population of samples by resampling them based on the current

weights. This ensures that more samples are propagated in areas where we expect the

probability mass of the target to be higher, thus making better use of available resources.

SMC can also be used to construct a proposal distribution for MCMC methods. This

combination between SMC and MCMC inference is referred to as Particle Markov chain

Monte Carlo (Andrieu et al., 2009).

SMC has been a popular algorithm in the field of probabilistic programming, due to its

generality (see § 2.3). The structure made available by the presence of a probabilistic

program is particularly useful for automatically devising a program-specific SMC inference

algorithm, which works in the presence of stochastic control flow and is highly parallelisable.

However, similar to other inference algorithms, SMC also comes with its disadvantages. In

particular, the algorithm is sensitive to the choice of proposal distribution. A proposal

distribution that is close to the true target would result in efficient inference, while a poorly-

suited proposal would result in low effective sample size, especially in high dimensions (due

to the curse of dimensionality, §§ 2.2.2). This has resulted in research studying various

techniques for improving the proposal, including inference compilation: learning a suitable

proposal through variational inference (Le et al., 2017). SMC typically requires a number

amount of samples, usually much larger than gradient-based methods like HMC, but it

can be better suited for multi-modal distributions and is more general.

For an excellent review of sequential Monte Carlo, refer to Rainforth (2017, Chapter 6).

Likelihood-free inference methods

Most of the methods discussed so far are likelihood-based. That is, they explicitly evaluate

the likelihood p(D | θ) to perform inference. However, in some cases, the likelihood

is unavailable or intractable. Likelihood-free inference methods can perform Bayesian

inference based solely on simulation from the generative model. Likelihood-based and

likelihood-free are umbrella terms that include many inference strategies, and thus lack

canonical references, but have been recently surveyed, for example, by Papamakarios

(2019) and Cranmer et al. (2020).

We already saw one likelihood-free inference method: rejection sampling (§§ 2.2.2). Rejec-

tion sampling is perhaps the simplest likelihood-free inference algorithm, where we simulate

parameters θ̂ and data D̂ from the model and throw away (or reject) any simulated data

D̂ that does not exactly match the observed data D. This is likelihood-free, as we do

not evaluate the likelihood function at any point. Approximate Bayesian computation
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(ABC) (Sisson et al., 2018; Beaumont, 2010) methods are based on a similar idea, but

accept simulated data that is sufficiently close, some small distance ε, from the true data.

That is, a sample θ̂ is accepted whenever |D̂ − D| < ε. Many likelihood-based Monte

Carlo methods can be augmented to a likelihood-free alternative, by approximating the

likelihood this way, which gives rise to algorithms such as MCMC-ABC (Marjoram et al.,

2003) and SMC-ABC (Sisson et al., 2007). These algorithms are more general, as they

do not require a tractable likelihood, but are less efficient than their likelihood-based

counterparts.

Recent work in the area also includes likelihood-free inference through neural density

estimation (Durkan et al., 2018; Papamakarios et al., 2019, 2021; Gonçalves et al., 2020).

Density estimation is the problem of estimating the value of the probability density function

of some random variable at an arbitrary point, given only a set of independently generated

samples of that variable; neural density estimation tackles this by using neural networks.

This relates closely to the problem of likelihood-free inference, where we can generate such

a set of samples, but do not know the density function of the data. Sequential neural

methods for likelihood-free inference (Durkan et al., 2018; Gonçalves et al., 2020) perform

inference by either approximating the likelihood function using neural density estimation

and using it in combination with likelihood-based methods, or by directly estimating the

posterior density.

For an excellent review of likelihood-free inference, refer to Papamakarios (2019, Part II).

2.3 Probabilistic programming languages

Probabilistic programming (Gordon et al., 2014; van de Meent et al., 2018) aims to

democratise the difficult process of Bayesian inference by decoupling the process of writing

a model from the actual inference algorithm. However, we saw in § 2.2 that inference is not

an easy task. What algorithm is best suited for inference in a given model depends hugely

on the properties of the model itself. Does the model have a fixed number of random

variables? Does the model contain only discrete variables, only continuous variables, or

both? Is the model differentiable? There does not exist a single inference algorithm that

provides an efficient solution for all possible models.

Probabilistic programming languages (PPLs) inherit this difficulty. Usually, languages

trade off generality for efficiency of inference or automation. Some PPLs would restrict

the space of supported models in order to use an efficient algorithm such as HMC. Others

support a more general class of models, but are then forced to use a general inference
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algorithm, which can be less efficient than less general alternatives. Some PPLs have

adopted the concept of programmable inference, which allows for the best of both worlds,

but requires significantly more effort from the user, who now needs to choose and adapt

the inference algorithm themselves.

This leads to the development of many different PPLs, each with its own set of advantages

and constraints. This section aims to provide a brief overview of the topic of probabilistic

programming languages. The area has significantly expanded in recent years, and thus

covering all existing PPLs in this dissertation will not be practical, but I focus on a few of

the more popular languages, as a basis for the discussion on program analysis.

2.3.1 Definition and classification of PPLs

Recall the simple probabilistic program from § 2.1:

c1 ∼ bernoulli(0.5)

c2 ∼ bernoulli(0.5)

bothHeads = c1 and c2

observe(not b)

There are two things that make this program different to a conventional program: the

probabilistic assignment (or sample), ∼, and the observe statement, observe. This follows

perhaps the most established and most often used definition of probabilistic programs,

which is given by Gordon et al. (2014):

Probabilistic programs are “usual” programs (...) with two added constructs:
(1) the ability to draw values at random from distributions, and (2) the ability
to condition values of variables in a program via observe statements.

While all PPLs fit this definition, the details can vary significantly. Both sampling and

observation are understood and implemented in different ways across languages, yielding

vastly different syntaxes and workflows. How do we classify probabilistic programming

languages so that we can easily compare and contrast them? In the following sections,

I give one way to distinguish and talk about PPLs in a structured way. However, it is

important to note that not all PPLs will fall in one of the described categories, and the

described classification should not be seen as a formal taxonomy.

A fundamental way in which PPLs differ is their treatment of probabilistic assignment (∼).

There are (at least) two ways in which we can interpret a statement such as y ∼ dist(x):

(1) as stating that the underlying joint probability density contains the factor dist(y | x),

or (2) as a random draw from the distribution dist(x) the result of which is bound to y.
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Importantly, these two are not equivalent treatments. For example, consider the simple

program x ∼ normal(0, 1);x ∼ normal(0, 1). The unnormalised joint density under (1) is

over a single variable, x: p∗(x) = N (x | 0, 1)N (x | 0, 1). But in the case of (2), we sample,

one by one, two separate variables x, say we denote them x1 and x2. The corresponding

unnormalised density of the program is p∗(x1, x2) = N (x1 | 0, 1)N (x2 | 0, 1). As these

variables are bound to the same variable name x, the first result is overwritten. We are

left with the result of only the second sample statement, thus, we can also see the program

as corresponding to the density p(x2) =
∫
p(x1, x2)dx = N (x2 | 0, 1).

Programs written in languages that adopt the former, density-based interpretation, ex-

plicitly define an (unnormalised) joint density function. The (unnormalised) likelihood of

the model is usually available, it can be evaluated and used to perform likelihood-based

inference. However, sampling data from the model is not always possible. Such models

are called explicit or prescribed (Diggle and Gratton, 1984).

PPLs that adopt the latter, sample-based interpretation yield programs that are effectively

simulators. If ran ignoring all observe statements, such programs have the effect of

simulating data from the model. Models that are defined in terms of a sampling procedure

are called implicit (Diggle and Gratton, 1984), as we cannot, in general, evaluate the

likelihood function of these models: it is implicitly defined.

While there are many categories in which we can divide PPLs, including based on pro-

gramming style (declarative, imperative, or functional) or type of inference used (Monte

Carlo, symbolic, variational, etc.), here I propose a way of classifying them based on their

interpretation of ∼. This gives rise to three categories: density-based (or explicit) PPLs

(§§ 2.3.2) that yield explicit models, sample-based (or implicit) PPLs that yield implicit

models (§§ 2.3.3), and effect-handling-based PPLs (§§ 2.3.4), which can interpret ∼ either

explicitly or implicitly based on context. This classification is useful for several reasons:

(1) It relates PPLs and the models expressible in those PPLs to the established and

useful distinction between explicit and implicit probabilistic models (Diggle and

Gratton, 1984). It is important to note that these two model categories are not

mutually exclusive. It is possible to simulate data from some density-based programs,

and it is also possible to evaluate the likelihood for some sampling-based programs.

(2) It directly points to a suitable way of formalising the semantics of the language.

Typically the semantics of a PPL can be formalised in several equivalent ways, how-

ever, the distinction between explicit and implicit PPLs is helpful when the aim is to

develop semantics that is closely tied to implementation. Explicit PPLs can be given
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straightforward density-based semantics, which is the focus of Chapter 4. Implicit

PPLs are better formalised through trace-based (or sampling-based) semantics (for

example as described by Hur et al. (2015), Staton et al. (2016), Heunen et al. (2017)).

(3) It hints at the class of algorithms suitable for each language. Being able to evaluate an

(unnormalised) density, defined on a fixed parameter space, is essential for gradient-

based algorithms such as HMC or VI, making these algorithms easily applicable to

explicit models. On the other hand, an implicit model will sometimes require a more

general inference algorithm, such as SMC, or in some cases, even a likelihood-free

algorithm (Cranmer et al. (2020, Section 3) give details on when likelihood-based

methods are applicable to a probabilistic program).

The following sections present one or two example probabilistic programming languages

for each of the three PPL types. In particular, I give an overview of Stan (Carpenter et al.,

2017) and Edward2 (Tran et al., 2018) (among other PPLs), which are PPLs central to

Part I and Part II of this dissertation respectively.

2.3.2 Density-based (or explicit) PPLs

Density-based PPLs, which I am also going to refer to as explicit PPLs, explicitly define an

unnormalised joint probability density. Examples of density-based languages include Stan

(Carpenter et al., 2017), BUGS (Gilks et al., 1994), and JAGS (Plummer et al., 2003), as

well as languages that operate on graphical models, including Infer.NET (Minka et al.,

2014), Fun (Borgström et al., 2011), and Tabular (Gordon et al., 2015). Turing (Ge et al.,

2018), a PPL that allows for compositional inference with different inference techniques

being used for different sub-parts of the model, is also density-based.

In these languages, statements such as y ∼ dist(x) are interpreted as information that

the joint density given by the model contains the factor dist(y | x). The parameter

space is fixed: it consists of some parameters of interest θ, such that the dimension of

θ does not change during inference. A model in a density-based PPL usually describes

a tractable unnormalised density p∗(θ,D); in other words, the model can be used to

evaluate p∗(θ,D) for different parameter values θ. Languages that support deterministic

observations (that is observe(f(D) = D̂) for some non-identity deterministic function f ,

as opposed to observe(D = D̂)), such as Infer.NET, are an exception to this tractable

unnormalised density rule.

This constrained interpretation of ∼ leads to several advantages of density-based PPLs. As

the parameter space is fixed, and the (unnormalised) joint density is usually available in
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closed form and can be evaluated, explicit PPLs are, in general, able to use more efficient

algorithms compared to sample-based PPLs. In particular, we can apply gradient-based

algorithms such as HMC or VI. It is also intuitive to write both directed and undirected

models, as probabilistic statements are understood simply as adding a multiplicative factor

to the target density. However, it is not always possible to efficiently simulate data from the

model. Explicit models are also more constrained in terms of recursion and conditionals,

as the number of random variables they need is fixed.

Below, I briefly discuss two density-based PPLs: Stan and Infer.NET.

Stan

Stan (Carpenter et al., 2017) is a popular probabilistic programming language. It has been

adopted and used in numerous fields, including cosmology (Lieu et al., 2017), microbiology

(Sankaran and Holmes, 2018), epidemiology (Flaxman et al., 2020; Grinsztajn et al.,

2020), sociology (Pierson et al., 2020), psycho-linguistics (Jäger et al., 2017), and business

forecasting (Taylor and Letham, 2018). Stan’s syntax is inspired by and similar to that

of BUGS (Gilks et al., 1994), and is close to the model specification conventions used

in publications in the statistics community. Stan is imperative and compiles to C++

code. It consists of program blocks, which contain sequences of variable declarations and

statements. For example, consider the Eight schools model, defined as:

µ ∼ N (0, 5) τ ∼ HalfCauchy(0, 5)

θn ∼ N (µ, τ) yn ∼ N (θn, σn) for n = 1, . . . , 8

where N, yn, σn for n ∈ {1, ..., N} are given as data.

Program 2.1 gives the Stan program for Eight schools. It declares the observed data N,y,

and σ in the data block and, separately, the parameters µ, τ, and θ in the parameters block.

As τ comes from a half-Cauchy distribution, 4 it takes only positive values: the way to write

this in Stan is through a constrained type, in this case, real<lower=0>. Finally, the model

block defines the unnormalised joint density of the model. Formally, that is the model

defines p(µ, τ,θ,σ,y) ∝ N (µ | 0, 5)HalfCauchy(0, 5)
∏N

n=1N (θn | µ, τ)N (yn | θnσn). The

inference task is to find p(µ, τ,θ | σ,y).

In general, a Stan program can contain up to seven blocks, with all blocks discussed in

detail in Chapter 4. Most notably, the data block declares the data D and the parameters

block declares the parameters θ. Executing these blocks in order by treating the code as

4The half-Cauchy distribution has probability density function proportionate to the probability density
function of the Cauchy distribution, but the support of half-Cauchy is constrained to R+.
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a conventional imperative code results in evaluating the log density log p(D,θ) for the

observed data D and at some value of the parameters θ.

Program 2.1: Eight schools in Stan

data {

int N;

real y[N];

real sigma[N];

}

parameters {

real mu;

real<lower=0> tau;

real theta[N];

}

model {

mu ∼ normal(0, 5);

tau ∼ cauchy(0, 5);

for (n in 1:N) {

theta[n] ∼ normal(mu, tau);

y[n] ∼ normal(theta[n], sigma[n]);

}

}

Inference. Stan uses HMC, and more specif-

ically, an enhanced version of the No-U-Turn

Sampler (NUTS) (Hoffman and Gelman, 2014;

Betancourt, 2017), which is an adaptive path

lengths extension to HMC. As described above,

a Stan program essentially defines the body of

a function that takes as an argument the pa-

rameters θ and evaluates the joint log density

at that point θ. As p(θ | D) ∝ p(θ,D), we can

use this function for MCMC inference. Stan

performs inference by running the code impera-

tively for different parameter values while using

automatic differentiation to compute gradients

with respect to the parameters.

Strengths. Stan is flexible, in that it gives

the user full control over the definition of the

target joint density. Compilation of Stan code

goes through several stages of optimisation and

static transformations, which increases runtime

performance and stability of inference. Inference is fully automatic, including HMC

hyperparameter tuning and automatic differentiation, as well as very efficient. Stan also

automatically performs numerous diagnostic checks upon inference and issues warnings

and suggestions for improvement.

Constraints. Being density-based, Stan requires a fixed number of parameters during

inference. It is also not generally possible to simulate data from the model. In addition,

the block syntax makes it difficult to compose different Stan programs, or to have flexible

user-defined functions (which I address in Chapter 4). HMC requires the joint density to

be piece-wise differentiable. This means having discrete data in Stan is possible, but it

is not possible to explicitly encode discrete parameters (which I address in Chapter 5).

While the Stan compiler performs some static optimisations, statistical optimisations, such

as reparameterisation and marginalisation, are mostly the responsibility of the user.
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Infer.NET

Infer.NET (Minka et al., 2014) is a probabilistic programming framework, which can be

used within the .NET ecosystem, and it is well-known for its use in skill rating systems

(Herbrich et al., 2006), recommendation systems (Christakopoulou et al., 2016), and other

applications that require real-time responsiveness. Infer.NET constructs an explicit factor

graph corresponding to the specified program. Every program variable is a variable node

in that graph, and every statement, probabilistic or deterministic, is a factor in that graph.

Program 2.2 shows the Eight schools example written in Infer.NET.

Program 2.2: Eight schools in Infer.NET

var N = Variable.New<int>();

var NRange = new Range(N);

var sigma = Variable.Array<double>(NRange);

var mu = Variable.GaussianFromMeanAndPrecision(0, 5);

var tau sq = HalfCauchySquared(Variable.Constant(12.5));

var theta = Variable.Array<double>(NRange);

theta[NRange] = Variable.GaussianFromMeanAndPrecision(mu, tau sq).ForEach(NRange);

var y = Variable.Array<double>(NRange);

y[NRange] = Variable.GaussianFromMeanAndPrecision(theta[NRange], sigma[NRange]);

Inference. Infer.NET programs compile to efficient message-passing code. The language

supports both expectation propagation (Minka, 2001) and variational message-passing

(Winn et al., 2005), both of which provide an approximate solution. In models whose

factor graph is a tree of discrete variables, Infer.NET’s message-passing algorithm reduces

to belief propagation (Frey and MacKay, 1998), which is equivalent to variable elimination

(§ 2.2) and gives an exact solution. For some models, Infer.NET is able to exploit the

conditional independence structure available through the explicit factor graph, and use

blocked Gibbs sampling (Geman and Geman, 1984).

Strengths: One of the biggest advantages of Infer.NET is its speed of inference: the

language has been employed in real-life systems that work with large amounts of data and

require very fast inference results. In addition, inference is also fully black-box.

Constraints: In addition to the constraints of a density-based PPL, Infer.NET also

supports only certain operators. For example, division and multiplication between variables

is not always possible, and the compiler can sometimes throw an error requesting the model

to be reformulated. Unlike other PPLs, Infer.NET also does not provide results about the

joint posterior distribution of parameters, but can only infer the marginal distributions.
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2.3.3 Sample-based (or implicit) PPLs

Sample-based PPLs, or also implicit PPLs, define the unnormalised joint density only

implicitly, by encoding a way to sample from that density. Examples of such languages

include Anglican (Wood et al., 2014; Tolpin et al., 2016), Church (Goodman et al., 2008),

Gen (Cusumano-Towner et al., 2019), WebPPL (Goodman and Stuhlmüller, 2014), and

PyProb (Baydin et al., 2019). In addition, likelihood-free inference PPLs, such as ELFI

(Lintusaari et al., 2018), SBI (Tejero-Cantero et al., 2020), and Omega (Tavares et al.,

2019) are also sample-based. That is because they define the joint density only implicitly

through simulation, and support models where the likelihood is not available by definition.

In these languages, statements such as y ∼ dist(x) are understood as drawing a sample

from the distribution dist(x) at random and binding it to y. As a consequence, models

in sample-based PPLs are essentially simulators : they describe the process of generating

data. When ran forward, these models can usually give us samples from the joint density

defined by the model. However, evaluating this joint density on a fixed-size subset of the

parameters is not always possible. For example, suppose we are interested in parameters

θ that are of fixed support and that the model defines θ and some set of latent variables z

that have variable support. Then the unnormalised density p∗(θ,D) ∝
∫
p(θ, z,D)dz is

not always tractable. It is in this sense that we say that the density is implicit : p∗(θ,D) is

not always tractable, even though an explicit density on traces p(θ, z,D) may still exist.

Sample-based PPLs often have cleaner, more interpretable syntax compared to density-

based PPLs, but need to adopt less efficient, more general-purpose inference algorithms.

Sample-based PPLs support a larger class of models, including models with complicated

control-flow, recursion, and unbounded number of random variables. While undirected

models are also often supported, they are, in general, less intuitive to write than in

density-based PPLs, due to lack of generative interpretation for undirected factors.

Below, I once again use the Eight schools example to give brief overview of two sample-based

PPLs: Anglican and Gen.

Anglican

Anglican (Wood et al., 2014; Tolpin et al., 2016) is a general-purpose PPL integrated in

Clojure. It supports a wide set of probabilistic programs, including programs with discrete

and continuous parameters, unbounded recursion and control flow. The language has been

extensively formalised and has strong theoretical foundations (Staton et al., 2016).
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Program 2.3 shows Eight schools written in Anglican. 5 The model is a defquery: a function

that takes as input the observed data and returns the parameters of interest. Internally, this

query is transformed to continuation passing style (CPS) (similarly to WebPPL (Goodman

and Stuhlmüller, 2014)), where continuations are explicitly maintained at two checkpoints :

sample and observe. In brief, an Anglican program is a standard Clojure program, with

the exception of sample and observe, which are executed differently, as defined by the

inference algorithm. Each inference algorithm defines its own implementation for the two

checkpoints and is able to alter the behaviour of the code to produce samples from the

posterior. Rainforth (2017, Chapter 7) discusses inference algorithm implementation in

Anglican in detail, while below I discuses the inference strategies readily available as part

of the language.

Program 2.3: Eight schools in Anglican

(defquery schools [N, y, sigma]

(let [mu (sample (normal 0 5))

tau (sample (gamma 1 1))]

(loop [n 0]

(if (< n N)

(let [y n (nth y n)

sigma n (nth sigma n)

theta n (sample (normal mu tau))]

(observe (normal theta n sigma n) y n)

(recur (+ n 1)))))

[mu, tau]))

Inference: Anglican supports a range

of inference techniques. To allow for

inference in any program expressible

in the language, Anglican was the

first PPL to adopt particle-based in-

ference (Rainforth, 2017). In addition

to simple importance sampling, stan-

dard SMC (Gordon et al., 1993; Doucet

et al., 2001) and PMCMC (Andrieu

et al., 2009), the language also intro-

duces several new and PPL-focused

particle-based techniques, such as in-

teracting particle MCMC (Rainforth

et al., 2016) and particle Gibbs with ancestor sampling (van de Meent et al., 2015).

Strengths: Anglian provides clean functional syntax for general probabilistic programming.

The semantics of the language is well-studied and give it a strong theoretical background.

Anglican supports higher-order programs with varying support, recursion and stochastic

control-flow. It supports a large number of fully automated inference algorithms, and

is perhaps the most sophisticated PPL in terms of particle-based inference. Composing

models in Anglican is straightforward.

5This Anglican version of Eight schools has been given slightly different priors compared to the
previously introduced model, due to availability of built-in distributions of the language.
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Constraints: Anglican inherits some of the limitations of the inference algorithms it

adopts. In order to be well-suited for SMC inference, an Anglican program needs to

interleave sample and observe statements as much as possible. This is in direct contrast

to other languages, where in general it does not matter at what point observations are

made. To ensure high-quality inference, particle-based methods require a large number of

samples, and thus are typically more computationally-demanding than alternatives.

Gen

Gen (Cusumano-Towner et al., 2019) is a Julia-based PPL centred around the idea of

programmable inference (Mansinghka et al., 2018). It consists of components that allow

the user to build their own inference algorithms, for example by building custom MCMC

kernels, or combining several inference strategies. Like Anglican, Gen is sample-based and

supports programs with complex control flow and recursion.

Program 2.4: Eight schools in Gen

@gen function schools(N::Int, σ::Vector{Float64})

µ = @trace(normal(0, 5), :mu)

τ = @trace(gamma(1, 1), :tau)

for (n, σ n) in enumerate(σ)

θ n = @trace(normal(µ, τ), (:theta, n))

y n = @trace(normal(θ n, σ n), (:y, n))

end

return nothing

end;

Program 2.4 gives the Eight school

model written in Gen. The model

is a Julia function defined using the

annotation @gen. The function takes

as arguments the unmodelled data

(data we do not assign probability to)

N and σ, and defines all modelled

variables using a @trace expression

and giving them unique addresses. A

@gen function can be used to gener-

ate traces: instances of a trace ab-

stract data type, which contains random choices made in the program and provides various

operators such as evaluating the log probability of the trace, or computing the gradient of

the log joint density with respect to different parameters.

Inference: While Gen supports various built-in inference algorithms, such as variational

inference, HMC and SMC, the biggest advantage of the language is the flexibility it

provides in combining inference operators to build custom inference algorithms. Gen’s API

is particularly well-suited for exploring different SMC strategies and for defining custom

MCMC kernels.

Strengths: Like other sample-based PPLs, Gen provides a very flexible modelling language

that allows for an unbounded number of random variables. Composing probabilistic models
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in Gen is straightforward, and in addition, the language also provides generative function

combinators that act as higher-order functions, such as map, and can compactly combine

Gen models. Perhaps the biggest strength of Gen is that it provides components for

building custom inference algorithms, while still automating lower-level details.

Constraints: While its biggest strength, programmable inference in Gen can be challenging

for beginners. Using inference algorithms automatically is less straightforward than with

other languages (for example, there is no fully automated version of SMC). In addition,

Gen’s building blocks are constructed with specific focus on sampling-based and variational

inference, and there is no support for algorithms such as variational message-passing, loopy

belief propagation, and expectation propagation. Gen supports transformations on traces,

but it is not clear how to apply transformations that need program context, such as, for

example, the one described in Chapter 6.

2.3.4 Effect-handling-based PPLs

Both density-based and sample-based PPLs assign a particular (and differing) meaning

to the statement y ∼ dist(x). In contrast, in effect-handling-based PPLs, this meaning is

not fixed and can change depending on context. Such languages include Pyro (Bingham

et al., 2019), NumPyro (Phan et al., 2019), Edward2 (Tran et al., 2018), and Eff-Bayes

(Goldstein, 2019), and they use algebraic effect handlers to specify the behaviour of a

probabilistic program.

Algebraic effects and handlers (Plotkin and Pretnar, 2009; Plotkin and Power, 2003)

have emerged as a convenient, modular abstraction for controlling computational effects.

Effect-handing-based PPLs tread the probabilistic assignment operation ∼ as an effectful

operation, the behaviours of which is specified by a separate effect handler. Such an

effect handler can specify behaviour matching that of a density-based PPL, or that of

sampling-based PPL, but it can also give a completely different meaning to the ∼ operator.

Defining and working with handlers is part of the PPL itself, and they can be nested to

produce complex composable transformation (Moore and Gorinova, 2018). In contrast,

other languages that treat ∼ as a special checkpoint where program behaviour can

be altered, such as Anglican and WebPPL, can implement different algorithm-specific

behaviour for sampling, but this is seen as part of the inference algorithm implementation

rather than as part of the modelling language.

I give more background on effect-handling-based PPLs, including examples of defining

and composing handlers, in § 6.1. Here, I give a brief overview of one such PPL: Edward2.
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Edward2

Edward2 (Tran et al., 2018) is a deep probabilistic programming language embedded

into Python and built on top of TensorFlow (Abadi et al., 2015). It has found several

applications in fields that require processing large amounts of data, such as intelligent

transportation systems (Abodo et al., 2019), recommendation systems (Mladenov et al.,

2020), and biological sequence models (Weinstein and Marks, 2021). Edward2 uses effect

handlers (referred to in the language as interceptors or tracers) to change the meaning of

probabilistic assignment at runtime. Handlers can be defined by the programmer, and can

also be nested to produce complex model transformations.

Program 2.5: Eight schools in Edward2

def schools(N, sigma):

mu = ed.Normal(loc=0., scale=5., name="mu")

tau = ed.HalfCauchy(loc=0., scale=5., name="tau")

theta = ed.Normal(loc=mu * tf.ones(N), scale=tau * tf.ones(N), name="theta")

y = ed.Normal(loc=theta, scale=sigma, name="y")

return y

with ed.interception(log prob):

schools(N=8, sigma=data["sigma"])

Program 2.5 shows the Eight schools model in Edward2. A model is simply a generative

function, that creates some random variables. When run forward, it samples random

variables using random number generation, meaning we can see Edward2 as a sampling-

based PPL. However, when running the model in the context of a log prob handler (last two

lines in Program 2.5), probabilistic assignment statements are instead treated as adding a

term to the model’s log joint density (similarly to Stan). Thus, in this case, we can think

of Edward2 as a density-based PPL.

Inference: Edward2 focuses on gradient-based inference methods, and has automatic

support for various algorithms such as variational inference and HMC. However, the

flexibility provided by adopting effect handlers in the language makes it possible for the

user to perform transformations on their model, compose inference strategies, or derive

their own. I describe one such way in which effect handlers can be utilised to improve

inference in Chapter 6.
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Strengths: Like other deep PPLs, Edward2’s inference is particularly well-suited for many

dimensional problems and large amounts of data. Composing models in the language

is straightforward, and effect handlers provide a flexible way to perform programmable

inference. In addition, handlers can be used as a tool for lightweight composable program

transformation, which allows for model reparameterisation, marginalisation and automatic

generation of variational families for VI (Moore and Gorinova, 2018).

Constraints: Edward2 requires some verbose and repeated syntax (for example, when

naming variables). While providing flexibility, effect handlers can be challenging for

inexperienced users and the automated inference support that Edward2 provides is not

always as straightforward as with some alternatives. Caution is required when working

with certain models; for example, models with discrete parameters need to be transformed

to allow for gradient-based inference. Edward2’s handlers are restricted to handlers where

the program continuation is implicit (see Chapter 6 for details) and thus only a limited

number of model transformations are possible.

2.3.5 Other PPLs

Classifying any complex subject into clean and well-defined categories is always hard, and

this is also the case with the PPL classification suggested in this dissertation. There are

languages that do not neatly fit in either of the categories we discussed.

One major group of such languages is symbolic PPLs, where the inference result is an

exact symbolic expression. For example, Hakaru (Narayanan et al., 2016) and PSI (Gehr

et al., 2016) transform probabilistic programs into symbolic representations, simplify those,

and deliver an exact expression for the posterior, which may or may not be tractable.

Dice (Holtzen et al., 2020) compiles programs with discrete random variables into boolean

decision diagrams. SPPL (Saad et al., 2021) is applicable to both discrete and continuous

distributions and compiles programs to sum-product expressions. The reason why these

languages are difficult to categorise is that it is unclear whether we can consider the

likelihood available or not. On the one hand, an expression for the likelihood might exist,

and the language may be able to manipulate it to produce the final result. But on the

other hand, the evaluation of the likelihood may not tractable, which is often the case

when deterministic observations or unbounded number of random variables is allowed.
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Static optimisation for probabilistic
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Introduction to Part I

Static analysis refers to the class of techniques that can analyse programs without executing

them — all such analysis happens at compile time. Techniques include static type checking

and type inference, data flow and information flow analysis, abstract interpretation, and

symbolic execution. Static analysis can be extremely useful for automatically error checking

code, as well as performing code optimisation.

This part focuses on static analysis for probabilistic programming. It starts with a short

overview of the notation and methods used (Chapter 3). It then introduces the probabilistic

programming language SlicStan — a more compositional version of Stan — and presents

two novel techniques (Chapters 4 and 5) that automatically refine inference by transforming

a SlicStan program at compile time while preserving its semantics.



CHAPTER 3

Formal treatment of programming

languages

Background and intuition

This short chapter contains a description of formal treatment of programming languages

and introduces the notation used in Part I. It is predominantly meant as a simple reference

for some standard notation in programming languages research.

3.1 Formal syntax of programming languages

Usually, programming languages are studied through an idealised calculus defined through

a grammar of terminal and non-terminal symbols. As an example, let’s consider a very

simple arithmetic language defined by the following grammar, where c ranges over numbers

and x ranges over strings:

Simple Arithmetic Language

E ::= expression

c constant

x variable

E1 + E2 addition

E1 − E2 subtraction

A program in this language is an expression E, which can be a constant, a variable, a sum

of two expressions, or the difference between two expressions. For example, x + 2 and

3.0− 2.1 + z + w are valid programs, while 2 ++ 3 and 2 − are not.

37
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3.2 Rules of inference

Aspects of programming languages, such as semantics or type systems, are often formalised

through inductive definitions. An inductive definition for some relation is the least relation

(according to an underlying order), which is closed under some set of rules (for an example,

refer to Gordon (1995)). One common way of making an inductive definition is through

a set of inference rules: rules that consist of one or more premises Pn separated via a

horizontal line from a conclusion Q:

P1 . . . PN

Q

The above rule states that if we know that P1, . . . , PN all hold then we can conclude Q.

The rule is often read in the other direction, from the bottom to the top: we can conclude

Q if we can separately conclude each Pn for n = 1, . . . , N .

For example, consider a simplified propositional logic, where a logic formula P consists of

only conjunctions and disjunctions of other formulæ:

Simplified Propositional Logic:

P ::= formula

T true

F false

P1 ∧ P2 conjunction

P1 ∨ P2 disjunction

We can inductively define a relation ` P , read as “P is provable”, through the following

set of inference rules:

Rules of the Simplified Propositional Logic:

(True)

` T

(And)

` P1 ` P2

` P1 ∧ P2

(Or1)

` P1

` P1 ∨ P2

(Or2)

` P2

` P1 ∨ P2

The rule (True) is an axiom: the formula T is provable without any premise.

On the other hand, (And) states that if P1 is provable and P2 is provable, than we can

conclude that P1 ∧ P2 is provable. Alternatively, as the term ` P1 ∧ P2 appears as a

conclusion only in rule (And), we know that to show P1 ∧ P2 is provable we must show
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that P1 is provable and that P2 is provable. This is in contrast to disjunction, where to

show ` P1 ∨ P2 we must either show that P1 is provable (by applying (Or1)) or that P2 is

provable (by applying (Or2)).

We can use these rules to check if a formula is provable by deriving a proof tree. For

example:

(True)` T

(True)` T
(Or1)` T ∨ F

(Or2)` (T ∧ F) ∨ (T ∨ F)
(And)` T ∧ [(T ∧ F) ∨ (T ∨ F)]

A proof tree of a formula that is not provable does not exist. For example, it is not possible

to derive a proof tree of ` F ∧T. If it was possible, it would be through the rule (And),

meaning we would need to derive a proof tree for ` T and ` F. Since there is no rule that

can show ` F, it is also not possible to show a proof for ` F ∧T.

Inference rules allow for a concise formal definition of a calculus and can be used to derive

proofs of various properties. This is often either by structural induction, where we assume

a property holds for the sub-terms building up an expression in the calculus, or by rule

induction, which is induction on the height of the proof tree for a property. Structural

induction and rule induction are used in various proofs throughout Chapters 4 and 5.

As an example of rule induction, let us prove a simple property of the simplified logic of

this section: if a formula is provable then it must contain T as a subterm.

To state this formally, we introduce a new relation t(P ), read “P contains T”, defined as:

(T True)

t(T)

(T And1)

t(P1)

t(P1 ∧ P2)

(T And2)

t(P2)

t(P1 ∧ P2)

(T Or1)

t(P1)

t(P1 ∨ P2)

(T Or2)

t(P2)

t(P1 ∨ P2)

Proposition 1 (Provable formulæ contain the subterm T).

For any formula P , ` P implies t(P ).

Proof. We prove by rule induction on the derivation of ` P .

We start by the base case when the proof tree for ` P is of height 1. In other words, the

whole proof tree must be the axiom (True):

• Case (True). P = T. Thus t(P ) by (T True).

This concludes the induction’s base case. Next, we assume the induction hypothesis that
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for any formula P ′ such that ` P ′, and the height of the proof tree of ` P ′ is smaller than

or equal to n, we have t(P ′). Consider a formula P with ` P proof tree of height n+ 1.

Then, it must be the case that we derived ` P using one or more proof tree of height ≤ n

in combination with one of the following rules:

• Case (And). P = P1 ∧ P2, for some P1 and P2. According to (And), it must be the

case that ` P1 and ` P2. But the proof tree of each of those is of height at most n,

thus, by the induction hypothesis, t(P1) and t(P2). By (T And1) (or (T And2)), it

follows that t(P ).

• Case (Or1). P = P1 ∨ P2, for some P1 and P2. According to (Or1), it must be

the case that ` P1. But the proof tree for ` P1 is of height at most n, thus, by the

induction hypothesis, t(P1). By (T Or1) it follows that t(P ).

• Case (Or2). P = P1 ∨ P2, for some P1 and P2. According to (Or2), it must be

the case that ` P2. But the proof tree for ` P2 is of height at most n, thus, by the

induction hypothesis, t(P2). By (T Or2) it follows that t(P ).

This concludes the induction step and hence the proof.

3.3 Semantics of programming languages

The semantics of a programming language is a formal specification of its meaning. This

can be done by formalising the execution of a program (operational semantics, Plotkin

(1981); Nielson and Nielson (1992, Chapter 2)) or by attaching a mathematical meaning to

the terms of the language (denotational semantics, Nielson and Nielson (1992, Chapter 5)).

As an example, let’s give the operational semantics of our arithmetic language.

Suppose σ is a mapping from variable names xn to concrete values Vn: σ = {x1 7→
V1, . . . xN 7→ VN}. The semantics of the language is given by the relation (σ,E) ⇓ V ,

which is such that an expression E, where variables are substituted with values according

to σ, computes a value V . We can read (σ,E) ⇓ V as “In the context of σ expression E

evaluates to V .” The operational semantics can be specified recursively for different terms

of the calculus as follows:

Operational Semantics of the Arithmetic Language:

(Eval Cst)

(σ, c) ⇓ c

(Eval Var)

x ∈ dom(σ)

(σ, x) ⇓ σ(x)

(Eval Add)

(σ,E1) ⇓ V1 (σ,E2) ⇓ V2
(σ,E1 + E2) ⇓ V1 + V2

(Eval Sub)

(σ,E1) ⇓ V1 (σ,E2) ⇓ V2
(σ,E1 − E2) ⇓ V1 − V2
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(Eval Cst) simply states that a constant c always evaluates to the same constant c,

regardless of the store σ. On the other hand, as per (Eval Var) a variable x evaluates to

the value of x given by σ, as long as x is in the domain of σ. (Eval Add) states that to

evaluate E1 + E2 we must evaluate E1 and E2 separately and add the result. Here, the

usage of + in V1 + V2 is understood as standard addition between values and not a symbol

of the calculus. Similarly, (Eval Sub) requires evaluating the subexpressions E1 and E2

to evaluate E1 − E2.

3.4 Type checking and type inference

Type checking (Pierce, 2002; Nielson et al., 2004, Chapter 5) is a form of program analysis

where we verify the correct usage of types, such as integer, boolean, array or functional

types. Static type checking analyses the parse tree of a program without running it, to

flag any type discrepancies. This is useful, as it allows us to detect possible mistakes in

the code at compile time.

To type-check programs in some language, we need to formalise its type system, which

includes rules for building types and typed expressions in the language. For example, let’s

define the type system of our arithmetic language as follows:

Types of the Arithmetic Language:

τ ::= real | int

Typing Environment:

Γ ::= {x1 7→ τ1, . . . , xn 7→ τn}

Judgement of the Type System:

Γ ` E : τ expression E has type τ according to Γ

A type in the language is denoted by τ , which is either real — a floating point number

— or int — an integer. The typing environment holds information about the types of

variables in the form of a mapping from variable names to types. The typing judgement

Γ ` E : τ is a relation on Γ, E and τ such that an expression E is of type τ if the types of

variables in E are given by Γ. The typing rules specify what programs in the language are

well-typed : what is needed for the relation Γ ` E : τ to hold.
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Typing Rules of the Arithmetic Language:

(Cst)

τ = ty(c)

Γ ` c : τ

(Var)

Γ(x) = τ

Γ ` x : τ

(Add)

Γ ` E1 : τ Γ ` E2 : τ

Γ ` E1 + E2 : τ

(Sub)

Γ ` E1 : τ Γ ` E2 : τ

Γ ` E1 − E2 : τ

(Cst) simply states that the program type of a constant c corresponds to its numerical

type (we assume ty(c) = int if c ∈ Z and ty(c) = real if c ∈ R and c /∈ Z). (Var) states

that the type of a variable is determined by the typing environment Γ. (Add) and (Sub)

define well-typedness of expressions of the form E1 ± E2: in order for E1 ± E2 to be

well-typed of type τ in Γ, it needs to be the case that both E1 and E2 are well-typed of

type τ in Γ. This means that 1.0 + (x− 2.5) is well-typed in Γ = {x 7→ real}, but it is not

well-typed in Γ = {x 7→ int}.

Some typed languages require all variable types to be explicitly specified as part of the

program and perform type checking as a form of a correctness check. It is also possible to

work with only partially specified types and infer any missing types through type inference

(Pierce, 2002, Chapter 22). For example, by analysing the program 1.0+(x−2.5) according

to the typing rules of our arithmetic language, we can deduce that x must be of type real

in order for the program to be well-typed.

3.5 Information flow analysis

One program analysis technique central to the contributions of Part I is information flow

analysis (Volpano et al., 1996; Abadi et al., 1999). Information flow is the transfer of

information between two variables in a computation. In the program y = x+1 information

flows from x to y.

Analysing the flow of information can be especially useful in detecting program vulner-

abilities. Static analysis techniques concerning the flow of information are popular in

the security community, where the goal is to prove that systems do not leak information.

Secure information flow analysis, summarised by Sabelfeld and Myers (2003), and Smith

(2007), concerns systems where variables have one of several security levels.

For example, suppose we have two security levels, low and high. Variables of level low

are low security ; they hold public data. In contrast, variables of level high are of high

security ; they hold secret data. In such system, we want to disallow the flow of secret

information to a public variable, but allow other flows of information. That is, if L is
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a variable of security level low, H is a variable of security level high, and f is some

function, we want to forbid statements such as L = f(H), but allow:

• L = f(L)

• H = f(H)

• H = f(L)

But there are ways other than simple data flow, in which information can leak to a lower

security level. For example through conditional statements. Suppose L and H from above

are boolean variables. We want to disallow statements such as if (H) then L = true, as

this leaks information about the higher security level H to the lower security level L.

In the general case, we may be interested in having more than two information levels.

Formally, those levels form a lattice — a partially ordered set (L;<), where every two

elements of L have a unique least upper bound and a unique greatest lower bound. Secure

information flow analysis is used to ensure that information flows only upwards with

respect to that lattice. In the case with low and high, information flows only from

low to high and never in the other direction. This is also known as the noninterference

property — changes to confidential inputs lead to no changes in public outputs of a system

(Goguen and Meseguer, 1982).

One way to ensure noninterference is by formalising a type system such that each variable

has a level type and noninterference holds for any well-typed program. This is also the

approach used in this dissertation, as discussed in Chapters 4 and 5.





CHAPTER 4

SlicStan

Optimising pre-and post-processing code for inference

This chapter describes SlicStan: a version of Stan that contains no program blocks and is

more compositional. The main function of Stan’s program blocks is to explicitly separate

the program into a pre-processing part (executed only once), post-processing part (executed

after each sample is drawn), and the core of the model, which is executed to generate a

single sample and requires the most computational resources. SlicStan demonstrates that

such separation need not be done manually by the programmer, but can be automated

using information-flow analysis. We proceed with the main contribution of the chapter,

the paper Probabilistic Programming with Densities in SlicStan: Efficient, Flexible, and

Deterministic (§ 4.1), clarifying the contributions with respect to previous work (§ 4.2),

and discussing the impact of SlicStan (§ 4.3).

4.1 The paper

This section presents the work Probabilistic Programming with Densities in SlicStan:

Efficient, Flexible, and Deterministic. The paper gives the first formal semantics of Stan

and introduces SlicStan: a more compositional version of Stan. It describes a semantic-

preserving procedure for translating SlicStan to Stan. By combining information-flow

analysis and type inference, SlicStan performs automatic program optimisation, which

frees users from the need to explicitly encode the parts of the program that correspond to

pre-processing, post-processing and the computationally heavy core of the model.

The paper was accepted for presentation at the 46th ACM SIGPLAN Symposium on

Principles of Programming Languages (POPL 2019) and included in the Proceedings of the

ACM on Programming Languages, Volume 3, Issue POPL. Out of 267 papers submitted

in total, 77 papers were accepted.
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Stan is a probabilistic programming language that has been increasingly used for real-world scalable projects.
However, to make practical inference possible, the language sacrifices some of its usability by adopting a
block syntax, which lacks compositionality and flexible user-defined functions. Moreover, the semantics of the
language has been mainly given in terms of intuition about implementation, and has not been formalised.

This paper provides a formal treatment of the Stan language, and introduces the probabilistic programming
language SlicStan — a compositional, self-optimising version of Stan. Our main contributions are (1) the
formalisation of a core subset of Stan through an operational density-based semantics; (2) the design and
semantics of the Stan-like language SlicStan, which facilities better code reuse and abstraction through its
compositional syntax, more flexible functions, and information-flow type system; and (3) a formal, semantic-
preserving procedure for translating SlicStan to Stan.
CCS Concepts: • Theory of computation → Operational semantics; Program analysis; Probabilistic
computation; • Mathematics of computing → Statistical software; Markov-chain Monte Carlo methods;

Additional Key Words and Phrases: probabilistic programming, information flow analysis
ACM Reference Format:
Maria I. Gorinova, Andrew D. Gordon, and Charles Sutton. 2019. Probabilistic Programming with Densities in
SlicStan: Efficient, Flexible, and Deterministic. Proc. ACM Program. Lang. 3, POPL, Article 35 (January 2019),
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1 INTRODUCTION
1.1 Background: Probabilistic Programming Languages and Stan
Probabilistic programming languages [Gordon et al. 2014b] are a concise notation for specifying
probabilistic models, while abstracting the underlying inference algorithm. There are many such
languages, including BUGS [Gilks et al. 1994], JAGS [Plummer et al. 2003], Anglican [Wood et al.
2014], Church [Goodman et al. 2012], Infer.NET [Minka et al. 2014], Venture [Mansinghka et al.
2014], Edward [Tran et al. 2016] and many others.

Stan [Carpenter et al. 2017], with nearly 300,000 downloads of its R interface [Stan Development
Team 2018a], is perhaps the most widely used probabilistic programming language. Stan’s syntax is
designed to enable automatic compilation to an efficient Hamiltonian Monte Carlo (HMC) inference
algorithm [Neal et al. 2011], which allows programs to scale to real-word projects in statistics and
data science. (For example, the forecasting tool Prophet [Taylor and Letham 2017] uses Stan.) This
efficiency comes at a price: Stan’s syntax lacks the compositionality of other similar systems, such
as Edward [Tran et al. 2016] and PyMC3 [Salvatier et al. 2016]. The design of Stan assumes that
the programmer needs to organise their model into separate blocks, which correspond to different
stages of the inference algorithm (preprocessing, sampling, postprocessing). This compartmentalised
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2019 Copyright held by the owner/author(s).
2475-1421/2019/1-ART35
https://doi.org/10.1145/3290348
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syntax affects the usability of Stan: related statements may be separated in the source code, and
functions are restricted to only acting within a single compartment. It is difficult to write complex
Stan programs and encapsulate distributions and sub-model structures into re-usable libraries.

1.2 Goals and Key Insight
Our goals are (1) to examine the principles and assumptions behind the probabilistic programming
language Stan that help it bridge the gap between probabilistic modelling and black-box inference;
and (2) to design a suitable abstraction that captures the statistical meaning of Stan’s compartments,
but allows for compositional and more flexible probabilistic programming language syntax.

Our key insight is that the essence of a probabilistic program in Stan is in fact a deterministic
imperative program, that can be automatically sliced into the different compartments used in the
current syntax for Stan. It may come as a surprise that a probabilistic program is deterministic, but
when performing Bayesian inference by sampling parameters, the probabilistic program serves to
compute a deterministic score at a specific point of the parameter space. An implication of this
insight is that standard forms of procedural abstraction are easily adapted to Stan.

1.3 The Insight by Example
As demonstration, and as a candidate for a future re-design of Stan, we present SlicStan1— a
compositional, Stan-like language, which supports first-order functions.

Below, we show an example of a Stan program (right), and the same program written in SlicStan
(left). In both cases, the goal is to obtain samples from the joint distribution of the variables
y ∼ N(0, 3) and x ∼ N(0, exp(y/2)), using auxiliary standard normal variables for performance.
Working with such auxiliary variables, instead of defining the model in terms of x and y directly,
can facilitate inference and is a standard technique. We give more details in §§ 5.4 and Appendix D.

SlicStan
real my_normal(real m, real s) {

real std ∼ normal(0, 1);

return s * std + m;

}

real y = my_normal(0, 3);

real x = my_normal(0, exp(y/2));

.

Stan

parameters {

real y_std;
real x_std;

}

transformed parameters {

real y = 3 * y_std;
real x = exp(y/2) * x_std;

}

model {

y_std ∼ normal(0, 1);

x_std ∼ normal(0, 1);

}

In both programs, the aim is to obtain samples for the random variables x and y, which are
defined by scaling and shifting standard normal variables.

In SlicStan we do so by calling the function my_normal twice, which defines a local parameter
std and encapsulates the transformation of each variable. Stan, on the other hand, does not sup-
port functions that declare new parameters, because all parameters must be declared inside the
parameters block. We need to write out each transformation explicitly, also explicitly declaring
each auxiliary parameter (x_std and y_std).
1SlicStan (pronounced slick-Stan) stands for “Slightly Less Intensely Constrained Stan”.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 35. Publication date: January 2019.



Probabilistic Programming with Densities in SlicStan: Efficient, Flexible, and Deterministic 35:3

The SlicStan code is a conventional deterministic imperative program, where the model statement
std ∼ normal(0,1) is a derived form of an assignment to a reserved variable that holds the score
at a particular point of the parameter space. Due to the absence of blocks, SlicStan’s syntax is
compositional and more compact. Statements that would belong to different blocks of a Stan
program can be interleaved, and no understanding about the performance implications of different
compartments is required. Via an information-flow analysis, we automatically translate the program
on the left to the one on the right.

1.4 Core Contributions and Outline
In short, this paper makes the following contributions:

• We formalise the syntax and semantics of a core subset of Stan (§ 2). To the best of our
knowledge, this is the first formal treatment of Stan, despite the popularity of the language.

• We design SlicStan — a compositional Stan-like language with first-order functions. We
formalise an information-flow type system that captures the essence of Stan’s compartmen-
talised syntax, give the formal semantics of SlicStan, and prove standard results for the
calculus, including noninterference and type-preservation properties (§ 3).

• We give a formal procedure for translating SlicStan to Stan, and prove that it is semantics
preserving (§ 4).

• We examine the usability of SlicStan compared to that of Stan, using examples (§ 5).
This paper also includes an appendix, which provides additional details, discussion and examples.

2 CORE STAN
Stan [Carpenter et al. 2017] is a probabilistic programming language, whose syntax is similar to
that of BUGS [Gilks et al. 1994; Lunn et al. 2013], and aims to be close to the model specification
conventions used in the statistics community. This section gives the syntax (§§ 2.1; §§ 2.3) and
semantics (§§ 2.2; §§ 2.4) of Core Stan, a core subset of Stan. The subset omits, for example, constraint
data types, while loops, random number generators, recursive functions, and local variables.

To the best of our knowledge, our work is the first to give a formal semantics to the core of
Stan. A full descriptive language specification can be found in the official reference manual [Stan
Development Team 2017].

2.1 Syntax of Core Stan Expressions and Statements
The building blocks of a Stan statement are expressions. In Core Stan, expressions cover most of
what the Stan manual specifies, including variables, constants, arrays and array elements, and
function calls (of builtin functions). We let x range over variables. L-values are expressions limited
to array elements x[E1] . . . [En], where the case n = 0 corresponds to a variable x . Statements cover
the core functionality of Stan, with the exception of while statements, which we omit to to make
shredding of SlicStan possible (see §§ 3.1 and §§ 4.1).
Core Stan Syntax of Expressions:

E ::= expression
x variable
c constant
[E1, ..., En] array
E1[E2] array element
f (E1, . . . , En) function call2

L ::= x[E1] . . . [En] n ≥ 0 L-value

Core Stan Syntax of Statements:

S ::= statement
L = E assignment
S1; S2 sequence
for(x in E1 : E2) S for loop
if(E) S1 else S2 if statement
skip skip
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We assume a set of builtin functions, ranged over by f . We also assume a set of standard
builtin continuous or discrete distributions, ranged over by d. Each continuous distribution d has a
corresponding builtin function d_lpdf, which defines its log probability density function. In this
paper, we omit discrete random variables for simplicity.

Defined like this, the syntax of Stan statements is one of a standard imperative language. What
makes the language probabilistic is the reserved variable target, which holds the logarithm3of the
probability density function defined by the program (up to an additive constant), evaluated at the
point specified by the current values of the program variables.

For example, to define a Stan model with random variables, µ and x , where we assume the
variables are normally distributed and µ ∼ N(0, 1) and x ∼ N(µ, 1), we write:
target = normal_lpdf(mu, 0, 1) + normal_lpdf(x, mu, 1);4

Here, normal_lpdf is the log density of the normal distribution: logN(x | µ,σ ) = − (x−µ)2
2σ 2 − 1

2 log 2πσ 2.
The value of target is equal to the logarithm of the joint density over µ and x , logp(µ, x), evaluated
at the current values of the program variables mu and x. Suppose x is some known data, and µ is
an unknown parameter of the model. We are interested in computing the posterior distribution of µ
given x , p(µ | x) ∝ p(µ, x) = N(x | µ, 1)N(µ | 0, 1). Stan directly encodes a function that calculates
the value of the log posterior density (up to an additive constant), and stores it in target. Thus, in
addition to Stan’s core statement syntax, we have a derived form for modelling statements:
Derived Form for Model Statements:

E ∼ d(E1, . . . En) , target = target + d_lpdf(E, E1, . . . En) model statement

In Stan, “∼” is not considered to mean “draw a sample from”, but rather “modify the joint
distribution over parameters and data.” This is also reflected by the semantics given in §§ 2.4.

2.2 Operational Semantics of Stan Statements
Next, we define a standard big-step operational semantics for Stan expressions and statements:
Big-step Relation

(s, E) ⇓ V expression evaluation
(s, S) ⇓ s ′ statement evaluation

Here, s and s ′ are states, and values V are the expressions conforming to the following grammar:
Values and States:

V ::= value
c constant
[V1, . . . ,Vn] array

s ::= x1 7→ V1, . . . , xn 7→ Vn xi distinct state (finite map from variables to values)

The relation ⇓ is deterministic but partial, as we do not explicitly handle error states. The purpose
of the operational semantics is to define a density function in §§ 2.4, and any errors lead to the
density being undefined.

In the rest of the paper, we use the notation for states s = x1 7→ V1, . . . , xn 7→ Vn :
2If f is a binary operator, e.g. “+”, we write it in infix.
3Stan evaluates the unnormalised density in the log domain to ensure numerical stability and to simplify internal computa-
tions. We follow this style throughout the paper, and define the semantics in terms of logp∗, instead of p∗.
4We treat target as a mutable program variable for simplicity. This slightly differs from the actual implementation of Stan,
where target does not allow for general lookup and update, but it is a special bit of state that can only be incremented.
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• s[x 7→ V ] is the state s , but where the value of x is updated toV if x ∈ dom(s), or the element
x 7→ V is added to s if x < dom(s).

• s[−x] is the state s, but where x is removed from the domain of s (if it were present).
We also define lookup and update operations on values:
• If U is an n-dimensional array value for n ≥ 0 and c1, . . . , cn are suitable indexes into U , then

the lookup U [c1] . . . [cn] is the value in U indexed by c1, . . . , cn .
• If U is an n-dimensional array value for n ≥ 0 and c1, . . . , cn are suitable indexes into U , then

the update U [c1] . . . [cn] := V is the array that is the same asU except that the value indexed
by c1, . . . , cn is V .

Operational Semantics of Expressions:

(Eval Const)

(s, c) ⇓ c

(Eval Var)
V = s(x) x ∈ dom(s)

(s, x) ⇓ V

(Eval Arr)
(s, Ei ) ⇓ Vi ∀i ∈ 1..n

(s, [E1, . . . , En]) ⇓ [V1, . . . ,Vn]
(Eval ArrEl)
(s, E1 ⇓ V ) (s, E2 ⇓ c)

(s, E1[E2]) ⇓ V [c]

(Eval PrimCall)
(s, Ei ) ⇓ Vi ∀i ∈ 1 . . .n V = f (V1, . . . ,Vn)5

(s, f (E1, . . . , En)) ⇓ V

Operational Semantics of Statements:

(Eval Assign) (where L = x[E1] . . . [En])
(s, Ei ) ⇓ Vi ∀i ∈ 1..n (s, E) ⇓ V U = s(x) U ′ = (U [V1] . . . [Vn] := V )

(s, L = E) ⇓ (s[x 7→ U ′])
(Eval Seq)
(s, S1) ⇓ s ′ (s ′, S2) ⇓ s ′′

(s, S1; S2) ⇓ s ′′

(Eval IfTrue)
(s, E) ⇓ true (s, S1) ⇓ s ′

(s, if(E) S1 else S2) ⇓ s ′

(Eval IfFalse)
(s, E) ⇓ false (s, S2) ⇓ s ′

(s, if(E) S1 else S2) ⇓ s ′

(Eval ForTrue)6

(s, E1) ⇓ c1 (s, E2) ⇓ c2 c1 ≤ c2 (s[x 7→ c1], S) ⇓ s ′ (s ′[−x], for(x in (c1 + 1) : c2) S) ⇓ s ′′

(s, for(x in E1 : E2) S) ⇓ s ′′

(Eval ForFalse)
(s, E1) ⇓ c1 (s, E2) ⇓ c2 c1 > c2

(s, for(x in E1 : E2) S) ⇓ s

(Eval Skip)

(s, skip) ⇓ s

2.3 Syntax of Stan
A full Stan program consists of six program blocks, each of which is optional. Blocks appear in
order. Each block has a different purpose and can reference variables declared in itself or previous
blocks. Formally, we define a Stan program as a sequence of six blocks, each containing variable
declarations or Stan statements, as shown next. We also present an example Stan program that
contains all six blocks in §§ 5.2.

5f (V1, . . . ,Vn ) means applying the builtin function f on the values V1, . . . ,Vn .
6To make shredding to Stan possible, Core Stan only supports for-loops where the loop bounds do not change during
execution: E2 does not contain any variables that S writes to. This differs from the more flexible loops implemented in Stan.
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Stan program:

P ::= Stan Program
data { Γd }

transformed data { Γtd , Std }

parameters { Γp }

transformed parameters { Γtp, Stp }

model { Sm }

generated quantities { Γдq, Sдq }

Arrays in Stan are sized, but we do not include any static checks on array sizes in this paper.
Stan Types and Type Environment:

Γ ::= x1 : τ1, . . . , xn : τn ∀i ∈ 1 . . .n xi distinct declarations
τ ::= real | int | bool | τ [n] type
n size

The size of an array, n, can be a number or a variable. For simplicity, we treat n as decorative and
do not include checks on the sizes in the type system of Stan. However, the system can be extended
to a lightweight dependent type system, similarly to Tabular as extended by Szymczak [2018].

Each program block in Stan has a different purpose as follows:
• data: declarations of the input data.
• transformed data: definition of known constants and preprocessing of the data.
• parameters: declarations of the parameters of the model.
• transformed parameters: declarations and statements defining transformations of the

data and parameters.
• model: statements defining the distributions of random variables in the model.
• generated quantities: declarations and statements that do not affect inference, used for

postprocessing, or predictions for unseen data.
We define a conformance relation on states s and typing environments Γ. A state s conforms to

an environment Γ, whenever s provides values of the correct types for the variables given in Γ:

Conformance Relation:

s |= Γ state s conforms to environment Γ

Rule for the Conformance Relation:

(Stan State)
Vi |= τi ∀i ∈ I

(xi 7→ Vi )i ∈I |= (xi : τi )i ∈I

Here, V |= τ denotes that the value V is of type τ , and has the following definition:
• c |= int, if c ∈ Z, c |= real, if c ∈ R, and c |= bool if c ∈ {true, false}.
• [V1, . . . ,Vn] |= τ [m], if ∀i ∈ 1 . . .n.Vi |= τ .

We do not include any checks on array sizes in this paper, thus we do not assume n andm are
the same in this definition. The evaluation relation is not defined on initial states that lead to array
out-of-bounds errors.

2.4 Density-Based Semantics of Stan
Finally, we give the semantics of Stan in terms of the big-step relation from §§ 2.2. As the Stan
Development Team [2017] explain:
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A Stan program defines a statistical model through a conditional probability function
p(θ | y, x), where θ is a sequence of modeled unknown values (e.g., model parameters,
latent variables, . . . ), y is a sequence of modeled known values, and x is a sequence of
unmodeled predictors and constants (e.g., sizes, hyperparameters). (p. 22)

More specifically, a Stan program is executed to evaluate a function on the data and parameters
logp∗(θ | D), for some given (and fixed) values of D and θ . This function encodes the log joint
density of the data and parameters logp(θ ,D) up to an additive constant, and also equals the log
density of the posterior logp(θ | D) up to an additive constant:

logp(θ | D) = logp(θ ,D) − logp(D) ∝ logp(θ ,D) ∝ logp∗(θ | D)
The return value of logp∗(θ | D) is stored in the reserved variable target. We give the semantics

of Core Stan through this unnormalised log posterior density function.
Consider a Core Stan program P defined as previously, and the statement S = Std ; Stp ; Sm ; Sдq .

The semantics of P is the unnormalised log posterior density function logp∗ on parameters θ given
data D (where θ |= Γp and D |= Γd ):

logp∗ (θ | D) , s ′[target] if there is s ′ such that ((D,θ , target 7→ 0), S) ⇓ s ′

If there is no such s ′ then the log density is undefined. Observe also that if such an s ′ exists, it is
unique, because the operational semantics is deterministic.

For example, suppose that P specifies a simple model for the data array y:
data { int N; real[N] y; }

parameters { real mu; real sigma; }

model {

mu ∼ normal(0, 1);

sigma ∼ normal(0, 1);

for(i in 1:N){ y[i] ∼ normal(mu, sigma); }

}

Suppose also that θ = (mu 7→ µ, sigma 7→ σ ) and D = (N 7→ n, y 7→ y), for some µ, σ , n, and a
vector y of length n. The statement S = Std ; Stp ; Sm ; Sдq is then the body of the model block as
specified above. Then ((D,θ , target 7→ 0), S) ⇓ s ′, with s ′[target] = logN(µ | 0, 1) + logN(σ |
0, 1) +∑n

i=1 logN(yi | µ,σ ). This is precisely the log joint density on mu, sigma and y, which is
proportionate to the posterior of mu and sigma given y.

The function logp∗ (θ | D) is not a (log) density, but rather it encodes the logarithm of the
density of the posterior up to an additive constant. Such unnormalised log density uniquely defines
the log density logp (θ | D):

logp (θ | D) = logp∗ (θ | D) − logZ (D) where Z (D) =
∫

p∗(θ | D)dθ

The value Z (D) is called the normalising constant (it is a constant with respect to the variables θ
that the density is defined on). Computing Z (D) is in most cases intractable. Thus, many inference
algorithms (including those of Stan) are designed to successfully approximate the posterior, relying
only on being able to evaluate a function proportional to it: an unnormalised density function, such
as logp∗ (θ | D) above.

The goal of this paper is to formalise the statistical meaning of a Stan program, as given by the
quotation from the reference manual above. This semantics concentrates on defining the unnor-
malised log posterior of parameters given data, but omits the fact that the values of transformed
parameters and generated quantities blocks are also part of the observable state. Transformed
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parameters and generated quantities can be seen as variables that are generated using the function
д(θ ,D) , s ′[dom(Γtp ∪ Γдq)] for s ′ defined as previously. Appendix B.1 discusses generated quan-
tities in more detail, and we leave their full treatment for future work. Moreover, Appendix B.2
discusses how this density-based semantics relates to other imperative probabilistic languages
semantics, such as the sampling-based semantics of Prob [Hur et al. 2015].

2.5 Inference
Executing a Stan program consists of generating samples from the posterior distribution p(θ | D), as
a way of performing Bayesian inference. The primary algorithm that Stan uses is the asymptotically
exact algorithm Hamiltonian Monte Carlo (HMC) [Neal et al. 2011], and more specifically, an
enhanced version of the No-U-Turn Sampler (NUTS) [Betancourt 2017; Hoffman and Gelman 2014],
which is an adaptive path lengths extension to HMC.

HMC is a Markov Chain Monte Carlo (MCMC) method (see Murray [2007] for a review on
MCMC). Similarly to other MCMC methods, it obtains samples {θ i }∞i=1 from the target distribution,
by using the latest sample θn and a carefully designed transition function δ to generate a new
sampleθn+1 = δ (θn). When sampling from the posteriorp(θ | D), HMC evaluates the unnormalised
density p∗(θ | D) at several points in the parameter space at each step n. To improve performance,
HMC also uses the gradient of logp∗(θ | D) with respect to θ .

3 SLICSTAN
This section outlines the second key contribution of this work — the design and semantics of SlicStan.
SlicStan is a probabilistic programming language, which aims to provide a more compositional
alternative to Stan, while retaining Stan’s efficiency and statement syntax natural to the statistics
community. Thus, we design the language so that:

(1) SlicStan statements are a superset of the Core Stan statements given in § 2,
(2) SlicStan programs contain no program blocks, and allow the interleaving of statements that

would belong to different program blocks if the program was written in Stan, and
(3) SlicStan supports first-order non-recursive functions.
This results in a flexible syntax, that allows for better encapsulation and code reuse, similarly to

Edward [Tran et al. 2016] and PyMC3 [Salvatier et al. 2016].
The key idea behind SlicStan is to use information flow analysis to optimise and transform the

program to Stan code. Secure information flow analysis has a long history, summarised by Sabelfeld
and Myers [2003], and Smith [2007]. It concerns systems where variables have one of several
security levels, and the aim is to disallow the flow of high-level information to a low-level variable,
but allow other flows of information. For example, consider two security levels, public and secret.
We want to forbid public information to depend on secret information. Formally, the levels form
a lattice ({public, secret}, <) with public < secret. Secure information flow analysis is used to
ensure that information flows only upwards in the lattice. This is formalized as the noninterference
property [Goguen and Meseguer 1982]: confidential data may not interfere with public data.

Looking back to the description of Stan’s program blocks in §§ 2.3, as well as the Stan Manual,
we identify three information levels in Stan: data, model, and genqant. We assign one of these
levels to each program block, as summarised by Table 1. ‘Chain’, ‘sample’ and ‘leapfrog’ refer to
stages of the Hamiltonian Monte Carlo sampling algorithm. Usually, Stan runs several chains to
perform inference, where there are many samples per chain, and many leapfrogs per sample.

Even though our insight about the three information levels comes from Stan, they are not tied to
Stan’s peculiarities. Variables at level data are the known quantities in the statistical inference
problem, that is, the data. Computations at this level can be seen as a form of preprocessing.
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Table 1. Program blocks in Stan. Adapted from Betancourt [2014].

Block Execution Level
data — data
transformed data per chain data
parameters — model
transformed parameters per leapfrog model
model per leapfrog model
generated quantities per sample genqant

Variables at level model are unknown — they are the quantities we wish to infer. Changing the
model variables or the dependencies between them changes the statistical model we are working
with, which can have a huge effect on the quality of inference. Finally, generated quantities are
variables that data and model variables do not depend on, and computing them can be seen as
a form of postprocessing. All three are fundamental concepts of statistical inference and are not
specific to Stan.

The rest of this section defines the SlicStan language. The syntax of SlicStan statements (§§ 3.1)
extends that of the Core Stan statements from § 2, and its type system (§§ 3.2) assumes level
types data, model and genqant on variables. The typing rules are then implemented so that in
well-typed SlicStan programs, information flows from level data, through model to genqant.
Every Core Stan program can be turned into an equivalent SlicStan program by concatenating the
statements and declarations in its compartments.

Next, we give the semantics of a SlicStan program, much as we did for Core Stan, as an unnor-
malised log density function on parameters and data (§§ 3.4), and show some examples (§§ 3.5). To
do so, we elaborate SlicStan’s statements to Core Stan statements by statically unrolling user-defined
function calls and bringing all variable declarations to the top level (§§ 3.3). The main purpose of
elaboration is to identify all parameters statically so as to give the semantics as a function on the
parameters. Elaboration also serves as a first step in translating SlicStan to Stan (§ 4).

3.1 Syntax
A SlicStan program is a sequence of function definitions Fi , followed by top-level statement S .
Syntax of a SlicStan Program

F1, . . . , Fn, S n ≥ 0 SlicStan program

SlicStan’s user-defined functions are not recursive (a call to Fi can only occur in the body of Fj if
i < j). Functions are specified by a return type T , arguments with their types ai : Ti , and a body S .
There is a reserved variable ret_g associated with each function, to hold the return value.
Syntax of Function Definitions

F ::= T д(T1 a1, . . . ,Tn an) S function definition (signature д : T1, . . . ,Tn → T )

SlicStan’s expressions and statements extend those of Stan, by user-defined function calls
д(E1, . . . , En) and variable declarations T x ; S (in italic).

In both declarations T x ; S and loops for(x in E1 : E2) S , the variable x is locally bound with
scope S . We identify statements up to consistent renaming of bound variables. Note that occurrences
of variables in L-values are free.
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SlicStan Syntax of Expressions:

E ::= expression
x variable
c constant
[E1, ..., En] array
E1[E2] array element
f (E1, . . . , En) builtin function call
g(E1, . . . , En) user-defined fun. call

L ::= L-value
x variable
x[E1] . . . [En] array element

SlicStan Syntax of Statements:

S ::= statement
L = E assignment
S1; S2 sequence
for(x in E1 : E2) S for loop
if(E) S1 else S2 if statement
skip skip
T x; S declaration

We constrain the language to only support for loops, disallowing the value of the loop guard to
depend on the body of the loop. As described in later subsections, in order to give the semantics of a
SlicStan program, as well as to translate it to Stan, we need to elaborate the statements to Core Stan
statements (§§ 3.3), statically unrolling user-defined functions and extracting variable declarations
to the top-level. Extending the language to support while loops (or recursive functions) means
risk of non-terminating elaboration step, and a potentially inefficient resulting Stan program. This
design choice is a small restriction on the usability and range of expressible models compared to
Stan: models in Stan can only have a fixed number of parameters. As a result, an overwhelming
number of examples in the Stan official repository use for loops only.

We define derived forms for data declarations, modelling statements, and return statements. Any
user-defined function D_lpdf can be used as the log density function of a user-defined distribution
D on the first argument of D_lpdf. For the sake of simplicity, we assume the body of a user-defined
function g contains at most one return statement, at the end, and we treat it as an assignment to
the return variable ret_g.
Derived Forms

data τ x ; S , (τ , data)x ; S data declaration
E ∼ d(E1, . . . En) , target = target + d_lpdf(E, E1, . . . En) model, builtin distribution
E ∼ D(E1, . . . En) , target = target + D_lpdf(E, E1, . . . En) model, user-defined distribution
return E , ret_g = E return

3.2 Typing of SlicStan
Next, we present SlicStan’s type system. We define a lattice ({data,model, genqant}, <) of level
types, where data < model < genqant. Types T in SlicStan range over pairs (τ , ℓ) of a base
type τ , and a level type ℓ — one of data, model, or genqant. Arrays are sized, with n ≥ 0. Each
builtin function f has a family of signatures f : (τ1, ℓ), . . . , (τn, ℓ) → (τ , ℓ), one for each level ℓ.
Types, and Typing Environment:

ℓ ::= level type
data data, transformed data
model parameters, transformed parameters
genqant generated quantities

n size
τ ::= real | int | bool | τ [n] base type
T ::= (τ , ℓ) type: base type and level
Γ ::= x1 : T1, . . . , xn : Tn xi distinct typing environment
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(While builtin functions of our formal system are level polymorphic, user-defined functions are
monomorphic. This design choice was made to keep the system simple, and we see no challenges
to polymorphism that are unique to SlicStan.)

We assume the type of the reserved target variable to be (real,model): this variable can only
be accessed within the model block in Stan, thus its level is model. Each function д is associated
with a single return variable ret_g matching the return type of the function.
Reserved variables

target : (real,model) log joint probability density function
ret_g : T return value of a function T д(T1 a1, . . . ,Tn an) S

We present the full set of declarative typing rules, inspired by those of the secure information
flow calculus defined by Volpano et al. [1996], and more precisely, its summary by Abadi et al.
[1999]. The information flow constraints are enforced by the subsumption rules (ESub) and (SSub),
which together allow information to only flow upwards the data < model < genqant lattice.

Intuitively, we need to associate each expression E with a level type to prevent lower-level
variables to directly depend on higher-level variables, such as in the case d = m + 1, for d of
level data and m of level model. We also need to associate each statement S with a level type to
prevent lower-level variables to indirectly depend on higher-level variables, such as in the case
if(m > 0) d = 2.

Judgments of the Type System:

Γ ⊢ E : (τ , ℓ) expression E has type (τ , ℓ) and reads only level ℓ and below
Γ ⊢ S : ℓ statement S assigns only to level ℓ and above
⊢ F function definition F is well-typed

The function ty(c) maps constants to their types (for example ty(5.5)= real).

Typing Rules for Expressions:

(ESub)
Γ ⊢ E : (τ , ℓ) ℓ ≤ ℓ′

Γ ⊢ E : (τ , ℓ′)

(Var)

Γ, x : T ⊢ x : T

(Const)
ty(c) = τ

Γ ⊢ c : (τ , data)

(Arr)
Γ ⊢ Ei : (τ , ℓ) ∀i ∈ 1..n
Γ ⊢ [E1, ..., En] : (τ [n], ℓ)

(ArrEl)
Γ ⊢ E1 : (τ [n], ℓ) Γ ⊢ E2 : (int, ℓ)

Γ ⊢ E1[E2] : (τ , ℓ)

(PrimCall)(f : T1, . . . ,Tn → T )
Γ ⊢ Ei : Ti ∀i ∈ 1..n
Γ ⊢ f (E1, . . . , En) : T

(FCall)(д : T1, . . . ,Tn → T )
Γ ⊢ Ei : Ti ∀i ∈ 1..n
Γ ⊢ д(E1, . . . , En) : T

Here and throughout, we make use of several functions on the language building blocks:
• W (S) (Definition A.1) is the set of variables that are assigned to in S :W (x = 2 ∗ y) = {x}.
• R(S) (Definition A.2) is the set of variables read by S : R(x = 2 ∗ y) = {y}.
• Γ(L) (Definition A.3) is the type of the L-value L in the context Γ:
Γ(x[0]) = (real, data) for x : (real[], data) ∈ Γ.

The rule (Decl) for a variable declaration (τ , ℓ)x ; S has a side-condition (x < dom(Γ)), where Γ
is the local typing environment, that enforces that the variable x is globally unique, that is, there is
no other declaration of x in the program. The condition x <W (S) in (For) enforces that the loop
index x is immutable inside the body of the loop. In (Seq), we make sure that the sequence S1; S2 is
shreddable, through the predicate S(S1, S2) (Definition 4.7). This imposes a restriction on the range
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of well-typed programs, which is needed both to allow translation to Stan (see §§ 4.1), and to allow
interpreting of the program in terms of preprocessing, inference and postprocessing.

Using the rules for expressions and statements, we can also obtain rules for the derived statements.
Typing Rules for Statements:

(SSub)
Γ ⊢ S : ℓ′ ℓ ≤ ℓ′

Γ ⊢ S : ℓ

(Assign)
Γ(L) = (τ , ℓ) Γ ⊢ E : (τ , ℓ)

Γ ⊢ (L = E) : ℓ

(Decl)
Γ, x : (τ , ℓ) ⊢ S : ℓ′ x < dom(Γ)

Γ ⊢ (τ , ℓ)x ; S : ℓ′

(If)
Γ ⊢ E : (bool, ℓ) Γ ⊢ S1 : ℓ Γ ⊢ S2 : ℓ

Γ ⊢ if(E) S1 else S2 : ℓ

(Seq)
Γ ⊢ S1 : ℓ Γ ⊢ S2 : ℓ S(S1, S2)

Γ ⊢ (S1; S2) : ℓ

(Skip)

Γ ⊢ skip : ℓ

(For)
Γ ⊢ E1 : (int, ℓ) Γ ⊢ E2 : (int, ℓ) Γ, x : (int, ℓ) ⊢ S : ℓ x < dom(Γ) x <W (S)

Γ ⊢ for(x in E1 : E2) S : ℓ

Derived Typing Rules

(DataDecl)
Γ, x : (τ , data) ⊢ S : ℓ x < dom(Γ)

Γ ⊢ data τ x ; S : ℓ

(PrimModel)(d_lpdf : T ,T1, . . . ,Tn → (real,model))
Γ ⊢ E : T Γ ⊢ Ei : Ti ∀i ∈ 1..n
Γ ⊢ E ∼ d(E1, . . . En) : model

(Return)
Γ ⊢ ret_g : (τ , ℓ) Γ ⊢ E : (τ , ℓ)

Γ ⊢ return E : ℓ

(FModel)(D : T ,T1, . . . ,Tn → (real,model))
Γ ⊢ E : T Γ ⊢ Ei : Ti ∀i ∈ 1..n
Γ ⊢ E ∼ D_dist(E1, . . . En) : model

Finally, we complete the three judgments of the type system with the rule (FDef) for checking
the well-formedness of a function definition. The condition ℓi ≤ ℓ ensures that the level of the
result of a function call is no smaller than the level of its arguments.
Typing Rule for Function Definitions:

(FDef)
a1 : T1, ...,an : Tn, ret_g : (τ , ℓ) ⊢ S : ℓ Ti = (τi , ℓi ) ℓi ≤ ℓ ∀i ∈ 1..n

⊢ (τ , ℓ) д(T1 a1, . . . ,Tn an) S

In our formal development, we implicitly assume a fixed program with well-typed functions
⊢ F1, . . . , ⊢ Fn . More precisely, we assume a given well-formed program defined as follows.
Well-Formed SlicStan Program:

A program F1, . . . FN , S is well-formed iff ⊢ F1, . . . , ⊢ Fn , and ∅ ⊢ S : data.

SlicStan statements are, by design, a superset of Core Stan statements. Thus, we can treat any
Core Stan statement as a SlicStan statement with big-step operational semantics defined as in § 2.
By extending the conformance relation s |= Γ to correspond to a SlicStan typing environment, we
can prove type preservation of the operational semantics, with respect to SlicStan’s type system.
Rule of the Conformance Relation:

(State)
Vi |= τi ∀i ∈ I

(xi 7→ Vi )i ∈I |= (xi : (τi , ℓi ))i ∈I
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Theorem 3.1 (Type Preservation for ⇓).
For a Core Stan statement S and a Core Stan expression E:

(1) If s |= Γ and Γ ⊢ E : (τ , ℓ) and (s, E) ⇓ V then V |= τ .
(2) If s |= Γ and Γ ⊢ S : ℓ and (s, S) ⇓ s ′ then s ′ |= Γ.

Proof. By inductions on the size of the derivations of the judgments (s, E) ⇓ V and (s, S) ⇓ s ′. �

Finally, we state a termination-insensitive noninterference result. Intuitively, the result means
that (observed) data cannot depend on the model parameters, and that generated quantities do not
affect the log density distribution defined by the model.

Definition 3.2 (ℓ-equal states). Given a typing environment Γ, states s1 |= Γ and s2 |= Γ are ℓ-equal
for some level ℓ (written s1 ≈ℓ s2), if they differ only for variables of a level strictly higher than ℓ:

s1 ≈ℓ s2 , ∀x : (τ , ℓ′) ∈ Γ. (ℓ′ ≤ ℓ =⇒ s1(x) = s2(x))
Theorem 3.3 (Noninterference). Suppose s1 |= Γ, s2 |= Γ, and s1 ≈ℓ s2 for some ℓ. Then for Core

Stan statements S and Core Stan expressions E:

(1) If Γ ⊢ E : (τ , ℓ) and (s1, E) ⇓ V1 and (s2, E) ⇓ V2 then V1 = V2.
(2) If Γ ⊢ S : ℓ and (s1, S) ⇓ s ′1 and (s2, S) ⇓ s ′2 then s ′1 ≈ℓ s

′
2.

Proof. (1) follows by rule induction on the derivation Γ ⊢ E : (τ , ℓ), and using that if Γ ⊢ E : (τ , ℓ),
x ∈ R(E) and Γ(x) = (τ ′, ℓ′), then ℓ′ ≤ ℓ. (2) follows by rule induction on the derivation Γ ⊢ S : ℓ
and using (1). �

3.3 Elaboration of SlicStan
Similarly to Stan, a SlicStan program defines a probabilistic model, through an unnormalised log
density function on the model parameters and data. That is, the semantics of SlicStan is in terms
of a fixed (or data-dependent) number of variables. Therefore, in order to be able to formally give
the semantics, we need to statically unroll calls to user-defined functions, and pull all variable
declarations to the top level. (We discuss the difficulties of directly specifying the semantics of
SlicStan without elaboration in §§ 3.6.)

We call this static unrolling step elaboration, and we formalise it through the elaboration relation
⇓Γ . Intuitively, to elaborate a program F1, . . . FN , S , we elaborate its main body S by unrolling any
calls to F1, . . . , FN (as specified by (Elab FCall)), and move all variable declarations to the top
level (as specified by (Elab Decl)). The result is an elaborated SlicStan statement S ′ and a list of
variable declarations Γ. As mentioned previously, to avoid notational clutter, we assume a top-level
SlicStan program F1, . . . , FN , S . Since the syntax of a SlicStan statement differs from that of a Core
Stan statement only by the presence of user-defined function calls and variable declarations, an
elaborated SlicStan statement is also a well-formed Core Stan statement.

Elaboration Relation

P ⇓∅ ⟨Γ, S ′⟩ program elaboration
S ⇓Γ ⟨Γ, S ′⟩ statement elaboration
E ⇓Γ ⟨Γ, S .E ′⟩ expression elaboration
F ⇓Γ ⟨r :T ,A, Γ, S⟩ fun. definition elaboration

Elaboration Rule for a SlicStan Program

(Elab SlicStan)
S ⇓∅ ⟨Γ, S ′⟩

F1, . . . FN , S ⇓∅ ⟨Γ, S ′⟩

The unrolling rule (Elab FCall) assumes a call to a user-defined function д with definition
F = T д(T1 a1, . . . ,Tn an) S , which elaborates as described by (Elab FDef).
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Elaboration Rules for Expressions:

(Elab Var)

x ⇓Γ ⟨∅, skip.x⟩

(Elab Const)

c ⇓Γ ⟨∅, skip.c⟩

(Elab ArrEl)
E1 ⇓Γ ⟨Γ1, S1.E

′
1⟩ E2 ⇓Γ ⟨Γ2, S2.E

′
2⟩ Γ1 ∩ Γ2 = ∅

E1[E2] ⇓Γ ⟨Γ1 ∪ Γ2, S1; S2.(E ′
1[E ′

2])⟩
(Elab Arr)
Ei ⇓Γ ⟨Γi , Si .E ′

i ⟩ ∀i ∈ 1..n
⋂n

i=1 Γi = ∅
[E1, ..., En] ⇓Γ ⟨⋃n

i=1 Γi , S1; ...; Sn .([E ′
1, ..., E

′
n])⟩

(Elab PrimCall)
Ei ⇓Γ ⟨Γi , Si .E ′

i ⟩ ∀i ∈ 1..n
⋂n

i=1 Γi = ∅
f (E1, ..., En) ⇓Γ ⟨⋃n

i=1 Γi , S1; ...; Sn . f (E ′
1, ..., E

′
n)⟩

(Elab FCall) (where F is the definition for function д)
Ei ⇓Γ ⟨ΓEi , SEi .E ′

i ⟩ ∀i ∈ 1..n F ⇓Γ ⟨rF : TF ,AF , ΓF , SF ⟩
AF = {ai : Ti | i ∈ 1..n} {rF : TF } ∩AF ∩ (⋂n

i=1 Γi ) ∩ ΓF = ∅
д(E1, ..., En) ⇓Γ ⟨{rF : TF } ∪AF ∪ (⋃n

i=1 Γi ) ∪ ΓF , (SE1 ;a1 = E ′
1; ...; SEn ;an = E ′

n ; SF .rF )⟩

Elaboration Rule for Function Definitions:

(Elab FDef)
S ⇓{r :T }∪ΓA∪Γ ⟨Γ′, S ′⟩ ΓA = {a1 : T1, ...,an : Tn} {r } ∩ dom(ΓA) ∩ dom(Γ′) = ∅

T д(T1 a1, ...,Tn an) S ⇓Γ ⟨r : T , ΓA, Γ′, S ′⟩

As we identify statements up to α-conversion, T x ; x = 1 elaborates to ⟨{x1 : T }, x1 = 1⟩, but
also to ⟨{x2 : T }, x2 = 1⟩, and so on. The (Elab Decl) rule simply extracts a variable declaration
to the top level. Other than recursively applying ⇓Γ to sub-parts of the statement, the (Elab If)
and (Elab For) rules transform the guards of the respective compound statement to be the fresh
variables д or д1, д2 respectively (as opposed to unrestricted expressions). This is a necessary
preparation step needed for the program to be correctly translated to Stan later (see §§ 4.1 and
Appendix C).
Elaboration Rules for Statements:

(Elab Decl)
S ⇓{x :T }∪Γ ⟨Γ′, S ′⟩ x < dom(Γ′)

T x ; S ⇓Γ ⟨{x : T } ∪ Γ′, S ′⟩

(Elab Skip)

skip ⇓Γ ⟨∅, skip⟩
(Elab Assign)
L ⇓Γ ⟨ΓL, SL .L′⟩ E ⇓Γ ⟨ΓE , SE .E ′⟩ ΓL ∩ ΓE = ∅

L = E ⇓Γ ⟨ΓL ∪ ΓE , SL ; SE ;L′ = E ′⟩

(Elab Seq)
S1 ⇓Γ ⟨Γ1, S

′
1⟩ S2 ⇓Γ ⟨Γ2, S

′
2⟩ Γ1 ∩ Γ2 = ∅

S1; S2 ⇓Γ ⟨Γ1 ∪ Γ2, S
′
1; S ′2⟩

(Elab If) (where Γ ⊢ E : T )
E ⇓Γ ⟨ΓE , SE .E ′⟩ S1 ⇓Γ ⟨Γ1, S

′
1⟩ S2 ⇓Γ ⟨Γ2, S

′
2⟩ {д : T } ∩ ΓE ∩ Γ1 ∩ Γ2 = ∅

if(E) S1 else S2 ⇓Γ ⟨{д : T } ∪ ΓE ∪ Γ1 ∪ Γ2, (SE ;д = E ′; if(д) S ′1 else S ′2)⟩
(Elab For) (where Γ ⊢ E1 : T1 and Γ ⊢ E2 : T2)
E1 ⇓Γ ⟨Γ1, S1.E

′
1⟩ E2 ⇓Γ ⟨Γ2, S2.E

′
2⟩ S ⇓Γ∪{x :(int,data)} ⟨ΓS , S ′⟩

ΓV = vΓ(ΓS ,n) {д1 : T1,д2 : T2,n : (int, data)} ∩ Γ1 ∩ Γ2 ∩ ΓV = ∅
for(x in E1 : E2) S ⇓Γ ⟨{д1 : T1,д2 : T2,n : (int, data)} ∪ Γ1 ∪ Γ2 ∪ ΓV ,
S1; S2;д1 = E ′

1;д2 = E ′
2;n = д2 − д1 + 1; for(x in д1 : д2) vS (x, ΓV , S ′)⟩

In some cases when elaborating a for loop, ΓS will not be empty (in other words, the body of
the loop will declare new variables). Thus, as (Elab For) shows, variables in ΓS are upgraded to an
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array, and then accessed by the index of the loop. We use the function vS (Definition A.4) which
takes a variable x , a typing environment Γ, and a statement S , and returns a statement S ′, where any
mention of a variable x ′ ∈ dom(Γ) is substituted with x ′[x]. For example, consider the statement
for(i in 1:N){real model x ∼ normal(0,1); y[i] ∼ normal(x,1);} and an environment Γ,
such that Γ ⊢ N : (int, data). The body of the loop declares a new variable x , thus it elaborates to
⟨ΓS , S ′⟩, where ΓS = {x : (real,model)}, and S ′ = {x ∼ normal(0,1); y[i] ∼ normal(x,1);}.

By (Elab For), S ⇓Γ ⟨{g1 : (int, data), g2 : (int, data)} ∪ ΓV , for(i in g1:g2){S ′′}⟩ where:

ΓV = vΓ(ΓS ,N ) = {x : (real[N],model)}
S ′′ = vS (i, ΓV , S ′) = x[i] ∼ normal(0,1); y[i] ∼ normal(x[i],1);

Next, we state and prove type preservation of the elaboration relation.

Theorem 3.4 (Type preservation of ⇓Γ). For SlicStan statements S , SlicStan expressions E, and
SlicStan function definitions F :

(1) If Γ ⊢ E : (τ , ℓ) and E ⇓Γ ⟨Γ′, S ′.E ′⟩ then Γ, Γ′ ⊢ S ′ : data and Γ, Γ′ ⊢ E ′ : (τ , ℓ).
(2) If Γ ⊢ S : ℓ and S ⇓Γ ⟨Γ′, S ′⟩ then Γ, Γ′ ⊢ S ′ : ℓ
(3) If F ⇓Γ ⟨Γ′, S ′.ret⟩ then Γ, Γ′ ⊢ S ′ : data

Proof. By inductions on the size of the derivations of the judgments E ⇓Γ ⟨Γ′, S ′.E ′⟩, S ⇓Γ
⟨Γ′, S ′⟩, and F ⇓Γ ⟨Γ′, S ′.ret⟩. �

3.4 Semantics of SlicStan
We now show how SlicStan’s type system allows us to specify the semantics of the probabilistic
program as an unnormalised posterior density function. This shows how the semantics of SlicStan
connects to that of Stan, and demonstrates that explicitly encoding the roles of program variables
into the block syntax of the language is not needed.

We specify the semantics — the unnormalised density logp∗F1, ...,Fn ,S
(θ | D) — in two steps.

3.4.1 Semantics of (Elaborated) SlicStan Statements. Consider an elaborated SlicStan statement S
such that Γ ⊢ S : data. The semantics of S is the function logp∗Γ⊢S , such that for any state s |= Γ:

logp∗Γ⊢S (s) , s ′[target] if there is s ′ such that ((s, target 7→ 0), S) ⇓ s ′

3.4.2 Semantics of SlicStan Programs. Consider a well-formed SlicStan program F1, . . . , Fn, S and
suppose that S ⇓∅ ⟨Γ′, S ′⟩. (Observe that Γ′ and S ′ are uniquely determined by F1, . . . , Fn, S .)
Suppose also that:

• ΓD corresponds to data variables, ΓD = {x : ℓ ∈ Γ′ | ℓ = data ∧ x <W (S ′)}, and
• Γθ corresponds to model parameters, Γθ = {x : ℓ ∈ Γ′ | ℓ = model ∧ x <W (S ′)}.

Similarly to Stan (§§ 2.4), the semantics of a SlicStan program S is the unnormalised log posterior
density function logp∗F1, ...,Fn ,S

on parameters θ given data D (with θ |= Γθ and D |= ΓD ):

logp∗F1, ...,Fn ,S (θ | D) , logp∗Γ′⊢S ′(θ ,D) (1)

3.5 Examples
Next, we give two examples of SlicStan programs, their elaborated versions, and their semantics
in the form of an unnormalised log density function. Here, we specify the levels of variables in
SlicStan programs explicitly. In § 5 we describe how type inference can be implemented to infer
optimal levels for program variables, thus making explicit declaration of levels unnecessary.
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3.5.1 Simple Example. Consider a SlicStan program ∅, S (∅ denotes no function definitions), where
we simply model the distribution of a data array y:
S = real model mu ∼ normal(0, 1);

real model sigma ∼ normal(0, 1);

int data N;

real data y[N];

for(i in 1:N){ y[i] ∼ normal(mu, sigma); }

We define the semantics of S in three steps:
(1) Elaboration: S ⇓∅ ⟨Γ′, S ′⟩, where:

Γ′ =mu : (real,model), sigma : (real,model),
y : (real[N],model),N : (int, data)

S ′ = mu ∼ normal(0, 1);

sigma ∼ normal(0, 1);

for(i in 1:N){

y[i] ∼ normal(mu, sigma); }

(2) Semantics of S ′: For any state s |= Γ′, logp∗Γ′⊢S ′(s) = s ′[target], where (s, S ′) ⇓ s ′. Thus:
logp∗Γ′⊢S ′(s) = logN(µ, 0, 1) + logN(σ , 0, 1) +∑N

i=1 logN(yi , µ,σ )
(3) Semantics of S : We derive ΓD = {x : ℓ ∈ Γ′ | ℓ = data ∧ x < W (S ′)} = {N ,y}, and

Γθ = {x : ℓ ∈ Γ′ | ℓ = model ∧ x < W (S ′)} = {µ,σ }. Therefore, the semantics of S is the
unnormalised density on the parameters µ and σ , given data N and y:

logp∗S (µ,σ | y,N ) = logN(µ, 0, 1) + logN(σ , 0, 1) +∑N
i=1 logN(yi , µ,σ )

3.5.2 User-defined Functions Example. Next, we look at an example that includes a user-defined
function. Here, the function my_normal is a reparameterising function (§§ 5.4), that defines a
Gaussian random variable, by scaling and shifting a standard Gaussian variable:
S = real model my_normal(real model m, real model s){

real model x_std ∼ normal(0, 1);

return m + x_std * s;
}

real model mu ∼ normal(0, 1);

real model sigma ∼ normal(0, 1);

int data N;

real genqant x[N];

for(i in 1:N) { x[i] = my_normal(mu, sigma); }

(1) Elaboration: S ⇓∅ ⟨Γ′, S ′⟩, where:
Γ′ =mu : (real,model), sigma : (real,model),

m : (real,model), s : (real,model),
x_std : (real[N],model),
x : (real[N], genqant),N : (int, data)

S ′ = mu ∼ normal(0, 1);

sigma ∼ normal(0, 1);

for(i in 1:N){

m = mu; s = sigma;
x_std[i] ∼ normal(0, 1);

x[i] = m + x_std[i] * s; }
(2) Semantics of S ′: Consider any s |= Γ′. Then:

logp∗Γ′⊢S ′(s) = logN(µ, 0, 1) + logN(σ , 0, 1) +∑N
i=1 logN(x std

i , 0, 1)
(3) Semantics of S : We derive ΓD = {N }, and Γθ = {µ,σ , xstd}. The semantics of the program S

is the unnormalised density on the parameters µ, σ , and xstd, given data N :
logp∗S (µ,σ , xstd | N ) = logN(µ, 0, 1) + logN(σ , 0, 1) +∑N

i=1 logN(x std
i , 0, 1)
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3.6 Difficulty of Specifying Direct Semantics Without Elaboration
Specifying the direct semantics logp∗∅⊢S (s), without an elaboration step, is not simple. SlicStan’s
user-defined functions are flexible enough to allow new model parameters to be declared inside
of the body of a function. Having some of the parameters declared this way means that it is not
obvious what the complete set of parameters is, unless we elaborate the program.

Consider the program from §§§ 3.5.2. Its semantics is logp∗S (µ,σ , xstd | N ) = logN(µ, 0, 1) +
logN(σ , 0, 1) + ∑N

i=1 logN(x std
i , 0, 1). This differs from logp∗S (µ,σ , x std | N )) = logN(µ, 0, 1) +

logN(σ , 0, 1) + N × logN(x std, 0, 1), which would be the accumulated log density in case we do
not unroll the my_normal call, and instead implement direct semantics. In one case, the model has
N + 2 parameters: µ,σ , x std

1 , . . . , x
std
N . In the other, the model has only 3 parameters: µ,σ , x std.

4 TRANSLATION OF SLICSTAN TO STAN
Translating SlicStan to Stan happens in two steps: shredding (§§ 4.1) and transformation (§§ 4.2). In
this section, we formalise these steps and show that the semantics, seen as an unnormalised log
posterior density function on parameters given data, is preserved in the translation.

4.1 Shredding
The first step in translating an elaborated SlicStan program to Stan is the idea of shredding (or slicing)
by level. SlicStan allows statements that assign to variables of different levels to be interleaved. Stan,
on the other hand, requires all data level statements to come first (in the data and transformed
data blocks), then all model level statements (in the parameters, transformed parameters and
model blocks), and finally, the genqant level statements (in the generated quantities block).

Therefore, we define the shredding relation ⇕Γ on an elaborated SlicStan statement S and triples
of single-level statements (SD , SM , SQ ) (Definition 4.1). That is, ⇕Γ shreds a statement into three
elaborated SlicStan statements SD , SM and SQ , where SD only assigns to variables of level data,
SM only assigns to variables of level model, and SQ only assigns to variables of level genqant.
We formally state and prove this result in Lemma 4.2.
Shredding Relation

S ⇕Γ (SD , SM , SQ ) statement shredding

Currently, Stan can only assign to data variables inside the transformed data block, to model
variables inside the transformed parameters block, and to generated quantities inside the
generated quantities block. Therefore, in Stan it is not possible to write an if statement or
a for loop which assigns to variables of different levels inside its body. The (Shred If) and (Shred
For) rules resolve this by copying the entire body of the if statement or for loop on each of the three
levels. Notice that we restrict the if and for guards to be variables (as opposed to any expression),
which we have ensured is the case after the elaboration step ((Elab If) and (Elab For)).

For example, consider the SlicStan program S , as defined below. It elaborates to S ′ and Γ′, and it
is then shredded to the single-level statements (SD , SM , SQ ):
S = real data d;

real model m;

if(d > 0){

d = 1;

m = 2;

}

Γ′ = {d : (real, data),
m : (real,model),
g : (bool, data)}

S ′ = g = (d > 0);

if(g){d=1; m=2;}

SD = g = (d > 0);

if(g){d = 1;}

SM = if(g){m = 2;}

SQ = skip;
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Shredding Rules for Statements:

(Shred DataAssign)
Γ(L) = (_, data)

L = E ⇕Γ (L = E, skip, skip)

(Shred ModelAssign)
Γ(L) = (_,model)

L = E ⇕Γ skip, L = E, skip

(Shred GenQuantAssign)
Γ(L) = (_, genqant)

L = E ⇕Γ skip, skip, L = E

(Shred Seq)
S1 ⇕Γ SD1, SM1, SQ1 S2 ⇕Γ SD2, SM2, SQ2

S1; S2 ⇕Γ (SD1 ; SD2 ), (SM1 ; SM2 ), (SQ1 ; SQ2 )

(Shred Skip)

skip ⇕Γ (skip, skip, skip)
(Shred If)

S1 ⇕Γ (SD1, SM1, SQ1 ) S2 ⇕Γ (SD2, SM2, SQ2 )
if(д) S1 else S2 ⇕Γ (if(д) SD1 else SD2 ), (if(д) SM1 else SM2 ), (if(д) SQ1 else SQ2 )
(Shred For)

S ⇕Γ (SD , SM , SQ )
for(x in д1 : д2) S ⇕Γ (for(x in д1 : д2) SD ), (for(x in д1 : д2) SM ), (for(x in д1 : д2) SQ )

In the rest of this section, we show that shredding a SlicStan program preserves its semantics
(Theorem 4.9), in the sense that an elaborated program S has the same meaning as the sequence of
its shredded parts SD ; SM ; SQ . We do so by:

(1) Proving that shredding produces single-level statements (Definition 4.1 and Lemma 4.2).
(2) Defining a notion of statement equivalence (Definition 4.3) and specifying what conditions

need to hold to change the order of two statements (Lemma 4.4).
(3) Showing how to extend the type system of SlicStan in order for the language to fulfil the

criteria from (2) (Definition 4.7, Lemma 4.8).
Intuitively, a single-level statement of level ℓ is one that updates only variables of level ℓ.

Definition 4.1 (Single-level Statement Γ ⊢ ℓ(S)). S is a single-level statement of level ℓ with respect
to Γ (written Γ ⊢ ℓ(S)) if and only if, Γ ⊢ S : ℓ and ∀x ∈W (S) there is some τ , s.t. x : (τ , ℓ) ∈ Γ.

Lemma 4.2 (Shredding produces single-level statements).

S ⇕Γ (SD , SM , SQ ) =⇒ Γ ⊢ data(SD ) ∧ Γ ⊢ model(SM ) ∧ Γ ⊢ genquant(SQ )
The core of proving Theorem 4.9 is that if we take a statement S that is well-typed in Γ, and

reorder its building blocks according to ⇕Γ , the resulting statement S ′ will be equivalent to S .

Definition 4.3 (Statement equivalence). S ≃ S ′ , (∀s, s ′.(s, S) ⇓ s ′ ⇐⇒ (s, S ′) ⇓ s ′)
In the general case, to swap the order of executing S1 and S2, it is enough for each statement not

to assign to a variable that the other statement reads or assigns to:

Lemma 4.4 (Statement Reordering). For statements S1 and S2 that are well-typed in Γ, if R(S1) ∩
W (S2) = ∅,W (S1) ∩ R(S2) = ∅, andW (S1) ∩W (S2) = ∅ then S1; S2 ≃ S2; S1.

Shredding produces single-level statements, therefore we only encounter reordering single-level
statements of distinct levels. Thus, two of the conditions needed for reordering already hold.

Lemma 4.5. If Γ ⊢ ℓ1(S1), Γ ⊢ ℓ2(S2) and ℓ1 < ℓ2 then R(S1) ∩W (S2) = ∅ andW (S1) ∩W (S2) = ∅.

To reorder the sequence S2; S1 according to Lemma 4.4, we need to satisfy one more condition,
which is R(S2) ∩W (S1) = ∅. We achieve this through the predicate S in the (Seq) typing rule.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 35. Publication date: January 2019.



Probabilistic Programming with Densities in SlicStan: Efficient, Flexible, and Deterministic 35:19

One way to define S(S2, S1) is so that it directly reflects this condition: S(S2, S1) = R(S2) ∩W (S1).
This corresponds to a form of a single-assignment system, where variables become immutable once
they are read.

We adopt a more flexible strategy, where we enforce variables of level ℓ to become immutable
only once they have been read at a level higher than ℓ. We define:

• RΓ⊢ℓ(S): the set of variables x that are read at level ℓ in S . For example, if y is of level ℓ, then
x ∈ RΓ⊢ℓ(y = x). (Definition A.5).

• WΓ⊢ℓ(S): the set of variables x of level ℓ that have been assigned to in S (Definition A.6).
Importantly, if Γ ⊢ ℓ(S), then the sets RΓ⊢ℓ(S) andWΓ⊢ℓ(S) are the same as R(S) andW (S):
Lemma 4.6. If Γ ⊢ ℓ(S), then RΓ⊢ℓ(S) = R(S) andWΓ⊢ℓ(S) =W (S).
Finally, we give the formal definition of S:

Definition 4.7 (Shreddable sequence). S(S1, S2) , ∀ℓ1, ℓ2.(ℓ2 < ℓ1) =⇒ RΓ⊢ℓ1 (S1)∩WΓ⊢ℓ2 (S2) = ∅

Lemma 4.8 (Commutativity of seqencing single-level statements).
If Γ ⊢ ℓ1(S1), Γ ⊢ ℓ2(S2), Γ ⊢ S2; S1 : data and ℓ1 < ℓ2 then S2; S1;≃ S1; S2;

Theorem 4.9 (Semantic Preservation of ⇕Γ).
If Γ ⊢ S : data and S ⇕Γ (SD , SM , SQ ) then logp∗Γ⊢S (s) = logp∗

Γ⊢(SD ;SM ;SQ )(s), for all s |= Γ.

Proof. Note that if S ≃ S ′ then logp∗Γ⊢S (s) = logp∗Γ⊢S ′(s) for all states s |= Γ. Semantic preser-
vation then follows from proving the stronger result Γ ⊢ S : data ∧ S ⇕Γ (SD , SM , SQ ) =⇒ S ≃
(SD ; SM ; SQ ) by structural induction on the structure of S .

We give the full proof, together with proofs for Lemma 4.2, 4.4, 4.5 and 4.6, in A.2. �

4.2 Transformation
The last step of translating SlicStan to Stan is transformation. We formalise how a shredded SlicStan
program ⟨Γ, (SD , SM , SQ )⟩ transforms to a Stan program P , through the transformation relations:

Transformation Relations

Γ ⇓(t )S P variable declarations transformation
S ⇓(d ) P data statement transformation
S ⇓(m) P model statement transformation
S ⇓(q) P genqant statement transformation
⟨Γ, S⟩ ⇓(t ) P top-level transformation

Intuitively, a shredded program ⟨Γ, (SD , SM , SQ )⟩ transforms to Stan in four steps:
(1) The declarations Γ are split into blocks, depending on the level of variables and whether or

not they have been assigned to inside of SD , SM or SQ .
(2) The data-levelled statement SD becomes the body of the transformed data block.
(3) The model-levelled statement SM is split into the transformed parameters and model

block, depending on whether or not substatements assign to the target variable or not.
(4) The genqant-levelled statement SQ becomes the body of the generated quantities block.
This is formalised by the (Trans Prog) rule below. The Stan program P1; P2 is the Stan programs

P1 and P2 merged by composing together the statements in each program block (Definition A.7).
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Top-level Transformation Rule

(Trans Prog)
S ⇕Γ (SD , SM , SQ ) Γ ⇓(t )(SD ;SM ;SQ ) P SD ⇓(d ) PD SM ⇓(m) PM SQ ⇓(q) PQ

⟨Γ, S⟩ ⇓(t ) P ; PD ; PM ; PQ

Transformation Rules for Declarations:

(Trans Data)
Γ ⇓(t )S P x <W (S)

Γ, x : (τ , data) ⇓(t )S data{x : τ }; P

(Trans TrData)
Γ ⇓(t )S P x ∈W (S)

Γ, x : (τ , data) ⇓(t )S transformed
data {x : τ }; P

(Trans Param)
Γ ⇓(t )S P x <W (S)

Γ, x : (τ ,model) ⇓(t )S parameters{x : τ }; P

(Trans TrParam)
Γ ⇓(t )S P x ∈W (S)

Γ, x : (τ ,model) ⇓(t )S transformed
parameters {x : τ }; P

(Trans GenQuant)
Γ ⇓(t )S P

Γ, x : (τ , genqant) ⇓(t )S
generated
quantities{x : τ }; P

(Trans Empty)

∅ ⇓(t ) ∅

Transf. Rule for Data Statements:

(Trans Data)

SD ⇓(d ) transformed
data {SD }

Transf. Rule for GenQuant Statements:

(Trans GenQuant)

SQ ⇓(d ) generated
quantities{SQ }

The rules (Trans ParamIf), (Trans ModelIf), (Trans ParamFor), and (Trans ModelFor) might
produce a Stan program that does not compile in the current version of Stan. This is because Stan
restricts the transformed parameters block to only assign to transformed parameters, and the
model block to only assign to the target variable. However, a for loop, for example, can assign to
both kinds of variables in its body:

for(i in 1:N){

sigma[i] = pow(tau[i], -0.5);

y[i] ∼ normal(0, sigma[i]); }

To the best of our knowledge, this limitation is an implementational particularity of the current
version of the Stan compiler, and does not have an effect on the semantics of the language.7Therefore,
we assume Core Stan to be a slightly more expressive version of Stan, that allows transformed
parameters to be assigned in the model block.
Transformation Rules for Model Statements:

(Trans ParamAssign)
L , target

L = E ⇓(m) transformed
parameters {L = E}

(Trans Model)

target = E ⇓(m) model{target = E}

(Trans ParamSeq)
S1 ⇓(m) P1 S2 ⇓(t ) P2

S1; S2 ⇓(m) P1; P2

7Moreover, there is an ongoing discussion amongst Stan developers to merge the parameters, transformed parameters and
model blocks in future versions of Stan http://andrewgelman.com/2018/02/01/stan-feature-declare-distribute/.
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(Trans ParamIf)
target <W (S1) ∪W (S2)

if(E) S1 else S2 ⇓(m)transformed
parameters {if(E) S1 else S2}

(Trans ModelIf)
target ∈W (S1) ∪W (S2)

if(E) S1 else S2 ⇓(m)model{if(E) S1 else S2}
(Trans ParamFor)

target <W (S)
for(x in E1 : E2) S ⇓(m) transformed

parameters {for(x in E1 : E2) S}

(Trans ParamSkip)

skip ⇓(m) ∅

(Trans ModelFor)
target ∈W (S)

for(x in E1 : E2) S ⇓(m) model{for(x in E1 : E2) S}

Theorem 4.10 (Semantic Preservation of ⇓(t )). Consider a well-formed SlicStan program
F1, . . . , Fn, S , such that S ⇓∅ ⟨Γ′, S ′⟩. Consider also a Core Stan program P , such that ⟨Γ′, S ′⟩ ⇓(t ) P .
Then for any θ |= {(x : (τ , data)) ∈ Γ′ | x <W (S ′)} and D |= {(x : (τ ,model)) ∈ Γ′ | x <W (S ′)}:

logp∗F1, ...,Fn ,S (θ | D) = logp∗P (θ | D)

Proof. By rule induction on the derivation of ⟨Γ′, S ′⟩ ⇓(t ) P , and equation 1 from §§§ 3.4.2. �

5 EXAMPLES AND DISCUSSION
In this section, we demonstrate and discuss the functionality of SlicStan. We compare several
Stan code examples, from Stan’s Reference Manual [Stan Development Team 2017] and Stan’s
GitHub repositories [Stan Development Team 2018b], with their equivalent written in SlicStan, and
analyse the differences. All examples presented in this section have been tested using a preliminary
implementation of SlicStan, developed by Gorinova et al. [2018a,b], although in this paper we use
for loops where the work makes use of a vectorised notation.

Firstly, we assume a type inference strategy for level types, which allows us to remove the
explicit specification of levels from the language (§§ 5.1). Next, we show that SlicStan allows the
user to better follow the principle of locality — related concepts can be kept closer together (§§ 5.2).
Secondly, we demonstrate the advantages of the more compositional syntax, when code refactoring
is needed (§§ 5.3). The last comparison point shows the usage of more flexible user-defined functions,
and points out a few limitations of SlicStan (§§ 5.4). More examples and a further discussion on the
usability of the languages is presented in Appendix E.

5.1 Type Inference
Going back to §§ 2.3, and Table 1, we identify that different Stan blocks are executed a different
number of times, which gives us another ordering on the level types: a performance ordering.

Code associated with variables of level data is executed only once, as a preprocessing step before
inference. Code associated with variables of level genqant is executed once per sample, right after
inference has completed, as these quantities can be generated from the already obtained samples of
the model parameters (in other words, this is a postprocessing step). Finally, code associated with
model variables is needed at each step of the inference algorithm itself. In the case of HMC, this
means such code is executed once per leapfrog step (many times per sample).

Thus, there is a performance ordering of level types: data ≤ genqant ≤ model: it is cheaper
for a variable to be data than to be genqant, and is cheaper for it to be genqant than to be
model. We can implement type inference following the rules from §§ 3.2, to infer the level type of
each variable in a SlicStan program, so that:
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• the hard constraint on the information flow direction data < model < genqant is enforced
• the choice of levels is optimised with respect to the ordering data ≤ genqant ≤ model.

We have implemented type inference for a preliminary version of SlicStan. In the rest of this
section, we assume that no level type annotations are necessary in SlicStan, except for what the
data of the probabilistic model is (specified using the derived form data τ x ; S), and that the optimal
level type of each variable is inferred as part of the translation process.

5.2 Locality
With the first example, we demonstrate that SlicStan’s blockless syntax makes it easier to follow
good software development practices, such as declaring variables close to where they are used, and
for writing out models that follow a generative story. It abstracts away some of the specifics of the
underlying inference algorithm, and thus writing optimised programs requires less mental effort.

Consider an example adapted from [Stan Development Team 2017, p. 101]. We are interested
in inferring the mean µy and variance σ 2

y of the independent and identically distributed variables
y ∼ N(µy ,σy ). The model parameters are µy (the mean of y), and τy = 1/σ 2

y (the precision of y).
Below, we show this example written in SlicStan (left) and Stan (right).

SlicStan

1 real alpha = 0.1;
2 real beta = 0.1;
3 real tau_y ∼ gamma(alpha, beta);
4

5 data real mu_mu;
6 data real sigma_mu;
7 real mu_y ∼ normal(mu_mu, sigma_mu);
8

9 real sigma_y = pow(tau_y, −0.5);
10 real variance_y = pow(sigma_y, 2);
11

12 data int N;
13 data real[N] y;
14 for(i in 1:N){ y[i] ∼ normal(mu_y, sigma_y);}

Stan
1 data {
2 real mu_mu;
3 real sigma_mu;
4 int N;
5 real y[N];
6 }
7 transformed data {
8 real alpha = 0.1;
9 real beta = 0.1;

10 }
11 parameters {
12 real mu_y;
13 real tau_y;
14 }
15 transformed parameters {
16 real sigma_y = pow(tau_y,−0.5);
17 }
18 model {
19 tau_y ∼ gamma(alpha, beta);
20 mu_y ∼ normal(mu_mu, sigma_mu);
21 for(i in 1:N){ y[i] ∼ normal(mu_y, sigma_y);}
22 }
23 generated quantities {
24 real variance_y = pow(sigma_y,2);
25 }

The lack of blocks in SlicStan makes it more flexible in terms of order of statements. The code
here is written to follow more closely than Stan the generative story: we firstly define the prior
distribution over parameters, and then specify how we believe data was generated from them.
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We also keep declarations of variables close to where they have been used: for example, sigma_y
is defined right before it is used in the definition of variance_y. This model can be expressed in
SlicStan by using any order of the statements, provided that variables are not used before they
are declared. In Stan this is not always possible and may result in closely related statements being
located far away from each other.

With SlicStan there is no need to understand when different statements are executed in order to
perform inference. The SlicStan code is translated to the hand-optimised Stan code, as specified by
the manual, without any annotations from the user, apart from what the input data to the model is. In
Stan, however, an inexperienced Stan programmer might have attempted to define the transformed
data variables alpha and beta in the data block, which would result in a syntactic error. Even more

subtly, they could have defined alpha, beta and variance_y all in the transformed parameters
block, in which case the program will compile to a less efficient, semantically equivalent model.

5.3 Code Refactoring
The next example is adapted from [Stan Development Team 2017, p. 202], and shows how the
absence of program blocks can lead to easier to refactor code. We start from a simple model, standard
linear regression, and show what changes need to be made in both SlicStan and Stan, in order to
change the model to account for measurement error. The initial model is a simple Bayesian linear
regression with N predictor points x, and N outcomes y. It has 3 parameters — the intercept α , the
slope β , and the amount of noise σ . In other words, y ∼ N(α1 + βx,σ I ).

If we want to account for measurement noise, we need to introduce another vector of variables
xmeas , which represents the measured predictors (as opposed to the true predictors x). We postulate
that the values of xmeas are noisy (with standard deviation τ ) versions of x: xmeas ∼ N(x, τ I ).

The next page shows these two models written in SlicStan (left) and Stan (right). Ignoring
all the lines/corrections in red gives us the initial regression model, the one not accounting for
measurement errors. The entire code, including the red corrections, gives us the second regression
model, the one that does account for measurement errors. Transitioning from model one to model
two requires the following corrections:

• In SlicStan:
– Delete the data keyword for x (line 2).
– Introduce anywhere in the program statements declaring the measurements xmeas , their

deviation τ , the now parameter x, and its hyperparameters µx ,σx (lines 11–17).
• In Stan:

– Move x’s declaration from data to parameters (line 5 and line 9).
– Declare xmeas and τ in data (lines 3–4).
– Declare x’s hyperparameters µx and σx in parameters (lines 10–11).
– Add statements modelling x and xmeas in model (lines 18–19).

Performing the code refactoring requires the same amount of code in SlicStan and Stan. However,
in SlicStan the changes interfere much less with the code already written. We can add statements
extending the model anywhere (as long variables are declared before they are used). In Stan, on the
other hand, we need to modify each block separately. This example demonstrates a successful step
towards our aim of making Stan more compositional — composing programs is easier in SlicStan.
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Regression in SlicStan

1 data int N;
2 data real[N] x;
3 real mu_x;
4 real sigma_x;
5 data real[N] x_meas;
6 data real tau;
7

8 real alpha ∼ normal(0, 10);
9 real beta ∼ normal(0, 10);

10 real sigma ∼ cauchy(0, 5);
11 data real[N] y;
12

13 for(i in 1:N){
14 x[i] ∼ normal(mu_x, sigma_x);
15 x_mean[i] ∼ normal(x[i], tau);
16 y[i] ∼ normal(alpha + beta∗x[i], sigma);
17 }

Regression in Stan
1 data {
2 int N;
3 real[N] x_meas;
4 real tau;
5 real[N] x;
6 real[N] y;
7 }
8 parameters {
9 real[N] x;

10 real mu_x;
11 real sigma_x;
12 real alpha;
13 real beta;
14 real sigma;
15 }
16 model {
17 alpha ∼ normal(0, 10);
18 beta ∼ normal(0, 10);
19 sigma ∼ cauchy(0, 5);
20 for(i in 1:N){
21 x[i] ∼ normal(mu_x, sigma_x);
22 x_mean[i] ∼ normal(x[i], tau);
23 y[i] ∼ normal(alpha + beta∗x[i], sigma); }
24 }

5.4 Code Reuse
Finally, we demonstrate the usage of more flexible functions in SlicStan, which allow for better
code reuse, and therefore can lead to shorter, more readable code. In the introduction of this paper,
we presented a transformation that is commonly used when specifying hierarchical model — the
non-centred parametrisation of a normal variable. In brief, an MCMC sampler may have difficulties in
exploring a posterior density well, if there exist strong non-linear dependencies between variables.
In such cases, we can reparameterise the model: we can express it in terms of different parameters,
so that the original parameters can be recovered. In the case of a normal variable x ∼ N(µ,σ ), we
define it as x = µ+σx ′, where x ′ ∼ N(0, 1). We explain in more detail the usage of the non-centered
parametrisation in Appendix D.

In this section, we show the “Eight Schools” example [Gelman et al. 2013, p. 119], which also
uses non-centred parametrisation in order to improve performance. Eight schools study the effects
of their SAT-V coaching program. The input data is the estimated effects y of the program for each
of the eight schools, and their shared standard deviation σ . The task is to specify a model that
accounts for errors, by considering the observed effects to be noisy estimates of the true effects θ .
Assuming a Gaussian model for the effects and the noise, we have y ∼ N(θ ,σ I ) and θ ∼ N(µ1, τ I ).

Below is this model written in SlicStan (left) and Stan (right, adapted from Stan’s GitHub
repository [Stan Development Team 2018b]). In both cases, we use non-centred reparameterisation
to improve performance: in Stan, the coaching effect for the ith school, theta[i], is declared as a
transformed parameter obtained from the standard normal variable eta[i]; in SlicStan, we can once
again make use of the non-centred reparameterisation function my_normal.
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“Eight Schools” in SlicStan

1 real my_normal(real m, real v){
2 real std ∼ normal(0, 1);
3 return v ∗ std + m;
4 }
5

6 data real[8] y;
7 data real[8] sigma;
8 real[8] theta;
9

10 real mu;
11 real tau;
12

13 for (i in 1:8){
14 theta[i] = my_normal(mu, tau);
15 y[i] ∼ normal(theta[i], sigma[i]);
16 }

“Eight Schools” in Stan
1 data {
2 real y[8];
3 real sigma[8];
4 }
5 parameters {
6 real mu;
7 real tau;
8 real theta_std[8];
9 }

10 transformed parameters {
11 real theta[8];
12 for (j in 1:8){theta[j] = mu+tau∗theta_std[i];}
13 }
14 model {
15 for (j in 1:8){
16 y[i] ∼ normal(theta[i], sigma[i]);8
17 theta_std[i] ∼ normal(0, 1);
18 }
19 }

One advantage of the original Stan code compared to SlicStan is the flexibility the user has to
name all model parameters. In Stan, the auxiliary standard normal variables theta_std are named by
the user, while in SlicStan, the names of parameters defined inside of a function are automatically
generated, and might not correspond to the names of transformed parameters of interest. All
parameter names are important, as they are part of the output of the sampling algorithm, which is
shown to the user. Even though in this case the auxiliary parameters were introduced solely for
performance reasons, inspecting their values in Stan’s output can be useful for debugging purposes.

6 RELATED WORK
There exists a range of probabilistic programming languages and systems. Stan’s syntax is inspired
by that of BUGS [Gilks et al. 1994], which uses Gibbs sampling to perform inference. Other languages
include Anglican [Wood et al. 2014], Church [Goodman et al. 2012] and Venture [Mansinghka et al.
2014], which focus on expressiveness of the language and range of supported models. They provide
clean syntax and formalised semantics, but use less efficient, more general-purpose inference
algorithms. The Infer.NET framework [Minka et al. 2014] uses an efficient inference algorithm
called expectation propagation, but supports a limited range of models. Turing [Ge et al. 2018]
allows different inference techniques to be used for different sub-parts of the model, but requires
the user to explicitly specify which inference algorithms to use as well as their hyperparameters

More recently, there has been the introduction of deep probabilistic programming, in the form of
Edward [Tran et al. 2018, 2016] and Pyro [Uber AI Labs 2017], which focus on using deep learning
techniques for probabilistic programming. Edward and Pyro are built on top of the deep learning
libraries TensorFlow [Abadi et al. 2016] and PyTorch [Paszke et al. 2017] respectively, and support
a range of efficient inference algorithms. However, they lack the conciseness and formalism of
some of the other systems, and it many cases require sophisticated understanding of inference.

8In the full version of Stan these statements can be “vectorised” for efficiency, e.g. y ∼ normal(theta,sigma);
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Other languages and systems include Hakaru [Narayanan et al. 2016], Figaro [Pfeffer 2009], Fun
[Borgström et al. 2011], Greta [Golding et al. 2018] and many others.

The rest of this section addresses related work done mostly within the programming languages
community, which focuses on the semantics (§§ 6.1), static analysis (§§ 6.2), and usability (§§ 6.3)
of probabilistic programming languages. A more extensive overview of the connection between
probabilistic programming and programming language research is given by Gordon et al. [2014b].

6.1 Formalisation of Probabilistic Programming Languages
There has been extensive work on the formalisation of probabilistic programming languages syntax
and semantics. A widely accepted denotational semantics formalisation is that of Kozen [1981]. Other
work includes a domain-theoretic semantics [Jones and Plotkin 1989], measure-theoretic semantics
[Borgström et al. 2011; Ścibior et al. 2015; Toronto et al. 2015], operational semantics [Borgström
et al. 2016a; Dal Lago and Zorzi 2012; Staton et al. 2016], and more recently, categorical formalisation
for higher-order probabilistic programs [Heunen et al. 2017]. Most previous work specifies either
a measure-theoretic denotational semantics, or a sampling-based operational semantics. Some
work [Huang and Morrisett 2016; Hur et al. 2015; Staton et al. 2016] gives both denotational and
operational semantics, and shows a correspondence between the two.

The density-based semantics we specify for Stan and SlicStan is inspired by the work of Hur
et al. [2015], who give an operational sampling-based semantics to the imperative language Prob.
Intuitively, the difference between the two styles of operational semantics is:

• Operational density-based semantics specifies how a program S is executed to evaluate the
(unnormalised) posterior density p∗(θ | D) at some specific point θ of the parameter space.

• Operational sampling-based semantics specifies how a program S is executed to evaluate the
(unnormalised) probability p∗(t) of the program generating some specific trace of samples t.

Refer to Appendix B.2 for examples and further discussion of the differences between density-
based and sampling-based semantics.

6.2 Static Analysis for Probabilistic Programming Languages
Work on static analysis for probabilistic programs includes several papers that focus on improving
efficiency of inference. R2 [Nori et al. 2014] applies a semantics-preserving transformation to the
probabilistic program, and then uses a modified version of the Metropolis–Hastings algorithm
that exploits the structure of the model. This results in more efficient sampling, which can be
further improved by slicing the program to only contain parts relevant to estimating a target
probability distribution [Hur et al. 2014]. Claret et al. [2013] present a new inference algorithm
that is based on data-flow analysis. Hakaru [Narayanan et al. 2016] is a relatively new probabilistic
programming language embedded in Haskell, which performs automatic and semantic-preserving
transformations on the program, in order to calculate conditional distributions and perform exact
inference by computer algebra. The PSI system [Gehr et al. 2016] analyses probabilistic programs
using a symbolic domain, and outputs a simplified expression representing the posterior distribution.
The Julia-embedded language Gen [Cusumano-Towner and Mansinghka 2018] uses type inference
to automatically generate inference tactics for different sub-parts of the model. Similarly to Turing,
the user then combines the generated tactics to build a model-specific inference algorithm.

With the exception of the work on slicing [Hur et al. 2014], which is shown to work with Church
and Infer.NET, each of the above systems either uses its own probabilistic language or the method is
applicable only to a restricted type of models (for example boolean probabilistic programs). SlicStan
is different in that it uses information flow analysis and type inference in order to self-optimise to
Stan — a scalable probabilistic programming language with a large user-base.
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6.3 Usability of Probabilistic Programming Languages
This paper also relates to the line of work on usability of probabilistic programming languages.
Gordon et al. [2014a] implement a schema-driven language, Tabular, which allows probabilistic
programs to be written as annotated relational schemas. Fabular [Borgström et al. 2016b] extends
this idea by incorporating syntax for hierarchical linear regression inspired by the lme4 package
[Bates et al. 2014]. BayesDB [Mansinghka et al. 2015] introduces BQL (Bayesian Query Language),
which can be used to answer statistical questions about data, through SQL-like queries. Other work
includes visualisation of probabilistic programs, in the form of graphical models [Bishop et al. 2002;
Gilks et al. 1994; Gorinova et al. 2016], and more data-driven approaches, such as synthesising
programs from relational datasets [Chasins and Phothilimthana 2017; Nori et al. 2015].

7 CONCLUSION
Probabilistic inference is a challenging task. As a consequence, existing probabilistic languages
are forced to trade off efficiency of inference for range of supported models and usability. For
example, Stan, an increasingly popular probabilistic programming language, makes efficient scalable
automatic inference possible, but sacrifices compositionality of the language.

This paper formalises the syntax of a core subset of Stan and gives its operational density-
based semantics; it introduces a new, compositional probabilistic programming language, SlicStan;
and it gives a semantic-preserving procedure for translating SlicStan to Stan. SlicStan adopts an
information-flow type system, that captures the taxonomy classes of variables of the probabilistic
model. The classes can be inferred to automatically optimise the program for probabilistic inference.
To the best of our knowledge, this work is the first formal treatment of the Stan language.

We show that the use of static analysis and formal language treatment can facilitate efficient
black-box probabilistic inference, and improve usability. Looking forward, it would be interesting
to formalise the usage of pseudo-random generators inside of Stan. Variables in the generated
quantities block can be generated using pseudo-random number generators. In other words, the
user can explicitly compose Hamiltonian Monte Carlo with forward (ancestral) sampling to improve
inference performance. SlicStan can be extended to automatically determine what the most efficient
way to sample a variable is, which could significantly improve usability. Another interesting future
direction would be to adapt the sampling-based semantics of Hur et al. [2015] to SlicStan and
establish how the density-based semantics of this paper corresponds to it.
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A DEFINITIONS AND PROOFS
A.1 Definitions

Definition A.1 (Assigns-to setW (S)). W(S) is the set that contains the names of global variables
that have been assigned to within the statement S. It is defined recursively as follows:
W (x[E1] . . . [En] = E) = {x}
W ({Tx ; S}) =W (S) \ {x}
W (S1; S2) =W (S1) ∪W (S2)

W (skip) = ∅
W (if(E) S1 else S2) = W (S1) ∪ W (S2)
W (for(x in E1 : E2) S) =W (S) \ {x}

Definition A.2 (Reads set R(S)). R(S) is the set that contains the names of global variables that
have been read within the statement S. It is defined recursively as follows:
R(x) = {x}
R(c) = ∅
R([E1, . . . , En]) =

⋃n
i=1 R(Ei )

R(E1[E2]) = R(E1) ∪ R(E2)
R(f (E1, . . . , En)) =

⋃n
i=1 R(Ei )

R(F (E1, . . . , En)) =
⋃n

i=1 R(Ei )

R(x[E1] . . . [En] = E) = ⋃n
i=1 R(Ei ) ∪ R(E)

R({Tx ; S}) = R(S) \ {x}
R(S1; S2) = R(S1) ∪ R(S2)
R(skip) = ∅
R(if(E) S1 else S2) = R(E) ∪ R(S1) ∪ R(S2)
R(for(x in E1 : E2) S) = R(E1)∪R(E2)∪R(S)\{x}

Definition A.3 (Type of expression E in Γ). Γ(E) is the type of the expression E with respect to Γ:
Γ(x) = (τ , ℓ) for x : (τ , ℓ) ∈ Γ
Γ(c) = (ty(c), data)
Γ([E1, . . . , En]) = (τ [], ℓ1 ⊔ · · · ⊔ ℓn) if Γ(Ei ) = (τ , ℓi ) for i ∈ 1..n, and ℓ′ ⊔ ℓ′′ denoting the least
upper bound of ℓ′ and ℓ′′, , and it is undefined otherwise.
Γ(E1[E2]) = (τ , ℓ ⊔ ℓ′) if Γ(E1) = (τ [], ℓ) and Γ(E2) = (int, ℓ′), and it is undefined otherwise.
Γ(f (E1, . . . , En)) = (τ , ℓ) if Γ(Ei ) = (τi , ℓi ) for i ∈ 1..n, and f : (τ1, ℓ1), . . . , (τn, ℓn) → (τ , ℓ).

The elaboration relation transforms SlicStan statements and expressions to Core Stan statements
and expressions. Thus, throughout this document, we use the terms “elaborated statement” and
“elaborated expression” to mean a Core Stan statement and a Core Stan expression respectively.

Definition A.4 (Vectorising functions vΓ,vE ,vS ).
(1) vΓ(Γ,n) , {x : (τ [n], ℓ)}x :(τ ,ℓ)∈Γ , for any typing environment Γ.
(2) vE (x, Γ, E) is defined for a variable x , typing environment Γ, and an elaborated expression E:

vE (x, Γ, x ′) =
{
x ′[x] if x ′ ∈ dom(Γ)
x ′ if x ′ < dom(Γ)

vE (x, Γ, c) = c

vE (x, Γ, [E1, . . . , En]) = [vE (E1), . . . ,vE (En)]
vE (x, Γ, E1[E2]) = vE (E1)[vE (E2)]
vE (x, Γ, f (E1, . . . , En)) = f (vE (E1), . . . ,vE (En))

(3) vS (x, Γ, S) is defined for a variable x , typing environment Γ, and an elaborated statement S :
vS (x, Γ, L = E) = (vE (L) = vE (E))
vS (x, Γ, S1; S2) = vS (x, Γ, S1);vS (x, Γ, S2)
vS (x, Γ, if(E) S1 else S2) =

if(vE (E)) vS (S1) else vS (S2)

vS (x, Γ, for(x ′ in E1 : E2) S ′) =
for(x ′ in vE (E1) : vE (E2)) vS (S ′))

vS (skip) = skip

Definition A.5 (RΓ⊢ℓ(S)). RΓ⊢ℓ(S) is the set that contains the names of global variables that have
been read at level ℓ with respect to Γ within the statement S. It is defined recursively as follows:
RΓ⊢ℓ(x) = ∅

RΓ⊢ℓ(x[E1] . . . [En]) =
{⋃n

i=1 R(Ei ) if Γ(x) = ℓ
∅ otherwise

RΓ⊢ℓ(L = E) =
{
RΓ⊢ℓ(L) ∪ R(E) if Γ(L) = ℓ
∅ otherwise

RΓ⊢ℓ(S1; S2) = RΓ⊢ℓ(S1) ∪ RΓ⊢ℓ(S2)
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RΓ⊢ℓ(skip) = ∅
For S = if(E) S1 else S2, and
A = RΓ⊢ℓ(S1) ∪ RΓ⊢ℓ(S2):
RΓ⊢ℓ(S) =

{
R(E) ∪A if A , ∅
∅ otherwise

For S = for(x in E1 : E2) S ′, and
A = RΓ⊢ℓ(S ′)
RΓ⊢ℓ(S) =

{
R(E1) ∪ R(E2) ∪A if A , ∅
∅ otherwise

Definition A.6 (WΓ⊢ℓ(S)). WΓ⊢ℓ(S) , {x ∈W (S) | Γ(x) = (τ , ℓ) for some τ }
Definition A.7. Merging Stan programs P1; P2

Let P1 and P2 be two Stan programs, such that for i = 1, 2:

Pi = data{ Γ(i)d }
transformed data{ Γ(i)′d S (i)

′
d }

parameters{ Γ(i)m }
transformed parameters{ Γ(i)′m S (i)

′
m }

model{ Γ(i)′′m S (i)
′′

m }
generated quantities{ Γ(i)q S (i)q }

The sequence of P1 and P2, written P1; P2 is then defined as:

Pi = data{ Γ(1)d , Γ
(2)
d }

transformed data{ Γ(1)′d , Γ
(2)′
d S (1)

′
d ; S (2)

′
d }

parameters{ Γ(1)m , Γ
(2)
m }

transformed parameters{ Γ(1)′m , Γ
(2)′
m S (1)

′
m ; S (2)

′
m }

model{ Γ(1)′′m , Γ(2)
′′

m S (1)
′′

m ; S (2)
′′

m }
generated quantities{ Γ(1)q , Γ

(2)
q S (1)q ; S (2)q }

A.2 Proof of Semantic Preservation of Shredding
Lemma A.8. If s |= Γ then dom(s) = dom(Γ).
Proof. By inspection of the definition of s |= Γ. �

Lemma A.9. If S is well-typed in some environment Γ, x ∈ dom(s) and (s, S) ⇓ s ′ and x <W (S)
then s(x) = s ′(x).

Proof. By induction on the derivation (s, S) ⇓ s ′. �

Lemma A.10. If (s1, S) ⇓ s ′1 and (s2, S) ⇓ s ′2 for some s1, s
′
1, s2, s

′
2, and s1(x) = s2(x) for all x ∈ A,

where A ⊇ R(S), then s ′1(y) = s ′2(y) for all y ∈ A ∪W (S).
Proof. By induction on the structure of S . �

Restatement of Lemma 4.2(Shredding produces single-level statements)
S ⇕Γ (SD , SM , SQ ) =⇒ Γ ⊢ data(SD ) ∧ Γ ⊢ model(SM ) ∧ Γ ⊢ genquant(SQ )

Proof. By rule induction on the derivation of S ⇕Γ (SD , SM , SQ ). �

Restatement of Lemma 4.4 (Statement Reordering) For statements S1 and S2 that are well-
typed in Γ, if R(S1) ∩W (S2) = ∅,W (S1) ∩ R(S2) = ∅, andW (S1) ∩W (S2) = ∅ then S1; S2 ≃ S2; S1.
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Proof. Let Ri = R(Si ) and Wi = W (Si ) for i = 1, 2. Take any state s and assume that s |= Γ.
Suppose that (s, S1) ⇓ s1, (s, S2) ⇓ s2, (s1, S2) ⇓ s12, and (s2, S1) ⇓ s21. We want to prove that s12 = s21.

By Theorem 3.1 and Lemma A.8, we have dom(Γ) = dom(s) = dom(s1) = dom(s2) = dom(s12) =
dom(s21). Now, as S1 writes only toW1, by Lemma A.9, we have that for all variables x ∈ dom(Γ):

x <W1 =⇒ s(x) = s1(x) ∧ s2(x) = s21(x) (2)

But R2 andW1 are disjoint, andW2 andW1 are disjoint, therefore x <W1 for all x ∈ R2 ∪W2, and
hence by Lemma A.9:

x ∈ R2 ∪W2 =⇒ s(x) = s1(x) ∧ s2(x) = s21(x) (3)

If two states are equal up to all variables inR(S2), then S2 has the same effect on them (Lemma A.10).
Combining this with (3) gives us:

x ∈ R2 ∪W2 =⇒ s2(x) = s12(x) (4)

Next, combining (3) and (4), gives us:

x ∈ R2 ∪W2 =⇒ s2(x) = s12(x) = s21(x) (5)

Applying the same reasoning, but starting from S2, we also obtain:

x <W2 =⇒ s(x) = s2(x) ∧ s1(x) = s12(x) (6)
x ∈ R1 ∪W1 =⇒ s1(x) = s21(x) = s12(x) (7)

Finally, we have:
• ∀x ∈ R1 ∩W2.s12(x) = s21(x), as R1 ∩W2 = ∅;
• ∀x ∈W1 ∩ R2.s12(x) = s21(x), asW1 ∩ R2 = ∅;
• ∀x ∈W1 ∩W2.s12(x) = s21(x), asW1 ∩W2 = ∅;
• ∀x <W1 ∪W2.s12(x) = s21(x), by combining (2) with (6);
• ∀x ∈ R2 ∪W2.s12(x) = s21(x), by (5);
• ∀x ∈ R1 ∪W1.s12(x) = s21(x), by (7);

This covers all possible cases for x ∈ dom(Γ), therefore ∀x ∈ dom(Γ).s12(x) = s21(x). But
dom(Γ) = dom(s12) = dom(s21), thus s12 = s21.

�

Lemma A.11. If Γ(x) = (τ , ℓ), Γ ⊢ E : (τ ′, ℓ′), and x ∈ R(E) then ℓ ≤ ℓ′.
Proof. By induction on the structure of the derivation Γ ⊢ E : (τ ′, ℓ′). �

Lemma A.12. If Γ(E) = (τ , ℓ), Γ ⊢ ℓ′(S), and E occurs in S , then ℓ ≤ ℓ′.
Proof. By induction on the structure of S. �

Restatement of Lemma 4.5
If Γ ⊢ ℓ1(S1), Γ ⊢ ℓ2(S2) and ℓ1 < ℓ2 then R(S1) ∩W (S2) = ∅ andW (S1) ∩W (S2) = ∅.

Proof. Suppose Γ ⊢ ℓ1(S1), Γ ⊢ ℓ2(S2) and ℓ1 < ℓ2. Then, directly from Definition 4.1, we have
thatW (S1) ∩W (S2) = ∅. Next, we prove by contradiction that R(S1) ∩W (S2) = ∅. Suppose that
for some x , x ∈ R(S1) and x ∈ W (S2). From x ∈ W (S2) and Γ ⊢ ℓ2(S2), we have Γ(x) = (τ , ℓ2) for
some τ . From the definition of R(S1) and x ∈ R(S1), there must be an expression E in S1, such that
x ∈ R(E). Suppose Γ(E) = (τE , ℓE ). Now, Γ(x) = (τ , ℓ2), x ∈ R(E), and Γ ⊢ E : (τE , ℓE ), therefore
ℓ2 ≤ ℓE (Lemma A.11). But Γ ⊢ ℓ1(S1), and E occurs in S1, therefore ℓE ≤ ℓ1 (Lemma A.12).

We have ℓ2 ≤ ℓE ≤ ℓ1. But ℓ1 < ℓ2, which is a contradiction. �
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Restatement of Lemma 4.6
If Γ ⊢ ℓ(S), then RΓ⊢ℓ(S) = R(S) andWΓ⊢ℓ(S) =W (S).
Proof. Suppose Γ ⊢ ℓ(S). The first equality, RΓ⊢ℓ(S) = R(S), follows by structural induction on

RΓ⊢ℓ(S). Furthermore, by definition of single-level statements, if x ∈W (S), then Γ(x) = (τ , ℓ) for
some τ . Thus, by definition ofWΓ⊢ℓ(S), we have thatWΓ⊢ℓ(S) =W (S). �

Lemma A.13 (Associativity of ≃). S1; (S2; S3) ≃ (S1; S2); S3 for any S1, S2, and S3.

Proof. By expanding the definition of statement equivalence (Definition 4.3). �

Lemma A.14 (Congruence of ≃). If S1 ≃ S2 then S1; S ≃ S2; S and S ; S1 ≃ S ; S2 for any S .

Proof. By expanding the definition of statement equivalence (Definition 4.3). �

Lemma A.15. For any two states s, s ′, and a statement for(x in д1 : д2) S , suppose n1 = s(д1),
n2 = s(д2) and n1 ≤ n2. Then (s, for(x in д1 : д2) S) ⇓ s ′ if and only if there exists sx , such that
(s, x = n1; S ;x = (n1 + 1); S . . . x = n2; S) ⇓ sx and s ′ = sx [−x].

Proof. By induction on n = n2 − n1. �

Lemma A.16. If x <W (S1) then (x = n; S1; S2) ≃ (x = n; S1;x = n; S2).
Proof. By expanding the definition of statement equivalence (Definition 4.3). �

Lemma A.17. If Γ ⊢ ℓ1(S1), Γ ⊢ ℓ2(S2), ℓ1 < ℓ2, Γ ⊢ S2; S1 : data, and x < W (S2; S1) then
x = i; S2;x = j; S1 ≃ x = j; S1;x = i; S2;x = j for all integers i and j.

Proof. By expanding the definition of statement equivalence (Definition 4.3), and using Lemma A.14
and Lemma A.16. �

Restatement of Lemma 4.8(Commutativity of seqencing single-level statements)
If Γ ⊢ ℓ1(S1), Γ ⊢ ℓ2(S2), Γ ⊢ S2; S1 : data and ℓ1 < ℓ2 then S2; S1;≃ S1; S2;

Proof. Since Γ ⊢ S2; S1 : data, and data ≤ ℓ1 < ℓ2, it must be that RΓ⊢ℓ2 (S2) ∩WΓ⊢ℓ1 (S1) = ∅. By
Lemma 4.6, RΓ⊢ℓ2 (S2) = R(S2) andWΓ⊢ℓ1 (S1) =W (S1), as S1 and S2 are single-level of level ℓ1 and ℓ2
respectively. Therefore, R(S2) ∩W (S1) = ∅. From Γ ⊢ ℓ1(S1), Γ ⊢ ℓ2(S2), ℓ1 < ℓ2 and by Lemma 4.5,
we have R(S1) ∩W (S2) = ∅ andW (S1) ∩W (S2) = ∅. Therefore, by Lemma 4.4, S2; S1 ≃ S1; S2. �

Restatement of Theorem 4.9 (Semantic Preservation of ⇕Γ)
If Γ ⊢ S : data and S ⇕Γ (SD , SM , SQ ) then logp∗Γ⊢S (s) = logp∗

Γ⊢(SD ;SM ;SQ )(s), for all s |= Γ.

Proof. Note that if S ≃ S ′ then logp∗Γ⊢S (s) = logp∗Γ⊢S ′(s) for all states s |= Γ.
Semantic preservation then follows from proving the stronger result

S ⇕Γ (SD , SM , SQ ) =⇒ Γ ⊢ S : data =⇒ S ≃ (SD ; SM ; SQ )
by rule induction on S ⇕Γ (SD , SM , SQ ). Let

Φ(S, SD , SM , SQ ) , S ⇕Γ (SD , SM , SQ ) =⇒ Γ ⊢ S : data =⇒ S ≃ SD ; SM ; SQ
Take any S , SD , SM , SQ , and assume S ⇕Γ (SD , SM , SQ ) and Γ ⊢ S : data.

(Shred Skip)
skip ⇕Γ (skip, skip, skip)
For all s , (s, skip) ⇓ s , and also (s, skip; skip; skip) ⇓ s . Thus skip ≃ skip; skip; skip.
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(Shred DataAssign)
Γ(L) = (_, data)

L = E ⇕Γ (L = E, skip, skip)
For any state s , if (s, L = E) ⇓ s ′, then (s, L = E; skip; skip) ⇓ s ′, and vice versa. Thus,
Φ(L = E, L = E, skip, skip) holds.

(Shred ModelAssign)
Γ(L) = (_,model)

L = E ⇕Γ (skip, L = E, skip)
For any state s , if (s, L = E) ⇓ s ′, then (s, skip;L = E; skip) ⇓ s ′, and vice versa. Thus,
Φ(L = E, skip, L = E, skip) holds.

(Shred GenQuantAssign)
Γ(L) = (_, genqant)

L = E ⇕Γ (skip, skip, L = E)
For any state s , if (s, L = E) ⇓ s ′, then (s, skip; skip;L = E) ⇓ s ′, and vice versa. Thus,
Φ(L = E, skip, skip, L = E) holds.

(Shred Seq) S = (S1; S2). Suppose that Φ(Γ, S1) and Φ(Γ, S2), and assume S1 ⇕Γ (SD1, SM1, SQ1 ), S2 ⇕Γ
(SD2, SM2, SQ2 ). Thus, S1 ≃ SD1 ; SM1 ; SQ1 and S2 ≃ SD2 ; SM2 ; SQ2 . Now:

≃ (SD1 ; SM1 ; SQ1 ); (SD2 ; SM2 ; SQ2 ) from Φ(Γ, S1) and Φ(Γ, S2)
≃ (SD1 ; SM1 ); SD2 ; SQ1 ; (SM2 ; SQ2 ) by Lemmas 4.2, 4.8, A.13 and A.14
≃ (SD1 ); SD2 ; SM1 ; (SQ1 ; SM2 ; SQ2 ) by Lemmas 4.2, 4.8, A.13 and A.14
≃ (SD1 ; SD2 ; SM1 ); SM2 ; SQ1 ; (SQ2 ) by Lemmas 4.2, 4.8, A.13 and A.14
≃ (SD1 ; SD2 ); (SM1 ; SM2 ); (SQ1 ; SQ2 )

As by (Shred Seq), S ⇕Γ (SD1 ; SD2 ), (SM1 ; SM2 ), (SQ1 ; SQ2 ), it follows that Φ(Γ, S1; S2).
(Shred If) S = (if(д) S1 else S2). Suppose that Φ(Γ, S1) and Φ(Γ, S2), and assume S1 ⇕Γ (SD1, SM1, SQ1 ),

S2 ⇕Γ (SD2, SM2, SQ2 ). Thus, by (Shred If):

if(д) S1 else S2 ⇕Γ (if(д) SD1 else SD2 ), (if(д) SM1 else SM2 ), (if(д) SQ1 else SQ2 )

Now take any two states s and s ′, such that s |= Γ and (s, S) ⇓ s ′. Given that Γ ⊢ S : data,
Γ(д) = (bool, _) by (If). Therefore s(д) = true or s(д) = false.

(1) If s(д) = true, it must be that (s, S1) ⇓ s ′. Then:

(s, if(д) S1 else S2) ⇓ s ′ by (Eval IfTrue)
(s, (SD1 ; SM1 ; SQ1 )) ⇓ s ′ from Φ(Γ, S1)
(s, (if(д) SD1 else SD2 ; if(д) SM1 else SM2 ; if(д) SQ1 else SQ2 )) ⇓ s ′ 3 × (Eval IfTrue)

(2) If s(д) = false, it must be that (s, S2) ⇓ s ′. Then:

(s, if(д) S1 else S2) ⇓ s ′ by (Eval IfFalse)
(s, (SD2 ; SM2 ; SQ2 )) ⇓ s ′ from Φ(Γ, S2)
(s, (if(д) SD1 else SD2 ; if(д) SM1 else SM2 ; if(д) SQ1 else SQ2 )) ⇓ s ′ 3 × (Eval IfFalse)

Thus, (s, if(д) S1 else S2)) ⇓ s ′ =⇒ (s, (if(д) SD1 else SD2 ; if(д) SM1 else SM2 ; if(д) SQ1 else SQ2 )) ⇓
s ′. For the implication in the opposite direction:
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(1) If s(д) = true, take any s ′ such that (s, (if(д) SD1 else SD2 ; if(д) SM1 else SM2 ; if(д) SQ1 else SQ2 )) ⇓
s ′. Then:

(s, (SD1 ; SM1 ; SQ1 )) ⇓ s ′ by 3 × (Eval IfTrue)
(s, S1) ⇓ s ′ from Φ(Γ, S1)
(s, if(д) S1 else S2) ⇓ s ′ by (Eval IfTrue)

(2) If s(д) = false, take any s ′ such that (s, (if(д) SD1 else SD2 ; if(д) SM1 else SM2 ; if(д) SQ1 else SQ2 )) ⇓
s ′. Then:

(s, (SD2 ; SM2 ; SQ2 )) ⇓ s ′ by 3 × (Eval IfFalse)
(s, S2) ⇓ s ′ from Φ(Γ, S2)
(s, if(д) S1 else S2) ⇓ s ′ by (Eval IfFalse)

Thus, (s, (if(д) SD1 else SD2 ; if(д) SM1 else SM2 ; if(д) SQ1 else SQ2 )) ⇓ s ′ =⇒ (s, if(д) S1 else S2)) ⇓
s ′. Therefore, if(д) S1 else S2 ≃ (if(д) SD1 else SD2 ); (if(д) SM1 else SM2 ); (if(д) SQ1 else SQ2 ),
and Φ(Γ, if(д) S1 else S2).

(Shred For) Suppose S = (for(x in д1 : д2) S ′) = LHS . Then:
S ′ ⇕Γ (S ′D , S ′M , S ′Q )

LHS ⇕Γ (for(x in д1 : д2) S ′D ), (for(x in д1 : д2) S ′M ), (for(x in д1 : д2) S ′Q )
Take RHS = (for(x in д1 : д2) S ′D ); (for(x in д1 : д2) S ′M ); (for(x in д1 : д2) S ′Q )
We must show Φ(S ′, S ′D , S ′M , S ′Q ) =⇒ LHS ≃ RHS .
Assume Φ(S ′, S ′D , S ′M , S ′Q ), and consider s, s ′, such that (s, LHS) ⇓ s ′ to show (s,RHS) ⇓ s ′.
Suppose n1 = s(д1) and n2 = s(д2). Then either n1 ≤ n2 or n1 > n2:

(1) Case n1 ≤ n2.
Using Lemma A.15, we have that there exists sx , such that (s, x = n1; S ′;x = (n1 +
1); S ′ . . . x = n2; S ′) ⇓ sx and s ′ = sx [−x].
As Φ(S ′, S ′D , S ′M , S ′Q ), S ′ ⇕Γ (S ′D , S ′M , S ′Q ) and Γ ⊢ S ′ : data (by (For)), we have that S ′ ≃
S ′D ; S ′M ; S ′Q . Combined with the result from above and using Lemma A.14, this gives us
(s, x = n1; S ′D ; S ′M ; S ′Q ;x = (n1 + 1); S ′D ; S ′M ; S ′Q . . . x = n2; S ′D ; S ′M ; S ′Q ) ⇓ sx and s ′ = sx [−x].
By Lemma A.16, we then have (s, x = n1; S ′D ;x = n1; S ′M ;x = n1; S ′Q ; . . . x = n2; S ′D ;x =
n2; S ′M ;x = n2; S ′Q ) ⇓ sx and s ′ = sx [−x].
By Lemma 4.2 Γ ⊢ data(S ′D ), Γ ⊢ model(S ′M ), and Γ ⊢ genqant(S ′Q ). Thus, we ap-
ply Lemma A.17 to get (s, x = n1; S ′D ; . . . x = n2; S ′D ;x = n1; S ′M ; . . . x = n2; S ′M ;x =
n1; S ′Q ; . . . x = n2; S ′Q ) ⇓ sx and s ′ = sx [−x].
By applying (Eval Seq), we split this into:
– (s, x = n1; S ′D ; . . . x = n2; S ′D ) ⇓ sxd
– (sxd , x = n1; S ′M ; . . . x = n2; S ′M ) ⇓ sxm
– (sxm, x = n1; S ′Q ; . . . x = n2; S ′Q ) ⇓ sx
For some sxd and sxm . By taking sd = sxd [−x] and sm = sxm[−x], and applying A.15, we
get:
– (s, for(x in д1 : д2) S ′D ) ⇓ sd
– (sxd , for(x in д1 : д2) S ′M ) ⇓ sm
– (sxm, for(x in д1 : д2) S ′Q ) ⇓ s ′

As x < R(for(x in д1 : д2) SM ), x < R(for(x in д1 : д2) S ′Q ), sd = sxd [−x] and sm = sxm[−x],
we also have:
– (s, for(x in д1 : д2) S ′D ) ⇓ sd
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– (sd , for(x in д1 : д2) S ′M ) ⇓ sm
– (sm, for(x in д1 : д2) S ′Q ) ⇓ s ′

Therefore, by (Eval Seq): (s, (for(x in д1 : д2) S ′D ); (for(x in д1 : д2) S ′M ); (for(x in д1 :
д2) S ′Q )) ⇓ s ′, so (s, LHS) ⇓ s ′ =⇒ (s,RHS) ⇓ s ′.

(2) Case n1 > n2. By (Eval ForFalse) s ′ = s . Also, (s, for(x in д1 : д2) S ′D ) ⇓ s , (s, for(x in д1 :
д2) S ′M ) ⇓ s and (s, for(x in д1 : д2) S ′Q ) ⇓ s . So by (Eval Seq), (s,RHS) ⇓ s , and thus
(s, LHS) ⇓ s ′ =⇒ (s,RHS) ⇓ s ′.

By assuming instead s and s ′, such that (s,RHS) ⇓ s ′, and reversing this reasoning, we also
obtain (s,RHS) ⇓ s ′ =⇒ (s, LHS) ⇓ s ′.
Therefore (s, LHS) ⇓ s ′ ⇐⇒ (s,RHS) ⇓ s ′, so LHS ≃ RHS .

�

B FURTHER DISCUSSION ON SEMANTICS
B.1 Semantics of Generated Quantities
In addition to defining random variables to be sampled using HMC, Stan also supports sampling
using pseudo-random number generators. For example, a standard normal parameter x can be
sampled in two ways:

(1) By declaring x to be a parameter of the model, and giving it a prior:
parameters { real x; }

model { x ∼ normal(0, 1); }

(2) Treating x as a generated quantity and using a pseudo-random number generator:
generated quantities { x = normal_rng(0, 1); }

Option (1) will sample x using HMC, which is not needed in this case. Option (2) is a much more
efficient solution. Thus, a Stan user can explicitly optimise their program by specifying how HMC
should be composed with forward (ancestral) sampling.

In the density-based semantics presented in this paper, we do not formalise this usage of pseudo-
random number generators. We treat the function normal_rng(mu, sigma) as any other function,
ignoring its random nature. We define the semantics of a Stan program to be the unnormalised log
posterior over parameters only — logp∗(θ | D). However, this semantics can be extended to cover
the generated quantities g as well: logp∗(θ , g | D).

The easiest way to do that is to simply treat normal_rng as another derived form:

L = d_rng(E1, . . . En) , L ∼ d(E1, . . . En) random number generation

However, this causes a discrepancy with the current information-flow type system. Perhaps a
more suitable treatment is as an assignment to another reserved variable, which holds a different
density to that of target:

L = d_rng(E1, . . . En) , gen = gen + d_lpdf(L, E1, . . . En) random number generation

The density-based semantics of a Stan program can then be defined as:
logp∗(θ , g | D) = logp∗(θ | D) + logp(g | θ ,D)

where logp∗(θ | D), as before, is given by the target variable, and logp(g | θ ,D) is given by gen.
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An interesting direction for future work is to extend the semantics and type system of SlicStan,
so that modelling statements, such as x ∼ normal(0, 1) can be treated either as modifying the
target density, or random number generation, depending on the level of the variable x. This can
allow SlicStan programs to be optimised by automatically determining the most efficient way to
compose HMC and forward sampling, based on the concrete model.

B.2 Relation of Density-based Semantics to Sampling-based Semantics
The density-based semantics of Stan and SlicStan given in this paper is inspired by the sampling-
based semantics that Hur et al. [2015] give to the imperative language Prob. This section outlines
the differences between the two semantics.

B.2.1 Operational semantics relations . The intuition behind the density-based semantics of Stan is
that the relation (s, S) ⇓ s ′ specifies what the value of the (unnormalised) posterior is at a specific
point in the parameter space. For θ ⊂ s and D ⊂ s , p∗(θ | D) = s ′(target).

The intuition behind the operational semantics relation by Hur et al. [2015], (s, S) ⇓t (s ′,p),
is that there is probability p for the program S , started in initial state s , to sample a trace t and
terminate in state s ′.

For programs with no observed values, and single probabilistic assignment (x ∼ d1(...); x
∼ d2(...) is not allowed), we guess that if (s, S) ⇓t (s ′,p), then ((s ∪ t), S) ⇓ s ′[target 7→ p], and
θ = t .

B.2.2 Difference in the meaning of ∼ . In Stan, a model statement such as x ∼ normal(0,1), does
not denote sampling, but a change to the target density. The value of x remains the same; we only
compute the standard normal density at the current value of x . This is also similar to the score
operator of Staton et al. [2016].
Operational Density-based Semantics of Model Statements (Derived Rule)

(Eval Model)
(s, E) ⇓ V (s, Ei ) ⇓ Vi ∀i ∈ 1..n V ′ = s(target) + d_lpdf(V ,V1, . . . ,Vn)

(s, E ∼ d(E1, . . . , En)) ⇓ s[target 7→ V ′]

In the sampling-based semantics of Hur et al. [2015], on the other hand, x ∼ normal(0,1) is
understood as “we sample a standard normal variable and assign its value to x .”
Operational Sampling-based Semantics of Model Statements [Hur et al. 2015]

(Sampling Model)
v ∈ Val p = Dist(s(θ ))(v)

(s, x ∼ Dist(θ )) ⇓x 7→[v] (s[x 7→ v],p)

In this sampling-based semantics, variables can be sampled more than once, and we keep track
of the entire trace of samples. In Stan’s density-based semantics, modelling a variable more than
once would mean modifying the target density more than once. For example, consider the program:

x ∼ normal(-5, 1);

x ∼ normal(5, 1);

The difference between the density-based and sampling-based semantics is then as follows:
• Density-based: the program denotes the unnormalised densityp∗(x) = N(x | −5, 1)N(x | 5, 1).
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• Sampling-based: the program denotes the unnormalised density p∗(x (1), x (2)) = N(x (1) |
−5, 1)N(x (2) | 5, 1), with x (1) and x (2) being variables denoting the value of x we sampled the
first and second time in the program respectively.

B.2.3 Difference in the meaning of observe. As mentioned previously, we presume that for single
probabilistic assignment programs that contain only unobserved parameters, out density-based
semantics is equivalent to the sampling-based semantics of Hur et al. [2015]. However the two
semantics treat observations differently.

Consider the following SlicStan program, where y is an observed variable:
real mu ∼ normal(0, 1);

data real y ∼ normal(mu, 1);

The density-based semantics of this program is a function of µ:
p∗(µ | y = v) = N(µ | 0, 1)N(v | µ, 1)

where v is some concrete value for the data y, which is supplied externally.
The corresponding Prob program is:
double mu ∼ normal(0, 1);

double y ∼ normal(mu, 1);

observe(y = v);

The data v is encoded in the program, and the sampling-based semantics is a function of µ and y:

p∗(µ,y) =
{
N(µ | 0, 1)N(y | µ, 1), if y = v
0, otherwise

Intuitively, the operational sampling-based semantics defines how to sample the variables µ and
y, and then reject the run if y , v . This introduces a zero-probability conditioning problem when
working with continuous variables, and fails in practise.

The operational density-based semantics of this paper puts SlicStan’s observations closer to the
idea of soft constraints. Using the score operator of Staton et al. [2016], we can write:

let x ∼ normal(0,1) in
score(density_normal(y,(x, 1));

Once again, y has some concrete value v , and the score operator calculates the density of y at v .
Staton et al. [2016] make the score operator part of their metalanguage, while we build it into the
density-based semantics itself.

C ELABORATING AND SHREDDING IF OR FOR STATEMENTS
This section demonstrates with an example the elaboration and shredding of if and for statements.

Consider the following SlicStan program:
data real x;
real data d;
real model m;

if(x > 0){

d = 2 * x;
m ∼ normal(d, 1);

}
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The body of the if statement contains an assignment to a data variable (d = 2 * x), and a
model statement (m ∼ normal(d, 1)). The former belongs to the transformed data block of a
Stan program, while the latter belongs to the model block. We need to shred the entire body of the
if statement, into several if statements, each of which contains statements of a single level only.

Firstly, the elaboration step ensures that the guard of each if statement (and the bounds of each
for loop) is a fresh boolean variable, g, which is not modified anywhere in the program:

g = (x > 0)

if(g){
d = 2 * x;
m ∼ normal(d, 1);

}

Then the shredding step can copy the if statement at each level, without changing the meaning
of the original program:

SD = g = (x > 0)

if(g){ d = 2 * x; }

SM = if(g){ m ∼ normal(d, 1); }

SQ = skip

Finally, this translates to the Stan program:

data {

real x;
}

transformed data {

real d;
bool g = (x > 0);

if(g){ d = 2 * x; }

}

parameters {

real m;

}

model {

if(g){ m ∼ normal(d, 1); }

}

D NON-CENTRED REPARAMETERISATION
Reparameterising a model means expressing it in terms of different parameters, so that the original
parameters can be recovered from the new ones. Reparametrisation plays a key role in optimising
some models for MCMC inference, as it could transform a posterior distribution that is difficult to
sample from in practice, into a flatter, easier to sample from distribution.

To show the importance of one such reparameterisation technique, the non-centred reparame-
terisation, consider the pathological Neal’s Funnel example, which was chosen by [Neal 2003] to
demonstrate the difficulties Metropolis–Hastings runs into when sampling from a distribution with
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strong non-linear dependencies. The model defines a density over variables x and y,9such that:

y ∼ N(0, 3) x ∼ N(0, e y
2 )

The density has the form of a funnel (thus the name “Neal’s Funnel” ), with a very sharp neck,
as shown in Figure 1c. We can easily implement the model in a straightforward way (centred
parameterisation), as on the left below.

Centred parameterisation in Stan

parameters {
real y;
real x;

}
model {

y ∼ normal(0, 3);
x ∼ normal(0, exp(y/2));

}

Non-centred parameterisation in Stan
parameters {

real y_std;
real x_std;

}
transformed parameters {

real y = 3.0 ∗ y_std;
real x = exp(y/2) ∗ x_std;

}
model {

y_std ∼ normal(0, 1); // implies y ∼ N(0, 3)
x_std ∼ normal(0, 1); // implies x ∼ N(0, e(y/2))

}

However, in that case, Stan’s sampler has trouble obtaining samples from the neck of the funnel,
because there exists a strong non-linear dependency between x and y, and the posterior geometry
is difficult for the sampler to explore well (see Figure 1a).

Alternatively, we can reparameterise the model, so that the model parameters are changed from x
andy to the standard normal parameters x (std ) andy(std), and the original parameters are recovered
using shifting and scaling:

y(std ) ∼ N(0, 1) x (std ) ∼ N(0, 1) y = y(std ) × 3 x = x (std) × e
y
2

This reparameterisation, called non-centred parametrisation, is a special case of a more general
transform introduced by Papaspiliopoulos et al. [2007].

As shown on the right above, the non-centred model is longer and less readable. However, it
performs much better than the centred one. Figure 1b shows that by reparameterising the model,
we are able to explore the tails of density better than if we use the straightforward implementation.

Neal’s Funnel is a typical example of the dependencies that priors in hierarchical models could
have. The example demonstrates that in some cases, especially when there is little data available,
using non-centred parameterisation could be vital to the performance of the inference algorithm.
The centred to non-centred parameterisation transformation is therefore common to Stan models,
and is extensively described by the Stan Development Team [2017] as a useful technique.

E EXAMPLES
E.1 Neal’s Funnel
We continue with the Neal’s funnel example from Appendix D, to demonstrate the usage of
user-defined functions in SlicStan.

Reparameterising a model, which involves a (centred) Gaussian variable x ∼ N(µ,σ ) involves
introducing a new parameter x (std ). Therefore, a non-centred reparameterisation function cannot
be defined in Stan, as Stan user-defined functions cannot declare new parameters. In SlicStan, on
9For simplicity, we consider a 2-dimensional version of the funnel, as opposed to the original 10-dimensional version.
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the other hand, reparameterising the model to a non-centred parameterisation can be implemented
by simply calling the function my_normal.

Below is the Neal’s funnel in SlicStan (left) and Stan (right).

(a) 24, 000 samples obtained using Stan (default set-
tings) for the non-efficient form of Neal’s Funnel.

(b) 24, 000 samples obtained using Stan (default set-
tings) for the efficient form of Neal’s Funnel.

(c) The actual log density of Neal’s Funnel. Dark regions are of high density
(log density greater than −8).

Fig. 1
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“Neal’s Funnel” in SlicStan

1 real my_normal(real m, real s) {
2 real std ∼ normal(0, 1);
3 return s ∗ std + m;
4 }
5 real y = my_normal(0, 3);
6 real x = my_normal(0, exp(y/2));

“Neal’s Funnel” in Stan
1 parameters {
2 real y_std;
3 real x_std;
4 }
5 transformed parameters {
6 real y = 3.0 ∗ y_std;
7 real x = exp(y/2) ∗ x_std;
8 }
9 model {

10 y_std ∼ normal(0, 1);
11 x_std ∼ normal(0, 1);
12 }

The non-centred SlicStan program (left) is only longer than its centred version, due to the
presence of the definition of the function. In comparison, Stan requires defining the new parameters
x_std and y_std (lines 2,3), moving the declarations of x and y to the transformed parameters
block (lines 6,7), defining them in terms of the parameters (lines 8,9), and changing the definition
of the joint density accordingly (lines 12,13).

We also present the “translated” Neal’s Funnel model, as it would be outputted by an implemented
compiler. We notice a major difference between the two Stan programs — in one case the variables
of interest x and y are defined in the transformed parameters block, while in the other they
are defined in the generated quantities block. In an intuitive, centred parameterisation of this
model, x and y are in fact the parameters. Therefore, it is much more natural to think of those
variables as transformed parameters when using a non-centred parameterisation. However, as
shown in Table 1, variables declared in the transformed parameters block are re-evaluated
at every leapfrog, while those declared in the generated quantities block are re-evaluated at
every sample. This means that even though it is more intuitive to think of x and y as transformed
parameters (original Stan program), declaring them as generated quantities where possible results
in a better optimised inference algorithm in the general case.

There are some advantages of the original Stan code that the translated from SlicStan Stan
code does not have. The original version is considerably shorter than the translated one. This is
due to the lack of the additional variables m, mp, s, sp, ret, and retp, which are a consequence of
statically unrolling the function calls in the elaboration step. When using SlicStan, the produced
Stan program acts as an intermediate representation of the probabilistic program, meaning that
the reduced readability of the translation is not necessarily problematic. However, the presence
of the additional variables can also, in some cases, lead to slower inference. This problem can be
tackled by introducing standard optimising compilers techniques, such as variable and common
subexpression elimination.
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“Neal’s Funnel” translated to Stan

1 transformed data {

2 real m;

3 real mp;
4 m = 0;

5 mp = 0;

6 }

7 parameters {

8 real x_std;
9 real x_stdp;

10 }

11 model{
12 x_std ∼ normal(0, 1);

13 xr_stdp ∼ normal(0, 1);

14 }

15 generated quantities {

16 real s;
17 real sp;
18 real ret;
19 real retp;
20 real x;
21 real y;
22 s = 3;

23 ret = s * x_std + m;

24 y = ret;
25 sp = exp(y * 0.5);

26 retp = (sp * x_stdp + mp);
27 x = retp;
28 }

Moreover, we notice the names of the new parameters in the translated code: x_std and x_stdp.
The names are important, as they are part of the output of the sampling algorithm. Unlike Stan,
with the user-defined-function version of Neal’s funnel, in SlicStan the programmer does not have
control on the names of the newly introduced parameters. One can argue that the user was not
interested in those parameters in the first place (as they are solely used to reparameterise the model
for more efficient inference), so it does not matter that their names are not descriptive. However,
if the user wants to debug their model, the output from the original Stan model would be more
useful than that of the translated one.
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E.2 Cockroaches
The “Cockroaches” example is described by Gelman and Hill [2007, p. 161], and it concerns measur-
ing the effects of integrated pest management on reducing cockroach numbers in apartment blocks.
They use Poisson regression to model the number of caught cockroaches yi in a single apartment i ,
with exposure ui (the number of days that the apartment had cockroach traps in it), and regression
predictors:

• the pre-treatment cockroach level ri ;
• whether the apartment is in a senior building (restricted to the elderly), si ; and
• the treatment indicator ti .

In other words, with β0, β1, β2, β3 being the regression parameters, we have:
yi ∼ Poisson(ui exp(β0 + β1ri + β2si + β3ti ))

After specifying their model this way, Gelman and Hill simulate a replicated dataset yr ep , and
compare it to the actual data y to find that the variance of the simulated dataset is much lower
than that of the real dataset. In statistics, this is called overdispersion, and is often encountered
when fitting models based on a single parameter distributions,10 such as the Poisson distribution.
A better model for this data would be one that includes an overdispersion parameter λ that can
account for the greater variance in the data.

The next page shows the “Cockroach” example before (ignoring the red lines) and after (as-
suming the red lines) adding the overdispersion parameter, in both SlicStan (left) and Stan (right).
Similarly to before, SlicStan gives us more flexibility as to where the statements accounting for
overdispersion can be added. Stan, on the other hand, introduces an entirely new to this program
block — transformed parameters.

10In a distribution specified by a single parameter α , the mean and variance both depend on α , and are thus not independent.
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“Cockroaches” in SlicStan

1 data int N;

2 data real[N] exposure2;
3 data real[N] roach1;
4 data real[N] senior;
5 data real[N] treatment;
6

7 real[N] log_expo = log(exposure2);
8

9 real[4] beta;
10

11 real tau ∼ gamma(0.001, 0.001);
12 real sigma = 1.0 / sqrt(tau);
13 real[N] lambda∼normal(0, sigma);
14

15 data int[N] y
16 ∼ poisson_log11(log_expo + beta[1]
17 + beta[2] * roach1
18 + beta[3] * treatment
19 + beta[4] * senior
20 + lambda);

“Cockroaches” in Stan
1 data {

2 int N;

3 real[N] exposure2;
4 real[N] roach1;
5 real[N] senior;
6 real[N] treatment;
7 int y[N];

8 }

9 transformed data {

10 real[N] log_expo = log(exposure2);
11 }

12 parameters {

13 real[4] beta;
14 real[N] lambda;
15 real tau;
16 }

17 transformed parameters {
18 real sigma = 1.0 / sqrt(tau);
19 }
20 model {

21 tau ∼ gamma(0.001, 0.001);
22 lambda ∼ normal(0, sigma);
23 y ∼ poisson_log11(log_expo + beta[1]
24 + beta[2] * roach1
25 + beta[3] * treatment
26 + beta[4] * senior
27 + lambda);
28 }

Example adapted from https://github.com/stan-dev/example-models/.

11Stan’s poisson_log is a numerically stable way to model a Poisson variable where the event rate is eα for some α .
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E.3 Seeds
Next, we take the “Seeds” example introduced by Lunn et al. [2013, p. 300] in “The BUGS Book”.
In this example, we have I plates, with plate i having a total of Ni seeds on it, ni of which have
germinated. Moreover, each plate i has one of 2 types of seeds x (i)1 , and one of 2 types of root extract
x (i)2 . We are interested in modelling the number of germinated seeds based on the type of seed and
root extract, which we do in two steps. Firstly, we model the number of germinated seeds with a
Binomial distribution, whose success probability is the probability of a single seed germinating:

ni ∼ Binomial(N ,pi )
We model the probability of a single seed on plate i germinating as the output of a logistic

regression with input variables the type of seed and root extract:

pi = σ (α0 + α1x
(i)
1 + α2x

(i)
2 + α12x

(i)
1 x (i)2 + β

(i))
In the above, α0,α1,α2,α12 and β (i) are parameters of the model, with β (i) allowing for over-

dispersion (see §§ E.2).
The next page shows the “Seeds” model written in SlicStan (left) and in Stan (right). The Stan

code was adapted from the example models listed on Stan’s GitHub page.
As before, we see that SlicStan’s code is shorter than that of Stan. It also allows for more

flexibility in the order of declarations and definitions, making it possible to keep related statements
together (e.g. lines 14 and 15 of the example written in SlicStan). Once again, SlicStan provides
more abstraction, as the programmer does not have to specify how each variable of the model
should be treated by the underlying inference algorithm. Instead it automatically determines this
when it translates the program to Stan.
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“Seeds” in SlicStan

1 data int I;
2 data int[I] n;
3 data int[I] N;

4 data real[I] x1;
5 data real[I] x2;
6

7 real[I] x1x2 = x1 .* x2;
8

9 real alpha0 ∼ normal(0.0,1000);
10 real alpha1 ∼ normal(0.0,1000);
11 real alpha2 ∼ normal(0.0,1000);
12 real alpha12 ∼ normal(0.0,1000);
13

14 real tau ∼ gamma(0.001,0.001);
15 real sigma = 1.0 / sqrt(tau);
16

17 real[I] b ∼ normal(0.0, sigma);
18 n ∼ binomial_logit12(N, alpha0
19 + alpha1 * x1
20 + alpha2 * x2
21 + alpha12 * x1x2
22 + b);

“Seeds” in Stan
1 data {

2 int I;
3 int n[I];
4 int N[I];
5 real[I] x1;
6 real[I] x2;
7 }

8

9 transformed data {

10 real[I] x1x2 = x1 .* x2;
11 }

12 parameters {

13 real alpha0;
14 real alpha1;
15 real alpha12;
16 real alpha2;
17 real tau;
18 real[I] b;
19 }

20 transformed parameters {

21 real sigma = 1.0 / sqrt(tau);
22 }

23 model {

24 alpha0 ∼ normal(0.0,1000);
25 alpha1 ∼ normal(0.0,1000);
26 alpha2 ∼ normal(0.0,1000);
27 alpha12 ∼ normal(0.0,1000);
28 tau ∼ gamma(0.001,0.001);
29

30 b ∼ normal(0.0, sigma);
31 n ∼ binomial_logit12(N, alpha0
32 + alpha1 * x1
33 + alpha2 * x2
34 + alpha12 * x1x2
35 + b);
36 }

Example adapted from https://github.com/stan-dev/example-models/.

12Stan’s binomial_logit distribution is a numerically stable way to use a logistic sigmoid in combination with a Binomial
distribution.
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4.2 Clarifying the contributions

Author contributions. The authors of the paper are myself, Andy Gordon and Charles

Sutton. Andy Gordon conceived the idea about using information flow analysis to

slice a SlicStan program into Stan blocks and suggested using operational semantics to

formalise Stan and SlicStan. Both Andy Gordon and Charles Sutton supervised the

project throughout, gave comments and suggestions, and helped write and revise the

paper. As a leading author, my contribution included working out the details of the

Stan/SlicStan semantics and type system, implementing SlicStan, deriving the proofs in

the paper, preparing code examples, and co-writing the paper.

Similarities to previous work. The SlicStan project started before the onset of this

PhD program. Part of the work presented in the paper, and thus in this chapter, was

also presented in the Probabilistic Programming with SlicStan MSc dissertation (Gorinova,

2017). In particular, the MSc dissertation included an initial version of SlicStan’s syntax

and information-flow type system (§§ 3.1 and §§ 3.2 of the paper), as well as an elaboration

and transformation procedures for this reduced version of SlicStan (§§ 3.3 and §§ 4.2 of

the paper). While similar in spirit to the final paper, these parts of the MSc dissertation

concerned only a subset of SlicStan’s final syntax and were significantly developed, as

clarified below. Finally, the comparison between Stan and SlicStan (§ 5 and Appendix E

from the paper) was largely adapted from the MSc dissertation.

Contributions of this chapter. The SlicStan paper, and thus this chapter, contain

the following changes and contributions that are new compared to the MSc dissertation:

• The syntax of SlicStan was extended to include conditional statements and for-loops.

The new syntax also omits having separate symbol for distributions, making the

calculus more concise. It treats terms such as E ∼ d(E1, . . . , En) as derived forms

rather than as part of the core calculus. (Although, the last change was reversed in

Chapter 5.)

• The type system presented in the MSc dissertation contained an oversight, which

made it difficult to correctly slice SlicStan programs such as:

real x = 0;

real y ∼ normal(x, 1);

x = 1;

In the initial, MSc dissertation version of SlicStan, this program would type-check
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when x is of level data and y is of level model. However, such type level assignment

would result in the following Stan program:

transformed data {

real x = 0;

x = 1;

}

parameters { real y; }

model { y ∼ normal(x, 1); }

As blocks in Stan are executed in order, the meaning of the program has changed

in the translation: the statement x = 1 must appear after y ∼ normal(x, 1), but

appears before it. This is not a problem of the translation procedure, but a type

problem. It is not possible for x to be of level data and for the statements to be in

the correct order, as any transformation of a variable of level data must appear in the

transformed parameters block, which appears strictly before model-level statements

such as y ∼ normal(x, 1).

This chapter corrects the above problem by ensuring that such programs fail to

type-check. It introduces the concept of shreddable sequence (Definition 4.7 of the

paper), so that variables become immutable once they are read at a higher level

than their own. In the paper, the program above fails to type-check if x is of level

data and y is of level model, but type-checks for x and y both of level model.

• Extending SlicStan with conditionals and loops required a more careful look at the

rules for translating SlicStan to Stan. For example, conditional statements that

contain sub-statements at several levels, need to be sliced by copying the guard of

the if-statement per sub-statement level:

SlicStan

data bool g;

data real x;

model real y;

if (g) {

x = 1;

y ∼ normal(x, 1);

}

else {

x = -1;

y ∼ normal(x, 2);

}

Stan

data { bool g; }

transformed data {

real x;

if (g) { x = 1; }

else { x = -1; }

}

parameters { real y; }

model {

if (g) { y ∼ normal(x, 1); }

else { y ∼ normal(x, 2); }

}
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Such slicing was formalised through the new to the paper shredding relation (§§ 4.1).

• The biggest contribution of the paper presented in this chapter that is new compared

to the MSc thesis is the formalised density-based semantics of Stan and SlicStan.

This includes most of § 2 and § 3.4, which are entirely new to the paper.

• Additionally, the paper utilises this formal semantics by stating and proving several

key results, most notably the semantic preservation of the transformation that

translates SlicStan programs to Stan programs (Theorem 4.10 of the paper).

4.3 Impact

The idea of a “blockless Stan” and using information-flow to achieve it has influenced

several lines of work. Baudart et al. (2019) describe a new probabilistic programming

language, Yaps, which is inspired by SlicStan to allow for a concise Python-based frontend

for Stan. In addition, the density-based semantics of Stan that the paper presents has been

used as a basis to formalise a procedure for translating Stan to generative (implicit) PPLs

(Baudart et al., 2021). AQUA (Huang et al., 2021) is a PPL that uses symbolic inference

and quantization of the probability density, whose semantics has also been inspired by

that of SlicStan. The SlicStan paper is also one of the first to utilise static analysis for

probabilistic programming to improve inference, as summarised by Bernstein (2019).

While the paper presented here treats the program slicing as a way to divide the program

into pre-inference, post-inference and inference, there is an alternative interpretation of the

three slices. In Stan, the post-processing code, which is placed in the generated quantities

block, can include calls to pseudo-random number generation functions. The program as a

whole can then be seen as inferring some variables (those defined in the parameters block)

via HMC, and others (those drawn with pseudo-random number generators) via ancestral

sampling. This idea is further discussed and developed in the next chapter.

Notably, SlicStan has been a point of discussion when it comes to the future of Stan. The

Stan++/Stan3 Preliminary Design discussion (Stan Development Team, 2018) features Slic-

Stan and suggests adapting the information-flow approach to allow for more compositional

feature version of Stan. However, this plan has not been made official or realised.

Errata

The example on page 17 of the paper is a valid SlicStan program that compiles. However,

running it would result in a runtime error, as the variable d is used before it is defined.

The program on page 24 has both variables x mean and x meas. Read both as x mean.
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Variable elimination for inference with discrete parameters

Stan has often been criticised for its lack of explicit support for discrete parameters, which

is a consequence of using gradient-based algorithms for inference. However, a workaround

is possible, where the user can manually sum out any discrete parameters, thus encoding

them in an implicit way. This chapter builds upon the information-flow analysis ideas

of Chapter 4 and presents a type system for conditional independence analysis, which

can be used to automate the process of discrete variable marginalisation in SlicStan. The

main contribution of the chapter is the paper Conditional Independence by Typing (§ 5.1).

While focused on conditional independence and variable elimination, this work can be seen

as an instance of a more general framework for static analysis of probabilistic programs,

which I briefly discuss in § 5.2.

5.1 The paper

This section presents the work Conditional Independence by Typing. The paper builds upon

the original SlicStan work and presents an information-flow type system that captures

conditional independence relationships in probabilistic programs. The paper shows how

certain conditional independence relationships can be automatically deduced using type-

inference. It presents one practical application of the type system: a semantic-preserving

transformation, which can transform SlicStan programs with discrete parameters in a way

that allows for efficient gradient-based inference.

The paper was accepted for publication at the ACM Transactions on Programming

Languages and Systems, Volume 44, Issue 1 (TOPLAS 2022).
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Author contributions. The paper is co-authored by me, Andy Gordon, Charles Sutton

and Matthijs Vákár. As a leading author, my contributions included conceiving the idea of

using information-flow for conditional independence analysis, working out the details of the

conditional independence type system and the program transformation for marginalising

discrete variables, implementing the analysis within SlicStan, deriving some of the proofs

in the paper, preparing and performing the experiments, and co-writing the paper. Both

Andy Gordon and Charles Sutton supervised the project throughout, gave comments and

suggestions, and co-wrote and revised the paper. Matthijs Vákár contributed to adapting

SlicStan’s semantics and typing rules to cover generated quantities, helped derive some of

the definitions and proofs, and co-wrote parts of the paper.
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A central goal of probabilistic programming languages (PPLs) is to separate modelling from inference. However,
this goal is hard to achieve in practice. Users are often forced to re-write their models in order to improve
efficiency of inference or meet restrictions imposed by the PPL. Conditional independence (CI) relationships
among parameters are a crucial aspect of probabilistic models that capture a qualitative summary of the
specified model and can facilitate more efficient inference.

We present an information flow type system for probabilistic programming that captures conditional
independence (CI) relationships, and show that, for a well-typed program in our system, the distribution it
implements is guaranteed to have certain CI-relationships. Further, by using type inference, we can statically
deduce which CI-properties are present in a specified model.

As a practical application, we consider the problem of how to perform inference on models with mixed
discrete and continuous parameters. Inference on such models is challenging in many existing PPLs, but can
be improved through a workaround, where the discrete parameters are used implicitly, at the expense of
manual model re-writing. We present a source-to-source semantics-preserving transformation, which uses
our CI-type system to automate this workaround by eliminating the discrete parameters from a probabilistic
program. The resulting program can be seen as a hybrid inference algorithm on the original program, where
continuous parameters can be drawn using efficient gradient-based inference methods, while the discrete
parameters are inferred using variable elimination.

We implement our CI-type system and its example application in SlicStan: a compositional variant of Stan.1

ACM Reference Format:
Maria I. Gorinova, Andrew D. Gordon, Charles Sutton, and Matthijs Vákár. 2021. Conditional independence
by typing. ACM Trans. Program. Lang. Syst. 44, 1, Article 4 (December 2021), 54 pages. https://doi.org/10.1145/
3490421

1 INTRODUCTION
The number of probabilistic programming languages (PPLs) has grown far and wide, and so has the
range of inference techniques they support. Some focus on problems that can be solved analytically,
and provide a symbolic solution [Gehr et al. 2016], others are very flexible in the models they can
express and use general-purpose inference algorithms [Wood et al. 2014]. Some use gradient-based
methods [Carpenter et al. 2017], or message-passing methods [Minka et al. 2014] to provide an
efficient solution at the cost of restricting the range of expressible programs. Each option presents
its own challenges, whether in terms of speed, accuracy or inference constraints, which is why
PPL users often are required to learn a set of model re-writing techniques: to be able to change the
program until it can be feasibly used within the backend inference algorithm.

Take for example Stan [Carpenter et al. 2017], which is used by practitioners in a wide range of
sciences and industries to analyse their data using Bayesian inference. While efficient inference
algorithms exist for continuous-only and for some discrete-only models, it is much less clear
what algorithm to use for arbitrary models with large numbers of both discrete and continuous
1The implementation is available at https://github.com/mgorinova/SlicStan.

2021. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in ACM Transactions on Programming Languages and Systems, https://doi.org/10.1145/
3490421.

ACM Trans. Program. Lang. Syst., Vol. 44, No. 1, Article 4. Publication date: December 2021.
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(latent, i.e., unobserved) parameters. Stan has made a conscious choice not to support probabilistic
models with discrete parameters, so as to perform inference using (dynamic) Hamiltonian Monte
Carlo (HMC) [Betancourt and Girolami 2015; Hoffman and Gelman 2014; Neal et al. 2011]), which
provides efficient, gradient-based inference for differentiable models. As a result, Stan has often
been criticised [Gelman et al. 2015] for its lack of support for discrete parameters. What is usually
overlooked is that many models with discrete parameters can, in fact, be accommodated in Stan, by
manually marginalising (summing) out the discrete parameters and drawing them conditionally
on the continuous parameters [Stan Development Team 2019b, Chapter 7]. One of the core model
rewriting techniques is marginalisation: summing over all possible values that a random variable
can take to obtain a marginal density function that does not involve that variable. Marginalising
efficiently is not always an obvious procedure, as it requires exploiting conditional independence
relationships among the variables in the model. For probabilistic graphical models, there are well-
known algorithms for enumerating all of the conditional independence assumptions implied by a
model. But probabilistic programs are much more general, including control flow and assignment.
For this more general case, it is much less clear how to determine conditional independence
relationships automatically, and doing so requires combining ideas from traditional program
analysis and from probabilistic graphical modelling.

In this paper, we introduce an information flow type system that can deduce conditional inde-
pendence relationships between parameters in a probabilistic program. Finding such relationships
can be useful in many scenarios. As an example application, we implement a semantics-preserving
source-to-source transformation that automatically marginalises discrete parameters. We work in
SlicStan [Gorinova et al. 2019], a form of Stan with a more compositional syntax than the original
language. Our system extends SlicStan to support discrete parameters in the case when the discrete
parameter space is bounded. This transform corresponds to the variable elimination algorithm
[Koller and Friedman 2009; Zhang and Poole 1994]: an exact inference algorithm, efficient in models
with sparse structure. Combining this transformation with an efficient algorithm for continuous
parameters, like HMC, gives us a model-specific, automatically derived inference strategy, which is
a composition of variable elimination and the algorithm of choice. While we only focus on one
application in this paper, our type system for conditional independence is applicable to program
transformations of probabilistic programs more generally, and we believe it can enable other
composed-inference strategies.

In short, we make the following contributions:

(1) Factorised semantics for SlicStan: As a basis for proving correctness of our transformation, we
extend SlicStan’s type system, so that shredding (which slices a SlicStan program into Stan
for execution) correctly separates well-typed programs into data preprocessing, main model,
and purely generative code (Theorem 1).

(2) Main theoretical result: We show how a very simple, relatively standard information flow
type system can be used to capture a conditional independence in probabilistic programs (§ 3)
and establish a correspondence between well-typed programs and conditional independence
properties of the probability distribution it implements (Theorem 2, Theorem 3).

(3) Main practical result: We describe and implement (in SlicStan) a source-to-source transfor-
mation that repeatedly uses the result from (2) to efficiently marginalise out the discrete
parameters of the program, and we give a generative procedure for drawing these parameters
(§ 4), thus automating inference for mixed discrete-continuous models. We prove that our
transformation is semantics-preserving (Theorem 4).

ACM Trans. Program. Lang. Syst., Vol. 44, No. 1, Article 4. Publication date: December 2021.
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// Stan target program
data{ real x; }
parameters{ real `; }
model{ x ∼ normal(`, 1); }
generated quantities{
real x_pred = normal_rng(`, 1); }

// SlicStan from POPL’19

real `;
data real x ∼ normal(`, 1);
real x_pred = normal_rng(`, 1);

// Extended SlicStan

real `;
data real x ∼ normal(`, 1);
real x_pred ∼ normal(`, 1);

Fig. 1. Example of difference to previous version of SlicStan

2 SLICSTAN: EXTENDED SYNTAX AND SEMANTICS
SlicStan [Gorinova et al. 2019] is a Stan-like probabilistic programming language. Compared to
Stan, it provides extra compositionality by dropping the requirement that programs be block-
structured. SlicStan uses type inference in an information-flow type system [Abadi et al. 1999;
Gordon et al. 2015; Volpano et al. 1996] to automatically rearrange the program into parts roughly
corresponding to the block structure of Stan: pre-processing (data), model, and post-processing
(generated quantities). Originally, this shredding was developed to compile SlicStan to Stan. In
this paper, we show that it can be used, more generally, to automatically compile to an efficient
program-specific inference scheme.

Like Stan, SlicStan is imperative and allows for deterministic assignment, for-loops, if-statements,
probabilistic assignment, and factor-statements. One contribution of this work is that we present
an updated version of SlicStan.

A key difference to the original version of SlicStan is the treatment of sampling (∼) statements. In
the original SlicStan paper [Gorinova et al. 2019], a statement such as 𝑥 ∼ N(0, 1) was understood
simply as a syntactic sugar for factor(N (𝑥 | 0, 1)): adding a factor to the underlying density of
the model, rather than performing actual sampling. In our updated version of SlicStan, sampling
statements are part of the core syntax. The semantics of 𝑥 ∼ N(0, 1) remains equivalent to that
of factor(N (𝑥 | 0, 1)) in terms of density semantics, however it could be implemented differently
depending on the context. In particular, 𝑥 ∼ N(0, 1) could be implemented as a simple call to a
random number generator in Stan, 𝑥 = N𝑟𝑛𝑔 (0, 1), like in the example in Figure 1.

This way of treating ∼ statements differently is useful, as it allows for an increase of the func-
tionality of the SlicStan’s information-flow analysis. Consider, for example the SlicStan program
on the right of Figure 1. Using the original type system, both ` and 𝑥pred will be of level model,
as they are both involved in a ∼ statement. Thus, when translated to Stan, both ` and 𝑥pred must
be inferred with HMC (or another similar algorithm), which is expensive. However, the updated
type system of this paper allows for 𝑥pred to be of level genqant, which is preferable: in the
context of Stan, this means only ` needs to be inferred with HMC, while 𝑥pred can be simply drawn
using a random number generator. More generally, the updated SlicStan type system allows for
factorising the density defined by the program: for data D, parameters 𝜽 and generated quantities
𝑄 , a program defining a density 𝑝 (D, 𝜽 , 𝑄) can be sliced into two programs with densities 𝑝 (D, 𝜽 )
and 𝑝 (𝑄 | D, 𝜽 ) respectively (Theorem 1). The parameters 𝜽 are inferred using HMC (or another
general-purpose inference algorithm) according to 𝑝 (D, 𝜽 ), while the quantities 𝑄 are directly
generated according to 𝑝 (𝑄 | D, 𝜽 ).

Treating ∼ statements differently based on context is very similar in spirit to existing effect-
handling based PPLs [Moore and Gorinova 2018] like Edward2 and Pyro, where ∼ can be handled
in different ways. However, in our case, this difference in treatment is determined statically,
automatically, and only in the translation to Stan or another backend.

ACM Trans. Program. Lang. Syst., Vol. 44, No. 1, Article 4. Publication date: December 2021.
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Another difference between Gorinova et al. [2019]’s SlicStan and our updated version is the
target(𝑆) expression, which we use to capture locally the density defined by statements.

These changes are a small but useful contribution of the current work: they are key to allowing
us to decompose the program and compose different inference strategies for efficiency.

In the rest of this section, we give the updated formal syntax, typing and semantics of SlicStan
and describe shredding — the procedure key to the translation of Stan / inference composition.

2.1 Syntax
SlicStan has the following types, programs, L-values, statements, and expressions. We highlight the
difference with [Gorinova et al. 2019] with boxes.

SlicStan Types:

ℓ ::= data | model | genqant level type
𝑛 ∈ N size
𝜏 ::= real | int | int⟨𝑛⟩ | 𝜏 [] base type
𝑇 ::= (𝜏, ℓ) type

SlicStan Program:

𝑃 ::= Γ, 𝑆 program

SlicStan L-Values:

𝐿 ::= 𝑥 [𝐸1] · · · [𝐸𝑛] L-value

SlicStan Typing Environments:

Γ ::= {𝑥1 ↦→ 𝑇1, . . . , 𝑥𝑛 ↦→ 𝑇𝑛} typing environment

SlicStan Statements:

𝑆 ::= statement
𝐿 = 𝐸 assignment
𝑆1; 𝑆2 sequence
for(𝑥 in 𝐸1 : 𝐸2) 𝑆 for loop
if(𝐸) 𝑆1 else 𝑆2 if statement
skip skip
factor(E) factor statement
𝐿 ∼ 𝑑 (𝐸1, ..., 𝐸𝑛) sample statement

SlicStan Expressions:

𝐸 ::= expression
𝑥 variable
𝑐 constant
[𝐸1, ..., 𝐸𝑛] array
𝐸1 [𝐸2] array element
𝑓 (𝐸1, . . . , 𝐸𝑛) function call
[𝐸 | 𝑥 in 𝐸1 : 𝐸2] array comprehension
target(S) evaluating a density

SlicStan programs consist of a pair Γ, 𝑆 of a typing environment Γ (a finite map that assigns global
variables 𝑥 to their types𝑇 ) and a statement 𝑆 . Following the usual style of declaring variables in C-
like languages, we informally present programs Γ, 𝑆 in examples by sprinkling the type declarations
of Γ throughout the statement 𝑆 . For example, we write data real 𝑥 ∼ normal(0, 1) for the program
{𝑥 ↦→ (real, data)}, 𝑥 ∼ normal(0, 1). Sometimes, we will leave out types or write incomplete types
in our examples. In this case, we intend for the missing types to be determined using type inference.

As we discuss in detail in §§ 2.3, a factor(𝐸) statement can be read as multiplying the current
weight (contribution to the model’s joint density) of the program trace by the value of 𝐸. Conversely,
a target(𝑆) expression initialises the weight to 1 and returns the weight that is accumulated after
evaluating 𝑆 . For example, if:

𝑆 = x ∼ normal(0,1); y = 2 * x; z ∼ normal(y,1);

= factor(normal_pdf(x|0,1)); y = 2 * x; factor(normal_pdf(z|y,1));

Then target(𝑆) is semantically equivalent to normal_pdf(x|0,1)* normal_pdf(z|2 * x,1).
We extend the base types of the language of [Gorinova et al. 2019] with int⟨𝑛⟩, which denotes a

positive integer constrained from above by an integer 𝑛. For example if 𝑥 is of type int⟨2⟩, then
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𝑥 can only be 1 or 2. These types allow us to specify the support of discrete variables, and they
can easily be extended to include both upper and lower bounds. For the purpose of our typing
rules, we treat int⟨𝑛⟩ identically to int. We only differentiate between these types in § 4, where our
transformation uses the size annotation to eliminate a discrete variable.

2.2 Typing
Types𝑇 in SlicStan range over pairs (𝜏, ℓ) of a base type 𝜏 , and a level type ℓ . The level types ℓ form
a lattice ({data,model, genqant}, ≤), where data ≤ model ≤ genqant. We write

⊔𝑛
𝑖=1 ℓ𝑖 for

the least upper bound of the levels ℓ1, . . . , ℓ𝑛 . We call variables of level data data (variables), of level
model model parameters, and of level genqant generated quantities. We refer to variables that are
either of level model or genqant simply as parameters. Given a typing environment Γ, we can
consider the well-typedness of expressions and statements, given the types assigned to variables
by Γ. The judgment Γ ⊢ 𝐸 : (𝜏, ℓ) means that expression 𝐸 has type 𝜏 and reads only level ℓ and
below. The judgment Γ ⊢ 𝑆 : ℓ means that statement 𝑆 assigns only to level ℓ and above. We write
Γ ⊢ 𝑆 as a shorthand for Γ ⊢ 𝑆 : data.

The typing rules for expressions are those of [Gorinova et al. 2019] with added rules for the two
constructs of array comprehensions and target(𝑆)-expressions. The typing rules for statements are
as in [Gorinova et al. 2019], with three differences (highlighted in boxes). (Factor) and (Sample)
add typing rules for the now new language constructs factor(𝐸) and 𝐿 ∼ 𝑑 (𝐸1, ..., 𝐸𝑛). The lan-
guage supports a finite number of built-in functions 𝑓 with type 𝜏1, . . . , 𝜏𝑛 → 𝜏 and (conditional)
distributions 𝑑 ∈ Dist(𝜏1, . . . , 𝜏𝑛 ;𝜏) over 𝜏 given values of types 𝜏1, . . . , 𝜏𝑛 .
Typing Rules for Expressions:

(ESub)
Γ ⊢ 𝐸 : (𝜏, ℓ) ℓ ≤ ℓ ′

Γ ⊢ 𝐸 : (𝜏, ℓ ′)

(Var)

Γ, 𝑥 : 𝑇 ⊢ 𝑥 : 𝑇

(Const)
ty(𝑐) = 𝜏

Γ ⊢ 𝑐 : (𝜏, data)

(PrimCall)(𝑓 : 𝜏1, . . . , 𝜏𝑛 → 𝜏)
Γ ⊢ 𝐸𝑖 : (𝜏𝑖 , ℓ𝑖 ) ∀𝑖 ∈ 1..𝑛

Γ ⊢ 𝑓 (𝐸1, . . . , 𝐸𝑛) : (𝜏,⊔𝑛
𝑖=1 ℓ𝑖 )

(ArrEl)
Γ ⊢ 𝐸1 : (𝜏 [], ℓ) Γ ⊢ 𝐸2 : (int, ℓ)

Γ ⊢ 𝐸1 [𝐸2] : (𝜏, ℓ)

(Target)
Γ ⊢ 𝑆 : ℓ ′′ ∀ℓ ′ > ℓ .𝑅Γ⊢ℓ′ (𝑆) = ∅2

Γ ⊢ target(𝑆) : (real, ℓ)

(Arr)
Γ ⊢ 𝐸𝑖 : (𝜏, ℓ) ∀𝑖 ∈ 1..𝑛
Γ ⊢ [𝐸1, ..., 𝐸𝑛] : (𝜏 [], ℓ)

(ArrComp)
Γ ⊢ 𝐸1 : (int, ℓ) Γ ⊢ 𝐸2 : (int, ℓ) Γ, 𝑥 : (int, ℓ) ⊢ 𝐸 : (𝜏, ℓ) 𝑥 ∉ dom(Γ)

Γ ⊢ [𝐸 | 𝑥 in 𝐸1 : 𝐸2] : (𝜏 [], ℓ)

Typing Rules for Statements:

(SSub)
Γ ⊢ 𝑆 : ℓ ′ ℓ ≤ ℓ ′

Γ ⊢ 𝑆 : ℓ

(Assign)3

Γ(𝐿) = (𝜏, ℓ) Γ ⊢ 𝐸 : (𝜏, ℓ)
Γ ⊢ (𝐿 = 𝐸) : ℓ

(If)
Γ ⊢ 𝐸 : (real, ℓ) Γ ⊢ 𝑆1 : ℓ Γ ⊢ 𝑆2 : ℓ

Γ ⊢ if(𝐸) 𝑆1 else 𝑆2 : ℓ

(Seq)
Γ ⊢ 𝑆1 : ℓ Γ ⊢ 𝑆2 : ℓ S(𝑆1, 𝑆2) ∧ G(𝑆1, 𝑆2)

Γ ⊢ (𝑆1; 𝑆2) : ℓ

(Factor)
Γ ⊢ 𝐸 : (real,model)
Γ ⊢ factor(𝐸) : model

(Skip)

Γ ⊢ skip : ℓ

2We use ℓ′ > ℓ as a shorthand for ℓ ≤ ℓ′ ∧ ¬ℓ′ ≤ ℓ
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(Sample)3(𝑑 ∈ Dist(𝜏1, . . . , 𝜏𝑛 ;𝜏))
Γ(𝐿) = (𝜏, ℓ ′) Γ ⊢ 𝐸𝑖 : (𝜏𝑖 , ℓ), ∀𝑖 ∈ 1..𝑛 ℓ = ℓ ′ ⊔ model

Γ ⊢ 𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛) : ℓ

(For)
Γ ⊢ 𝐸1 : (int, ℓ) Γ ⊢ 𝐸2 : (int, ℓ) Γ, 𝑥 : (int, ℓ) ⊢ 𝑆 : ℓ 𝑥 ∉ dom(Γ) 𝑥 ∉𝑊 (𝑆)

Γ ⊢ for(𝑥 in 𝐸1 : 𝐸2) 𝑆 : ℓ

In these rules, we make use of the following notation (see Appendix A for precise definitions).
• 𝑊 (𝑆): the set of variables 𝑥 that have been assigned to in 𝑆 .
• 𝑅Γ⊢ℓ (𝑆): the set of variables 𝑥 that are read at level ℓ in 𝑆 .
• 𝑊Γ⊢ℓ (𝑆): the set of variables 𝑥 of level ℓ that have been assigned to in 𝑆 .
• 𝑊Γ⊢ℓ (𝑆): the set of variables 𝑥 of level ℓ that have been ∼-ed in 𝑆 .
• 𝑊𝑊Γ⊢ℓ (𝑆) =𝑊Γ⊢ℓ (𝑆) ∪𝑊Γ⊢ℓ (𝑆)

The intention in SlicStan is that statements of level ℓ are executed before those of ℓ ′ if ℓ < ℓ ′. In
order to follow that implementation strategy without reordering possibly non-commutative pairs
of statements, we impose the condition S(𝑆1, 𝑆2) when we sequence 𝑆1 and 𝑆2 in (Seq).

Definition 1 (Shreddable seq). S(𝑆1, 𝑆2) ≜ ∀ℓ1, ℓ2.(ℓ2 < ℓ1) =⇒ 𝑅Γ⊢ℓ1 (𝑆1) ∩𝑊Γ⊢ℓ2 (𝑆2) = ∅.

For example, this excludes the following problematic program:

data real sigma = 1;

model real mu ∼ normal(0, sigma);
sigma = 2;

Above, sigma and the statements sigma=1 and sigma=2 are of level data, which means they
should be executed before the statement mu ∼ normal(0,sigma), which is of level model. However,
this would change the intended semantics of the program, giving mu a N(0, 2) prior instead of
the intended N(0, 1) prior. This problematic program fails to typecheck in SlicStan, as it is not
shreddable: ¬S(mu ∼ normal(0,sigma), sigma = 2).

Definition 2 (Generative seq). G(𝑆1, 𝑆2) ≜ ∀ℓ ≠ model.𝑊Γ⊢ℓ (𝑆1) ∩𝑊𝑊Γ⊢ℓ (𝑆2) = ∅ ∧
𝑊𝑊Γ⊢ℓ (𝑆1) ∩𝑊Γ⊢ℓ (𝑆2) = ∅

To be able to read 𝑥 ∼ N(0, 1) at level genqant, depending on the context, either as a prob-
abilistic assignment to 𝑥 or as a density contribution, we impose the condition G(𝑆1, 𝑆2) when
we sequence 𝑆1 and 𝑆2. This excludes problematic programs like the following, in which the
multiple assignments to y create a discrepancy between the density semantics of the program
𝑝 (𝑦) = N(𝑦 | 0, 1)N (𝑦 | 0, 1) and the sampling-based semantics of the program y = 5.

genquant real y ∼ normal(0, 1);

y ∼ normal(0, 1);

y = 5;

This problematic program fails to typecheck in SlicStan owing to the G constraint:
¬G(y ∼ normal(0,1), y ∼ normal(0,1)), and also ¬G(y ∼ normal(0,1), y = 5).

3 Here we use Γ (𝐿) to look up the type of the L-value 𝐿 in Γ. Sometimes we will use an overloaded meaning of this notation
(Definition 14) to look-up the level type of a general expression. Which Γ (.) we refer to will be clear from context.
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2.3 Operational Semantics of SlicStan Statements
In this paper, we use a modified version of the semantics given in Gorinova et al. [2019]. We extend
the call-by-value operational semantics given in that paper, and derive a more equational form that
also includes the generated quantities.

We define a standard big-step operational semantics for SlicStan expressions and statements:

Big-step Relation

(𝑠, 𝐸) ⇓ 𝑉 expression evaluation
(𝑠, 𝑆) ⇓ (𝑠 ′,𝑤) statement evaluation

Here, 𝑠 and 𝑠 ′ are states,𝑉 is a value and𝑤 ∈ R>0 is a weight. Our statements can read and write the
state with arbitrary destructive updates. The weight can be thought of as an element of state that
stores a positive real value which only gets accessed by multiplying it with the value of an expression
𝐸, through the use of factor(𝐸)-statements. It can only be read through a target(𝑆)-statement which
initialises the weight to 1, evaluates the statement 𝑆 and returns the final weight.

Formally, states and values are defined as follows.

Values and States:

𝑉 ::= value
𝑐 constant
[𝑉1, . . . ,𝑉𝑛] array

𝑠 ::= 𝑥1 ↦→ 𝑉1, . . . , 𝑥𝑛 ↦→ 𝑉𝑛 𝑥𝑖 distinct state (finite map from variables to values)

In the rest of the paper, we use the notation for states 𝑠 = 𝑥1 ↦→ 𝑉1, . . . , 𝑥𝑛 ↦→ 𝑉𝑛 :

• 𝑠 [𝑥 ↦→ 𝑉 ] is the state 𝑠 , but where the value of 𝑥 is updated to𝑉 if 𝑥 ∈ dom(𝑠), or the element
𝑥 ↦→ 𝑉 is added to 𝑠 if 𝑥 ∉ dom(𝑠).

• 𝑠 [−𝑥] is the state s, but where 𝑥 is removed from the domain of 𝑠 (if it were present).

We also define lookup and update operations on values:

• If𝑈 is an 𝑛-dimensional array value for 𝑛 ≥ 0 and 𝑐1, . . . , 𝑐𝑛 are suitable indexes into𝑈 , then
the lookup 𝑈 [𝑐1] . . . [𝑐𝑛] is the value in𝑈 indexed by 𝑐1, . . . , 𝑐𝑛 .

• If𝑈 is an 𝑛-dimensional array value for 𝑛 ≥ 0 and 𝑐1, . . . , 𝑐𝑛 are suitable indexes into𝑈 , then
the (functional) update 𝑈 [𝑐1] . . . [𝑐𝑛] := 𝑉 is the array that is the same as𝑈 except that the
value indexed by 𝑐1, . . . , 𝑐𝑛 is 𝑉 .

The relation ⇓ is deterministic but partial, as we do not explicitly handle error states. The purpose
of the operational semantics is to define a density function in §§ 2.4, and any errors lead to the
density being undefined. The big-step semantics is defined as follows.

Operational Semantics of Expressions:

(Eval Const)

(𝑠, 𝑐) ⇓ 𝑐

(Eval Var)
𝑉 = 𝑠 (𝑥) 𝑥 ∈ dom(𝑠)

(𝑠, 𝑥) ⇓ 𝑉

(Eval Arr)
(𝑠, 𝐸𝑖 ) ⇓ 𝑉𝑖 ∀𝑖 ∈ 1..𝑛

(𝑠, [𝐸1, . . . , 𝐸𝑛]) ⇓ [𝑉1, . . . ,𝑉𝑛]
(Eval ArrEl)
(𝑠, 𝐸1 ⇓ 𝑉 ) (𝑠, 𝐸2 ⇓ 𝑐)

(𝑠, 𝐸1 [𝐸2]) ⇓ 𝑉 [𝑐]

(Eval PrimCall)4

(𝑠, 𝐸𝑖 ) ⇓ 𝑉𝑖 ∀𝑖 ∈ 1 . . . 𝑛 𝑉 = 𝑓 (𝑉1, . . . ,𝑉𝑛)
(𝑠, 𝑓 (𝐸1, . . . , 𝐸𝑛)) ⇓ 𝑉
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(Eval ArrComp)5

(𝑠, 𝐸1) ⇓ 𝑛 (𝑠, 𝐸2) ⇓𝑚 (𝑠, 𝐸 [𝑖/𝑥]) ⇓ 𝑉𝑖 ,∀𝑛 ≤ 𝑖 ≤ 𝑚
(𝑠, [𝐸 | 𝑥 in 𝐸1 : 𝐸2]) ⇓ [𝑉𝑛, . . . ,𝑉𝑚]

(Eval Target)
(𝑠, 𝑆) ⇓ (𝑠 ′,𝑤)

(𝑠, target(𝑆)) ⇓ 𝑤

Operational Semantics of Statements:

(Eval Assign) (where 𝐿 = 𝑥 [𝐸1] . . . [𝐸𝑛])
(𝑠, 𝐸𝑖 ) ⇓ 𝑉𝑖 ∀𝑖 ∈ 1..𝑛 (𝑠, 𝐸) ⇓ 𝑉 𝑈 = 𝑠 (𝑥) 𝑈 ′ = (𝑈 [𝑉1] . . . [𝑉𝑛] := 𝑉 )

(𝑠, 𝐿 = 𝐸) ⇓ (𝑠 [𝑥 ↦→ 𝑈 ′], 1)
(Eval Skip)

(𝑠, skip) ⇓ (𝑠, 1)

(Eval Seq)
(𝑠, 𝑆1) ⇓ (𝑠 ′,𝑤) (𝑠 ′, 𝑆2) ⇓ (𝑠 ′′,𝑤 ′)

(𝑠, 𝑆1; 𝑆2) ⇓ (𝑠 ′′,𝑤 ∗𝑤 ′)

(Eval ForFalse)
(𝑠, 𝐸1) ⇓ 𝑐1 (𝑠, 𝐸2) ⇓ 𝑐2 𝑐1 > 𝑐2

(𝑠, for(𝑥 in 𝐸1 : 𝐸2) 𝑆) ⇓ (𝑠, 1)
(Eval ForTrue)
{(𝑠, 𝐸𝑖 ) ⇓ 𝑐𝑖 }𝑖=1,2 𝑐1 ≤ 𝑐2 (𝑠 [𝑥 ↦→ 𝑐1], 𝑆) ⇓ (𝑠 ′,𝑤) (𝑠 ′[−𝑥], for(𝑥 in (𝑐1 + 1) : 𝑐2) 𝑆) ⇓ (𝑠 ′′,𝑤 ′)

(𝑠, for(𝑥 in 𝐸1 : 𝐸2) 𝑆) ⇓ (𝑠 ′′,𝑤 ∗𝑤 ′)
(Eval IfTrue)
(𝑠, 𝐸) ⇓ 𝑐 ≠ 0.0 (𝑠, 𝑆1) ⇓ (𝑠 ′,𝑤)
(𝑠, if(𝐸) 𝑆1 else 𝑆2) ⇓ (𝑠 ′,𝑤)

(Eval IfFalse)
(𝑠, 𝐸) ⇓ 0.0 (𝑠, 𝑆2) ⇓ (𝑠 ′,𝑤)
(𝑠, if(𝐸) 𝑆1 else 𝑆2) ⇓ (𝑠 ′,𝑤)

(Eval Factor)
(𝑠, 𝐸) ⇓ 𝑉

(𝑠, factor(𝐸)) ⇓ (𝑠,𝑉 )

(Eval Sample)6

(𝑠, 𝐿) ⇓ 𝑉 (𝑠, 𝐸𝑖 ) ⇓ 𝑉𝑖 ,∀1 ≤ 𝑖 ≤ 𝑛 𝑉 ′ = 𝑑 (𝑉 |𝑉1, . . . ,𝑉𝑛)
(𝑠, 𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛)) ⇓ (𝑠,𝑉 ′)

Most rules of the big-step operational semantics are standard, with the exception of (Eval
Factor) and (Eval Sample), which correspond to the PPL-specific language constructs factor and
𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛). While we refer to the latter construct as probabilistic assignment, its formal
semantics is not that of an assignment statement: both the left and the right hand-side of the
“assignment” are evaluated to a value, in order for the density contribution 𝑑 (𝑉 | 𝑉1, . . . ,𝑉𝑛) to be
evaluated and factored into the weight of the current execution trace. Contrary to (Eval Assign),
there is no binding of a result to a variable in (Eval Sample). Of course, as is common in probabilistic
programming, it might, at times7, be beneficial to execute these statements as actual probabilistic
assignments. Our treatment of these statements is agnostic of such implementation details, however.

The design of the type system ensures that information can flow from a level ℓ to a higher one
ℓ ′ ≥ ℓ , but not a lower one ℓ ′ < ℓ : a noninterference result. To state this formally, we introduce the
notions of conformance between a state 𝑠 and a typing environment Γ and ℓ-equality of states.

We define a conformance relation on states 𝑠 and typing environments Γ. A state 𝑠 conforms to
an environment Γ, whenever 𝑠 provides values of the correct types for the variables used in Γ:
Conformance Relation:

𝑠 |= Γ state 𝑠 conforms to environment Γ

Rule for the Conformance Relation:
4 𝑓 (𝑉1, . . . ,𝑉𝑛) means applying the built-in function 𝑓 on the values𝑉1, . . . ,𝑉𝑛 .
5Here, we write 𝐸 [𝐸′/𝑥 ] for the usual capture avoiding substitution of 𝐸′ for 𝑥 in 𝐸.
6By 𝑑 (𝑉 |𝑉1, . . . ,𝑉𝑛) , we mean the result of evaluating the intended built-in conditional distribution 𝑑 on𝑉 ,𝑉1, . . . ,𝑉𝑛 .
7For example, in our Stan backend for SlicStan, if such a statement is of level model, it will be executed as density contribution,
while if it is of level genqant, it will be executed as a probabilistic assignment.
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(Stan State)
𝑉𝑖 |= 𝜏𝑖 ∀𝑖 ∈ 𝐼

(𝑥𝑖 ↦→ 𝑉𝑖 )𝑖∈𝐼 |= (𝑥𝑖 : 𝜏𝑖 )𝑖∈𝐼

Here, 𝑉 |= 𝜏 denotes that the value 𝑉 is of type 𝜏 , and it has the following definition:
• 𝑐 |= int, if 𝑐 ∈ Z, and 𝑐 |= real, if 𝑐 ∈ R.
• [𝑉1, . . . ,𝑉𝑛] |= 𝜏 [𝑛], if ∀𝑖 ∈ 1 . . . 𝑛.𝑉𝑖 |= 𝜏 .

Definition 3 (ℓ-eqal states).
Given a typing environment Γ, states 𝑠1 |= Γ and 𝑠2 |= Γ are ℓ-equal for level ℓ (written 𝑠1 ≈ℓ 𝑠2), if
they differ only for variables of a level strictly higher than ℓ :

𝑠1 ≈ℓ 𝑠2 ≜ ∀𝑥 : (𝜏, ℓ ′) ∈ Γ. (ℓ ′ ≤ ℓ =⇒ 𝑠1 (𝑥) = 𝑠2 (𝑥))
Lemma 1 (Noninterference of ⊢).

Suppose 𝑠1 |= Γ, 𝑠2 |= Γ, and 𝑠1 ≈ℓ 𝑠2 for some ℓ . Then for SlicStan statement 𝑆 and expression 𝐸:

(1) If Γ ⊢ 𝐸 : (𝜏, ℓ) and (𝑠1, 𝐸) ⇓ 𝑉1 and (𝑠2, 𝐸) ⇓ 𝑉2 then 𝑉1 = 𝑉2.
(2) If Γ ⊢ 𝑆 : ℓ and (𝑠1, 𝑆) ⇓ 𝑠 ′1,𝑤1 and (𝑠2, 𝑆) ⇓ 𝑠 ′2,𝑤2 then 𝑠 ′1 ≈ℓ 𝑠 ′2.

Proof. (1) follows by rule induction on the derivation Γ ⊢ 𝐸 : (𝜏, ℓ), and using that if Γ ⊢ 𝐸 : (𝜏, ℓ),
𝐸 reads 𝑥 and Γ(𝑥) = (𝜏 ′, ℓ ′), then ℓ ′ ≤ ℓ . (2) follows by rule induction on the derivation Γ ⊢ 𝑆 : ℓ
and using (1). We present more details of the proof in Appendix A. □

2.4 Density Semantics
The semantic aspect of a SlicStan program Γ, 𝑆 that we are the most interested in is the final
weight 𝑤 obtained after evaluating the program 𝑆 . This is the value the program computes for
the unnormalised joint density 𝑝∗ (x) = 𝑝∗ (D, 𝜽 , 𝑄) over the data D, the model parameters 𝜽 , and
generated quantities 𝑄 of the program (see §§ 2.6). Given a program Γ, 𝑆 , we separate the typing
environment Γ into disjoint parts: Γ𝜎 and Γx, such that Γ𝜎 contains precisely the variables that are
deterministically assigned in 𝑆 and Γx contains those which never get deterministically assigned;
that is the variables x with respect to which we define the target unnormalised density 𝑝∗ (x):

Γ𝜎 = {(𝑥 : 𝑇 ) ∈ Γ | 𝑥 ∈𝑊 (𝑆)} Γx = Γ \ Γ𝜎 .
Similarly, any conforming state 𝑠 |= Γ separates as 𝜎 ⊎ x with

𝜎 = {(𝑥 ↦→ 𝑉 ) ∈ 𝑠 | 𝑥 ∈𝑊 (𝑆)} x = 𝑠 \ 𝜎.
Then, 𝜎 |= Γ𝜎 and x |= Γx.

The semantics of a SlicStan program Γ𝜎 , Γx, 𝑆 is a function J𝑆K on states 𝜎 |= Γ𝜎 and x |= Γx that
yields a pair of a state 𝜎 ′ and a weight𝑤 , such that:

J𝑆K(𝜎) (x) = 𝜎 ′,𝑤, where 𝜎 ⊎ x, 𝑆 ⇓ 𝜎 ′ ⊎ x,𝑤 .

We will sometimes refer only to one of the two elements of the pair 𝜎,𝑤 . In those cases we
use the notation: J𝑆K𝑠 (𝜎) (x), J𝑆K𝑝 (𝜎) (x) = J𝑆K(𝜎) (x). We call J𝑆K𝑠 the state semantics and J𝑆K𝑝 the
density semantics of Γ, 𝑆 . We will be particularly interested in the density semantics.

The function J𝑆K𝑝 (𝜎) is some positive function 𝜙 (x) of x. If x1, x2 is a partitioning of x and∫
𝜙 (x)dx1 is finite, we say 𝜙 (x) is an unnormalised density corresponding to the normalised

density 𝑝 (x1 | x2) = 𝜙 (x)/
∫
𝜙 (x)dx1 over x1 and we write J𝑆K𝑝 (𝜎) (x) ∝ 𝑝 (x1 | x2). Sometimes,

when 𝜎 is clear from context, we will leave it implicit and simply write 𝑝 (x) for 𝑝 (x;𝜎).
Next, we observe how the state and density semantics compose.
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Lemma 2 (Semantics composes). The state and density semantics compose as follows:

J𝑆1; 𝑆2K𝑠 (𝜎) (x) = J𝑆2K𝑠 (J𝑆2K𝑠 (𝜎) (x)) (x) J𝑆1; 𝑆2K𝑝 (𝜎) (x) = J𝑆1K𝑝 (𝜎) (x)×J𝑆2K𝑝 (J𝑆1K𝑠 (𝜎) (x)) (x)

Throughout the paper we use the following notation to separate the store in a concise way.
Definition 4 (Γℓ (𝑠) or 𝑠ℓ ).

For a typing environment Γ and a store 𝑠 |= Γ, let Γℓ (𝑠) = {(𝑥 ↦→ 𝑉 ) ∈ 𝑠 | Γ(𝑥) = (_, ℓ)}. When it is
clear which typing environment the notation refers to, we write simply 𝑠ℓ instead of Γℓ (𝑠).

Using this definition, we re-state the noninterference result in the following convenient form.

Lemma 3 (Noninterference of ⊢ reformulated). Let Γ𝜎 , Γx ⊢ 𝑆 be a well-typed SlicStan
program. For all levels ℓ ∈ {data,model, genquant}, there exist unique functions 𝑓ℓ , such that for all
𝜎 |= Γ𝜎 , x |= Γx and 𝜎 ′ such that J𝑆K𝑠 (𝜎) (x) = 𝜎 ′, 𝜎 ′

ℓ = 𝑓ℓ ({𝜎ℓ′, xℓ′ | ℓ ′ ≤ ℓ}).

2.5 Shredding and Translation to Stan
A key aim of SlicStan is to rearrange the input program into three phases of execution, corresponding
to the levels of the type system: data preprocessing, core model code to run MCMC or another
inference algorithm on, and genqant, or generated quantities, which amount to sample post-
processing after inference is performed. The motivation for these phases is that they all naturally
appear in the workflow of probabilistic programming. The blocks of the Stan are built around this
phase distinction, and compilation of SlicStan to Stan and comparable back-ends requires it.

The phases impose different restrictions on the code and make it incur differing computational
costs. The model phase is by far the most expensive to evaluate: code in this phase tends to be
executed repeatedly within the inner loop of an inference algorithm like an MCMC method. Further,
it tends to be automatically differentiated [Griewank and Walther 2008] in case gradient-based
inference algorithms are used, which restricts the available programming features and increases
the space and time complexity of evaluation. Type inference in SlicStan combined with shredding
allows the user to write their code without worrying about the performance of different phases, as
code will be shredded into its optimal phase of execution.

The shredding relation is in the core of this rearrangement. Shredding takes a SlicStan statement
𝑆 and splits it into three single-level statements (Definition 5). That is, 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 means we
split 𝑆 into sub-statements 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 , were 𝑆𝐷 mentions only data variables, 𝑆𝑀 mentions data
and model variables, and 𝑆𝑄 is the rest of the program, and such that the composition 𝑆𝐷 ; 𝑆𝑀 ; 𝑆𝑄
behaves the same as the original program 𝑆 . When combined with type inference, shredding
automatically determines optimal statement placement, such that only necessary work is executed
in the ‘heavy-weight’ model part of inference.

We adapt the shredding from [Gorinova et al. 2019], so that the following holds for the three
sub-statements of a shredded well-typed SlicStan program Γ ⊢ 𝑆 :

• 𝑆𝐷 implements deterministic data preprocessing: no contributions to the density are allowed.
• 𝑆𝑀 is the inference core: it is the least restrictive of the three slices — either or both of 𝑆𝐷

and 𝑆𝑄 can be merged into 𝑆𝑀 . It can involve contributions to the density which require
advanced inference for sampling. Therefore, this is the part of the program which requires
the most computation during inference (in Stan, what is run inside HMC);

• 𝑆𝑄 represents sample post-processing: any contributions to the density are generative. That is,
they can immediately be implemented using draws from random number generators.
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In terms of inference, we can run 𝑆𝐷 once as a pre-processing step. Then use a suitable inference
algorithm for 𝑆𝑀 (in the case of Stan, that’s HMC, but we can use other MCMC or VI algorithms),
and, finally, we use ancestral sampling for 𝑆𝑄 . 8

Shredding Relation

𝑆 ⇕Γ (𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 ) statement shredding

Shredding Rules for Statements:

(Shred Assign)
Γ(𝐿) = (_, data) → 𝑆𝐷 = 𝐿 = 𝐸, 𝑆𝑀 = 𝑆𝑄 = skip
Γ(𝐿) = (_,model) → 𝑆𝑀 = 𝐿 = 𝐸, 𝑆𝐷 = 𝑆𝑄 = skip

Γ(𝐿) = (_, genqant) → 𝑆𝑄 = 𝐿 = 𝐸, 𝑆𝐷 = 𝑆𝑀 = skip

𝐿 = 𝐸 ⇕Γ (𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 )

(Shred Seq)
𝑆1 ⇕Γ 𝑆𝐷1 , 𝑆𝑀1 , 𝑆𝑄1 𝑆2 ⇕Γ 𝑆𝐷2 , 𝑆𝑀2 , 𝑆𝑄2

𝑆1; 𝑆2 ⇕Γ (𝑆𝐷1 ; 𝑆𝐷2 ), (𝑆𝑀1 ; 𝑆𝑀2 ), (𝑆𝑄1 ; 𝑆𝑄2 )

(Shred Factor)
Γ(𝐸) = data → 𝑆𝐷 = factor(𝐸), 𝑆𝑀 = 𝑆𝑄 = skip
Γ(𝐸) = model → 𝑆𝑀 = factor(𝐸), 𝑆𝐷 = 𝑆𝑄 = skip

Γ(𝐸) = genqant → 𝑆𝑄 = factor(𝐸), 𝑆𝐷 = 𝑆𝑀 = skip

factor(𝐸) ⇕Γ (𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 )

(Shred Skip)

skip ⇕Γ (skip, skip, skip)

(Shred Sample)
Γ(𝐿, 𝐸1, . . . , 𝐸𝑛) = data → 𝑆𝐷 = 𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛), 𝑆𝑀 = 𝑆𝑄 = skip)
Γ(𝐿, 𝐸1, . . . , 𝐸𝑛) = model → 𝑆𝑀 = 𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛), 𝑆𝐷 = 𝑆𝑄 = skip)

Γ(𝐿, 𝐸1, . . . , 𝐸𝑛) = genqant → 𝑆𝑄 = 𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛), 𝑆𝐷 = 𝑆𝑀 = skip)
𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛) ⇕Γ (𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 )

(Shred If)
𝑆1 ⇕Γ (𝑆𝐷1 , 𝑆𝑀1 , 𝑆𝑄1 ) 𝑆2 ⇕Γ (𝑆𝐷2 , 𝑆𝑀2 , 𝑆𝑄2 )

if(𝑔) 𝑆1 else 𝑆2 ⇕Γ (if(𝑔) 𝑆𝐷1 else 𝑆𝐷2 ), (if(𝑔) 𝑆𝑀1 else 𝑆𝑀2 ), (if(𝑔) 𝑆𝑄1 else 𝑆𝑄2 )
(Shred For)

𝑆 ⇕Γ (𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 )
for(𝑥 in 𝑔1 : 𝑔2) 𝑆 ⇕Γ (for(𝑥 in 𝑔1 : 𝑔2) 𝑆𝐷 ), (for(𝑥 in 𝑔1 : 𝑔2) 𝑆𝑀 ), (for(𝑥 in 𝑔1 : 𝑔2) 𝑆𝑄 )

Here, Γ(𝐸) (Definition 14) gives the principal type of an expression 𝐸, while Γ(𝐸1, . . . , 𝐸𝑛)
(Definition 15) gives the least upper bound of the principal types of 𝐸1, . . . , 𝐸𝑛 .

The (Shred If) and (Shred For) rules make sure to shred if and for statements so that they are
separated into parts which can be computed independently at each of the three levels. Note that the
usage of if and for guards is simplified, to avoid stating rules for when the guard(s) are of different
levels. For example, if we have a statement if(𝐸) 𝑆1 else 𝑆2, where 𝐸 is of level model, we cannot
access 𝐸 at level data, thus the actual shredding rule we would use is:

(Shred If Model Level)
𝑆1 ⇕Γ (𝑆𝐷1 , 𝑆𝑀1 , 𝑆𝑄1 ) 𝑆2 ⇕Γ (𝑆𝐷2 , 𝑆𝑀2 , 𝑆𝑄2 )

if(𝑔) 𝑆1 else 𝑆2 ⇕Γ skip, (if(𝑔) 𝑆𝐷1 ; 𝑆𝑀1 else 𝑆𝐷2 ; 𝑆𝑀2 ), (if(𝑔) 𝑆𝑄1 else 𝑆𝑄2 )

8Ancestral (or forward) sampling refers to the method of sampling from a joint distribution by individually sampling
variables from the factors constituting the joint distribution. For example, we can sample from 𝑝 (𝑥, 𝑦) = 𝑝 (𝑥)𝑝 (𝑦 | 𝑥) by
randomly generating 𝑥 according to 𝑝 (𝑥) , and then randomly generating �̂� according to 𝑝 (𝑦 | 𝑥 = 𝑥) .
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These shredding rules follow very closely those given by Gorinova et al. [2019]. The main
difference is that sample statements (𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛)) are allowed to be of genqant level and
can be included in the last, generative slice of the program (see rule (Shred Sample)). In other words,
such genqant sample statements are those statements that can be interpreted as probabilistic
assignment (using random number generator functions) to directly sample from the posterior
distribution according to ancestral sampling.

We provide proofs for the following key results in Appendix A: shredding produces single-level
statements (Definition 5 and Lemma 4) and shredding is semantics preserving (Lemma 6).

Intuitively, a single-level statement of level ℓ is one that updates only variables of level ℓ .

Definition 5 (Single-level Statement Γ ⊢ ℓ (𝑆)). We define single-level statements 𝑆 of level ℓ
with respect to Γ (written Γ ⊢ ℓ (𝑆)), by induction:
Single Level Statements:

(Assign Single)
Γ(𝑥) = (_, ℓ)

Γ ⊢ ℓ (𝑥 [𝐸1] · · · [𝐸𝑛] = 𝐸)

(Seq Single)
Γ ⊢ ℓ (𝑆) Γ ⊢ ℓ (𝑆 ′)

Γ ⊢ ℓ (𝑆 ; 𝑆 ′)

(For Single)
Γ, 𝑥 : (int, ℓ) ⊢ ℓ (𝑆)

Γ ⊢ ℓ (for(𝑥 in 𝐸1 : 𝐸2)𝑆)

(If Single)
Γ ⊢ ℓ (𝑆1) Γ ⊢ ℓ (𝑆2)
Γ ⊢ ℓ (if(𝐸) 𝑆1 else 𝑆2)

(Skip Single)

Γ ⊢ ℓ (skip)

(Factor Single)
Γ ⊢ 𝐸 : ℓ ∀ℓ ′ < ℓ .Γ ⊬ 𝐸 : ℓ ′

Γ ⊢ ℓ (factor(𝐸))
(Sample Single)
Γ ⊢ 𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛) : ℓ ∀ℓ ′ < ℓ .Γ ⊬ 𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛) : ℓ ′

Γ ⊢ ℓ (𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛))

Lemma 4 (Shredding produces single-level statements).

Γ ⊢ 𝑆 ∧ 𝑆 ⇕Γ (𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 ) =⇒ Γ ⊢ data(𝑆𝐷 ) ∧ Γ ⊢ model(𝑆𝑀 ) ∧ Γ ⊢ genquant(𝑆𝑄 )
We prove a result about the effect of single-level statements on the store and weight of well-typed

programs (Lemma 5). Intuitively, this result shows that a single-level statement of level ℓ acts on
the state and weight in a way that is independent of levels greater than ℓ .

Lemma 5 (Property of single-level statements).
Let Γ𝜎 , Γx, 𝑆 be a SlicStan program, such that 𝑆 is a single-level statement of level ℓ , Γ ⊢ ℓ (𝑆). Then
there exist unique functions 𝑓 and 𝜙 , such that for any 𝜎, x |= Γ𝜎 , Γx:

J𝑆K(𝜎) (𝑥) = 𝑓 (𝜎≤ℓ , x≤ℓ ) ∪ 𝜎>ℓ , 𝜙 (𝜎≤ℓ ) (x≤ℓ ),
where we write 𝜎≤ℓ = {(𝑥 ↦→ 𝑉 ) ∈ 𝜎 | Γ𝜎 (𝑥) = (_, ℓ)} and 𝜎>ℓ = 𝜎 \ 𝜎≤ℓ .

Lemma 6 (Semantic Preservation of ⇕Γ).
If Γ ⊢ 𝑆 : data and 𝑆 ⇕Γ (𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 ) then J𝑆K = J𝑆𝐷 ; 𝑆𝑀 ; 𝑆𝑄K.

2.6 Density Factorisation
As an extension of [Gorinova et al. 2019], we show that shredding induces a natural factorization of
the density implemented by the program: 𝑝 (D, 𝜽 , 𝑄) = 𝑝 (𝜽 ,D)𝑝 (𝑄 | 𝜽 ,D). 9 This means that we
can separate the program into a deterministic preprocessing part, a part that uses a ‘heavy-weight’
inference algorithm, such as HMC, and a part that uses simple ancestral sampling.
9Here, 𝑝 (𝑄 | 𝜽 ,D) denotes the conditional probability density of𝑄 , given the values of 𝜽 and D.
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Theorem 1 (Shredding induces a factorisation of the density).
Suppose Γ ⊢ 𝑆 : data and 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 and Γ = Γ𝜎 , ΓD, Γ𝜽 , Γ𝑄 . For all 𝜎 , D, 𝜽 , and 𝑄 : if
𝜎,D, 𝜽 , 𝑄 |= Γ𝜎 , ΓD, Γ𝜽 , Γ𝑄 , and J𝑆K𝑝 (𝜎) (D, 𝜽 , 𝑄) ∝ 𝑝 (D, 𝜽 , 𝑄) and𝑊 (𝑆𝑄 ) = dom(Γ𝑄 ) then:

(1) J𝑆𝑀K𝑝 (𝜎𝐷 ) (D, 𝜽 , 𝑄) ∝ 𝑝 (𝜽 ,D)
(2) J𝑆𝑄K𝑝 (𝜎𝑀 ) (D, 𝜽 , 𝑄) = 𝑝 (𝑄 | 𝜽 ,D)

where 𝜎𝐷 = J𝑆𝐷K𝑠 (𝜎) (D, 𝜽 , 𝑄), 𝜎𝑀 = J𝑆𝑀K𝑠 (𝜎𝐷 ) (D, 𝜽 , 𝑄), and 𝑝 (D, 𝜽 , 𝑄) = 𝑝 (D, 𝜽 )𝑝 (𝑄 | D, 𝜽 ).
Proof. This follows by proving a more general result using induction on the structure of 𝑆 ,

Lemma 6, Lemma 2 and Lemma 4. See Appendix A for full proof. □

The given SlicStan program 𝑆 defines a joint density 𝑝 (D, 𝜽 , 𝑄). By shredding we obtain a model
block 𝑆𝑀 that defines 𝑝 (𝜽 ,D) and a genqant block 𝑆𝑄 that defines 𝑝 (𝑄 | 𝜽 ,D). Hence, inference
in Stan using these blocks recovers the semantics 𝑝 (D, 𝜽 , 𝑄) of the SlicStan program.

3 THEORY: CONDITIONAL INDEPENDENCE BY TYPING
This section presents the main theoretical contribution of the paper: an information flow type
system for conditional independence. We present a type system and show that a well-typed program
in that system is guaranteed to have certain conditional independencies in its density semantics. As
a reminder, determining the conditional independence relationships between variables is important,
as such relationships capture a qualitative summary of the specified model and can facilitate more
efficient inference. For example, in § 4 we present an application that uses our type system: a
semantic-preserving transformation that allows for discrete parameters to be introduced in SlicStan,
which was previously not possible due to efficiency constraints.

Our aim is to optimise probabilistic programs by transforming abstract syntax trees or interme-
diate representations (as in the Stan compiler) that are close to abstract syntax. Hence, we seek a
way to compute conditional dependencies by a type-based source analysis, rather than by explicitly
constructing a separate graphical representation of the probabilsitic model.

Given three disjoint sets of random variables (RVs) 𝐴, 𝐵 and 𝐶 , we say that 𝐴 is conditionally
independent of 𝐵 given𝐶 , written 𝐴 ⊥⊥ 𝐵 | 𝐶 , if and only if their densities factorise as 𝑝 (𝐴, 𝐵 | 𝐶) =
𝑝 (𝐴 | 𝐶)𝑝 (𝐵 | 𝐶). (An alternative formulation states that 𝐴 ⊥⊥ 𝐵 | 𝐶 if and only if 𝑝 (𝐴, 𝐵,𝐶) =
𝜙1 (𝐴,𝐶)𝜙2 (𝐵,𝐶) for some functions𝜙1 and𝜙2.) Deriving conditional independencies in the presence
of a graphical model (such as a factor graph10) is straightforward, which is why some PPLs focus on
building and performing inference on graphs (for example, Infer.NET [Minka et al. 2014]). However,
building and manipulating a factor graph in generative PPLs (e.g. Gen [Cusumano-Towner et al.
2019], Pyro [Uber AI Labs 2017], Edward2 [Tran et al. 2018], PyMC3 [Salvatier et al. 2016]) or
imperative density-based PPLs (SlicStan, Stan) is not straightforward. Dependencies between
modelled variables might be separated by various deterministic transformations, making it harder
to track the information flow, and – more importantly – more difficult to isolate parts of the model
needed for transformations such as variable elimination. In the case of SlicStan, each program can
still be thought of as specifying a factor graph implicitly. In this paper, we focus on the problem
of how to work with conditional independence information implicitly encoded in a probabilistic
program, without having access to an explicit factor graph. For example, consider Program A:

10A factor graph is a bipartite graph that shows the factorisation of a multivariable function. Variables are circular nodes,
and each factor of the function is a square node. An edge exists between a variable node 𝑥 and a factor node 𝜙 if and only if
𝜙 is a function of 𝑥 . See Program A and its corresponding factor graph as an example, or [Koller and Friedman 2009] for
details.
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A. Simple Hidden Markov Model (HMM)
int<2> z1 ∼ bern(\0);
real \1 = foo(\0, z1);
int<2> z2 ∼ bern(\1);
real 𝜙1 = foo(1, z1);
real 𝜙2 = foo(1, z2);
int<2> y1 ∼ bern(𝜙1);
int<2> y2 ∼ bern(𝜙2);

𝑧1
𝑧1 ∼ 𝑏 (\0)

𝑦1 ∼ 𝑏 (foo(1, 𝑧1))

𝑦1

𝑧2 ∼ 𝑏 (foo(\0, 𝑧1))
𝑧2

𝑦2 ∼ 𝑏 (foo(1, 𝑧2))

𝑦2

The factor graph above represents the factorisation of the joint density function over the parame-
ters of the program: 𝑝 (𝑧1, 𝑧2, 𝑦1, 𝑦2) = 𝑏 (𝑧1 | \0)𝑏 (𝑦1 | foo(1, 𝑧1))𝑏 (𝑧2 | foo(\0, 𝑧1))𝑏 (𝑦2 | foo(1, 𝑧2)).
Each of the four factors is represented by a square node in the graph, and it connects to the variables
(circle nodes) that the factor depends on. This representation is useful for thinking about conditional
independencies. For example, it is immediately evident from the graph that variables which connect
to the same square node cannot be conditionally independent as they share a factor. More generally,
if there is an (uninterrupted by observed variables) direct path between two variables, then these
two variables are not conditionally independent [Frey 2002].

When looking at the factor graph, it is straightforward to see that 𝑧1 and 𝑧2 are not conditionally
independent, and neither are 𝑧1 and 𝑦1 nor 𝑧2 and 𝑦2, as there is a direct path between each of
these pairs. When looking at the program, however, we need to reason about the information flow
through the deterministic variables \1, 𝜙1 and 𝜙2 to reach the same conclusion.

Moreover, manipulation of the program based on conditional dependencies can also be more
difficult without a factor graph. As an example, consider the problem of variable elimination (which
we discuss in more details in §§ 4.3). If we are to eliminate 𝑧1 in the factor graph, using variable
elimination, we would simply merge the factors directly connected to 𝑧1, sum over 𝑧1, and attach
the new factors to all former neighbours of 𝑧1 (in this case 𝑦1 and 𝑧2, but not 𝑦2). However, in the
case of an imperative program, we need to isolate all the statements that depend on 𝑧1, and group
them together without changing the meaning of the program beyond the elimination:

B. HMM with 𝑧1 marginalised out
factor(sum([target(

z1 ∼ bern(\0); real \1 = foo(\0, z1);
z2 ∼ bern(\1); real 𝜙1 = foo(1, z1);
y1 ∼ bern(𝜙1); ) | z1 in 1 : 2 ]));

real 𝜙2 = foo(1, z2);
int<2> y2 ∼ bern(𝜙2);

. ∑
𝑧1 [𝑏 (𝑧1 | \0)

×𝑏 (𝑦1 | foo(1, 𝑧1))
×𝑏 (𝑧2 | foo(\0, 𝑧1)) ]

𝑧2

𝑦2 ∼ 𝑏 (foo(1, 𝑧2))

𝑦2𝑦1

We need a way to analyse the information flow to determine conditional independencies between
variables. In the example above, we can leave 𝑦2 out of the elimination of 𝑧1, because 𝑧1 and 𝑦2 are
conditionally independent given 𝑧2, written 𝑧1 ⊥⊥ 𝑦2 | 𝑧2.

To analyse the information flow, we introduce a novel type system, which we refer to via the
relation ⊢2. It works with a lower semi-lattice ({l1, l2, l3}, ≤) of levels, where l1 ≤ l2 and l1 ≤ l3
and l2 and l3 are unrelated. (Recall that a lower semi-lattice is a partial order in which any two
elements ℓ1, ℓ2 have a greatest lower bound ℓ1 ⊓ ℓ2 but do not always have an upper bound.) A
well-typed program induces a conditional independence relationship for the (random) variables
(RVs) in the program: l2-RVs ⊥⊥ l3-RVs | l1-RVs.

In the example above, this result allows us to eliminate l2-variables (𝑧1), while only considering
l1-variables (𝑦1 and 𝑧2) and knowing l3-variables (𝑦2) are unaffected by the elimination. We can use
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xl1

J𝑆1K𝑝

J𝑆2K𝑝

xl2

J𝑆3K𝑝

xl3

(a) Factor graph of variables of different levels.

xl1

xl2xl3

(b) Information flow between levels.

Fig. 2. Intuition for the semi-lattice case l1 < l2 and l1 < l3, where xℓ is of level ℓ . We get xl2 ⊥⊥ xl3 | xl1.

a shredding relation almost identical to that of §§ 2.5 to slice the program in a semantics-preserving
way, and isolate the sub-statements needed for elimination. Here, \1 and 𝜙1 must be of level l2 for
the program to be well-typed. Thus, all statements involving 𝑧1, \1 or 𝜙1 are of level l2, and the
shredding relation groups them together inside of the elimination loop for 𝑧1.

Figure 2 shows the relationship between the levels l1, l2, l3 and the shredding relation. Informa-
tion flows from l1 to l2 and l3, but there is no flow of information between l2 and l3 (Figure 2b).
A ⊢2-well-typed program 𝑆 is shredded by ⇕Γ into 𝑆1, 𝑆2 and 𝑆3, where 𝑆1 only mentions l1 vari-
ables, 𝑆2 only mentions l1 and l2 variables, and 𝑆3 only mentions l1 and l3 variables. This can
be understood as a new factor graph formulation of the original program 𝑆 , where each of the
substatements 𝑆1, 𝑆2, 𝑆3 defines a factor connected to any involved variables (Figure 2a).

Our approach relies on determining the l1, l2, l3 level types by type inference, as they are not
intrinsic to the variables or program in any way, but are designed solely to determine conditional
independence relationships. These types are not accessible by the probabilistic programming user.
Our type system makes it possible to answer various questions about conditional independence in
a program. Assuming a program defining a joint density 𝑝 (x), we can use the type system to:

(1) Check if x2 ⊥⊥ x3 | x1 for some partitioning x = x1, x2, x3.
(2) Find an optimal variable partitioning. Given a variable 𝑥 ∈ x, find a partitioning x = x1, x2, x3,

such that 𝑥 ∈ x2, x2 ⊥⊥ x3 | x1, and x1 and x2 are as small as possible.
(3) Ask questions about the Markov boundary of a variable. Given two variables 𝑥 and 𝑥 ′, find

the partitioning x = 𝑥, x1, x2, such that 𝑥 ⊥⊥ x1 | x2 and x2 is as small as possible. Is 𝑥 ′ in x2?
In other words, is 𝑥 ′ in the Markov boundary of 𝑥?

In the rest of § 3, we give the ⊢2 type system (§§ 3.1), state a noninterference result (Lemma 7,
Lemma 8) and show that semantics is preserved when shredding ⊢2-well-typed programs (Lemma 10).
We present the type system and transformation rules in a declarative style. The implementation
relies on type inference, which we discuss in §§ 4.4. We derive a result about the way shredding
factorises the density defined by the program (Theorem 2). We prove a conditional independence
result (§§ 3.2, Theorem 3) and discuss the scope of our approach with examples (§§ 3.3).

3.1 The ⊢2 Type System
We introduce a modified version of SlicStan’s type system. Once again, types 𝑇 range over pairs
(𝜏, ℓ) of a base type 𝜏 , and a level type ℓ , but levels ℓ are one of l1, l2, or l3, which form a lower
semi-lattice ({l1, l2, l3}, ≤), where l1 ≤ l2 and l1 ≤ l3. This means, for example, that an l2
variable can depend on an l1 variable, but an l3 variable cannot depend on an l2 variable, as level
types l2 and l3 are incomparable.
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The type system is a standard information flow type system, very similar to the ⊢ system
introduced in §§ 2.2. We mark the only non-standard rules, (Sample2), (Factor2), and (Seq2), which
also differ from those of ⊢. (Sample2) and (Factor2) both have the same effect as an assignment to
an implicit weight variable that can be of any of the three levels. (Seq2) is a less restrictive version
of (Seq) and exactly as in [Gorinova et al. 2019], and it makes sure the program can be sliced later.

Note also that the non-interference between l2 and l3 relies on the (PrimCall2) rule not being
derivable when the least upper bound

⊔𝑛
𝑖=1 ℓ𝑖 does not exist.

Typing Rules for Expressions:

(ESub2)
Γ ⊢2 𝐸 : (𝜏, ℓ) ℓ ≤ ℓ ′

Γ ⊢2 𝐸 : (𝜏, ℓ ′)

(Var2)

Γ, 𝑥 : 𝑇 ⊢2 𝑥 : 𝑇

(Const2)
ty(𝑐) = 𝜏

Γ ⊢2 𝑐 : (𝜏, l1)

(Arr2)
Γ ⊢2 𝐸𝑖 : (𝜏, ℓ) ∀𝑖 ∈ 1..𝑛
Γ ⊢2 [𝐸1, ..., 𝐸𝑛] : (𝜏 [𝑛], ℓ)

(ArrEl2)
Γ ⊢2 𝐸1 : (𝜏 [𝑛], ℓ) Γ ⊢ 𝐸2 : (int, ℓ)

Γ ⊢2 𝐸1 [𝐸2] : (𝜏, ℓ)

(PrimCall2)(𝑓 : 𝜏1, . . . , 𝜏𝑛 → 𝜏)
Γ ⊢2 𝐸𝑖 : (𝜏𝑖 , ℓ𝑖 ) ∀𝑖 ∈ 1..𝑛

Γ ⊢2 𝑓 (𝐸1, . . . , 𝐸𝑛) : (𝜏,⊔𝑛
𝑖=1 ℓ𝑖 )

(ArrComp2)
∀𝑖 = 1, 2.Γ ⊢2 𝐸𝑖 : (int, ℓ) Γ, 𝑥 : (int, ℓ) ⊢ 𝐸 : (𝜏, ℓ) 𝑥 ∉ dom(Γ)

Γ ⊢2 [𝐸 | 𝑥 in 𝐸1 : 𝐸2] : (𝜏 [𝑛], ℓ)

(Target2)
Γ ⊢2 𝑆 : ℓ ′′ ∀ℓ ′ > ℓ .𝑅Γ⊢ℓ′ (𝑆) = ∅

Γ ⊢2 target(𝑆) : (real, ℓ)

Typing Rules for Statements:

(SSub2)
Γ ⊢2 𝑆 : ℓ ′ ℓ ≤ ℓ ′

Γ ⊢2 𝑆 : ℓ

(Assign2)
Γ(𝐿) = (𝜏, ℓ) Γ ⊢2 𝐸 : (𝜏, ℓ)

Γ ⊢2 (𝐿 = 𝐸) : ℓ

(Sample2)
Γ ⊢2 factor(D(𝐿 | 𝐸1, . . . , 𝐸𝑛)) : ℓ

Γ ⊢2 𝐿 ∼ Ddist (𝐸1, . . . 𝐸𝑛) : ℓ

(Factor2)
Γ ⊢2 𝐸 : (real, ℓ)
Γ ⊢2 factor(𝐸) : ℓ

(Seq2)
Γ ⊢2 𝑆1 : ℓ Γ ⊢2 𝑆2 : ℓ S(𝑆1, 𝑆2)

Γ ⊢2 (𝑆1; 𝑆2) : ℓ

(If2)
Γ ⊢2 𝐸 : (bool, ℓ) Γ ⊢2 𝑆1 : ℓ Γ ⊢2 𝑆2 : ℓ

Γ ⊢2 if(𝐸) 𝑆1 else 𝑆2 : ℓ

(Skip2)

Γ ⊢2 skip : ℓ

(For2)
Γ ⊢2 𝐸1 : (int, ℓ) Γ ⊢2 𝐸2 : (int, ℓ) Γ, 𝑥 : (int, ℓ) ⊢2 𝑆 : ℓ 𝑥 ∉ dom(Γ) 𝑥 ∉𝑊 (𝑆)

Γ ⊢2 for(𝑥 in 𝐸1 : 𝐸2) 𝑆 : ℓ

We state and prove a noninterference result for ⊢2, which follows similarly to the result for ⊢.

Lemma 7 (Noninterference of ⊢2). Suppose 𝑠1 |= Γ, 𝑠2 |= Γ, and 𝑠1 ≈ℓ 𝑠2 for some ℓ . Then for a
SlicStan statement 𝑆 and expression 𝐸:

(1) If Γ ⊢2 𝐸 : (𝜏, ℓ) and (𝑠1, 𝐸) ⇓ 𝑉1 and (𝑠2, 𝐸) ⇓ 𝑉2 then 𝑉1 = 𝑉2.
(2) If Γ ⊢2 𝑆 : ℓ and (𝑠1, 𝑆) ⇓ 𝑠 ′1,𝑤1 and (𝑠2, 𝑆) ⇓ 𝑠 ′2,𝑤2 then 𝑠 ′1 ≈ℓ 𝑠 ′2.

Proof. (1) follows by rule induction on the derivation Γ ⊢2 𝐸 : (𝜏, ℓ), and using that if Γ ⊢2 𝐸 :
(𝜏, ℓ), 𝑥 ∈ 𝑅(𝐸) and Γ(𝑥) = (𝜏 ′, ℓ ′), then ℓ ′ ≤ ℓ . (2) follows by rule induction on the derivation
Γ ⊢2 𝑆 : ℓ and using (1). □
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Once again we derive a more convenient form of the noninterference result. Because the level
types l2 and l3 are not comparable in the order ≤, changes in the store at l2 do not affect the store
at l3 and vice versa.

Lemma 8 (Noninterference of ⊢2-well-typed programs).
Let Γ𝜎 , Γx, 𝑆 be a SlicStan program, and Γ ⊢2 𝑆 : l1. There exist unique functions 𝑓 , 𝑔 and ℎ, such that
for all 𝜎 |= Γ𝜎 , x |= Γx and 𝜎 ′ such that J𝑆K𝑠 (𝜎) (x) = 𝜎 ′:

𝜎 ′
l1 = 𝑓 (𝜎l1, xl1), 𝜎 ′

l2 = 𝑔(𝜎l1, 𝜎l2, xl1, xl2), 𝜎 ′
l3 = ℎ(𝜎l1, 𝜎l3, xl1, xl3)

Proof. Follows from noninterference (Lemma 7). □

Next, we extend the shredding relation from §§ 2.5, and the concept of single-level statements,
to SlicStan programs that are well-typed with respect to ⊢2. This is done by simply treating l1 as
data, l2 as model, and l3 as genqant for the purpose of shredding. We include the full definition
of shredding with respect to ⊢2 for completeness below. We use the same notation ⇕Γ , and we
generally treat the standard shredding relation from 2.5 and the conditional independence shredding
relation presented here, as the same relation, as there is no difference between the two, other than
the naming of levels.
Shredding Rules for Statements:

(Shred2 Assign)
Γ(𝐿) = l1 → 𝑆1 = 𝐿 = 𝐸, 𝑆2 = 𝑆3 = skip
Γ(𝐿) = l2 → 𝑆2 = 𝐿 = 𝐸, 𝑆1 = 𝑆3 = skip
Γ(𝐿) = l3 → 𝑆3 = 𝐿 = 𝐸, 𝑆1 = 𝑆2 = skip

𝐿 = 𝐸 ⇕Γ (𝑆1, 𝑆2, 𝑆3)

(Shred2 Seq)
𝑆1 ⇕Γ 𝑆 (1)1 , 𝑆 (1)2 , 𝑆 (1)3 𝑆2 ⇕Γ 𝑆 (2)1 , 𝑆 (2)2 , 𝑆 (2)3
𝑆1; 𝑆2 ⇕Γ (𝑆 (1)1 ; 𝑆 (2)1 ), (𝑆 (1)2 ; 𝑆 (2)2 ), (𝑆 (1)3 ; 𝑆 (2)3 )

(Shred2 Factor)
Γ(𝐸) = l1 → 𝑆1 = factor(𝐸), 𝑆2 = 𝑆3 = skip
Γ(𝐸) = l2 → 𝑆2 = factor(𝐸), 𝑆1 = 𝑆3 = skip
Γ(𝐸) = l3 → 𝑆3 = factor(𝐸), 𝑆1 = 𝑆2 = skip

factor(𝐸) ⇕Γ (𝑆1, 𝑆2, 𝑆3)

(Shred2 Skip)

skip ⇕Γ (skip, skip, skip)

(Shred2 Sample)
Γ(𝐿, 𝐸1, . . . , 𝐸𝑛) = l1 → 𝑆1 = 𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛), 𝑆2 = 𝑆3 = skip
Γ(𝐿, 𝐸1, . . . , 𝐸𝑛) = l2 → 𝑆2 = 𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛), 𝑆1 = 𝑆3 = skip
Γ(𝐿, 𝐸1, . . . , 𝐸𝑛) = l3 → 𝑆3 = 𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛), 𝑆1 = 𝑆2 = skip

𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛) ⇕Γ (𝑆1, 𝑆2, 𝑆3)
(Shred2 If)

𝑆1 ⇕Γ 𝑆 (1)1 , 𝑆 (1)2 , 𝑆 (1)3 𝑆2 ⇕Γ 𝑆 (2)1 , 𝑆 (2)2 , 𝑆 (2)3
if(𝑔) 𝑆1 else 𝑆2 ⇕Γ (if(𝑔) 𝑆 (1)1 else 𝑆 (2)1 ), (if(𝑔) 𝑆 (1)2 else 𝑆 (2)2 ), (if(𝑔) 𝑆 (1)3 else 𝑆 (2)3 )
(Shred2 For)

𝑆 ⇕Γ 𝑆1, 𝑆2, 𝑆3

for(𝑥 in 𝑔1 : 𝑔2) 𝑆 ⇕Γ (for(𝑥 in 𝑔1 : 𝑔2) 𝑆1), (for(𝑥 in 𝑔1 : 𝑔2) 𝑆2), (for(𝑥 in 𝑔1 : 𝑔2) 𝑆3)

As before, shredding produces single-level statements, and shredding preserves semantics with
respect to ⊢2-well-typed programs.

Lemma 9 (Shredding produces single-level statements, ⊢2).
b If 𝑆 ⇕Γ 𝑆1, 𝑆2, 𝑆3 then Γ ⊢ l1(𝑆1), Γ ⊢ l2(𝑆2), and Γ ⊢ l3(𝑆3).
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Lemma 10 (Semantic preservation of ⇕Γ , ⊢2).
If Γ ⊢2 𝑆 : l1 and 𝑆 ⇕Γ 𝑆1, 𝑆2, 𝑆3 then J𝑆K = J𝑆1; 𝑆2; 𝑆3K.

In addition, we derive a result about the effect of single-level statements on the store and weight
of ⊢2-well-typed programs.

Lemma 11 (Property of ⊢2 single-level statements).
Let Γ𝜎 , Γx, 𝑆 be a SlicStan program, and Γ ⊢2 𝑆 : l1, and 𝑆 be single-level statement of level ℓ , Γ ⊢2 ℓ (𝑆).
Then there exist unique functions 𝑓 and 𝜙 , such that for any 𝜎, x |= Γ𝜎 , Γx:

(1) If ℓ = l1, then J𝑆K(𝜎) (𝑥) =
(
𝑓 (𝜎l1, xl1), 𝜎l2, 𝜎l3

)
, 𝜙 (𝜎l1) (xl1)

(2) If ℓ = l2, then J𝑆K(𝜎) (𝑥) =
(
𝜎l1, 𝑓 (𝜎l1, 𝜎l2, xl1, xl2), 𝜎l3

)
, 𝜙 (𝜎l1, 𝜎l2) (xl1, xl2)

(3) If ℓ = l3, then J𝑆K(𝜎) (𝑥) =
(
𝜎l1, 𝜎l2, 𝑓 (𝜎l1, 𝜎l3, xl1, xl3)

)
, 𝜙 (𝜎l1, 𝜎l3) (xl1, xl3)

We give proofs for Lemma 9, 10, and 11 in Appendix A. These results allows us to derive the
second key theorem of this paper, Theorem 2, which, similarly to Theorem 1, gives us a result on
the way shredding factorises the density defined by the program.

Here, and throughout the paper, we use subscripts to refer to specific subsets of Γ. For example,
Γl1 stands for the subset of the parameters Γx, such that 𝑥 : (𝜏, ℓ) ∈ Γl1 if and only if 𝑥 : (𝜏, ℓ) ∈ Γx
and ℓ = l1.

Theorem 2 (Shredding induces a factorisation of the density (2)).
Suppose Γ ⊢2 𝑆 : l1 with Γ = Γ𝜎 , Γl1, Γl2, Γl3, 𝑆 ⇕Γ 𝑆1, 𝑆2, 𝑆3. Then for 𝜎, 𝜽 1, 𝜽 2, 𝜽 3 |= Γ𝜎 , Γ1, Γ2, Γ3,
and 𝜎 ′, 𝜎 ′′ such that J𝑆1K(𝜎) (𝜽 1, 𝜽 2, 𝜽 3) = 𝜎 ′, and J𝑆2K(𝜎 ′) (𝜽 1, 𝜽 2, 𝜽 3) = 𝜎 ′′ we have:

(1) J𝑆1K𝑝 (𝜎) (𝜽 1, 𝜽 2, 𝜽 3) = 𝜙1 (𝜽 1)
(2) J𝑆2K𝑝 (𝜎 ′) (𝜽 1, 𝜽 2, 𝜽 3) = 𝜙2 (𝜽 1, 𝜽 2)
(3) J𝑆3K𝑝 (𝜎 ′′) (𝜽 1, 𝜽 2, 𝜽 3) = 𝜙3 (𝜽 1, 𝜽 3)
Proof. By applying Lemma 11 to each of 𝑆1, 𝑆2, 𝑆3, which are single-level statements (Lemma 9).

□

3.2 Conditional Independence Result for ⊢2-Well-Typed Programs
Theorem 3 states the key theoretical result of this paper: the typing in programs well-typed
with respect to ⊢2 corresponds to a conditional independence relationship. In our proofs, we use
the factorisation characterisation of conditional independence stated by Definition 6. This is a
well-known result in the literature (e.g. [Murphy 2012, Theorem 2.2.1.]).

Definition 6 (Characterisation of conditional independence as factorisation).
For variables 𝑥,𝑦, 𝑧 and a density 𝑝 (𝑥,𝑦, 𝑧), 𝑥 is conditionally independent of 𝑦 given 𝑧 with respect to
𝑝 , written 𝑥 ⊥⊥𝑝 𝑦 | 𝑧, if and only if ∃𝜙1, 𝜙2 such that 𝑝 (𝑥,𝑦, 𝑧) = 𝜙1 (𝑥, 𝑧)𝜙2 (𝑦, 𝑧).

An equivalent formulation is 𝑝 (𝑥,𝑦 | 𝑧) = 𝑝 (𝑥 | 𝑧)𝑝 (𝑦 | 𝑧).
We extend the notion of conditional independence to apply to a general function 𝜙 (𝑥,𝑦, 𝑧), using the

notation 𝑥 ⊥𝜙 𝑦 | 𝑧 to mean ∃𝜙1, 𝜙2 such that 𝜙 (𝑥,𝑦, 𝑧) = 𝜙1 (𝑥, 𝑧)𝜙2 (𝑦, 𝑧).
Theorem 3 (⊢2-well-typed programs induce a conditional independence relationship).

For a SlicStan program Γ, 𝑆 such that Γ ⊢2 𝑆 : l1, Γ = Γ𝜎 , Γl1, Γl2, Γl3, and for 𝜎, 𝜽 1, 𝜽 2, 𝜽 3 |=
Γ𝜎 , Γl1, Γl2, Γl3, we have 𝜽 2 ⊥𝜙 𝜽 3 | 𝜽 1.

When J𝑆K𝑝 (𝜎) (𝜽 1, 𝜽 2, 𝜽 3) ∝ 𝑝 (𝜽 1, 𝜽 2, 𝜽 3), we have 𝜽 2 ⊥⊥𝑝 𝜽 3 | 𝜽 1.

Proof. Let 𝜽 = 𝜽 1, 𝜽 2, 𝜽 3, 𝑆 ⇕Γ 𝑆1, 𝑆2, 𝑆3, and let 𝜎 ′ and 𝜎 ′′ be such that 𝜎 ′ = J𝑆1K𝑠 (𝜎) (𝜽 ), and
𝜎 ′′ = J𝑆2K𝑠 (𝜎 ′) (𝜽 ). Then, by semantic preservation of shredding (Lemma 10), we have

J𝑆K𝑝 (𝜎) (𝜽 ) = J𝑆1; 𝑆2; 𝑆3K𝑝 (𝜎) (𝜽 ) by Lemma 10
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C. Cross Model

real x1 ∼ normal(0,1)
real x2 ∼ normal(0,1)
real x3 ∼ normal(x1+x2,1)
real x4 ∼ normal(x3,1)
real x5 ∼ normal(x3,1)

(a) A simple ‘cross’ model.

𝑥3

𝑥1 𝑥2

𝑥4 𝑥5

(b) Graphical model.

𝑥1 ⊥⊥ 𝑥2 𝑥1 ⊥⊥ 𝑥4 | {𝑥3} ∪𝐴,∀𝐴 ⊆ {𝑥2, 𝑥5}
𝑥1 ⊥⊥ 𝑥5 | {𝑥3} ∪𝐴,∀𝐴 ⊆ {𝑥2, 𝑥4} 𝑥2 ⊥⊥ 𝑥4 | {𝑥3} ∪𝐴,∀𝐴 ⊆ {𝑥1, 𝑥5}
𝑥2 ⊥⊥ 𝑥5 | {𝑥3} ∪𝐴,∀𝐴 ⊆ {𝑥1, 𝑥4} 𝑥4 ⊥⊥ 𝑥5 | {𝑥3} ∪𝐴,∀𝐴 ⊆ {𝑥1, 𝑥2}

(c) CI relationships.

Fig. 3. The cross model, as written in SlicStan (a) with its DAG (b) and CI relationships (c).

= J𝑆1K𝑝 (𝜎) (𝜽 ) × J𝑆2K𝑝 (𝜎 ′) (𝜽 ) × J𝑆3K𝑝 (𝜎 ′′) (𝜽 ) by Lemma 2
= 𝜙1 (𝜽 1) × 𝜙2 (𝜽 1, 𝜽 2) × 𝜙3 (𝜽 1, 𝜽 3) by Theorem 2
= 𝜙 ′(𝜽 1, 𝜽 2) × 𝜙3 (𝜽 1, 𝜽 3)

for some 𝜙1, 𝜙2, and 𝜙3, 𝜙 ′(𝜽 1, 𝜽 2) = 𝜙1 (𝜽 1) × 𝜙2 (𝜽 1, 𝜽 2). Thus 𝜽 2 ⊥𝜙 𝜽 3 | 𝜽 1 by definition of ⊥𝜙 .
Suppose 𝜙 (𝜽 1, 𝜽 2, 𝜽 3) ∝ 𝑝 (𝜽 1, 𝜽 2, 𝜽 3). Then 𝑝 (𝜽 1, 𝜽 2, 𝜽 3) = 𝜙 (𝜽 1, 𝜽 2, 𝜽 3) × 𝑍 = 𝜙 ′(𝜽 1, 𝜽 2) ×

𝜙3 (𝜽 1, 𝜽 3) × 𝑍 = 𝜙 ′(𝜽 1, 𝜽 2) × 𝜙 ′′(𝜽 1, 𝜽 3), where 𝑍 is a constant and 𝜙 ′′(𝜽 1, 𝜽 3) = 𝜙3 (𝜽 1, 𝜽 3) × 𝑍 .
Therefore, 𝜽 2 ⊥⊥𝑝 𝜽 3 | 𝜽 1. □

3.3 Scope of the Conditional Independence Result
We have shown that ⊢2-well-typed programs exhibit a conditional independence relationship in their
density semantics. However, it is not the case that every conditional independence relationship can
be derived from the type system. In particular, we can only derive results of the form 𝜽 2 ⊥⊥ 𝜽 3 | 𝜽 1,
where 𝜽 1, 𝜽 2, 𝜽 3 is a partitioning of 𝜽 |= Γx for a SlicStan program Γ𝜎 , Γx, 𝑆 . That is, the relationship
includes all parameters in the program.

We discuss the scope of our approach using an example and show a situation where trying to
derive a conditional independence result that does not hold results in a failure to type check.
3.3.1 Example of ⊢2-well-typed program → conditional independence.
Consider the Cross Model in Figure 3, its SlicStan program (a), its directed graphical model (b) and
the conditional independence (CI) relationships that hold for that model (c).

Out of the many relationships above, we can derive all relationships that involve all the variables.
That is, we can use our type system to derive all conditional independence relationships that hold
and are of the form 𝐴 ⊥⊥ 𝐵 | 𝐶 , where 𝐴, 𝐵,𝐶 is some partitioning of {𝑥1, . . . , 𝑥5}. However, note
the following properties of conditional independence:

𝐴 ⊥⊥ 𝐵 | 𝐶 ⇐⇒ 𝐵 ⊥⊥ 𝐴 | 𝐶 and 𝐴 ⊥⊥ 𝐵1, 𝐵2 | 𝐶 ⇐⇒ 𝐴 ⊥⊥ 𝐵1 | 𝐶 and 𝐴 ⊥⊥ 𝐵2 | 𝐶
Some of the relationships above can be combined and written in other ways, e.g. 𝑥1 ⊥⊥ 𝑥4 | 𝑥2, 𝑥3

and 𝑥1 ⊥⊥ 𝑥5 | 𝑥2, 𝑥3 can be written as a single relationship 𝑥1 ⊥⊥ 𝑥4, 𝑥5 | 𝑥2, 𝑥3, thus expressing
them as a single relationship that includes all variables in the program.
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Exploring different mappings between the parameters 𝑥1, . . . , 𝑥5 and the type levels l1, l2, l3, for
which the above program typechecks, we can derive all CI relationships that hold for this model,
except for one: 𝑥1 ⊥⊥ 𝑥2, which we cannot derive with our approach.
3.3.2 Conditional independence relationship does not hold → type error.
Suppose that we try to derive the result 𝑥1 ⊥⊥ 𝑥2 | 𝑥3, 𝑥4, 𝑥5. This does not hold for Program C. By
Theorem 3, we have that a program being ⊢2-well-typed implies that l2 ⊥⊥ l3 | l1. So, we can
derive 𝑥1 ⊥⊥ 𝑥2 | 𝑥3, 𝑥4, 𝑥5 using Theorem 3 if we show that Γ ⊢2 𝑆 : l1, for Γ = {𝑥1 : l2, 𝑥2 : l3, 𝑥3 :
l1, 𝑥4 : l1, 𝑥5 : l1} and 𝑆 being Program C.

To typecheck Γ ⊢2 𝑆 : l1, we need to typecheck 𝑥3 ∼ normal(𝑥1 + 𝑥2, 1) at some level ℓ . Thus,
by (Sample2) and (PrimCall2), 𝑥1, 𝑥2 and 𝑥3 need to typecheck at ℓ . The types of 𝑥1, 𝑥2 and 𝑥3
are l2, l3 and l1, respectively. So, using (ESub2), it must be the case that l2 ≤ ℓ , and l3 ≤ ℓ , and
l1 ≤ ℓ . However, no such level exists in our lower semi-lattice, as l2 and l3 have no upper bound.
Therefore, typechecking fails and we cannot derive 𝑥1 ⊥⊥ 𝑥2 | 𝑥3, 𝑥4, 𝑥5.

4 APPLICATION: DISCRETE PARAMETERS SUPPORT THROUGH A
SEMANTICS-PRESERVING TRANSFORMATION

This section presents the main practical contribution of our work: a semantics-preserving procedure
for transforming a probabilistic program to enable combined inference of discrete and continuous
model parameters, which we have implemented for SlicStan. The procedure corresponds to variable
elimination (VE) for discrete parameters implemented in the probabilistic program itself, which can
be combined with gradient-based methods, such as HMC, to perform inference on all parameters.

PPLs that have gradient-based methods in the core of their inference strategy do not, in general,
support directly working with discrete parameters. Stan disallows discrete model parameters
altogether, while Pyro [Uber AI Labs 2017] and Edward2 [Tran et al. 2018] throw a runtime
error whenever discrete parameters are used within a gradient-based method. However, working
with discrete parameters in these languages is still possible, albeit in an implicit way. In many
cases, discrete parameters can be marginalised out manually, and then drawn conditionally on the
continuous parameters. Stan’s user guide shows many examples of this approach [Stan Development
Team 2019a, Chapter 7]. Pyro provides an on-request marginalisation functionality, which automates
this implicit treatment for plated factor graphs [Obermeyer et al. 2019].

The key idea of the workaround is to marginalise out the discrete parameters by hand, so that
the resulting program corresponds to a density function that does not depend on any discrete
parameters. That is, the user writes a program that computes

∑
𝜽𝑑
𝑝 (𝜽𝑑 , 𝜽𝑐 ) = 𝑝 (𝜽𝑐 ), where the

density semantics of the original program was 𝑝 (𝜽𝑑 , 𝜽𝑐 ) for discrete parameters 𝜽𝑑 and continuous
parameters 𝜽𝑐 . This allows for continuous parameters of the program to be sampled with HMC,
or other gradient-based inference algorithms, whereas that would have not been possible for the
program with both discrete and continuous latent variables.

Because a SlicStan program computes a density directly, it is easy to modify it to marginalise a
variable. For a SlicStan program Γ, 𝑆 , with parameters x |= Γx, and a discrete parameter 𝑧 of type
int⟨𝐾⟩, the program elim(int⟨𝐾⟩𝑧) 𝑆 ≜ factor(sum( [target(𝑆) | 𝑧 in 1 : 𝐾])11 marginalises 𝑧:

Jfactor(sum( [target(𝑆) | 𝑧 in 1 : 𝐾]))K𝑝 (𝜎) (x) =
𝐾∑
𝑧=1

J𝑆K𝑝 (𝜎) (x) ∝
𝐾∑
𝑧=1

𝑝 (x) = 𝑝 (x \ {𝑧})

In other words, we can easily marginalise out all discrete variables in a probabilistic program,
by encapsulating the entire program in nested loops (nested array comprehension expressions in
our examples). However, this approach becomes infeasible for more than a few variables. Variable
11Here, we assume the function sum is available in the language.
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D. A Hidden Markov Model (HMM)...

int<2> z1 ∼ bernoulli(theta[1]);
int<2> z2 ∼ bernoulli(theta[z1]);
int<2> z3 ∼ bernoulli(theta[z2]);
data real y1 ∼ normal(phi[z1], 1);

data real y2 ∼ normal(phi[z2], 1);

data real y3 ∼ normal(phi[z3], 1);

E. Inefficient marginalisation
...

factor(sum [target(
factor(sum [target(

factor(sum [target(
z1 ∼ bernoulli(theta[1]);
z2 ∼ bernoulli(theta[z1]);
z3 ∼ bernoulli(theta[z2]);
y1 ∼ normal(phi[z1], 1);

y2 ∼ normal(phi[z2], 1);

y3 ∼ normal(phi[z3], 1);)

| z1 in 1:2]);

| z2 in 1:2]);

| z3 in 1:2]);

F. Efficient marginalisation...

real[2] f1 = // new factor on z2
[sum([target(

z1 ∼ bernoulli(theta[1]);
z2 ∼ bernoulli(theta[z1]);
y1 ∼ normal(phi[z1], 1); )

| z1 in 1:2])

| z2 in 1:2]

real[2] f2 = // new factor on z3
[sum([target(

factor(f1[z2]);
y2 ∼ normal(phi[z2], 1);

z3 ∼ bernoulli(theta[z2]); )

| z2 in 1:2])

| z3 in 1:2]

factor(sum [target(
factor(f2[z3]);
y3 ∼ normal(phi[z3], 1); )

| z3 in 1:2]);

elimination [Koller and Friedman 2009; Zhang and Poole 1994] exploits the structure of a model to
do as little work as possible. Consider the HMM snippet (Program D) with three discrete (binary)
hidden variables 𝑧1, 𝑧2 and 𝑧3, and observed outcomes 𝑦1, 𝑦2 and 𝑦3. Naively marginalising out the
hidden variables results in nested loops around the original program (Program E). In the general
case of 𝑁 hidden variables, the resulting program is of complexity 𝑂 (2𝑁 ).

However, this is wasteful: expressions like 𝑧3 ∼ bernoulli(\ [𝑧2]) do not depend on 𝑧1, and so do
not need to be inside of the 𝑧1-elimination loop. Variable elimination (VE) avoids this problem by
pre-computing some of the work. Program F implements VE for this model: when eliminating a
variable, say 𝑧1, we pre-compute statements that involve 𝑧1 for each possible value of 𝑧1 and store
the resulting density contributions in a new factor, 𝑓1. This new factor depends on the variables
involved in those statements — the neighbours of 𝑧1 — in this case that is solely 𝑧2. We then repeat
the procedure for the other variables, re-using the already computed factors where possible.

In the special case of an HMM, and given a suitable elimination order, variable elimination
recovers the celebrated forward algorithm [Rabiner 1989], which has time complexity 𝑂 (𝑁 ). Our
goal is to automatically translate the source code of Program D to Program F, exploiting statically
detectable independence properties in the model.

4.1 Goal
Our ultimate goal is to transform a program 𝑆 with continuous parameters 𝜽𝑐 , discrete parameters
𝜽𝑑 , data D and density semantics J𝑆K𝑝 (𝜎) (𝜽𝑑 , 𝜽𝑐 ,D) ∝ 𝑝 (𝜽𝑑 , 𝜽𝑐 | D), into two subprograms: 𝑆hmc
and 𝑆gen, such that:

• The density defined by 𝑆hmc is the marginal 𝑝 (𝜽𝑐 | D), with the discrete parameters 𝜽𝑑
marginalised out. This first statement, 𝑆hmc, represents the marginalisation part of the program
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(see §§ 4.3) and allows for Hamiltonian Monte Carlo (HMC) sampling of 𝜽𝑐 , as it does not
involve any discrete parameters.

• The density defined by 𝑆gen is the conditional 𝑝 (𝜽𝑑 | 𝜽𝑐 ,D). This second statement, 𝑆gen,
represents the generative part of the program (§§ 4.5) and it encodes a way to draw 𝜽𝑑
generatively, without using HMC or another heavy-weight inference algorithm.

Similarly to the extended SlicStan slicing based on information-flow type inference, here we also
want to transform and slice into sub-programs, each focusing on a subset of the parameters, and
preserving the overall meaning:

J𝑆K𝑝 ∝ 𝑝 (𝜽𝑑 , 𝜽𝑐 | D) = 𝑝 (𝜽𝑐 | D) × 𝑝 (𝜽𝑑 | 𝜽𝑐 ,D) ∝ J𝑆hmcK𝑝 × J𝑆genK𝑝 = J𝑆hmc; 𝑆genK𝑝 12

Our approach performs a semantics-preserving transformation, guided by information-flow
and type inference, which creates an efficient program-specific inference algorithm automatically,
combining HMC with variable elimination.

4.2 Key Insight
The key practical insight of this work is to use the adaptation of SlicStan’s level types of § 3 and
its information flow type system to rearrange the program in a semantics-preserving way, so that
discrete parameters can be forward-sampled, instead of sampled using a heavy-weight inference
algorithm. We achieve this by a program transformation for each of the discrete variables. Assuming
that we are applying the transformation with respect to a variable 𝑧, we use:

• The top-level information flow type system Γ ⊢ 𝑆 : data from §§ 2.2, which involves the
level types data ≤ model ≤ genqant. This partitions the modelled variables x into data
D, model parameters 𝜽 and generated quantities 𝑄 . When we use type inference for ⊢ in
conjunction with shredding 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 (§§ 2.5), we slice the statement 𝑆 into a data
part 𝑆𝐷 (involving only variables in D), a non-generative part 𝑆𝑀 (involving D and 𝜽 ) and a
generative part 𝑆𝑄 (involving D, 𝜽 and 𝑄).

• The conditional independence information flow type system, Γ ⊢2 𝑆 : l1 from § 3, which uses
a lower semi-lattice of level types l1 ≤ l2, l1 ≤ l3. A ⊢2-well-typed program induces a
conditional independence relationship: l2-variables are conditionally independent of l3-
variables given l1-variables: xl2 ⊥⊥ xl3 | xl1, where x = xl1, xl2, xl3 = 𝜽 ,D. When we use
type inference for ⊢2 in conjunction with shredding 𝑆 ⇕Γ 𝑆1, 𝑆2, 𝑆3 (§§ 2.5), we isolate 𝑆2: a
part of the program that does not interfere with 𝑆3. We can marginalise out l2-variables in
that sub-statement only, keeping the rest of the program unchanged.

• The discrete variable transformation relation Γ, 𝑆
𝑧−→ Γ′, 𝑆 ′ (defined in §§§ 4.6.2), which takes a

SlicStan program Γ, 𝑆 that has discrete model parameter 𝑧, and transforms it to a SlicStan pro-
gram Γ′, 𝑆 ′, where 𝑧 is no longer a model-level parameter but instead one of level genqant.
We define the relation in terms of ⊢ and ⊢2 as per the (Elim Gen) rule.

4.3 Variable Elimination
Variable elimination (VE) [Koller and Friedman 2009; Zhang and Poole 1994] is an exact inference
algorithm often phrased in terms of factor graphs. It can be used to compute prior or posterior
marginal distributions by eliminating, one by one, variables that are irrelevant to the distribution
of interest. VE uses dynamic programming combined with a clever use of the distributive law of
multiplication over addition to efficiently compute a nested sum of a product of expressions.

12This expression is simplified for readability.
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𝑧1
𝑏 (𝑧1 | \1)

𝑏 (𝑦1 | 𝜙𝑧1 )

𝑦1

𝑏 (𝑧2 | \𝑧1 )
𝑧2

𝑏 (𝑦2 | 𝜙𝑧2 )

𝑦2

𝑏 (𝑧3 | \𝑧2 )
𝑧3

𝑏 (𝑦3 | 𝜙𝑧3 )

𝑦3

(a) To eliminate 𝑧1, we remove 𝑧1 and all its neigh-
bouring factors (in red). Create a new factor 𝑓1, by
summing out 𝑧1 from the product of these factors.

𝑓1 (𝑧2, 𝑦1) =∑
𝑧1 [𝑏 (𝑧1 | \1)
×𝑏 (𝑦1 | 𝜙𝑧1 )
×𝑏 (𝑧2 | \𝑧1 )

]
𝑧2

𝑏 (𝑦2 | 𝜙𝑧2 )

𝑦2𝑦1

𝑏 (𝑧3 | \𝑧2 )
𝑧3

𝑏 (𝑦3 | 𝜙𝑧3 )

𝑦3

(b) Connect 𝑓1 (in green) to the former neighbours
of 𝑧1. The remaining factor graph defines the mar-
ginal 𝑝 (𝑧2, 𝑧3 | y).

𝑓1 (𝑧2, 𝑦1) 𝑧2

𝑏 (𝑦2 | 𝜙𝑧2 )

𝑦2𝑦1

𝑏 (𝑧3 | \𝑧2 )
𝑧3

𝑏 (𝑦3 | 𝜙𝑧3 )

𝑦3

(c) To eliminate 𝑧2, we remove 𝑧2 and all its neigh-
bouring factors (in red). Create a new factor 𝑓2, by
summing out 𝑧2 from the product of these factors.

𝑓2 (𝑧3, 𝑦2, 𝑦1) =
∑

𝑧2 [𝑓1 (𝑧2, 𝑦1)
×𝑏 (𝑦2 | 𝜙𝑧2 ) × 𝑏 (𝑧3 | \𝑧2 )

] 𝑧3

𝑏 (𝑦3 | 𝜙𝑧3 )

𝑦3𝑦2𝑦1

(d) Connect 𝑓2 (in green) to the former neighbours
of 𝑧2. The remaining factor graph defines the mar-
ginal 𝑝 (𝑧3 | y).

Fig. 4. Step by step example of variable elimination.

We already saw an example of variable elimination in § 3 (Programs A and B). The idea is to
eliminate (marginalise out) variables one by one. To eliminate a variable 𝑧, we multiply all of
the factors connected to 𝑧 to form a single expression, then sum over all possible values for 𝑧 to
create a new factor, remove 𝑧 from the graph, and finally connect the new factor to all former
neighbours13of 𝑧. Recall Program D, with latent variables 𝑧1, 𝑧2, 𝑧3 and observed data y = 𝑦1, 𝑦2, 𝑦3.
Figure 4 shows the VE algorithm step-by-step applied to this program. We eliminate 𝑧1 to get the
marginal on 𝑧2 and 𝑧3 (4a and 4b), then eliminate 𝑧2 to get the marginal on 𝑧3 (4c and 4d).

4.4 Conditional Independence Relationships and Inferring the Markov Blanket
The key property we are looking for, in order to be able to marginalise out a variable independently
of another, is conditional independence given neighbouring variables. If we shred a ⊢2-well-typed
program into 𝑆1, 𝑆2 and 𝑆3, and think of J𝑆1K𝑝 , J𝑆2K𝑝 and J𝑆3K𝑝 as factors, it is easy to visualise the
factor graph corresponding to the program: it is as in Figure 5a. Eliminating all xl2 variables, ends
up only modifying the J𝑆2K𝑝 factor (Figure 5b).

When using VE to marginalise out a parameter 𝑧, we want to find the smallest set of other
parameters 𝐴, such that 𝑧 ⊥⊥ 𝐵 | 𝐴, where 𝐵 is the rest of the parameters. The set 𝐴 is also called
𝑧’s minimal Markov blanket or Markov boundary. Once we know this set, we can ensure that we
involve the smallest possible number of variables in 𝑧’s elimination, which is important to achieve
a performant algorithm.

For example, when we eliminate 𝑧1 in Program D, both 𝑧2 and 𝑦1 need to be involved, as 𝑧1
shares a factor with them. By contrast, there is no need to include 𝑦2, 𝑧3, 𝑦3 and the statements
associated with them, as they are unaffected by 𝑧1, given 𝑧2. The variables 𝑦1 and 𝑧2 form 𝑧1’s
Markov blanket: given these variables, 𝑧1 is conditionally independent of all other variables. That
is, 𝑧1 ⊥⊥ 𝑧3, 𝑦2, 𝑦3 | 𝑧2, 𝑦1.

The type system we present in § 3 can tell us if the conditional independence relationship
xl2 ⊥⊥ xl3 | xl1 holds for a concrete partitioning of the modelled variables x = xl1, xl2, xl3. But
13‘Neighbours’ refers to the variables which are connected to a factor which connects to 𝑧.
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xl1

J𝑆1K𝑝

J𝑆2K𝑝
xl2

J𝑆3K𝑝
xl3

(a) A ⊢2-well-typed program with parameters x.

xl1

J𝑆1K𝑝

∑
xl2J𝑆2K𝑝 J𝑆3K𝑝

xl3

(b) Eliminating xl2 consists of modifying only J𝑆2K𝑝 .

Fig. 5. The factor graph and VE induced by the shedding 𝑆 ⇕Γ 𝑆1, 𝑆2, 𝑆3 according to the semi-lattice
l1 ≤ l2, l3.

to find the Markov blanket of a variable 𝑧 we want to eliminate, we rely on type inference. We
define a performance ordering between the level types l3 ≺ l1 ≺ l2, where our first preference
is for variables to be of level l3, level l1 is our second preference, and l2 is our last resort. In our
implementation, we use bidirectional type-checking [Pierce and Turner 2000] to synthesise hard
constraints imposed by the type system, and resolve them, while optimising for the soft constraints
given by the ≺ ordering. This maximises the number of variables that are conditionally independent
of 𝑧 given its blanket (l3) and minimises the number of variables forming the blanket (l1). Fixing 𝑧
to be of l2 level, and l2 being the least preferred option, ensures that only 𝑧 and variables dependent
on 𝑧 through deterministic assignment are of that level.

4.5 Sampling the Discrete Parameters
Variable elimination gives a way to efficiently marginalise out a variable 𝑧 from a model defining
density 𝑝 (x), to obtain a new density 𝑝 (x \ {𝑧}). In the context of SlicStan, this means we have the
tools to eliminate all discrete parameters 𝜽𝑑 , from a density 𝑝 (D, 𝜽𝑐 , 𝜽𝑑 ) on data D, continuous
parameters 𝜽𝑐 and discrete parameters 𝜽𝑑 . The resulting marginal

∑
𝜽𝑑
𝑝 (D, 𝜽𝑐 , 𝜽𝑑 ) = 𝑝 (D, 𝜽𝑐 )

does not involve discrete parameters, and therefore we can use gradient-based methods to infer 𝜽𝑐 .
However, the method so far does not give us a way to infer the discrete parameters 𝜽𝑑 .

To infer these, we observe that 𝑝 (x) = 𝑝 (x \ {𝑧})𝑝 (𝑧 | x \ {𝑧}), which means that we can
preserve the semantics of the original model (which defines 𝑝 (x)), by finding an expression for
the conditional 𝑝 (𝑧 | x \ {𝑧}). If x1, x2 is a partitioning of x \ {𝑧} such that 𝑧 ⊥⊥ x2 | x1, then
(from Definition 6) 𝑝 (x) = 𝜙1 (𝑧, x1)𝜙2 (x1, x2) for some functions 𝜙1 and 𝜙2. Thus, 𝑝 (𝑧 | x \ {𝑧}) =
𝜙1 (𝑧, x1) · (𝜙2 (x1, x2)/𝑝 (x \ {𝑧})) ∝ 𝜙1 (𝑧, x1).

In the case when 𝑧 is a discrete variable of finite support, we can calculate the conditional
probability exactly: 𝑝 (𝑧 | x \ {𝑧}) = 𝜙1 (𝑧,x1)∑

𝑧 𝜙1 (𝑧,x1) . We can apply this calculation to the factorisation of
a program Γ ⊢2 𝑆 that is induced by shredding (Theorem 2). In that case, xl2, xl1, J𝑆2K𝑝 play the
roles of 𝑧, x1, and 𝜙1, respectively. Consequently, we obtain a formula for drawing xl2 conditional
on the other parameters: xl2 ∼ categorical

( [ J𝑆2K𝑝 (xl2,xl1)∑
xl2 J𝑆2K𝑝 (xl2,xl1) | xl2 ∈ supp(xl2)

] )
.

4.6 A Semantics-Preserving Transformation Rule
In this section we define a source-to-source transformation that implements a single step of variable
elimination. The transformation re-writes a SlicStan program Γ, 𝑆 with a discrete model-level
parameter 𝑧, to a SlicStan program, where 𝑧 is a genqant-level parameter. Combining the rule
with the shredding presented in § 2 results in support for efficient inference (see §§ 4.8 for discussion
of limitations) of both discrete and continuous random variables, where continuous variables can
be inferred using gradient-based methods, such as HMC or variational inference, while discrete
variables are generated using ancestral sampling. The transformation allows for SlicStan programs
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with explicit use of discrete parameters to be translated to Stan. We show a step-by-step example
of our discrete parameter transformation in §§ 4.7.
4.6.1 The 𝜙 , elim and gen derived forms.
We introduce three derived forms that allow us to state the rule concisely.
Variable Elimination Derived Forms

elim(int⟨𝐾⟩ 𝑧) 𝑆 ≜ factor(sum( [target(𝑆) | 𝑧 in 1 :𝐾] ))
𝜙 (int⟨𝐾1⟩ 𝑧1, . . . , int⟨𝐾𝑁 ⟩ 𝑧𝑁 ) 𝑆

≜ [. . . [target(𝑆) | 𝑧1 in 1 : 𝐾1] | · · · | 𝑧𝑁 in 1 : 𝐾𝑁 ]
gen(int⟨𝐾⟩ 𝑧) 𝑆 ≜ 𝑧 ∼ categorical( [target(𝑆) | 𝑧 in 1 : 𝐾] )

The elimination expression elim(int⟨𝐾⟩𝑧) 𝑆 adds a new factor that is equivalent to marginal-
ising 𝑧 in 𝑆 . In other words, Jelim(int⟨𝐾⟩𝑧) 𝑆K𝑝 (𝜎) (x) =

∑𝐾
𝑧=1J𝑆K𝑝 (𝜎) (x) (see Lemma 14). A

𝜙-expression 𝜙 (int⟨𝐾1⟩ 𝑧1, . . . , int⟨𝐾𝑁 ⟩ 𝑧𝑁 ) 𝑆 simply computes the density of the statement 𝑆
in a multidimensional array for all possible values of the variables 𝑧1, . . . 𝑧𝑁 . In other words,
J(𝑓 = 𝜙 (int⟨𝐾1⟩ 𝑧1, . . . , int⟨𝐾𝑁 ⟩ 𝑧𝑁 ) 𝑆) ; factor(𝑓 [𝑧1] . . . [𝑧𝑁 ])K𝑝 (𝜎) (x) = J𝑆K𝑝 (𝜎) (x) (Lemma 14).
The 𝜙-expression allows us to pre-compute all the work that we may need to do when marginalis-
ing other discrete variables, which results in efficient nesting. Finally, the generation expression
computes the conditional of a variable 𝑧 given the rest of the parameters, as in §§ 4.5 (see Lemma 15).

4.6.2 Eliminating a single variable 𝑧. The (Elim Gen) rule below specifies a semantics-preserving
transformation that takes a SlicStan program with a discrete model-level parameter 𝑧, and trans-
forms it to one where 𝑧 is genqant-level parameter. In practice, we apply this rule once per
discrete model-level parameter, which eliminates those parameters one-by-one, similarly to the
variable elimination algorithm. And like in VE, the ordering in which we eliminate those variables
can impact performance.

The (Elim Gen) rule makes use of two auxiliary definitions that we define next. Firstly, the
neighbours of 𝑧, Γne, are defined by the relation ne(Γ, Γ′, 𝑧) (Definition 7), which looks for non-data
and non-continuous l1-variables in Γ′.

Definition 7 (Neighbours of 𝑧, ne(Γ, Γ′, 𝑧)). For a ⊢ typing environment Γ, a ⊢2 typing environ-
ment Γ′ = Γ′𝜎 , Γ′x and a variable 𝑧 ∈ dom(Γ′x), the neighbours of 𝑧 are defined as:

ne(Γ, Γ′, 𝑧) ≜ {𝑥 : (𝜏, ℓ) ∈ Γ′x | ℓ = l1 and Γ(𝑥) = (int⟨𝐾⟩,model) for some 𝐾}
Secondly, st(𝑆2) (Definition 8) is a statement that has the same store semantics as 𝑆2, but density

semantics of 1: Jst(𝑆2)K𝑠 = J𝑆2K𝑠 , but Jst(𝑆2)K𝑝 = 1. This ensures that the transformation preserves
both the density semantics and the store semantics of 𝑆 and is needed because gen(𝑧)𝑆2 discards
any store computed by 𝑆2, thus only contributing to the weight.

Definition 8. Given a statement 𝑆 , we define the statement st(𝑆) by replacing all factor(𝐸)- and
𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛)-substatements in 𝑆 by skip (see Appendix A for the precise definition).

The elim-gen rule:

(Elim Gen)
Γ(𝑧) = (int⟨𝐾⟩,model) Γne = ne(Γ, Γ𝑀 , 𝑧) 𝑆 ′ = 𝑆𝐷 ; 𝑆 ′𝑀 ; 𝑆𝑄

𝑆 ′𝑀 = 𝑆1; 𝑓 = 𝜙 (Γne){elim(int⟨𝐾⟩𝑧) 𝑆2}; factor(𝑓 [dom(Γne)]); 𝑆3; gen(𝑧)𝑆2; st(𝑆2)
Γ ⊢ 𝑆 : data 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 Γ

𝑧−→ Γ𝑀 Γ𝑀 ⊢2 𝑆𝑀 : l1 𝑆𝑀 ⇕Γ𝑀 𝑆1, 𝑆2, 𝑆3 Γ′ ⊢ 𝑆 ′ : data
Γ, 𝑆

𝑧−→ Γ′, 𝑆 ′
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We can use the (Elim Gen) rule to transforms a SlicStan program, with respect to a parameter 𝑧,
as described by Algorithm 1. This involves three main steps:

(1) Separate out 𝑆𝑀 — the model-level sub-part of 𝑆 — using the top-level type system ⊢ (line 1
of Algorithm 1).

(2) Separate out 𝑆2 — the part of 𝑆𝑀 that involves the discrete parameter 𝑧 — using the conditional
independence type system ⊢2 (lines 2–8).

(3) Perform a single VE step by marginalising out 𝑧 in 𝑆2 and sample 𝑧 from the conditional
probability specified by 𝑆2 (lines 10–11).

Algorithm 1. Single step of applying (Elim Gen)

Arguments: (Γ, 𝑆), 𝑧 // A program (Γ, 𝑆); the variable 𝑧 to eliminate
Requires: Γ ⊢ 𝑆 : data // (Γ, 𝑆) is well-typed
Returns: (Γ′, 𝑆 ′) // The transformed program

1: Slice (Γ, 𝑆) into 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 according to 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 .
2: Derive incomplete Γ𝑀 from Γ based on Γ

𝑧−→ Γ𝑀 . // data of Γ is of level l1 in Γ𝑀 .
3: // Continuous model var. of Γ are l1 in Γ𝑀 .
4: // 𝑧 is of level l2 in Γ𝑀 .
5: // All other model variables are given
6: // a type level placeholder in Γ𝑀 .
7: Infer missing types of Γ𝑀 according to Γ𝑀 ⊢2 𝑆𝑀 : l1.
8: Slice (Γ𝑀 , 𝑆𝑀 ) into 𝑆1, 𝑆2, 𝑆3 according to 𝑆𝑀 ⇕Γ𝑀 𝑆1, 𝑆2, 𝑆3.
9:

10: Γne = ne(Γ, Γ𝑀 , 𝑧) // Determine the discrete neighbours of 𝑧.
11: // Eliminate 𝑧 and re-generate 𝑧.𝑆 ′𝑀 = (𝑆1;

𝑓 = 𝜙 (Γne){elim(int⟨𝐾⟩𝑧) 𝑆2};
factor(𝑓 [dom(Γne)]);
𝑆3;
gen(𝑧) 𝑆2;
st(𝑆2))

12: 𝑆 ′ = 𝑆𝐷 ; 𝑆 ′𝑀 ; 𝑆𝑄
13: Infer an optimal Γ′ according to Γ′ ⊢ 𝑆 ′ : data
14: return (Γ′, 𝑆 ′)

All other sub-statements of the program, 𝑆𝐷 , 𝑆1, 𝑆3 and 𝑆𝑄 , stay the same during the transfor-
mation. By isolating 𝑆2 and transforming only this part of the program, we make sure we do not
introduce more work than necessary when performing variable elimination.

To efficiently marginalise out 𝑧, we want to find the Markov boundary of 𝑧 given all data and
continuous model parameters: the data is given, and marginalisation happens inside the continuous
parameters inference loop, so we can see continuous parameters as given for the purpose of discrete
parameters marginalisation. Thus we are looking for the relationship: 𝑧 ⊥⊥ 𝜽𝑑2 | D, 𝜽𝑐 , 𝜽𝑑1, where
D is the data, 𝜽𝑐 are the continuous model-level parameters, 𝜽𝑑1 is a subset of the discrete model-
level parameters that is as small as possible (the Markov blanket), and 𝜽𝑑2 is the rest of the discrete
model-level parameters. We can find an optimal partitioning of the discrete parameters 𝜽𝑑1, 𝜽𝑑2 that
respects this relationship of interest using the type system from § 3 together with type inference.
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The judgement Γ𝑀 ⊢2 𝑆𝑀 : l1 induces a conditional independence relationship of the form
xl2 ⊥⊥ xl3 | xl1, where x |= Γx (Theorem 3). The relation Γ

𝑧−→ Γ𝑀 (Definition 9) constrains the
form of Γ𝑀 based on Γ. This is needed to make sure we are working with a relationship of the form
we are interested in — 𝑧 ⊥⊥ 𝜽𝑑2 | D, 𝜽𝑐 , 𝜽𝑑1 — and that base types 𝜏 are the same between Γ and Γ𝑀 .
In particular, Γ 𝑧−→ Γ𝑀 constrains 𝑧 to be the only l2 parameter in Γ𝑀 and all data and continuous
model-level parameters of Γ are l1 in Γ𝑀 . Note, dom(Γ𝑀 ) ⊆ dom(Γ) and Γ𝑀 only contains variables
that are of level model and below in Γ. Variables that are of level genqant in Γ are not in Γ𝑀 .

Definition 9 (Γ 𝑧−→ Γ′).
For a ⊢ typing environment Γ and a ⊢2 typing environment Γ′, a variable 𝑧 and a statement 𝑆 , we have:

Γ
𝑧−→ Γ′ =




Γ(𝑧) = (𝜏,model) and Γ′
x,l2 = {𝑧 : 𝜏, l2} for some 𝜏

𝑥 : (𝜏, ℓ) ∈ Γ such that ℓ ≤ model ⇐⇒ 𝑥 : (𝜏, ℓ ′) ∈ Γ′ for some ℓ ′ ∈ {l1, l2, l3}
𝑥 : (𝜏, data) ∈ Γ → 𝑥 : (𝜏, l1) ∈ Γ′

𝑥 : (𝜏,model) ∈ Γx and 𝜏 = real or 𝜏 = real[] ...[] → 𝑥 : (𝜏, l1) ∈ Γ′

Following convention from earlier in the paper, we use level subscripts to refer to specific subsets
of Γ: in the above definition, Γ′

x,l2 refers to the subset of parameters x in Γ′, which are of level l2.

4.7 Marginalising Multiple Variables: An example
To eliminate more than one discrete parameter, we apply the (Elim Gen) rule repeatedly. Here, we
work through a full example, showing the different steps of this repeated (Elim Gen) transformation.

Consider an extended version of the HMM model from the beginning of this section (Program
D), reformulated to include transformed parameters:

G. An extended HMM
𝑆 = real[2] phi ∼ beta(1, 1);

real[2] theta ∼ beta(1, 1);

real theta0 = theta[0];
int<2> z1 ∼ bernoulli(theta0);
real theta1 = theta[z1];
int<2> z2 ∼ bernoulli(theta1);
real theta2 = theta[z2];
int<2> z3 ∼ bernoulli(theta2);
real phi1 = phi[z1];
real phi2 = phi[z2];
real phi3 = phi[z3];
data real y1 ∼ normal(phi1, 1);

data real y2 ∼ normal(phi2, 1);

data real y3 ∼ normal(phi3, 1);

real theta3 = theta[z3];
int genz ∼ bernoulli(theta4);

The typing environment
Γ = {𝑦1,2,3 : (real, data),

𝜙 : (real[2],model),
\ : (real[2],model),
\0,1,2 : (real,model),
𝜙1,2,3 : (real,model),
𝑧1,2,3 : (int<2>,model),
\3 : (real, genqant),
𝑔𝑒𝑛𝑧 : (int<2>, genqant)}

The variables we are interested in transforming are 𝑧1, 𝑧2 and 𝑧3: these are the model-level
discrete parameters of Program G. The variable genz is already at genqant level, so we can
sample this with ancestral sampling (no need for automatic marginalisation).

We eliminate 𝑧1, 𝑧2 and 𝑧3 one by one, in that order. The order of elimination generally has a
significant impact on the complexity of the resulting program (see also §§ 4.8), but we do not focus
on how to choose an ordering here. The problem of finding an optimal ordering is well-studied
[Amir 2010; Arnborg et al. 1987; Kjærulff 1990] and is orthogonal to the focus of our work.
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4.7.1 Eliminating 𝑧1. Eliminating a single variable happens in three steps, as shown in Figure 6:
standard shredding into 𝑆𝐷 , 𝑆𝑀 and 𝑆𝑄 , conditional independence shredding of 𝑆𝑀 into 𝑆1, 𝑆2 and
𝑆3, and combining everything based on (Elim Gen).

(1) Standard shredding: 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 . Firstly, we separate out the parts of the program that
depend on discrete parameters generatively. That is any part of the program that would be
in generated quantities with respect to the original program. In our case, this includes the
last two lines in 𝑆 . This would also include the gen parts of the transform program, that
draw discrete parameters as generated quantities. Thus, 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 , where 𝑆𝐷 is empty,

(1) Standard shredding of 𝑆
1 𝑆𝐷 = skip;
2 𝑆𝑀 = phi ∼ beta(1, 1);

3 theta ∼ beta(1, 1);

4 theta0 = theta[0];
5 z1 ∼ bernoulli(theta0);
6 theta1 = theta[z1];
7 z2 ∼ bernoulli(theta1);
8 theta2 = theta[z2];
9 z3 ∼ bernoulli(theta2);

10 phi1 = phi[z1];
11 phi2 = phi[z2];
12 phi3 = phi[z3];
13 y1 ∼ normal(phi1, 1);

14 y2 ∼ normal(phi2, 1);

15 y3 ∼ normal(phi3, 1);

16 𝑆𝑄 = theta3 = theta[z3];
17 genz ∼ bernoulli(theta3);

(2) CI shredding of 𝑆𝑀
1 𝑆1 = phi ∼ beta(1, 1);

2 theta ∼ beta(1, 1);

3 theta0 = theta[0];
4 𝑆2 = z1 ∼ bernoulli(theta0);
5 theta1 = theta[z1];
6 z2 ∼ bernoulli(theta1);
7 phi1 = phi[z1];
8 y1 ∼ normal(phi1, 1);

9 𝑆3 = theta2 = theta[z2];
10 z3 ∼ bernoulli(theta2);
11 phi2 = phi[z2];
12 phi3 = phi[z3];
13 y2 ∼ normal(phi2, 1);

14 y3 ∼ normal(phi3, 1);

(3) Applying (Elim Gen): Program G-1
1 phi ∼ beta(1, 1);

2 theta ∼ beta(1, 1);

3 theta0 = theta[0];
4

5 f1 = 𝜙([int<2> z2]){
6 elim(int<2> z1){
7 z1 ∼ bernoulli(theta0);
8 theta1 = theta[z1];
9 z2 ∼ bernoulli(theta1);

10 phi1 = phi[z1];
11 y1 ∼ normal(phi1, 1);

12 }}

13 factor(f1[z2]);
14

15 theta2 = theta[z2];
16 z3 ∼ bernoulli(theta2);
17 phi2 = phi[z2];
18 phi3 = phi[z3];
19 y2 ∼ normal(phi2, 1);

20 y3 ∼ normal(phi3, 1);

21

22 gen(int z1){
23 z1 ∼ bernoulli(theta0);
24 theta1 = theta[z1]
25 z2 ∼ bernoulli(theta1);
26 phi1 = phi[z1];
27 y1 ∼ normal(phi1, 1);

28 }

29 theta1 = theta[z1];
30 phi1 = phi[z1];
31

32 theta3 = theta[z3];
33 genz ∼ bernoulli(theta3);

Fig. 6. Step-by-step elimination of 𝑧1 in Program G.
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𝑆𝑄 = (theta3 = theta[z3];genz ∼ bernoulli(theta3)), and 𝑆𝑀 is the rest of the program (see
Figure 6, (1)).

(2) Conditional independence shredding: 𝑆𝑀 ⇕Γ𝑀 𝑆1, 𝑆2, 𝑆3. In the next step, we want to establish
a conditional independence relationship 𝑧1 | 𝐴 ⊥⊥ y, 𝜙0, \0, 𝐵, where 𝑧1 is some discrete
parameter and 𝐴, 𝐵 is a partitioning of the rest of the discrete parameters in the model:
{𝑧2, 𝑧3}. We derive a new, ⊢2 typing environment Γ𝑀 , using Γ

𝑧−→ Γ𝑀 :
Γ𝑀 = {𝑦1,2,3 : (real, l1), 𝜙 : (real[2], l1), \ : (real[2], l1),

𝑧1 : (int<2>, l2), 𝑧2 : (int<2>, ?), 𝑧3 : (int<2>, ?)
\0 : (real, l1), \1,2 : (real, ?), 𝜙1,2,3 : (real, ?)}

Here, we use the notation ? for a type placeholder, which will be inferred using type inference.
The optimal Γ𝑀 under the type inference soft constraint l3 ≺ l1 ≺ l2 such that Γ𝑀 ⊢2 𝑆𝑀 : l1
is such that the levels of \1 and 𝜙1 are l2, 𝑧2 is l1 and \2, 𝜙2 and 𝜙3 are l3. Shredding then
gives us 𝑆𝑀 ⇕Γ𝑀 𝑆1, 𝑆2, 𝑆3, as in Figure 6, (2).

(3) Combining based on (Elim Gen). Having rearranged the program into suitable sub-statements,
we use (Elim Gen) to get Program G-1 (Figure 6, (3)) and:

Γ′ = {𝑦1,2,3 : (real, data), 𝜙 : (real,model),
\1 : (real, genqant), \0,2 : (real,model),
𝜙1 : (real, genqant), 𝜙2,3 : (real,model),
𝑧1 : (int, genqant), 𝑧2,3 : (int<2>,model),
\3 : (real, genqant), 𝑔𝑒𝑛𝑧 : (int<2>, genqant)}

Eliminating 𝑧2. We apply the same procedure to eliminate the next variable, 𝑧2, from the updated
Program G-1. The variable 𝑧1 is no longer a model-level parameter, thus the only neighbouring
parameter of 𝑧2 is 𝑧3. Note also that the computation of the factor 𝑓1 does not include any free
discrete parameters (both 𝑧1 and 𝑧2 are local to the computation due to elim and 𝜙). Thus, we do
not need to include the computation of this factor anywhere else in the program (it does not get
nested into other computations). We obtain a new program, Program G-2:

Program G-2

1 phi ∼ beta(1, 1);

2 theta ∼ beta(1, 1);

3 theta0 = theta[0];
4

5 f1 = 𝜙([int<2> z2]){ elim(int<2> z1){
6 z1 ∼ bernoulli(theta0);
7 theta1 = theta[z1];
8 z2 ∼ bernoulli(theta1);
9 phi1 = phi[z1];

10 y1 ∼ normal(phi1, 1);

11 }}

12 f2 = 𝜙([int<2> z3]){ elim(int<2> z2){
13 factor(f1[z2]);
14 theta2 = theta[z2];
15 z3 ∼ bernoulli(theta2);
16 phi2 = phi[z2];

17 y2 ∼ normal(phi2, 1);

18 }}

19

20 factor(f2[z3]);
21 phi3 = phi[z3];
22 y3 ∼ normal(phi3, 1);

23

24 gen(int z2){
25 factor(f1[z2]);
26 theta2 = theta[z2];
27 z3 ∼ bernoulli(theta2);
28 phi2 = phi[z2];
29 y2 ∼ normal(phi2, 1);

30 }

31 theta2 = theta[z2];
32 phi2 = phi[z2];
33
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34 gen(int z1){
35 z1 ∼ bernoulli(theta0);
36 theta1 = theta[z1];
37 z2 ∼ bernoulli(theta1);
38 phi1 = phi[z1];
39 y1 ∼ normal(phi1, 1);

40 }

41 theta1 = theta[z1];
42 phi1 = phi[z1];
43

44 theta3 = theta0[z3];
45 genz ∼ bernoulli(theta3);.

Eliminating 𝑧3. Finally, we eliminate 𝑧3, which is the only discrete model-level parameter left in
the program. Thus, 𝑧3 has no neighbours and 𝑓3 is of arity 0: it is a real number instead of a vector.

The final program generated by our implementation is Program G-3:

Program G-3

1 phi0 ∼ beta(1, 1);

2 theta0 ∼ beta(1, 1);

3

4 f1 = 𝜙(int<2> z2){ elim(int<2> z1){
5 z1 ∼ bernoulli(theta0);
6 theta1 = theta[z1];
7 z2 ∼ bernoulli(theta1);
8 phi1 = phi[z1];
9 y1 ∼ normal(phi1, 1);

10 }}

11

12 f2 = 𝜙(int<2> z3){elim(int<2> z2){
13 factor(f1[z2]);
14 theta2 = theta[z2];
15 z3 ∼ bernoulli(theta2);
16 phi2 = phi[z2];
17 y2 ∼ normal(phi2, 1);

18 }}

19

20 f3 = 𝜙(){elim(int<2> z3){
21 factor(f2[z3]);
22 phi3 = phi[z3];
23 y3 ∼ normal(phi3, 1);

24 }}

25

26 factor(f3);

27 gen(int z3){
28 factor(f2[z3]);
29 phi3 = phi[z3];;
30 y3 ∼ normal(phi3, 1);

31 }

32 phi3 = phi[z3];
33 gen(int z2){
34 factor(f1[z2]);
35 theta2 = theta[z2];;
36 z3 ∼ bernoulli(theta2);
37 phi2 = phi[z2];;
38 y2 ∼ normal(phi2, 1);

39 }

40 theta2 = theta[z2];
41 phi2 = phi[z2];
42 gen(int z1){
43 z1 ∼ bernoulli(theta0);
44 theta1 = theta[z1];
45 z2 ∼ bernoulli(theta1);
46 phi1 = phi[z1];
47 y1 ∼ normal(phi1, 1);

48 }

49 theta1 = theta[z1];
50 phi1 = phi[z1];
51

52 gen3 = theta[z3];
53 genz ∼ bernoulli(theta3);

4.8 Relating to Variable Elimination and Complexity Analysis
Assume D, 𝜽𝑑 , and 𝜽𝑐 are the data, discrete model-level parameters, and continuous model-level
parameters, respectively. As 𝑆2 is a single-level statement of level l2, the density semantics of 𝑆2 is
of the form𝜓 (xl1, xl2) = 𝜓 (D, 𝜽𝑐 , 𝜽𝑑,l1, 𝑧) (Lemma 11).

As elim(int⟨𝐾⟩𝑧) _ binds the variable 𝑧 and 𝜙 (Γne){_} binds the variables in dom(Γne), the ex-
pression 𝜙 (Γne){elim(int⟨𝐾⟩𝑧) 𝑆2 depends only on continuous parameters and data, and it contains
no free mentions of any discrete variables. This means that the expression will be of level l1 and
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shredded into 𝑆1 during the marginalisation of any subsequent discrete variable 𝑧 ′. The substate-
ment 𝑆2 will always be some sub-statement of the original program (prior to any transformations),
up to potentially several constant factors of the form factor(𝑓 [dom(Γne)]).

This observation makes it easy to reason about how repeated application of the (Elim Gen)
transform changes the complexity of the program. If the complexity of a SlicStan program with 𝑁
discrete parameters of support 1, . . . , 𝐾 , is O(𝑆), then the complexity of a program where we naively
marginalised out the discrete variables (Program E) will be O(𝑆 × 𝐾𝑁 ). In contrast, transforming
with (Elim Gen) gives us a program of complexity at most O(𝑁 × 𝑆 ×𝐾𝑀+1) where 𝑀 is the largest
number of direct neighbours in the factor graph induced by the program. Further, the complexity
could be smaller depending on the elimination ordering of choice. This result is not surprising, as
we conjecture that repeated application of (Elim Gen) is equivalent to variable elimination (though
we do not formally prove this equivalence), which is of the same complexity.

It is clear from this complexity observation that VE is not always efficient. When the dependency
graph is dense, 𝑀 will be close to 𝑁 , thus inference will be infeasible for large 𝑁 . Fortunately,
in many practical cases (such as those discussed in § 5), this graph is sparse (𝑀 ≪ 𝑁 ) and our
approach is suitable and efficient. We note that this is a general limitation of exact inference of
discrete parameters, and it is not a limitation of our approach in particular.

4.9 Semantic Preservation of the Discrete Variable Transformation
The result we are interested in is the semantic preservation of the transformation rule 𝑧−→.

Theorem 4 (Semantic preservation of 𝑧−→).
For SlicStan programs Γ, 𝑆 and Γ′, 𝑆 ′, and a discrete parameter 𝑧: Γ, 𝑆

𝑧−→ Γ′, 𝑆 ′ implies J𝑆K = J𝑆 ′K.

Proof. Note that shredding preserves semantics with respect to both ⊢ and ⊢2 (Lemma 6 and
10), examine the meaning of derived forms (Lemma 14 and 15), note properties of single-level
statements (Lemma 11), and apply the results on factorisation of shredding (Theorem 1) and
conditional independence (Theorem 3). We present the full proof in Appendix A. □

In addition, we also show that it is always possible to find a program derivable with (Elim Gen),
such that a model-level variable 𝑧 is transformed to a genqant-level variable.

Lemma 12 (Existence of model to genqant transformation). For any SlicStan program
Γ, 𝑆 such that Γ ⊢ 𝑆 : l1, and a variable 𝑧 ∈ dom(Γ) such that Γ(𝑧) = (int⟨𝐾⟩,model), there exists a
SlicStan program Γ′, 𝑆 ′, such that:

Γ, 𝑆
𝑧−→ Γ′, 𝑆 ′ and Γ′(𝑧) = (int⟨𝐾⟩, genquant)

Proof. By inspecting the level types of variables in each part of a program derivable using (Elim
Gen). We include the full proof in Appendix A. □

The practical usefulness of Theorem 4 stems from the fact that it allows us to separate inference
for discrete and continuous parameters. After applying (Elim Gen) to each discrete model-level
parameter, we are left with a program that only has genqant-level discrete parameters (Lemma 12).
We can then slice the program into 𝑆hmc and 𝑆gen and infer continuous parameters by using HMC
(or other algorithms) on 𝑆hmc and, next, draw the discrete parameters using ancestral sampling by
running forward 𝑆gen. Theorem 4 tells us that this is a correct inference strategy.

When used in the context of a model with only discrete parameters, our approach corresponds
to exact inference through VE. In the presence of discrete and continuous parameters, our transfor-
mation gives an analytical sub-solution for the discrete parameters in the model.
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A limitation of our method is that, due to its density-based nature, it can only be applied to models
of fixed size. It cannot, in its current form, support models where the number of random variables
changes during inference, such as Dirichlet Processes. However, this is a typical constraint adopted
in Bayesian inference for efficiency. Another limitation is that discrete variables need to have finite
(and fixed) support. For example, the method cannot be applied to transform a Poisson-distributed
variable. In some but not all applications, truncating unbounded discrete parameters at a realistic
upper bound would suffice to make the method applicable.

An advantage of our method is that it can be combined with any inference algorithm that
requires a function proportional to the joint density of variables. This includes gradient-based
algorithms, such as HMC and variational inference, but it can also be used with methods that allow
for (e.g. unbounded) discrete variables as an analytical sub-solution that can optimise inference. For
example, consider a Poisson variable 𝑛 ∼ Poisson(_) and a Binomial variable 𝑘 ∼ Binomial(𝑛, 𝑝).
While 𝑛 is of infinite support, and we cannot directly sum over all of its possible values, analytically
marginalising out 𝑛 gives us 𝑘 ∼ Poisson(_𝑝). Future work can utilise such analytical results in
place of explicit summation where possible.

4.10 Scope and limitations of (Elim Gen)

Program H

data int K;
real[K][K] phi;
real[K] mu;
int<K> z1 ∼

categorical(phi[0]);
int<K> z2;
int<K> z3;

if (z1 > K/2) {

z2 ∼ categorical(phi[z1]);
z3 ∼ categorical(phi[z2]);

}

else {

z2 ∼ categorical(phi[z1]);
z3 ∼ categorical(phi[z1]);

}

data real y1 ∼
normal(mu[z1],1);

data real y2 ∼
normal(mu[z2],1);

data real y3 ∼
normal(mu[z3],1);

Program H-A: Optimal
transformation

. . .

factor(elim(int<2> z1) {

z1 ∼ categorical(phi[0]);
y1 ∼ normal(mu[z1], 1));

if (z1 > K/2) {

elim(int<2> z2) {

elim(int<2> z3) {

z2 ∼ categorical(phi[z1]);
z3 ∼ categorical(phi[z2]);
y2 ∼ normal(mu[z2],1);
y3 ∼ normal(mu[z3],1);

}}}

else {

elim(int<2> z2) {

z2 ∼ categorical(phi[z1]));
y2 ∼ normal(mu[z2],1);
}

elim(int<2> z3) {

z3 ∼ categorical(phi[z1]));
y3 ∼ normal(mu[z3],1);

}}});

Program H-B: Our
transformation

. . .

f1 = 𝜙(int<2> z2, int<2> z3){
elim(int<2> z1){
z1 ∼ categorical(phi[0]);
if(z1 > K/2){

z2 ∼ categorical(phi[z1]);
z3 ∼ categorical(phi[z2]);

}

else{
z2 ∼ categorical(phi[z1]);
z3 ∼ categorical(phi[z1]);

}

y1 ∼ normal(mu[z1], 1);

y2 ∼ normal(mu[z2], 1);

y3 ∼ normal(mu[z3], 1);

}}

f2 = 𝜙(int<2> z3){
elim(int<2>z2)

factor(f1[z2,z3]);}
f3 = 𝜙(){

elim(int<2> z3)
factor(f2[z3]);}

factor(f3);

Fig. 7. A program with different conditional dependencies depending on control flow.
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Previously, we discussed the scope of the conditional independence result of the paper (§§ 3.3).
Similarly, here we demonstrate with an example, a situation where our approach of eliminating
variables one-by-one using (Elim Gen) is not optimal.

Consider the simple control-flow Program H below. In this example 𝑧2 and 𝑧3 are not conditionally
independent given 𝑧1 = 1, but they are conditionally independent given 𝑧1 > 𝐾/2. This indepen-
dence is also referred to as context-specific independence [Boutilier et al. 1996; Minka and Winn
2009]. We can use different elimination strategy depending on which if-branch of the program we
find ourselves. Program H-A demonstrates this: its complexity is O(𝐾2 ×𝐾2+𝐾2 ×2×𝐾) = O( 1

2𝐾
3+𝐾2).

The typing relation ⊢2 can only detect overall (in)dependencies, where sets of variables are
conditionally independent given some 𝑋 , regardless of what value 𝑋 takes. Thus, our static analysis
is not able to detect that 𝑧2 ⊥⊥ 𝑧3 | 𝑧1 = 0. This results in Program H-B, which has complexity
O(𝐾3 + 𝐾2 + 𝐾): the same complexity as the optimal Program H-A, but with a bigger constant.

Even if we extend our approach to detect that 𝑧2 and 𝑧3 are independent in one branch, it is
unclear how to incorporate this new information. Our strategy is based on computing intermediate
factors that allow re-using already computed information: eliminating 𝑧1 requires computing a new
factor 𝑓1 that no longer depends on 𝑧1. We represented 𝑓1 with a multidimensional array indexed
by 𝑧2 and 𝑧3, and we need to define each element of that array, thus we cannot decouple them for
particular values of 𝑧1.

Runtime systems that compute intermediate factors in a similar way, such as Pyro [Uber AI Labs
2017], face that same limitation. Birch [Murray and Schön 2018], on the other hand, will be able
to detect the conditional independence in the case 𝑧1 > 𝐾/2, but it will not marginalise 𝑧1, as it
cannot (analytically) marginalise over branches. Instead, it uses Sequential Monte Carlo (SMC) to
repeatedly sample 𝑧1 and proceed according to its value.

5 IMPLEMENTATION AND EMPIRICAL EVALUATION
The transformation we introduce can be useful for variety of models, and it can be adapted to PPLs
to increase efficiency of inference and usability. Most notably, it can be used to extend Stan to allow
for direct treatment of discrete variables, where previously that was not possible.

In this section, we present a brief overview of such a discrete parameter extension for SlicStan
(§§ 5.1). To evaluate the practicality of (Elim Gen), we build a partial NumPyro [Phan et al. 2019]
backend for SlicStan, and compare our static approach to variable elimination for discrete parameters
to the dynamic approach of NumPyro (§§ 5.2). We find that our static transformation strategy speeds
up inference compared to the dynamic approach, but that for models with a large number of discrete
parameters performance gains could be diminished by the exponentially growing compilation time
(§§ 5.3).

In addition to demonstrating the practicality of our contribution through empirical evaluation,
we also discuss the usefulness of our contribution through examples, in Appendix B.

5.1 Implementation
We update the original SlicStan14 according to the modification described in § 2, and extend it to
support automatic variable elimination through the scheme outlined in § 4. As with the first version
of SlicStan, the transformation produces a new SlicStan program that is then translated to Stan.

The variable elimination transformation procedure works by applying (Elim Gen) iteratively,
once for each discrete variable, as we show in §§ 4.7. The level types l1, l2 and l3 are not exposed to
the user, and are inferred automatically. Using bidirectional type-checking, we are able to synthesise
a set of hard constraints that the levels must satisfy. These hard constraints will typically be satisfied

14Available at https://github.com/mgorinova/SlicStan.
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by more than one assignment of variables to levels. We search for the optimal types with respect to
the soft constraints l3 ≺ l1 ≺ l2, using the theorem prover Z3 [De Moura and Bjørner 2008].

5.2 Empirical evaluation
To evaluate the practicality of our approach, we compare to the prior work most closely related
to ours: that of Obermeyer et al. [2019], who implement efficient variable-elimination for plated
factor graphs in Pyro [Uber AI Labs 2017]. Their approach uses effect-handlers and dynamically
marginalises discrete variables, so that gradient-based inference schemes can be used for the
continuous parameters. This VE strategy has also been implemented in NumPyro [Phan et al. 2019].

As both ours and Pyro’s strategies correspond to VE, we do not expect to see differences in
complexity of the resulting programs. However, as in our case the VE algorithm is determined
and set up at compile time, while in the case of Pyro/NumPyro, this is done at run time. The main
question we aim to address is whether setting up the variable elimination logistics at compile time
results in a practical runtime speed-up.

To allow for this comparison, we built a partial NumPyro backend for SlicStan. For each model
we choose, we compare the runtime performance of three NumPyro programs:

(1) The NumPyro program obtained by translating a SlicStan program with discrete parameters to
NumPyro directly (labelled ‘NumPyro’). This is the baseline: we leave the discrete parameter
elimination to NumPyro.

(2) The NumPyro program obtained by translating a transformed SlicStan program, where all
discrete parameters have been eliminated according to (Elim Gen) (labelled ‘SlicStan’). The
variable elimination set-up is done at compile time; NumPyro does not do any marginalisation.

(3) A hand-optimised NumPyro program, which uses the plate and markov program constructs
to specify some of the conditional independencies in the program (labelled ‘NumPyro-Opt’).

In each case, we measure the time (in seconds) for sampling a single chain consisting of 2500
warm-up samples, and 10000 samples using NUTS [Hoffman and Gelman 2014].

In addition, we report three compilation times:
(1) The compilation time of the NumPyro program obtained by translating a SlicStan program

with discrete parameters to NumPyro directly (labelled ‘NumPyro’).
(2) The compilation time of the NumPyro program obtained by translating a transformed SlicStan

program, where all discrete parameters have been eliminated (labelled ‘SlicStan’).
(3) The time taken for the original SlicStan program to be transformed using (Elim Gen) and

translated to NumPyro code (labelled ‘SlicStan-to-NumPyro’).
We consider different numbers of discrete parameters for each model, up to 25 discrete parameters.

We do not consider more than 25 parameters due to constraints of the NumPyro baseline, which we
discuss in more detail in §§ 5.3. We run experiments on two classes of model often seen in practice:
hidden Markov models (§§§ 5.2.1) and mixture models (§§§ 5.2.2). To ensure a fair comparison,
the same elimination ordering was used across experiments. Experiments were run on a dual-core
2.30GHz Intel Xeon CPU and a Tesla T4 GPU (when applicable). All SlicStan models used in the
experiments are available at the SlicStan repo.

5.2.1 Hidden Markov models. We showed several examples of simple HMMs throughout the paper
(Program A, Program D, Program G) and worked through a complete example of VE in an HMM
(4.7). We evaluate our approach on both the simple first-order HMM seen previously, and on two
additional ones: second-order HMM and factorial HMM.

First-order HMM. The first-order HMM is a simple chain of 𝑁 discrete variables, each taking a
value from 1 to 𝐾 according to a categorical distribution. The event probabilities for the distribution
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of 𝑧𝑛 are given by 𝜽𝑧𝑛−1 , where 𝜽 is some given 𝐾 × 𝐾 matrix. Each data point y is modelled
as coming from a Gaussian distribution with mean `𝑧𝑛 and standard deviation 1, where 𝝁 is a
𝐾−dimensional continuous parameter of the model.

`𝑘 ∼ N(0, 1) for 𝑘 ∈ 1, . . . , 𝐾
𝑧1 ∼ categorical(𝜽 1)

𝑧𝑛 ∼ categorical(𝜽𝑧𝑛−1 ) for 𝑛 ∈ 2, . . . , 𝑁
𝑦𝑛 ∼ N(`𝑧𝑛 , 1) for 𝑛 ∈ 1, . . . , 𝑁

We measure the compilation time and the time taken to sample 1 chain with each of the 3
NumPyro programs corresponding to this model. We use 𝐾 = 3 and different values for 𝑁 , ranging
from 𝑁 = 3 to 𝑁 = 25. Figure 8 shows a summary of the results. We see that both on CPU and
GPU, the program transformed using SlicStan outperforms the automatically generated NumPyro
and also the manually optimised NumPyro-Opt. Each of the three programs has compilation
time exponentially increasing with the number of variables, however SlicStan’s compilation time
increases the fastest. We discuss this drawback in more detail in §§ 5.3, highlighting the importance
of an extended loop-level analysis being considered in future work.

Second-order HMM. The second-order HMM is very similar to the first-order HMM, but the
discrete variables depend on the previous 2 variables, in this case taking the maximum of the two.

`𝑘 ∼ N(0, 1) for 𝑘 ∈ 1, . . . , 𝐾
𝑧1 ∼ categorical(\1), 𝑧2 ∼ categorical(\𝑧1 )

𝑧𝑛 ∼ categorical(\max(𝑧𝑛−2,𝑧𝑛−1) ) for 𝑛 ∈ 3, . . . , 𝑁
𝑦𝑛 ∼ N(`𝑧𝑛 , 1) for 𝑛 ∈ 1, . . . , 𝑁

Similarly to before, we run the experiment for 𝐾 = 3 and different values for 𝑁 , ranging from
𝑁 = 3 to 𝑁 = 25. We show the results in Figure 9, which once again shows SlicStan outperforming
NumPyro and NumPyro-Opt in terms of runtime, but having slower compilation time for a larger
number of discrete parameters.

Factorial HMM. In a factorial HMM, each data point 𝑦𝑛 is generated using two independent
hidden states 𝑧𝑛 and ℎ𝑛 , each depending on the previous hidden states 𝑧𝑛−1 and ℎ𝑛−1.

`𝑘 ∼ N(0, 1) for 𝑘 ∈ 1, . . . , 𝐾2

𝑧1 ∼ categorical(\1), ℎ1 ∼ categorical(\1)
𝑧𝑛 ∼ categorical(\𝑧𝑛−1 ), ℎ𝑛 ∼ categorical(\ℎ𝑛−1 ) for 𝑛 ∈ 2, . . . , 𝑁

𝑦𝑛 ∼ N(`𝑧𝑛∗ℎ𝑛 , 1) for 𝑛 ∈ 1, . . . , 𝑁

We run the experiment for 𝐾 = 3 and different length of the chain 𝑁 , ranging from 𝑁 = 1 (2
discrete parameters) to 𝑁 = 12 (24 discrete parameters). We show the results in Figure 10: similarly
to before, SlicStan outperforms both NumPyro and NumPyro-Opt in terms of runtime. We also
observe that, in the case of SlicStan, the time taken to sample a single chain increases more slowly
as we increase the number of discrete variables.

5.2.2 Mixture models. Another useful application of mixed discrete and continuous variable models
is found in mixture models. We run experiments on two models: soft 𝐾-means clustering and linear
regression with outlier detection.
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Fig. 9. Second-order HMM results
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Fig. 10. Factorial HMM results
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Fig. 11. Soft K-means results
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Soft K-means. The Gaussian mixture model underlines the celebrated soft 𝐾-means algorithm.
Here, we are interested in modelling some 𝐷-dimensional data that belongs to one of 𝐾 (unknown)
Gaussian clusters. Each cluster 𝑘 is specified by a 𝐷-dimensional mean `.,𝑘 . Each data point 𝑦.,𝑛 is
associated with a cluster 𝑧𝑛 .

`𝑑,𝑘 ∼ N(0, 1) for 𝑑 ∈ 1, . . . , 𝐷 and 𝑘 ∈ 1, . . . , 𝐾
𝑧𝑛 ∼ categorical(𝜋) for 𝑛 ∈ 1, . . . , 𝑁

𝑦𝑑,𝑛 ∼ N(`𝑑,𝑧𝑛 , 1) for 𝑑 ∈ 1, . . . , 𝐷 and 𝑛 ∈ 1, . . . , 𝑁
We run the experiments for 𝐾 = 3, 𝐷 = 10, and 𝑁 = 3, . . . , 25 and show the results in Figure 11.
We observe a clear linear trend of the runtime growing with N, with SlicStan performing better

and its runtime growing more slowly than that of NumPyro. While the SlicStan-translated code
runs faster than NumPyro-Opt for 𝑁 ≤ 25, we observe that the SlicStan runtime grows faster than
that of the manually optimised NumPyro-Opt code.

Outlier detection. The final model we consider is a Bayesian linear regression that allows for
outlier detection. The model considers data points (𝑥𝑛, 𝑦𝑛), where𝑦 lies on the line 𝛼𝑥 +𝛽 with some
added noise. The noise 𝜎𝑧𝑛 depends on a Bernoulli parameter 𝑧𝑛 , which corresponds to whether or
not the point (𝑥𝑛, 𝑦𝑛) is an outlier or not. The noise for outliers (𝜎1) and the noise for non-outliers
(𝜎2) are given as hyperparameters.

𝛼 ∼ N(0, 10), 𝛽 ∼ N(0, 10)

𝜋 (𝑟𝑎𝑤)
1 ∼ N(0, 1), 𝜋 (𝑟𝑎𝑤)

2 ∼ N(0, 1), 𝜋 =
exp𝜋 (𝑟𝑎𝑤)

1

exp𝜋 (𝑟𝑎𝑤)
1 + exp𝜋 (𝑟𝑎𝑤)

2
𝑧𝑛 ∼ bernoulli(𝜋) for 𝑛 ∈ 1, . . . , 𝑁

𝑦𝑛 ∼ N(𝛼𝑥𝑛 + 𝛽, 𝜎𝑧𝑛 ) for 𝑛 ∈ 1, . . . , 𝑁

Similarly to the earlier HMM models, SlicStan has the smallest runtime per chain, but at the
expense of fast growing compile time (Figure 12).

5.3 Analysis and discussion
Our method can be applied to general models containing a fixed and known number of finite-
support discrete parameters, which significantly reduces the amount of manual effort that was
previously required for such models in languages like Stan [Damiano et al. 2018]. In addition, as
shown in Figures 8–12, SlicStan outperforms both the NumPyro baseline and the hand-optimised
NumPyro-Opt, in terms of runtime. This suggests that a static-time discrete variable optimisation,
like the one introduced in this paper, is indeed beneficial and speeds up inference.

One limitation of our experimental analysis is the relatively small number of discrete parameters
we consider. Due to the array dimension limit imposed by PyTorch / NumPy, Pyro cannot have
more than 25 discrete variables (64 for CPU) unless the dependence between them is specified
using markov or plate (as with NumPyro-Opt). For NumPyro this hardcoded limit is 32. Thus, it
would not be possible to compare to the NumPyro baseline for a larger number of variables, though
comparing to the hand-optimised NumPyro-Opt would still be possible.

Perhaps the biggest limitation of the discrete parameters version of SlicStan is the exponentially
growing compilation time. Using a semi-lattice instead of a lattice in the ⊢2 level type analysis
breaks the requirement of the bidirectional type system that ensures efficiency of type inference.
The constraints generated by the type system can no longer be resolved by SlicStan’s original
linear-time algorithm. While polynomial-time constraint-solving strategy may still exist, we choose
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to employ Z3 to automatically resolve the type inference constraints, and leave the consideration
for more efficient type inference algorithm for future work.

This also highlights the importance of a future SlicStan version that considers arrays of discrete
parameters. Our algorithm currently supports only individual discrete parameters. In the cases
where the size of an array of discrete parameters is statically known, the (Elim Gen) procedure
can be applied to a program where such arrays have been ‘flattened’ into a collection of individual
discrete variables, which is the strategy we adopt for the experiments in this section. But to be
applicable more widely, the (Elim Gen) rule needs to be generalised based on array element level
dependence analysis, for example by incorporating ideas from the polyhedral model [Feautrier
1992]. As the array level dependence analysis that would be required in most practical use-cases is
very straightforward, we believe this would be a useful and feasible applied extension of our work.
In addition, this would significantly decrease the number of program variables for which we need
to infer a level type during the (Elim Gen) transformation, thus making compilation practical for
larger or arbitrary numbers of discrete parameters.

6 RELATED WORK
This paper provides a type system that induces conditional independence relationships, and it
discusses one practical application of such type system: an automatic marginalisation procedure
for discrete parameters of finite support.

Conditional independence. The theoretical aim of our paper is similar to that of Barthe et al.
[2019], who discuss a separation logic for reasoning about independence, and the follow-up work
of Bao et al. [2021], who extend the logic to capture conditional independence. One advantage of
our method is that the verification of conditional independence is automated by type inference,
while it would rely on manual reasoning in the works of Barthe et al. [2019] and Bao et al. [2021].
On the other hand, the logic approach can be applied to a wider variety of verification tasks.
Amtoft and Banerjee [2020] show a correspondence between variable independence and slicing
a discrete-variables-only probabilistic program. The biggest difference to our work is that their
work considers only conditional independence of variables given the observed data: that is CI
relationships of the form x1 ⊥⊥ x2 | D for some subsets of variables x1 and x2 and data D. The
language of Amtoft and Banerjee [2020] requires observed data to be specified syntactically using
an observe statement. Conditional independencies are determined only given this observed data,
and the method for determining how to slice a program is tied to the observe statements. From
the Amtoft and Banerjee [2020] paper: “A basic intuition behind our approach is that an observe
statement can be removed if it does not depend on something on which the returned variable 𝑥
also depends.” In contrast, we are able to find CI relationships given any variables we are interested
in (x1 ⊥⊥ x2 | x3 for some x1, x2, and x3), and type inference constitutes of a straightforward
algorithm for finding such relationships. On the other hand, Amtoft and Banerjee [2020] permit
unbounded number of variables (e.g. while (y > 0) y ∼ bernoulli(0.2)), while it is not clear how
to extend SlicStan/Stan to support this. While not in a probabilist programming setting, Lobo-Vesga
et al. [2020] use taint analysis to find independencies between variables in a program, in order to
facilitate easy trade off between privacy and accuracy in differential privacy context.

Automatic marginalisation. The most closely related previous work, in terms of the automatic
marginalisation procedure, is that of Obermeyer et al. [2019] and that of Murray et al. [2018]. Ober-
meyer et al. [2019] implement efficient variable-elimination for plated factor graphs in Pyro [Uber
AI Labs 2017]. Their approach uses effect-handlers and can be implemented in other effect-handling
based PPLs, such as Edward2 [Tran et al. 2018]. Murray et al. [2018] introduce a ‘delayed sampling’
procedure in Birch [Murray and Schön 2018], which optimises the program via partial analytical
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solutions to sub-programs. Their method corresponds to automatic variable elimination and, more
generally, automatic Rao–Blackwellization. While we focus on discrete variable elimination only,
our conditional independence type system can be directly used for more general analysis. The
method from § 4 can be extended to marginalise out and sample continuous variables whenever
they are part of an analytically-tractable sub-program, similarly to delayed sampling in Birch.
One key difference of our approach is that the program re-writes are guided by the type system
and happen at compile time, before inference is run. In contrast, both Pyro and Birch maintain a
dynamic graph that guides the analysis at runtime.

Symbolic inference. Where a full analytical solution is possible, several probabilistic programming
languages can derive it via symbolic manipulation, including Hakaru [Narayanan et al. 2016] and PSI
[Gehr et al. 2016, 2020], while Dice [Holtzen et al. 2020] performs exact inference for models with
discrete parameters only, by analysing the program structure. In contrast, we focus on re-writing
the program, and decomposing it into parts to be used with fast and more general asymptotically
exact or approximate inference algorithms, like HMC, variational inference or others.

Extending HMC to support discrete parameters. The idea of modifying HMC to handle discrete
variables and discontinuities has been previously explored [Nishimura et al. 2017; Pakman and
Paninski 2013; Zhang et al. 2012; Zhou 2020]. More recently, Zhou et al. [2019] introduced the
probabilistic programming language LF-PPL, which is designed specifically to be used with the
Discontinuous Hamiltonian Monte Carlo (DHMC) algorithm [Nishimura et al. 2017]. The algorithm,
and their framework can also be extended to support discrete parameters. LF-PPL provides support
for an HMC version that itself works with discontinuities. Our approach is to statically rewrite the
program to match the constraints of Stan, vanilla HMC, and its several well-optimised extensions,
such as NUTS [Hoffman and Gelman 2014].

Composable and programmable inference. Recent years have seen a growing number of techniques
that allow for tailored-to-the-program compilation to an inference algorithm. For example, Gen
[Cusumano-Towner et al. 2019] can statically analyse the model structure to compile to a more
efficient inference strategy. In addition, languages like Gen and Turing [Ge et al. 2018] facilitate
composable and programmable inference [Mansinghka et al. 2018], where the user is provided with
inference building blocks to implement their own model-specific algorithm. Our method can be
understood as an automatic composition between two inference algorithms: variable elimination
and HMC or any other inference algorithm that can be used to sample continuous variables.

7 CONCLUSION
This paper introduces an information flow type system that can be used to check and infer condi-
tional independence relationships in a probabilistic programs, through type checking and inference,
respectively. We present a practical application of this type system: a semantics-preserving transfor-
mation that makes it possible to use, and to efficiently and automatically infer discrete parameters
in SlicStan, Stan, and other density-based probabilistic programming languages. The transformed
program can be seen as a hybrid inference algorithm on the original program, where continuous
parameters can be drawn using efficient gradient-based inference methods, like HMC, while the
discrete parameters are drawn using variable elimination.

While the variable elimination transformation uses results on conditional independence of
discrete parameters, our type system is not restricted to this usage. Conditional independence
relationships can be of interest in many context in probabilistic modelling, including more general
use of variable elimination, message-passing algorithms, Rao-Blackwellization, and factorising a
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program for a composed-inference approach. We believe conditional independence by typing can
enable interesting future work that automates the implementation of such methods.
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A DEFINITIONS AND PROOFS
A.1 Definitions

Definition 10 (Assigns-to set𝑊 (𝑆)). W(S) is the set that contains the names of global variables
that have been assigned to within the statement S. It is defined recursively as follows:
𝑊 (𝑥 [𝐸1] . . . [𝐸𝑛] = 𝐸) = {𝑥}
𝑊 (𝑆1; 𝑆2) =𝑊 (𝑆1) ∪𝑊 (𝑆2)
𝑊 (if(𝐸) 𝑆1 else 𝑆2) =𝑊 (𝑆1) ∪𝑊 (𝑆2)
𝑊 (for(𝑥 in 𝐸1 : 𝐸2) 𝑆) =𝑊 (𝑆) \ {𝑥}

𝑊 (skip) = ∅
𝑊 (factor(𝐸)) = ∅
𝑊 (𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛)) = ∅

Definition 11 (Reads set 𝑅(𝑆)). R(S) is the set that contains the names of global variables that
have been read within the statement S. It is defined recursively as follows:
𝑅(𝑥) = {𝑥}
𝑅(𝑐) = ∅
𝑅( [𝐸1, . . . , 𝐸𝑛]) =

⋃𝑛
𝑖=1 𝑅(𝐸𝑖 )

𝑅(𝐸1 [𝐸2]) = 𝑅(𝐸1) ∪ 𝑅(𝐸2)
𝑅(𝑓 (𝐸1, . . . , 𝐸𝑛)) =

⋃𝑛
𝑖=1 𝑅(𝐸𝑖 )

𝑅( [𝐸 |𝑥 in 𝐸1 : 𝐸2]) = 𝑅(𝐸) ∪ 𝑅(𝐸1) ∪ 𝑅(𝐸2)
𝑅(target(𝑆)) = 𝑅(𝑆)
𝑅(𝑥 [𝐸1] . . . [𝐸𝑛] = 𝐸) =

⋃𝑛
𝑖=1 𝑅(𝐸𝑖 ) ∪ 𝑅(𝐸)

𝑅(𝑆1; 𝑆2) = 𝑅(𝑆1) ∪ 𝑅(𝑆2)
𝑅(if(𝐸) 𝑆1 else 𝑆2) = 𝑅(𝐸) ∪ 𝑅(𝑆1) ∪ 𝑅(𝑆2)
𝑅(for(𝑥 in 𝐸1 : 𝐸2) 𝑆) = 𝑅(𝐸1) ∪ 𝑅(𝐸2) ∪ 𝑅(𝑆) \
{𝑥}
𝑅(skip) = ∅
𝑅(factor(𝐸)) = 𝑅(𝐸)
𝑅(𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛)) = 𝑅(𝐿) ∪ 𝑅(𝐸1) ∪ · · · ∪
𝑅(𝐸𝑛)

Definition 12 (Samples-to set𝑊 (𝑆)). 𝑊 (𝑆) is the set that contains the names of global variables
that have been sampled within the statement S. It is defined recursively as follows:
𝑊 (𝐿 = 𝐸) = ∅
𝑊 (𝑆1; 𝑆2) =𝑊 (𝑆1) ∪𝑊 (𝑆2)
𝑊 (if(𝐸) 𝑆1 else 𝑆2) =𝑊 (𝑆1) ∪𝑊 (𝑆2)
𝑊 (for(𝑥 in 𝐸1 : 𝐸2) 𝑆) =𝑊 (𝑆) \ {𝑥}

𝑊 (skip) = ∅
𝑊 (factor(𝐸)) = ∅
𝑊 (𝑥 [𝐸1] . . . [𝐸𝑛] ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛)) = {𝑥}

Definition 13 (Free variables 𝐹𝑉 (𝑆)). 𝐹𝑉 (𝑆) is the set that contains the free variables that are
used in a statement 𝑆 . It is recursively defined as follows:

𝐹𝑉 (𝑥) = {𝑥}
𝐹𝑉 (𝑐) = ∅
𝐹𝑉 ( [𝐸1, . . . , 𝐸𝑛]) =

⋃𝑛
𝑖=1 𝐹𝑉 (𝐸𝑖 )

𝐹𝑉 (𝐸1 [𝐸2]) = 𝐹𝑉 (𝐸1) ∪ 𝐹𝑉 (𝐸2)
𝐹𝑉 (𝑓 (𝐸1, . . . , 𝐸𝑛)) =

⋃𝑛
𝑖=1 𝐹𝑉 (𝐸𝑖 )

𝐹𝑉 ( [𝐸 |𝑥 in 𝐸1 : 𝐸2]) = 𝐹𝑉 (𝐸) ∪ 𝐹𝑉 (𝐸1) ∪
𝐹𝑉 (𝐸2)
𝐹𝑉 (target(𝑆)) = 𝐹𝑉 (𝑆)
𝐹𝑉 (𝑥 [𝐸1] . . . [𝐸𝑛] = 𝐸) =

⋃𝑛
𝑖=1 𝐹𝑉 (𝐸𝑖 ) ∪ 𝐹𝑉 (𝐸)

𝐹𝑉 (𝑆1; 𝑆2) = 𝐹𝑉 (𝑆1) ∪ 𝐹𝑉 (𝑆2)
𝐹𝑉 (if(𝐸) 𝑆1 else 𝑆2) = 𝐹𝑉 (𝐸)∪𝐹𝑉 (𝑆1)∪𝐹𝑉 (𝑆2)
𝐹𝑉 (for(𝑥 in 𝐸1 : 𝐸2) 𝑆) = 𝐹𝑉 (𝐸1) ∪ 𝐹𝑉 (𝐸2) ∪
𝐹𝑉 (𝑆) \ {𝑥}
𝐹𝑉 (skip) = ∅
𝐹𝑉 (factor(𝐸)) = 𝐹𝑉 (𝐸)
𝐹𝑉 (𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛)) = 𝐹𝑉 (𝐿)∪𝐹𝑉 (𝐸1)∪· · ·∪
𝐹𝑉 (𝐸𝑛)

Definition 14. We overload the notation Γ(𝐿) that looks up the type of an L-value in Γ. When
applied to a more general expression 𝐸, Γ(𝐸) looks up the type level of 𝐸 in Γ:

Γ(𝑥) = ℓ, where ℓ is the level of 𝑥 in Γ
Γ(𝑐) = data
Γ( [𝐸1, . . . , 𝐸𝑛]) =

⊔𝑛
𝑖=1 Γ(𝐸𝑖 )

Γ(𝐸1 [𝐸2]) = Γ(𝐸1) ⊔ Γ(𝐸2)
Γ(𝑓 (𝐸1, . . . , 𝐸𝑛)) =

⊔𝑛
𝑖=1 Γ(𝐸𝑖 )

Γ( [𝐸 |𝑥 in 𝐸1 : 𝐸2]) = Γ(𝐸) ⊔ Γ(𝐸1) ⊔ Γ(𝐸2)
Definition 15. Γ(𝐸1, . . . , 𝐸𝑛) ≡ Γ(𝐸1) ⊔ · · · ⊔ Γ(𝐸𝑛).
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Definition 16 (𝑅Γ⊢ℓ (𝑆)). 𝑅Γ⊢ℓ (𝑆) is the set that contains the names of global variables that have
been read at level ℓ within the statement 𝑆 . It is defined recursively as follows:

𝑅Γ⊢ℓ (𝑥 [𝐸1] . . . [𝐸𝑛] = 𝐸) =
{ ⋃𝑛

𝑖=1 𝑅(𝐸𝑖 ) ∪ 𝑅(𝐸) if Γ(𝑥) = (_, ℓ)
∅ otherwise

𝑅Γ⊢ℓ (𝑆1; 𝑆2) = 𝑅Γ⊢ℓ (𝑆1) ∪ 𝑅Γ⊢ℓ (𝑆2)
𝑅Γ⊢ℓ (if(𝐸) 𝑆1 else 𝑆2) = 𝑅Γ⊢ℓ (𝐸) ∪ 𝑅Γ⊢ℓ (𝑆1) ∪ 𝑅Γ⊢ℓ (𝑆2)
𝑅Γ⊢ℓ (for(𝑥 in 𝐸1 : 𝐸2) 𝑆) = 𝑅Γ⊢ℓ (𝐸1) ∪ 𝑅Γ⊢ℓ (𝐸2) ∪ 𝑅Γ⊢ℓ (𝑆) \ {𝑥}
𝑅Γ⊢ℓ (skip) = ∅
𝑅Γ⊢ℓ (factor(𝐸)) =

{
𝑅(𝐸) if ℓ = model
∅ else

𝑅Γ⊢ℓ (𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛)) =


𝑅(𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛)) if ℓ =

⊔{ℓ ′ | ∃𝑥 ∈ 𝐹𝑉 (𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛)
∃𝜏 .Γ(𝑥) = (𝜏, ℓ ′)}

∅ otherwise.

Definition 17 (𝑊Γ⊢ℓ (𝑆)). 𝑊Γ⊢ℓ (𝑆) ≜ {𝑥 ∈𝑊 (𝑆) | Γ(𝑥) = (𝜏, ℓ) for some 𝜏}
Definition 18 (𝑊Γ⊢ℓ (𝑆)). 𝑊Γ⊢ℓ (𝑆) ≜ {𝑥 ∈𝑊 (𝑆) | Γ(𝑥) = (𝜏, ℓ) for some 𝜏}
Definition 19. Given a statement 𝑆 , we define the statement st(𝑆) by structural induction on 𝑆 :

st(𝑥 [𝐸1] . . . [𝐸𝑛] = 𝐸) = 𝑥 [𝐸1] . . . [𝐸𝑛] = 𝐸
st(𝑆1; 𝑆2) = st(𝑆1); st(𝑆2)
st(if(𝐸) 𝑆1 else 𝑆2) = if(𝐸) st(𝑆1) else st(𝑆2))
st(for(𝑥 in 𝐸1 : 𝐸2) 𝑆) = for(𝑥 in 𝐸1 : 𝐸2) st(𝑆)
st(skip) = skip
st(factor(𝐸)) = skip
st(𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛)) = skip
Definition 20 (Neighbours of 𝑧, ne(Γ, Γ′, 𝑧)).

For a ⊢ typing environment Γ, a ⊢2 typing environment Γ′ = Γ′𝜎 , Γ′x and a variable 𝑧 ∈ dom(Γ′x), the
neighbours of 𝑧 are defined as:

ne(Γ, Γ′, 𝑧) ≜ {𝑥 : (𝜏, ℓ) ∈ Γ′x | ℓ = l1 and Γ(𝑥) = (int⟨𝐾⟩,model) for some 𝐾}

A.2 Proofs
Restatement of Lemma 1 (Noninterference of ⊢) Suppose 𝑠1 |= Γ, 𝑠2 |= Γ, and 𝑠1 ≈ℓ 𝑠2 for
some ℓ . Then for SlicStan statement 𝑆 and expression 𝐸:

(1) If Γ ⊢ 𝐸 : (𝜏, ℓ) and (𝑠1, 𝐸) ⇓ 𝑉1 and (𝑠2, 𝐸) ⇓ 𝑉2 then 𝑉1 = 𝑉2.
(2) If Γ ⊢ 𝑆 : ℓ and (𝑠1, 𝑆) ⇓ 𝑠 ′1,𝑤1 and (𝑠2, 𝑆) ⇓ 𝑠 ′2,𝑤2 then 𝑠 ′1 ≈ℓ 𝑠 ′2.

Proof. (1) follows by rule induction on the derivation Γ ⊢ 𝐸 : (𝜏, ℓ), and using that if Γ ⊢ 𝐸 : (𝜏, ℓ),
𝑥 ∈ 𝑅(𝐸) and Γ(𝑥) = (𝜏 ′, ℓ ′), then ℓ ′ ≤ ℓ . (2) follows by rule induction on the derivation Γ ⊢ 𝑆 : ℓ
and using (1).

Most cases follow trivially from the inductive hypothesis. An exception is the (Target) case,
which we show below.

(Target)

We use the premise ∀ℓ ′ > ℓ .𝑅Γ⊢ℓ′ (𝑆) = ∅, together with a lemma that for 𝑆 , 𝑠1 and 𝑠2
such that 𝑠1, 𝑆 ⇓ 𝑠 ′1,𝑤1, and 𝑠2, 𝑆 ⇓ 𝑠 ′2,𝑤2, and ∀𝑥 ∈ 𝑅(𝑆) .𝑠1 (𝑥) = 𝑠2 (𝑥), we have that
𝑤1 = 𝑤2. (This lemma follows by structural induction on 𝑆 .) In the case of (Target),
𝑠1, target(𝑆) ⇓ 𝑤1, and 𝑠2, target(𝑆) ⇓ 𝑤2 and 𝑅(𝑆) = ⋃

ℓ′ 𝑅Γ⊢ℓ′ (𝑆) =
(⋃

ℓ′≤ℓ 𝑅Γ⊢ℓ′ (𝑆)
) ∪

(⋃ℓ′>ℓ 𝑅Γ⊢ℓ′ (𝑆)) =
⋃
ℓ′≤ℓ 𝑅Γ⊢ℓ′ (𝑆). Then, for any 𝑥 ∈ 𝑅(𝑆), 𝑥 ∈ 𝑅Γ⊢ℓ′ (𝑆) for some ℓ ′ ≤ ℓ

, so Γ(𝑥) = (𝜏, ℓ𝑥 ) such that ℓ𝑥 ≤ ℓ ′ ≤ ℓ . And thus, by definition of ≈ℓ , 𝑠1 (𝑥) = 𝑠2 (𝑥)
for any 𝑥 ∈ 𝑅(𝑆). By applying the lemma above, we then get𝑤1 = 𝑤2, as required.

□
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Restatement of Lemma 4 (Shredding produces single-level statements)
𝑆 ⇕Γ (𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 ) =⇒ Γ ⊢ data(𝑆𝐷 ) ∧ Γ ⊢ model(𝑆𝑀 ) ∧ Γ ⊢ genquant(𝑆𝑄 )

Proof. By rule induction on the derivation of 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 . □

Restatement of Lemma 5 (Property of single-level statements)
Let Γ𝜎 , Γx ⊢ 𝑆 be SlicStan program, such that 𝑆 is single-level statement of level ℓ , Γ ⊢ ℓ (𝑆). Then there
exist unique functions 𝑓 and 𝜙 , such that for any 𝜎, x |= Γ𝜎 , Γx:

J𝑆K(𝜎) (𝑥) = 𝑓 (𝜎≤ℓ , x≤ℓ ) ∪ 𝜎>ℓ , 𝜙 (𝜎≤ℓ ) (x≤ℓ ),
where we write 𝜎≤ℓ = {(𝑥 ↦→ 𝑉 ) ∈ 𝜎 | Γ𝜎 (𝑥) = (_, ℓ)} and 𝜎>ℓ = 𝜎 \ 𝜎≤ℓ .

Proof. This property follows from noninterference (Lemma 1), if we understand factor and
sample statements as assignments to a reserved weight variables of different levels. Let Γ, 𝑆 be a
SlicStan program and suppose we obtain 𝑆 ′ by:

• Substituting every factor(𝐸) statement with 𝑤ℓ = 𝑤ℓ ∗ 𝐸, where Γ(𝐸) = real, ℓ and 𝑤data,
𝑤model and𝑤qenqant are write-only, distinct and reserved variables in the program.

• Substituting every 𝐿 ∼ 𝑑 (𝐸1, . . . , 𝐸𝑛) statement with 𝑤ℓ = 𝑤ℓ ∗ 𝑑pdf (𝐿 | 𝐸1, . . . , 𝐸𝑛), where
Γ(𝑑pdf (𝐿 | 𝐸1, . . . , 𝐸𝑛)) = real, ℓ .

Then for all 𝜎, x |= Γ, we have J𝑆K𝑝 (𝜎) (x) =
∏
ℓ 𝜎

′(𝑤ℓ ), where 𝜎 ′ = J𝑆 ′K𝑠 (𝜎,∀ℓ .𝑤ℓ ↦→ 1) (x). By
non-interference (Lemma 1), for any level ℓ and store 𝜎2 ≈ℓ 𝜎 , if 𝜎 ′

2 = J𝑆 ′K𝑠 (𝜎2,∀ℓ .𝑤ℓ ↦→ 1) (x), then
𝜎 ′

2 ≈ℓ 𝜎 ′. Thus 𝜎 ′
2 (𝑤ℓ′) = 𝜎2 (𝑤ℓ′) for ℓ ′ ≤ ℓ , and therefore, when 𝑆 is a single-level statement of level

ℓ , J𝑆 ′K𝑠 (𝜎,∀ℓ .𝑤ℓ ↦→ 1) (x) = 𝑓 (𝜎≤ℓ , x≤ℓ ), 𝜎>ℓ ,𝑤≤ℓ ↦→ 𝜙 (𝜎≤ℓ , x≤ℓ ),𝑤>ℓ ↦→ 1 , for some functions 𝑓
and 𝜙 . Finally, this gives us J𝑆K𝑠 (𝜎, x) = (𝑓 (𝜎≤ℓ , x≤ℓ ), 𝜎>ℓ ), J𝑆K𝑝 (𝜎, x) = 𝜙 (𝜎≤ℓ , x≤ℓ ). □

Restatement of Lemma 6 (Semantic Preservation of ⇕Γ)
If Γ ⊢ 𝑆 : data and 𝑆 ⇕Γ (𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 ) then J𝑆K = J𝑆𝐷 ; 𝑆𝑀 ; 𝑆𝑄K.

Proof. Follows by adapting proof from [Gorinova et al. 2019]. □

Restatement of Lemma 10 (Semantic Preservation of ⇕Γ 2)
If Γ ⊢2 𝑆 : l1 and 𝑆 ⇕Γ 𝑆1, 𝑆2, 𝑆3 then J𝑆K = J𝑆1; 𝑆2; 𝑆3K.

Proof. Follows by adapting proof from [Gorinova et al. 2019]. □

Lemma 13. For a SlicStan expression 𝐸 and a function 𝜙 (𝑥,𝑦) = 𝑉 , where 𝑉 is a value such that
(𝜎, 𝑥,𝑦), 𝐸 ⇓ 𝑉 for every 𝑥 and 𝑦 and some 𝜎 , if 𝑥 ∉ 𝑅(𝐸), then:

∃𝜙 ′ such that 𝜙 (𝑥,𝑦) = 𝜙 ′(𝑦) for all 𝑥,𝑦

Proof. By induction on the structure of 𝐸. □

Restatement of Theorem 1 (Shredding induces a factorisation of the density).
Suppose Γ ⊢ 𝑆 : data and 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 and Γ = Γ𝜎 ∪ ΓD ∪ Γ𝜽 ∪ Γ𝑄 . For all 𝜎 , D, 𝜽 , and 𝑄 : if
𝜎,D, 𝜽 , 𝑄 |= Γ𝜎 , ΓD, Γ𝜽 , Γ𝑄 , and J𝑆K𝑝 (𝜎) (D, 𝜽 , 𝑄) ∝ 𝑝 (D, 𝜽 , 𝑄) and𝑊 (𝑆𝑄 ) = dom(Γ𝑄 ) then:

(1) J𝑆𝑀K𝑝 (𝜎𝐷 ) (D, 𝜽 , 𝑄) ∝ 𝑝 (𝜽 ,D)
(2) J𝑆𝑄K𝑝 (𝜎𝑀 ) (D, 𝜽 , 𝑄) = 𝑝 (𝑄 | 𝜽 ,D)

where 𝜎𝐷 = J𝑆𝐷K𝑠 (𝜎) (D, 𝜽 , 𝑄) and 𝜎𝑀 = J𝑆𝑀K𝑠 (𝜎𝐷 ) (D, 𝜽 , 𝑄).
Proof. We prove this by establishing a more general result:
For 𝜎,D, 𝜽 , 𝑄 |= Γ𝜎 , ΓD, Γ𝜽 , Γ𝑄 , 𝐴 = 𝑊 (𝑆𝑄 ) ⊆ 𝑄 and some 𝐵 ⊆ 𝑄 \ 𝐴, if J𝑆K𝑝 (𝜎) (D, 𝜽 , 𝑄) ∝

𝑝 (D, 𝜽 , 𝐴 | 𝐵) then:
(1) J𝑆𝐷K𝑝 (𝜎) (D, 𝜽 , 𝑄) = 1

ACM Trans. Program. Lang. Syst., Vol. 44, No. 1, Article 4. Publication date: December 2021.



4:46 Maria I. Gorinova, Andrew D. Gordon, Charles Sutton, and Matthijs Vákár

(2) J𝑆𝑀K𝑝 (𝜎𝐷 ) (D, 𝜽 , 𝑄) = 𝑝 (𝜽 ,D)
(3) J𝑆𝑄K𝑝 (𝜎𝑀 ) (D, 𝜽 , 𝑄) = 𝑝 (𝐴 | 𝜽 ,D, 𝐵)
Note that in the case where𝑊 (𝑆𝑄 ) = 𝑄 , we have 𝐴 = 𝑄 and 𝐵 = ∅, and the original statement

of the theorem, J𝑆𝑄K𝑝 (𝜎𝑀 ) (D, 𝜽 , 𝑄) = 𝑝 (𝑄 | 𝜽 ,D), holds.
We prove the extended formulation above by induction on the structure of 𝑆 and use of Lemma 2,

Lemma 4 and Lemma 5, Lemma 6.
Take any 𝜎,D, 𝜽 , 𝑄 |= Γ𝜎 , ΓD, Γ𝜽 , Γ𝑄 and let

Φ(𝑆, 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 ) ≜
Γ ⊢ 𝑆 : data ∧ 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 ∧𝐴 =𝑊 (𝑆𝑄 )
=⇒ ∃𝐵 ⊆ 𝑄 \𝐴.∀𝜎𝐷 , 𝜎𝑀 . (
J𝑆K𝑝 (𝜎) (D, 𝜽 , 𝑄) ∝ 𝑝 (D, 𝜽 , 𝐴 | 𝐵) ∧ J𝑆𝐷K(𝜎) (D, 𝜽 , 𝑄) = 𝜎𝐷 ∧ J𝑆𝑀 K(𝜎𝐷 ) (D, 𝜽 , 𝑄) = 𝜎𝑀

=⇒ J𝑆𝐷K𝑝 (𝜎) (D) = 1
∧ J𝑆𝑀 K𝑝 (𝜎𝐷 ) (D, 𝜽 ) = 𝑝 (𝜽 ,D)
∧ ∃𝐵 ⊆ 𝑄 \𝑊 (𝑆𝑄 ) .J𝑆𝑄K𝑝 (𝜎𝑀 ) (D, \,𝑄) = 𝑝 (𝐴 | 𝜽 ,D, 𝐵)

)

Take any Γ, 𝑆, 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 such that 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 , 𝐴 = 𝑊 (𝑆𝑄 ), and take any 𝜎,D, 𝜽 , 𝑄 |=
Γ𝜎 , ΓD, Γ𝜽 , Γ𝑄 , an unnormalised density 𝑝 and𝐵 ⊆ 𝑄\𝐴, such that J𝑆K𝑝 (𝜎) (D, 𝜽 , 𝑄) ∝ 𝑝 (D, 𝜽 , 𝐴 | 𝐵).
We prove by rule induction on the derivation of 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 that Φ(𝑆, 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 ).

(Shred Seq) Let 𝑆 = 𝑆1; 𝑆2 and 𝑆1 ⇕Γ 𝑆1𝐷 , 𝑆1𝑀 , 𝑆1𝑄 and 𝑆2 ⇕Γ 𝑆2𝐷 , 𝑆2𝑀 , 𝑆2𝑄 . Thus 𝑆 ⇕Γ
(𝑆1𝐷 ; 𝑆2𝐷 ), (𝑆1𝑀 ; 𝑆2𝑀 ), (𝑆1𝑄 ; 𝑆2𝑄 ).

Assume Φ(𝑆1, 𝑆1𝐷 , 𝑆1𝑀 , 𝑆1𝑄 ) and Φ(𝑆2, 𝑆2𝐷 , 𝑆2𝑀 , 𝑆2𝑄 ).
Let:
• 𝐴1 =𝑊 (𝑆1𝑄 ) and 𝐵1 ⊆ 𝑄 \𝐴1 is such that J𝑆1𝑄K𝑝 (𝜎𝑀 ) (D, 𝜽 , 𝑄) = 𝑝1 (𝐴1 | D, 𝜽 , 𝐵1).
• J𝑆1K(𝜎) (D, 𝜽 , 𝑄) = 𝜎 ′.
• J𝑆1K𝑝 (𝜎) (D, 𝜽 , 𝑄) ∝ 𝑝1 (D, 𝜽 , 𝐴1 | 𝐵1).
• 𝐴2 =𝑊 (𝑆2𝑄 ) and 𝐵2 ⊆ 𝑄 \𝐴2 is such that J𝑆2𝑄K𝑝 (𝜎𝑀 ) (D, 𝜽 , 𝑄) = 𝑝2 (𝐴2 | D, 𝜽 , 𝐵2).
• J𝑆2K𝑝 (𝜎 ′) (D, 𝜽 , 𝑄) ∝ 𝑝2 (D, 𝜽 , 𝐴2 | 𝐵2).

Thus, by Lemma 2, J𝑆K𝑝 = J𝑆1; 𝑆2K𝑝 = J𝑆1K𝑝 × J𝑆2K𝑝 , so 𝑝 (D, 𝜽 , 𝐴 | 𝐵) ∝ 𝑝1 (D, 𝜽 , 𝐴1 |
𝐵1)𝑝2 (D, 𝜽 , 𝐴2 | 𝐵2).

For (1), we have ∀𝜎 |= Γ𝜎 .J𝑆1𝐷K𝑝 (𝜎) (D, 𝜽 , 𝑄) = J𝑆2𝐷K𝑝 (𝜎) (D, 𝜽 , 𝑄) = 1. Thus, by Lemma 2,
J𝑆1𝐷 ; 𝑆2𝐷K𝑝 = J𝑆1𝐷K𝑝 × J𝑆2𝐷K𝑝 = 1.

From Φ(𝑆1, 𝑆1𝐷 , 𝑆1𝑀 , 𝑆1𝑄 ) and Φ(𝑆2, 𝑆2𝐷 , 𝑆2𝑀 , 𝑆2𝑄 ) we also have:
• J𝑆1𝑄K𝑝 (𝜎𝑀 ) (D, 𝜽 , 𝑄) = 𝑝 (𝐴1 | 𝜽 ,D, 𝐵1)
• J𝑆2𝑄K𝑝 (𝜎 ′

𝑀 ) (D, 𝜽 , 𝑄) = 𝑝 (𝐴2 | 𝜽 ,D, 𝐵2)

𝐴 =𝑊 (𝑆𝑄 ) =𝑊 (𝑆1𝑄 ; 𝑆2𝑄 ) =𝑊 (𝑆1𝑄 ) ∪𝑊 (𝑆2𝑄 ) = 𝐴1 ∪𝐴2

From 𝑆 well typed, it must be the case that 𝐴1 ∩𝐴2 = ∅. Thus, we write 𝐴 = 𝐴1, 𝐴2.
We will prove that the property holds for 𝐵 = 𝐵1 ∪ 𝐵2 \𝐴1 \𝐴2.
By semantic preservation of ⇕Γ (Lemma 6), J𝑆1K𝑝 = J𝑆1𝐷 ; 𝑆1𝑀 ; 𝑆1𝑄K𝑝 = J𝑆1𝐷K𝑝 × J𝑆1𝑀K𝑝 ×

J𝑆1𝑄K𝑝 ∝ 1 × 𝑝1 (𝜽 ,D) × 𝑝1 (𝐴1 | 𝜽 ,D, 𝐵1). Similarly, J𝑆2K𝑝 ∝ 1 × 𝑝2 (𝜽 ,D) × 𝑝2 (𝐴2 | 𝜽 ,D, 𝐵2) =
𝑝2 (𝜽 ,D)𝑝2 (𝐴2 | 𝜽 ,D, 𝐴1, 𝐵1).

But 𝑝 (𝜽 ,D, 𝐴 | 𝐵) ∝ 𝑝1 (𝜽 ,D, 𝐴1 | 𝐵1)𝑝2 (𝜽 ,D, 𝐴2 | 𝐵2), so:

𝑝 (𝜽 ,D, 𝐴 | 𝐵) ∝ 𝑝1 (𝜽 ,D)𝑝1 (𝐴1 | 𝜽 ,D, 𝐵1)𝑝2 (𝜽 ,D)𝑝2 (𝐴2 | 𝜽 ,D, 𝐴1, 𝐵1)
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So,

𝑝 (𝜽 ,D) =
∫

𝑝 (D, 𝜽 , 𝐴 | 𝐵)𝑝 (𝐵)𝑑𝐴𝑑𝐵

∝
∫

𝑝1 (𝜽 ,D)𝑝1 (𝐴1 | 𝜽 ,D, 𝐵1)𝑝2 (𝜽 ,D)𝑝2 (𝐴2 | 𝜽 ,D, 𝐴1, 𝐵1)𝑝 (𝐵)𝑑𝐴1𝑑𝐴2𝑑𝐵

∝ 𝑝1 (𝜽 ,D)𝑝2 (𝜽 ,D)
∫

𝑝 (𝐵)𝑝1 (𝐴1 | 𝜽 ,D, 𝐵1)𝑝2 (𝐴2 | 𝜽 ,D, 𝐴1, 𝐵1)𝑑𝐴1𝑑𝐴2𝑑𝐵

= 𝑝1 (𝜽 ,D)𝑝2 (𝜽 ,D)
∫

𝑝 (𝐵)
(∫

𝑝1 (𝐴1 | 𝜽 ,D, 𝐵1)
(∫

𝑝2 (𝐴2 | 𝜽 ,D, 𝐴1, 𝐵1)𝑑𝐴2

)
𝑑𝐴1

)
𝑑𝐵

= 𝑝1 (𝜽 ,D)𝑝2 (𝜽 ,D)
∝ 𝑝1 (𝜽 ,D)𝑝2 (𝜽 ,D)

Thus J𝑆𝑀K𝑝 = J𝑆1𝑀 ; 𝑆2𝑀K𝑝 ∝ 𝑝1 (𝜽 ,D)𝑝2 (𝜽 ,D) ∝ 𝑝 (𝜽 ,D)
Finally, for last property on 𝑆 , we use the chain rule of probability, semantics property of

sequencing, and the result from above to get:

𝑝 (𝐴 | D, 𝜽 , 𝐵) = 𝑝 (D, 𝜽 , 𝐴 | 𝐵)
𝑝 (D, 𝜽 | 𝐵)

∝ 𝑝1 (D, 𝜽 )𝑝2 (D, 𝜽 )𝑝1 (𝐴1 | D, 𝜽 , 𝐵1)𝑝2 (𝐴2 | D, 𝜽 , 𝐵2)
𝑝 (D, 𝜽 ) × 𝑝 (𝐵)

𝑝 (𝐵 | D, 𝜽 )
∝ 𝑝1 (𝐴1 | D, 𝜽 , 𝐵1)𝑝2 (𝐴2 | D, 𝜽 , 𝐵2)
= J𝑆1𝑄K𝑝J𝑆2𝑄K𝑝 = J𝑆𝑄K𝑝

Thus:

𝑝 (𝐴 | D, 𝜽 , 𝐵) = 𝑝1 (𝐴1 | D, 𝜽 , 𝐵1)𝑝2 (𝐴2 | D, 𝜽 , 𝐵2)
𝑍

Where:

𝑍 =
∫

𝑝1 (𝐴1 | D, 𝜽 , 𝐵1)𝑝2 (𝐴2 | D, 𝜽 , 𝐵2)𝑑𝐴

=
∫

𝑝1 (𝐴1 | D, 𝜽 , 𝐵1)
(∫

𝑝2 (𝐴2 | D, 𝜽 , 𝐵2)𝑑𝐴2

)
𝑑𝐴1

= 1

So 𝑍 = 1, and 𝑝 (𝐴 | D, 𝜽 , 𝐵) = 𝑝1 (𝐴1 | D, 𝜽 , 𝐵1)𝑝2 (𝐴2 | D, 𝜽 , 𝐵2) = J𝑆𝑄K𝑝 .
Thus:
• J𝑆𝐷K𝑝 = J𝑆1𝐷 ; 𝑆2𝐷K𝑝 = 1
• J𝑆𝑀K𝑝 = J𝑆1𝑀 ; 𝑆2𝑀K𝑝 ∝ 𝑝1 (𝜽 ,D)𝑝2 (𝜽 ,D) = 𝑝 (𝜽 ,D)
• J𝑆𝑄K𝑝 = J𝑆1𝑄 ; 𝑆2𝑄K𝑝 = 𝑝1 (𝐴1 | 𝜽 ,D, 𝐵1)𝑝2 (𝐴2 | 𝜽 ,D, 𝐴1, 𝐵1) = 𝑝 (𝐴1, 𝐴2 | 𝜽 ,D, 𝐵)

Φ((𝑆1; 𝑆2), (𝑆1𝐷 ; 𝑆2𝐷 ), (𝑆1𝑀 ; 𝑆2𝑀 ), (𝑆1𝑄 ; 𝑆2𝑄 )) from here. □

Restatement of Lemma 9 (Shredding produces single-level statements 2)
𝑆 ⇕Γ 𝑆1, 𝑆2, 𝑆3 =⇒ Γ ⊢ l1(𝑆1) ∧ Γ ⊢ l2(𝑆2) ∧ Γ ⊢ l3(𝑆3)

Proof. By rule induction on the derivation of 𝑆 ⇕Γ 𝑆1, 𝑆2, 𝑆3. □

Restatement of Lemma 10 (Semantic preservation of ⇕Γ , ⊢2)
If Γ ⊢2 𝑆 : l1 and 𝑆 ⇕Γ 𝑆1, 𝑆2, 𝑆3 then J𝑆K = J𝑆1; 𝑆2; 𝑆3K.
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Proof. □

Restatement of Lemma 11 (Property of single-level statements 2)
Let Γ𝜎 , Γx, 𝑆 be a SlicStan program, and Γ ⊢2 𝑆 : l1, and 𝑆 is single-level statement of level ℓ , Γ ⊢2 ℓ (𝑆).
Then there exist unique functions 𝑓 and 𝜙 , such that for any 𝜎, x |= Γ𝜎 , Γx:

(1) If ℓ = l1, then J𝑆K(𝜎) (𝑥) =
(
𝑓 (𝜎l1, xl1), 𝜎l2, 𝜎l3

)
, 𝜙 (𝜎l1) (xl1)

(2) If ℓ = l2, then J𝑆K(𝜎) (𝑥) =
(
𝜎l1, 𝑓 (𝜎l1, 𝜎l2, xl1, xl2), 𝜎l3

)
, 𝜙 (𝜎l1, 𝜎l2) (xl1, xl2)

(3) If ℓ = l3, then J𝑆K(𝜎) (𝑥) =
(
𝜎l1, 𝜎l2, 𝑓 (𝜎l1, 𝜎l3, xl1, xl3)

)
, 𝜙 (𝜎l1, 𝜎l3) (xl1, xl3)

Proof. By understanding factor and sample statements as assignment to a reserved weight
variables of different levels (similarly to Lemma 5) and noninterference (Lemma 7). □

Restatement of Lemma 12 (Existence of model to genqant transformation) For any Slic-
Stan program Γ, 𝑆 such that Γ ⊢ 𝑆 : l1, and a variable 𝑧 ∈ dom(Γ) such that Γ(𝑧) = (int⟨𝐾⟩,model),
there exists a SlicStan program Γ′, 𝑆 ′, such that,

Γ, 𝑆
𝑧−→ Γ′, 𝑆 ′ and Γ′(𝑧) = (int⟨𝐾⟩, genquant)

Proof. Take a SlicStan program Γ, 𝑆 , a typing environment Γ𝑀 , a variable 𝑧, and statements
𝑆𝐷 , 𝑆𝑀 and 𝑆𝑄 , such that:

Γ(𝑧) = (int⟨𝐾⟩,model) Γ ⊢ 𝑆 : data Γ
𝑧−→ Γ𝑀 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 Γ𝑀 ⊢2 𝑆𝑀 : l1

Take also statements 𝑆1, 𝑆2, 𝑆3, and 𝑆 ′𝑀 , and a typing environment Γne such that

𝑆𝑀 ⇕Γ𝑀 𝑆1, 𝑆2, 𝑆3 Γne = ne(Γ, Γ𝑀 , 𝑧)
𝑆 ′𝑀 = 𝑆1; 𝑓 = 𝜙 (Γne){elim(int⟨𝐾⟩𝑧) 𝑆2}; factor(𝑓 [dom(Γne)]); 𝑆3; gen(𝑧)𝑆2; st(𝑆2)

Let Γ′ is such that dom(Γ′) = dom(Γ) ∪ {𝑓 } and for all 𝑥 : 𝜏, ℓ ∈ Γ:

Γ′(𝑥) =


(𝜏, ℓ) if ℓ ≠ model
(𝜏, ℓ) if ℓ = model and Γ𝑀 (𝑥) ≠ (𝜏, l2)
(𝜏, genqant) if ℓ = model and Γ𝑀 (𝑥) = (𝜏, l2)

By semantic preservation of shredding (Lemma 6, Lemma 10) and type preservation of the
operational semantics ([Gorinova et al. 2019]), Γ ⊢ 𝑆𝐷 ; 𝑆1; 𝑆2; 𝑆3; 𝑆𝑄 : data, and thus, by (Seq),
Γ ⊢ 𝑆𝐷 : data, Γ ⊢ 𝑆1 : data, . . . , Γ ⊢ 𝑆𝑄 : data.

By definition of Γ′, Γ′data ⊂ Γdata. 𝑆𝐷 is single-level of level data and Γ ⊢ 𝑆𝐷 : data, so
Γdata ⊢ 𝑆𝐷 : data and thus Γ′ ⊢ 𝑆𝐷 : data. Similarly, Γ ⊢ 𝑆1 : D and Γ ⊢ 𝑆3 : D.

Γ ⊢ 𝑆2 : data, so using (Phi), (Elim) and (Factor), and noting that by definition dom(Γne) ⊂
dom(Γ𝑀,l1), so Γne ⊂ Γ, we can derive:

Γ′ ⊢ 𝑓 = 𝜙 (Γne){elim(int⟨𝐾⟩𝑧) 𝑆2}; factor(𝑓 [dom(Γne)]) : data

By Γ ⊢ 𝑆2 : data and the definition of Γ′, and using (Gen) and definition of st, we also derive:

Γ′ ⊢ gen(𝑧) 𝑆2; st(𝑆2) : genqant

Finally, 𝑆𝑄 is a single-level statement of level genqant and for all 𝑥 : 𝜏, ℓ ∈ Γ, 𝑥 : 𝜏, ℓ ′ ∈ Γ,
where ℓ ≤ ℓ ′. Therefore, Γ ⊢ 𝑆𝑄 : data implies Γ′ ⊢ 𝑆𝑄 : data.

Altogether, this gives us Γ′ ⊢ 𝑆𝐷 ; 𝑆 ′𝑀 ; 𝑆𝑄 , and so by (Elim Gen), Γ, 𝑆 𝑧−→ Γ′, 𝑆𝐷 ; 𝑆 ′𝑀 , 𝑆𝑄 .
□
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Lemma 14. Let Γ, 𝑆 be a SlicStan program, such that 𝜎, x |= Γ, J𝑆K𝑠 (𝜎) (x) = 𝜎 ′ and J𝑆K𝑝 (𝜎) (x) =
𝜓 (x) for some function 𝜓 . If 𝑓 ∉ dom(Γ) is a fresh variable, 𝑧, 𝑧1, . . . 𝑧𝑛 ∈ dom(Γx) are discrete
variables of base types int⟨𝐾⟩, int⟨𝐾1⟩, . . . , int⟨𝐾𝑛⟩ respectively, and 𝑆 ′ is a statement such that

𝑆 ′ = 𝑓 = 𝜙 (int⟨𝐾1⟩𝑧1, . . . int⟨𝐾𝑛⟩𝑧𝑛){elim(int⟨𝐾⟩𝑧) 𝑆}; factor(𝑓 [𝑧1, . . . , 𝑧𝑛]);
then J𝑆 ′K𝑠 (𝜎) (x) = 𝜎 ′′ with 𝜎 ′′[−𝑓 ] = 𝜎 ′ and J𝑆 ′K𝑝 (𝜎) (x) =

∑𝐾
𝑧=1𝜓 (x).

Proof. By examining the operational semantics of assignment, factor, and the derived forms
elim and 𝜙 . □

Lemma 15. Let Γ, 𝑆 be a SlicStan program, such that 𝜎, x |= Γ, J𝑆K𝑠 (𝜎) (x) = 𝜎 ′ and J𝑆K𝑝 (𝜎) (x) =
𝜓 (x) for some function𝜓 . If 𝑧 ∈ dom(Γx) is a discrete variable of base type int⟨𝐾⟩, and 𝑆 ′ is a statement
such that

𝑆 ′ = gen(𝑧) 𝑆 ; st(𝑆);
then J𝑆 ′K𝑠 (𝜎) (x) = 𝜎 ′, 𝜓 (x) is normalisable with respect to 𝑧 with 𝜓 (x) ∝ 𝑝 (𝑧 | x \ {𝑧}), and

J𝑆 ′K𝑝 (𝜎) (x) = 𝑝 (𝑧 | x \ {𝑧}).
Proof. By examining the operational semantics of∼ and target, and by induction on the structure

of 𝑆 to prove Jst(𝑆)K𝑠 = J𝑆K𝑠 and Jst(𝑆)K𝑝 = 1. □

Typing Rules for Derived Forms:

(Elim)
Γ′ ⊢ 𝑆 : data 𝑅Γ⊢genqant (𝑆) = ∅ Γ′ = Γ [𝑧 ↦→ int⟨𝐾⟩,model]

Γ ⊢ elim(int⟨𝐾⟩𝑧) 𝑆 : model

(Gen)
Γ(𝑧) = (int, genqant) Γ ⊢ 𝑆 : data

Γ ⊢ gen(int⟨𝐾⟩ 𝑧) 𝑆 : genqant

(Phi)
Γ′ ⊢ 𝑆 : data ∀ℓ ′ > ℓ .𝑅Γ⊢ℓ′ (𝑆) = ∅ Γ′ = Γ [𝑧1 ↦→ (int⟨𝐾1⟩, ℓ), . . . , 𝑧𝑁 ↦→ (int⟨𝐾𝑁 ⟩, ℓ)]

Γ ⊢ 𝜙 (int⟨𝐾1⟩ 𝑧1, . . . , int⟨𝐾𝑁 ⟩ 𝑧𝑁 ) 𝑆 : real, ℓ

Restatement of Theorem 4 (Semantic preservation of 𝑧−→)
For SlicStan programs Γ, 𝑆 and Γ′, 𝑆 ′, and a discrete parameter 𝑧: Γ, 𝑆

𝑧−→ Γ′, 𝑆 ′ → J𝑆K = J𝑆 ′K.

Proof.

Let Γ, 𝑆 and Γ′, 𝑆 ′ be SlicStan programs, and 𝑧 be a discrete parameter, such that Γ, 𝑆 𝑧−→ Γ′, 𝑆 ′. Let
𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 , 𝑆 ⇕Γ′ 𝑆 ′𝐷 , 𝑆 ′𝑀 , 𝑆 ′𝑄 , and 𝑆𝑀 ⇕Γ′′ 𝑆1, 𝑆2, 𝑆3 for Γ′′ such that Γ 𝑧−→ Γ′′ and Γ′′ ⊢2 𝑆𝑀 : l1.

Let Γ = Γ𝜎 , Γdata, Γmodel, Γgenqant, Γ′ = Γ′𝜎 , Γ′data, Γ
′model, Γ′genqant and

Γ′′ = Γ′′𝜎 , Γ′′l1, Γ
′′
l2, Γ

′′
l3 be the usual partitioning of each of the typing environments.

Let 𝑧 be a store such that 𝑧 |= {𝑧 : Γ(𝑧)}.
Let D, 𝜽 and 𝑄 be stores such that D |= Γdata, 𝑧, 𝜽 |= Γmodel, and 𝑄 |= Γgenqant.
Let 𝜽 1, 𝜽 2 and 𝜽 3 be a partitioning of 𝜽 , such that D, 𝜽 1 |= Γ′′l1, 𝑧, 𝜽 2 |= Γ′′l2, and 𝜽 3 |= Γ′′l3.
Then, by definition of Γ 𝑧−→ Γ′′, 𝜽 2 = 𝑧.
By Theorem 1:
• J𝑆𝐷K𝑝 (𝜎) (D, 𝑧, 𝜽 , 𝑄) = 1
• J𝑆𝑀K𝑝 (𝜎𝐷 ) (D, 𝑧, 𝜽 , 𝑄) ∝ 𝑝 (𝑧, 𝜽 ,D)
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• J𝑆𝑄K𝑝 (𝜎𝑀 ) (D, 𝑧, 𝜽 , 𝑄) = 𝑝 (𝑄 | 𝑧, 𝜽 ,D)
Γ, 𝑆

𝑑−→ Γ′, 𝑆 ′, thus 𝑆 ′ must be of the form
𝑆 ′ = 𝑆𝐷 ; 𝑆1; 𝑓 = 𝜙 (Γl1′′){elim(int⟨𝐾⟩𝑧) 𝑆2}; factor(𝑓 [dom(Γ′′l1)]); 𝑆3; gen(𝑧)𝑆2; st(𝑆2); 𝑆𝑄

where Γ ⊢ 𝑆 : data, 𝑆 ⇕Γ 𝑆𝐷 , 𝑆𝑀 , 𝑆𝑄 , Γ
𝑧−→ Γ′′, Γ ⊢2 𝑆𝑀 : l1, and 𝑆𝑀 ⇕Γ′′ 𝑆1, 𝑆2, 𝑆3.

The relation ⇕Γ is semantics-preserving for well-typed programs with respect to both ⊢ and ⊢2
(Lemma 6 and Lemma 10). Thus J𝑆K = J𝑆𝐷 ; 𝑆1; 𝑆2; 𝑆3; 𝑆𝑄K.

We present a diagrammatic derivation of the change on store and density that each sub-part in
the original and transformed program makes in Figure 13.

Combining all of these results gives that:
J𝑆 ′K𝑠 (𝜎) (D, 𝜽 , 𝑄) = 𝜎 ′′ = 𝜎 ′[𝑓 ↦→ 𝑣] = J𝑆K𝑠 (𝜎) ((D, 𝜽 , 𝑄)) [𝑓 ↦→ 𝑣]

In other words, the transformation 𝑧−→ preserves store semantics (up to creating of one new fresh
variable f).

For the density, we get:
J𝑆 ′K𝑝 (𝜎) (D, 𝜽 , 𝑄)

= 𝜙1 (D, 𝜽 1)
[∑
𝑧

𝜙2 (D, 𝜽 1, 𝑧)
]
𝜙3 (D, 𝜽 1, 𝜽 3)𝑝 (𝑧 | D, 𝜽 1)𝑝 (𝑄 | D, 𝜽 ) from Figure 13

=

[∑
𝑧

𝜙1 (D, 𝜽 1)𝜙2 (D, 𝜽 1, 𝑧)𝜙3 (D, 𝜽 1, 𝜽 3)
]
𝑝 (𝑧 | D, 𝜽 1)𝑝 (𝑄 | D, 𝜽 ) by the distributive

law

∝
[∑
𝑧

𝑝 (D, 𝜽 1, 𝑧, 𝜽 2)
]
𝑝 (𝑧 | D, 𝜽 1)𝑝 (𝑄 | D, 𝜽 ) by Theorem 1

and Lemma 10

= 𝑝 (D, 𝜽 1, 𝜽 2)𝑝 (𝑧 | D, 𝜽 1)𝑝 (𝑄 | D, 𝜽 ) marginalisation of 𝑧

= 𝑝 (D, 𝜽 1, 𝜽 2)𝑝 (𝑧 | D, 𝜽 1, 𝜽 3)𝑝 (𝑄 | D, 𝜽 ) by 𝑧 ⊥⊥ 𝜽 3 | 𝜽 1
(Theorem 3)

= 𝑝 (D, 𝜽 , 𝑄) by the chain rule
for probability

∝ J𝑆K𝑝 (𝜎) (D, 𝜽 , 𝑄)
Together, this gives us J𝑆K = J𝑆 ′K (up to 𝑆 ′ creating one new fresh variable f).

□
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𝜎

𝜎 (𝐷 ) , 1

𝜎 (𝐷1) ,
𝜙1 (𝜎 (𝐷1)

l1 ) (D, 𝜽 1)

(
𝜎 (𝐷1)

l1 , 𝑓2 (𝜎 (𝐷1)
l1,l2), 𝜎

(𝐷1)
l3

)
,

𝜙2 (𝜎 (𝐷1)
l1 , 𝑓2 (𝜎 (𝐷1)

l1,l2)) (D, 𝜽 1, 𝑧)

(
𝜎 (𝐷1)

l1 , 𝜎 (𝐷1)
l2 , 𝑓 ↦→ 𝑣, 𝜎 (𝐷1)

l3
)
,∑

𝑧 𝜙2 (𝜎 (𝐷1)
l1 , 𝑓2 (𝜎 (𝐷1)

l1,l2)) (D, 𝜽 1, 𝑧)

(
𝜎 (𝐷1)

l1 , 𝑓2 (𝜎 (𝐷1)
l1,l2), 𝑓3 (𝜎

(𝐷1)
l1,l3)

)
,

𝜙3 (𝜎 (𝐷1)
l1 , 𝑓3 (𝜎 (𝐷1)

l1,l3)) (D, 𝜽 1, 𝜽 3)

(
𝜎 (𝐷1)

l1 , 𝜎 (𝐷1)
l2 , 𝑓 ↦→ 𝑣, 𝑓3 (𝜎 (𝐷1)

l1,l3)
)
,

𝜙3 (𝜎 (𝐷1)
l1 , 𝑓3 (𝜎 (𝐷1)

l1,l3)) (D, 𝜽 1, 𝜽 3)

(
𝜎 (𝐷1)

l1 , 𝑓2 (𝜎 (𝐷1)
l1,l2), 𝑓 ↦→ 𝑣, 𝑓3 (𝜎 (𝐷1)

l1,l3)
)
,

𝑝 (𝑧 | D, 𝜽 1)

𝑓𝑔
(
𝜎 (𝐷1)

l1 , 𝑓2 (𝜎 (𝐷1)
l1,l2), 𝑓3 (𝜎

(𝐷1)
l1,l3)

)
, 𝑓 ↦→ 𝑣,

𝜙𝑔 (𝜎 (𝐷1)
l1 , 𝑓2 (𝜎 (𝐷1)

l1,l2), 𝑓3 (𝜎
(𝐷1)
l1,l3)) (D, 𝜽 ,𝑄)

= 𝑝 (𝑄 | D, 𝜽 )

𝑓𝑔
(
𝜎 (𝐷1)

l1 , 𝑓2 (𝜎 (𝐷1)
l1,l2), 𝑓3 (𝜎

(𝐷1)
l1,l3)

)
,

𝜙𝑔 (𝜎 (𝐷1)
l1 , 𝑓2 (𝜎 (𝐷1)

l1,l2), 𝑓3 (𝜎
(𝐷1)
l1,l3)) (D, 𝜽 ,𝑄)

= 𝑝 (𝑄 | D, 𝜽 )

𝑆𝐷

𝑆1

𝑆2

by Lemma 11
𝑆 ′2

by Lemma 14

𝑆3by Lemma 11

𝑆3 by Lemma 11 and 𝑓 fresh

gen(𝑧)𝑆2 by Lemma 15

𝑆𝑄by Theorem 1 𝑆𝑄 by Theorem 1 and 𝑓 fresh

Fig. 13. Diagrammatic proof of semantic preservation of
𝑧−→

B EXAMPLES
B.1 Sprinkler
Often, beginners are introduced to probabilistic modelling through simple, discrete variable exam-
ples, as they are more intuitive to reason about, and often have analytical solutions. Unfortunately,
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Graphical model

cloudy

sprin-
kler rain

wet

SlicStan + discrete parameters support

1 data real[2] p_rain, p_sprinkler;
2 data real[2][2] p_wet;
3 real p ∼ beta(1, 1);

4 int<2> cloudy ∼ bern(p);
5 int<2> sprinkler ∼ bern(p_sprinkler[cloudy]);
6 int<2> rain ∼ bern(p_rain[cloudy]);
7 int<2> wet ∼ bern(p_wet[sprinkler][rain]);

SlicStan
1 ...

2 f1 = 𝜙(int<2> rain, int<2> sprinkler){
3 elim(int<2> cloudy){
4 cloudy ∼ bern(p);
5 sprinkler ∼ bern(p_sprinkler[cloudy]);
6 rain ∼ bern(p_rain[cloudy]); }}

7 f2 = 𝜙(int<2> rain, int<2> wet){
8 elim(int<2> sprinkler){
9 factor(f1[rain,sprinkler]);

10 wet ∼ bern(p_wet[sprinkler,rain]); }}

11 f3 = 𝜙(int<2> wet){ elim(int<2> rain){
12 factor(f2[rain,wet]); }}

13 f4 = 𝜙(){ elim(int<2> wet){
14 factor(f3[wet]); }}

15 factor(f4);
16 ...

Fig. 14. The ‘Sprinkler’ example.

one cannot express such examples directly in PPLs that do not support discrete parameters. One
well-known discrete variable example, often used in tutorials on probabilistic modelling, is the
‘Sprinkler’ example. It models the relationship between cloudy weather, whether it rains, whether
the garden sprinkler is on, and the wetness of the grass. In Figure 14, we show a version of the
sprinkler model written in SlicStan with discrete parameters (left) and the marginalisation part of
its corresponding transformed version (right).

As cloudy ⊥⊥ wet | sprinkler, rain, we do not need to include wet in the elimination of cloudy,
and the new factor is computed for different values of only sprinkler and rain (lines 2–6). The rest
of the variables are eliminated one-by-one, involving all remaining variables (lines 7–15).

The snippet of the SlicStan code generated by our transformation is an exact implementation of
the variable elimination algorithm for this model. This not only facilitates a platform for learning
probabilistic programming using standard introductory models, but it can also be a useful tool for
learning concepts such as marginalisation, conditional independence, and exact inference methods.

B.2 Soft-K-means model
In Figure 15, we present the standard soft-k-means clustering model as it is written in SlicStan with
support for discrete model parameters (left). The right column shows the resulting code that our
program transformation generates. This code consists of plain SlicStan code and no support for
discrete model parameters is needed to perform inference on it.

The model can be used for (softly) dividing 𝑁 data points y in 𝐷-dimensional Euclidean space
into 𝐾 clusters which have means 𝝁 and probability 𝝅 .
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SlicStan + discrete

data int D;

data int K;
data real[K] pi;
data real N = 3;

data real[D][N] y;

real[D][K] mu;
for(d in 1 : D) {

for(k in 1 : K){
mu[d][k] ∼ normal(0, 1);

}}

int<K> z1 ∼ categorical(pi);
int<K> z2 ∼ categorical(pi);
int<K> z3 ∼ categorical(pi);

for(d in 1 : D) {

y[d][1] ∼ normal(mu[d][z1], 1);

y[d][2] ∼ normal(mu[d][z2], 1);

y[d][3] ∼ normal(mu[d][z3], 1);

}

SlicStan
...

for(d in 1:D){

for(k in 1:K){
mu[d,k] ∼ normal(0, 1);}}

factor( elim(int<K> z1){
z1 ∼ categorical(pi);
for(data int d in 1:D){

y[d,1] ∼ normal(mu[d,z1], 1);}});

factor( elim(int<K> z2){
z2 ∼ categorical(pi);
for(data int d in 1:D){

y[d,2] ∼ normal(mu[d,z2], 1);}});

factor( elim(int<K> z3){
z3 ∼ categorical(pi);
for(data int d in 1:D){

y[d,3] ∼ normal(mu[d,z3], 1);}});

gen(int z3){
z3 ∼ categorical(pi);
for(data int d in 1:D){

y[d,3] ∼ normal(mu[d,z3], 1);}}

gen(int z2){
z2 ∼ categorical(pi);
for(data int d in 1:D){

y[d,2] ∼ normal(mu[d,z2], 1);}}

gen(int z1){
z1 ∼ categorical(pi);
for(data int d in 1:D){

y[d,1] ∼ normal(mu[d,z1], 1);}}

Fig. 15. Soft 𝐾-means.

B.3 A causal inference example
The question of how to adapt PPLs to causal queries, has been recently gaining popularity. One way
to express interventions and reason about causality, is to assume a discrete variable specifying the
direction (or absence of) causal relationship, and specify different behaviour for each case using if
statements [Winn 2012]. We show a simple causal inference example (Figure 16) written in SlicStan
with direct support for discrete parameters (left) and the code that our transformation generates
(right) on which we can perform inference using a combination of e.g. HMC and ancestral sampling.

This model can be read as follows. Assume that we are in a situation where we want to answer
a causal question. We want to answer this question based on 𝑁 paired observations of 𝐴 and
𝐵, in some of which we might have intervened (doB). Our model proceeds by drawing a (prior)
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SlicStan + discrete
data real q;
data int N;

data int[N] A, B, doB;
data real prob_intervention;

real pAcausesB ∼ beta(1, 1);

int<2> AcausesB ∼ bernoulli(pAcausesB);

for (n in 1:N)

if(doB[n] > 0)

B[n] ∼ bernoulli(prob_intervention);

if (AcausesB > 1){

for (n in 1:N){

A[n] ∼ bernoulli(0.5);
if (doB[n] < 1){

if (A[n] > 0) { B[n] ∼ bernoulli(q); }

else { B[n] ∼ bernoulli(1 - q); }

}

}

}

else {

for (n in 1:N){

if (doB[n] < 1){ B[n] ∼ bernoulli(0.5); }

if (B[n] > 0){ A[n] ∼ bernoulli(q); }

else { A[n] ∼ bernoulli(1 - q); }

}

}

SlicStan
data real q;
data int N;

data int[N] A, B, doB;
data real prob_intervention;

real pAcausesB ∼ beta(1, 1);

for(data int n in 1:N)

if(doB[n] > 0)

B[n] ∼ bernoulli(prob_intervention);

factor(elim(int<2> AcausesB){
AcausesB ∼ bernoulli(pAcausesB);
if(AcausesB > 1){

for(data int n in 1:N){

A[n] ∼ bernoulli(0.5);
if(doB[n] < 1){

if(A[n] > 0){B[n] ∼ bernoulli(q);}
else{ B[n] ∼ bernoulli(1 - q); }

}

}

}

else{
for(data int n in 1:N){

if(doB[n] < 1){ B[n] ∼ bernoulli(0.5);
}

if(B[n] > 0){ A[n] ∼ bernoulli(q); }

else{ A[n] ∼ bernoulli(1 - q); }

}}});

Fig. 16. A causal inference example.

probability that 𝐴 causes 𝐵 from a beta distribution, and then specifying 𝐴 and 𝐵 for different
scenarios (intervention, 𝐴 causes 𝐵 and no intervention, 𝐵 causes 𝐴 and no intervention) using
conditional statements.
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5.2 Discussion

The paper presents two type systems:

(1) Generative subprogram type system `. The first type system is close to

the original SlicStan (Chapter 4), where code is split into pre-processing, core, and

post-processing parts. The improvement implemented in the current chapter allows

us to treat sampling statements as either contributing to the evaluation of the target

density function (density-based semantics) or as literal sampling (sampling-based

semantics) based on context. This allows for a SlicStan program to be sliced into

a pre-processing part, core part, where inference is done using Hamiltonian Monte

Carlo or another resource-consuming inference algorithm, and purely generative part,

where samples can be generated through ancestral sampling. That is, the sliced

program corresponds to HMC-AS hybrid inference.

(2) Conditional independence type system `2. The second type system is the

main contribution of the paper and allows for exploring conditional independence

relationships. One way in which this system can be used is to transform a program

with discrete parameters by marginalising out variables efficiently. The transformed

program can be seen as a hybrid inference algorithm on the original program, where

continuous parameters are drawn using Hamiltonian Monte Carlo or another gradient-

based algorithm, while the discrete parameters are drawn using variable elimination.

That is, the transformed program corresponds to HMC-VE hybrid inference.

While different, the two type systems, and the program slicing associated with each, share

a lot of elements. For example, noninterference holds for both systems (Lemma 1 and

Lemma 7). The two shredding relations associated with each of ` and `2 are identical, up

to the naming of level types. Shredding a SlicStan statement with respect to either type

system produces single level statements (Lemma 4 and Lemma 9), preserves semantics

(Lemma 6 and 10), and induces a (type system dependent) factorisation of the density

(Theorem 1 and Theorem 2).

This hints at the possibility of generalising the approach. In particular, future work may

build a general framework for static analysis of probabilistic programs, where the choice

of partially ordered set and the design of typing rules can be motivated by a particular

factorisation of interest. If such a framework can be built in a modular way, it could serve

as a basis for a PPL that supports composable and programmable inference.
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Errata

The sentence “Sometimes, when σ is clear from context, we will leave it implicit and

simply write p(x) for p(x;σ).” on page 4:9 of the paper is an artefact left from previous

version of the notation and is redundant.
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Introduction to Part II

In the previous part, we saw examples of static analysis for probabilistic programming,

that is analysis that is performed at compile-time, before the program is executed. Such

analysis can be incredibly useful for exploiting conditional independencies and performing

semantic-preserving rewrites, which improve the performance of the underlying inference

algorithm. However, inference performance is often affected not only by the structure of

the probabilistic model in question, but also by the nature of the observed data.

Dynamic analysis refers to the class of program analysis techniques that are performed

during the execution of a program. This part focuses on dynamic analysis for probabilistic

programs and presents one such dynamic method in Chapter 6. The method transforms

a program at run-time, taking into account both the model and the data, in order to

improve the quality of inference results.



CHAPTER 6

Automatic reparameterisation

Variational inference pre-processing for efficient inference

This chapter presents an instance of dynamic program analysis for probabilistic program-

ming: an automatic model reparameterisation procedure. The parameterisation of a model

is the particular way in which the model is expressed in terms of parameters. What param-

eterisation we choose to express our model plays a vital role in the way the geometry of

the posterior of interest looks like, and hence (as we saw in § 2.2), has a direct effect on the

quality of inference. While changing the parameterisation of a model, or reparameterising

it, can be done in many ways (for example through a simple static transformation), this

chapter looks at reparameterisation through the lens of effect-handling based PPLs. Such

PPLs provide a dynamic way to interpret random assignment statements and I give further

background on the topic in § 6.1. The main contribution of the chapter is the paper

Automatic Reparameterisation of Probabilistic Programs (§ 6.2), which presents a way to

reparameterise Edward2 programs using effect-handlers and based on both the defined

model and the observed data. Finally, the chapter discusses the impact and limitations of

the proposed approach (§ 6.3).

6.1 Effect-handling based probabilistic programming

Chapter 2 proposed classifying PPLs in three categories — explicit (§§ 2.3.2), implicit

(§§ 2.3.3), and effect-handling based (§§ 2.3.4) — and briefly introduced each category. In

this section, I give further background on the mechanisms behind the last, effect-handling

based type of probabilistic programming languages. This section is partially based on

Moore and Gorinova (2018).
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6.1.1 Effects and effect handling

When working with complex code, or when we want to rigorously reason about the

behaviour of a program, it is often useful to write pure functions. That is, deterministic

functions that do not mutate a global state, or any of the input arguments, do not throw

exceptions and do not perform I/O operations. They do not interact with the external

world, or code outside of the function, in any way. Such functions have no side effects.

While it is easier to reason about pure functions, it can also be very constraining in

real-world situations.

Algebraic effects and their handlers have emerged as a convenient way to control impure

behaviour. They are built upon a strong mathematical foundation (Plotkin and Pretnar,

2009; Plotkin and Power, 2003), their semantics can be precisely defined (Kammar et al.,

2013), and in some cases they provide an improvement in runtime complexity compared

to pure languages (Hillerström et al., 2020). While providing a useful formal framework

for reasoning about side effects, algebraic effects and handlers have also proved to be an

increasingly convenient modular abstraction that has been adopted across many disciplines.

Some examples include concurrent programming (Dolan et al., 2017), meta programming

(Yallop, 2017), and probabilistic programming (Bingham et al., 2019).

The premise behind algebraic effects and handlers is that impure behaviour arises from a

set of effectful operations : for example, read, print, set, raise, and so on. Such operations

interact with some handling code in order to execute. For example, consider a process that

wants to read from a file. It sends a request to the OS kernel and suspends execution. The

kernel checks the request, executes it, and responds with the result of the read operation.

The process then resumes execution. This idea of effect handlers as operating systems in

further explored by Hillerström (2021).

While in the case of accessing a file, the handling code is external to the program, in some

cases it could also be internal: for example, when an exception is risen, it can be handled

inside the same program. Algebraic effects and handlers extend this idea of handling

programmatically exceptions, to any effectful operation. The concrete implementation of

operations is given and managed by code written by the user.

To demonstrate the workings of effect handlers in this section, Consider a simple example

of a program that reverses the order of print statements given by Pretnar (2015):

let abc = (print("a"); print("b"); print("c"))

let reverse = handler { print(s; x. k) → k(); print(s) }

with reverse handle abc



6.1. Effect-handling based probabilistic programming 159

Here, print is an operation, while abc is a computation that prints out the letters ‘a’, ‘b’

and ‘c’, in this order, using three separate calls to print. Key to working with algebraic

effects is the presence of continuations : functions that specify how the program “continues”

after a certain point; they express “what to do next” (Appel, 1992). Thus, the program

print("a");print("b");print("c") is a shorthand for the continuation-passing style program

print("a", lambda x. print("b", lambda y. print("c", lambda z. ())))

where print(s,k) is a continuation-passing style version of print, where we print to standard

output and then explicitly call the continuation k: print(s,k) = print(s);k(), though this

behaviour may change based on an effect handler.

To simplify the lambda notation, consider the notation print(s;x.k), which explicitly

says that the result of print(s) is bound to x, where the continuation k depends on x:

print(x;s.k) is equivalent to print(s, lambda x. k(x)). The example above is then:

print("a"; x. print("b"; y. print("c"; z. return1 ())))

As print does not return a result, we may also simply write print(s. k):

print("a". print("b". print("c". return ())))

The handler reverse reverses the order in which print operations are executed. Every

print(s.k) operation call inside of the context of reverse is executed based on the body of

the handler: the handler firstly resumes the continuation k, and only then performs the

operation itself. The computation with reverse handle abc is the result of executing abc,

while handling operations with reverse. This prints out ‘c’, ‘b’ and ‘a’ in this order.

Types of effect handlers. There exist different types of handlers, depending on the

implementation, described in detail by Kammar et al. (2013) and Hillerström (2016).

For example, open handlers forward unhandled operations to other handlers, but closed

handlers do not. Effects are handled only once with shallow handlers, but they are

propagated to any nested handlers and can be handled several times when using deep

handlers. If the continuation k must be invoked exactly once, then the handlers are linear,

while if it could be invoked more than once, they are multi-shot. Exception handlers do

not invoke the continuation.

Throughout this section, I assume open deep handlers. Edward2 uses open linear handlers,

which are shallow, but allow for explicit effect forwarding, which mimics deep handlers.

1In this chapter, return x can be thought of as an operation, whose default behaviour is to discard
any subsequent continuation and finish the computation with x (similarly to exceptions behaviour). A
more in-depth discussion around the meaning of return is beyond the scope of this dissertation, but it is
examined in detail in (Hillerström, 2021, Section 1.2).
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6.1.2 Composing effect handlers

One very useful feature of open effect handlers is that they can be nested or composed to

combine the way they interpret the computation. For example, consider a handler join,

which concatenates all strings appearing in a print statement. One way to define such a

handler is, as given by Pretnar (2015):

let join =

handler {

return v → (v, "")

print(s. k) → let (v, acc) = k() in return (v, s + acc)2 }

The computation with join handle abc evaluates to the tuple ((),"abc" ). Using reverse

in the context of join can be written as with join handle with reverse handle abc, which

evaluates to ((),"cba" ).

A more imperative-style way of writing handlers that pass around a “state” (in this case

the accumulated string acc) is with a mutable variable:

set(acc, "");

let join = handler { print(s. k) → set(acc, get(acc) + s); k() 2 }

with join handle with reverse handle abc;

return acc

Here, acc is a mutable variable initialised to "" that we concatenate to at every print

statement. The final value of acc holds the result: "cba" .

This more imperative style is also closer to the Edward2 implementation of this chapter.

6.1.3 Effect handling in probabilistic programming

Recently, effect handlers have been adopted by some PPLs as a useful, modular way of

implementing transformations of probabilistic programs for inference (Scibior and Kammar,

2015; Bingham et al., 2019; Tran et al., 2018; Moore and Gorinova, 2018; Goldstein, 2019).

The insight is to treat sampling statements as operations that can be handled by a

separately defined handler. This enables a range of useful program transformations,

including (though not limited to): conditioning, reparameterisation, tracing, density

function derivation, variational family generation. When implemented in a differentiable

programming framework, such as TensorFlow (Abadi et al., 2015), PyTorch (Paszke et al.,

2019), or JAX (Bradbury et al., 2018), the resulting code is also differentiable,3 making

2Here, + is used to mean string concatenation.
3These frameworks do not typically provide native support for effects and handlers. The PPL effect-

handling code is usually implemented in the differentiable language itself, meaning it is itself differentiable.
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models easy to use in combination with gradient-based inference algorithms.

Consider the operation sample(dist; x. k), whose default behaviour is to sample at random

from the distribution dist, bind the result to the variable x and invoke the continuation

k. Consider also the operation observed((value, dist); x. k), whose default behaviour

simply binds x to the value value and invokes k. It is then straightforward to write a

probabilistic model using this sample operation. For example, the following code describes

a Beta-Binomial model of n trials:

let beta binomial(n) =

sample(beta(1., 1.); z);

sample(binomial(z, n); x);

return x

To condition on some data, say x = 7, we can use an effect handler, which changes every

sample operation to an observed operation:

let condition(rv, value) =

handler { sample(dist; rv. k) → observed((value, dist); rv); k(value) }

let conditioned(n) = with condition(x,4 7) handle beta binomial(n)

This conditioning, however, is not enough for us to obtain a posterior of z. As we saw in

Chapter 2, one way to perform inference is by repeatedly evaluating the joint probability

density function of the model. Once again, we can use an effect handler to obtain the joint

density function:

let joint(vals) =

set(density, 1);

let h = handler {

sample(dist; rv. k) →
set(density, get(density) * pdf(dist,vals[rv]));

k(vals[rv])

observed((value,dist); rv.k) →
set(density, get(density) * pdf(dist,value));

k(value)

}

with h handle conditioned(n);

return density

4Here, x is not a variable, but rather a name of a variable. This is an unsatisfactory solution for the
well-known problem of distinguishing between instances of the same effect (Biernacki et al., 2019). How to
refer to variables from outside of the model in a principled way, is a well-known problem also in probabilistic
programming, where it leads to repeated syntax, such as Edward2’s x = ed.Normal(0, 1, name="x").
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Here joint is a function on a dictionary that maps unobserved random variable names

to a particular value in their domain. In the case above, we would evaluate joint for

vals = dict(z 7→ z val) for different values of z val. Previously, we discussed handlers that

explicitly handle only a single effect. Here, h handles two effects, sample and observed,

meaning instances of either of these effects will be handled in the context of h. The code

also assumes that a function pdf is available, such that for any distribution dist and a value

v in the domain of dist, pdf(dist, v) evaluates the probability density function of dist at v.

Effect-handling based probabilistic programming languages have several advantages to

density- and sampling-based PPLs. Conceptually, effect-handling based PPLs treat sam-

pling abstractly and separate its use in defining the model from its actual implementation.

Thus, models can be interpreted as either sampling-based, density-based, or in a completely

different way, depending on usage. In addition, working with effects and handlers, and more

specifically being able to compose them, allows for sophisticated program transformations,

which do not need to be integrated into a separate compiler, but can be user-specified in the

PPL itself. This highlights the potential of effect handlers as a basis for a programmable

inference framework (Mansinghka et al., 2018), although explicit work has not yet been

done in this direction.

The rest of this chapter shows several uses of effect handlers in the probabilistic program-

ming language Edward2, presenting handlers that perform model reparameterisation and

automatic variational guide synthesis.

6.2 The paper

The main contribution of this chapter is the paper Automatic Reparameterisation of

Probabilistic Programs. It considers the problem of reparameterisation of probabilistic

programs: changing the way the model is expressed in terms of parameters, in order to

improve the quality of inference. The paper discusses the effects of parameterisation on the

geometry of the posterior through examples, highlighting the practical challenges of finding

a suitable reparameterisation. It presents two techniques for automatically reparameterising

probabilistic programs using effect handlers. The first is a simple interleaved sampling from

two different model parameterisations. The second provides a novel continuous relaxation

of the question of what parameterisation to use, and uses variational inference to find a

suitable such parameterisation.

The paper was accepted for presentation at the Thirty-seventh International Conference

on Machine Learning (ICML 2020) and included in the Proceedings of Machine Learning
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Research, Volume 119. Out of 4990 submissions in total, 1088 papers were accepted. An

earlier version of the paper also appeared at the non-archival symposium Advances in

Approximate Bayesian Inference (AABI 2018).

Author contributions. The paper is co-authored by me, Dave Moore and Matt Hoff-

man. My contributions included modifying Edward2 to enable composing effect handlers,

performing the initial analytical analysis, developing the automatic reparameterisation

framework, running preliminary experiments, and co-writing parts of the paper. Dave

Moore mentored the project throughout, implemented improvements that allowed for

using TensorFlow Probability’s MCMC kernels more efficiently, ran the final experiments,

did the additional analysis presented in Appendix D, and co-wrote parts of the paper.

Matt Hoffman conceived the idea of the project, mentored it throughout, co-wrote parts

of the paper, and offered feedback, comments, and suggestions.
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Abstract
Probabilistic programming has emerged as a pow-
erful paradigm in statistics, applied science, and
machine learning: by decoupling modelling from
inference, it promises to allow modellers to di-
rectly reason about the processes generating data.
However, the performance of inference algo-
rithms can be dramatically affected by the parame-
terisation used to express a model, requiring users
to transform their programs in non-intuitive ways.
We argue for automating these transformations,
and demonstrate that mechanisms available in re-
cent modelling frameworks can implement non-
centring and related reparameterisations. This
enables new inference algorithms, and we pro-
pose two: a simple approach using interleaved
sampling and a novel variational formulation that
searches over a continuous space of parameteri-
sations. We show that these approaches enable
robust inference across a range of models, and
can yield more efficient samplers than the best
fixed parameterisation.

1. Introduction
Reparameterising a probabilistic model means expressing
it in terms of new variables defined by a bijective transfor-
mation of the original variables of interest. The reparam-
eterised model expresses the same statistical assumptions
as the original, but can have drastically different posterior
geometry, with significant implications for both variational
and sampling-based inference algorithms.

Non-centring is a particularly common form of reparam-
eterisation in Bayesian hierarchical models. Consider a
random variable z ∼ N (µ, σ); we say this is in centred
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man@google.com>.
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parameterisation (CP). If we instead work with an auxil-
iary, standard normal variable z̃ ∼ N (0, 1), and obtain z
by applying the transformation z = µ + σz̃, we say the
variable z̃ is in its non-centred parameterisation (NCP). Al-
though the centred parameterisation is often more intuitive,
non-centring can dramatically improve the performance of
inference (Betancourt & Girolami, 2015). Neal’s funnel
(Figure 1a) provides a simple example: most Markov chain
Monte Carlo (MCMC) algorithms have trouble sampling
from the funnel due to the strong non-linear dependence be-
tween latent variables. Non-centring the model removes this
dependence, converting the funnel into a spherical Gaussian
distribution.

Bayesian practitioners are often advised to manually non-
centre their models (Stan Development Team et al., 2016);
however, this breaks the separation between modelling and
inference and requires expressing the model in a potentially
less intuitive form. Moreover, it requires the user to un-
derstand the concept of non-centring and to know a priori
where in the model it might be appropriate. Because the best
parameterisation for a given model may vary across datasets,
even experts may need to find the optimal parameterisation
by trial and error, burdening modellers and slowing down
the model development loop (Blei, 2014).

We propose that non-centring and similar reparameterisa-
tions be handled automatically by probabilistic program-
ming systems. We demonstrate how such program trans-
formations may be implemented using the effect handling
mechanisms present in several modern deep probabilistic
programming frameworks, and consider two inference algo-
rithms enabled by automatic reparameterisation: interleaved
Hamiltonian Monte Carlo (iHMC), which alternates HMC
steps between centred and non-centred parameterisations,
and a novel algorithm we call Variationally Inferred Parame-
terisation (VIP), which searches over a continuous space of
reparameterisations that includes non-centring as a special
case.1 We compare these strategies to a fixed centred and
non-centred parameterisation across a range of well-known
hierarchical models. Our results suggest that both VIP and
iHMC can enable for more automated robust inference, of-
ten performing at least as well as the best fixed parame-

1Code for these algorithms and experiments is available at
https://github.com/mgorinova/autoreparam.
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(a) Centred (left) and non-centred (right) parame-
terisation.

NealsFunnel(z, x) :

z ∼ N (0, 3)

x ∼ N (0, exp(z/2))

(b) Model that generates variables
z and x.

z = 0

lpz = log pN (z | 0, 3)

x = 0

lpx = log pN (x | 0, exp(z/2))

(c) The model in the context of
log_prob_at_0.

Figure 1. Neal’s funnel (Neal, 2003): z ∼ N(0, 3); x ∼ N(0, ez/2).

terisation and sometimes better, without requiring a priori
knowledge of the optimal parameterisation. Both strategies
have the potential to free modellers from thinking about
manual reparameterisation, accelerate the modelling cycle,
and improve the robustness of inference in next-generation
modelling frameworks.

2. Related Work
The value of non-centring is well-known to MCMC prac-
titioners and researchers (Stan Development Team et al.,
2016; Betancourt & Girolami, 2015), and can also lead
to better variational fits in hierarchical models (Yao et al.,
2018). However, the literature largely treats this as a mod-
elling choice; Yao et al. (2018) propose that “there is no
general rule to determine whether non-centred parameterisa-
tion is better than the centred one.” We are not aware of prior
work that treats non-centring directly as a computational
phenomenon to be exploited by inference systems.

Non-centred parameterisation of probabilistic models can be
seen as analogous to the reparameterisation trick in stochas-
tic optimisation (Kingma & Welling, 2013); both involve
expressing a variable in terms of a diffeomorphic transfor-
mation from a "standardised" variable. In the context of
probabilistic inference, these are complementary tools: the
reparameterisation trick yields low-variance stochastic gradi-
ents of variational objectives, whereas non-centring changes
the geometry of the posterior itself, leading to qualitatively
different variational fits and MCMC trajectories.

In the context of Gibbs sampling, Papaspiliopoulos et al.
(2007) introduce a family of partially non-centred parame-
terisations similar to those we use in VIP (described below)
and show that it improves mixing in a spatial GLMM. Our
current work can be viewed as an general-purpose exten-
sion of this work that mechanically reparameterises user-
provided models and automates the choice of parameter-
isation. Similarly, Yu & Meng (2011) proposed a Gibbs
sampling scheme that interleaves steps in centred and non-
centred parameterisations; our interleaved HMC algorithm
can be viewed as an automated, gradient-based descendent

of their scheme.

Recently, there has been work on accelerating MCMC infer-
ence through learned reparameterisation: Parno & Marzouk
(2018) and Hoffman et al. (2019) run samplers in the image
of a bijective map fitted to transform the target distribu-
tion approximately to an isotropic Gaussian. These may be
viewed as ‘black-box’ methods that rely on learning the tar-
get geometry, potentially using highly expressive neural vari-
ational models, while we use probabilistic-program transfor-
mations to apply ‘white-box’ reparameterisations similar to
those a modeller could in principle implement themselves.
Because they exploit model structure, white-box approaches
can correct pathologies such as those of Neal’s funnel (Fig-
ure 1a) directly, reliably, and at much lower cost (in parame-
ters and inference overhead) than black-box models. White-
and black-box reparameterisations are not mutually exclu-
sive, and may have complementary advantages; combining
them is a likely fruitful direction for improving inference in
structured models.

Previous work in probabilistic programming has been ex-
ploring other ‘white-box’ approaches to perform or optimise
inference. For example, Hakaru (Narayanan et al., 2016;
Zinkov & Shan, 2017) and PSI (Gehr et al., 2016; 2020)
use program transformations to perform symbolic inference,
while Gen (Cusumano-Towner et al., 2019) and SlicStan
(Gorinova et al., 2019) can statically analyse the model
structure to compile to a more efficient inference strategy.
To the best of our knowledge, the approach presented in this
paper is the first to apply variational inference as a dynamic
pre-processing step, which optimises the program based on
both the program structure and observed data.

3. Understanding the Effect of
Reparameterisation

Non-centring reparameterisation is not always optimal; its
usefulness depends on properties of both the model and
the observed data. In this section, we develop intuition by
working with a simple hierarchical model for which we
can derive the posterior analytically. Consider a simple
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realisation of a model discussed by Betancourt & Girolami
(2015, (2)), where for a vector of N datapoints y, and some
given constants σ and σµ, we have:

θ ∼ N (0, 1) µ ∼ N (θ, σµ)

yn ∼ N (µ, σ) for all n ∈ 1 . . . N

In the non-centred model, y is defined in terms of µ̃ and θ,
where µ̃ is a standard Gaussian variable:

θ ∼ N (0, 1) µ̃ ∼ N (0, 1)

yn ∼ N (θ + σµµ̃, σ) for all n ∈ 1 . . . N

Figure 2a and Figure 2b show the graphical models for the
two parameterisations. In the non-centred case, the direct
dependency between θ and µ is substituted by a conditional
dependency given the data y, which creates an “explaining
away” effect. Intuitively, this means that the stronger the
evidence y is (large N , and small variance), the stronger the
dependency between θ and µ̃ becomes, creating a poorly-
conditioned posterior that may slow inference.

As the Gaussian distribution is self-conjugate, the posterior
in each case (centred or non-centred) is also a Gaussian
distribution, and we can analytically inspect its covariance
matrix V . To quantify the quality of the parameterisation
in each case, we investigate the condition number κ of
the posterior covariance matrix under the optimal diagonal
preconditioner. This models the common practice (imple-
mented in tools such as PyMC3 and Stan and followed in
our experiments) of sampling using a fitted diagonal precon-
ditioner.

Figure 2c shows the condition numbers κCP and κNCP for
each parameterisation as a function of q = N/σ2; the full
derivation is in Appendix A. This figure confirms the intu-
ition that the non-centred parameterisation is better suited
for situation when the evidence is weak, while strong evi-
dence calls for centred parameterisation. In this example we
can exactly determine the optimal parameterisation, since
the model has only one variable that can be reparameterised
and the posterior has a closed form. In more realistic set-
tings, even experts cannot predict the optimal parameterisa-
tion for hierarchical models with many variables and groups
of data, and the wrong choice can lead to poor conditioning,
heavy tails or other pathological geometry.

4. Reparameterising Probabilistic Programs
An advantage of probabilistic programming is that the pro-
gram itself provides a structured model representation, and
we can explore model reparameterisation through the lens
of program transformations. In this paper, we focus on
transforming generative probabilistic programs where the
program represents a sampling process describing how the

data was generated from some unknown latent variables.
Most probabilistic programming languages (PPLs) provide
some mechanism for transforming a generative process into
an inference program; our automatic reparameterisation
approach is applicable to PPLs that transform generative
programs using effect handling. This includes modern deep
PPLs such as Pyro (Uber AI Labs, 2017) and Edward2 (Tran
et al., 2018).

4.1. Effect Handling-based Probabilistic Programming

Consider a generative program, where running the program
forward generates samples from the prior over latent vari-
ables and data. Effect handling-based PPLs treat generating
a random variable within such a model as an effectful opera-
tion (an operation that is understood as having side effects)
and provide ways for resolving this operation in the form
of effect handlers, to allow for inference. For example, we
often need to transform a statement that generates a random
variable to a statement that evaluates some (log) density
or mass function. We can implement this using an effect
handler:

log_prob_at_0 =

handler {v ∼D(a1, . . . , aN ) 7→
v = 0; lpv = log pD(v | a1, . . . , aN )}2

The handler log_prob_at_0 handles statements of the
form v ∼ D(a1, . . . , aN ). Such statements normally
mean “sample a random variable from the distribution
D(a1, . . . , aN ) and record its value in v”. However, when
executed in the context of log_prob_at_0 (we write
with log_prob_at_0 handle model), statements that
contain random-variable constructions are handled by set-
ting the value of the variable v to 0, then evaluating the log
density (or mass) function of D(a1, . . . , aN ) at v = 0 and
recording its value in a new (program) variable lpv .

For example, consider the function implementing Neal’s fun-
nel in Figure 1b. When executed without any context, this
function generates two random variables, z and x. When
executed in the context of the log_prob_at_0 handler, it
does not generate random variables, but it instead evaluates
log pN (z | 0, 3) and log pN (x | 0, exp(z/2)) (Figure 1c).

This approach can be extended to produce a function
that corresponds to the log joint density (or mass) func-
tion of the latent variables of the model. In §§ B.1,
we give the pseudo-code implementation of a function
make_log_joint, which takes a model M(z | x) — that
generates latent variables z and generates and observes data
x — and returns the function f(z) = log p(z,x). This is

2Algebraic effects and handlers typically involve passing a
continuation within the handler. We make the continuation implicit
to stay close to Edward2’s implementation.
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θ µ

yn

n = 1, ..., N

(a) Centred.

θ µ̃

yn

n = 1, ..., N

(b) Non-centred. (c) The condition number as a function of the data’s strength.

Figure 2. Effects of reparameterising a simple model with known posterior.

a core operation, as it transforms a generative model into
a function proportional to the posterior distribution, which
can be repeatedly evaluated and automatically differentiated
to perform inference.

More generally, effectful operations are operations that can
have side effects, e.g. writing to a file. The program-
ming languages literature formalises cases where impure
behaviour arises from a set of effectful operations in terms
of algebraic effects and their handlers (Plotkin & Power,
2001; Plotkin & Pretnar, 2009; Pretnar, 2015). A concrete
implementation for an effectful operation is given in the
form of effect handlers, which (similarly to exception han-
dlers) are responsible for resolving the operation. Effect
handlers can be used as a powerful abstraction in probabilis-
tic programming, and have been incorporated into recent
frameworks such as Pyro and Edward2 (Moore & Gorinova,
2018).

4.2. Model Reparameterisation Using Effect Handlers

Once equipped with an effect handling-based PPL, we can
easily construct handlers to perform many model transfor-
mations, including model reparameterisation.

Non-centring Handler. ncp = handler {
v ∼ N (µ, σ), v /∈ data 7→ ṽ ∼ N (0, 1); v = µ+σṽ}

A non-centring handler can be used to non-centre all stan-
dardisable 3 latent variables in a model. The handler simply
applies to statements of the form v ∼ N (µ, σ), where v is
not a data variable, and transforms them to ṽ ∼ N (0, 1),
v = µ + σṽ. When nested within a log_prob handler
(like the one from §§ 4.1), log_prob handles the trans-
formed standard normal statement ṽ ∼ N (0, 1). Thus,
make_log_joint applied to a model in the ncp context

3We focus on Gaussian variables, but non-centring is broadly
applicable, e.g. to the location-scale family and random variables
that can be expressed as a bijective transformation z = fθ(z̃) of a
“standardised” variable z̃.

returns the log joint function of the transformed variables z̃
rather than the original variables z.

For example, make_log_joint(NealsFunnel(z, x)) gives:

log p(z, x) = logN (z | 0, 3) + logN (x | 0, exp(z/2))

make_log_joint(with ncp handle NealsFunnel(z, x))

corresponds to the function:

log p(z̃, x̃) = logN (z̃ | 0, 1) + logN (x̃ | 0, 1)

where z = 3z̃ and x = exp(z/2)x̃.

This approach can easily be extended to other parameter-
isations, including partially centred parameterisations (as
shown later in §§ 5.2), non-centring and whitening multi-
variate Gaussians, and transforming constrained variables
to have unbounded support.

Edward2 Implementation. We implement reparameter-
isation handlers in Edward2, a deep PPL embedded in
Python and TensorFlow (Tran et al., 2018). A model
in Edward2 is a Python function that generates random
variables. In the core of Edward2 is a special case of
effect handling called interception. To obtain the joint
density of a model, the language provides the function
make_log_joint_fn(model)4, which uses a log_prob
interceptor (handler) as previously described.

We extend the usage of interception to treat sample state-
ments in one parameterisation as sample statements in an-
other parameterisation (similarly to the ncp handler above):
def noncentre(rv_fn, **d):

# Assumes a location-scale family.

rv_fn = ed.interceptable5(rv_fn)
rv_std = rv_fn(loc=0, scale=1)
return d["loc"] + d["scale"] * rv_std

4Corresponds to make_log_joint(model) in our example.
5Wrapping the constructor with ed.interceptable en-

sures that we can nest this interceptor in the context of other
interceptors.
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We use the interceptor by executing a model of interest
within the interceptor’s context (using Python’s context man-
agers). This overrides each random variable’s constructor
to construct a variable with location 0 and scale 1, and scale
and shift that variable appropriately:

with ed.interception(noncentre):
neals_funnel()

We present and explain in more detail all interceptors used
for this work in Appendix B.

5. Automatic Model Reparameterisation
We introduce two inference strategies that exploit automatic
reparameterisation: interleaved Hamiltonian Monte Carlo
(iHMC), and the Variationally Inferred Parameterisation
(VIP).

5.1. Interleaved Hamiltonian Monte Carlo

Automatic reparameterisation opens up the possibility of al-
gorithms that exploit multiple parameterisations of a single
model. We consider interleaved Hamiltonian Monte Carlo
(iHMC), which uses two HMC steps to produce each sample
from the target distribution: the first step is made in CP, us-
ing the original model latent variables, while the second step
is made in NCP, using the auxiliary standardised variables.
Interleaving MCMC kernels across parameterisations has
been explored in previous work on Gibbs sampling (Yu &
Meng, 2011; Kastner & Frühwirth-Schnatter, 2014), which
demonstrated that CP and NCP steps can be combined to
achieve more robust and performant samplers. Our con-
tribution is to make the interleaving automatic and model-
agnostic: instead of requiring the user to write multiple
versions of their model and a custom inference algorithm,
we implement iHMC as a black-box inference algorithm for
centred Edward2 models.

Algorithm 1 outlines iHMC. It takes a single centred model
Mcp(z | x) that defines latent variables z and generates
data x. It uses the function make_ncp to automatically
obtain a non-centred version of the model, Mncp(z̃ | x),
which defines auxiliary variables z̃ and function f , such that
z = f(z̃).

5.2. Variationally Inferred Parameterisation

The best parameterisation for a given model may mix cen-
tred and non-centred representations for different variables.
To efficiently search the space of reparameterisations, we
propose the variationally inferred parameterisation (VIP) al-
gorithm, which selects a parameterisation by gradient-based
optimisation of a differentiable variational objective. VIP
can be used as a pre-processing step to another inference
algorithm; as it only changes the parameterisation of the

model, MCMC methods applied to the learned parameteri-
sation maintain their asymptotic guarantees.

Consider a model with latent variables z. We introduce
parameterisation parameters λ = (λi) ∈ [0, 1] for each
variable zi, and transform zi ∼ N (zi | µi, σi) by defining
z̃i ∼ N (λiµi, σ

λi
i ) and zi = µi + σ1−λi

i (z̃i − λiµi). This
defines a continuous relaxation that includes NCP as the
special case λ = 0 and CP as λ = 1. More generally, it
supports a combinatorially large class of per-variable and
partial centrings.

Example. Recall the example model from Section 3,
which defines the joint density p(θ, µ,y) = N (θ | 0, 1)×
N (µ | θ, σµ) × N (y | µ, σ). Using the parameterisation
above to reparameterise µ, we get:

p(θ, µ̂,y) = N (θ | 0, 1)×N (µ̂ | λθ, σλµ)

×N (y | θ + σ1−λ
µ (µ̂− λθ), σ)

Similarly to before, we analytically derive an expression for
the posterior under different values of λ. Figure 4 shows
the condition number κ(λ) of the diagonally preconditioned
posterior, for different values of q = N/σ2 with fixed prior
scale σµ = 1. As expected, when the data is weak (q =
0.01), setting the parameterisation parameter λ to be close
to 0 (NCP), results in a better conditioned posterior than
setting it close to 1 (CP), and conversely for strong data
(q = 100). More interestingly, in intermediate cases (q = 1)
the optimal value for λ is truly between 0 and 1, yielding a
modest but real improvement over the extreme points.

Optimisation. For a general model with latent variables z
and data x, we aim to choose the parameterisation λ under
which the posterior p(z̃ | x; λ) is “most like” an indepen-
dent normal distribution. A natural objective to minimise
is KL(q(z̃;θ) || p(z̃ | x;λ)), where q(z̃;θ) = N (z̃ |
µ, diag(σ)) is an independent normal model with varia-
tional parameters θ = (µ,σ). Minimising this divergence
corresponds to maximising a variational lower bound, the
ELBO (Bishop, 2006):

L(θ,λ) = Eq(z̃;θ) (log p(x, z̃;λ)− log q(z̃;θ))

Note that the auxiliary parameters λ are not statistically
identifiable: the marginal likelihood log p(x;λ) = log p(x)
is constant with respect to λ. However, the computational
properties of the reparameterised models differ, and the
variational bound will prefer models for which the pos-
terior is close in KL to a diagonal normal. Our key hy-
pothesis (which the results in Figure 6 seem to support) is
that diagonal-normal approximability is a good proxy for
MCMC sampling efficiency.

To search for a good model reparameterisation, we optimise
L(θ,λ) using stochastic gradients to simultaneously fit the



Automatic Reparameterisation of Probabilistic Programs

Algorithm 1: Interleaved Hamiltonian Monte Carlo

Arguments: data x; a centred model Mcp(z | x)
Returns: S samples z(1), . . . z(S) from p(z | x)
1: Mncp(z̃ | x), f = make_ncp(Mcp(z | x))
2: log pcp = make_log_joint(Mcp(z | x))
3: log pncp = make_log_joint(Mncp(z̃ | x))
4:
5: z0 = init()
6: for s ∈ [1, . . . , S] do
7: z′ = hmc_step(log pcp, z

(s−1))
8: z′′ = hmc_step(log pncp, f

−1(z′))
9: z(s) = f(z′′)

10: return z(1), . . . , z(S)

Algorithm 2: Variationally Inferred Parameterisation

Arguments: data x; a centred model Mcp(z | x)
Returns: S samples z(1), . . . z(S) from p(z | x)
1: Mvip(z̃ | x;λ), f = make_vip(Mcp(z | x))
2: log p(x, z̃) = make_log_joint(Mvip(z̃ | x;λ))
3:
4: Q(z̃;θ) = make_variational(Mvip(z̃ | x;λ))
5: log q(z̃;θ) = make_log_joint(q(z̃;θ))
6:
7: L(θ,λ) = Eq(log p(x, z̃;λ))− Eq(log q(z̃;θ))
8: θ∗,λ∗ = argmaxL(θ,λ)
9: log p(x, z̃) = make_log_joint(Mvip(z̃ | x;λ∗))

10: z(1), . . . , z(S) = hmc(log p)

11: return f(z(1)), . . . , f(z(S))

(a) Different parameterisations λ of the funnel, with mean-field normal variational fit q(z̃)(overlayed in white).

(b) Alternative view as implicit variational distributions q∗λ(z) (overlayed in white) on the original space.

Figure 3. Neal’s funnel: z ∼ N(0, 3); x ∼ N(0, ez/2), with mean-field normal variational fit overlayed.

Figure 4. The condition number κ(λ) for varying q = N/σ2 and
σµ = 1 in the simple model from Section 3.

variational distribution q to the posterior p and optimise
the shape of that posterior. Figure 3a provides a visual ex-
ample: an independent normal variational distribution is a
poor fit to the pathological geometry of a centred Neal’s
funnel, but non-centring leads to a well-conditioned poste-
rior, where the variational distribution is a perfect fit. In
general settings where the reparameterised model is not ex-
actly Gaussian, sampling-based inference can be used to
refine the posterior; we apply VIP as a preprocessing step
for HMC (summarised in Algorithm 2). Both the reparame-
terisation and the construction of the variational model q are
implemented as automatic program transformations using
Edward2’s interceptors.

An alternate interpretation of VIP is that it expands a vari-
ational family to a more expressive family capable of rep-
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resenting prior dependence. Letting z = fλ(z̃) represent
the partial centring transformation, an independent normal
family q(z̃) on the transformed model corresponds to an
implicit posterior q∗λ(z) = q

(
z̃ = f−1λ (z)

)
|det Jf−1

λ
(z)|

on the original model variables. Under this interpretation, λ
are variational parameters that serve to add freedom to the
variational family, allowing it to interpolate from indepen-
dent normal (at λi = 1, Figure 3b left) to a representation
that captures the exact prior dependence structure of the
model (at λi = 0, Figure 3b right).

6. Experiments
We evaluate the usefulness of our approach as a robust and
fully automatic alternative to manual reparameterisation.
We compare our methods to HMC ran on fully centred or
fully non-centred models, one of which often gives catas-
trophically bad results. Our results show not only that VIP
improves robustness by avoiding catastrophic reparame-
terisations, but also that it sometimes finds a parameteri-
sation that is better than both the fully centred and fully
non-centred alternatives.

6.1. Models and Datasets

We evaluate our proposed approaches by using Hamiltonian
Monte Carlo to sample from the posterior of hierarchical
Bayesian models on several datasets:

Eight schools (Rubin, 1981): estimating the treatment ef-
fects θi of a course taught at each of i = 1 . . . 8 schools,
given test scores yi and standard errors σi:

µ ∼ N (0, 5) log τ ∼ N (0, 5)

θi ∼ N (µ, τ) yi ∼ N (θi, σi)

Radon (Gelman & Hill, 2006): hierarchical linear regres-
sion, in which the radon level ri in a home i in county c is
modelled as a function of the (unobserved) county-level ef-
fect mc, the county uranium reading uc, and xi, the number
of floors in the home:

µ, a, b ∼ N (0, 1) mc ∼ N (µ+ auc, 1)

log ri ∼ N (mc[i] + bxi, σ)

German credit (Dua & Graff, 2017): logistic regression;
hierarchical prior on coefficient scales:

log τ0 ∼ N (0, 10) log τi ∼ N (log τ0, 1)

βi ∼ N (0, τi) y ∼ Bernoulli(σ(βXT ))

Election ’88 (Gelman & Hill, 2006): logistic model of
1988 US presidential election outcomes by county, given
demographic covariates xi and state-level effects αs:

βd ∼ N (0, 100) µ ∼ N (0, 100) log τ ∼ N (0, 10)

αs ∼ N (µ, τ) yi ∼ Bernoulli(σ(αs[i] + βTxi))

Electric Company (Gelman & Hill, 2006): paired causal
analysis of the effect of viewing an educational TV show on
each of 192 classforms over G = 4 grades. The classrooms
were divided into P = 96 pairs, and one class in each pair
was treated (xi = 1) at random:

µg ∼ N (0, 1) ap ∼ N (µg[p], 1) bg ∼ N (0, 100)

log σg ∼ N (0, 1) yi ∼ N (ap[i] + bg[i]xi, σg[i])

6.2. Algorithms and Experimental Details

For each model and dataset, we compare our methods, in-
terleaved HMC (iHMC) and VIP-HMC, with baselines of
running HMC on either fully centred (CP-HMC) or fully
non-centred (NCP-HMC) models. We initialise each HMC
chain with samples from an independent Gaussian varia-
tional posterior, and use the posterior scales as a diagonal
preconditioner; for VIP-HMC this variational optimisation
also includes the parameterisation parameters λ. All varia-
tional optimisations were run for the same number of steps,
so they were a fixed cost across all methods except iHMC
(which depends on preconditioners for both the centred
and non-centred transition kernels). The HMC step size
and number of leapfrog steps were tuned following the
procedures described in Appendix C, which also contains
additional details of the experimental setup.

We report the average effective sample size per 1000 gra-
dient evaluations (ESS/∇), with standard errors computed
from 200 chains. We use gradient evaluations, rather than
wallclock time, as they are the dominant operation in both
HMC and VI and are easier to measure reliably; in practice,
the wallclock times we observed per gradient evaluation did
not differ significantly between methods. This is not surpris-
ing, since the (minimal) overhead of interception is incurred
only once at graph-building time. This metric is a direct
evaluation of the sampler; we do not count the gradient steps
taken during the initial variational optimization.

In addition to effective sample size, we also directly exam-
ined the convergence of posterior moments for each method.
This yielded similar qualitative conclusions to the results
we report here; more analysis can be found in Appendix D.

6.3. Results

Figures 5 and 6 show the results of the experiments. In most
cases, either the centred or non-centred parameterisation
works well, while the other does not. An exception is the
German credit dataset, where both CP-HMC and NCP-HMC
give a small ESS: 1.2±0.2 or 1.3±0.2 ESS/∇ respectively.

iHMC. Across the datasets in both figures, we see that
iHMC is a robust alternative to CP-HMC and NCP-HMC.
Its performance is always within a factor of two of the
best of CP-HMC and NCP-HMC, and sometimes better. In
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Figure 5. Effective sample size and 95% confidence intervals for the radon model across US states.

Figure 6. Effective sample size (w/ 95% intervals) and the optimised ELBO across several models.

addition to being robust, iHMC can sometimes navigate
the posterior more efficiently than either of CP-HMC and
NCP-HMC can: in the case of German credit, it performs
better than both (3.0± 0.2 ESS/∇).

VIP. Performance of VIP-HMC is typically as good as the
better of CP-HMC and NCP-HMC, and sometimes better.
On the German credit dataset, it achieves 5.6± 0.6 ESS/∇,
more than three times the rate of CP-HMC and NCP-HMC,
and significantly better than iHMC. Figure 6 shows the cor-
respondence between the optimised mean-field ELBO and
the effective sampling rate. We see that parameterizations
with higher ELBOs tend to yield better samplers, which sup-
ports the ELBO as a reasonable predictor of the conditioning
of a model.

We show some of the parameterisations that VIP finds in
Figure 7. VIP’s behaviour appears reasonable: for most
datasets we looked at, VIP finds the “correct” global pa-
rameterisation: most parameterisation parameters are set to
either 0 or 1 (Figure 7, left). In the cases where a global
parameterisation is not optimal (e.g. radon MO, radon PA
and, most notably, German credit), VIP finds a mixed pa-
rameterisation, combining centred, non-centred, and par-
tially centred variables (Figure 7, centre and right). These
examples demonstrate the significance of the effect that
automatic reparameterisation can have on the quality of in-
ference: manually finding an adequate parameterisation in
the German credit case would, at best, require unreasonable
amount of hand tuning, while VIP finds such parameterisa-
tion automatically.

It is interesting to examine the shape of the posterior land-

scape under different parameterisations. Figure 8 shows
typical marginals of the German credit model. In the cen-
tred case, the geometry is funnel-like both in the prior (in
grey) and the posterior (in red). In the non-centred case,
the prior is an independent Gaussian, but the posteriors still
possess significant curvature. The partially centred parame-
terisations chosen by VIP appear to yield more favourable
posterior geometry, where the change in curvature is smaller
than that present in the CP and NCP cases.

A practical lesson from our experiments is that while the
ELBO appears to correlate with sampler quality, they are not
necessarily equally sensitive. A variational model that gives
zero mass to half of the posterior is only log 2 away from
perfect in the ELBO, but the corresponding sampler may be
quite bad. We found it helpful to estimate the ELBO with
a relatively large number (tens to hundreds, we used 256)
of Monte Carlo samples. As with most variational methods,
the VIP optimisation is nonconvex in general, and local
optima are also a concern. We occasionally encountered
local optima during development, though we found VIP to
be generally well-behaved on models for which simpler op-
timisations are well-behaved. In a practical implementation,
one might detect optimization failure by comparing the VIP
ELBO to those obtained from fixed parameterizations; for
modest-sized models, a deep PPL can often run multiple
such optimizations in parallel at minimal cost.

7. Discussion
Our results demonstrate that automated reparameterisation
of probabilistic models is practical, and enables inference
algorithms that can in some cases find parameterisations
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Figure 7. A heat map of VIP parameterisations. Each square rep-
resents the obtained using VIP parameterisation parameter λ as-
sociated with a different latent variable in the models(s) (e.g. top
left corner of German credit corresponds to λlog τ1 ). Light regions
correspond to CP and dark regions to NCP.

Figure 8. Selected prior and posterior marginals under different
parameterisations of the German credit model.

even better than those a human could realistically express.
These techniques allow modellers to focus on expressing
statistical assumptions, leaving computation to the computer.
We view the methods in this paper as exciting proofs of
concept, and hope that they will inspire additional work in
this space.

Like all variational methods, VIP assumes the posterior can
be approximated by a particular functional form; in this
case, independent Gaussians ‘pulled back’ through the non-
centring transform. If this family of posteriors does not con-
tain a reasonable approximation of the true posterior, then
VIP will not be effective at whitening the posterior geometry.
Some cases where this might happen include models where
difficult geometry arises from heavy-tailed components (for
example, x ∼ Cauchy(0, 1); y ∼ Cauchy(x, 1)), or when
the true posterior has structured dependencies that are not
well captured by partial centring (for example, many time-
series). Such cases can likely be handled by optimising over
augmented families of reparameterisations, and designing
such families is an interesting topic for future work.

While we focus on reparameterising hierarchical models nat-
urally written in centred form, the inverse transformation—
detecting and exploiting implicit hierarchical structure in
models expressed as algebraic equations—is an important

area of future work. This may be compatible with recent
trends exploring the use of symbolic algebra systems in PPL
runtimes (Narayanan et al., 2016; Hoffman et al., 2018).
We also see promise in automating reparameterisations of
heavy-tailed and multivariate distributions, and in designing
new inference algorithms to exploit these capabilities.
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A. Derivation of the Condition Number of the
Posterior for a Simple Model

Centred Parameterisation

θ ∼ N (0, 1) µ ∼ N (θ, σµ)

yn ∼ N (µ, σ) for all n ∈ 1 . . . N

Non-centred Parameterisation

θ ∼ N (0, 1) µ̃ ∼ N (0, 1)

yn ∼ N (θ + σµµ̃, σ) for all n ∈ 1 . . . N

As the Gaussian distribution is self-conjugate, the posterior
distribution (given x) in each case (centred or non-centred)
is also a Gaussian distribution, whose shape is entirely spec-
ified by a covariance matrix V . To quantify the quality of
each parameterisation, we investigate the condition number
κ of the posterior covariance matrix in each case under the
best diagonal preconditioner.

We do this in three steps:

1. We derive the covariance matrices VCP and VNCP, such
that p(µ, θ | y) = N (µ, θ |mCP, VCP) and p(µ̃, θ |
y) = N (µ̃, θ |mNCP, VNCP) (Equation 1 and Equa-
tion 2).

2. We find the best diagonal preconditioners D∗CP

and D∗NCP: for P = CP, NCP, that is D∗P =

arg minD(λ
(2)
P /λ

(1)
P ), where λ

(1)
P and λ

(2)
P are the

eigenvalues of U = DTVPD (Equation 3 and Equa-
tion 4).

3. We compare the condition numbers κcp(q) =

λ
(2)
cp /λ

(1)
cp and κncp(q) = λ

(2)
ncp/λ

(1)
ncp, where λ(i)(n)cp

are the eigenvalues of U∗ = (D∗)TV D∗

A.1. Deriving VCP and VNCP: Centred Parameterisation

p(µ, θ | y)

∝ p(µ, θ,y)

∝ N (µ | θ, σµ)N (θ | 0, 1)

N∏

n=1

N (yn | µ, σ)

∝ exp

(
−1

2

(
(µ− θ)2
σ2
µ

+ θ2 +
N∑

n=1

(yn − µ)2

σ2

))

∝ exp

(
−1

2

(
µ2

(
1

σ2
µ

+
N

σ2

)
+ θ2

(
1

σ2
µ

+ 1

)

−2µθ

(
1

σ2
µ

)
+ µ

(
−2

σ2

N∑

n=1

yn

)))

At the same time, for A = V −1NCP , we have:

N (µ, θ |mCP, VCP)

∝ exp

(
−1

2

((
µ

θ

)
−m

)T
A

((
µ

θ

)
−m

))

∝ exp

(
−1

2

(
µ2A11

+ θ2A22

+ µθ(2A12)

+ µ(−2A11m1 − 2A12m2)

+ µ2A11θ(−2A22m2 − 2A12m1)
))

Thus, for q = N/σ2, we get: A =

(
1
σ2
µ

+ q − 1
σ2
µ

− 1
σ2
µ

1
σ2
µ

+ 1

)

And therefore:

VCP =
1

σ2
µq + q + 1

(
1 + σ2

µ 1
1 qσ2

µ + 1

)
(1)

A.2. Deriving VCP and VNCP: Non-centred
Parameterisation

Like in the previous subsection, we have:

p(ε, θ | y) ∝ p(ε, θ,y)

∝ N (ε | 0, 1)N (θ | 0, 1)

N∏

n=1

N (yn | σµε+ θ, σ)

∝ exp

(
−1

2

(
(ε2 + θ2 +
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(yn − σµε− θ)2
σ2
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∝ exp
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2
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Nσ2
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2Nσµ
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(−2σµ
∑
yn

σ2

)

+ θ

(−2
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)))

Similarly to before, we derive A =

(
σ2
µq + 1 σµq
σµq q + 1

)
,

and therefore:

VNCP =
1

σ2
µq + q + 1

(
q + 1 −σµq
−σµq σ2

µq + 1

)
(2)
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A.3. The best diagonal preconditioner

Consider a diagonal preconditioner D =

(
d 0
0 1

)
. The

best diagonal preconditioner D∗ of V is such that:

D∗ = arg min
D

(λ2/λ1) where λ1, λ2 are the eigenvalues of U = DTV D

Firstly, in terms of the covariance matrix in the centred case,
we have:

U = DTVCPD

=

(
d 0
0 1

)(
1

σ2
µq+q+1

(
1 + σ2

µ 1
1 qσ2

µ + 1

))(
d 0
0 1

)

= 1
σ2
µq+q+1

(
(1 + σ2

µ)d2 d
d qσ2

µ + 1

)

The solutions of det(U − λI) = 0 are the solutions of:

((1+σ2
µ)d2−λ(σ2

µq+q+1))(qσ2
µ+1−λ(σ2

µq+q+1)) = d2

which, after simplification, becomes:

(σ2
µq + q + 1)λ2 − (σ2

µq + 1 + d2(σ2
µ + 1))λ+ d2σ2

µ = 0

We want to find d that minimises λ2/λ1. Let u = d2. We
are looking for u, such that ∂

∂u
λ2

λ1
= 0, in order to find

d∗CP = arg min
d

(λ2/λ1). By expanding and simplifying we

get:

2
∂

∂u
(σ2
µq + 1 + u(σ2

µ + 1)) = (σ2
µq + 1 + u(σ2

µ + 1))/u

And thus:

d∗CP =
√
u =

√
σ2
µq + 1

σ2
µ + 1

(3)

We obtain the best diagonal preconditioner D∗NCP =(
d∗NCP 0

0 1

)
in a similar manner, finally getting:

d∗NCP =
√
u =

√
σ2
µq + 1

q + 1
(4)

A.4. The Condition Numbers κCP and κNCP

Finally, we substitute d∗CP and d∗NCP in the respective eigen-
value equations to derive the condition number in each case:

κCP = λ
(CP)
2 /λ

(CP)
1

=
σ2
µq+1+

√
(σ2
µq+1)2−σ2

µ(σ
2
µq+q+1)(σ2
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σ2
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µ(σ
2
µq+q+1)(σ2

µq+1)/(v+1)
(5)

κNCP = λ
(NCP)
2 /λ

(NCP)
1

=
σ2
µq+1+

√
(σ2
µq+1)2−σ2

µ(σ
2
µq+q+1)(σ2

µq+1)/(q+1)

σ2
µq+1−

√
(σ2
µq+1)2−σ2

µ(σ
2
µq+q+1)(σ2

µq+1)/(q+1)

(6)

B. Interceptors
Interceptors can be used as a powerful abstractions in a
probabilistic programming systems, as discussed previously
by Moore & Gorinova (2018), and shown by both Pyro
and Edward2. In particular, we can use interceptors to
automatically reparameterise a model, as well as to specify
variational families. In this section, we show Edward2
pseudo-code for the interceptors used to implement iHMC
and VIP-HMC.

B.1. Make log joint

The following code is an outline of Edward2’s impllementa-
tion of a function that evaluates the log density log p(x) at
some given x:

def make_log_joint_fn(model):
def log_joint_fn(**kwargs):
log_prob = 0

def log_prob_interceptor(
rv_constructor, **rv_kwargs):

# Overrides a random variable’s value
# and accumulates its log prob.
rv_name = rv_kwargs.get("name")
rv_kwargs["value"]=kwargs.get(rv_name)

rv = rv_constructor(**rv_kwargs)
log_prob = log_prob + \

rv.distribution.log_prob(rv.value)
return rv

with ed.interception(
log_prob_interceptor): model()

return log_prob
return log_joint_fn

By executing the model function in the context of
lprob_interceptor, we override each sample statement
(a call to a random variable constructor rv_constructor),
to generate a variable that takes on the value provided in
the arguments of log_joint_fn. As a side effect, we also
accumulate the result of evaluating each variable’s prior den-
sity at the provided value, which, by the chain rule, gives us
the log joint density.

B.2. Non-centred Parameterisation Interceptor

By intercepting every construction of a normal variable (or,
more generally, of location-scale family variables), we can
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create a standard normal variable instead, and scale and shift
appropriately.

def ncp_interceptor(rv_constr,
**rv_kwargs):

# Assumes rv_constr is in the
# location-scale family
name = rv_kwargs["name"] + "_std"
rv_std = \

ed.interceptable6(rv_constr)(
loc=0, scale=1)

return rv_kwargs["loc"] + \
rv_kwargs["scale"] * rv_std

Running a model that declares the random variables θ in
the context of ncp_interceptor will declare a new set of
standard normal random variables θ(std). Nesting this in
the context of the log_prob_interceptor from ?? will
then evaluate the log joint density log p(θ(std)).

For example, going back to Neal’s funnel, running

with ed.interception(
log_prob_interceptor): neals_funnel()

corresponds to evaluating log p(z, x) = logN (z | 0, 3) +
logN (x | 0, ez/2), while running

with ed.interception(
log_prob_interceptor):

with ed.interception(
ncp_interceptor): neals_funnel()

corresponds to evaluating log p(z(std), x(std)) =
logN (z(std) | 0, 1) + logN (x(std) | 0, 1).

B.3. VIP Interceptor

The VIP interceptor is similar to the NCP interceptor. The
notable difference is that it creates new learnable Tensor-
flow variables, which correspond to the parameterisation
parameters λ:

def vip_interceptor(rv_constr,
**rv_kwargs):

name = rv_kwargs["name"] + "_vip"
rv_loc = rv_kwargs["loc"]
rv_scale = rv_kwargs["scale"]

a = tf.nn.sigmoid(tf.get_variable(
name + "_a_unconstrained",
initializer=tf.zeros_like(rv_loc))

rv_vip = ed.interceptable(rv_constr)(
loc=a*rv_loc, scale=rv_scale**a)

return rv_loc + \
rv_scale**(1-a) * (rv_vip - a*rv_loc)

6Wrapping the constructor in with ed.interceptable en-
sures that we can nest this interceptor in the context of other
interceptors.

B.4. Mean-field Variational Model Interceptor

Finally, we show a mean-field variational familiy intercep-
tor, which we use both to tune the step sizes for HMC
(see Appendix C), and to make use of VIP automatically.
The mfvi_interceptor simply substitutes each sample
statement with sampling from a normal distribution with
parameters specified by some fresh variational parameters
µ and σ:

def vip_interceptor(rv_constructor,
**rv_kwargs):

name = rv_kwargs["name"] + "_q"
mu = tf.get_variable(name + "_mu")
sigma = tf.nn.softmax(

tf.get_variable(
name + "_sigma"))

rv_q = ed.interceptable(ed.Normal)(
loc=mu, scale=sigma, name=name)

return rv_q

C. Details of the Experiments
Algorithms.

• CP-HMC: HMC run on a fully centred model.

• NCP-HMC: HMC run on a fully non-centred model.

• iHMC: interleaved HMC.

• VIP-HMC: HMC run on the a model reparameterised
as given by VIP.

Each run consists of VI pre-processing and HMC inference.

Variational Inference Pre-processing. We use auto-
matic differentiation to compute stochastic gradients of
the ELBO with respect to λ,θ and perform the optimi-
sation using Adam (Kingma & Ba, 2014). We implement
the constraint λi ∈ [0, 1] using a sigmoid transformation;
λi = 1/

(
1 + exp(−λ̃i)

)
for λ̃i ∈ R.

Prior to running HMC, we also run VI to approximate per-
variable initial step sizes (equivalently, a diagonal precon-
ditioning matrix), and to initialise the chains. For each of
CP-HMC and NCP-HMC this is just mean-field VI, and for
VIP-HMC the VI procedure is VIP.

Each VI method is run for 3000 optimisation steps, and
the ELBO is approximated using 256 Monte Carlo samples.
We use the Adam optimiser with initial learning rate α ∈
[0.02, 0.05, 0.1, 0.2, 0.4], decayed to α/5 after 1000 steps
and α/20 after 2000 steps, and returned the result with the
highest ELBO.
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Hamiltonian Monte Carlo Inference. In each case we
run 200 chains for a warm-up period of 2000 steps, fol-
lowed by 10000 steps each, and report the average effective
sample size (ESS) per 1000 gradient evaluations (ESS/∇).
Since ESS is naturally estimated from scalar traces, we first
estimate per-variable effective sample sizes for each model
variable, and take the overall ESS to be the minimum across
all variables.

The HMC step size st was adapted to target an acceptance
probability of 0.75, following a simple update rule

log st+1 = log st + 0.02 · (I[αt − 0.75]− I[0.75− αt])

where αt is the acceptance probability of the proposed state
at step t (Andrieu & Thoms, 2008). The adaptation runs dur-
ing the first 1500 steps of the warm-up period, after which
we allow the chain to mix towards a stationary distribution.

The number of leapfrog steps is chosen using ‘oracle’ tuning:
each sampler is run with logarithmically increasing number
of leapfrog steps in {1, 2, 4, . . . , 128}, and we report the
result that maximises ESS/∇. This is intended to decouple
the problem of tuning the number of leapfrog steps from the
issues of parameterisation consider in this paper, and ensure
that each method is reasonably tuned. For iHMC, we tune a
single number of leapfrog steps that is shared across both
the CP and NCP substeps.

D. Additional Analysis
In addition to the estimated effective sample sizes, we di-
rectly examined posterior moments estimated from each
method. Theory implies that the estimated posterior mean
and standard deviation should converge to their true values
at a rate of O(

√
N), where N is the number of effective

samples, so we would expect these results to be broadly
consistent with the estimated effective samples sizes in § 6.

For each model, we computed a ‘gold standard’ estimated
posterior mean and standard deviation. We first used each
method to estimate empirical means and standard deviations
for the latent variables, using the full set of 200 × 10000
samples produced across all chains. We then took the me-
dian of each statistic across the four methods, i.e., the mean
of the two central values, for our final estimate. This is
robust to the case where one of the four methods totally
fails to mix— generally because a fully centred or fully
noncentred parameterisation is not appropriate—as long as
the other methods produce reasonable samples. By inspec-
tion, at least three of the four methods agreed closely in all
cases, which provides some comfort that our gold standard
estimates are reasonable.

Table 1 shows normalized expected error in the posterior
statistics estimated by a single chain of each method, as a
function of the number of gradient steps taken. For each

latent variable zi, we compute the expected absolute error in
the mean, using the running mean µ̂(:t)

i,k estimated from the
first t gradient steps of the kth chain, and the gold standard
mean µi computed as above, to be

r
(:t)
i =

1

K

∑

k

∣∣∣µ̂(:t)
i,k − µi,

∣∣∣

where K is the number of chains. We analogously compute
expected absolute error in standard deviation by

s
(:t)
i =

1

K

∑

k

∣∣∣σ̂(:t)
i,k − σi

∣∣∣ .

Each model has many latent variables, whose posteriors
have different scales. To summarise inference across all
variables in a model, we report the mean of the errors
normalized by the standard deviation (which we treat as
a reasonable representative of the posterior scale for each
variable) across all N latent variables,

r̄(:t) =
1

N

∑

i

r
(:t)
i /σi s̄(:t) =

1

N

∑

i

s
(:t)
i /σi.

These quantities are plotted in Table 1. Note that the x axis
is the number of gradient steps taken; this may correspond
to different numbers of actual samples from each method,
depending on the number of leapfrog steps used. As dis-
cussed in § 6, the number of gradient steps is the appropriate
metric here, as it’s a reasonable proxy for wallclock time.

The relative performance of the methods generally corre-
sponds to and supports the effective sample size estimates
reported in § 6. VIP converges notably faster than other
methods in the German credit model, and otherwise about
as quickly as the better of CP and NCP, each of which
sometimes fails quite badly on its own. Interleaved HMC
is generally between CP and NCP, with the exception of
the estimated standard deviations on the electric company
dataset, where it notably beats out all of the other methods.

We also provide autocorrelations for each method, plotting
autocorrelations for each latent variable across three chains
along with the mean autocorrelation (plotted in bold). Given
an autocorrelation sequence r1, . . . , rN−1 on N samples,
the effective sample size is defined as

ESS(N) =
N

1 + 2
∑N−1
i=1

N−i
N ri

;

these are the values reported in § 6.
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Error in mean (r̄(:t)) Error in stddev (s̄(:t)) Autocorrelations

Radon, MA

Eight schools

Election

Electric

German credit

Table 1. Additional inference diagnostics.
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6.3 Discussion

6.3.1 Impact

The work has been well received within other effect-handling based PPLs: both Pyro

(Bingham et al., 2019) and NumPyro (Phan et al., 2019) have implemented the variationally

inferred parameterisation (VIP) handler to allow for automatic reparameterisation.5, 6

6.3.2 Scope and extensions

This chapter focused on one particular family of reparameterisations (the family of partial

non-centred reparameterisations), applicable to one particular family of distributions (the

location-scale family). However, it is possible to use effect handlers to perform model

reparameterisation more generally. It is also possible to extend and adapt VIP to be

applicable to other families of distributions and reparameterisations.

Multivariate distributions. VIP can be used for a broad range of distributions:

any univariate location-scale distribution (such as Gaussian, Logistic and Cauchy) are

directly covered by the work of this paper. Adapting VIP to multivariate location-scale

distributions is also possible. One way to do so for an N -dimensional variable z ∼ N (µ,Σ)

is to interpolate the eigenvalues of the covariance matrix Σ. If the eigendecomposition

of Σ is Σ = Q diag(λ)Q−1 (which also equals Q diag(λ)QT , as Σ is positive definite and

symmetric, thus Q is orthogonal), VIP can be implemented by interpolating λ̃ between

1 and λ through the parameterisation parameters φ ∈ [0, 1]N : we set λ̃i = λφii for

i = 1, . . . , N . The reparameterisation is then:

z̃ ∼ N (µ̃, Σ̃) z = µ+Q diag(
√
λ� λ̃)QT (z̃− µ̃)

where µ̃ = λ̃�µ, Σ̃ = Q diag(λ̃)QT , � denotes elementwise multiplication ((a�b)i = aibi),

and� denotes elementwise division ((a�b)i = ai/bi). As before, this results in interpolating

between non-centred and centred parameterisation: when φ = 0, we have µ̃ = 0 and

Σ̃ = QI QT = I; when φ = 1, we have µ̃ = µ and Σ̃ = Q diag(λ)QT = Σ.

Other reparameterisations. Effect handlers can be used to implement reparameteri-

sations more generally. In particular, if sampling a variable z from a distribution d1 is

equivalent to sampling z̃ from a distribution d2 and obtaining z from z̃ via a transformation

f , then we can define the following handler to reparameterise out models:

5 https://docs.pyro.ai/en/latest/infer.reparam.html#module-pyro.infer.reparam.loc_scale
6 http://num.pyro.ai/en/latest/reparam.html#numpyro.infer.reparam.LocScaleReparam

https://docs.pyro.ai/en/latest/infer.reparam.html#module-pyro.infer.reparam.loc_scale
http://num.pyro.ai/en/latest/reparam.html#numpyro.infer.reparam.LocScaleReparam
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let reparam = handler {

sample(rv; d1. k) →
sample(z tilde; d2);

let z = f(z tilde);

k(z)

}

For example, for a variable z coming from any distribution d and provided we know F−1d —

the inverse cumulative distribution function (inverse CDF) of d — we can reparameterise

z using an inverse CDF transform:

let icdf reparam = handler {

sample(rv; d. k) →
sample(z tilde; uniform(0, 1));

let z = F−1d (z tilde);

k(z)

}

However, in order to adapt VIP to any new family of reparameterisations, we need to

design a continuous relaxation between the reparameterised/non-reparameterised model,

the way VIP does so for non-centred/centred parameterisation. In other words, VIP is not

immediately applicable to other reparameterisations, which is one of its biggest limitations.



CHAPTER 7

Challenges ahead

Many challenges lie ahead of making Bayesian inference accessible. This thesis showed

that probabilistic programming languages can utilise the underlying structure of a model

to optimise inference. However, a lot of work remains before we can tailor a model-specific

algorithm to a problem automatically.

Previous chapters already highlighted some of the future directions that remain unexplored.

Chapter 5 emphasised the need for a general framework for static analysis of probabilistic

programs, which can slice a program according to a particular factorisation of interest,

and perhaps facilitate programmable inference. Chapter 6 demonstrated how to automate

one specific model reparameterisation, but leaves the open questions of how to generalise

to other reparameterisation families.

Some other challenges of probabilistic programming were not mentioned here, but could be

addressed by program analysis in the future. Perhaps most significantly, this dissertation

did not consider problems where the number of model parameters is unbounded, nor

inference algorithms that can be applied to such problems. Similarly, we assumed that the

likelihood of the model is available in a closed form. Future work may look into factorising

a model, so that challenging sub-parts of it, for example those containing an unbounded

number of variables, or deterministic observations, are treated separately to automatically

synthesise an efficient model-specific strategy.
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Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan Öcal, Giacomo
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Gonçalves, David S Greenberg, and Jakob H Macke. 2020. sbi : a toolkit for simulation-based inference.

Journal of Open Source Software 5, 52 (2020), 2505.

https://doi.org/10.1145/3453483.3454078
https://doi.org/10.1145/3453483.3454078
https://doi.org/10.1093/biostatistics/kxy018
https://discourse.mc-stan.org/t/stan-stan3-preliminary-design/4147
https://discourse.mc-stan.org/t/stan-stan3-preliminary-design/4147


190 Bibliography

Luke Tierney. 1994. Markov chains for exploring posterior distributions. the Annals of Statistics (1994),

1701–1728.

David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. 2016. Design and Implemen-

tation of Probabilistic Programming Language Anglican. In Proceedings of the 28th Symposium on the

Implementation and Application of Functional Programming Languages (IFL 2016). Association for

Computing Machinery, Article 6, 12 pages. https://doi.org/10.1145/3064899.3064910

Dustin Tran, Matthew D. Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, Alexey Radul,

Matthew Johnson, and Rif A. Saurous. 2018. Simple, Distributed, and Accelerated Probabilistic

Programming. In Advances in Neural Information Processing Systems (NeurIPS’18).

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2018. An introduction to

probabilistic programming. arXiv preprint arXiv:1809.10756 (2018).

Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, and Frank Wood. 2015. Particle Gibbs

with ancestor sampling for probabilistic programs. In Artificial Intelligence and Statistics. PMLR,

986–994.

Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A Sound Type System for Secure Flow

Analysis. J. Comput. Secur. 4, 2/3 (1996), 167–188.

Eli N. Weinstein and Debora S. Marks. 2021. A structured observation distribution for generative biological

sequence prediction and forecasting. bioRxiv (2021). https://doi.org/10.1101/2020.07.31.231381

arXiv:https://www.biorxiv.org/content/early/2021/02/24/2020.07.31.231381.full.pdf

John Winn, Christopher M Bishop, and Tommi Jaakkola. 2005. Variational message passing. Journal of

Machine Learning Research 6, 4 (2005).

Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. 2014. A New Approach to Probabilistic

Programming Inference. In Artificial Intelligence and Statistics (AISTATS’14). 1024–1032.

Jeremy Yallop. 2017. Staged generic programming. Proceedings of the ACM on Programming Languages

1, ICFP (2017), 1–29.

Mihalis Yannakakis. 1981. Computing the minimum fill-in is NP-complete. SIAM Journal on Algebraic

Discrete Methods 2, 1 (1981), 77–79.

Nevin Lianwen Zhang and David Poole. 1994. A simple approach to Bayesian network computations. In

Proceedings of the Biennial Conference-Canadian Society for Computational Studies of Intelligence.

Canadian Information Processing Society, 171–178.

https://doi.org/10.1145/3064899.3064910
https://doi.org/10.1101/2020.07.31.231381

	cover sheet.pdf
	maria_gorinova_phd_dissertation_final.pdf
	Introduction
	Probabilistic programming
	A very simple probabilistic program
	Bayesian inference
	Deriving a solution analytically
	Rejection sampling and the curse of dimensionality
	Markov chain Monte Carlo inference
	Variational inference
	Inference on graphical models
	Other inference strategies

	Probabilistic programming languages
	Definition and classification of PPLs
	Density-based (or explicit) PPLs
	Sample-based (or implicit) PPLs
	Effect-handling-based PPLs
	Other PPLs


	I Static optimisation for probabilistic programming
	Formal treatment of programming languages
	Formal syntax of programming languages
	Rules of inference
	Semantics of programming languages
	Type checking and type inference
	Information flow analysis

	SlicStan
	The paper
	Introduction
	Background: Probabilistic Programming Languages and Stan
	Goals and Key Insight
	The Insight by Example
	Core Contributions and Outline

	Core Stan
	Syntax of Core Stan Expressions and Statements
	Operational Semantics of Stan Statements
	Syntax of Stan
	Density-Based Semantics of Stan
	Inference

	SlicStan
	Syntax
	Typing of SlicStan
	Elaboration of SlicStan
	Semantics of SlicStan
	Examples
	Difficulty of Specifying Direct Semantics Without Elaboration

	Translation of SlicStan to Stan
	Shredding
	Transformation

	Examples and Discussion
	Type Inference
	Locality
	Code Refactoring
	Code Reuse

	Related Work
	Formalisation of Probabilistic Programming Languages
	Static Analysis for Probabilistic Programming Languages
	Usability of Probabilistic Programming Languages

	Conclusion
	Appendix A: Definitions and Proofs
	Definitions
	Proof of Semantic Preservation of Shredding

	Appendix B:Further discussion on semantics
	Semantics of Generated Quantities
	Relation of Density-based Semantics to Sampling-based Semantics

	Appendix C: Elaborating and shredding if or for statements
	Appendix D: Non-centred Reparameterisation
	Appendix E: Examples
	Neal's Funnel
	Cockroaches
	Seeds


	Clarifying the contributions
	Impact

	Conditional independence by typing
	The paper
	Introduction
	SlicStan: Extended syntax and semantics
	Syntax
	Typing
	Operational Semantics of SlicStan Statements
	Density Semantics
	Shredding and Translation to Stan
	Density Factorisation

	Theory: Conditional independence by typing
	The 2 Type System
	Conditional Independence Result for 2-Well-Typed Programs
	Scope of the Conditional Independence Result

	Application: Discrete parameters support through a semantics-preserving transformation
	Goal
	Key Insight
	Variable Elimination
	Conditional Independence and Inferring the Markov Blanket
	Sampling the Discrete Parameters
	A Semantics-Preserving Transformation Rule
	Marginalising Multiple Variables: An example
	Relating to Variable Elimination and Complexity Analysis
	Semantic Preservation of the Discrete Variable Transformation
	Scope and limitations of Elim Gen

	Implementation and empirical evaluation
	Implementation
	Empirical evaluation
	Analysis and discussion

	Related work
	Conclusion
	Appendix A: Definitions and Proofs
	Definitions
	Proofs

	Appendix B: Examples
	Sprinkler
	Soft-K-means model
	A causal inference example


	Discussion


	II Dynamic optimisation for probabilistic programming
	Automatic reparameterisation
	Effect-handling based probabilistic programming
	Effects and effect handling
	Composing effect handlers
	Effect handling in probabilistic programming

	The paper
	Introduction
	Related Work
	Understanding the Effect of Reparameterisation
	Reparameterising Probabilistic Programs
	Effect Handling-based Probabilistic Programming
	Model Reparameterisation Using Effect Handlers

	Automatic Model Reparameterisation
	Interleaved Hamiltonian Monte Carlo
	Variationally Inferred Parameterisation

	Experiments
	Models and Datasets
	Algorithms and Experimental Details
	Results

	Discussion
	Appendix A: Derivation of the Condition Number of the Posterior for a Simple Model
	Deriving VCP and VNCP: Centred Parameterisation
	Deriving VCP and VNCP: Non-centred Parameterisation
	The Best Diagonal Preconditioner
	The Condition Numbers CP and NCP

	Appendix B: Interceptors
	Make log joint
	Non-centred Parameterisation Interceptor
	VIP Interceptor
	Mean-field Variational Model Interceptor

	Appendix C: Details of the Experiments
	Appendix D: Additional Analysis

	Discussion
	Impact
	Scope and extensions



	Challenges ahead
	Bibliography


