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Abstract

Tropospheric ozone (O3) is an important reactive gas in the atmosphere influ-

encing human health, ecosystems and climate. Since the mid-20th century,

scientists started to explore the mechanism of tropospheric O3 formation

after severe O3 air pollution in Los Angeles. They found that O3 is a pho-

tochemical pollutant as its formation involves energy from sunlight, as well

as precursors nitrogen oxide (NOx), volatile organic compounds (VOCs) and

carbon monoxide (CO). Nowadays, highly O3 polluted episodes can still occur

in areas where emissions have been controlled strictly due to the non-linear

chemical reactions of O3 formation. Therefore, it is important to implement

suitable emission control strategies to mitigate O3 pollution, and to under-

stand the impacts of emissions and climate on O3 changes in the future.

Firstly, a chemistry scheme with more reactive VOC species is developed

based on the Strat-Trop chemistry scheme in the United Kingdom Earth

System Model, UKESM1. This permits a more realistic and photochemi-

cally active environment for O3 simulation in areas with high reactive VOC

emissions. The effectiveness of emission controls in reducing surface O3 con-

centrations in the industrial regions of China in summer, 2016, is investi-

gated. The concentrations of surface O3 in those regions generally can be

simulated accurately, and the diurnal variation of O3 can also be captured
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well by the model. O3 production in most regions is VOC-limited, suggesting

that surface O3 concentrations will increase as NOx emissions decrease. In

the VOC-limited regions, more than 70 % reductions in NOx emissions alone

are required to reduce surface O3 concentrations. Reductions in 20 % VOC

emissions alone lead to 11 % decreases in surface O3 concentrations, and are

effective in offsetting increased O3 levels that would otherwise occur through

decreased NOx emissions alone.

Subsequently, the evolution of tropospheric O3 from the present day (2004-

2014) to the future (2045-2055) under the shared socio-economic pathways

(SSPs) is investigated to demonstrate the impacts of different climate and

emissions on O3 changes. In the context of climate change, changes in the

tropospheric O3 burden in the future can be largely explained by changes

in O3 precursor emissions. However, surface O3 changes vary substantially

by season in high-emission regions due to different seasonal O3 sensitivity.

VOC-limited areas are more extensive in winter (7 %) than in summer (3 %)

across the globe. Reductions in NOx emissions are the key to transform O3

production from a VOC- to NOx-limited chemical environment, but will lead

to increased O3 concentrations in high-emission regions, and hence emission

controls on VOC and methane (CH4) are also necessary.

Lastly, a deep learning model is developed to demonstrate the feasibility of

correcting surface O3 biases in UKESM1, to identify key processes causing

them, and to correct projections of future surface O3. Temperature and re-

lated geographic variables latitude and month show the strongest relationship

with O3 biases. This indicates that O3 biases are sensitive to temperature

and suggests weakness in representation of temperature-sensitive physical or

chemical processes. Photolysis rates are also shown to be important for O3

biases likely due to uncertainties in cloud cover and insolation simulations.
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Chemical species such as the hydroxyl radical, nitric acid and peroxyacyl

nitrates show a clear relationship to O3 biases, associated with uncertainties

in emissions, chemical production and destruction, and deposition. Cor-

rected seasonal O3 changes are generally smaller than those simulated with

UKESM1 in high-emission regions. This demonstrates that O3 sensitivity

to future emissions and climate in UKESM1 may be stronger than that in

the real atmosphere. Given the uncertainty in simulating future ozone, we

show that deep learning approaches can provide improved assessment of the

impacts of climate and emission changes on future air quality, along with

valuable information to guide future model development.

The work presented here offers a valuable assessment of emission control

strategies to resolve current O3 air pollution problems in China, and also

quantifies the changes in the tropospheric O3 burden and global surface O3

sensitivity in the future under different emission and climate scenarios. Deep

learning guides possible directions to improve model performance in surface

O3 simulations for a global chemistry-climate model, and provides more ac-

curate projections of O3 pollution in the future.
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Lay summary

Ozone is a reactive gas and protects life on the Earth by absorbing most

of the harmful ultraviolet radiation from the sun in the upper atmosphere,

the stratosphere, but is a pollutant in the lower atmosphere, the troposphere.

Ozone is formed by a series of chemical reactions with the presence of sunlight

and precursors such as nitrogen oxide and volatile organic compounds. While

emissions of precursors have already been controlled in some polluted regions,

severe ozone air pollution can still occur. This reflects the non-linear chem-

ical reactions of ozone formation, which limits the effectiveness of emission

controls. Ozone concentrations are also governed by meteorology, transport

and deposition, and all of these factors are affected by climate change. It is

hence important to understand the different impacts of emissions and climate

on future ozone.

Firstly, a computational chemistry-climate model is used to simulate surface

ozone concentrations in the main industrial regions of China where ozone pol-

luted episodes occur frequently in recent years. The aim is to investigate the

increased ozone concentrations in these regions, even though stringent con-

trols on NOx and aerosol emissions have been implemented successfully in

China. Another aim is to investigate the suitable emission control strategies

to reduce ozone pollution. The results show that if only emissions of nitro-
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gen oxide are reduced, more than 70 % emission reductions are required to

reduce surface ozone concentrations in most high-emission regions in China;

otherwise surface ozone levels increase. The 20 % reductions in emissions of

volatile organic compounds reduce surface ozone concentrations by at most

11 %. The results highlight that emission controls on nitrogen oxide and

volatile organic compounds should be implemented simultaneously, which

can effectively offset high ozone levels in China.

Secondly, the evolution of global tropospheric ozone is investigated under

changing emissions and climate in the future. The changes in the ozone bur-

den are mainly attributed to changing surface emissions of ozone precursors.

Methane, as an inactive volatile organic compound, also shows great impor-

tance to surface ozone levels. We show that the future tropospheric ozone

burden will increase by 4 % with higher NOx and VOC emissions but decrease

by 7 % if NOx and VOC emissions are reduced and by 5 % if atmospheric

methane mixing ratios are reduced. Under a warmer climate, enhanced bio-

genic emissions of volatile organic compounds promote ozone production,

but a more humid atmosphere accelerates ozone destruction. The seasonal

changes in surface ozone levels vary substantially in different regions prin-

cipally because ozone sensitivity varies by seasons and regions. Regional

ozone sensitivity also changes in the future, indicating that emission control

strategies should change correspondingly.

Lastly, a machine learning technique is used to correct model ozone biases

due to the limitations of current models in representing processes governing

ozone. The possible processes causing model biases are also explored. The

results show that the ozone biases in a chemistry-climate model are highly

related to temperature, reflected by positive biases in summer and negative

biases in winter. The photolysis rates associated with ozone production and
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destruction also affect O3 biases greatly, likely due to the large uncertainties

in the simulations of cloud coverage and insolation. Hydroxyl radical and

oxidative nitrogen species such as nitric acid and peroxyacyl nitrates all show

great importance to ozone biases on a regional scale. Due to uncertainty in

simulating future O3, surface O3 projections are corrected by the machine

learning model, showing the smaller effects of changes in climate and emission

on O3.

Overall, emissions of nitrogen oxide and volatile organic compounds are im-

portant factors for both surface ozone levels and the tropospheric ozone bur-

den. Reducing these emissions will benefit the overall improvement of en-

vironment on a global scale, but will further lead to the degradation of air

quality in some polluted regions, which depends on the regional ozone sen-

sitivity. By correcting ozone biases in the model, an improved assessment of

the impacts of changing climate and emissions on future air quality can be

provided.
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Chapter 1

Introduction

1.1 Motivation and aims

Tropospheric ozone (O3) has significant impacts on air quality, ecosystems

and climate hence there is much interest in its formation. O3 is a secondary

pollutant as it is formed through a series of chemical reactions in the presence

of sunlight. Many factors affect O3 concentrations, including emissions of

precursors, meteorology, transport and deposition. While strict emission

controls have been implemented in many polluted areas, high O3 air pollution

levels still occur frequently in these regions (Wang et al., 2017a). This is due

to insufficient reductions in emissions but non-linear O3 chemistry also limits

the effectiveness of emission controls. Increases in background O3 levels also

worsen air quality if the local O3 production does not decrease.

Many studies show that surface O3 concentrations have generally decreased in

North America and Europe since the 2000s due to consistent emission controls

over the last decades (Simon et al., 2015; Colette et al., 2016). Meanwhile,

major O3 polluted regions have gradually shifted from North America and

1
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Europe to Asia in recent years (Fleming et al., 2018). China has stringent

emission controls, but surface O3 pollution still occurs frequently in some

regions (Li et al., 2019a,b). Therefore, there is a need to investigate the

main cause of increased O3 pollution in China, and effective emission control

strategies for China. The effectiveness of emission controls may differ in

different regions in China due to different chemical environments. The surface

chemical environment is hence investigated for China to explore suitable

emission control strategies to mitigate O3 pollution.

Tropospheric O3 concentrations will be influenced by a warmer climate by

changing humidity and biogenic VOC emissions, but the tropospheric O3

burden and surface O3 concentrations may respond differently to changing

climate and emissions in the future. Hence, there is a need to quantify the

impacts of changes in climate and emissions on the O3 burden and surface

O3 to understand the evolution of future O3. Surface O3 mitigation in the

future in the context of climate change is still a concern. Therefore, surface

O3 sensitivity across the globe under different climate-emission scenarios is

investigated to identify the key factors controlling O3 sensitivity and suitable

emission controls for different regions.

Current chemistry-climate models are imperfect in O3 simulations, but it is

difficult to identify the sources of biases in a complex model, which limits the

assessment of future O3 changes. Understanding biases in O3 concentrations

in model simulations is therefore important. A machine learning technique

is hence used to identify key variables likely causing O3 biases and to guide

directions for model development. An improved assessment of future O3

projections is also required to assess the real impacts of future climate and

emissions on O3 concentrations, which is important for understanding the

relationships between air composition and climate in the Earth system.
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Therefore, this thesis is aimed at investigating: suitable and effective emission

control strategies to mitigate surface O3 pollution in China, the evolution of

tropospheric O3 in the future, and the improvement of model performance

in O3 simulations and the implications for future O3. The aims of the thesis

are provided below, along with a brief introduction of the relevant research

background.

1. To assess the effectiveness of emission control strategies in reducing O3

levels in the industrial regions of China.

Background: Anthropogenic emissions are believed to have decreased

substantially in China since 2013 but surface O3 pollution has become

more severe in industrial regions.

2. To investigate the evolution of tropospheric O3 from the present day

to the future under different emission and climate scenarios.

Background: The current climate is warming and regional emission

changes in the future differ substantially across the globe, which have

varying influences on the tropospheric O3 burden and surface O3 con-

centrations.

3. To quantify and correct O3 biases in a chemistry-climate model and to

explore potential reasons causing model biases.

Background: Deficiencies in process representation in chemistry-climate

models lead to biases in simulating surface O3 concentrations and to
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uncertainty in the projections of future O3 changes.

The following sections in the introductory chapter introduce tropospheric O3

in terms of O3 impacts, chemistry, observations, and the pathways of future

O3 projection (Section 1.2). Then an Earth system model is introduced

and the newly developed gas-phase chemistry scheme is described, which has

been used throughout this thesis (Section 1.3). Subsequently, the origins of

machine learning, its advantages and disadvantages, and its applications in

atmospheric science are introduced (Section 1.4). The main research chapters

are outlined in Section 1.5.
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1.2 Tropospheric ozone

1.2.1 Ozone impacts and hazards

O3 is a reactive trace gas in the atmosphere, with more than 90 % in the

stratosphere, about 15-50 km above the surface, and the rest in the tro-

posphere below the tropopause (Salawitch et al., 2019). Stratospheric O3

protects life on the Earth by absorbing most of the Sun’s harmful ultraviolet

(UV) radiation. However, tropospheric O3 is a photochemical pollutant, pro-

duced through the reactions between nitrogen oxide (NOx), volatile organic

compounds (VOCs) and carbon monoxide (CO) with the presence of sunlight

(Fishman and Crutzen, 1978; Seinfeld and Pandis, 1998; Monks et al., 2015).

Tropospheric O3 has significant impacts on human health, ecosystems and

climate change (Lefohn et al., 2018) as described below.

1. Human health

Exposure to a high-O3 environment will induce a variety of illnesses

such as asthma, autism, strokes, respiratory diseases, cardiovascular

diseases and Alzheimer’s disease as well as premature mortality (WHO,

2021). In addition, O3 affects metabolism and immune systems (Shore,

2019), and accelerates the aging of human beings (Fuks et al., 2019).

The World Health Organization (WHO) air quality standard for out-

door 8-h maximum moving average (MDA8) O3 concentrations is 100

µg/m3. Both short-term and long-term exposures to O3 above the

standard concentrations can lead to morbidity and mortality caused

by these diseases, which has been reported as a global issue by many

studies (Lim et al., 2019; Zhang et al., 2019a; Vicedo-Cabrera et al.,
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2020). Several studies estimate that more than 1 million deaths are at-

tributed to O3 pollution every year, especially in high-emission regions

(Lelieveld et al., 2015; Stanaway et al., 2018).

2. Ecosystems

Ground level O3 causes damage to vegetation, and influences ecosys-

tems in terms of carbon cycling, nutrient cycling and water cycling

(Mills et al., 2013; Grulke and Heath, 2020). Studies estimate that

there was an economic loss of US $14–26 billion due to crop damage

in the year 2000 (Emberson, 2020). Vegetation damage varies with

different types of crops, which is estimated to be 2–16 % for major

staple crops: wheat, rice, maize and soybean (Tai et al., 2021). Tree

growth has also been reported to decrease by 7 % due to a 11 % reduc-

tion in photosynthesis of temperate and boreal forests in the Northern

Hemisphere since the industrial revolution (Wittig et al., 2007). O3

also poses a threat to terrestrial biodiversity by affecting physiological

traits of insect and plant communities (Agathokleous et al., 2020).

3. Climate change

O3 acts as an important greenhouse gas (GHG), absorbing infrared

energy emitted by the Earth and heating the atmosphere. Mean O3

radiative forcing to climate is estimated to be 0.4 ± 0.2 W/m2 from the

industrial era (around 1750) to the year 2000, which is comparable to

radiative forcings from methane (CH4) and halocarbons, but is much

lower than that from carbon dioxide (CO2) (Ehhalt et al., 2001; Naik
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et al., 2021). In recent decades, stratospheric ozone concentrations

have decreased due to rising reactive chlorine and bromine amounts in

the atmosphere, leading to a small negative radiative forcing. How-

ever, the magnitude of negative radiative forcing is much smaller than

positive radiative forcing exerted by increased tropospheric O3 due to

human activities, which demonstrates the importance of tropospheric

O3 to climate change. In addition, O3 also influences the production

of hydroxyl radical (OH), and indirectly affects the lifetime of CH4.

Furthermore, increased tropospheric O3 reduces stomatal conductance

and photosynthetic CO2 uptake rates of plants and trees, leading to

less CO2 absorbed by vegetation and hence a warmer climate.

Tropospheric O3 is a pollutant that influences human health, ecosystems

and climate, and these aspects are also associated with each other. Human

health and ecosystems will be further affected by a warmer climate due to

more frequent heat stress and high O3 episodes. Due to the positive feedback

between different systems, the impacts of tropospheric O3 on human and

ecosystem health may be even larger than those estimated.

1.2.2 Ozone chemistry

Tropospheric O3 is a secondary product, formed through a series of chemical

reactions between NOx, VOCs, CH4 and CO (Chameides and Walker, 1973;

Crutzen, 1974). The reactions are driven by energy from sunlight, so O3 is

a photochemical pollutant. The dominant mechanisms of O3 formation vary

between clean areas (e.g. remote oceans) and polluted areas (e.g. urban)

due to the different abundances of O3 precursors (Liu et al., 1987; Lin et al.,
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1988; Kleinman, 1994). The balance between O3 gross production and gross

destruction is largely influenced by NOx concentrations, and increased con-

centrations of VOCs, CH4 and CO generally accelerate O3 production. O3

formation mechanisms are described below in two conditions: clean regions

and polluted regions.

Clean regions:

In clean areas with relatively low NOx emissions, the natural background O3

concentrations are low, typically 25–40 ppb (Reid et al., 2008). O3 forma-

tion starts from the photolysis of nitrogen dioxide (NO2) (Equation 1.1), and

O(3P) atoms created combine with oxygen (O2) to form O3 (Equation 1.2).

O3 can be destroyed quickly by reacting with nitric oxide (NO) to regenerate

NO2 (Equation 1.3). Therefore, O3, NO2 and NO create a closed O3 pro-

duction and destruction cycle, reflected by the stable concentrations of these

species in a photochemical stationary state.

NO2 + hv → NO + O(3P ) (1.1)

O(3P ) + O2 + M → O3 + M (1.2)

O3 + NO → NO2 + O2 (1.3)

Polluted regions:
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The photochemical stationary state between O3, NO2 and NO will not re-

main stable in polluted areas due to fast O3 production and O3 destruction

affected by local O3 precursor emissions. Instantaneous O3 production rates

are largely governed by O3 precursor concentrations. O3 production will be

initialised by the oxidation of hydrocarbons (RH) or CO by reacting with re-

active OH radicals to generate organic peroxy radicals (RO2) and hydroper-

oxyl radicals (HO2) (Equation 1.4, 1.5). Primary O3 production rates are

hence controlled by the concentrations of hydrocarbons, CO and OH.

RH + OH → RO2 + H2O (1.4)

CO + OH + M → HO2 + CO2 + M (1.5)

Next, the critical step is the conversion of NO to NO2 (Equation 1.6, 1.7)

through the reactions between NO and RO2 radicals. These reactions avoid

O3 destruction by reaction with NO, and allow more O3 production. HO2

and OH can be also regenerated in these reactions, which will participate in

further O3 formation. In addition, generated secondary VOCs will react with

OH or photolyse to generate more radicals to promote O3 formation.

RO2 + NO → HO2 + NO2 + secondary V OC (1.6)

HO2 + NO → OH + NO2 (1.7)

Therefore, peroxy radicals play important roles in initialising O3 formation.

Excited oxygen atoms O(1D) created by O3 photolysis can be captured by

water vapour, which is an important source of OH (Equation 1.8, 1.9).
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O3 + hv → O(1D) + O2 (1.8)

O(1D) + H2O → 2OH (1.9)

In addition, the reactions between NO and HO2 produce OH (Equation 1.7).

The OH and peroxyl radicals can convert with each other by reacting with

O3 (Equation 1.10, 1.11), and these reactions are chemical sinks of O3.

O3 + OH → HO2 + O2 (1.10)

O3 + HO2 → OH + 2O2 (1.11)

In polluted areas, radical sources also include the photolysis of nitrous acid

(HONO), formaldehyde (HCHO), and the ozonolysis of alkenes (CnH2n)

(Equation 1.12, 1.13, 1.14).

HONO + hv → OH + NO (1.12)

HCHO + 2O2 + hv → 2HO2 + CO (1.13)

O3 + Alkene → HOx + RO2 (1.14)

However, O3 concentrations cannot increase continuously as NOx, VOC and

CO emissions increase. This is principally due to the rapid loss of radicals in
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high-NOx environments. In low-NOx environments, major radical sinks are

the formation of hydrogen peroxide (H2O2) and organic peroxide (ROOH)

(Equation 1.15, 1.16). These two peroxide species are soluble, so some frac-

tions of peroxides are removed from the atmosphere by wet deposition, and

the rest can react with OH or photolyse to regenerate radicals again.

HO2 + HO2 → H2O2 + O2 (1.15)

RO2 + HO2 → ROOH + O2 (1.16)

However, in high-NOx environments, both OH and NOx can be consumed

rapidly by the formation of nitric acid (HNO3) (Equation 1.17), and a large

amount of O3 can be directly destroyed by reaction with NO. HNO3 is also

a highly soluble species that can be removed by wet deposition or by the

formation of nitrate aerosol uptake by particles. Therefore, HNO3 acts as a

reservoir of both radicals and NOx, and is more effective in terminating O3

production than H2O2 and ROOH.

OH + NO2 + M → HNO3 + M (1.17)

Peroxyacyl nitrate (PAN) is also an important reservoir for NOx as it is

formed by the reaction between NO2 and the radical CH3C(O)O2 (Equation

1.18), and it could have a much longer lifetime (a few months) (Fischer et al.,

2014) than NOx (a few hours). CH3C(O)O2 can be produced by oxidation of

acetaldehyde (CH3CHO) by OH, or by photolysis of other carbonyl VOCs.

PAN can influence O3 formation in remote areas by transporting NOx in a

long distance before thermally decomposing. Overall, the balance between
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O3 production and O3 destruction largely depends the losses of radicals,

which are governed by the relative NOx concentrations.

CH3(O)CO2 + NO2 + M → PAN + M (1.18)

At nighttime without sunlight, O3 cannot be produced and is gradually con-

sumed by NO. O3 can react with NO2 to form the nitrate radical (NO3)

(Equation 1.19), an important species at night because NO3 is rapidly pho-

tolysed back to NOx during the day. NO3 can rapidly react with NO to

produce NO2 again or react with other VOCs, but some NO3 reacts with

NO2 to produce dinitrogen pentoxide (N2O5) (Equation 1.20). N2O5 acts as

a minor sink of O3 at nighttime, primarily lost by the reactions on aerosol

surfaces before it is thermally decomposed, which forms HNO3 (Equation

1.21).

O3 + NO2 → NO3 + O2 (1.19)

NO3 + NO2 → N2O5 (1.20)

N2O5 + H2O → 2HNO3 (1.21)

Based on the equations above, net O3 chemical production rates can be ex-

pressed as the gross rate of O3 production, P(O3), minus the gross rate of

O3 loss, L(O3). Given the small contribution of the minor chemical path-

ways of O3 formation, a simple but useful approximation of net O3 chemical
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production rates is given as:

Net tendency, P (O3) = P (O3) − L(O3)

= k1[RO2][NO] + k2[HO2][NO]

−(k3[O(1D)][H2O] + k4[O3][OH] + k5[O3][HO2] + k6[O3][Alkenes])

where ki represents the rate coefficient of reaction i, and species in the brack-

ets represents the concentration.

1.2.3 Ozone sensitivity

Since O3 production rates are not linearly proportional to changes in precur-

sor concentrations, O3 production efficiency varies, and this determines the

effectiveness of emission controls in reducing O3 pollution. O3 sensitivity is

hence an important concept associated with O3 production efficiency, which

can be characterised as ‘NOx-limited’ and ‘VOC-limited’ O3 production (Sill-

man et al., 1990; Sillman, 1999; Kleinman et al., 2001). ‘NOx-limited’ regimes

would turn into ‘VOC-limited’ regimes as the concentrations of NOx increase,

leading to a decrease in O3 production efficiency due to the removal of radicals

through the formation of H2O2, ROOH and HNO3 that can be removed by

wet deposition. NOx-limited regimes represent relatively low-NOx environ-

ments, in which O3 concentrations increase with NOx emissions but are not

sensitive to VOC emissions. In contrast, in VOC-limited regimes when NOx

concentrations are relatively high, O3 concentrations increase with decreas-

ing NOx emissions, and are proportional to VOC increases. There are several

factors influencing O3 chemical sensitivity, including meteorology, transport,

radiation and deposition. All these factors indirectly affect the instanta-
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neous production rates of O3 through temperature, photolysis rates and O3

precursor concentrations. VOC reactivity also influences O3 sensitivity as

O3 production could be very sensitive to reactive VOCs despite their low

concentrations, leading to a ’NOx-limited’ regime (Chameides et al., 1988;

Pierce et al., 1998).

Figure 1.1: An example of an O3 isopleth diagram showing O3 concentra-

tions as a function of VOC and NOx concentrations, and VOC- and NOx-

limited regimes for O3 production. The picture is adapted from Rethinking

the Ozone Problem in Urban and Regional Air pollution, National Research

Council 1992.

O3 sensitivity can be characterised with a variety of approaches based on

observations or models. Observation-based approaches such as Incremental

Reactivity (IR) (Carter and Atkinson, 1989) and Relative Incremental Re-

activity (RIR) (Cardelino and Chameides, 1995) use in situ concentrations
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of chemical species to calculate the instantaneous sensitivity of O3 to pre-

cursors. However, limited observations cannot provide a general picture of

O3 sensitivity from a large scale. The model-based approach quantifies O3

responses to emission changes, but this may be computationally intensive

as O3 responses can be only obtained for a specific emission scenario set so

several model runs are needed. However, when the comprehensive relation-

ships between O3 concentrations and precursor emissions or concentrations

are derived from models, there is a ridge on the O3 isopleth plot distinguish-

ing NOx-limited and VOC-limited O3 production regimes, as seen in Figure

1.1. However, O3 sensitivity diagnosed by this O3 isopleth method may not

be accurate due to uncertainties and biases in simulated variables related

to O3 simulations. There are also uncertainties in emission inventory and

chemistry schemes implemented in models (Sillman et al., 1997).

O3 sensitivity indicators are an extension of the model-based approach, which

allow to identify O3 sensitivity regimes relatively easily. Two typical indica-

tors are the ratio of NOx/VOC concentrations or emissions and the ratio of

HNO3/H2O2 concentrations (Sillman, 1995; Sillman and He, 2002). Both in-

dicators are useful in distinguishing O3 sensitivity regimes but from different

perspectives. NOx/VOC ratios represent the relative abundances of NOx and

VOCs, reflecting low- and high-NOx environments. In contrast, HNO3/H2O2

ratios reflect the dominant radical sink, HNO3 or H2O2, governed by high-

and low-NOx concentrations separately. However, the poor representation of

uptake of HNO3 and radicals by aerosols in models may lead to biases in the

determination of O3 sensitivity regimes because the HNO3/H2O2 indicator

is more sensitive to chemistry schemes.
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1.2.4 Ozone observations and satellite measurements

It is critical to establish O3 observation networks to investigate the spatial

distributions and temporal trends in O3 concentrations, which provides op-

portunities to better understand O3 chemistry and transport by evaluating

model results against observations. The observed O3 concentrations or col-

umn concentrations can be collected by satellite, aircraft, ozonesondes and

ground based instruments. Satellite instruments measure the total O3 col-

umn and provides some information of derived O3 profiles. This is especially

helpful to measure the total O3 changes, and an example is the detection of

the O3 hole over the Antarctic (Levelt et al., 2018). Aircraft and ozonesonde

data provide vertical profiles of O3 and other related speices but these data

are limited in time and space (Liu et al., 2013; Gaudel et al., 2018). Sur-

face O3 has the closest link to human health and ecosystem sustainability.

Ground based instruments provide surface O3 data, but they are sparsely dis-

tributed across different regions (Sofen et al., 2016). Current measurement

sites are mostly located in developed regions. It is undoubtedly beneficial to

investigate O3 pollution in these specific regions, but the lack of O3 obser-

vations in developing countries hinder a comprehensive understanding of O3

pollution in more polluted environments and the underlying transport of O3

across continents.

Most surface O3 observation networks are developed on a regional basis.

In North America, the United States Environmental Protection Agency Air

Quality System (EPA AQS) is the main national network to monitor air

quality under the Clean Air Act, consisting of 2,963 stations across Amer-

ica. The Canadian National Air Pollution Surveillance Program (NAPS)

measure air quality from 373 stations in Canada. In Europe, the European
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Environment Agency (EEA) AirBase is the largest air quality data provider,

including 3,505 stations from 40 European countries. In East Asia, the Na-

tional Institute for Environmental Studies (NIES) is in charge of air quality

measurements from 1260 sites in Japan. The Korea Air Quality Network

(KRAQN) provides data from 312 sites in Korea. The World Data Center

for Greenhouse Gases (WDCGG) from the World Meteorological Organiza-

tion (WMO) Global Atmospheric Watch (GAW) is an early international

program that began to monitor reactive gas in 1971, but it only provides

O3 data from 155 stations mainly in developed countries (Schultz et al.,

2015).

To integrate O3 observation data from different sources, the Tropospheric

Ozone Assessment Report (TOAR, https://toar-data.org/) was established

in 2014, under the International Global Atmospheric Chemistry Project

(IGAC). It provides a comprehensive assessment of tropospheric O3 in terms

of global distributions and the trends from surface to the tropopause, using

9,690 stations from 1970 to 2015 for research communities (Schultz et al.,

2017). For surface O3 data, the database can be accessed via the Jülich

Open Web Services Interface (JOIN; https://join.fz-juelich.de). The pro-

cessed monthly, seasonal, annual mean data, trend datasets and gridded

datasets can be obtained in the data publication (https://doi.pangaea.de/

10.1594/PANGAEA.876108).

While the TOAR database includes all available O3 observations, there are

still large areas without measurement sites such as South America, Africa and

Asia. For China, there are only 34 stations (only 11 sites in the mainland

China) included in the TOAR database. However, air quality in China is

changing rapidly in recent years under emission controls, with the decreases

in some pollutants but surface O3 increases, which has drawn many scientific

https://toar-data.org/
https://join.fz-juelich.de
https://doi.pangaea.de/10.1594/PANGAEA.876108
https://doi.pangaea.de/10.1594/PANGAEA.876108
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concerns. The Chinese air quality monitoring network has been established

since 2013 with initial 450 measurement stations, growing rapidly to 2,734

stations now. Hourly mean data can be accessed from the public website

(https://quotsoft.net/air/) which mirrors data from the Chinese National

Environmental Monitoring Centre (CNEMC).

1.2.5 Ozone in the past and for present day

Tropospheric O3 concentrations have increased in recent decades mainly due

to the increases in anthropogenic emissions and natural emissions of wildfires,

BVOC and released CH4 from wetlands caused by climate change. However,

regional surface O3 changes vary substantially due to anthropogenic emission

changes associated with varying levels of industrialisation, urbanisation and

socio-economic development in different countries (Lamarque et al., 2010;

Hoesly et al., 2018). It has been estimated that human activities (emissions)

account for 30 % of the present-day tropospheric O3 burden (the total mass

of O3 in the troposphere) (Young et al., 2013). Multi-model mean results

show that the O3 burden for the year 2000 was 337 Tg, ranging from 302

to 378 Tg (Young et al., 2013). Over the period 1850–2010, the model re-

sults show that the O3 burden increased by 45 %, from 247 ± 36 Tg to

356 ± 31 Tg (Griffiths et al., 2021). The simulated present-day O3 burden

is consistent with the estimates (336 ± 8 Tg) based on the TOAR obser-

vation data (Gaudel et al., 2018). The increases in the O3 burden can be

mainly explained by the growth of O3 precursor emissions in the same period

of time. The impacts of climate change on the O3 burden are reflected by

changing temperature, humidity, biogenic emissions, lightning and pollution

transport patterns (Lin et al., 2015; Doherty et al., 2013, 2017). The O3

https://quotsoft.net/air/
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burden generally decreases in a warmer climate mainly due to more O3 de-

struction through water vapour, but surface O3 concentrations may increase

due to enhanced BVOC emissions, weaker transport of O3 precursors and

decomposition of PAN at higher temperatures (Liao et al., 2006; Fiore et al.,

2015).

For the present-day surface O3, high O3 concentrations (> 50 ppb) are often

found in the western USA, southern Europe, South Korea, Japan and China.

However, starting from the 1950s, surface O3 concentrations increased in

most of the developed countries, reflecting their rapid growth of society and

emissions (Cooper et al., 2014). After the 2000s, surface O3 concentrations

in North America and Europe decreased as anthropogenic emissions of NOx,

CO and VOCs decreased (Simon et al., 2015; Colette et al., 2016), and the

main emission source regions have gradually shifted from North America

and Europe to Asia. At the same time, O3 concentrations remained stable

in Japan and decreased in some areas but consistently increased in South

Korea (Fleming et al., 2018), as seen in Figure 1.2. Surface O3 levels are

also observed to increase in China since 2013 when observation data are

available (Lu et al., 2018a). For regions across the globe, the maximum O3

concentrations are observed in spring or summer, and very high daytime

ozone values (> 80 ppb) are widespread in Asia (Gaudel et al., 2018).
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Figure 1.2: Urban and non-urban O3 trends for the 4th highest daily maxi-

mum 8-hour ozone (4MDA8; ppb/yr) for the 15-year period 2000-2014. The

direction of arrows indicates the magnitude of the trend. Red and orange

colours indicate increasing ozone levels and blue colours indicate decreasing

ozone levels over time. The figure is adapted from Fleming et al. (2018).

In recent years in China, high O3 episodes have been observed despite de-

creases in O3 precursor emissions. Thus, many studies focused on the O3

pollution issue in China. The studies show that the concentrations of fine

particles (PM2.5) in China had an overall decrease by 30–50 % from 2013 to

2018 (Zhang et al., 2019b; Zhai et al., 2021) due to strict controls on anthro-

pogenic emissions, and this has greatly improved PM2.5 air quality. However,

annual mean surface MDA8 O3 concentrations have increased with a growth

rate of 5 % per year in recent years, especially in the industrial regions of

China such as the North China Plain, the Yangtze River Delta, the Pearl

River Delta and the Sichuan Basin, where the most stringent emission con-

trols are implemented (Silver et al., 2018; Liu et al., 2020). There are still
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ongoing debates about the principal cause leading to O3 increases in China,

including non-linear O3 chemistry, meteorological impacts, and aerosol im-

pacts on radical uptake and radiation strength (Wang et al., 2019; Hollaway

et al., 2019; Li et al., 2019a; Liu and Wang, 2020). Uncertainty in emis-

sion inventories also leads to inaccurate assessments of surface O3 changes in

China. However, undoubtedly, the rapid but contrasting changes in O3 and

PM2.5 concentrations are associated with the substantial emission changes in

China, and emission controls are the only practical way to mitigate surface

O3 pollution. North America and Europe had some success in controlling

surface O3 air pollution by emission controls, and China seems to follow the

way these countries did. The key question is what emission control strategies

can maximise the effectiveness in reducing O3 pollution with least economic

costs.

1.2.6 Future climate projections

The current climate is changing and influences tropospheric O3 in a variety

of ways as discussed in the last section. Therefore, there is a need to predict

future O3 under climate change but with different trajectories of emissions

to quantify O3 changes, and to understand whether surface O3 pollution

can be controlled in the future. Representative Concentration Pathways

(RCPs) provide such future climate and emission scenarios that are widely

used and adopted by the fifth Assessment Report (AR5) of the Intergovern-

mental Panel on Climate Change (IPCC) in 2014. RCPs include time series

data of emissions, concentrations of greenhouse gases and land use from the

present day to 2100, to reflect future temperature changes represented by ra-

diative forcings (Moss et al., 2008; Van Vuuren et al., 2011). There are four
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original pathways - RCP2.6, RCP4.5, RCP6.0 and RCP8.5, and each value

represents the targeted radiative forcings with W m−2 units in the year 2100.

All these pathways represent a warmer climate in the future with increased

temperature ranging from about 2.0–4.3 °C from the pre-industrial level to

2100. RCP1.9 is an additional pathway added by the Paris Agreement to

limit the global warming within 1.5 °C by the end of this century.

Unlike RCPs that simply consider climate change in a physical way based

on greenhouse gases and other radiative forcers, Shared Socioeconomic Path-

ways (SSPs) account for population, economy, education, urbanisation and

technology development to derive emission changes under different climate

policies based on RCPs (O’Neill et al., 2014; Van Vuuren et al., 2014). They

are the latest climate and emission future scenarios under the Coupled Model

Intercomparison Projects Phase 6 (CMIP6), used for the IPCC sixth Assess-

ment Report (AR6) in 2021 (IPCC, 2021). They describe five basic path-

ways - SSP1, SSP2, SSP3, SSP4 and SSP5 for future society development

to achieve different radiative forcing targets, as shown in Fig. 1.3. These

pathways represent different levels of challenges for mitigation and adapta-

tion to climate change. Different pathways also have the targeted radiative

forcings in 2100, so they are identified as SSP1-2.6, SSP2-4.5, SSP4-6.0 and

SSP5-8.5 with similar radiative forcings as RCPs. However, they are dis-

tinguished from RCPs by different emission trajectories of greenhouse gases

and other near-term climate forcers to represent different society develop-

ment pathways. The new added SSPs include SSP1-1.9, SSP4-3.4, SSP5-3.4

and SSP3-7.0. SSP1-1.9 is the most optimistic pathway to limit the global

warming below 1.5 °C by 2100 above the pre-industrial levels, but the tar-

get of net zero CO2 emissions should be achieved around 2050. Different

climate policies correspond to different emission mitigation pathways, influ-
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encing both climate and surface O3 in the future, which requires assessments

to guide win-wins for climate and air quality.
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Figure 1.3: Global CO2 emissions and potential temperature increases by

2100 relative to the pre-industrial level in the SSP database simulated by

multi-model runs. SSP no-climate-policy baseline scenarios are shown grey,

and SSP scenarios with various mitigation targets are shown in colour. Five

basic pathways for future climate projections: SSP1, SSP2, SSP3, SSP4 and

SSP5 are shown in each subplot. The figure is adapted from the Global

Carbon Project, https://www.globalcarbonproject.org/.

https://www.globalcarbonproject.org/
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1.3 Chemistry climate modelling

1.3.1 The United Kingdom Earth System Model

Computer models are used to simulate physical and chemical processes in the

atmosphere, and there are two basic types used to represent atmospheric com-

position: chemistry transport models and chemistry climate models. Chem-

istry transport models are designed to focus on chemical processes in the

atmosphere, so meteorological reanalysis data are normally used to provide

reliable meteorological fields to drive chemistry. In chemistry climate mod-

els, meteorology can be simulated by dynamic modules to drive chemical

processes. Chemistry climate models also account for the feedback of chem-

istry on meteorology and radiation, and include the interactive modules of

atmospheric dynamic, chemistry, radiation transfer, aerosols, clouds, vegeta-

tion, ocean and sea ice, as seen in Figure 1.4.

The version 1 of United Kingdom Earth System Model (UKESM1) is a chem-

istry climate model that simulates atmospheric composition from the tropo-

sphere to the upper stratosphere (Sellar et al., 2019). UKESM1 consists of a

physical climate model, the Hadley Centre Global Environment Model ver-

sion (HadGEM3-GC3.1) (Kuhlbrodt et al., 2018; Williams et al., 2018), con-

figured with the Global Atmosphere 7.1 and Global Land 7.0 (GA7.1/GL7.0)

components (Walters et al., 2019) to which Earth System processes have been

coupled. Atmospheric gas-phase composition and aerosols are modelled using

a state-of-the-art chemistry and aerosol module, the United Kingdom Chem-

istry and Aerosol (UKCA) (Archibald et al., 2020b), including a stratosphere-

troposphere gas-phase chemistry scheme (StratTrop). UKCA is coupled with

the Fast-JX Photolysis scheme (Telford et al., 2013), and the Global Model

of Aerosol Processes (GLOMAP) aerosol scheme (Mann et al., 2010; Mulcahy
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Figure 1.4: Schematic of chemical and physical processes included in a

typical global chemistry model to simulate tropospheric ozone. The figure is

adapted from Young et al. (2018b).

et al., 2020). The model resolution used in all studies here is N96L85 with

1.875° in longitude and 1.25° in latitude. UKESM1 has 85 terrain-following

hybrid height layers and a model top at 85 km.
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1.3.2 Developments for VOCs in the gas-phase chem-

istry scheme

The StratTrop gas-phase chemistry scheme in the UKCA is used to simu-

late the inorganic odd oxygen (Ox), hydrogen oxide radicals (HOx = OH

+ HO2) and NOx chemical cycles; the oxidation of CO and VOCs; chlorine

and bromine chemistry; and heterogeneous processes on polar stratospheric

clouds and liquid sulfate aerosols. There are a total of 87 species and 305

reactions in the StratTrop scheme. 12 gas-phase species are treated as emit-

ted tracers: NO, CO, sulfur dioxide (SO2), HCHO, ethane (C2H6), propane

(C3H8), acetaldehyde (CH3CHO), acetone ((CH3)2CO), methanol (CH3OH),

isoprene (C5H8), monoterpene (C10H16) and dimethyl sulfide (DMS). Monoter-

penes are not involved in chemical reactions in the chemistry scheme but

contribute to the formation of secondary organic aerosols in the aerosol

scheme.

The selection of a limited number of primary VOC species in the chemistry

scheme means that O3 formation is initiated by the oxidation of only 7 VOC

species as well as CO and CH4 in the StratTrop scheme. This is a typical

approach to process thousands of VOC species and related reactions in chem-

istry climate models to reduce the computation burden. It is also sensible

because these VOC species are representative of major primary VOCs in the

atmosphere. Most of these VOC species are relatively long-lived and can be

transported on a regional scale, which is suitable to investigate the overall

spatial distributions of O3 across the globe and the tropospheric O3 burden.

However, this may not be suitable to simulate the regional O3 pollution in

high-emission areas where large contributions from reactive VOCs lead to O3

production.
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High-emission regions normally occur in high-population areas such as the

industrial regions of China, where PM2.5 pollution has been reported to

decrease substantially since 2013 but O3 pollution becomes severe (section

1.2.5). Many studies show that more reactive VOCs such as alkenes and aro-

matics are important to O3 production (Wu and Xie, 2017; Tan et al., 2019;

Liu et al., 2020), but these species are not included in the StratTrop chem-

istry scheme. Therefore, for highly polluted regions, a more comprehensive

chemistry scheme is needed to investigate the mechanism of O3 formation.

To address this, we incorporate propene (C3H6), butane (C4H10) and toluene

(C7H8) into the StratTrop chemistry scheme to represent the more reactive

VOC classes of alkenes, higher alkanes and aromatic compounds, respec-

tively. The added chemical reactions and their rate coefficients are based on

the atmospheric experimental study of Atkinson et al. (2006), and modelling

studies of Folberth et al. (2006) and Monks et al. (2017). The incorpora-

tion of reactive VOCs permits a more realistic simulation of photochemically

active environments and allows rapid O3 formation in high-VOC-emission

regions to be captured. 14 chemical species tracers and 43 chemical reac-

tions are added. The improved chemistry scheme now includes 101 species,

244 bimolecular reactions, 26 bi- and termolecular reactions, 70 photolytic

reactions, 5 heterogeneous reactions, and 3 aqueous-phase reactions for the

sulfur cycle. The detailed information of added species, the properties of

species and reactions are shown in the Table 1.1 and 1.2 below.

In addition to the developments in the chemistry scheme, diurnal and vertical

profiles of emissions (Bieser et al., 2011; Mailler et al., 2013) are applied so

that different emission sources have different diurnal and vertical variations.

Accumulation of O3 precursor emissions at the surface likely leads to excessive

O3 production or O3 destruction especially at nighttime when boundary layer
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mixing is weak. The incorporation of diurnal and vertical emission profiles is

hence beneficial to investigate diurnal changes in surface O3 concentrations as

the contribution of emissions to O3 formation varies in different time periods

of a day. The original emissions are replaced by sectoral emissions from five

sectors: industry, power plants, transport, residences and agriculture.
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Table 1.1: Chemical species added and their properties in the StratTrop

chemistry scheme. ’Dry’ and ’wet’ refer to deposition. ’Emitted’ means

emissions.

No. Species Descriptions Dry Wet Emitted

1 C3H6 propene No No Yes

2 PrpeOO propyl peroxy radical No No No

3 PrpeOOH propyl hydroperoxide Yes Yes No

4 C4H10 butane No No Yes

5 BtOO butyl peroxy radical No No No

6 BtOOH butyl hydroperoxide Yes Yes No

7 TOLUENE aromatic No No Yes

8 AROMO2 aryl peroxy radical No No No

9 AROMOOH aryl hydroperoxide Yes Yes No

10 MEK methyl ethyl ketone No No No

11 MEKO2 peroxy radical from MEK No No No

12 MEKOOH hydroperoxide from MEK Yes Yes No

13 MeCOCOMe peroxy radical from MEKOOH Yes Yes No

14 ORGNIT organic nitrates Yes Yes No
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Table 1.2: Chemical reactions added to the StratTrop chemistry scheme.

No. Reactions

Bimolecular reactions

1* C3H6 + O3 → HCHO + MeCHO + OH + HO2

2* C3H6 + O3 → EtOO + MGLY + CH4 + CO

3* C3H6 + O3 → MeOH + MeOO + HCOOH

4 C3H6 + NO3 → ORGNIT

5* PrpeOO + NO → MeCHO + HCHO + HO2 + NO2

6* PrpeOO + NO → ORGNIT

7 PrpeOO + HO2 → PrpeOOH

8 PrpeOOH + OH → PrpeOO + H2O

9 PrpeOOH + OH → HACET + OH

10 C4H10 + OH → BtOO + H2O

11* BtOO + NO → NO2 + MEK + HO2 + EtOO

12* BtOO + NO → ORGNIT + MeCHO

13 BtOO + HO2 → BtOOH

14* BtOO + MeOO → MEK + HCHO + HO2 + MeCHO

15* BtOO + MeOO → MeOH + EtOO

16 BtOOH + OH → BtOO + MEK + OH + H2O

17 MEK + OH → MEKO2

18 MEKO2 + NO → MeCHO + MeCO3 + NO2 + ORGNIT

19 MEKO2 + HO2 → MEKOOH

20 MEKOOH + OH → MeCOCOMe + OH + OH

21 ORGNIT + OH → MEK + NO2 + H2O

22 TOLUENE + OH → AROMO2 + HO2

23* AROMO2 + NO → MGLY + NO2 + MeCO3 + CO
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Table 1.2 – Continued.

No. Reactions

24* AROMO2 + NO → HO2

25* AROMO2 + NO3 → MGLY + NO2 + MeCO3 + CO

26* AROMO2 + NO3 → HO2

27 AROMO2 + HO2 → AROMOOH

28* AROMO2 + MeOO → MGLY + CO + MeCO3 + MeOH

29* AROMO2 + MeOO → HO2 + HCHO

30* AROMOOH + OH → AROMO2

31* AROMOOH + OH → OH + H2O

32* AROMOOH + OH → MeCO3 + CO + HO2 + OH

Termolecular reactions

33 C3H6 + OH + M → PrpeOO + M

Photolysis reactions

34* BtOOH + hv → MEK + MEK + EtOO + MeCHO

35* BtOOH + hv → HO2 + HO2

36* BtOOH + hv → OH + OH + OH

37 MEK + hv → MeCO3 + EtOO

38 MeCOCOMe + hv → MeCO3 + MeCO3

39 MEKOOH + hv → MeCO3 + MeCHO + OH

40* ORGNIT + hv → MeCHO + ORGNIT

41* ORGNIT + hv → NO2 + MEK + HO2 + EtOO

42* AROMOOH + hv → MeCO3 + AROMOOH

43* AROMOOH + hv → OH + Me2CO + HO2 + CO

* Reactions are split be-

tween multiple lines.



1.4. MACHINE LEARNING 33

1.4 Machine learning

1.4.1 Origins and developments in machine learning

Machine learning is an artificial intelligence technique which is a branch of

computer science. Machine learning algorithms are aimed at learning rela-

tionships from data automatically, and applying the relationships to com-

plete tasks or make predictions. The process of the automatic improvement

of machine learning models is called model training. There are three ba-

sic machine learning training approaches: supervised learning, unsupervised

learning and reinforcement learning. Supervised learning discovers relation-

ships between pre-labelled data sets (i.e. labelled input and output), and

evaluates model accuracy on training data to improve the model. Supervised

learning is useful in classification and regression problems. However, not all

data can be labelled correctly and some problems have no explicit answers

or solutions. Unsupervised learning, in contrast, aims at discovering the in-

herent relationships of unlabelled data. Unsupervised learning hence can be

applied in clustering, anomaly detection, association and autoencoders tasks.

Some other tasks in reality are complex without explicit guidance but with

a clear purpose, which fits reinforcement learning. Reinforcement learning

introduces a reward mechanism in model training with the aim to maximise

cumulative rewards by rewarding optimal actions towards goals. It shows

great advantages in resolving problems in a complex environment such as

training robotics, video games and the game of Go (Kober et al., 2013; Silver

et al., 2016; Berner et al., 2019).

The concept of machine learning started in the 1950s, but practical models

only appeared about 20 years later because the most important model train-

ing method, the mechanism of backpropagation was only investigated fully
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until in the 1980s (Rumelhart et al., 1986). The original artificial neural

network, one type of machine learning model, were composed of a few layers

with variables, called neurons to mimic the structure of biological neurons

that transfer biological signals (LeCun et al., 2015). Deep learning models

are developed based on artificial neural networks, but they have deep lay-

ers with a large number of neurons that can be trained (Goodfellow et al.,

2016). Each neuron is assigned with parameters or weights to be trained

and updated to obtain the best model performance. Scientists had proved

that this multilayer architecture can be trained through the backpropaga-

tion approach. Backpropagation refers to the updates of neuron weights to

reduce model errors, according to the derivatives or gradients of an objective

loss function to weights. The multilayer architecture laid the foundation for

modern machine learning models.

There were still some challenges to the developments of machine learning.

In the 1990s, neural networks and backpropagation were largely forsaken,

because some machine learning communities argued that model training is

infeasible and ineffective due to the lack of prior knowledge. The fact is that

backpropagation was not always useful mainly because neuron weights cannot

have effective updates. This is because loss function values could fluctuate

around local low values so global low values cannot be found, leading to little

change in loss function values and hence small updates in neuron weights.

This phenomenon is called gradient diminishing. However, many theoretical

studies later showed that trapping in a local minimum is not a serious issue

because it can be effectively resolved by incorporating activation functions

in models.

Backpropagation is the key to machine learning models. Many other types

of main-stream models have different architectures. These models include
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convolutional neural networks (CNN) (LeCun et al., 1989), recurrent neural

networks (RNN) (El Hihi and Bengio, 1996), long short-term memory net-

works (LSTM) (Hochreiter and Schmidhuber, 1997) and the recent Trans-

former model that adopts the mechanism of attention (Vaswani et al., 2017).

They have been developed for different fields such as speech recognition,

computer vision, natural language processing, machine translation, bioinfor-

matics, drug discovery, recommendation systems and computer games (Hin-

ton et al., 2012; Sutskever et al., 2014). A CNN model won the ImageNet

competition with a high accuracy of recognising 1,000 different classes from

a million images in 2012 (Krizhevsky et al., 2012), and after that machine

learning has started developing quickly in many domains.

Despite the broad applications of machine learning, there are potential issues

and the major one is that machine learning models are ’black box’ models

due to the lack of interpretation in their results. It is difficult to understand

why some good model results are generated, and to guarantee good model

performance in different conditions. Apart from good model results, some

problematic results also cannot be explained such as classifying unrecognis-

able images to a familiar category (Nguyen et al., 2015). This is particularly

dangerous when machine learning techniques are applied to fields impacting

human health such as automatic self-driving. Machine learning models have

advantages in finding relationships from a large volume of data, but causality

in data may not be captured. However, machine learning provides a unique

way to resolve problems that people are not capable of at the moment such

as understanding relationships between massive data.
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1.4.2 Applications of machine learning in atmospheric

science

In scientific fields, machine learning models can behave better than tradi-

tional models because of poorly constrained parameterisations and large un-

certainty in how model processes are represented. Machine learning hence

provides opportunities and solutions in investigating and resolving scientific

problems. Many scientific problems in atmospheric science are constrained

by limited observations and hence poor parameterisation of physical and

chemical processes. While atmospheric science is built on solid physical and

chemical theories expressed in a mathematical way, this does not mean that

all details of physical and chemical processes happening in the atmosphere are

known by scientists. In addition, it is not realistic to simulate all processes

with atmospheric process-based models due to the heavy computational bur-

den. Comprehensive scientific knowledge is also constrained to limited ob-

servations. Some processes are highly parameterised in atmospheric models,

leading to errors in simulations. Machine learning has advantages in finding

relationships from data and hence can replace those uncertain processes in

atmospheric models. Given the capabilities of atmospheric models in predict-

ing climate, weather and air pollution, the atmospheric model performance

can be hopefully further improved with the aid of machine learning.

A sensible way to improve the performance of atmospheric models is to inte-

grate machine learning models as modules into process-based models, called

hybrid models (Schultz et al., 2021). A common usage of machine learning

in atmospheric science is to predict precipitation. Machine learning models,

with radar and satellite data as inputs, have potentials to achieve better re-

sults compared with Numerical Weather Prediction (NWP) models, in terms
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of model accuracy, spatial resolution and forecasting leading time in precipi-

tation forecasts (Sønderby et al., 2020; Ayzel et al., 2020; Ravuri et al., 2021).

Air pollution can be also predicted with machine learning models, which

can directly use observational meteorological and pollutant data as inputs

(Alléon et al., 2020; Kleinert et al., 2021). There are errors in simulated con-

centrations of air pollutants, but it is difficult to identify the sources causing

these errors. Some studies hence focus on error corrections for processed-

based models (Ivatt and Evans, 2020; Keller et al., 2021). Machine learning

is also used to assimilate observations and multi-atmospheric-model results

to generate more accurate predictions for the future (e.g. surface O3) (Sun

and Archibald, 2021). Modules in atmospheric models can be also replaced

independently by machine learning models for less computation costs and

more effective parameterisations. The chemical solvers for ordinary differen-

tial equations (Keller and Evans, 2019) in chemistry transport models and

the dynamic solvers for partial differential equations (Han et al., 2018) in

meteorological models, and parameterising subgrid processes for clouds in

climate models (Rasp et al., 2018) were all tried to be replaced by machine

learning. The types and architectures of machine learning models used in

these studies vary substantially because there are no explicit rules of model

selections.

Tropospheric O3 is influenced by emissions and climate, and there is large un-

certainty in the projections of future O3. Relatively accurate O3 predictions

could be derived from machine learning models, which allow more accurate

assessments of the impacts of future emissions and climate on tropospheric

O3. However, the lack of interpretation for machine learning results are also

reflected in the applications in atmospheric science. Especially when directly

using observation data as inputs to implement predictions, model results can
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be relatively accurate but this is not beneficial for understanding science

because weaknesses in representing physical or chemical processes in atmo-

spheric models are still unknown. However, by investigating the relationships

between O3 biases and related variables by machine learning, it is possible

to identify the key variables that have high importance to biases, which will

be useful to guide potential directions for model development. Given large

uncertainties in simulating surface O3 concentrations with a global chem-

istry climate model, O3 bias correction permits more accurate assessments

of future O3 evolution, and this helps quantify the real impacts of changing

climate and emissions on surface O3.
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1.5 Outline of the thesis

The main research chapters of this thesis are presented from Chapters 2 to

4, demonstrating suitable emission control strategies in China, tropospheric

O3 evolution in the future and surface O3 bias correction to resolve research

aims. A brief summary of each chapter is given below. Conclusions are given

in Chapter 5, including section 5.3 which provides a ’synthesis of research

findings’ to address the aims of this thesis.

Chapter 2: Contrasting chemical environments in summertime for

atmospheric ozone across major Chinese industrial regions: the

effectiveness of emission control strategies

The UKESM1 chemistry-climate model is used to quantify the differences in

chemical environment for surface O3 for six major industrial regions across

China in summer 2016. First, the gas-phase chemistry scheme is extended by

incorporating reactive VOC tracers that are necessary to represent urban and

regional-scale O3 photochemistry. The model with the improved chemistry

scheme demonstrates the capability in capturing the observed magnitudes

and diurnal patterns of surface O3 concentrations across these regions. O3

response surfaces for each region are constructed by changing NOx and VOC

emissions to contrast the effectiveness of measures to reduce surface O3 con-

centrations. The O3 responses to changing emissions in highly populated

regions in other parts of the world are further investigated to be compared

with the regions in China. The work provides an assessment of the effective-

ness of emission control strategies to mitigate surface O3 pollution in major

Chinese industrial regions.
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Chapter 3: Tropospheric ozone changes and ozone sensitivity from

present-day to future under shared socio-economic pathways

Tropospheric O3 is important for future air quality and climate. Tropospheric

O3 changes and O3 sensitivity to changing emissions in the context of climate

change from the present day to the future under a range of shared socio-

economic pathways (SSPs) are investigated. The UKESM1 is applied with

an extended chemistry scheme including more reactive VOCs to quantify

O3 burdens as well as O3 sensitivities globally and regionally based on NOx

and VOC concentrations. Surface O3 changes are investigated in different

seasons in high-emission regions under future pathways. Dominant VOC-

limited regions in the present day and in the future are also identified. The

work highlights that reductions in NOx emissions are required to transform

O3 production from VOC- to NOx-limitation, and that emission controls on

VOC and CH4 are necessary to improve O3 air quality in the future.

Chapter 4: Correcting ozone biases in a global chemistry-climate

model: implications for future ozone

Weaknesses in process representation in chemistry-climate models leads to

biases in simulating surface O3 and to uncertainty in projections of future

O3 change. A deep machine learning model is developed to demonstrate

the feasibility of correcting surface O3 biases in the UKESM1, to identify

key factors such as meteorology or emissions causing these O3 biases, and to

correct projections of future O3. The projections of future O3 under SSPs

are hence corrected. The work shows that the deep learning model provides

a valuable approach to correcting the chemistry-climate model and provides
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an improved assessment of the impacts of climate and emission changes on

future O3 air quality.
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Chapter 2

Contrasting chemical

environments in summertime

for atmospheric ozone across

major Chinese industrial

regions: the effectiveness of

emission control strategies

This chapter has been published in the open-access journal Atmospheric

Chemistry and Physics (ACP), available online from https://doi.org/10.5194/

acp-21-10689-2021. The work has been implemented in collaboration with

Prof. Ruth Doherty, Prof. Oliver Wild, Dr. Michael Hollaway and Dr. Fiona

O’Connor. ZL, RD and OW designed the study. ZL, MH and FO’C set up

the model. ZL ran model simulations and performed the analysis. ZL, RD
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and OW prepared the paper with contributions from all co-authors.

2.1 Introduction

Surface ozone (O3) has become the main cause of atmospheric pollution in

the summertime in China since 2013 and is particularly severe in industrial

areas of China such as the North China Plain (NCP), the Yangtze River

Delta (YRD), the Pearl River Delta (PRD) and the Sichuan Basin where

precursor emissions are high (Li et al., 2019a). The 90th percentile of the

maximum daily 8 h average (MDA8) O3 concentration in 30 of 74 Chinese

cities exceeded the National Ambient Air Quality Standard (100 ppb) in the

summer of 2017 (Wang et al., 2017b; Lu et al., 2018a; Silver et al., 2018; Li

et al., 2019b; Lu et al., 2019). During 2013–2017, the national Air Pollution

Prevention and Control Action Plan successfully reduced emissions of fine

particulate matter (PM2.5) and nitrogen oxides (NOx = NO + NO2) in China

by 33 % and 21 %, respectively (Zheng et al., 2018). However, the reduction

in NOx emissions has led to an increase in O3 levels in polluted areas due to

the non-linear chemistry of O3 and reduced titration of O3 by NO (Li et al.,

2019a; Wang et al., 2019). Volatile organic compounds (VOCs) are also

important O3 precursors, and emissions of these have increased across China

as a whole over the same period, exacerbating O3 pollution (Zheng et al.,

2018). VOC emissions are believed to have decreased in megacity regions

such as Beijing (Cheng et al., 2019), but the resulting O3 decrease is likely

to have been offset by the O3 increase due to reduced NOx emissions. This

poses a challenge to mitigate surface O3 pollution. Therefore, the balance

of emission controls on NOx and VOC is critical to decreasing O3 levels

in these regions. Meteorological processes also affect O3 formation through
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temperature, humidity, clouds, precipitation and biogenic emissions, and a

number of papers have studied meteorological impacts on O3 over China

(Gong and Liao, 2019; Liu and Wang, 2020; Shi et al., 2020). However,

emission controls are the primary strategies used to reduce O3 pollution, and

we focus on these for this study, as their effectiveness for different regions

has not been fully investigated.

O3 is a secondary photochemical pollutant in the troposphere that can be

produced rapidly through oxidation of its precursors NOx, VOCs and car-

bon monoxide (CO) in the presence of sunlight. Power plants, industry,

households and transport are the main anthropogenic sources of NOx and

VOC emissions (Monks et al., 2015; Li et al., 2017). Isoprene is the princi-

pal biogenic VOC and is released from trees, plants and crops (Sindelarova

et al., 2014). O3 formation is mainly initiated through oxidation of VOC

species by hydroxyl radicals (OH). The resulting organic peroxy radicals

(RO2) and hydroperoxyl radicals (HO2) can convert NO to NO2 without

destroying O3. O3 is then created from the combination of O(3P) atoms,

formed from photolysis of the resulting NO2 and oxygen (O2) (Sillman et al.,

1990; Von Schneidemesser et al., 2015; Wang et al., 2017b). Under low-NOx

conditions, HO2 radicals may react with themselves or RO2 radicals to pro-

duce hydrogen peroxide (H2O2) and organic peroxide (ROOH), respectively.

However, at high NOx concentrations, nitric acid (HNO3), peroxy nitrates

(RO2NO2) and organic nitrates (RONO2) are more easily formed as NOx re-

acts with OH and RO2. These species are the main sinks of radicals and NOx

and are readily removed from the atmosphere by deposition or exported to

remote areas (Horowitz et al., 1998). Therefore, increasing NOx concentra-

tions increase O3 production but also accelerate the formation of NOx sinks,

leading to less efficient O3 formation. In addition, direct titration of O3 by
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NO becomes increasingly important at higher levels of NOx. There is hence

a transition in the magnitude of O3 production from low- to high-NOx con-

ditions. This turnover is dependent on the local chemical environment and

in particular on the relative abundance of NOx and VOCs (Sillman, 1995;

Kleinman et al., 1997; Thornton et al., 2002; Kleinman et al., 2005; Sillman

and West, 2009).

A variety of O3 sensitivity indicators have been proposed to characterise

the O3 response to changing precursor emissions. The simplest of these

are based on the concentration ratios of the precursors, NOx /VOCs, or of

their oxidation products, H2O2 /HNO3 (Sillman, 1995). O3 concentrations

increase with NOx emissions and are not sensitive to VOC emissions in a

NOx-limited regime when NOx concentrations are relatively low (Sillman

et al., 1990). However, in a VOC-limited regime, O3 levels may increase

with decreasing NOx emissions, which is common in urban areas with high

NOx emissions, and this is reflected in high NOx /VOC or low H2O2 /HNO3

ratios. Critical values of these indicators of O3 sensitivity vary by region

and by season (Sillman, 1995; Liu et al., 2010; Xing et al., 2019). Most

major industrial regions in China are believed to be VOC limited, and rural

areas are NOx limited or in a transition regime (Jin and Holloway, 2015;

Wang et al., 2017b). O3 production efficiency (OPE) is another important

metric to evaluate the impacts of NOx emissions on O3 concentrations (Liu

et al., 1987; Kleinman et al., 2002). This is defined as the number of O3

molecules produced per molecule of NOx oxidised. Low OPE values are

typically associated with high-NOx conditions and indicate that there is less

O3 produced from a given amount of NOx. OPE values generally increase

as NOx emissions decrease, reflecting greater O3 production per molecule of

NOx oxidised at lower NOx levels.
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In this study, we develop new capabilities in a global-scale model by incorpo-

rating higher-VOC chemistry, allowing the model to represent the oxidation

environment in major industrialised regions in China. We focus on the spatial

and temporal variation of daytime O3 in this study. We first evaluate the

performance of this global chemistry–climate model in simulating regional

O3 across large industrialised regions. We use O3 sensitivity indicators to

compare and contrast the chemical oxidative environment across these dif-

ferent regions in China to identify emission control measures that would be

most beneficial to reduce O3 pollution levels. Using a global model novelly

allows us to compare the impact of emission control measures in China with

those in other major industrialised regions across the world. The value of

this approach is that the same model set-up can be used to assess the impact

of future emission and climate scenarios, studies of tropospheric and strato-

spheric O3 influences, and comparisons of O3 in different parts of world.

The configuration of the model used in this study is described in Sect. 2.2,

along with its development and application to surface O3 in China. We evalu-

ate the model performance in reproducing the diurnal cycles of surface O3 and

NO2 in Sect. 2.3, and we investigate the O3 chemical environment in China,

including O3 precursor concentrations and sensitivity ratios in Sect. 2.4. We

calculate the local O3 production rates, O3 loss rates, NOx loss rates and

OPE in Sect. 2.5. We then quantify the O3 responses to changing NOx and

VOC emissions in these regions and investigate the requirements of emission

controls to reduce O3 levels in each region in Sects. 2.6 and 2.7. To provide a

global context we compare and contrast the effectiveness of emission control

strategies with that in other parts of the world in Sect. 2.7 and present our

conclusions in Sect. 2.8.
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2.2 Materials and methods

2.2.1 Model description, development and application

The chemistry-climate model, UKESM1 is used in this chapter. Model de-

scription and development are fully introduced in section 1.3. Only necessary

information of the model set-up and the model application for this chapter is

described below. Wind speed and temperature are nudged with ERA-Interim

reanalyses from the European Centre for Medium-Range Weather Forecasts

(ECMWF) every 6 h (Dee et al., 2011). Sea surface temperature and sea

ice fields are prescribed with the climatology mean of 1995–2004 (Reynolds

et al., 2007).

We perform model simulations for 2016 and focus our results on summer

(June–July–August, JJA). We spin up the model for 4 months and then

simulate the full year nudged with ERA-Interim reanalysis data for 2016.

The new capabilities of the model allow us to investigate regional O3 chemical

environment in industrial regions of China in the model. The relatively

coarse resolution of the model may lead to biases in surface O3 associated

with numerical diffusion (Wild and Prather, 2006; Stock et al., 2014; Fenech

et al., 2018; Mertens et al., 2020), but we note that the lifetime of O3 makes

it a regional-scale pollutant except very close to high-emission sources (Valari

and Menut, 2008; Hodnebrog et al., 2011; Biggart et al., 2020). This study

demonstrates the first application of this improved chemistry scheme to high-

emission regions worldwide and lays the foundation for more detailed studies

of the interactions between air quality and climate in a global chemistry–

climate model under future scenarios.
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2.2.2 Emissions

The anthropogenic emission inventory of Hemispheric Transport of Air Pollu-

tion (HTAP) for 2010 is used for the globe outside China (Janssens-Maenhout

et al., 2015). The Multi-resolution Emission Inventory for China (MEIC) is

used to provide emissions over China for 2013 (Li et al., 2017). We apply

independent diurnal and vertical profiles to each emission sector (industry,

power plants, transport and residences) according to European Monitoring

and Evaluation Programme (EMEP) emissions (Bieser et al., 2011; Mailler

et al., 2013). Biogenic VOC (BVOC) emissions are calculated interactively

through the Joint UK Land Environment Simulator (JULES) land-surface

scheme in UKCA (Pacifico et al., 2011). The Global Fire Emissions Database

(GFED4) is used for biomass burning emissions (Van der Werf et al., 2010).

Other natural aspects of the emissions used are as described in Archibald

et al. (2020b).

Given the rapid changes in anthropogenic emissions across China, we adjust

NOx, VOCs, CO, sulfur dioxide (SO2), black carbon (BC) and organic carbon

(OC) emissions in MEIC from 2013 to 2016 by applying national and urban

emission scaling factors. NOx emissions decreased by 18.8 %, and VOC emis-

sions increased slightly by 1.1 % between 2013 and 2016 across China (Zheng

et al., 2018). However, NOx and VOC emissions are estimated to have de-

creased by 24.2 % and 12.8 % respectively in Beijing and surrounding areas

between 2013 and 2016 (Cheng et al., 2019). Given the tighter emission con-

trols in the developed urban regions, we apply the Beijing scaling factors to

major industrialised regions, and use national scaling factors across the rest

of the country.
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2.2.3 Selected regions and observations

We focus on six heavily populated regions with high emissions within the ma-

jor industrialised regions in China. These include Beijing and Shijiazhuang

on the North China Plain (32–40° N, 114–121° E), Shanghai and Nanjing

in the Yangtze River Delta (28–33° N, 118–123° E), Guangzhou in the Pearl

River Delta (21–25° N, 111–115° E), and Chongqing in the Sichuan Basin (28–

32° N, 103–108° E); see Fig. 2.1. Anthropogenic NOx and VOC emissions are

high in these regions (Fig. 2.2) due to rapid industrialisation, urbanisation

and socio-economic development. Model grid cells that include observation

stations located in each of the urban and rural regions are selected to be rep-

resentative of these regions; see Table 2.1. For comparison with observations,

we calculate a grid-weighted mean according to the number of measurement

sites in each model grid cell for the region.

We use observed hourly concentrations of air pollutants including O3 and

NO2 from the surface monitoring networks of China, obtained from the public

website https://quotsoft.net/air/, which mirrors data from the Chinese Na-

tional Environmental Monitoring Centre (CNEMC) http://www.cnemc.cn/.

A total of 450 measurement stations in China started operating in 2013,

growing rapidly to 1670 stations by 2019.

https://quotsoft.net/air/
http://www.cnemc.cn/
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Figure 2.1: Map of China showing (a) the key provinces (yellow) represent-

ing the NCP, the YRD, and the PRD and locations of the six regions (blue)

– Beijing, Shijiazhuang, Shanghai, Nanjing, Guangzhou and Chongqing –

and UKCA model grid cells co-located with these regions (red); and (b)

elevations across the whole of China.

Table 2.1: Number of measurement sites and grid cells in the six industrial

regions.

No. of No. of

Region measurement sites grid cells

Beijing 46 4

Shijiazhuang 28 2

Shanghai 58 2

Nanjing 45 1

Guangzhou 45 1

Chongqing 25 1
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Figure 2.2: Spatial distributions of anthropogenic NOx and VOC emissions

(kg m−2 s−1) across China (a, b) and grid-weighted averaged emissions for

the six regions within the four major industrialised regions (c) in JJA, 2016.

2.3 Model evaluation of surface O3 and NO2

We evaluate the diurnal variation in simulated surface O3 and NO2 concen-

trations against summertime observations for JJA, 2016, for the six indus-

trialised regions (Figs. 2.3, 2.4). In general, the diurnal variation of observed

O3 is matched relatively well, and the correlation coefficients are relatively

high; see Table 2.2. Mean concentrations for O3 and NO2 over the lowest

three model layers (from the surface up to 130 m) are also compared with

observations to investigate boundary mixing effects on pollutants. In the

daytime, differences between the surface and three lowest layers are small

due to efficient mixing in the planetary boundary layer (PBL). The height

of the nocturnal PBL is typically underestimated in the model (Stock et al.,

2014), leading to overestimated NOx concentrations and hence underesti-

mated O3 concentrations at nighttime due to excessive O3 titration by NO

(André et al., 1978; Petersen et al., 2019; Zhao et al., 2019). Figure 2.3a
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shows a large difference in nighttime O3 concentrations across the three lay-

ers, reflecting stable conditions that allow NOx to accumulate at the surface.

Simulated surface O3 concentrations therefore tend to be underestimated

at nighttime. In addition, nighttime heterogeneous uptake of nitrogen on

aerosols remains highly uncertain due to the complexity in estimating up-

take coefficients for different aerosol composition/mixing states (Lowe et al.,

2015; Tham et al., 2018). In UKCA, the lack of nitrate aerosol in the aerosol

scheme may result in a lower uptake of nitrogen (Archibald et al., 2020b),

particularly in regions with high NOx emissions. Therefore, there may be a

bias in the heterogeneous removal of nitrogen, potentially leading to higher

NO2 and lower O3 concentrations at nighttime. In contrast, the peaks in

daytime O3 concentrations are captured relatively well, reflecting efficient

O3 production in the high-VOC environment.
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Figure 2.3: Comparison of observed and modelled O3 concentrations for the

six industrialised regions in JJA, 2016, China. (a) Mean diurnal cycles of

observed and modelled O3 concentrations (ppb). The shaded area represents

the spread across the lowest three model layers. Error bars denote 1 stan-

dard deviation of hourly O3 concentrations across all days. (b) Observed

and modelled hourly O3 concentrations (ppb; three lowest model layers) and

correlation coefficient values r. (c) Probability density function (PDF) of O3

concentrations (ppb) for modelled and observed hourly values.
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Figure 2.4: Comparison of observed and modelled NO2 concentrations for

the six industrialised regions in JJA, 2016, China. (a) Mean diurnal cycles

of observed and modelled NO2 concentrations (ppb). The shaded area rep-

resents the spread across the lowest three model layers. Error bars denote

1 standard deviation of hourly NO2 concentrations across all days. (b) Ob-

served and modelled hourly NO2 concentrations (ppb; three lowest model

layers) and correlation coefficient values r. (c) PDF of NO2 concentrations

(ppb) for modelled and observed hourly values.
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Table 2.2: Comparison of modelled and observed daily mean surface O3

and NO2 concentrations for the six industrial regions in JJA, 2016, China.

Region Obs. (ppb) Sim. (ppb) Bias ppb/% RMSE (ppb) Correlation r

O3

Beijing 47.7± 22.1 43.4± 27.7 −4.4 (9.1 %) 8.1 0.77

Shijiazhuang 42.9± 18.4 47.6± 28.7 4.7 (10.9 %) 11.6 0.78

Shanghai 38.3± 17.5 34.4± 28.8 −3.9 (10.2 %) 12.7 0.77

Nanjing 42.6± 18.9 35.9± 24.9 −6.8 (15.8 %) 9.8 0.71

Guangzhou 29.8± 18.3 28.0± 25.9 −1.8 (−6.1 %) 9.4 0.81

Chongqing 38.1± 19.2 56.0± 31.3 18.0 (47.2 %) 22.3 0.83

NO2

Beijing 17.8± 3.7 20.7± 8.2 2.9 (16.2 %) 5.8 0.69

Shijiazhuang 18.1± 4.7 16.7± 8.3 −1.4 (7.7 %) 4.3 0.76

Shanghai 16.3± 2.3 26.1± 8.7 9.8 (60.0 %) 12.1 0.50

Nanjing 17.2± 3.6 21.3± 9.0 4.1 (23.7 %) 7.8 0.49

Guangzhou 16.1± 3.0 19.9± 9.3 3.8 (23.7 %) 8.4 0.55

Chongqing 17.4± 3.8 10.9± 6.3 −6.4 (37.1 %) 8.0 0.43
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Daily mean O3 concentrations for Beijing, Shijiazhuang, Shanghai and Guangzhou

are reproduced well with relatively small biases (∼ 10 %; see Table 2.2). Sim-

ulated daily mean O3 concentrations are highest (> 40 ppb) for Beijing, Shi-

jiazhuang and Chongqing; lower in Shanghai and Nanjing (< 40 ppb); and

lowest for Guangzhou (∼ 30 ppb). Although daily mean O3 concentrations

are captured relatively well, as seen in Figs. 2.3a and 2.4a, daytime maxi-

mum O3 concentrations are overestimated, associated with underestimated

NO2 concentrations. This overestimation is largest in Shijiazhuang, where

the underestimation of daytime NO2 concentrations is larger than other re-

gions. We find that there is a systematic bias in Chongqing, where simulated

O3 levels are higher than observations. Chongqing is a mountainous inland

region with complex topography that cannot be fully resolved with coarse

model resolution, and surface O3 here is thus representative of higher surface

altitudes leading to a systematic bias high compared with observations (Su

et al., 2018) and a corresponding bias low for NO2 concentrations. In ad-

dition, simulated O3 increases from biogenic emissions in the Sichuan Basin

are much larger in summertime than other regions (Lu et al., 2019), and

uncertainty in these emissions may contribute to the biases. We therefore

investigate O3 chemical environments in different regions to explore regional

differences below.

The diurnal patterns in NO2 concentrations can also be captured as reflected

by high levels at nighttime and low levels in the daytime for all regions.

Daytime NO2 concentrations can be reproduced relatively well relative to

nighttime NO2. This underestimation may lead to overestimated O3 concen-

trations in a VOC-limited regime and underestimated O3 in a NOx-limited

regime. While underestimated NOx concentrations may reflect underesti-

mated NOx emissions, it is more likely to arise from the effects of dilution
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on NOx. High emissions in these regions are diluted over a large grid cell,

resulting in lower NO2 concentrations in the daytime. This is offset by high

NO2 concentrations in the PBL at nighttime as discussed above. The diurnal

variation of NO2 concentrations is hence stronger in the simulations than the

observations (Fig. 2.4a).

Figures 2.3 and 2.4 also show the frequency distribution of observed and

modelled hourly O3 and NO2 concentrations. The simulated peaks in the

distributions of O3 and NO2 are underestimated compared to observations for

all six regions, reflecting the larger diurnal variation in the simulations. The

diurnal variation is more closely simulated for O3 concentrations (correlation

coefficient r > 0.7) than for NO2 concentrations. The Chongqing region

has the closest correlation with observations (r = 0.83), also reflecting the

systematic overestimation of O3 as suggested earlier. Overall, the magnitudes

(see Table 2.2) and diurnal patterns (see Figs. 2.3 and 2.4) of both species

can be simulated reasonably well, with differences between industrial regions

clearly captured.
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2.4 Differences in chemical environment

Spatial distributions of modelled daytime concentrations of O3, NOx, VOCs

and O3 sensitivity ratios (NOx /VOCs and H2O2 /HNO3) are shown in Fig. 2.5

to illustrate the differences in chemical environment for the six regions. We

use the standard definition of the maximum daily average 8 h (MDA8) ozone

metric and consider this same time period for other species, which we refer to

hereafter as daytime concentrations. For the sensitivity ratio NOx /VOCs,

we consider the sum of anthropogenic and biogenic daytime VOC concentra-

tions.
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Figure 2.5: Spatial distributions of simulated surface daytime O3, NOx,

anthropogenic VOCs, biogenic VOCs (ppb) (a–d), and two O3 sensitivity

indicators of the concentration ratios – NOx /VOCs and H2O2 /HNO3 (e,

f) – in JJA, 2016, China.

Figure 2.5a shows high daytime O3 levels (> 80 ppb) across northern China,

eastern China and the Sichuan Basin in JJA, 2016. O3 levels in the PRD

(∼ 40 ppb) are much lower despite high emissions, likely due to transport of

clean air from the South China Sea associated with the East Asian summer

monsoon (Zhao et al., 2010; Li et al., 2018). Areas with high anthropogenic

NOx and VOC concentrations generally coincide with high-emission regions

(Figs. 2.2, 2.5b, c). High daytime NOx concentrations (> 12 ppb) are simu-

lated in Beijing and Shijiazhuang, Shanghai, and Nanjing. Chongqing has the

lowest NOx concentrations of 3–6 ppb due to relatively low NOx emissions.

High anthropogenic daytime VOCs concentrations are simulated across the
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main industrial regions, in particular in Shanghai with the highest levels

(> 12 ppb; Fig. 2.5c).

The distribution of biogenic VOC concentrations (including isoprene and

methanol) differs from that of anthropogenic VOCs (Fig. 2.5c, d). There is

a strong latitudinal gradient, reflecting differences in climate and the spatial

distribution of vegetation (Li et al., 2013). The highest biogenic VOC levels

are simulated in south-eastern China where deciduous and mixed broadleaf

trees are the main source of biogenic VOCs. The YRD, the PRD and

the Sichuan Basin have higher biogenic VOC concentrations than the NCP.

Chongqing has the highest biogenic VOC levels of the regions considered

here. However, higher biogenic VOC levels are found south of China in Laos,

Vietnam and Cambodia.

High NOx /VOC ratios and low H2O2 /HNO3 ratios typically indicate VOC-

limited O3 production as they represent high-NOx chemical environment.

The transition between VOC- and NOx-limited regimes is typically about

0.25 for the NOx /VOC ratio and about 0.2 for the H2O2 /HNO3 ratio (Liu

et al., 2010; Xing et al., 2019). From these two thresholds for the O3 sensi-

tivity ratios, it can be seen that VOC-limited regions cover most areas of the

NCP, parts of the YRD including Shanghai and Nanjing, and Guangzhou in

the PRD (Fig. 2.5e, f). All six regions except Chongqing have NOx /VOCs

ratios ≥ 0.6 and H2O2 /HNO3 ratios ≤ 0.18 (Table 2.3). This suggests that

these regions have a chemical environment that is strongly VOC limited. In

addition, VOC-limited regimes shown by both indicators are quite similar,

showing that these two O3 sensitivity ratios may be useful to directly diag-

nose different O3 sensitivity regimes in China. Regions with high NOx /VOC

ratios and low H2O2 /HNO3 ratios typically occur where NOx concentrations

are high. Overall, these transition values delineate the different O3 sensitiv-
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ity regions across China well, showing VOC-limited regimes in the major

industrial regions with high emissions. However, we note that these O3 sen-

sitivity ratios only provide an estimate of the chemical environment, and

further, more detailed investigation of O3 responses to emission changes is

required.
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Table 2.3: Simulated surface MDA8 concentrations of species, radicals, O3

sensitivity ratios and the photolysis rate j(O1D) for the six industrial regions

in JJA, 2016, China.

Region Beijing Shijiazhuang Shanghai Nanjing Guangzhou Chongqing

Species (ppb)

O3 78.0 83.5 70.1 66.8 60.2 93.8

NOx 12.8 8.7 19.2 12.9 10.7 3.8

VOC (ANT) 8.7 7.0 12.7 7.6 7.5 7.7

VOC (BIO) 5.5 4.3 10.6 9.2 10.2 13.5

VOC (Total) 14.3 11.3 23.3 16.9 17.7 21.3

Sensitivity ratios

NOx /VOCs 0.79 0.73 0.89 0.78 0.60 0.18

H2O2 /HNO3 0.18 0.08 0.10 0.11 0.09 0.29

Radicals

OH / 106 cm−3 7.8 10.3 8.4 9.8 13.0 16.6

HO2 / 108 cm−3 2.6 2.9 2.3 2.2 2.2 7.4

RO2 / 108 cm−3 1.0 0.9 0.8 0.8 0.9 2.5

Photolysis rate

j(O1D)/ 10−5 s−1 2.3 2.6 2.3 2.5 3.1 3.4
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2.5 Differences in local O3 production rates

In this section, we calculate the daytime production rates for surface O3 to

investigate how the local O3 production compares across the six regions. We

define the net O3 production rate (ppb h−1) as the gross rate of production

of O3, P(O3), from the reactions HO2 + NO and RO2 + NO minus the gross

rate of loss of O3, L(O3), from the reactions O(1D) + H2O, O3 + OH, O3 +

HO2 and O3 + VOCs. We assume that the pathways above represent the net

O3 production rate under O3 photochemical steady state between NO and

NO2, and they are shown as follows:

Net P (O3) = P (O3) − L(O3)

= k1[HO2][NO] + k2[RO2][NO]

−(k3[O(1D)][H2O] + k4[O3][OH]

+k5[O3][HO2] + k6[O3][V OCs]),

(2.1)

where ki represents the rate coefficient of reaction i.

The loss of NOx, L(NOx), is principally determined by the reactions OH

+ NO2, RO2 + NO2 and RO2 + NO, which produce HNO3, RO2NO2 and

RONO2 respectively. OPE is then defined as the number of O3 molecules

produced per molecule of NOx consumed (Liu et al., 1987).

OPE =
P (O3)

L(NOx)
(2.2)

As shown in Fig. 2.6, local O3 production varies across the six regions, with

O3 net production rates ranging from 4 to 10 ppb h−1. Simulated daytime net

O3 production rates are highest (> 8 ppb h−1) in Shanghai and Guangzhou

mainly due to high precursor emissions, and this is reflected by higher O3

concentrations in Shanghai than in nearby Nanjing. While O3 production
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Figure 2.6: Simulated surface daytime (a) net O3 production rates, gross

O3 production rates and gross O3 loss rates (ppb h−1); (b) gross O3 produc-

tion rates and NOx loss rates (ppb h−1); and (c) OPE (unitless) for the six

industrial regions in JJA, 2016, China.

is high in Guangzhou, the O3 concentrations are much lower than in other

regions, indicating that meteorological impacts in this coastal region are im-

portant to transport O3 produced locally. O3 net production in Beijing and

Shijiazhuang is similar to that in Nanjing (∼ 5 ppb h−1). O3 production in

Chongqing is also high, reflecting high radical concentrations (see Table 2.3)

that promote O3 production despite lower precursor emissions. High photol-

ysis rates jO(1D)) in Chongqing and Guangzhou contribute to high concen-

trations of OH radicals (Table 2.3). O3 destruction rates are fairly similar

(< 4 ppb h−1) across these regions but are higher in Chongqing, offsetting its

high O3 production rates.

The simulated NOx loss rates (Fig. 2.6b) show the highest removal of NOx in

Shanghai, where NOx concentrations are also highest. This influences OPE,

which is strongly dependent on NOx loss, and leads to the lowest OPE in

Shanghai and highest in Chongqing (Fig. 2.6c). The low OPE in Shanghai

and Nanjing shows the low efficiency in O3 production per molecule of NOx
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consumed. However, the OPE values in all six regions are generally lower

than those in other remote and rural regions, in agreement with Wang et al.

(2018), indicating that high surface O3 concentrations could still occur in

these regions due to high precursor emissions despite low OPE.

2.6 Response of O3 to emission controls

We quantify the response of daytime O3 to emission changes to investigate

the relationship between the chemical environment and the magnitude of O3

changes for the six industrial regions of China. We implement three scenarios

applying 20 % reductions in anthropogenic NOx emissions, VOC emissions,

and combined NOx and VOC emissions.

Spatial distributions of simulated daytime surface O3 responses vary across

China (Fig. 2.7). In the 20 % NOx emission control scenario, substantial O3

increases (2–10 ppb) can be seen in the NCP, the YRD, and the PRD, and

O3 concentrations decrease (0–8 ppb) in the Sichuan Basin. In the 20 % VOC

emission control scenario, there are small O3 changes in most non-industrial

regions of China (−1–2 ppb), but O3 concentrations generally decrease by

1–9 ppb across the NCP, the YRD and the PRD. The Sichuan Basin shows

relatively small O3 decreases. Areas showing O3 increases in the 20 % NOx

emission control experiment match well with VOC-limited areas indicated by

the NOx /VOCs and H2O2 /HNO3 ratios (cf. Fig. 2.5e, f vs. Fig. 2.7a), sug-

gesting that all the industrial regions considered here are VOC limited except

Chongqing in the Sichuan Basin that is NOx limited. The determination of

O3 sensitivity regimes here is based on the O3 responses to decreasing anthro-

pogenic NOx and/or VOC emissions, and any potential impacts of changing

BVOC emissions has not been assessed. Decreasing BVOC emissions may
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offset the increase in O3 levels due to decreased NOx emissions for the NCP,

the YRD, and the PRD and would make all regions more VOC limited. We

note that our conclusion of NOx limitation in Chongqing may be sensitive

to our underestimation of NO2 levels (Sect. 2.3) and to the higher BVOC

emissions in this region, both of which reduce the ratio of NOx to VOC in

the region (Table 2.3). However, satellite-observation-based studies have also

suggested this region as one that is largely NOx limited, in contrast to the

heavily populated coastal regions (Wang et al., 2021).

Figure 2.7: Spatial distributions of simulated surface daytime O3 concen-

tration changes (ppb) for (a) the 20 % NOx emission control, (b) the 20 %

VOC emission control, and (c) the 20 % combined NOx and VOC emission

control compared to the present-day results in JJA, 2016, China.
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In general, the greatest O3 increases in the 20 % NOx control scenario oc-

cur in areas with high precursor concentrations. Shanghai shows the largest

O3 increases (11 %) (Table 2.4) and has the highest underlying NOx con-

centrations (Table 2.3). O3 increases in Beijing and Guangzhou are similar

(∼ 8 %), possibly because of their similar NOx concentrations. Shijiazhuang

in the NCP shows the smallest O3 increase (4 %) because of its lower NOx

concentrations. In contrast, an O3 decrease of 4 % is seen in Chongqing,

which is NOx limited. In the 20 % VOC control scenario, the largest O3 de-

creases are simulated in Shanghai and Guangzhou (−10 %), while minimal

O3 decreases (−1 %) are simulated in Chongqing. The simulated chemical

environment in Chongqing is NOx limited, and therefore the O3 changes are

not sensitive to VOC emissions.

In addition to separate 20 % reductions in NOx and VOC emissions, we

demonstrate the importance of combined NOx and VOC emission controls

to mitigate O3 pollution in VOC-limited regions. This effectively offsets the

higher levels of O3 that arise with NOx emission reductions alone. The O3

increase in Shanghai is fully offset in the combined emission control (−1 %).

While O3 increases still occur in the other VOC-limited regions, these in-

creases are minimal (< 3 %). Reducing both NOx and VOC emissions de-

creases O3 levels in Chongqing by 6 %. Therefore, combined emission con-

trols are necessary to efficiently mitigate O3 pollution in all these industrial

regions, and VOC emission controls should be at least as stringent as NOx

emission controls to address rising O3 levels in these industrial regions.
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2.7 Effectiveness of emission controls in re-

ducing surface O3 levels

To provide a more complete exploration of the effectiveness of emission con-

trols, we construct a response surface of summertime daytime O3 for each

region to show the effect of changing NOx and VOC emissions. We do this by

performing a set of 64 model simulations with global anthropogenic NOx and

VOC emissions scaled independently over the range 0 %–140 % in increments

of 20 %.

Figure 2.8 shows the magnitude and direction of O3 changes in the six regions

as NOx and VOC emissions change. For context, Fig. 2.8a also shows the

simulated daytime O3 changes between 2013 and 2019 in the Beijing region,

assuming that the emission changes observed between 2013 and 2016 continue

at the same rate until 2019 (Cheng et al., 2019). We find that simulated

O3 concentrations in Beijing increase from 71.6 ppb in 2013 to 82.6 ppb in

2019, an increase of 1.8 ppb yr−1. This is consistent with observed changes

of 1.9 ppb yr−1 over this period due to anthropogenic emission changes (Li

et al., 2020). The observed daytime O3 concentrations are 83 ppb in the

Beijing region in 2019. This demonstrates that the model captures not only

the magnitude and diurnal pattern of O3 in summer 2016 well but also the

observed O3 changes in recent years.



2.7. EFFECTIVENESS OF EMISSION CONTROLS 71

-100 -80 -60 -40 -20 0 20 40
VOC emission change (%)

-100

-80

-60

-40

-20

0

20

40

NO
x e

m
iss

ion
 ch

an
ge

 (%
)

2013

2019

20.0 30.040.0
50.0

50.0

60.0

60.0

70.0 80.0

90.0

O3 isopleth in Beijing for JJA, 2016(a)

-100 -80 -60 -40 -20 0 20 40
VOC emission change (%)

-100

-80

-60

-40

-20

0

20

40
NO

x e
m

iss
ion

 ch
an

ge
 (%

)

20.0 30.040.0
50.0

60.0

60.0

70.0

70.0

80.0

90
.0

(b) O3 isopleth in Shijiazhuang for JJA, 2016

-100 -80 -60 -40 -20 0 20 40
VOC emission change (%)

-100

-80

-60

-40

-20

0

20

40

NO
x e

m
iss

ion
 ch

an
ge

 (%
)

20.0
30.040.0

40.
0

50.0

50.
0

60.0

70.0

80.0

O3 isopleth in Shanghai for JJA, 2016(c)

-100 -80 -60 -40 -20 0 20 40
VOC emission change (%)

-100

-80

-60

-40

-20

0

20

40

NO
x e

m
iss

ion
 ch

an
ge

 (%
)

20.0
30.040.0

50.0

50.0

60.0

70.0

O3 isopleth in Nanjing for JJA, 2016(d)

-100 -80 -60 -40 -20 0 20 40
VOC emission change (%)

-100

-80

-60

-40

-20

0

20

40

NO
x e

m
iss

ion
 ch

an
ge

 (%
)

10.0
20.0

30.0

30.
0

40.0

40.0 50.0

60.0

70
.0

O3 isopleth in Guangzhou for JJA, 2016(e)

-100 -80 -60 -40 -20 0 20 40
VOC emission change (%)

-100

-80

-60

-40

-20

0

20

40

NO
x e

m
iss

ion
 ch

an
ge

 (%
)

20.030.0
40.0
50.0

60.0

70.0

80.0

90.0

O3 isopleth in Chongqing for JJA, 2016(f)

10

20

30

40

50

60

70

80

90

100

O 3
 (p

pb
)

10

20

30

40

50

60

70

80

90

100

O 3
 (p

pb
)

10

20

30

40

50

60

70

80

90

100

O 3
 (p

pb
)

10

20

30

40

50

60

70

80

90

100

O 3
 (p

pb
)

10

20

30

40

50

60

70

80

90

100

O 3
 (p

pb
)

10
20
30
40
50
60
70
80
90
100
110

O 3
 (p

pb
)

Figure 2.8: Simulated MDA8 surface O3 responses (ppb) to anthropogenic

NOx and VOC emission changes for the six industrial regions across China

(a–f) in JJA, 2016. The intersection of the vertical and horizontal lines

marks current O3 levels. White ridge lines mark the peak in O3 concentra-

tions for given VOC emissions and show the approximate transition between

VOC-limited (above the ridge) and NOx-limited (below the ridge) regimes.

White dots in panel (a) represent simulated daytime O3 levels in the Beijing

region in JJA between 2013 and 2019 following estimated NOx and VOC

emission changes.
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The patterns of O3 response seen in the VOC-limited regions (Fig. 2.8a–e)

are similar, such that decreases in NOx emissions from their current levels

increase O3 concentrations. Large O3 increases occur in Shanghai and Bei-

jing, highlighting that it is not beneficial to reduce NOx emissions unless

VOC emissions are also reduced. Large reductions (∼ 40 %) in NOx emis-

sions are required to shift the chemical environment from VOC limited to

NOx limited for these two regions. The large decrease in O3 in Shanghai

and Guangzhou when reducing VOC emissions indicates that the efficiency

in lowering O3 levels by decreasing VOC emissions is high in these regions.

In contrast, the efficiency of VOC emissions alone in reducing O3 levels is

lower in Shijiazhuang and Chongqing.

Figure 2.9 shows the O3 responses in each region to changes in NOx emissions,

VOC emissions, and combined NOx and VOC emissions, which represent

cross sections through the O3 response surfaces shown in Fig. 2.8. It is dif-

ficult to decrease O3 concentrations in Shanghai by reducing NOx emissions

alone because there is a steep rise in surface O3 (∼ 15 %) when NOx emissions

are reduced by 40 % from the current state. Decreasing O3 from current lev-

els requires reductions in NOx emissions of more than 50 % for Shijiazhuang

and Guangzhou and more than 70 % for Beijing, Shanghai and Nanjing. This

suggests that mitigating poor O3 air quality in these VOC-limited regions

through NOx emission controls alone would require much greater reductions

than the 21 % reductions in NOx emissions that are reported to have occurred

in China from 2013 to 2017 (Zheng et al., 2018).
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Figure 2.9: Simulated daytime surface O3 responses to changes in anthro-

pogenic emissions of (a) NOx, (b) VOC, and (c) combined NOx and VOC

emissions with the same percentage changes for the six industrial regions in

JJA, 2016, China.

O3 responses to VOC emission changes are smaller and more linear than

the responses seen for NOx emissions changes (Fig. 2.9a, b). Reducing

VOC emissions by 40 % gives large decreases in O3 concentrations (20 %)

in Shanghai and Guangzhou and smaller decreases (< 10 %) in Shijiazhuang

and Chongqing (Fig. 2.9b). Reductions in VOC emissions are key to reducing

present-day O3 concentrations as they effectively offset the rising O3 levels

due to decreasing NOx emissions (Fig. 2.9c). Emission reductions of 50 % or

more are required to reduce O3 levels for all regions if controls on NOx and

VOC emissions are applied simultaneously.

To place our results in a wider global context, Fig. 2.10 shows summer daily

mean surface O3 changes over different regions with high emissions in other

parts of the world compared with those in China. We consider six major

industrialised regions outside of China and select the model grid cell that is

most closely co-located with the region. We note that proportional increases

in summer daily mean O3 are larger than that of daytime O3 increases when
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NOx emissions are reduced (see Fig. 2.9), principally because absolute O3

concentrations are smaller with the inclusion of nighttime conditions. We find

that all selected high-emission regions across the globe outside of China are

NOx limited at the model resolution considered here, such that NOx emission

decreases yield regional O3 decreases. Current levels of NOx emissions in

these regions are considerably lower than for the industrial regions of China,

reflecting the different O3 sensitivity regimes (Table 2.5). We note that these

results apply to the wide urban regions considered here and that local O3

sensitivity in some parts of these regions may be different.
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Figure 2.10: Simulated summer daily mean surface O3 responses to an-

thropogenic (a) NOx, (b) VOC, and (c) combined NOx and VOC emission

changes with the same percentage changes in regions across the globe: Tokyo,

Seoul, New York, L.A., London, Paris (dashed lines) and those in major in-

dustrial regions of China (solid lines) in JJA, 2016.
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Table 2.5: Anthropogenic NOx and VOC emissions (×10−10 kg m−2 s−1)

and summertime mean surface O3 concentrations (ppb) in regions across the

industrial regions of China and the globe. MEIC emissions of 2013 adjusted

for 2016 are used for Chinese industrial regions. HTAP emissions of 2010 are

used for other regions of the globe.

Region NOx emissions VOC emissions O3 conc.

China

Beijing 5.5 6.7 43.4

Shijiazhuang 4.2 4.6 47.6

Shanghai 7.4 9.6 34.4

Nanjing 6.9 8.1 35.9

Guangzhou 8.4 12.0 28.0

Chongqing 3.1 3.6 56.0

Global

Tokyo 2.0 2.6 38.9

Seoul 1.5 2.1 45.5

New York 2.3 3.1 45.3

L.A. 1.1 1.3 40.1

London 1.1 1.5 30.6

Paris 0.8 1.0 32.6
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Reductions of both NOx and VOC emissions substantially decrease O3 levels

for these selected regions outside of China, and the magnitude of the O3

decreases are similar to those found for Chongqing (Fig. 2.10). Conversely,

the magnitude of O3 decreases when reducing VOC emissions are smaller than

all five VOC-limited regions in China. This indicates that O3 concentrations

are less sensitive to VOC emissions in these other world regions due to their

lower VOC emissions (Table 2.5).

Despite lower NOx and VOC emissions in the regions outside of China, sur-

face O3 concentrations, particularly in the Seoul and New York regions, are

similar to those for China. This highlights that regional O3 levels also depend

on background O3 concentrations, despite localised NOx and VOC emissions

that lead to different O3 production regimes. The O3 levels in European

regions, e.g. London and Paris, are lowest, in accordance with the lowest

NOx and VOC emission levels. Overall, these results show that there are

substantial differences in the efficiency of emission control scenarios to re-

duce surface O3 levels in different parts of the world. For many industrial

regions of China, the extended regions are VOC limited, and hence reduc-

tions of VOC emissions are the key to reducing poor O3 air quality. For other

regions selected in this study NOx emission reductions are still pertinent to

improving O3 pollution.
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2.8 Conclusions

This study presents the application of the global chemistry–climate UKCA

model with an improved gas-phase chemistry scheme including more reactive

VOCs to simulate regional summertime O3 pollution across major industri-

alised regions in China for the first time. Differences in atmospheric chemi-

cal environments are investigated, and the effectiveness of different emission

control strategies in reducing O3 concentrations is quantified. The model

captures the magnitude, diurnal profiles and diurnal variation of O3 con-

centrations across most industrial regions well. We highlight that peak O3

concentrations can be captured well, indicating that O3 production can be

effectively simulated with more highly active VOC oxidation environments

for high-emission regions of China.

Simulated daytime O3 levels are highest on the North China Plain (Beijing

and Shijiazhuang) and in the Sichuan Basin (Chongqing) and are lowest in

the Pearl River Delta (Guangzhou). We find that there is a systematic bias

in O3 throughout the diurnal cycle in Chongqing, reflecting the mountainous

inland area that is inadequately captured by the topography in the model.

The O3 production rates are highest in the Pearl River Delta compared to

other regions. However, its much lower O3 levels reflect the importance of

meteorological impacts in this coastal region. OPE values in these industrial

regions are low, indicating that their high O3 levels are mainly caused by high

precursor emissions. Both O3 sensitivity ratios we apply here (NOx /VOCs

and H2O2 /HNO3) suggest that all the industrial regions except Chongqing

are VOC limited. This study hence provides a broad assessment of the O3

sensitivities for these regions with implications for emission control strate-

gies.
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A set of simulations are performed with a range of NOx and VOC emissions

to construct O3 response surfaces to assess the impacts of different emission

control strategies in different regions. Reducing NOx emissions alone by 20 %

leads to a substantial O3 increase (11 %) in Shanghai. Reductions in VOC

emissions alone of 20 % produce the largest decrease (−11 %) in O3 levels in

Shanghai and Guangzhou and the smallest decrease (−1 %) in Chongqing.

We find that reducing O3 concentrations across all industrial regions of China

would require more than 70 % reductions if reducing NOx emissions alone,

and therefore VOC emission controls are important to reduce O3 levels. We

also find that combined emission controls effectively offset high O3 levels that

arise from reduced NOx emissions alone. These responses are substantially

different from those currently found in major highly populated regions in

other parts of the world. The results show NOx-limited O3 production in

these global areas, which also reflects the predominance of heavily populated

VOC-limited areas across the industrial regions in China. Therefore, O3 pol-

lution in the industrial regions of China should be treated as a regional issue,

and regional VOC emission control strategies should be considered.

The new capabilities for simulating regional surface O3 pollution developed

here will be helpful for future model studies to investigate the regional O3

impacts on climate. The magnitude of O3 changes over recent years in the

Beijing region can be reproduced well. There remain model biases in regions

with complex topography and high elevation – a common issue for global

and regional models. Another source of uncertainty is the rapid change in

anthropogenic emissions in recent years in China, which presents a partic-

ular challenge for inventory development. Recently, while NOx emissions

have been successfully reduced across many regions in China, changes in

VOC emissions have been relatively small, and this has led to an increase
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in O3 concentrations in many regions. Regional VOC emission controls are

hence urgently needed to maximise the effectiveness in reducing surface O3

pollution in China.
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3.1 Introduction

Ozone (O3) is a chemically reactive component in the atmosphere that is

produced from natural and anthropogenic sources. Emissions of O3 precur-

sors including nitrogen oxides (NOx), volatile organic compounds (VOCs),

methane (CH4) and carbon monoxide (CO) lead to the formation of O3 by a

series of photochemical reactions in the presence of sunlight. O3 has impor-

tant impacts on human health, ecosystems and climate change (Lefohn et al.,

2008; Zhang et al., 2019a; Agathokleous et al., 2020). O3 concentrations are

largely governed by the magnitudes of O3 precursor emissions, transport,

deposition and transport from the stratosphere. O3 exerts a positive radia-

tive forcing (Stevenson et al., 2013; O’Connor et al., 2021; Thornhill et al.,

2021a), and changes in climate in turn influence ozone (Fiore et al., 2012;

Doherty et al., 2013). Climate change can alter natural emissions of biogenic

VOCs (BVOC), lightning NOx and CH4, along with temperature, humidity,

convection and clouds, which further influence O3 concentrations (Thornhill

et al., 2021b). The interactions between air quality and climate play an im-

portant role in the coupled Earth system, and we focus on the impacts of

future emissions in the context of climate change on tropospheric O3 in this

study.

The tropospheric O3 burden is controlled by the amount of O3 production,

O3 destruction, O3 deposition and the O3 transport from the stratosphere

(Lelieveld and Dentener, 2000; Wild, 2007). From pre-industrial times to the

present day, the tropospheric O3 burden has increased from approximately

240 Tg to 350 Tg mainly due to substantial increases in anthropogenic O3

precursor emissions (Lamarque et al., 2010; Young et al., 2013; Griffiths et al.,

2021). However, regional surface O3 changes between the pre-industrial and
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present day vary substantially due to different regional emission changes

(Turnock et al., 2020) and to differences in O3 sensitivity to NOx and VOC

emissions. In recent decades, there has been a decrease in surface O3 con-

centrations in North America and Europe due to emission controls (Simon

et al., 2015; Colette et al., 2016; Tarasick et al., 2019). In contrast, increases

in surface O3 levels are observed in South Asia and East Asia due to industri-

alization, urbanization and social development (Hakim et al., 2019; Lu et al.,

2020). Furthermore, while emission controls have been implemented across

industrial regions of China in recent years, these have focused on emissions

of NOx and particulate matter, and have led to increased O3 pollution in

some places (Wang et al., 2017b; Silver et al., 2018).

It is important to investigate O3 sensitivity to understand how O3 chemi-

cal regimes might change in different parts of the world, and to guide suit-

able emission control strategies. O3 sensitivity is typically characterised by

NOx- or VOC-limited regimes for O3 production, and this determines the

effectiveness of different emission control strategies. It is dependent on the

relative abundances of NOx and VOC concentrations (Sillman, 1999), or of

their oxidation products, nitric acid (HNO3) and hydrogen peroxide (H2O2)

(Kleinman, 1994; Sillman, 1995). VOC-limited regimes typically occur in

highly urbanised regions with high NOx concentrations in which decreases in

NOx emissions increase O3 concentrations, and O3 production increases with

higher VOC emissions. In contrast, changes in NOx concentrations domi-

nate O3 changes in NOx-limited regimes such that decreases in NOx emis-

sions decrease O3 concentrations, and O3 concentrations are less sensitive to

VOC emissions. O3 sensitivity indicators such as the ratios of NOx/VOCs

and HNO3/H2O2 allow us to identify O3 sensitivity regimes relatively easily.

However, most studies focus on O3 sensitivity in specific regions and for short



84 CHAPTER 3. TROPOSPHERIC OZONE IN THE FUTURE

time periods (Dunker et al., 2002; Sillman and West, 2009; Ye et al., 2016),

leading to inconsistency in the critical indicator values that distinguish O3

sensitivity regimes. To address this, we generalise the approach by quan-

tifying O3 sensitivity using a consistent indicator across the globe. This is

the first time that the full range of surface chemical environments across the

globe has been explored with a global chemistry-climate model, as far as we

are aware. We quantify O3 sensitivity based on the ratio of NOx and VOC

concentrations, and investigate how regional O3 sensitivity might change in

the future.

The shared socio-economic pathways (SSPs) are future emission and climate

scenarios accounting for future social, economic and environmental develop-

ments (O’Neill et al., 2014; van Vuuren et al., 2014). The SSPs represent a

range of levels of policy strength (weak, medium and strong) to control emis-

sions of near-term climate forcers (NTCFs) that include tropospheric O3, O3

precursors and aerosols (Rao et al., 2017). Our study is based on simula-

tions using historical and future SSPs emissions and climate undertaken as

part of the Aerosol Chemistry Model Intercomparison Project (AerChem-

MIP; Collins et al., 2017) and the wider Coupled-Model Intercomparison

Project Phase 6 (CMIP6; Eyring et al., 2016). The aim of AerChemMIP is

to quantify the effects of chemistry and aerosols on air quality and climate

in CMIP6 by conducting historical and future experiments using chemistry-

climate models with specified climate and emission trajectories.

We examine tropospheric O3 and surface O3 sensitivity under present-day

(2004–2014) and future conditions (2045–2055). Model development and ap-

plication are described in Sect. 3.2 along with descriptions of the emission

and climate scenarios used. We compare and evaluate the present-day tropo-

spheric O3 burden and surface O3 concentrations with two different chemistry



3.2. MATERIALS AND METHODS 85

schemes in Sect. 3.3. We then investigate the seasonal, daytime and night-

time differences in O3 changes in the future compared to present-day for

different regions in Sect. 3.4. Analysis of O3 concentrations and produc-

tion is used to quantify O3 sensitivity and to explain contrasting regional O3

changes in Sect. 3.5. We then show the changes in O3 sensitivity between

different seasons and scenarios in Sect. 3.6 and present our conclusions in

Sect. 3.7.

3.2 Materials and methods

3.2.1 Model description, development and application

The chemistry-climate model, UKESM1 is used in this chapter. Model de-

scription and development are fully introduced in section 1.3. Only necessary

information of the model set-up and the model application for this chapter

is described below. We use UKESM1 to reproduce present-day (2004–2014)

O3 concentrations and to predict O3 responses to emissions and climate in

the future (2045–2055).

While the UKESM1 configuration for CMIP6 used the UKCA StratTrop

mechanism, this study also uses an extended gas-phase chemistry scheme

that incorporates more reactive VOC species to permit a more realistic rep-

resentation of O3 production in polluted environments. The extended chem-

istry scheme (denoted as Ext StratTrop hereafter) is based on the Strat-

Trop scheme and includes oxidation of the additional chemical components

propene (C3H6), butane (C4H10) and toluene (C7H8) to represent alkenes,

alkanes and aromatic VOC classes, as described in Liu et al. (2021).

The atmosphere-only configuration of UKESM1 is used with prescribed sea
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surface temperatures and sea ice to show the transient impacts of emissions

under present-day and future climates. These are prescribed using monthly-

mean time-evolving fields from the fully coupled UKESM1. Greenhouse gas

concentrations are prescribed as in historical and future simulations con-

ducted by UKESM1 as part of CMIP6 (Meinshausen et al., 2017, 2020).

3.2.2 Emissions and experiments

Present-day CMIP6 anthropogenic and biomass burning emissions are taken

from Hoesly et al. (2018) and van Marle et al. (2017), respectively. Bio-

genic VOC emissions are calculated interactively within the iBVOC emis-

sions scheme (Pacifico et al., 2011) in the Joint UK Land Environmental

Simulator (JULES) land-surface scheme which is coupled to UKCA. Other

aspects of the emissions used here are the same as described in Turnock et al.

(2020). Anthropogenic emissions are categorised into five sectors (industry,

power plants, transport, residences and agriculture) as inputs to the model,

with independent diurnal and vertical emission profiles applied for each sector

(Bieser et al., 2011; Mailler et al., 2013; Liu et al., 2021).

Three CMIP6 SSP scenarios are used for future simulations: SSP3-7.0, SSP3-

7.0-lowNTCF and SSP3-7.0-lowCH4. SSP3-7.0 pathway has a large anthro-

pogenic climate forcing signal (a radiative forcing of 7.0 W m-2 at 2100) ,

and weak emission controls on O3 precursors and aerosols, and rapidly in-

creasing CH4 concentrations (Fujimori et al., 2017; Rao et al., 2017). SSP3-

7.0-lowNTCF and SSP3-7.0-lowCH4 are additional pathways which use the

same underlying climate policies as SSP3-7.0. SSP3-7.0-lowNTCF has strong

controls on all NTCF emissions. SSP3-7.0-lowCH4 follows SSP3-7.0 but as-

sumes strong mitigation of CH4 emissions in the future, with 24 % decreases

in surface CH4 mixing ratios from 1802 ppb to 1364 ppb. The last time
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that historical surface CH4 mixing ratios were this low was more than 50

years ago, in the late 1960s (Prather et al., 2014). BVOC emissions increase

under all these pathways due to a warmer climate. We perform four model

experiments in this study to investigate tropospheric O3 for the present-day

(2004–2014) and three future pathways (SSP3-7.0, SSP3-7.0-lowNTCF and

SSP3-7.0-lowCH4; 2045–2055). Table 3.1 shows the model configuration for

the four simulations. Table 3.2 lists the CMIP6 global mean NTCF total sur-

face emissions and surface CH4 concentrations for the four scenarios.

Table 3.1: Model configurations for present-day and future simulations.

“Emissions” refers to emissions of O3 precursors and aerosols. “CH4 conc.”

refers to prescribed surface CH4 concentrations. “SST/SI” refers to pre-

scribed sea surface temperature and sea ice concentrations. “Historical”

means that the emissions, CH4 concentrations or SST/SI evolve as for the

CMIP6 historical simulations, and “Reference” means that they evolve as for

SSP3-7.0. “Low” emissions or CH4 concentrations evolve following SSP3-7.0

but with lower emissions or CH4 concentrations.

Experiment name Time period Emissions CH4 conc. SST/SI

Present day 2004–2014 Historical Historical Historical

SSP370 2045–2055 Reference Reference Reference

SSP370 lowNTCF 2045–2055 Low Reference Reference

SSP370 lowCH4 2045–2055 Reference Low Reference
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Table 3.2: Overview of global annual mean time-varying surface emissions

of NOx, VOCs, CO, sulfur dioxide (SO2), black carbon (BC) and organic

carbon (OC) from anthropogenic (ANT), biomass burning (BB), biogenic

(BIO) sources for the present day (2004–2014) and future (2045–2055) SSP3-

7.0, SSP3-7.0-lowNTCF and SSP3-7.0-lowCH4. Annual mean surface CH4

mixing ratios (ppb) are also shown.

Emission

(Tg yr−1)

Present

day

SSP3-7.0 SSP3-7.0-

lowNTCF

SSP3-7.0-

lowCH4

NOx ANT 136.0 149.6 68.8 149.6

BB 13.6 12.1 10.2 12.1

Total 149.6 161.7 79.0 161.7

VOCs ANT 156.3 195.3 117.6 195.3

BB 62.7 57.1 47.5 57.1

BIO 727.9 786.1 795.2 785.7

Total 946.9 1038.5 960.3 1038.1

CO ANT 600.8 662.7 328.4 662.7

BB 324.6 318.5 264.5 318.5

Total 925.4 981.2 592.9 981.2

SO2 ANT 115.4 95.7 43.0 95.7

BB 2.1 2.2 1.8 2.2

Total 117.5 97.9 44.8 97.9

BC ANT 7.4 9.1 4.4 9.1

BB 1.7 1.7 1.4 1.7

Total 9.1 10.8 5.8 10.8

OC ANT 18.0 23.3 10.1 23.3

BB 15.0 14.5 11.9 14.5

Total 33.0 37.8 22.0 37.8

CH4 (ppb) 1802.8 2471.9 2471.9 1363.7
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3.2.3 O3 sensitivity indicators

A number of different indicators have been used to distinguish O3 sensitivity

regimes, and typical indicators are the ratios of NOx/VOC concentrations

or emissions and the ratio of HNO3/H2O2 concentrations (Kleinman, 1994;

Sillman, 1999). For the NOx/VOC ratio, it is often more appropriate to use

concentrations than emissions because this accounts for emissions, transport,

chemical reactions and deposition. Indicators based on HNO3/H2O2 concen-

tration ratios also account for differences in photochemical conditions and

VOC reactivity. In a previous study we found that O3 sensitivity regimes

diagnosed with HNO3/H2O2 and NOx/VOC ratios were similar (Liu et al.,

2021). However, the HNO3/H2O2 indicator is more sensitive to uncertain-

ties in chemical mechanism, and studies have shown that there are errors in

the simulation of short-lived radicals in polluted areas (Whalley et al., 2021).

We hence choose the ratio between NOx and VOC concentrations as a simple

indicator of O3 sensitivity indicator in this study.

We quantify the sensitivity of O3 to NOx and VOC concentrations by examin-

ing monthly mean O3 mixing ratios and O3 net production in each UKESM1

surface grid cell in each of the scenarios in turn. This provides a global

overview of the dependence of O3 and its production on NOx and VOC across

different environments. It also allows us to determine a globally-averaged

critical threshold value distinguishing NOx-limited and VOC-limited regimes.

We note that dilution of species over coarse resolution model grid cells may

lead to the underestimation of local concentrations in high-emission regions.

Due to the relatively short lifetime of NOx, this likely results in under-

estimation of NOx/VOC ratios in these conditions and the regimes may

thus be more VOC-limited in reality than are able to simulate in a global
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model.

3.3 Model evaluation of tropospheric and sur-

face O3

3.3.1 Comparison of StratTrop and extended chem-

istry schemes

We first compare averaged tropospheric O3 burdens, chemical lifetime, chem-

ical production, chemical loss and deposition during 2004–2014 from the

extended chemistry scheme (Ext StratTrop) with those from the StratTrop

chemistry scheme used in AerChemMIP simulations (Table 3.3). We define

the O3 production rate as the sum of reactions fluxes through HO2/RO2 +

NO, and the O3 loss rate as the sum of O(1D) + H2O, O3 + HO2/OH/alkenes.

The O3 burden with the extended chemistry scheme (376 Tg) lies at the up-

per end of the uncertainty range for the observed burden, 340 ± 34 Tg for

2000 (Archibald et al., 2020b). The magnitude of the O3 burden is also

consistent with the CMIP6 multi-model mean burden of 356 ± 31 Tg for

2005–2014 (Griffiths et al., 2021). The extended chemistry scheme produces

a 5 % higher tropospheric O3 burden than that of StratTrop (358 Tg), demon-

strating a more reactive environment for net O3 formation throughout the

troposphere due to reactive VOCs. This is also reflected in the higher rates

of chemical O3 production (11 %), loss (6 %) and deposition (6 %) with the

extended chemistry scheme. However, the higher O3 production is offset by

greater O3 destruction and by faster O3 deposition, and hence the mean O3

chemical lifetime remains very similar at about 22 days, which is consistent

with previous multi-model estimates of the mean lifetime of 22.2 ± 2.2 days
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(Stevenson et al., 2006).

Table 3.3: Comparison of tropospheric O3 burden and budget terms during

2004–2014 simulated with StratTrop and Ext StratTrop chemistry schemes

in UKCA. One standard deviation in the annual terms over the 2004–2014

period is shown. We define the tropopause based on the highest layer with

an O3 mixing ratio less than 150 ppb.

StratTrop Ext StratTrop

O3 burden (Tg) 358±3 376±3

O3 lifetime (days) 22.6±0.2 22.5±0.2

O3 net production (Tg year−1) 895±45 996±40

O3 production (Tg year−1) 5698±40 6080±66

O3 loss (Tg year−1) 4803±45 5084±59

O3 deposition (Tg year−1) 883±9 936±9
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Simulated surface O3 concentrations during 2004–2014 with the two chem-

istry schemes are compared in Fig. 3.1. Using the extended chemistry

scheme, the spatial distribution of surface O3 is similar to that using Strat-

Trop in both winter and summer, but shows a general increase in global O3

levels of about 2 ppb (Fig. 3.1a–d) due to inclusion of the additional reactive

VOCs. The applied vertical emission profiles may lead to a decrease in the

concentrations of O3 precursors and O3 in some areas. The O3 increases (Fig.

3.1e–f) are most notable for South Asia and East Asia due to the relatively

high VOC emissions in these regions (Janssens-Maenhout et al., 2015; Huang

et al., 2017; Feng et al., 2020). There is a much larger O3 increase in South

Asia in winter than in summer (Fig. 3.1e), mainly due to greater transport of

O3 precursors during the summer monsoon in South Asia (Lu et al., 2018b).

This leads to higher O3 concentrations in winter than that in summer, con-

sistent with Gao et al. (2020), and demonstrates a larger seasonal variation

in O3 concentrations with the Ext StratTrop chemistry scheme than with the

StratTrop chemistry scheme. In addition, there are substantial O3 increases

in East Asia and in other polluted continents in summer (Fig. 3.1f) when

using the extended chemistry scheme. This is not seen in winter (Fig. 3.1e)

because titration of O3 by nitric oxide (NO) remains strong, despite high

VOC emissions. The relatively small influence of the additional VOCs on O3

in winter is also seen in other heavily populated regions that have high NOx

emissions such as North America and Europe.
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Figure 3.1: Comparison of present-day seasonal mean surface O3 con-

centrations (2004–2014) between the Ext StratTrop chemistry scheme (a,

b) and the StratTrop chemistry scheme (c, d). Winter time (Decem-

ber–January–February, DJF) and summer time (June–July–August, JJA)

global mean O3 concentrations are shown. Seasonal differences in surface O3

concentrations between the two chemistry schemes are shown in the bottom

panels (e, f).
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3.3.2 Evaluation of surface O3 concentrations

We now evaluate surface O3 concentrations simulated with the Ext StratTrop

chemistry scheme against gridded monthly mean rural observations from the

TOAR dataset over the 2004–2014 period (Schultz et al., 2017). Surface O3

concentrations for winter (DJF) and summer (JJA) during 2004–2014 are

shown in Fig. 3.2. We find that global mean surface O3 mixing ratios are

underestimated in winter (-7.3 ppb) and overestimated in summer (+13.5

ppb), with relatively small biases in spring and autumn. The positive biases

in summer and negative biases in winter for O3 concentrations are also seen

in results using the StratTrop chemistry scheme (Archibald et al., 2020b;

Turnock et al., 2020). The model seasonality with both schemes (19.4–45.5

ppb; DJF-JJA) is rather stronger than that observed (26.7–32.0 ppb; DJF-

JJA), but the Ext StratTrop chemistry scheme improves the model perfor-

mance slightly in DJF for surface O3 (Fig. 3.2b) despite larger biases in

summer (Fig. 3.2d). Numerical diffusion of O3 precursor emissions due to

coarse model horizontal resolution may explain the biases (Wild and Prather,

2006; Stock et al., 2014; Fenech et al., 2018), and we note that these seasonal

O3 biases are also evident in other chemistry-climate models (Young et al.,

2018b; Turnock et al., 2020). Insufficient turbulent mixing in the planetary

boundary layer may also contribute to the bias (O’Connor et al., 2014), as

accumulation of NOx at the surface leads to greater O3 production in sum-

mer and greater titration by NO in winter. However, we note that a much

more comprehensive chemistry scheme applied in UKCA, the Common Rep-

resentative Intermediates Mechanism (CRI-Strat), shows similar systematic

biases in surface O3 mixing ratios, -4.6 ppb in DJF and +12.0 ppb in JJA for

the 2010–2018 period (Archer-Nicholls et al., 2020). This suggests that other

biases in the model are primarily responsible for the biases in surface O3. We
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choose to apply the extended chemistry scheme as it permits representation of

a more appropriate chemical environment for O3 production in high-emission

areas and is thus more suitable to investigate O3 sensitivity.

Figure 3.2: Modelled surface O3 biases with the Ext StratTrop chemistry

scheme for winter (DJF) and summer (JJA) over 2004–2014 (a, c). Prob-

ability distribution function (PDF) of seasonal mean O3 concentrations be-

tween observations, StratTrop and Ext StratTrop chemistry schemes (b, d).

Vertical dashed lines indicate seasonal mean surface O3 concentrations. Ob-

servations from the Tropospheric Ozone Assessment Report (TOAR) dataset

(Schultz et al., 2017) are used for comparison.
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3.4 O3 changes under future scenarios

3.4.1 Emission changes

The SSP3-7.0 pathway is characterized by relatively strong emission controls

in some parts of the world such as North America and Europe but weaker

controls or emission increases elsewhere. Increases in NOx and VOC emis-

sions from anthropogenic and biomass burning sources are seen in Central

and South America, North Africa, the Middle East, and South and East Asia

(Fig. 3.3a, c). SSP3-7.0-lowCH4 has the same NTCF emissions as SSP3-7.0

but lower CH4 emissions that lead to lower CH4 concentrations (Table 3.2).

SSP3-7.0-lowNTCF represents strong emission controls across the globe, with

reductions in emissions in most major high-emission regions except for South

Asia (Fig. 3.3b, d). Total BVOC emission changes are driven by changes in

land-use, vegetation and temperature. Fig. 3.3e, f shows general increases

in total BVOC emissions in most parts of the Northern Hemisphere except

for South Asia in the future, which partly offset the decreased anthropogenic

and biomass burning VOC emissions in North America and Europe. Similar

BVOC emission changes are found under SSP3-7.0 and SSP3-7.0-lowNTCF

relative to the present day as the climate change signal and carbon dioxide

concentrations under future pathways are the same.
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Figure 3.3: Differences in annual mean surface emissions of NOx (a, b),

anthropogenic and biomass burning VOCs (c, d) and total biogenic VOCs

(e, f) between the present day (PD; 2004–2014) and SSP3-7.0 and SSP3-

7.0-lowNTCF (2045–2055).
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3.4.2 Tropospheric O3 changes

Changes in tropospheric O3 from the present day to the future are shown in

Table 3.4. Changes in NTCF emissions control O3 burden changes with a 4 %

increase in the O3 burden under SSP3-7.0 and a 7 % decrease under SSP3-7.0-

lowNTCF relative to the present day. Changes in O3 production rates are also

controlled by changes in NTCF emissions, and there is higher O3 production

under SSP3-7.0 and lower O3 production under SSP3-7.0-lowNTCF. The

decrease in the O3 burden (5 %) under SSP3-7.0-lowCH4 is slightly less

than that under SSP3-7.0-lowNTCF (7 %), and shows that reductions in

CH4 concentrations effectively reduce the tropospheric O3 burden despite

high NTCF emissions under SSP3-7.0-lowCH4. O3 production rates under

SSP3-7.0-lowCH4 are slightly higher than in the present day partly due to

higher hydroxyl radical (OH) concentrations that promote O3 production.

However, these higher O3 production rates are offset by higher O3 loss rates,

and result in lower O3 net production under SSP3-7.0 and SSP3-7.0-lowCH4.

We find that the O3 chemical lifetime decreases slightly by 0.4–1.6 days

under future pathways partly due to decreased O3 net production, and partly

due to increased O3 loss associated with higher temperature and humidity

in a warmer climate (Young et al., 2018b). Changes in O3 dry deposition

rates principally reflect changes in surface O3 concentrations, although high

temperatures under a warmer climate may reduce O3 deposition rates due

to vegetation stress (Lin et al., 2020).
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3.4.3 Surface seasonal O3 changes

Seasonal differences in simulated surface O3 concentrations between the present

day (2004–2014) and future pathways (2045–2055) are shown in Fig. 3.4a–f,

along with a comparison between SSP3-7.0 and SSP3-7.0-lowCH4 (Fig. 3.4g,

h). SSP3-7.0 represents less stringent emission control policies, and has

slightly higher global mean O3 mixing ratios (0.7–0.9 ppb; Fig. 3.4a, b) than

the present day. In contrast, tightened emission controls under SSP3-7.0-

lowNTCF reduce surface O3 mixing ratios substantially across many parts

of the world (3.3–5.2 ppb; Fig. 3.4c, d). The reduction in CH4 mixing ratios

from 1803 to 1364 ppb under SSP3-7.0-lowCH4 relative to the present day

successfully reduces O3 mixing ratios (2.7–3.5 ppb; Fig. 3.4e, f) for regions

that show O3 increases under SSP3-7.0. SSP3-7.0-lowCH4 with reduced CH4

concentrations alone shows uniform O3 decreases across the globe (3.4–4.4

ppb; Fig. 3.4g, h) compared with SSP3-7.0, where mean CH4 mixing ratios

are 2472 ppb, and this offsets high O3 levels in regions with high NTCF

emissions. This demonstrates the importance of CH4 in governing surface

O3 concentrations, and the need to account for CH4 in mitigating O3 pollu-

tion in future (Fiore et al., 2008; Allen et al., 2021). We highlight that O3

changes vary by season. From Fig. 3.4a, c we can see that O3 concentrations

generally increase in winter in continental areas such as North America and

Europe under SSP3-7.0 and SSP3-7.0-lowNTCF. These regions have large re-

ductions in NTCF emissions under future pathways, and thus there is less O3

titration due to lower NOx emissions in these regions. Since NOx emissions

decrease in East Asia under SSP3-7.0-lowNTCF, we also see O3 increases in

winter in this region. This highlights that NOx emission reductions are not

beneficial for reducing surface O3 concentrations in winter. Conversely, NOx

emission increases under SSP3-7.0 lead to O3 decreases in winter in South
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and East Asia for the same reason. The situation is different in summer, with

O3 decreases in North America and Europe, but O3 increases in South and

East Asia under SSP3-7.0 (Fig. 3.4b). This reflects a shift in O3 sensitivity

from VOC limitation in winter to NOx limitation in summer. O3 changes

in summer and winter are generally consistent in South America and Africa,

and reflect NOx limitation in these regions throughout the year. O3 mix-

ing ratios in the Arctic increase in winter likely due to the transport of NOx

reservoir i.e. PAN from continental areas under low temperature. For regions

that are projected to have lower NOx emissions in SSP3-7.0-lowNTCF, such

as eastern China, we note that O3 concentrations increase in both winter

and summer. The industrial regions of China are in VOC limited regimes

throughout the year, and thus decreased NOx emissions increase O3 concen-

trations (Jin and Holloway, 2015; Wang et al., 2021; Liu et al., 2021). This

suggests that reductions in both NOx and VOC emissions may be needed to

reduce O3 in these regions.

Surface O3 concentrations are also influenced by climate change, reflecting

changing natural emissions, O3 production and destruction rates and O3

deposition rates (Doherty et al., 2013, 2017). Global annual mean surface

O3 mixing ratios decrease by 1 ppb with a 1.5 °C temperature rise, but show

little change in continental areas (Naik et al., 2021). This is principally due

to increased humidity and greater O3 destruction in oceanic areas, but in

continental areas these effects may be offset by O3 increases due to higher

soil NOx (Romer et al., 2018) and BVOC emissions, and by decreased O3

deposition rates (Lin et al., 2020). O3 concentrations can also be impacted

by more frequent and intense heat waves under a warmer climate (Schnell

and Prather, 2017; Ma et al., 2019). We find that the resulting changes in

surface O3 concentrations in continental regions due to climate change are
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relatively small, and reduction in anthropogenic emissions is the dominant

factor governing surface O3 concentrations in the near future.
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Figure 3.4: Differences in seasonal mean surface O3 concentrations between

the present day (PD; 2004–2014) and the future SSP3-7.0 (a, b), SSP3-7.0-

lowNTCF (c, d) and SSP3-7.0-lowCH4 (e, f) (2045–2055) in winter (DJF)

and summer (JJA). Differences between SSP3-7.0 and SSP3-7.0-lowCH4 are

shown (g, f) to isolate the impacts of reduced CH4 concentrations. Absolute

global mean O3 changes (ppb) are shown at the right top of each panel.
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We also examine daytime and nighttime O3 changes for different regions

under future pathways because daytime O3 concentrations are typically more

relevant for human health. For daytime O3 concentrations we consider the

maximum daily average 8h O3 concentration (MDA8), an important metric

used to evaluate O3 impacts on human health. Nighttime O3 concentrations

are correspondingly given by the minimum daily average 8h O3 concentration

(MIN8). We show a comparison of the changes in these metrics in Fig.

5.

In general, differences in global mean O3 changes are relatively small in both

daytime and nighttime under all pathways. However, in South and East

Asia with increased NOx emissions under SSP3-7.0 and SSP3-7.0-lowCH4,

O3 concentrations tend to increase in daytime but show smaller increases or

reduction at night. This demonstrates the impact of O3 titration by NO at

nighttime in high-NOx environments. In North America and Europe that

have lower NOx emissions in the future, daytime O3 concentrations decrease

greatly in summer, but daytime and nighttime changes are similar in winter,

demonstrating the large influence of NOx emissions on summer daytime O3

concentrations. The substantial differences between daytime and nighttime

O3 changes suggest that the underlying impacts of O3 changes on human

health are likely to be larger than those estimated using seasonal mean O3

concentrations, and this is particularly important for high-emission areas

with increased NOx emissions in the future.
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Figure 3.5: Seasonal mean maximum daily average 8h (MDA8) and min-

imum daily average 8h (MIN8) surface O3 changes for North America,

Europe, South Asia, East Asia and the globe from the present day (PD;

2004–2014) to SSP3-7.0 (a), SSP3-7.0-lowNTCF (b) and SSP3-7.0-lowCH4

(c) (2045–2055). DJF and JJA situations are shown with blue and red bars,

respectively.



106 CHAPTER 3. TROPOSPHERIC OZONE IN THE FUTURE

3.5 O3 sensitivity in the present day and the

future

Non-linearity in chemical O3 formation can result in differences in the ef-

fectiveness of emission control strategies regionally, and may even aggravate

O3 pollution issues. We therefore investigate O3 sensitivity for the present

day and the future, as it is important to understand how O3 concentrations

will respond to changing emissions. Ratios of NOx and VOC concentra-

tions provide a useful indicator of regional O3 sensitivity regimes. Here we

quantify the critical NOx/VOC ratio that distinguishes VOC-limited and

NOx-limited regimes by examining monthly mean surface O3 concentrations

and net chemical production rates as a function of monthly mean NOx and

VOC concentrations, see Fig. 3.6. Monthly mean O3 mixing ratios and net

production rates in the lowest model layer from all months and all scenarios

are used to plot the figure. For NOx we use the sum of NO and NO2 mixing

ratios, and for total VOC we use the sum of the mixing ratios of primary

emitted VOC species. CO and CH4 are not included due to their relatively

low reactivity. We classify NOx and VOC mixing ratios in each model grid

cell into 150 bins on a logarithmic scale ranging from 0.01 ppb to 100 ppb, and

calculate mean O3 mixing ratios and mean O3 net chemical production rates

in each NOx-VOC bin. Approximate thresholds of monthly mean NOx/VOC

ratios for O3 sensitivity are shown in Fig. 3.6, ranging from 0.6 to 1 with

a central value of 0.8. This value can be applied for both the O3 mixing

ratio isopleth and the O3 net chemical production rate isopleth, suggesting

that it is robust in distinguishing O3 sensitivity regimes. We hence apply a

threshold value of 0.8 to distinguish O3 sensitivity regimes hereafter. Areas

above the threshold represent VOC-limited regimes in which increased NOx
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emissions reduce O3 concentrations and O3 production rates, and areas below

the threshold represent NOx-limited regimes. We find the highest O3 concen-

trations and O3 production close to the threshold line, demonstrating that

the threshold values are consistent and that the approach is robust.

We further investigate O3 sensitivity for different regions. The regions con-

sidered here are those defined for the Task Force on Hemispheric Transport

of Air Pollutants Phase 2 (TF HTAP2; Janssens-Maenhout et al., 2015), see

Fig. 3.7a; the regions dominating each part of the NOx-VOC concentration

space are shown in Fig. 3.7b, c. We determine the dominant region con-

tributing to each bin in NOx-VOC space based on the region contributing

the greatest number of model grid cells to that bin. This approach reveals

differences in regional O3 sensitivity. We also show the shift in O3 sensitiv-

ity in different regions between the present day (Fig. 3.7b) and the future

(SSP3-7.0-lowNTCF; Fig. 3.7c) to demonstrate the impacts of decreased

NTCF emissions on the evolution of O3 sensitivity on a regional basis.
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Figure 3.6: Surface O3 mixing ratios (a) and O3 net chemical production

(ncp) rates (b) as a function of monthly mean NOx and VOC mixing ratios.

Monthly mean data for all months and all scenarios are used. The straight

lines show the approximate thresholds of NOx/VOC to distinguish VOC-

limited (above the line) and NOx-limited (below the line) regimes.
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Figure 3.7: Geographical regions defined in the Task Force on Hemispheric

Transport of Air Pollutants Phase 2 (TF HTAP2) (a). Regions that have

the largest number of grid points in each part of NOx-VOC concentration

space are shown in the present day (b) and under SSP3-7.0-lowNTCF (c).

The straight line shows the NOx/VOC threshold of 0.8. Monthly mean data

for all months under each pathway are used to plot (b) and (c).
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Figure 3.7b clearly shows that low-NOx and low-VOC environments are most

common in oceanic and polar regions where surface O3 levels are typically

low and where O3 production is NOx-limited. In contrast, Europe, North

America and East Asia dominate the high-NOx and high-VOC environments

in the present day where O3 levels are high and O3 production is VOC-

limited. Europe and North America have similar VOC concentrations but

NOx concentrations are generally higher in Europe than in North America,

which results in Europe lying further above the NOx/VOC threshold. This

demonstrates that stricter controls on NOx emissions are required for Europe

to shift from VOC-limited to NOx-limited regimes than for North America.

East Asia dominates VOC-limited regimes due to much higher NOx and VOC

concentrations than other regions. Parts of South Asia and Middle East are

also VOC-limited. Major biogenic emission source regions such as South

America, South Africa and South East Asia have high VOC concentrations

but moderate levels of NOx, and the chemical environment is therefore NOx-

limited.

The impacts of reductions in NTCF emissions are shown in Fig. 3.7c. We

find that Europe and North America are no longer the most dominant VOC-

limited regimes due to decreased NOx concentrations. East Asia is still a

dominant VOC-limited region under SSP3-7.0-lowNTCF, but reduced NOx

emissions shift parts of East Asia into NOx-limitation. South Asia becomes

the main VOC-limited region with relatively high NOx concentrations. South

America, South Africa and South East Asia are still NOx-limited because

there are no large NOx increases in these regions.

O3 sensitivity in major present-day VOC-limited regions under different sce-

narios are shown in Fig. 3.8. Reductions in NOx emissions are important

and effective in transforming VOC-limitation to NOx-limitation, reflected in
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large NOx-limited areas in Europe and North America under all scenarios.

In contrast, most parts of East Asia are VOC-limited under SSP3-7.0 and

SSP3-7.0-lowCH4 due to increased NOx emissions. Since changes in VOC

concentrations are relatively small for all scenarios, they have little sub-

stantial influence on O3 sensitivity. Under future climate, increased biogenic

VOC emissions in Europe and North America partly offset decreased anthro-

pogenic VOC emissions, and are hence beneficial to maintain a NOx-limited

environment. We note that South Asia is the only region that is substantially

VOC-limited in the future due to increased NOx emissions. Reductions in

CH4 concentrations have relatively little impact on O3 sensitivity, although

they greatly reduce surface O3 concentrations (Sect. 3.4.3).
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Figure 3.8: O3 sensitivity across Europe, North America, East Asia and

South Asia in the present day (a) and under SSP3-7.0 (b), SSP3-7.0-

lowNTCF (c) and SSP3-7.0-lowCH4 (d). The NOx/VOC threshold of 0.8 is

shown. Horizontal and vertical lines indicate regional mean NOx and VOC

concentrations in the present day.
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3.6 Spatial distributions of O3 sensitivity

Global spatial distributions of annual O3 sensitivity in the present day and

the future are shown in Fig. 3.9. VOC-limited regimes are represented by

high NOx/VOC ratios, reflecting relatively high NOx or low VOC concentra-

tions. In the present day, high NOx emissions contribute to VOC-limitation

in large areas of North America, Western and Central Europe and East Asia.

While North America and Europe have lower NOx concentrations than East

Asia, lower VOC concentrations still lead to VOC-limitation. Only south-

west parts of India are VOC-limited. In the future, O3 production in more

areas of North America and Europe becomes NOx-limited. However, VOC

limited regimes in East Asia, particularly China, are persistent due to pro-

jected increases in NOx emissions until 2055 under SSP3-7.0 and SSP3-7.0-

lowCH4. We find that reductions in CH4 concentrations have relatively little

influence on O3 sensitivity over continental regions (Fig. 3.9b vs 3.9d). We

note that SSP3-7.0-lowNTCF shows the smallest VOC-limited areas across

the globe. East Asia is still partly VOC-limited under this scenario, partic-

ularly in northern China (Fig. 3.9c), which indicates that further reductions

in NOx emissions are required in addition to those expected in this region in

the future (Fig. 3.3b).
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Figure 3.9: Spatial distributions of annual mean NOx/VOC in the present

day (2004–2014; a) and under SSP3-7.0 (b), SSP3-7.0-lowNTCF (c) and

SSP3-7.0-lowCH4 (d) (2045–2055). A NOx/VOC threshold ratio of 0.8 is

used here to distinguish O3 sensitivity regimes.

We contrast regional O3 sensitivities for winter and summer seasons in Fig.

3.10, as we note that O3 responses in different seasons can be substantially

different in high-emission regions. This suggests that static emission control

strategies throughout the year may not be the best way to lower annual-

mean O3 pollution, and adjustments may be needed according to seasonal

O3 sensitivities. More extensive VOC-limited areas are found in winter than

in summer under both present day and future conditions, but these account

for less than 7 % of the total area of the world in the present day (Table

3.5). Over 50 % of North America, Europe and East Asia are VOC-limited

in winter in the present day. This explains why North America and Europe

show O3 increases in winter (Fig. 3.4) despite reduced NOx emissions. How-
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ever, there are fewer VOC-limited regions across the globe under all future

pathways (Fig. 3.10). About 1 % of North America is VOC-limited in sum-

mer, and less than 7 % of Europe. In contrast, over 48 % (winter) and 39

% (summer) of South Asia is VOC-limited in future. Slightly more areas are

VOC-limited under SSP3-7.0-lowCH4 than under SSP3-7.0 (Fig 3.10c, d)

principally due to decreased CH4 mixing ratios. Overall, reductions in NOx

emissions are important to reduce O3 production in high-emission regions

and shift VOC-limited areas to NOx-limitation but this may lead to higher

O3 concentrations in winter without further emission controls on VOC and

CH4.
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Figure 3.10: Seasonal differences in O3 sensitivity regimes for the present

day (2004–2014; a) and under SSP3-7.0 (b), SSP3-7.0-lowNTCF (c), SSP3-

7.0-lowCH4 (d) (2045–2055). A NOx/VOC threshold ratio of 0.8 is used

here to distinguish O3 sensitivity regimes.

3.7 Conclusions

We use a global chemistry-climate model, UKESM1, to assess the impacts

of changing near-term climate forcer (NTCF) emissions and CH4 concen-

trations in the context of climate change on tropospheric O3 in the present

day (2004–2014) and the near future (2045–2055). CMIP6 future scenar-

ios including SSP3-7.0, SSP3-7.0-lowNTCF and SSP3-7.0-lowCH4 are used

from the AerChemMIP project. We have examined O3 changes from the

present day to the future and investigated regional O3 sensitivities to explain

contrasting O3 changes in different seasons.
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Table 3.5: The percentage of VOC-limited areas (%) in different regions

under different pathways in winter (DJF) and in summer (JJA).

Present day SSP3-7.0 SSP3-7.0-lowNTCF SSP3-7.0-lowCH4

DJF JJA DJF JJA DJF JJA DJF JJA

N. America 50.4 6.4 12.5 0.4 2.4 0 16.9 1.0

Europe 79.8 37.4 27.0 2.6 27.5 0.9 41.6 6.1

S. Asia 15.1 15.3 54.8 49.6 48.1 39.5 60.4 56.7

E. Asia 60.3 18.3 63.3 15.8 37.7 3.5 68.7 19.3

Globe 6.9 2.7 4.8 2.0 2.0 0.6 5.9 3.0

An extended chemistry scheme incorporating more reactive VOC species is

used to permit representation of more active photochemical environments for

O3 production. This shows higher surface O3 concentrations in high-emission

regions and a 5 % higher tropospheric O3 burden. While simulated surface O3

concentrations are biased low in winter and high in summer, these systematic

model biases are similar to those using the original chemistry scheme as well

as a more comprehensive chemistry scheme. This indicates that other fac-

tors in the model are likely to be responsible for the biases but the extended

chemistry scheme permits representation of a more appropriate chemical en-

vironment for O3 production in high anthropogenic emission areas.

From the present day to the future, the tropospheric O3 burden increases by

4 % under SSP3-7.0 and decreases by 7 % and 5 % under SSP3-7.0-lowNTCF

and SSP3-7.0-lowCH4. The tropospheric O3 chemical lifetime remains simi-

lar (21–22 days) under all scenarios, and this is similar to previous estimates.

Seasonal global mean surface O3 mixing ratios increase by 0.7–0.9 ppb un-

der SSP3-7.0, and decrease by 3.3–5.2 ppb under SSP3-7.0-lowNTCF and
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by 2.7–3.5 ppb under SSP3-7.0-lowCH4. We find that reductions in NTCF

emissions are effective in reducing surface O3 concentrations, and reductions

in CH4 concentrations are also important. We also find that both the mag-

nitude and direction of seasonal, daytime and nighttime O3 changes relative

to the present day can vary greatly across different regions especially South

and East Asia.

O3 sensitivity is quantified using monthly mean NOx/VOC concentration

ratios to give a broad assessment of regional O3 sensitivity. The estimated

monthly mean NOx/VOC thresholds range from 0.6 to 1.0, and 0.8 is used

to distinguish O3 sensitivity regimes. Most VOC limited regimes occur in

high-emission regions across the northern hemisphere, such as North Amer-

ica, Europe, the Middle East, South Asia and East Asia. More areas in North

America and Europe become NOx-limited under all future pathways due to

the projected decrease in NOx emissions. There are more VOC-limited ar-

eas in East Asia under SSP3-7.0 and SSP3-7.0-lowCH4 due to the projected

increase in NOx emissions, although there are fewer VOC-limited areas in

East Asia under SSP3-7.0-lowNTCF. South Asia becomes the dominant re-

gion for VOC-limited O3 production in the future. Projections of regional

O3 sensitivity demonstrate that reductions in NOx emissions are the most

important factor to shift VOC-limited regimes to NOx-limitation.

We highlight that O3 sensitivity varies by season. There are more VOC-

limited regimes in winter (7 %) than in summer (3 %) in both hemispheres.

Reductions in NOx emissions increase surface O3 concentrations in high-

emission areas particularly in winter, and reductions in VOC emissions should

be targeted. In the future, reductions in NOx and VOC emissions should both

be effective in mitigating O3 pollution in most areas of North America and

Europe in summer because there are only 1 % and 7 % VOC-limited areas in
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these two regions. However, further reductions in NOx emissions are needed

for parts of East Asia and South Asia to convert most VOC-limited areas to

NOx-limited. While anthropogenic and biomass emissions may be controlled

in the future, more biogenic emissions under a warmer climate would hinder

the impacts of VOCs on O3 mitigation. Reductions in CH4 concentrations are

also important to reduce surface O3 pollution. NOx decreases are important

to reduce surface O3 concentrations from a global perspective but will lead

to increased O3 concentrations in some regions, and hence emission controls

on VOC and CH4 are necessary to mitigate regional O3 pollution during the

transition from VOC- to NOx-limitation.
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Chapter 4

Correcting ozone biases in a

global chemistry-climate model:

implications for future ozone

This chapter has been submitted to the open-access journal Atmospheric

Chemistry and Physics (ACP). It is finished in collaboration with Prof. Ruth

Doherty, Prof. Oliver Wild, Dr. Fiona O’Connor and Dr. Steven T. Turnock.

ZL, RD, OW designed the study. ZL built the model, conducted model

simulations and performed the analysis with input from OW, RD, FO’C

and ST. ZL, RD and OW prepared the paper, with contributions from all

co-authors.
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4.1 Introduction

Atmospheric chemical transport models have been developed over several

decades with the principal purpose of simulating the composition of the at-

mosphere (Zhang, 2008), and chemistry schemes have been incorporated in

chemistry-climate and Earth system models to investigate the interactions

between atmospheric composition and climate change (Flato, 2011). How-

ever, current chemistry-climate models are imperfect in simulating the con-

centration of atmospheric chemical species, even though they represent our

latest understanding of the governing physical and chemical processes. Biases

obtained through comparison with observations indicate that not all relevant

processes can be adequately represented in models, and there are uncer-

tainties associated with emissions, chemistry, transport, deposition, clouds,

and aerosols in addition to structural errors associated with model resolu-

tion (Knutti and Sedláček, 2013; Archibald et al., 2020b). Representation

of these processes may be biased due to poor understanding and simplified

parameterisation, and the errors may propagate in complex Earth system

models.

While some models reproduce observed concentrations relatively well, this

does not confirm that they represent the governing processes well because bi-

ases arising from different processes may offset each other. Different models

apply differing parameterisations of key processes, and even where these re-

flect current understanding there may be large differences in model responses

to changing conditions (Wild et al., 2020). This may lead to unreliable pro-

jections of changes in atmospheric composition under future emission and

climate scenarios. However, it is difficult to identify the origin of the biases

in models, and this severely hinders model improvement and prevents a full
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understanding of the interactions between chemistry and climate through the

Earth system.

Tropospheric ozone (O3) is an important greenhouse gas affecting climate,

and is a photochemical air pollutant at the Earth’s surface, damaging human

health and ecosystems (Archibald et al., 2020a). Many studies show that the

magnitude of the tropospheric O3 burden and surface O3 concentrations in

remote areas can be simulated relatively well (Young et al., 2018b; Griffiths

et al., 2021). However, large differences still exist in simulated surface O3

concentrations in high-emission areas (Turnock et al., 2020), and there are

large uncertainties in temporal trends (Tarasick et al., 2019) that cannot

be captured well by global chemistry-climate models (Parrish et al., 2021).

In addition, structural biases in O3 caused by coarse model resolution are

hard to eliminate, and typically lead to higher surface O3 concentrations

in polluted areas (Wild and Prather, 2006; Stock et al., 2014). Given the

difficulty in resolving the O3 biases in a complex chemistry-climate model,

the aim of this study is to correct simulations of present day surface O3

concentrations across the globe, and to generate more reliable O3 projections

under future scenarios.

Machine learning provides a valuable approach to correct O3 biases. Ap-

propriate algorithms can be applied to identify the relationships between

model responses and the driving variables based on extensive training. Deep

learning approaches apply algorithms with more complex architectures and

larger parameter spaces based on artificial neural networks (Goodfellow et al.,

2016). In atmospheric science, machine learning has been successfully ap-

plied in some fields such as the prediction of precipitation (Sønderby et al.,

2020; Ravuri et al., 2021) and air pollution (Kleinert et al., 2021). Numeri-

cal approaches used in solving ordinary and partial differential equations in
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chemical and dynamic systems (Han et al., 2018; Keller and Evans, 2019),

and in parameterising subgrid processes for clouds in climate models (Rasp

et al., 2018) can also be replaced by machine learning to reduce computational

costs. However, reliance on machine learning approaches to make predictions

may lead to loss of interpretability of the results, and we therefore choose to

apply a deep learning model to the output from a chemistry-climate model

to gain greater physical insight.

In this study, we explore the application of deep learning to correct surface O3

biases in a global chemistry-climate model for the first time, and apply it to

improve projections of changes in O3 under future scenarios. We identify the

dominant factors leading to O3 biases with the aim of guiding future model

development. We introduce the chemistry-climate model, present-day and

future scenarios and the deep learning model in Sect. 4.2. We demonstrate

the performance of the deep learning model in Sect. 4.3. We show the

importance of different variables to O3 biases in Sect. 4.4, and how these

vary by region in Sect. 4.5. We quantify surface O3 biases in the present day

and future in Sect. 4.6, and show the importance for assessment of future

O3 changes in Sect. 4.7. We present our conclusions in Sect. 4.8.
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4.2 Approach

4.2.1 Chemistry-climate model and experiments

The chemistry-climate model, UKESM1 is used in this chapter. Model de-

scription and development are fully introduced in section 1.3. Only necessary

information of the model set-up and the model application for this chapter is

described below, the same as in section 3.2. We use UKESM1 (Sellar et al.,

2019) to simulate present-day (2004–2014) and future (2045–2055) surface

O3 concentrations under different emission and climate pathways.

For present day simulations, we use the Coupled-Model Intercomparison

Project Phase 6 (CMIP6; Eyring et al., 2016) historical anthropogenic and

biomass emissions from Hoesly et al. (2018) and van Marle et al. (2017) re-

spectively. Biogenic VOC emissions are calculated interactively in the Joint

UK Land Environmental Simulator (JULES) land-surface scheme (Pacifico

et al., 2011) which is coupled to UKCA. For future simulations, we use the

shared socio-economic pathways (SSPs; O’Neill et al., 2014) which represent

different pathways of emission and climate policies in the future accounting

for social, economic and environmental development (Rao et al., 2017). We

choose the SSP3-7.0 and SSP3-7.0-lowNTCF pathways to demonstrate the

impacts of weak and strong air pollutant emission controls in the future, re-

spectively. Both pathways lead to a warmer and more humid climate, but

SSP3-7.0-lowNTCF has large reductions in anthropogenic emissions of near-

term climate forcer (NTCF) species that include O3 precursors and aerosols.

Details of the present-day and future emissions under SSP3-7.0 and SSP3-

7.0-lowNTCF can be found in Liu et al. (2022). Other emissions used here

are the same as described in Turnock et al. (2020).
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4.2.2 Deep artificial neural network

We develop a deep learning model using a multilayer perceptron as it is a

fundamental approach to build artificial neural networks and easy to apply.

More complex approaches such as convolutional or attention-based neural

networks could be applied (LeCun et al., 2015; Vaswani et al., 2017), but

multilayer perceptron neural networks are competitive and show good per-

formance compared with other approaches (Tolstikhin et al., 2021). We hence

choose a classic artificial neural network as an initial step to explore the pos-

sibility of O3 bias correction; more complex approaches could be explored in

future.

The multilayer perceptron neural network consists of an input layer, several

hidden layers and an output layer, shown in Fig. 4.1. In the hidden layers,

we use three independent modules – a densely-connected layer, a batch-

normalisation layer (Ioffe and Szegedy, 2015) and a rectified linear unit (Relu;

Glorot et al., 2011). Each layer has neurons that store data and associated

weights. Neurons in densely connected layers connect to each neuron in the

following layer. The batch-normalisation layers make the model training

faster and more stable. The rectified linear unit is a non-linear activation

function applied to the output of the previous layer. The deep learning model

developed here is applied to correct surface O3 mixing ratios solely simulated

by UKESM1.
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Figure 4.1: The structure of the deep artificial neural network built in

this study. Each box represents one layer with neurons and weights to be

passed to the next layer. In the densely-connected layer (‘Dense’) all neurons

connect with neurons in the next layer, and the number of neurons is shown

in brackets. In the batch-normalisation layer (‘BN’) the data is normalised

and passed to the next layer. The rectified linear unit (‘Relu’) acts as a

non-linear activation function. The arrows show the computation path from

input to output.



128 CHAPTER 4. SURFACE OZONE BIAS CORRECTION

4.2.3 Deep learning model application

Previous studies have shown that there are systematic seasonal biases in sur-

face O3 mixing ratios simulated with many chemistry-climate models (Young

et al., 2018a), including UKESM1 (Turnock et al., 2020). We compare

present-day UKESM1 results with monthly mean surface O3 reanalysis data

from the European Centre for Medium-Range Weather Forecasts (ECMWF)

Atmospheric Composition Reanalysis 4 (EAC4) under the Copernicus At-

mosphere Monitoring Service (CAMS; Inness et al., 2019). These reanalysis

data are generated from chemical assimilation of observations into a chemical

transport model, and we choose to use these rather than sparse observations

directly as they provide global coverage, which is important for training the

deep learning model. The CAMS O3 reanalysis data have been shown to be

generally in good agreement with Tropospheric Ozone Assessment Report

(TOAR) observations for North America, Europe and parts of Asia where

available, although CAMS surface O3 concentrations show some positive bi-

ases, particularly in East and Southeast Asia (Huijnen et al., 2020).

We find that the mean surface O3 mixing ratios over 2004-2014 simulated by

UKESM1 are underestimated in the Northern Hemisphere in winter (Decem-

ber, January, February) and overestimated across most continental areas in

summer (June, July, August), as shown in Fig. 4.2. Surface O3 mixing ratios

are overestimated by 4 ppb on an annual mean basis and the biases show

a strong seasonal variation in the Northern Hemisphere. The deep learn-

ing model is trained to reproduce these biases so that the original UKESM1

O3 mixing ratios can be corrected to match the observation-based reanaly-

sis.
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Figure 4.2: Seasonal mean biases in surface O3 mixing ratios simulated with

UKESM1 compared with CAMS reanalysis data (UKESM1 minus CAMS)

in (a) December-January-February (DJF) and (b) June-July-August (JJA),

and (c) annual mean biases, all averaged over 2004–2014. Global area-

weighted average surface O3 mixing ratio biases (ppb) are shown in the top

right of each panel.

4.2.4 Deep learning model input

Earth system models have numerous variables influencing surface O3 mix-

ing ratios, but including all variables as inputs for the deep learning model

is impractical due to the heavy computation burden. It may also lead to

overfitting, a common issue in machine learning associated with including

more variables than can be justified by the limited volume of training data.

Limiting the number of variables used as inputs also makes the results easier

to interpret. In this exploratory study, we investigated more than 30 key in-

put variables that represent the major large-scale influences on O3 chemistry

and transport, and settled on 20 variables that show the strongest relation-

ships.

We consider major geographical and temporal variables including latitude,

longitude, elevation, land cover and month. We define latitude from the equa-

tor to the pole, and month from midwinter to midsummer in each hemisphere.

Meteorological variables such as temperature, pressure, humidity, zonal and
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meridional wind are considered as they strongly influence O3 chemical for-

mation and transport. The sensitivity of O3 to temperature is of particular

interest, and has been shown to be a substantial source of uncertainty in cur-

rent studies (Archibald et al., 2020c). Temperature and humidity have also

been shown to influence O3 variability on both regional and synoptic scales

(Han et al., 2020; Shi et al., 2020). Two fundamental photolysis rates j(NO2)

and jO(1D) governing O3 production and destruction are considered. Photol-

ysis rates are strongly dependent on clouds, but there are large uncertainties

in simulated cloud cover in current models (Wu et al., 2007; Voulgarakis

et al., 2009; Hall et al., 2018). O3 deposition rates and boundary layer height

(BLH) are considered as they influence O3 concentrations near the surface

(O’Connor et al., 2014; Clifton et al., 2020). Concentrations of O3 precur-

sors such as nitric oxide (NO), VOCs (primary VOC species) and biogenic

isoprene are considered, as these govern O3 chemical production. The con-

centrations of hydroxyl radical (OH) and the oxidative nitrogen species such

as nitric acid (HNO3) and peroxyacyl nitrates (PAN) are also considered be-

cause they reflect the general oxidation capacity of the atmosphere. HNO3

and PAN are important nitrogen sinks that may transport nitrogen and af-

fect O3 formation over a wide area. Between them, the 20 variables selected

represent some of the key drivers of uncertainty in simulating surface O3,

although we note that they are not independent of each other and that other

factors may also be important under some conditions. We use O3 mixing

ratios from the lowest model layer of UKESM1 and normalise values of each

input variable from zero to one.
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4.2.5 Model training

The deep learning model is trained to reproduce the O3 bias in each UKESM1

grid cell based on the corresponding values of the input variables. We train

the deep learning model using the biases of monthly mean surface O3 mixing

ratios from each model grid cell over 2004–2014 (192 longitudes × 144 lat-

itudes × 12 months × 11 years = 3.6 million data samples). We randomly

split the data into training data (80 %), validation data (10 %) and testing

data (10 %). Training data are only used to train the model. The validation

data provide an evaluation of model performance for each iteration of train-

ing, and the testing data are used to provide an independent evaluation once

model training is complete.

The performance of the deep learning model is dependent on the volume

of data and the settings used, and we experiment with a range of different

settings to keep a balance between training speed and accuracy. We choose

an Adam optimiser for the training algorithm (Kingma and Ba, 2014), and

use mean absolute error for the loss function in this study. We use 0.01 as

the model learning rate, and 1024 grid boxes as the training batch size for

stochastic gradient descent. Among these settings, we find that the batch

size is the most important factor influencing the model performance. 1024

randomly sampled data points account for about 4 % of the data from all

grid cells in one month in each training iteration, and we find that this is

adequate to represent different situations of O3 biases and is found to be

sufficient to train the model well.
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4.3 Deep learning model performance

We determine the deep learning model performance in predicting surface O3

biases using the testing data to give an independent evaluation (Fig. 4.3).

The model reproduces the surface O3 biases well with a high correlation

coefficient of 0.99 and with a mean bias error of 0.1 ppb and root-mean-square

error of 1.9 ppb. The frequency distribution of surface O3 biases predicted

by the deep learning model is very similar to that calculated using the O3

reanalysis data. The tails of the distribution also match well, indicating that

large biases can be reproduced well. The evaluation demonstrates that the

input variables selected are sufficient to predict surface O3 biases well.
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Figure 4.3: Evaluation of the deep learning model in simulating monthly

mean surface O3 biases at each UKESM1 grid point based on testing data.

(a) O3 biases (UKESM1 minus CAMS) and biases predicted by the deep

learning model. (b) Probability density function of O3 biases (labelled here

as Truth) and predicted O3 biases. Statistics are shown in the top right

corner.
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To investigate the spatial and temporal behaviour of the model performance,

we focus on surface O3 biases in the present-day high-emission regions of

North America, Europe, East Asia and South Asia (Fig. 4.4). North Amer-

ica, Europe and East Asia all show systematic negative surface O3 biases in

winter and positive biases in summer (Fig. 4.4a–c). South Asia shows differ-

ent behaviour, with consistent positive biases for all months (Fig. 4.4d). O3

biases in South Asia show more fluctuations over the annual cycle than those

in other regions, but these fluctuations are also captured well by the deep

learning model. We note that the magnitudes of O3 biases are simulated

well, and that the differences from year to year are also captured accurately.

These four regions demonstrate that the deep learning model is able to pre-

dict regional differences and their respective magnitudes well.
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Figure 4.4: Monthly mean surface O3 biases (UKESM1 minus CAMS;

Truth) and O3 biases predicted by the deep learning model in (a) North

America, (b) Europe, (c) East Asia and (d) South Asia from January, 2004

to December, 2014.
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4.4 Feature importance

While all input variables contribute to the prediction of O3 biases, their rel-

ative contributions are different and can be estimated to determine which

ones are dominant. An advanced unified framework for interpreting pre-

dictions of machine learning models, Shapley additive explanations (SHAP;

Lundberg and Lee, 2017) is used to calculate the contribution of different

variables to the predicted biases. The feature importance is represented by

the SHAP value, which provides a quantitative measure of the variable con-

tribution, shown in Fig. 4.5. We calculate SHAP values for each variable

using 100 sets of 100 data points randomly selected from the full distribu-

tion and show their mean values and one standard deviation. The colours

indicate the underlying relationships between the O3 biases and the selected

variables based on the correlation between the calculated SHAP values and

variable values. Red represents a strong positive relationship (r > 0.7), blue

represents a strong negative relationship (r < -0.7), and green shows weaker

relationships.
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Figure 4.5: Importance of different variables to surface O3 biases calculated

by the Shapley additive explanations framework (SHAP) for the deep learn-

ing model. Strong positive (r > 0.7) and negative (r < -0.7) relationships

between O3 biases and variable values are shown in red and blue, respec-

tively, while weaker relationships are shown in green. The error bars show

one standard deviation of feature importance for each variable.
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We find that latitude and month are important to O3 biases, and show nega-

tive and positive relationships to surface O3 biases, respectively. This reflects

more positive biases in Tropical regions than at the Poles, and more positive

biases in summer than winter. Temperature also shows a strong positive re-

lationship, and this may partly reinforce the influence of latitude and month.

Photolysis rates are also important for O3 biases, with jO(1D) associated with

O3 destruction and j(NO2) with O3 production. The concentrations of PAN,

OH and HNO3 all show positive relationships to O3 biases. This may indicate

that there are large uncertainties in O3 production under high-oxidation and

high-NOx environments. However, we find that VOCs and short-lived NO

concentrations are less important to O3 biases. This highlights the systematic

regional and global-scale nature of the O3 biases in UKESM1, and indicates

that the biases are not strongly associated with precursor abundance on a

regional level. Similarly, isoprene concentrations show little contribution to

O3 biases. We note that while O3 deposition rates and BLH are both impor-

tant to O3 biases, this may partly reflect their similar seasonality. We note

that the relationships derived between the variables and O3 biases reflect

association, not direct causation.

The relationships between variables with highest feature importance and the

O3 biases are generally directly interpretable, demonstrating that the deep

learning model may be capturing the internal relationships between inputs

and outputs in a physically realistic way. This provides some insight into the

sources of O3 biases in UKESM1. We emphasise that the high importance of

a variable does not indicate that the variable itself is not simulated well by

the chemistry-climate model, or that it is the direct cause of the bias. Since

temperature is generally represented well in UKESM1 (Sellar et al., 2019),

the importance of temperature thus indicates that O3 biases may be caused
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by the representation of physical and chemical processes that are sensitive

to temperature changes, such as chemical reaction rates (Coates et al., 2016;

Newsome and Evans, 2017), or to other processes for which temperature is

a proxy, and this explains the seasonality of the reversal in O3 biases from

winter to summer in the Northern hemisphere.

4.5 Spatial O3 bias sensitivity

The sensitivity of surface O3 biases to specific variables differs across regions,

and we show the spatial sensitivity to variables with high feature importance

and strong correlation to O3 biases in Fig. 4.6. Since each variable is con-

sidered independent in the deep learning model, we use the change in annual

mean O3 bias caused by changes in each variable in each UKESM1 grid

cell independently to represent the spatial sensitivity. We perform an experi-

ment for each variable where we increase the value of that variable by a small

amount (0.5 standard derivations of its temporal variability over 2004-2014)

and calculate the corresponding change in surface O3.
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Figure 4.6: Sensitivity of annual mean surface O3 bias to increases in (a)

temperature, (b) jO(1D), (c) j(NO2), (d) OH, (e) PAN and (f) BLH. Vari-

able values are increased by 0.5 standard deviation of their temporal vari-

ability for each UKESM1 grid cell independently.

Surface O3 biases are most sensitive to temperature, particularly in con-

tinental areas in the Northern hemisphere where higher temperatures are

associated with higher O3 (Fig. 4.6a). There is a strong relationship with

photolysis rates across a large area, particularly in continental areas at mid

and high latitudes (Fig. 4.6b, c), and there is a larger influence from jO(1D)

than from j(NO2). The chemical environment is important for O3 biases on

a regional scale. OH concentrations show a strong association with O3 biases

in North America, Europe and East Asia, indicating that high biases in these

high-emission regions may be associated with high atmospheric oxidation ca-

pacity (Fig. 4.6d). There is also a strong sensitivity to the concentrations

of PAN in South Africa, South Asia and South East Asia (Fig. 4.6e). This

may indicate uncertainty in the NOx emission inventory in these regions or

the large impacts of nitrogen reservoirs on O3 production. Given the long
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lifetime of PAN, it is also associated with O3 biases in remote areas such as

the Arctic, indicating that the transport of air pollutants may be important

to surface O3 in these areas. BLH is associated with O3 biases in tropical

oceanic areas (Fig. 4.6f), and this may reveal the importance of greater

O3 mixing and downward transport when the boundary layer is relatively

deep.

The spatial sensitivity of surface O3 biases to different variables is helpful

to guide future improvement of the UKESM1 model. There are substantial

changes in annual mean surface O3 biases associated with adjusting variables

values. Increasing temperature, jO(1D), j(NO2), OH and PAN concentrations

by 0.5 standard deviation changes annual mean surface O3 biases from 4.0

ppb to 4.8 ppb (20 %), 3.0 ppb (-25 %), 4.3 ppb (8 %), 4.5 ppb (13 %) and

4.7 ppb (18 %), respectively. However, we note that UKESM1 generally re-

produces temperature and photolysis rates well compared with observations

(Telford et al., 2013; Sellar et al., 2019), although there are large differences

in simulated concentrations of OH and PAN (O’Connor et al., 2014; Nicely

et al., 2020). Our results suggest that chemical processes associated with

temperature and oxidation capacity, and cloud and aerosols influencing pho-

tolysis rates may be important sources of O3 biases in UKESM1, and that

improved representation of these processes may reduce current biases in sur-

face O3.
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4.6 Assessing biases in modelled future sur-

face O3

We can apply the relationships between variables and surface O3 biases de-

rived from present day simulations to assess the biases in future O3 projec-

tions with UKESM1 and to correct our estimates of future O3 concentrations.

We demonstrate how surface O3 biases change for two future emission and

climate scenarios, SSP3-7.0 and SSP3-7.0-lowNTCF. These pathways are as-

sociated with a warmer and more humid climate than the present day. While

increased temperature might be expected to increase surface O3 biases, we

find that annual mean O3 biases decrease from 4.0 ppb to 3.6 ppb (11 %)

under SSP3-7.0 and to 1.3 ppb (67 %) under SSP3-7.0-lowNTCF. This is

principally due to the changes in the chemical environment reflected by de-

creases in the concentrations of OH (-15 % and -13 %) and PAN (-30 % and

-38 %) under SSP3-7.0 and SSP3-7.0-lowNTCF, respectively. In continen-

tal areas where surface O3 concentrations are overestimated, the UKESM1

model performance is likely to improve under these less polluted future condi-

tions. Since SSP3-7.0-lowNTCF represents a more stringent emission control

pathway than SSP3-7.0, there are larger decreases in O3 biases under this

scenario.

We investigate the spatial distribution of annual mean changes in surface O3

biases in future scenarios. We find that O3 biases decrease in most oceanic

areas under both future scenarios, see Fig. 4.7. However, O3 biases increase

in some continental areas especially in the Middle East, South Asia and

East Asia under SSP3-7.0. This is due to less stringent emission controls

in these regions and hence higher concentrations of O3 precursors and their

oxidation products under SSP3-7.0 (Turnock et al., 2020). Under SSP3-
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7.0-lowNTCF, there are widespread decreases in O3 biases except over East

Asia, where anthropogenic VOC emissions increase substantially and there

is a corresponding increase in PAN concentrations and an increase in O3

biases. In high-emission regions, the performance of UKESM1 in future O3

simulations largely depends on changes in O3 precursor emissions given that

changes in temperature and photolysis rates are small under future scenarios.

The performance of UKESM1 in high-emission regions is expected to improve

under scenarios with clean air quality policies, but is likely to become worse

under scenarios with increasing future pollutant emissions.
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Figure 4.7: Annual mean change in surface O3 biases (ppb) between the

present day (PD) and 2045-2055 under (a) SSP3-7.0 and (b) SSP3-7.0-

lowNTCF pathways.

4.7 Bias correction in future O3 projections

We can provide more reliable projections of future O3 by subtracting the

calculated surface O3 biases from surface O3 mixing ratios simulated with

UKESM1 under future scenarios (Fig. 4.8). The simulated surface O3 mixing

ratios vary in the different scenarios due to different emissions and climate

(Fig. 4.8a-c), but the spatial distributions are generally similar, with the

highest O3 levels in the Middle East and South Asia. The spatial patterns of
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surface O3 biases are also similar under the different scenarios, with biases

highest in the Tropics (Fig. 4.8d-f). High O3 mixing ratios in the Middle East

and South Asia are reduced greatly after O3 bias correction (Fig. 4.8g-h).

There are also large decreases in surface O3 mixing ratios in high-emission

regions e.g. North America and East Asia, and continental outflow regions

e.g. North Atlantic. The corrected global annual mean surface O3 mixing

ratios are lower than those simulated under all scenarios, and are highest

under SSP3-7.0 and lowest under SSP3-7.0-lowNTCF, which is consistent

with the uncorrected UKESM1 results.
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Figure 4.8: Annual mean surface O3 mixing ratios (ppb) from UKESM1

simulations for (a) the present day (PD), (b) SSP3-7.0 and (c) SSP3-7.0-

lowNTCF. The corresponding surface O3 biases predicted with the deep

learning model are shown in (d-f) and corrected surface O3 mixing ratios

are shown in (g-h). Annual global mean mixing ratios are shown in the top

right of each panel.
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We show the changes in seasonal mean surface O3 mixing ratios in North

America, Europe, South Asia, East Asia and the globe from the present day

to the future in Fig. 4.9, comparing the original assessments using UKESM1

with the bias-corrected values. Under SSP3-7.0, the corrected changes in

global mean surface O3 are slightly larger than the uncorrected UKESM1

results. However, in high-emissions regions the corrected changes are gener-

ally smaller than those originally simulated under both SSP3-7.0 and SSP3-

7.0-lowNTCF. In summer, corrected surface O3 mixing ratios increase in

all regions considered here under SSP3-7.0, and decrease under SSP3-7.0-

lowNTCF. Corrected O3 increases in South and East Asia under SSP3-7.0

are 6-8 ppb smaller than those simulated, and this indicates that O3 air

quality degradation due to future emission growth and climate change may

not be as severe as the uncorrected UKESM1 simulations suggest. Similarly,

under SSP3-7.0-lowNTCF, corrected O3 decreases are smaller in all regions,

and this indicates that the impacts of emission controls on O3 mitigation

may be smaller than those expected. This can be confirmed by the smaller

global mean O3 decreases under SSP3-7.0-lowNTCF in the bias-corrected as-

sessment (< 2 ppb) than in the original UKESM1 simulation (> 3 ppb). In

winter, the corrected changes in surface O3 mixing ratios are smaller than

those simulated with UKESM1, whether these changes are positive or nega-

tive.

These results highlight that the influence of changing emissions and climate

on O3 may not be as large as those simulated with UKESM1 and thus pro-

jections of future surface O3 changes may be overestimated. UKESM1 shows

a strong seasonality in surface O3 likely due to strong O3 sensitivity to tem-

perature and chemical environment, and this leads to large changes in future

O3. UKESM1 typically overestimates future surface O3 changes, and other
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chemistry-climate models are likely to display similar behaviour. Therefore,

the impacts of changes in emissions and climate on future O3 should be re-

assessed in light of the underlying surface O3 biases. We demonstrate the

successful application of a deep learning model to address this issue, and

it would be valuable to take a similar approach with the output of other

chemistry-climate models to provide a more reliable assessment of future

surface O3 changes.
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Figure 4.9: Changes in seasonal mean surface O3 mixing ratios (ppb) with

and without corrections in DJF (blue bars) and JJA (red bars) from the

present day (PD) to (a) SSP3-7.0 and (b) SSP3-7.0-lowNTCF in North

America, Europe, South Asia, East Asia and the globe.
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4.8 Conclusions

There are large uncertainties in the simulation of surface O3 in current

chemistry-climate models, but it is difficult to identify the causes of biases

and improve representation of the key processes. In this study, we have

demonstrated the feasibility of correcting surface O3 biases for a chemistry-

climate model, UKESM1, using a machine learning technique. A deep artifi-

cial neural network is built with input variables important for O3 chemistry

and dynamics. The deep learning model shows good performance in predict-

ing surface O3 biases, with a high correlation coefficient of 0.99 and small

mean bias errors of 0.1 ppb. Application of the deep learning model to the

results from the process-based UKESM1 model shows promise for predicting

future O3 concentrations under different climate and emission trajectories

with greater confidence.

This study has also explored the key factors governing O3 biases, which

provide valuable insight for model improvement. We find that temperature

is an important factor governing O3 biases, especially for continental areas

in the Northern hemisphere, indicating that physical and chemical processes

influenced by temperature may be not represented well. Photolysis rates also

contribute to O3 biases across the globe, indicating that simulated clouds

and aerosols may be an important source of O3 biases. Chemical species

such as PAN and OH are closely associated with O3 biases on a regional

scale, suggesting that weaknesses in representation of key chemical processes

remains a substantial issue.

We have applied a deep learning model to generate a correction to the pro-

jections of surface O3 mixing ratios for the present day and under future

SSP3-7.0 and SSP3-7.0-lowNTCF pathways. We find that global annual
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mean O3 biases (4.0 ppb) decrease by 0.4 ppb (11 %) and 2.7 ppb (67 %)

under these scenarios, respectively. However, O3 biases in high-emissions

areas may increase due to increased O3 precursors. We use this approach

to demonstrate that seasonal changes in surface O3 mixing ratios from the

present day to the future may be overestimated by as much as 6 ppb with

UKESM1, especially in high-emission areas, and this highlights a strong O3

sensitivity to changes in future emissions and climate in the model. A similar

overestimation of future O3 changes is likely in other chemistry-climate mod-

els, and the influence of emission controls on surface O3 mixing ratios may

thus be smaller than suggested by current model simulations. This suggests

that emission control policies may be less effective in improving regional air

quality than global model simulations indicate.

The deep learning model employed here is a valuable tool to obtain more

reliable predictions of the magnitude and spatial distribution of surface O3

mixing ratios. We acknowledge that the choice of input variables is likely to

influence the sensitivity of O3 biases derived from the deep learning model,

and the relationships between O3 biases and input variables are not always

readily interpretable, which is common in machine learning. However, we

demonstrate that the relationships between the variables with the highest

feature importance and surface O3 biases are intuitive, e.g. with tempera-

ture and photolysis rates, and this provides useful insight for further model

improvement. The approach applied here provides a valuable opportunity to

examine the uncertainties in a chemistry-climate model, and helps improve

assessment of the impacts of changing emissions and climate on future air

quality.
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Conclusions

5.1 Overview of thesis

Controlling high surface O3 levels is important for human and ecosystem

health. Tropospheric O3 is also important to climate change. By using

chemistry-climate models, present-day O3 concentrations can be reproduced

to help tackle regional air pollution, such as increasingly severe O3 pollution

in industrial regions of China. Future O3 changes can be also quantified

to understand the impacts of changing climate and emissions on O3 evolu-

tion. Highly O3 polluted regions often occur in high-emission regions, and

a more comprehensive chemistry scheme is hence implemented to provide

an improved representation of urban and regional O3 production. However,

simulated O3 is inherently uncertain because it depends on many chemical

and physical processes and their interaction. Due to large uncertainties in

such processes and their underlying variables, O3 biases can be corrected

with a deep learning model. This approach is also applied to provide a more

accurate assessment of O3 responses to changing emissions and climate in

149
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the future.

First, regarding the effectiveness of emission controls in O3 mitigation in

industrial regions of China, reductions in NOx emissions will increase surface

O3 concentrations in most high-emission regions of China due to their VOC-

limited regimes for O3 production. This also explains the increased surface O3

concentrations in China in recent years despite stringent emission controls.

However, reductions in NOx emissions alone of more than 70 % are required to

transform the VOC-limited regimes to NOx-limited regimes for these regions.

To address increased O3 concentrations caused by decreased NOx emissions,

reductions in VOC emissions are found to be important because combined

NOx and VOC emission controls can effectively suppress O3 increases.

Subsequently, O3 changes from the present day to the future are investigated

for all regions across the globe. The changes in anthropogenic emissions

of O3 precursors can largely explain the tropospheric O3 burden changes.

However, surface O3 concentrations vary substantially in different regions

and seasons, principally due to varying regional O3 sensitivity. VOC-limited

regimes are more extensive in winter than in summer across the globe, leading

to increased surface O3 concentrations in winter in contrast to decreased O3

concentrations in summer in North America and Europe. In the future,

South Asia will become the dominant VOC-limited region, and most areas

in North America, Europe and East Asia will become NOx-limited regimes

if NOx emissions decrease.

Lastly, the deep learning model demonstrates the advantages and capabilities

of machine learning in correcting surface O3 biases. Temperature, photolysis

rates, concentrations of OH, PAN and HNO3 all show strong relationships

to O3 biases, which provides some insights for future model development.
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Changes in future surface O3 concentrations after O3 bias corrections are

found to be smaller than those without corrections, indicating that O3 re-

sponses to changing climate and emissions may be stronger simulated with

climate-chemistry models than in the real atmosphere, which provides a valu-

able assessment of future O3 evolution.

5.2 Major results of the research

5.2.1 Emission control strategies in China

Aim: To assess the effectiveness of emission control strategies in

reducing O3 levels in industrial regions of China.

The national Air Pollution Prevention and Control Action Plan was released

in 2013 as the most influential environmental policy in China. Many pollu-

tants such as PM2.5, NOx and SO2 have been effectively controlled especially

in industrial regions due to stringent emission controls. However, increased

surface O3 concentrations are observed in these regions in recent years.

The capabilities of an extended chemistry scheme with diurnal and ver-

tical emission profiles are demonstrated when simulating surface O3 con-

centrations in the industrial regions of China: Beijing and Shijiazhuang on

the North China Plain, Shanghai and Nanjing in the Yangtze River Delta,

Guangzhou in the Pearl River Delta and Chongqing in the Sichuan Basin.

Simulated O3 concentrations are highest in Beijing and Shijiazhuang, lower

in Shanghai and Nanjing, and lowest in Guangzhou despite the highest day-

time O3 production rates in Guangzhou. NOx/VOC and H2O2/HNO3 ratios

indicate that O3 production across all regions except Chongqing is VOC
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limited.

In VOC-limited regions, reducing NOx emissions by 20 % leads to a substan-

tial O3 increase (11 %) in Shanghai. Reductions in NOx emissions alone of

more than 70 % are required to decrease O3 concentrations across all regions.

Reductions in VOC emissions alone of 20 % produce the largest decrease (–

11 %) in O3 levels in Shanghai and Guangzhou and the smallest decrease

(–1 %) in Chongqing. These responses are substantially different from those

currently found in highly populated regions in other parts of the world, likely

due to higher NOx emission levels in these Chinese regions. The work em-

phasises that combined NOx and VOC emission controls play a pivotal role

in effectively offsetting high O3 levels.

5.2.2 Ozone changes across the globe from present-day

to future

Aim: To investigate the evolution of tropospheric O3 from the

present day to the future under different emission and climate sce-

narios.

Projections of future O3 are influenced by changing emissions and climate,

and the evolution of tropospheric O3 is quantified under the shared socio-

economic pathways (SSPs) for emissions and for a warmer climate. The

tropospheric O3 burden increases by 4 % under a development pathway

with higher NOx and VOC emissions (SSP3-7.0), but decreases by 7 %

under the same pathway if NOx and VOC emissions are reduced (SSP3-7.0-

lowNTCF) and by 5 % if atmospheric CH4 concentrations are reduced (SSP3-

7.0-lowCH4). Global mean surface O3 mixing ratios are reduced by 3–5 ppb
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under SSP3-7.0-lowNTCF and by 2–3 ppb under SSP3-7.0-lowCH4.

Surface O3 changes vary in different seasons and regions, typically with de-

creased O3 concentrations in summer and increased O3 concentrations in

winter when NOx emissions are reduced. Monthly mean, daytime mean and

nighttime mean O3 changes are substantially different as well, demonstrating

the generally stronger daytime O3 responses to emissions in summer.

North America, Europe and East Asia are the dominant VOC-limited regions

in the present day but North America and Europe become more NOx-limited

in the future mainly due to reductions in NOx emissions. The impacts of VOC

emissions on O3 sensitivity are limited in North America and Europe because

reduced anthropogenic VOC emissions are partly offset by higher biogenic

VOC emissions. O3 sensitivity is not greatly influenced by changing CH4

concentrations. South Asia becomes the dominant VOC-limited region under

these future pathways. The work highlights the importance of reducing VOC

and CH4 concentrations to mitigate regional O3 pollution in the future.

5.2.3 Surface ozone bias correction

Aim: To quantify and correct the O3 biases in a chemistry-climate

model and to explore the potential reasons causing the model bi-

ases.

Chemistry climate models are imperfect in simulating accurate surface O3

concentrations due to the difficulty in representing all physical and chemical

processes in models. Biases in O3 simulations are also associated with uncer-

tainty in emissions and structural errors which arise from coarse model reso-

lutions. Such biases are hard to eliminate. Therefore, a deep learning model
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is developed to quantify and correct surface O3 biases using present-day re-

analyse data, and to provide more accurate predictions of future O3.

The deep learning model implemented shows capabilities in predicting surface

O3 biases in different regions. In addition, it also provides some insights

about underlying biased processes in the model. Temperature and the related

geographic variables latitude and month show the strongest relationship with

O3 biases. This indicates that O3 biases are sensitive to temperature and

suggests weakness in the representation of temperature-sensitive physical or

chemical processes. Photolysis rates are shown to be important for O3 biases

given large uncertainty in simulated cloud cover and insolation in chemistry-

climate models. Chemical species such as OH, HNO3 and PAN all show great

positive relationships to O3 biases.

Global annual mean O3 biases in both future scenarios (SSP3-7.0 and SSP3-

7.0-lowNTCF) are smaller than that in the present day. The corrected sea-

sonal O3 changes in high-emission regions in the future may be not as large

as those simulated with UKESM1. This demonstrates that the O3 sensitivity

to future emissions and climate in UKESM1 may be stronger than the real

atmosphere.

Therefore, the value of deep learning is reflected in providing a more reliable

and improved assessment of O3 evolution under different climate emission

scenarios in the future, and in the exploration of underlying causes of surface

O3 biases in a global chemistry climate model.
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5.3 Synthesis of research findings

It is the first time that an extended gas-phase chemistry scheme is imple-

mented in UKESM1, with more reactive VOC species to represent a more

realistic O3 production environment for high-emission regions. This permits

the application of a global chemistry-climate model to investigate current re-

gional O3 pollution issues, as well as regional O3 evolution in the future.

Both Chapter 2 and 3 investigating O3 pollution in China and tropospheric

O3 changes in the future respectively, demonstrate the important role of

controlling anthropogenic emissions in O3 mitigation. Changes in anthro-

pogenic emissions can largely explain substantial differences between surface

O3 changes and surface PM2.5 changes in China in recent years. Tropospheric

O3 changes from the present day to the future can also largely be explained

by anthropogenic emission changes in the context of climate change.

The effectiveness of emission controls will differ by region and even may differ

within a region, depending on local chemical environments. In most indus-

trial regions of China where O3 production is VOC-limited, combined NOx

and VOC emission controls are necessary to offset increased O3 concentra-

tions due to decreased NOx emissions. However, large reductions in NOx

emissions alone of more than 70 % are required to transform their VOC-

limited regimes to NOx-limited regimes. Summer daytime O3 responses to

changing NOx emissions in these Chinese regions are substantially different

from those in other highly populated regions across the globe, likely due

to much higher NOx emissions in China despite great reductions in recent

years.

O3 sensitivity is also explored in Chapter 3 but considering monthly O3 con-

centrations for present-day and into the future. From a global perspective,
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there are relatively few studies characterising surface O3 sensitivity. Thus, a

consistent O3 sensitivity indicator approach is applied to investigate regional

O3 sensitivity across the globe. Most high-emission regions across the globe

are still VOC-limited in winter. However, most areas of North America,

Europe and East Asia would become NOx-limited regimes in the future as

more NOx emissions are reduced, in contrast to South Asia that is the dom-

inant VOC-limited region in the future. Reductions in CH4 concentrations

are also an effective approach to offset high O3 concentrations. Daytime

mean and monthly mean O3 sensitivity is investigated for Chapter 2 and 3

respectively, and the later accounts for nighttime O3 sensitivity that tends

to be VOC-limited in high-emission regions due to the accumulation of NOx

in the boundary layer at nighttime. Therefore, monthly mean O3 sensitivity

in some regions of North America and Europe in summer are VOC-limited,

but their daytime O3 sensitivity may differ, suggesting that emission control

strategies may be required to target different i.e. daytime or monthly mean

O3 metrics.

Accurate projections of future O3 are constrained to uncertainty from differ-

ent sources in models. Deep learning models provide opportunities to explore

underlying reasons causing O3 biases, and to correct future O3 projections.

The deep learning results shows that temperature, photolysis rates, OH and

oxidative nitrogen species (i.e. PAN and HNO3) are the most important

variables to O3 biases. Biases are associated with temperature, reflected by

positive biases in summer but negative biases in winter, and much higher O3

biases in tropical regions, as shown in Chapter 3. The impacts of photolysis

rates and OH on O3 biases are also reflected in Chapter 2, for the Chongqing

region in which surface O3 concentrations are largely overestimated. The

chemical environment in Chongqing is different from other industrial regions
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of China, reflected by its highest photolysis rates and concentrations of OH,

which strongly suggests the O3 overestimation may be caused by these fac-

tors. However, these factors could also be influenced by coarse model grid

cells, and the impacts of model resolution is discussed in Chapter 2. PAN

and HNO3 are also important variables worthy being evaluated along with

O3 evaluations as they may give some insights to understand the complex

impacts of nitrogen species on O3. After O3 bias corrections, future surface

O3 shows weaker responses to changing climate and emissions than those in

UKESM1 simulations, highlighting that the impacts of climate and emissions

on O3 may be overestimated by UKESM1.

Overall, reductions in anthropogenic emissions help reduce the tropospheric

O3 burden but regional surface O3 sensitivity should be paid attention to be-

cause there are still many regions that are located in VOC-limited regimes.

Changes in anthropogenic emissions are a dominant factor controlling tropo-

spheric O3 for present-day O3 pollution issues and for future O3 evolution in

the context of climate change. However, the findings of O3 bias corrections

leading to lower future O3 suggests that the impacts of climate and emission

changes on surface O3 may be overestimated by chemistry climate models,

or at least in UKESM1, due to these different uncertain sources.

5.4 Limitations

While UKESM1 is a state-of-the-art global chemistry climate model, there is

still uncertainty in tropospheric O3 simulations. Firstly, apart from internal

errors in the model itself, such as uncertainties in the comprehensive repre-

sentation of physical and chemical processes, there is external uncertainty

that mainly lies in emissions. The impacts of increased anthropogenic emis-
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sions have been studied well, principally leading to the degradation of air

quality and to climate change due to long-lived chemical species. Emissions

are hence the important inputs of models. The deep learning results also

demonstrate that surface O3 sensitivity to emissions and climate is larger in

UKESM1 than in the real atmosphere, as shown in Chapter 4. The Multi-

resolution Emission Inventory for China (MEIC) is used to provide emissions

over China in Chapter 2. This is a regional emission inventory but the avail-

able latest version was only for the year of 2013. The approach adopted in

Chapter 2 is to adjust emissions to the year of 2016 according to emission

scaling factors in China from 2013 to 2016, to fit rapid changes in emissions

in recent years in China. Since the present-day (2004-2014) O3 is examined

across the globe in Chapter 3 and 4, a global emission inventory is used,

obtained from the Community Emissions Data System (CEDS). However,

Archibald et al. (2020a) shows large differences between regional and global

emission inventories especially in China. Therefore, the problem exists of

updating emission inventories to reflect rapid real world changes but this is

required for an improved assessment of the effectiveness of emission control

strategies.

Secondly, UKESM1 is a global model with coarse model resolution, leading

to structural errors in O3 simulations, which is a common issue in climate

chemistry models (Young et al., 2018b). Surface O3 concentrations are typi-

cally higher in a coarse model grid box than in a fine grid box especially in

polluted areas (Wild and Prather, 2006). The dilution of O3 precursors in

a coarse model grid box not only influences O3 concentrations, but also O3

sensitivity. NOx is very reactive so can be rapidly consumed when confined

locally but the dilution of NOx in a regional scale may lead to an inaccurate

simulation of the regional O3 production regime i.e. VOC-limited when in



5.4. LIMITATIONS 159

reality is NOx-limited.

Thirdly, some studies show that interactions between aerosols and gas-phase

chemistry are important, although these studies mainly focus on specific re-

gions and cases, and are not comprehensive from a global perspective. Het-

erogeneous uptake of radicals (Li et al., 2019a) and HNO3 (Akimoto et al.,

2019) on aerosol surfaces is shown to reduce O3 concentrations, even though

Tan et al. (2020) argues that there are no significant impacts of radical up-

take on decreases in O3 concentrations. High aerosol concentrations will also

influence O3 formation through altering the photolysis rates (Hollaway et al.,

2019; Qu et al., 2021). Clearly, more measurement data and process-based

studies are needed to confirm the importance of aerosols to O3 formation.

In the current UKESM1 version, there are few reactions accounting for het-

erogeneous processes and no coupling between the interactive aerosol scheme

and the gas-phase chemistry scheme. The inclusion of these reactions may

reduce surface O3 concentrations, leading to decreases in O3 biases and more

accurate model performance, especially in polluted regions that may have

relatively large impacts of heterogeneous reactions due to high aerosol con-

centrations.

Lastly, a simple artificial neural network has been built to correct surface

O3 biases for each individual UKESM1 grid cell. However, a limitation is

that O3 biases caused by transport cannot be captured by the deep learning

model, even though the current deep learning model has shown good perfor-

mance. The inclusion of transport process in the deep learning model may

help distinguish local and transport impacts to provide a clear interpretation

of results. In addition, a limited number of input variables are chosen to

feed into the deep learning model to avoid overfitting the targeted O3 bi-

ases. The sensitivity of predicted O3 biases may vary with different input
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variables, influencing the conclusion of the key process causing O3 biases.

Therefore, more sensitivity tests are needed to enhance the robustness of the

interpretation of deep learning model results.

5.5 Future work

Future developments for chemistry-climate modelling at the community level

should involve the development of emission inventories, higher resolution

modelling, the development of comprehensive chemistry schemes that can

be optimally included in a chemistry-climate model. Despite development

needed, there is still some interesting work that can be performed in relation

to the combination between deep learning models and atmospheric models

to resolve complex but practical problems.

In Chapter 4, surface reanalysis data sets are used to train the deep learning

model because they assimilate observed data and modelled data to provide

relatively ’correct’ surface O3 concentrations. This fits supervised learning

because pre-labelled outputs are known. Supervised learning provides great

opportunities to obtain more accurate spatial distributions and magnitudes

of surface O3 concentrations in the future through O3 bias corrections, ac-

cording to the relationships learned from historical data. While this helps

reassess the impacts of changing climate and emissions on future O3, no in-

formation can be gained about what the most optimal approach is to reduce

O3 pollution. Chemistry-climate models provide tools to quantify the effec-

tiveness of emission controls, but actions in reality are constrained by many

social factors accounting for economic costs and practical difficulties when

implementing emission controls in different sectors. Human health and crop

yields are positive aspects of air quality improvement but emission controls
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are still not of a high priority if local air quality is relatively good compared

with surrounding regions. This indicates that the relationships between these

factors and air quality are not linear. Therefore, improving air quality is a

complex problem with multi-dimensions in benefits and drawbacks of emis-

sion controls, and the key is to resolve how to maximise the improvement

of air quality and its related benefits, and to minimise the adverse impacts

of emission controls. The multi-dimensions of this problem not only reflect

in local effects, but also in global effects because local air pollution can be

influenced by other regions over a large scale. The balance between these

aspects hence represents the most optimal emission control strategies.

This complicated problem may be potentially resolved by reinforcement learn-

ing, another class of machine learning, as introduced in section 1.4.1. The

changes in air pollutants due to emissions can be calculated by chemistry-

climate models, and they provide the approximate directions of emission

controls. If relationships between different social factors and emission con-

trols are known, optimal emission control strategies can be calculated by

reinforcement learning models. It will be interesting to see a broad picture

of emission control strategies in different regions across the globe with the

maximum social and environmental benefits.
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André, J., De Moor, G., Lacarrere, P., and Du Vachat, R.: Modeling the

24-hour evolution of the mean and turbulent structures of the planetary

boundary layer, Journal of Atmospheric Sciences, 35, 1861–1883, https:

//doi.org/10.1175/1520-0469(1978)035⟨1861:MTHEOT⟩2.0.CO;2, 1978.

Archer-Nicholls, S., Abraham, N. L., Shin, Y. M., Weber, J., Russo, M. R.,

Lowe, D., Utembe, S., O’Connor, F. M., Kerridge, B., Latter, B., et al.:

The Common Representative Intermediates Mechanism version 2 in the

United Kingdom Chemistry and Aerosols Model, Journal of Advances in

Modeling Earth Systems, https://doi.org/10.1029/2020MS002420, 2020.

Archibald, A., Neu, J., Elshorbany, Y., Cooper, O., Young, P., Akiyoshi,

H., Cox, R., Coyle, M., Derwent, R., Deushi, M., et al.: Tropospheric

Ozone Assessment ReportA critical review of changes in the tropospheric

ozone burden and budget from 1850 to 2100, Elementa: Science of the

Anthropocene, 8, https://doi.org/10.1525/elementa.2020.034, 2020a.

Archibald, A. T., O’Connor, F. M., Abraham, N. L., Archer-Nicholls, S.,

Chipperfield, M. P., Dalvi, M., Folberth, G. A., Dennison, F., Dhomse,

S. S., Griffiths, P. T., et al.: Description and evaluation of the UKCA

stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) imple-

mented in UKESM1, Geoscientific Model Development, 13, 1223–1266,

https://doi.org/10.5194/gmd-13-1223-2020, 2020b.

Archibald, A. T., Turnock, S. T., Griffiths, P. T., Cox, T., Derwent, R. G.,

Knote, C., and Shin, M.: On the changes in surface ozone over the twenty-

first century: sensitivity to changes in surface temperature and chemi-

https://arxiv.org/abs/2006.09204
https://doi.org/10.1175/1520-0469(1978)035<1861:MTHEOT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1978)035<1861:MTHEOT>2.0.CO;2
https://doi.org/10.1029/2020MS002420
https://doi.org/10.1525/elementa.2020.034
https://doi.org/10.5194/gmd-13-1223-2020


BIBLIOGRAPHY 165

cal mechanisms, Philosophical Transactions of the Royal Society A, 378,

20190 329, https://doi.org/10.1098/rsta.2019.0329, 2020c.

Atkinson, R., Baulch, D., Cox, R., Crowley, J., Hampson, R., Hynes, R.,

Jenkin, M., Rossi, M., Troe, J., and Subcommittee, I.: Evaluated kinetic

and photochemical data for atmospheric chemistry: Volume II–gas phase

reactions of organic species, Atmospheric chemistry and physics, 6, 3625–

4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.

Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1. 0: a convo-

lutional neural network for radar-based precipitation nowcasting, Geo-

scientific Model Development, 13, 2631–2644, https://doi.org/10.5194/

gmd-13-2631-2020, 2020.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C.,

Farhi, D., Fischer, Q., Hashme, S., Hesse, C., et al.: Dota 2 with large

scale deep reinforcement learning, arXiv preprint, https://arxiv.org/abs/

1912.06680v1, 2019.

Bieser, J., Aulinger, A., Matthias, V., Quante, M., and Van Der Gon, H. D.:

Vertical emission profiles for Europe based on plume rise calculations, En-

vironmental Pollution, 159, 2935–2946, https://doi.org/10.1016/j.envpol.

2011.04.030, 2011.

Biggart, M., Stocker, J., Doherty, R. M., Wild, O., Hollaway, M., Car-

ruthers, D., Li, J., Zhang, Q., Wu, R., Kotthaus, S., et al.: Street-

scale air quality modelling for Beijing during a winter 2016 measure-

ment campaign, Atmospheric Chemistry and Physics, 20, 2755–2780,

https://doi.org/10.5194/acp-20-2755-2020, 2020.

Cardelino, C. and Chameides, W.: An observation-based model for analyzing

https://doi.org/10.1098/rsta.2019.0329
https://doi.org/10.5194/acp-6-3625-2006
https://doi.org/10.5194/gmd-13-2631-2020
https://doi.org/10.5194/gmd-13-2631-2020
https://arxiv.org/abs/1912.06680v1
https://arxiv.org/abs/1912.06680v1
https://doi.org/10.1016/j.envpol.2011.04.030
https://doi.org/10.1016/j.envpol.2011.04.030
https://doi.org/10.5194/acp-20-2755-2020


166 BIBLIOGRAPHY

ozone precursor relationships in the urban atmosphere, Journal of the Air

& Waste Management Association, 45, 161–180, https://doi.org/10.1080/

10473289.1995.10467356, 1995.

Carter, W. P. and Atkinson, R.: Computer modeling study of incremental

hydrocarbon reactivity, Environmental science & technology, 23, 864–880,

https://doi.org/10.1021/es00065a017, 1989.

Chameides, W. and Walker, J. C.: A photochemical theory of tropospheric

ozone, Journal of Geophysical Research, 78, 8751–8760, https://doi.org/

10.1029/JC078i036p08751, 1973.

Chameides, W., Lindsay, R., Richardson, J., and Kiang, C.: The role of

biogenic hydrocarbons in urban photochemical smog: Atlanta as a case

study, Science, 241, 1473–1475, https://doi.org/10.1126/science.3420404,

1988.

Cheng, J., Su, J., Cui, T., Li, X., Dong, X., Sun, F., Yang, Y., Tong, D.,

Zheng, Y., Li, Y., et al.: Dominant role of emission reduction in PM

2.5 air quality improvement in Beijing during 2013–2017: a model-based

decomposition analysis, Atmospheric Chemistry and Physics, 19, 6125–

6146, https://doi.org/10.5194/acp-19-6125-2019, 2019.

Clifton, O. E., Fiore, A. M., Massman, W. J., Baublitz, C. B., Coyle, M.,

Emberson, L., Fares, S., Farmer, D. K., Gentine, P., Gerosa, G., et al.:

Dry deposition of ozone over land: processes, measurement, and model-

ing, Reviews of Geophysics, 58, e2019RG000 670, https://doi.org/10.1029/

2019RG000670, 2020.

Coates, J., Mar, K. A., Ojha, N., and Butler, T. M.: The influence

of temperature on ozone production under varying NO x conditions–a

https://doi.org/10.1080/10473289.1995.10467356
https://doi.org/10.1080/10473289.1995.10467356
https://doi.org/10.1021/es00065a017
https://doi.org/10.1029/JC078i036p08751
https://doi.org/10.1029/JC078i036p08751
https://doi.org/10.1126/science.3420404
https://doi.org/10.5194/acp-19-6125-2019
https://doi.org/10.1029/2019RG000670
https://doi.org/10.1029/2019RG000670


BIBLIOGRAPHY 167

modelling study, Atmospheric Chemistry and Physics, 16, 11 601–11 615,

https://doi.org/10.5194/acp-16-11601-2016, 2016.

Colette, A., Aas, W., Banin, L., Braban, C. F., Ferm, M., Gonzalez Ortiz, A.,

Ilyin, I., Mar, K., Pandolfi, M., Putaud, J.-P., et al.: Air pollution trends in

the EMEP region between 1990 and 2012, EMEP Co-operative Programme

for Monitoring and Evaluation of the Long-range Transmission of Air Pol-

lutants in Europe, https://unece.org/environment-policy/publications/

air-pollution-trends-emep-region-between-1990-and-2012, 2016.

Collins, W. J., Lamarque, J. F., Schulz, M., Boucher, O., Eyring, V., Hegglin,

M. I., Maycock, A., Myhre, G., Prather, M., Shindell, D., and Smith, S. J.:

AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6,

Geoscientific Model Development, 10, 585–607, https://doi.org/10.5194/

gmd-10-585-2017, 2017.

Cooper, O. R., Parrish, D., Ziemke, J., Balashov, N., Cupeiro, M., Galbally,

I., Gilge, S., Horowitz, L., Jensen, N., Lamarque, J.-F., et al.: Global dis-

tribution and trends of tropospheric ozone: An observation-based review-

Global distribution and trends of tropospheric ozone, Elementa: Science of

the Anthropocene, 2, https://doi.org/10.12952/journal.elementa.000029,

2014.

Council, N. R.: Rethinking the ozone problem in urban and regional air pol-

lution, National Academies Press, https://doi.org/10.17226/1889, 1992.

Crutzen, P. J.: Photochemical reactions initiated by and influencing ozone

in unpolluted tropospheric air, Tellus, 26, 47–57, https://doi.org/10.3402/

tellusa.v26i1-2.9736, 1974.

Dee, D. P., Uppala, S. M., Simmons, A., Berrisford, P., Poli, P., Kobayashi,

https://doi.org/10.5194/acp-16-11601-2016
https://unece.org/environment-policy/publications/air-pollution-trends-emep-region-between-1990-and-2012
https://unece.org/environment-policy/publications/air-pollution-trends-emep-region-between-1990-and-2012
https://doi.org/10.5194/gmd-10-585-2017
https://doi.org/10.5194/gmd-10-585-2017
https://doi.org/10.12952/journal.elementa.000029
https://doi.org/10.17226/1889
https://doi.org/10.3402/tellusa.v26i1-2.9736
https://doi.org/10.3402/tellusa.v26i1-2.9736


168 BIBLIOGRAPHY

S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, d. P., et al.: The ERA-

Interim reanalysis: Configuration and performance of the data assimilation

system, Quarterly Journal of the royal meteorological society, 137, 553–

597, https://doi.org/10.1002/qj.828, 2011.

Doherty, R. M., Wild, O., Shindell, D. T., Zeng, G., MacKenzie, I. A.,

Collins, W. J., Fiore, A. M., Stevenson, D. S., Dentener, F. J., Schultz,

M. G., Hess, P., Derwent, R. G., and Keating, T. J.: Impacts of climate

change on surface ozone and intercontinental ozone pollution: A multi-

model study, Journal of Geophysical Research-Atmospheres, 118, 3744–

3763, https://doi.org/10.1002/jgrd.50266, 2013.

Doherty, R. M., Orbe, C., Zeng, G., Plummer, D. A., Prather, M. J., Wild,

O., Lin, M., Shindell, D. T., and Mackenzie, I. A.: Multi-model impacts of

climate change on pollution transport from global emission source regions,

Atmospheric Chemistry and Physics, 17, 14 219–14 237, https://doi.org/

10.5194/acp-17-14219-2017, 2017.

Dunker, A. M., Yarwood, G., Ortmann, J. P., and Wilson, G. M.: Compar-

ison of source apportionment and source sensitivity of ozone in a three-

dimensional air quality model, Environmental science & technology, 36,

2953–2964, https://doi.org/10.1021/es011418f, 2002.

Ehhalt, D., Prather, M., Dentener, F., Derwent, R., Dlugokencky, E. J.,

Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P.,

et al.: Atmospheric chemistry and greenhouse gases, Tech. rep., Pacific

Northwest National Lab (PNNL), https://www.ipcc.ch/report/ar3/wg1/

chapter-4-atmospheric-chemistry-and-greenhouse-gases/, 2001.

El Hihi, S. and Bengio, Y.: Hierarchical recurrent neural networks for

long-term dependencies, in: Advances in neural information process-

https://doi.org/10.1002/qj.828
https://doi.org/10.1002/jgrd.50266
https://doi.org/10.5194/acp-17-14219-2017
https://doi.org/10.5194/acp-17-14219-2017
https://doi.org/10.1021/es011418f
https://www.ipcc.ch/report/ar3/wg1/chapter-4-atmospheric-chemistry-and-greenhouse-gases/
https://www.ipcc.ch/report/ar3/wg1/chapter-4-atmospheric-chemistry-and-greenhouse-gases/


BIBLIOGRAPHY 169

ing systems, pp. 493–499, https://proceedings.neurips.cc/paper/1995/file/

c667d53acd899a97a85de0c201ba99be-Paper.pdf, 1996.

Emberson, L.: Effects of ozone on agriculture, forests and grasslands, Philo-

sophical Transactions of the Royal Society A, 378, 20190 327, https:

//doi.org/10.1098/rsta.2019.0327, 2020.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer,

R. J., and Taylor, K. E.: Overview of the Coupled Model Intercom-

parison Project Phase 6 (CMIP6) experimental design and organization,

Geoscientific Model Development, 9, 1937–1958, https://doi.org/10.5194/

gmd-9-1937-2016, 2016.

Fenech, S., Doherty, R. M., Heaviside, C., Vardoulakis, S., Macintyre, H. L.,

and O’Connor, F. M.: The influence of model spatial resolution on simu-

lated ozone and fine particulate matter for Europe: implications for health

impact assessments, Atmospheric Chemistry and Physics, 18, 5765–5784,

https://doi.org/10.5194/acp-18-5765-2018, 2018.

Feng, L. Y., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly,

R., Klimont, Z., van Marle, M., van den Berg, M., and van der

Werf, G. R.: The generation of gridded emissions data for CMIP6,

Geoscientific Model Development, 13, 461–482, https://doi.org/10.5194/

gmd-13-461-2020, 2020.

Fiore, A. M., West, J. J., Horowitz, L. W., Naik, V., and Schwarzkopf, M. D.:

Characterizing the tropospheric ozone response to methane emission con-

trols and the benefits to climate and air quality, Journal of Geophys-

ical Research-Atmospheres, 113, https://doi.org/10.1029/2007JD009162,

2008.

https://proceedings.neurips.cc/paper/1995/file/c667d53acd899a97a85de0c201ba99be-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/c667d53acd899a97a85de0c201ba99be-Paper.pdf
https://doi.org/10.1098/rsta.2019.0327
https://doi.org/10.1098/rsta.2019.0327
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/acp-18-5765-2018
https://doi.org/10.5194/gmd-13-461-2020
https://doi.org/10.5194/gmd-13-461-2020
https://doi.org/10.1029/2007JD009162


170 BIBLIOGRAPHY

Fiore, A. M., Naik, V., Spracklen, D. V., Steiner, A., Unger, N., Prather, M.,

Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J., Dalsøren,

S., Eyring, V., Folberth, G. A., Ginoux, P., Horowitz, L. W., Josse, B.,

Lamarque, J.-F., MacKenzie, I. A., Nagashima, T., O’Connor, F. M.,

Righi, M., Rumbold, S. T., Shindell, D. T., Skeie, R. B., Sudo, K., Szopa,

S., Takemura, T., and Zeng, G.: Global air quality and climate, Chem-

ical Society Reviews, 41, 6663–6683, https://doi.org/10.1039/c2cs35095e,

2012.

Fiore, A. M., Naik, V., and Leibensperger, E. M.: Air quality and climate

connections, Journal of the Air & Waste Management Association, 65,

645–685, https://doi.org/10.1080/10962247.2015.1040526, 2015.

Fischer, E., Jacob, D. J., Yantosca, R. M., Sulprizio, M. P., Millet, D., Mao,

J., Paulot, F., Singh, H., Roiger, A., Ries, L., et al.: Atmospheric per-

oxyacetyl nitrate (PAN): a global budget and source attribution, Atmo-

spheric Chemistry and Physics, 14, 2679–2698, https://doi.org/10.5194/

acp-14-2679-2014, 2014.

Fishman, J. and Crutzen, P. J.: The origin of ozone in the troposphere,

Nature, 274, 855–858, https://doi.org/10.1038/274855a0, 1978.

Flato, G. M.: Earth system models: an overview, Wiley Interdisciplinary

Reviews: Climate Change, 2, 783–800, https://doi.org/10.1002/wcc.148,

2011.

Fleming, Z. L., Doherty, R. M., Von Schneidemesser, E., Malley, C. S.,

Cooper, O. R., Pinto, J. P., Colette, A., Xu, X., Simpson, D., Schultz,

M. G., et al.: Tropospheric Ozone Assessment Report: Present-day ozone

distribution and trends relevant to human health, Elementa: Science of

the Anthropocene, 6, https://doi.org/10.1525/elementa.273, 2018.

https://doi.org/10.1039/c2cs35095e
https://doi.org/10.1080/10962247.2015.1040526
https://doi.org/10.5194/acp-14-2679-2014
https://doi.org/10.5194/acp-14-2679-2014
https://doi.org/10.1038/274855a0
https://doi.org/10.1002/wcc.148
https://doi.org/10.1525/elementa.273


BIBLIOGRAPHY 171

Folberth, G. A., Hauglustaine, D., Lathière, J., and Brocheton, F.: Interac-

tive chemistry in the Laboratoire de Météorologie Dynamique general cir-
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