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Abstract

While cryptographic tools offer practical security and privacy supported by theory and formal
proofs, there are often gaps between the theory and intricacies of the real world. This is especially
apparent in the realm of game theoretic applications where protocol participants are motivated
by incentives and preferences on the protocol outcome. These incentives can lead to additional
requirements or unexpected attack vectors, making standard cryptographic concepts inapplicable.

The goal of this thesis is to bridge some of the gaps between cryptography and incentive-
driven mechanisms. The thesis will consist of three main research threads, each studying the
privacy or security of a game-theoretic scenario in non-standard cryptographic frameworks in
order to satisfy the scenario’s unique requirements. Our first scenario is preference aggregation,
where we will analyze the privacy of voting rules while requiring the rules to be determinis-
tic. Then, we will study games, and how to achieve collusion-freeness (and its composable
version, collusion-preservation) in the decentralized setting. Finally, we explore the robustness
of Nakamoto-style proof-of-work blockchains against 51% attacks when the main security
assumption of honest majority fails. Most of the results in this thesis are also published in the
following (in order): Ch. 3: [103], Ch. 4: [47], and Ch. 5: [104].

Our first focus is preference aggregation—in particular voting rules. Specifically, we answer
the crucial question: How private is the voting rule we use and the voting information we
release? This natural and seemingly simple question was sidestepped in previous works, where
randomization was added to voting rules in order to achieve the widely-known notion of
differential privacy (DP). Yet, randomness in an election can be undesirable, and may alter
voter incentives and strategies. In this chapter of our thesis, we expand and improve upon
previous works and study deterministic voting rules. In a similarly well-accepted framework of
distributional differential privacy (DDP), we develop new techniques in analyzing and comparing
the privacy of voting rules—leading to a new measure to contrast different rules in addition to
existing ones in the field of social choice. We learn the positive message that even vote tallies
have very limited privacy leakage that decreases quickly in the number of votes, and a surprising
fact that outputting the winner using different voting rules can result in asymptotically different
privacy leakage.

Having studied privacy in the context of parties with preferences and incentives, we turn our
attention to the secure implementation of games. Specifically, we study the issue of collusion and
how to avoid it. Collusion, or subliminal communication, can introduce undesirable coalitions
in games that allow malicious parties, e.g. cheating poker players, a wider set of strategies.
Standard cryptographic security is insufficient to address the issue, spurring on a line of work that
defined and constructed collusion-free (CF), or its composable version, collusion-preserving (CP)
protocols. Unfortunately, they all required strong assumptions on the communication medium,
such as physical presence of the parties, or a restrictive star-topology network with a trusted



mediator in the center. In fact, CF is impossible without restricted communication, and CP is
conjectured to always require a mediator. Thus, circumventing these impossibilities is necessary
to truly implement games in a decentralized setting. Fortunately, in the rational setting, the
attacker can also be assumed to have utility. By ensuring collusion is only possible by sending
incorrect, penalizable messages, and composing our protocol with a blockchain protocol as the
source of the penalization, we prove our protocol as CP against incentive-driven attackers in a
framework of rational cryptography called rational protocol design (RPD).

Lastly, it is also useful to analyze the security of the blockchain and its associated
cryptocurrencies—cryptographic transaction ledger protocols with embedded monetary value—
using a rational cryptography framework like RPD. Our last chapter studies the incentives of
attackers that perform 51% attacks by breaking the main security assumption of honest major-
ity in proof-of-work (PoW) blockchains such as Bitcoin and Ethereum Classic. Previous works
abstracted the blockchain protocol and the attacker’s actions, analyzing 51% attacks via various
techniques in economics or probability theory. This leads open the question of exploring this
attack in a model closer to standard cryptographic analyses. We answer this question by work-
ing in the RPD framework. Improving upon previous analyses that geared towards only mining
rewards, we construct utility functions that model the incentives of 51% attackers. Under the
RPD framework, we are able to determine when an attacker is incentivized to attack a given
instantiation of the blockchain protocol. More importantly, we can make general statements that
indicate changes to protocol parameters to make it secure against all rational attackers under
these incentives.
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Chapter 1

Introduction

When everyday internet users think about the word cryptography, what image comes to their
mind? Is it a Caesar cipher wheel? Encryption standards such as AES, the TLS protocol which
provides security for browsing the internet, or hash functions like SHA1?

While the above are all example of cryptography, the field has expanded far beyond secret
messages or encrypted passwords. As more individual data and everyday processes move online,
users are becoming more aware that cryptography has now been tasked with protecting their
privacy, assets, and ensuring the integrity of systems. Even traditionally in-person activities,
such as games, have also grown its online presence. In games like online poker where real
money is involved, encryption may not be sufficient. Implementing a fair game involves, for
example, constructing a fair card shuffling mechanism, a system to deter cheating, and a method
to distribute the players’ winnings. These winnings may even be in a cryptocurrency, another
(perhaps nowadays most well-known) application of cryptography. Blockchains protocols, which
underlie most cryptocurrencies, usually involve a myriad of cryptographic primitives like hash and
pseudorandom functions.

Constraints on protocols with incentives In the above examples, the parties involved are
often not just concerned about their privacy or the security of the system, but they also have
incentives on the outcome of a process. For example, surveyees may want the census to result in
policies reflecting their responses, online poker players want to win the game, and cryptocurrency
users want more coins.

Yet, most common models in cryptographic analyses do not consider incentives or the
strategies that parties adopt as a result. In fact, in most adversary models, there are only two
types of parties: honest and corrupt. The honest parties always act according to the protocol
specification, and corrupt parties are controlled by a (malicious) attacker who may instruct them
to act in some arbitrary manner (under constraints of their capabilities e.g., as polynomial-time
interactive Turing machines). If corrupt parties in a protocol can somehow break the desired
security definition, even by acting clearly against their own interest, we say the protocol is
insecure, and otherwise it is considered secure.
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Even the term fairness may not mean the same thing to cryptographers as everyday users.
In cryptography, fair protocols are those where misbehaving parties cannot receive the protocol
output without honest parties also receiving those outputs. In standard English, however, being
fair often refers to the more general concept that no party gains an undeserved amount of reward
over others—a concept which only makes sense when considering incentives. This distinction
means that even protocols with cryptographic fairness may not in fact seem fair to its participants.
Here, we point out three properties which are important for “fairness”, in the standard English
sense, but which cryptographically secure or private mechanisms can fail:

1. The protocol outcome should be correct based on the parties’ inputs

2. The protocol should uphold the rules of the process (e.g., game) it is supposed to implement.

3. The protocol should incentivize honest behavior.

Below, we give an overview of how standard cryptographic frameworks can fail each of these
properties, how these frameworks and models can be altered to achieve them, and even how to
use incentives to deter malicious behavior.

Deterministic voting rules The first constraint we explore is determinism, and the property
that the protocol outcome should be correct based on the parties’ inputs. In cases
where the parties have biases over the protocol outcome, such as in preference aggregation
mechanisms, the lack of determinism can lead to parties changing their strategies, and they
might not even believe and may dispute the outcome. A prominent example is the 2016 Iowa
caucus in the United States, where county delegates in several Iowa precincts were awarded
based on coin flips. Even after the eventual winner was announced, the impact of such coin flips
on the result was still controversial [48].

Unfortunately, determinism is incompatible with differential privacy (DP), which as we recall
is the privacy technique trusted to protect individual responses in the 2020 US Census. In order
to achieve DP, a data release mechanism such as tallies of survey responses (or, in the case
of the Iowa caucus, the winner of an election) must ensure outcome has a low probability to
be decided based on one individual’s input. This inclusion of probabilities means that the data
release mechanism must be randomized. Indeed, previous works on the privacy of preference
aggregation mechanisms used randomization to achieve privacy [84, 98, 121]. Whereas this
created private mechanisms that have DP, these techniques say nothing about the privacy of
deterministic mechanisms, such as most common voting rules. Fortunately, this restriction with
DP has been observed in previous works (though not in terms of preference aggregation), and
various alternative privacy definitions based on DP exist. In our thesis, we will use distributional
differential privacy (DDP) [21, 79] to study the privacy of deterministic voting rules. We choose
DDP due to its generality, and assuming independently distributed votes (e.g., the common
simplifying probabilistic model in social choice called impartial culture), the DDP definition can
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be simplified to more easily compare the privacy of voting rules.

In Ch. 3, we quantify the DDP parameters of voting rules with respect to a variety of vote
distributions. We improve upon an existing privacy analysis of the histogram function, and rank
the privacy in a class of voting rules called the generalized scoring rules (GSR) [127]. We learn
that for most voting rules, as long as the probability of ties in the election result is not too high,
the privacy loss is exponentially small in the number of votes, and within GSR we show that there
is asymptotic separation of privacy among different voting rules.

Collusion in games The inclusion of randomness is not only an issue in voting, but it
can also cause trouble when implementing games. In particular, it exacerbates the problem
of collusion, and breaks the property that the protocol should uphold the rules of the
process it is supposed to implement. In games where parties are supposed to keep some
information secret to themselves (e.g., the cards they are dealt in a card game), colluding
parties who work together (usually against the rules) can gain a big advantage over other
players. In online poker for example, collusion is a major concern. To detect such behavior,
suspicious cases are generally manually verified by experts, and by running certain action-
tracking software during the game [5, 7]. This is of course not a definite way to prevent or
even detect collusion. For example, if parties have an undetectable private communication
channel among themselves, such as private phone calls between players, then collusion is
unavoidable. Private channels are not a requirement for collusion, however. Since the usual
security definition itself does not consider the problem of collusion, and instead implicitly
assumes all malicious parties as already colluding (by being controlled by a single adversary),
parties can still collude in secure implementations of games. In fact, secure protocols can
even be a detriment to detecting collusion. In such protocols, messages (e.g. encryptions or
signatures) usually are randomized, allowing parties to hide secret colluding messages inside them.

The works of Alwen et al. and Lepinski et al. [8, 11, 100] formally defined collusion-freeness
(CF), and in Alwen et al. [9] its composable version1, collusion-preservation (CP). Informally,
a protocol is collusion-free if the participating parties can only learn as much information from
participating in the protocol, as they would in an ideal scenario where collusion is disallowed.
For example, in a poker game, if two parties collude by revealing their hand to each other,
this would break this definition of collusion-freeness, since in the ideal non-colluding scenario
the players would not know each other’s cards. Alwen et al. [8, 9, 11] introduced a solution
in the “mediated model”, where parties are only allowed to communicate with the trusted
central party called the mediator. However, the collusion-freeness and preservation of this
solution heavily relies on the honesty of the mediator. As we also show, when the mediator
is dishonest, desirable properties like being able to identify a cheating party, or even knowing

1“Composable” here refers to the definition of collusion-freeness not only being satisfied when a game is
running as a standalone protocol, but also in presence of other cryptographic protocols. In particular, supposing
parties exchange a limited number of bits (e.g., secret keys) via another protocol, this should not lead to an
exponential blowup in the collusion in our game protocol.
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whether a game has ended, are also lost. Moreover, this centralized solution does not fit with
the decentralized nature of the internet, such as playing games over the blockchain [53, 54].
On the other hand, it seemed like restrictive models like the mediated model is necessary to
achieve CF/CP. Unlike the mediated model where the mediator can filter invalid messages, it
is easy to show that attackers can technically always “collude” by sending invalid colluding
messages (e.g., containing the cards they are holding), if given unfiltered communication channels.

In Ch. 4, we construct a CP protocol2 using semi-trusted hardware tokens, which allow parties
to play games over an authenticated (but unfiltered) broadcast network, while eliminating the
issues of the mediated model. To deter attackers from abusing the unfiltered nature of the broad-
cast channel, we augment our solution with a penalization scheme, which can be implemented on
e.g., the blockchain and imposes a financial penalization to cheating. Assuming rational strate-
gies and sufficient penalties, we can also show that honest strategy is the dominant strategy. We
prove this in a framework called rational protocol design (RPD) [65], which augments the standard
cryptographic security models by incorporating incentives. Instead of showing that the protocol is
secure against all malicious attackers, RPD relaxes the security definition by considering protocols
as secure, as long as attackers cannot earn an “undeserved” amount of utility from attacking the
protocol. In our case, we alter the framework for the setting of collusion-freeness/preservation,
and show that if attackers try to send colluding messages, they will be caught as cheating, and
lose a predetermined amount of collateral in the protocol. Lastly, we show that our construction
satisfies incentive compatibility, which says that honest behavior is an equilibrium strategy for all
parties in the protocol.

51% attacks on blockchains Recall that in Ch. 4, one way to deter malicious behavior is to
implement a penalization scheme, which can be realized through a blockchain whose associated
cryptocurrency has monetary value. In the last chapter of the thesis, we demonstrate how, as
the blockchain itself is a cryptographic protocol with inherent incentives, these incentives can
conflict with analyses in standard cryptographic frameworks. In particular, it can break the
property that the protocol should incentivize honest behavior.

The security analysis in standard blockchain literature [17, 66, 115] uses the usual model
that parties are either honest corrupt. Corrupt parties may act arbitrarily and honest parties
always act according to the protocol specification, both irrespective of incentives. In this setting,
blockchain is proven secure assuming that the majority of mining power (e.g., in proof-of-work
(PoW) systems e.g., Bitcoin or Ethereum Classic this is hashing power, and in proof-of-stake
(PoS) e.g., Algorand, Ouroboros, and Snow White this is the fraction of owned stake) is honest.
Assuming honest majority (and appropriate protocol parameters are selected according to the
total mining power in the system), the main security property, consistency is achieved. Roughly,
consistency says that after a transaction becomes part of a blockchain for a long-enough

2As a side note, while collusion-freeness and their solutions has been first defined for games, works have
extended its application to cryptographic reverse firewalls [108], which prevent outgoing messages of a machine
from leaking its secrets (e.g. passwords or keys).
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“confirmation time”, it becomes immutable and cannot be reverted nor spent again.

In Ch. 5, we focus on “Nakamoto-style” PoW blockchains, which are based on Nakamoto’s
Bitcoin protocol [111] but possibly with different hashing algorithms. In these blockchain
protocols, honest majority was originally deemed a reasonable assumption, with the informal
argument that: (1) it is unlikely for any coordinated group of parties to gain a majority of
power in the system, and (2) the rewards for successfully mining blocks will incentivize honest
mining behavior. Unfortunately, this assumption has been broken repeatedly [1], especially for
blockchains with a relatively low total hashing power in the system. In such systems, it is easier
to gain a majority of hashing power and break honest majority. This in turn makes consistency
impossible to achieve in standard cryptographic analyses: Given a majority of hashing power, an
attacker can make blocks that fork the blockchain, tricking different parties into having different
views on the chain and making transactions easier to double-spend. The reality of these 51%
(double-spending) attacks spurred a line of works that study them in various rational settings
where attacks have cost and rewards, and attackers are incentivized by profit. These analyses
generally employ techniques from economic or probability theory, which while making substantial
statements on the profitability of attacks, also make non-composable abstractions on the details
of the blockchain and limit parties to a prescribed set of actions.

In this last chapter, we study 51% double-spending attacks in the RPD framework, which
mitigates the above issues of previous works. Recalling from Ch. 4, RPD is a rational framework
that is compatible with cryptographic functionalities. We improve upon the utility function of the
previous work [15] on RPD analysis of blockchains by augmenting it with incentives for double-
spending attacks, using our improved utility function to show a range of parameters where forking
is the dominant strategy. Lastly, our model also allows us to make general statements in the
other direction. We show how to amplify a protocol parameter called the cut-off parameter (in
essence, this is the confirmation “time” to wait until a transaction is deemed irreversible and not
able to be double-spent), so that honest mining is again the equilibrium solution.

Summary We have seen how incentives impose additional constraints on various application
scenarios, and how to alter standard cryptographic frameworks to accommodate them. On the
other hand, in Ch. 4 and Ch. 5, we have also seen how incentives can be used to circumvent
impossibilities in a reasonably relaxed model with rational attackers. Together, our three main
chapters demonstrate the importance of considering incentives when analyzing cryptographic
protocols, and the power of incentives-augmented frameworks.
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Chapter 2

Preliminaries

2.1 Notation

We denote the security parameter by κ and use “||” as concatenation operator (i.e., if a and b
are two strings then by a||b we denote the concatenation of a and b). We denote a set of parties
by P and the set of honest parties H ⊆ P . The set of corrupted parties is P\H. We denote
probabilistic polynomial time as PPT.

We denote a random variable ~X with distribution π as ~X ∼ π. For a finite set Q, x
$←− Q

denotes a sampling of x from Q with uniform distribution. When it is necessary to refer to the
randomness r used by and algorithm A we use the following notation: A(·; r). We denote with [n]
the set {1, . . . , n}, with F an arbitrary (but fixed) finite field and with N the set of non-negative
integers (natural numbers).

2.1.1 General cryptography concepts

We formally define relevant basic concepts from cryptography.

Negligible functions We say a function negl(·) is negligible if for every positive integer c there

is an integer Nc such that for all x > Nc, |negl(x)| < 1/xc. We say a
negl

≤ b for real values a, b to
mean that a ≤ b+ negl(κ) for negligible function negl(·).

Pseudo-random functions

Definition 1 (Pseudo-Random Function (from [72])). A function PRF : {0, 1}κ × {0, 1}κ →
{0, 1}cκ is called a pseudo-random function if it satisfies the following properties.
Efficient: For every k ∈ {0, 1}κ, and every m ∈ {0, 1}cκ, there exists a ppt algorithm to
compute PRFk(m) = PRF(k,m).
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Indistinguishable from Random: For every ppt A, there exists a negligible function negl, such
that for all auxiliary input z ∈ {0, 1}? it holds that:∣∣∣∣∣ Pr

k
$←−{0,1}κ

(APRFk(z) = 1)− Pr
f

$←−F
(Af (z) = 1)

∣∣∣∣∣ < negl(κ)

where F = {f : {0, 1}κ → {0, 1}cκ}

Encryption

Definition 2 (CPA-secure Symmetric Encryption Scheme (from notes of [73], Definition 6.8)). A
triple of ppt algorithms SE = (Gen,Enc,Dec), where Gen : 1κ → {0, 1}λ1(κ), Enc : {0, 1}λ1(κ)×
{0, 1}κ → {0, 1}λ2(κ), Dec : {0, 1}λ1(κ)×{0, 1}λ2(κ) → {0, 1}κ and λi are polynomials, is called a
chosen-plaintext-attack-secure symmetric encryption scheme if it satisfies the following properties.

Completeness: For every secret key s
$←− Gen(1κ), and every m ∈ {0, 1}κ, we have that

Pr[Dec(s,Enc(s,m)) = m] = 1.

CPA-Security: Let the left-or-right encryption oracle be as follows, where b ∈ {0, 1}, m0,m1 ∈
{0, 1}κ:

Oracle Enc(LR(m0,m1, b)):
if |m0| 6= |m1| then return ⊥
c

$←− Enc(mb)
return c

Let A be an adversary. We consider the following experiments:

Experiment Expind-cpa-1
SE (A) : Experiment Expind-cpa-0

SE (A) :

s
$←− Gen(1κ) s

$←− Gen(1κ)

d
$←− AEnc(LR(·,·,1)) d

$←− AEnc(LR(·,·,0))

return d return d

For every ppt A, there exists a negligible function negl such that it holds that:∣∣∣Pr[Expind-cpa-1
SE (A) = 1]− Pr[Expind-cpa-0

SE (A) = 1]
∣∣∣ < negl(κ)

Strong signatures

Definition 3 (Strong unforgeable signature scheme). A triple of ppt algorithms
(Kgen, Sign,Ver), where Kgen : 1κ → {0, 1}λ1(κ) × {0, 1}λ2(κ), Sign : {0, 1}λ1(κ) × {0, 1}∗ →
{0, 1}λ3(κ), and Ver : {0, 1}λ2(κ) × {0, 1}∗ × {0, 1}λ3(κ) → {0, 1}, is called a signature scheme if
it satisfies the following properties.
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Completeness: For every pair (s, v)
$←− Kgen(1κ), and every m ∈ {0, 1}κ, we have that

Pr[Ver(v,m, Sign(s,m)) = 0] = 1− negl(κ).

Consistency (non-repudiation): For any m, the probability that Kgen(1κ) generates (s, v) and
Ver(v,m, σ) generates two different outputs in two independent invocations is smaller than
negl(κ).

(Strong) Unforgeability: For every ppt A, there exists a negligible function negl, such that for
all auxiliary input z ∈ {0, 1}? it holds that:

Pr[(s, v)
$←− Kgen(1κ); (m,σ)

$←− ASign(s,·)(z, v)∧
Ver(v,m, σ) = 1 ∧ (m,σ) /∈ Q] < negl(κ)

where Q denotes the set of the couples message-signature {(mi, σi)}i∈κ where mi is requested

by A to the oracle Sign(s, ·) which returns σi
$←− Sign(s,mi) for all i ∈ {1, . . . , κ}.

We also make use of the UC-signature functionality proposed in [38] that we denote with
FSIGN. We also use the the fact that a scheme Σ = (Gen, Sign,Ver) that satisfies Def. 3 can
be turned into a scheme that UC-realized the functionality FSIGN [38, Thm 2]. We assume
familiarity with FSIGN, and for the formal definition of this functionality we refer the reader to
Fig. 2.4, Sec 2.4.1.4.

2.2 Privacy

In this section, we introduce definitions and notation for differential privacy (DP), distributional
differential privacy (DDP). The notation will be used in the next section in the context of voting.

2.2.1 Differential privacy

For any set U and n ∈ N, a dataset ~X ∈ Un of size n is a n-tuple where each entry is from
U . We call U a universe. We denote the ith entry of a dataset ~X as ~Xi, and say that two
datasets ~X, ~X ′ ∈ Un are neighbors, if they differ by exactly one entry: there is exactly one i
where ~Xi 6= ~X ′i. The range of a (randomized) function f , denoted Range(f) is the set of
possible outputs of f .

Definition 4 (Differential privacy (DP) [58]). A function f is (ε, δ)-differentially private if for any

pair of neighboring datasets ~X, ~X ′, and any subset of outcomes S ⊆ Range(f), the following
inequality holds:

Pr
[
f( ~X) ∈ S

]
≤ eε Pr

[
f( ~X ′) ∈ S

]
+ δ. (2.1)

DP has a useful property called immunity to post-processing [60]. Informally, this property
says that if the function f is private, then so is any function g that only processes f ’s output.
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Similar to DP, distributional differential privacy. In Ch. 3, we will prove this fact. We will then
use it to make general statements about the privacy of voting rules, as corollary to the privacy
of outputting vote tallies (we call this the histogram) in an election.

2.2.2 Distributional differential privacy

In context of distributional differential privacy, we consider dataset ~X as a random variable with
some distribution π. We denote by ~X−i as ~X but without the ith entry (also random variables).
For any random variable, its support, denoted by Supp(·) is the set of values the random variable
can take with non-zero probability.

Definition 5 (Distributional differential privacy (DDP) [21]). A function f is (ε, δ,∆)-
distributional differentially private if there is a function h1 such that for all D = (π, Z) ∈ ∆,
~X ∼ π, for all i, (x, z) ∈ Supp( ~Xi, Z), and all sets S ⊆ Range(f),

Pr
~X∼π

(f( ~X) ∈ S| ~Xi = x, Z = z) ≤ eε Pr
~X∼π

(h( ~X−i) ∈ S| ~Xi = x, Z = z) + δ

and
Pr
~X∼π

(h( ~X−i) ∈ S| ~Xi = x, Z = z) ≤ eε Pr
~X∼π

(f( ~X) ∈ S| ~Xi = x, Z = z) + δ

2.3 Voting

In this section, we define voting, using notation for datasets from our previous section on privacy.
We introduce a class of voting rules called generalized scoring rules (GSR).

In the context of voting, the universe U models the set of possible ballots a voter can cast
in an election. Given n ∈ N, a dataset ~X ∈ Un of n votes is called a preference profile. We
denote a vote in a profile ~X by V ∈ ~X. If V is a vector, then Vi denotes the ith component of
V . A voting rule for n voters is a function f v : Un → O, where O denotes the set of outcomes
of voting. We denote by C = {c1, · · · , cm} a set of m candidates of an election. If O = C, we
call the output of a voting rule f v the winner.

An example of a voting rule is plurality. In plurality, U = C = O; each voter votes for one
favorite candidate, and the winner is the candidate with the most votes. Many voting rules have
votes as linear orders, or rankings, over C; that is, the set of all antisymmetric, transitive, and
total binary relations over the set of candidates. We denote the set of all linear orders over C as
L(C). An example of such a voting rule is Borda, where U = L(C) and O = C. In Borda, each
voter ranks the candidates according to his preferences, denoted by ci1 � ci2 � · · · � cim where
a � b means a is preferred over b. The ith top-ranked candidate in each vote is awarded m− i
points, and the candidate with the most total points is the winner.

In elections, we are often also interested in a tally, or histogram, denoted by of the votes that
have been cast.

1In [21] h is called the simulator in the sense that h “simulates” missing ith entry of ~X, and following notation
from a similar concept in security. However, to avoid confusion we simply refer to h as a function.
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Definition 6 (Histogram). Let U = {x1, · · · , x`}. For any n ∈ N, the histogram function,

denoted by Hist : Un → N, takes as input a preference profile ~X ∈ Un and outputs a `-
dimensional integer vector whose ith component is |{j : ~Xj = xi}|.

2.3.1 Generalized scoring rules

Generalized scoring rules (GSR) [127] is a class of voting rules.

Definition 7 (Generalized scoring rules (GSR) [127]). A generalized scoring rule (GSR) is defined
by a number K ∈ N and two functions: f gsr : L(C) → RK , and ggsr which maps weak orders
over the set {1, · · · , K} to C. In GSR, a vote V ∈ L(C) is a ranking over the candidates, and we

call f gsr(V ) the generalized score vector of V . Given a profile ~X, we call f gsr( ~X) =
∑

i f
gsr( ~Xi)

the score. Then, the winner of a GSR is given by ggsr(Ord(f gsr( ~X))), where Ord outputs the

weak order of the K components in f gsr( ~X).

From this definition, we see that all GSRs satisfy voter anonymity—that is, the identity of
the voter does not matter. As such, it is sufficient to analyse GSRs in terms of the histogram
of votes (rather than the preference profile). Most popular voting rules, e.g., Borda, Plurality,
k-approval and ranked pairs, are GSRs. We give two examples of how to describe voting rules as
GSRs.

Example 1 (Plurality as a GSR). The simplest example of a GSR is plurality. Recall this is the
voting rule where each voter chooses exactly one candidate, and the candidate with the most
votes is the winner. Here, K = m, the number of candidates. Suppose V is a vote (linear order
over candidates) where the top candidate is ci. The function f gsr would map V to a vector
f gsr(V ) = (0, · · · , 0, 1, 0, · · · , 0) where the only 1 is at the ith position of the vector f gsr(V )i.

Then, for a profile ~X, f gsr( ~X) is exactly the histogram counting the number of times each
candidate is ranked at the top of a vote. Finally, the function ggsr chooses the winner as the
candidate with the most top-ranked votes, and ties can be broken lexicographically.

Example 2 (Borda as a GSR). For Borda, we have K = m. Given a vote V , f gsr(V ) is the
vector where if the ith candidate ci is the jth top-ranked candidate in V , then f gsr(V )i = m− j.

That is, the candidate i receives m − j points from vote X. Then, f gsr( ~X) records the total

number of points each candidate receives from the profile ~X. Finally, ggsr chooses the winner as
the candidate with the most points, and ties can be broken lexicographically.

A common rule that is not a GSR is Dodgson’s rule, which does not satisfy homogeneity. A
rule that does not satisfy voter anonymity (and thus not a GSR) is dictatorship, where only the
vote of one voter counts.
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2.4 Cryptographic security in the universal composition
(UC) framework

One of the most utilized and accepted notions of security is universal composability (UC), which
can be augmented with a global setup (GUC) that facilitates analyzing the security of protocols
with global trusted setups such as a public key infrastructures (PKIs). The core of (GUC) security
is the indistinguishability between the real and ideal worlds. In the real world, parties execute a
protocol Π and communicate over a channel defined in the model. In the ideal world, parties
access a functionality F which obtains inputs from them and returns to them the output directly.
In both worlds, parties may have access to a global setup which can, for example, be a public
key infrastructure (PKI). A protocol Π securely-realizes a functionality F if any adversary A in
the real world can be emulated by a simulator S in the ideal world. That is, there does not exist
any algorithm (which we call the environment Z) which can distinguish between the transcript of
events in the two worlds. In addition, a protocol Π is composable if Π remains secure, even after
replacing its calls to F (a functionality) with calls to a protocol Π′ that securely realizes F ′. In
this case, we call Π a F ′-hybrid protocol.

2.4.1 Security in the UC model

2.4.1.1 Multiparty computation (MPC)

Following [23] we consider MPC protocols where at each round `, each party Pi broadcasts (see
Fig. 2.2) a message msg`i to all the other parties simultaneously.

Definition 8 (MPC protocol). Let n be a positive integer, m a polynomial in the security
parameter κ, and F an n party-functionality. An m-round, n-party MPC protocol ΠMPC for F can
be described as a tuple of deterministic polynomial-time algorithms ΠMPC = (Next1, . . . ,Nextn).

Next message: msg`i ← Nexti(1
κ, xi, ρ

`
i , msg

<`) is the message broadcasted by party pi ∈ P
in round ` ∈ [m], on input xi ∈ {0, 1}κ, on random tape ρ`i

$←− {0, 1}κ, after receiving the
messages msg<` = {msg`′j }j∈[n],`′<`, where msg`

′

j is the message broadcasted by party pj on round

`′ ∈ [`−1]. When msg<m+1 = {msg`′j }j∈[n],`′<m+1 then yi ← Nexti(1
κ, xi, ρ

m+1
i , msg<m+1) where

yi denotes the output of the party pi.

2.4.1.2 Universal composability with global setup (GUC)

Below, we formally state the definition of the GUC framework from Canetti et al. [39]. Let R
and Ḡ be functionalities. Let Π be a R-hybrid protocol, Ḡ a setup, A an adversary, and Z an
environment. The output of the environment Z after an execution of Π in the GUC Ḡ-hybrid

model in presence of A is denoted as execḠ,RΠ,A,Z. The output of Z in the ideal world where the

simulator S interacts with an ideal functionality F and the setup Ḡ is denoted as execḠ,FΠ,S,Z.
These are both random variables (r.v.). We denote by ≈ to mean the two random variables
are computationally indistinguishable. That is, the probability that any PPT (in κ) algorithm
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outputs 1 when interacting with one r.v., and the probability that the algorithm outputs 1 after
interacting with the other r.v., differ by at most a negl(κ) probability.

Definition 9 (UC with global setup (GUC)). Let Ḡ be a global setup, and R be a resource.
For an n-party efficient protocol Π (e.g., see Sec. 2.4.1.1) and functionality F , we say that Π
GUC-realizes F if ∀A ∃S ∀Z

execḠ,RΠ,A,Z ≈ execḠ,FS,Z

2.4.1.3 Security with identifiable (unanimous) abort

The notion of secure function evaluation (SFE) with identifiable abort allows the computation
to fail (abort), but ensures that when this happens all the honest parties are informed about
it, and they also agree on the index i of some corrupted party pi ∈ P [87]. We denote the
ideal functionality for the evaluation of the function f that captures the property of identifiable
abort with FfIDA (where IDA stands for identifiable abort). We also consider the notion of
unanimous abort. This guarantees that either all or none of the honest parties abort. We
denote the ideal functionality for the evaluation of the function f that captures the property of
unanimous abort with FfUNA (where UNA stands for unanimous abort). We refer to [49] for a more
detailed discussion of the notions of security with non-unanimous (aka selective), unanimous, and
identifiable abort, and their relation. In Sec. 2.4.1.4, we formally describe the functionalities for
SFEs and identifiable/unanimous abort.

We will assume synchronous computation, i.e., our protocols proceed in rounds, where in
each round: the uncorrupted parties generate their messages for the current round, as described
in the protocol; then the messages addressed to the corrupted parties become known to the
adversary; then the adversary generates the messages to be sent by the corrupted parties in this
round; and finally, each uncorrupted party receives all the messages sent in this round. Although
our treatment is in the (G)UC setting, to avoid overcomplicating the exposition, we will use
the standard round-based language of [35, 113] to specify our protocol. Notwithstanding, such
specifications can be directly translated to the synchronous UC model of Katz et al. [91] by
assuming a clock functionality and bounded (zero) delay channels. We refer the interested reader
to [91] for details.

2.4.1.4 Some useful functionalities

We provide formal definitions of several useful functionalities. In Fig. 2.1 and 2.2 we provide the
SFE and broadcast functionalities proposed in [65]. In Fig 2.3 we provide the formal description of
the for unanimous abort functionality FUNA (the description of the functionality extends to 3-party
functionality provided in [117]). The formal description for the identifiable abort functionality
F IDA is similar, except on abort, all honest parties output the ID of one corrupt party (this party
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FfSFE is as follows, given a function f : ({0, 1}∗ ∪ {⊥})n×R→ ({0, 1}∗)n and a set of parties P.
Initialize the variables x1, . . . , xn, y1, . . . , yn to a default value ⊥.

• Upon receiving (Input, v) from some party pi ∈ P, set xi := v and send a message (Input, i)
to the adversary.

• Upon receiving (Output) from some party pi ∈ P, do:

1. If xj has been set for all j ∈ H, and y1, . . . , yn have not yet been set, then choose

r
$←− R and set (y1, . . . , yn) := f(x1, . . . , xn, r).

2. Output yi to pi

Figure 2.1: The FfSFE functionality of [65]

B is as follows, given a set of parties P.
• Upon receiving xi from party pi ∈ P, send (xi, pi) to every party in P. (If B is considered

a UC functionality, the output is given in a delayed manner, cf. [36])

Figure 2.2: The broadcast functionality B of [64, 85]

• Upon receiving (Input, v) from some party pi ∈ P, set xi := v and send a message (Input, i)
to the adversary. If v is outside the domain of pi consider xi = ABORT.

• If there exists i ∈ {1, . . . , n} such that xi = ABORT the set (y = ⊥) else set y =
f(x1, . . . , xn) and send y to the adversary.

• Upon receiving ok from the adversary, send y to the honest parties (if they query the
functionality to get the output).

• Upon receiving ABORT from the adversary send ⊥ to the honest parties (if they query the
functionality to get the output)

Figure 2.3: The FUNA.

may or may not be the corrupt party who caused the abort). In Fig. 2.4, we provide the basic
UC signature functionality proposed in [38] modified to support strong unforgeability.
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Key Generation.
Upon receiving a value (KEY GEN, sid) from some party S ∈ P, verify that sid = (S, sid′) for
some sid. If not, then ignore the request. Else, hand (KEY GEN, sid) to the A. Upon receiving
(VERIFICATION KEY, sid, v) from the A, output (VERIFICATION KEY, sid, v) to S, and record
the pair (S, v).
Signature. If I = (SIGN, sid,m) is received from party S, verify that sid = (S, sid′) for
some sid′. If not, then ignore the request, else send (SIGN, sid,m) to A. Upon receiving
I = (SIGNATURE, sid,m, σ) from A, verify that no entry (m,σ, v, 0) is stored. If it is, then
output an error message to S and halt. Else, send (SIGNATURE, sid,m, σ) to S, and store the
entry (m,σ, v, 1).
Verification
Upon receiving a value (VERIFY, sid,m, σ, v′) from some party pi, hand (VERIFY, sid,m, σ, v′)
to the adversary. Upon receiving (VERIFIED, sid,m, φ) from the adversary do:

1. If v′ = v and the entry (m,σ, v, 1) is recorded, then set f = 1. (This condition guaran-
tees completeness: If the verification key v′ is the registered one and σ is a legitimately
generated signature for m, then the verification succeeds.)

2. Else, if v′ = v, the signer is not corrupted, and the entry (m,σ, v, 1) is recorded, then set
f = 0 and record the entry (m,σ, v, 0). (This condition guarantees strong unforgeability:
If v′ is the registered one, the signer is not corrupted, and a signature σ of m has never
been generated, then the verification fails.)

3. Else, if there is an entry (m,σ, v′, f ′) stored, then let f = f ′ . (This condition guarantees
consistency: All verification requests with identical parameters will result in the same
answer.)

4. Else, let f = φ and record the entry (m,σ, v′, φ)
Send (VERIFIED, sid,m, f) to pi.

Figure 2.4: The FSIGN functionality with strong unforgeability of [38]

2.5 The Bitcoin backbone protocol

The abstraction of the Bitcoin protocol that is used in the cryptographic literature is known as
the Bitcoin backbone protocol [17, 66, 115] which we denote by ΠB. In this abstraction, Bitcoin
is modeled as a round-based protocol, where a number of participants (the miners) are connected
via a multicast network (see Sec. A.2) with bounded delay of ∆ rounds (unknown to the protocol).
In every round, each party adopts the longest chain C = B0|| . . . ||Bk of block Bi (connected by
hash-pointers) it has received so far from the multicast network, where B0 is the unique genesis
block of the system. Each party tries to extend this longest chain an by additional block, via
running the PoW-lottery: an extension of chain C by a new block Bk+1 can only be valid, if
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its hash 2 H(Bk+1) belongs to a dedicated small portion of the output domain of the function
(typically, the hash must have a lot of leading zeros). In such analyses, the hash function is
modeled using a random-oracle functionality FRO that returns uniform values upon each query.
Therefore, when extending the chain, each party makes a certain number of mining queries per
round (that is, RO-queries with candidate blocks Bk+1 containing a random nonce to obtain the
hash) and we call a mining query successful, if the output is below the threshold. In the setting
with fixed PoW difficulty, we can assign a success probability p to each such mining query. Finally,
if a miner is successful, it will send the new chain over the multicast network to all other miners.

Cryptographic security. The main security guarantee3 proven for the Bitcoin protocol is even-
tual consistency: every block that is deep enough can be considered immutable and only the most
recent, cutOff number of blocks might be transient. This cutOff-consistency (where the cutoff
parameter is often left implicit if clear from context) guarantee states that at any point in time,
the prefix of C consisting of |C| − cutOff blocks is agreed-upon by all honest miners:

Definition 10 (Consistency). Let C1 4 C2 denote the prefix-of relation, then the consistency
guarantee (with parameter cutOff) states that at any two points in time a ≤ b in an execution,
where party P at round a holds chain C1 and party P ′ at round b holds chain C2, we have that
C1|cutOff 4 C2, where the notation C|k denotes the prefix of C obtained by removing the most
recent k blocks (and if k exceeds the length of C, it is defined to correspond to the genesis block).

In the cryptographic setting (without incentives), such a guarantee only holds if we restrict

the adversary to have a minority of mining power. That is, given n
(r)
a and n

(r)
h denote the numbers

of adversarial and honest mining queries in round r, respectively, then the protocol ΠB is secure
if in any round r the inequality

n(r)
a < θpow · n(r)

h

holds, with
θpow := (1− p)(2∆+1)Tub

being the well-established security threshold for Bitcoin (often stated in its linear approximation
1−2(∆+1)pTub) [17,66,115], where the quantity Tub denotes the upper bound on the number of
mining queries per round. Throughout this thesis, we work in the so-called flat model of Bitcoin
for notational simplicity [15, 66], where each miner gets one mining query per round (and the
adversary’s power is the number of corrupted miners). We note that sometimes it is convenient
to assume a lower bound Tlb on the number of mining queries (a.k.a. participation) per round, in
particular when arguing about the guaranteed growth of the blockchain over time in combination
with the security threshold. Finally, we point out that even if there are no adversarial players, an
upper bound Tub on the number of queries is necessary for security in the fixed difficulty setting,
when aiming for a common prefix guarantee for some target parameter cutOff. As the failure
probability of Bitcoin becomes negligible as a function of cutOff (more precisely, the relevant

2The hash function is idealized as the UC random-oracle (RO) functionality; see Sec. 2.5.1.1.
3While other security guarantees exist, such as chain quality, the thesis will focus (specifically Ch. 5) on

consistency.
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factor is of the order 2−Ω(cutOff)), we often treat it as a (of course polynomial-bounded) function
cutOff(κ) of a security parameter κ, and (in symbolic notation) cutOff = ω(log(κ)) is at least
required to obtain a negligible probability of a failure.

Bitcoin backbone and UC. The above Bitcoin backbone protocol ΠB is seen as a UC protocol
as in [17], where it is proven to UC-realize a strong transaction ledger functionality Gledger (see
Sec. 2.5.1.3) under the honest majority assumption. We give here just the explanation of how the
ideal consistency guarantee looks like: the functionality Gledger ensures that at any point in time,
there is only one unique ledger state (sequences of transactions packed in blocks), where the state
is append-only (that is, whatever appears as a block in the state is immutable). Furthermore,
different honest parties see different prefixes of this state, with the guarantee that these views
are increasing and within a window of windowSize (a ledger functionality parameter) blocks
from the tip of the state. Note that the cut-off parameter of Bitcoin corresponds exactly to
the size of that window in the realized ledger Gledger. More precisely, whenever Bitcoin satisfies
Definition 10, then the above mentioned correspondence holds and the ledger state is a single
chain of blocks [17].

In UC, the protocol ΠB assumes a couple of hybrid functionalities. First, the round-based
structure is achieved using UC-synchronous tools (assuming a clock functionality), a network,
and a random oracle. In particular, in [17, 68] assumptions like honest majority and maximum
queries per round Tub (as well as minimum queries per round Tlb) can be captured by functionality
wrappers, which restrict access to the RO such as disallowing number of accesses per (corrupt)
party per round and total number of RO accesses per round. One extremely helpful aspect of
UC in the context of RPD is the compatibility with the composition theorem [65]. This can

be leveraged as follows. The Bitcoin backbone ΠB admits a modular structure that isolates
the lottery aspect as a submodule of the system. Technically, the proofs in [17, 115] show that
whenever the PoW-lottery UC-realizes the state exchange functionality FStX (formally described
in Sec. 2.5.1.2; in [115] the related concept is called Ftree), the Nakamoto-style longest chain
rule protocol (under the above honest-majority security threshold) realizes the ledger functionality.
This intermediate step is important due to two things: first, it models an idealized mining process
where each mining query is an independent Bernoulli trial with success probability p (and hence
abstracts away those real-life negligible probability events that would destroy independence), and
second it abstracts away the low-level details of the chain structure (where e.g., “hash collisions”
could cause disruptions). It is proven in [17] that the proof-of-work layer of Bitcoin (in the
random oracle model) UC-realizes FStX. Moreover, since it only abstracts the lottery part of the
system, this realization does not depend on any security threshold. We can therefore leverage
composition when analyzing the utilities of Bitcoin even when honest majority may not hold, and
work with the idealized lottery directly.

2.5.1 Formal description of Bitcoin in UC

The UC Bitcoin protocol uses several idealized functionalities [17]: the clock—which keeps track
of the current round and multicast (which allows parties to send messages to multiple other
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parties),. Since the specifics of these functionalities are not important to the results in the thesis,
for completeness we include them in App. A. We also include random oracle, the ideal lottery, the
ledger functionality, as well as a weaker (in particular non-consistent) ledger functionality which
is achieved when honest majority does not hold, pointing out relevant details and differences
between the two ledgers.

2.5.1.1 Random oracle

In Fig. 2.5 we formally describe the random oracle functionality, which parties query to mine
blocks in the UC. In order to model the limit on the total mining power in the system, we also
consider a wrapped RO, which is the RO, but in addition restricts the number of queries per
party per round.

The functionality FRO is parametrized by a security parameter κ. It maintains a set of
registered parties/miners P (initially set to ∅) and a (dynamically updatable) function table
H (initially H = ∅). For simplicity we write H =⊥ to denote the fact that no pair of the
form (x, ·) is in H.

Upon receiving (eval, sid, x) from some party p ∈ P (or from A on behalf of a corrupted
p), do the following:

1. If H[x] = ⊥ sample a value y uniformly at random from {0, 1}κ, set H[x]← y and
add (x,H[x]) to H.

2. Return (eval, sid, x,H[x]) to the requestor.

Figure 2.5: The functionality FRO

2.5.1.2 Lottery functionality FStX

The lottery functionality F∆,pH ,pA
StX (Fig. 2.6, as defined in [17]) abstracts the process of choosing

a (random) party to generate the next block in the ledger. Here, ∆ is the network delay, pH
and pA are the probabilities for successfully creating a block for each mining attempt—in the
flat model, as is in our setting, pH = pA = p (which is a protocol parameter that relates to the
difficulty of the blockchain). Roughly, the state exchange functionality manages a tree structure
containing successfully-mined chains (thus eliminating issues with hash collisions when using hash
pointers in the chain), and abstracts mining with random oracle (RO) queries as coin tosses with
probability of success p. It also manages the multicasting of successfully-mined chains, and allows
the adversary to influence the network via network delay.

Note that in this hybrid world, defining restrictions on the total number of mining queries in
the system is straightforward by introducing a function wrapper WTub

Tlb
. The wrapper can limit
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mining queries (i.e. calls to the RO or queries to submit-new) if Tub is reached, and can ensure
that the system only advances to the next round if at least Tlb queries have been submitted. We
refer to [17, 68] for more details on wrappers.

2.5.1.3 Ledger functionality

For completeness, we describe the ledger functionality Gledger from [17] in App. A. Gledger
is parametrized by four algorithms, Validate, ExtendPolicy, Blockify, and predict-timeBC .
Their details are not relevant to this thesis, so we describe their function informally: Validate
determines whether a (new) block is valid according to the current ledger state (e.g. no double-
spending transactions). ExtendPolicy ensures that the ledger state, with the proposed new
block, would still satisfy desirable properties like chain quality. Blockify collects transactions into
a block, and predict-timeBC is required to ensure the ledger functionality advances a round
when the protocol does. The functionality also has two parameters: windowSize and Delay ∈ N.
The parameter windowSize is the consistency parameter, and is generally the same as the cut-off
parameter cutOff of the Bitcoin backbone protocol. The parameter Delay ∈ N depends on the
network delay ∆, and is set as Delay := 4∆ in the main theorem of [17].

2.5.1.4 Weak ledger functionality

It is useful to define a weaker ledger functionality which is achieved when honest majority does
not hold. Below, we informally describe this weaker Bitcoin ledger functionality GB

weak-ledger

from [15], which does not enforce many security properties, and include the formal description in
App. A.

Most importantly, this weaker ledger allows the simulator to break consistency via a fork
command. Looking ahead, this functionality will be useful in our rational analyses of the
blockchain under 51% attack, as we will analyze scenarios when this fork command is nec-
essary (or not) to simulate a rational adversary. This in turn will tell us whether consistency can
be achieved under said rational adversary.

Similar to the (strong) ledger functionality Gledger, the weak ledger functionality GB
weak-ledger

is parametrized by four algorithms, Validate, weakExtendPolicy, Blockify, and predict-time,
along with two parameters: windowSize, Delay ∈ N. The main difference is that ExtendPolicy
is replaced with its weaker version weakExtendPolicy. Below, we describe these defining features
of the functionality:

State tree: Instead of storing a single ledger state state, GB
weak-ledger stores a tree state-tree

of state blocks where for each node the direct path from the root defines a ledger state.
The functionality maintains for each registered party pi ∈ P a pointer pti to a node in the
tree which defines the current-state view of pi which the adversary can set. The pointer of
a honest party can only be set to a node which has a at least the distance to the root of
the current pointer node.
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The functionality F∆,pH ,pA
StX is parametrized with a set of parties P , keeping track of

registered (resp. deregistered) parties. Each p ∈ P manages a tree Tp which initially
contains the genesis state, and each rooted path corresponds to a valid state the party
has received. Finally, it manages a buffer ~M containing successfully submitted states not
yet been delivered to (some) parties in P , and buffer Nnet of adverbially injected chunk
messages (that might not correspond to valid states).

Submit/receive new states:
– Upon receiving (submit-new, sid, ~st, st) from some participant ps ∈ P , if

isvalidstate( ~st||st) = 1 and ~st ∈ Tp do the following:

1. Sample B from Bernoulli-Distribution with parameter pH (or pA for dishonest
ps).

2. If B = 1, set ~stnew ← ~st||st and add ~stnew to Tps . Else set ~stnew ← ~st.

3. Output (success, sid, B) to ps.

4. On response (continue, sid) where P = {p1, . . . , pn} choose n
new unique message-IDs mid1, . . . ,midn, initialize n new variables
Dmid1 := DMAX

mid1
:= . . . := Dmidn := DMAX

midn
:= 1 set

~M := ~M ||( ~stnew,mid1, Dmid1 , p1)|| . . . ||( ~stnew,midn, Dmidn , pn), and send
(submit-new, sid, ~stnew, ps, (p1,mid1), . . . , (pn,midn)) to the adversary.

– Upon receiving (fetch-new, sid) from a party p ∈ P or A (on behalf of p), do the
following:

1. For all tuples ( ~st,mid, Dmid, p) ∈ ~M,Nnet update value Dmid := Dmid − 1.

2. Let ~Mp
0 denote the subvector of ~M including all tuples of the form

( ~st,mid, Dmid, p) where Dmid = 0 (in the same order as they appear in ~M).

For each tuple ( ~st,mid, Dmid, p) ∈ ~Mp
0 add ~st to Tp. Delete all entries in ~Mp

0

from ~M and send ~Mp
0 to p. If p is corrupted, provide additionally Nnet to the

adversary.

– Upon receiving (send, sid, ~st, p′) from A on behalf some corrupted p ∈ P , if p′ ∈
P and ~st ∈ Tp, choose a new unique message-ID mid, initialize D := 1, add

( ~st,mid, Dmid, p
′) to ~M , and return (send, sid, ~st, p′,mid) to A. If ~st 6∈ Tp, then

conduct the same steps except that ( ~st,mid, Dmid, p
′) is added to Nnet.

Figure 2.6: The functionality F∆,pH ,pA
StX (Part 1)
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(Continued from description of F∆,pH ,pA
StX , Part 1)

Further adversarial influence on the network:
– Upon receiving (swap, sid,mid,mid′) from A, if mid and mid′ are message-IDs

registered in the current message buffers, swap the corresponding tuples in the buffer.
Return (swap, sid) to A.

– Upon receiving (delay, sid, T,mid) from A, if T is a valid delay, mid is a message-
ID for a tuple ( ~st,mid, Dmid, p) in a message buffer and DMAX

mid + T ≤ ∆, set
Dmid := Dmid + T and set DMAX

mid := DMAX
mid + T .

Figure 2.7: The functionality F∆,pH ,pA
StX (Part 2)

Adding transactions: Submitted transactions are simply collected in buffer without any addi-
tional check. Transactions in buffer which are added to state-tree are not removed as
they could be reused at an other branch of state-tree.

Adding blocks and forking: The command next-block which allows the adversary to pro-
pose the next block takes additionally a leaf of state-tree as input which defines where
the next block will be added. By default the next block is added to the longest branch
of state-tree. To add the next block to an intermediate node of state-tree the ad-
versary may use the command fork which otherwise provides the same functionality as
next-block.

Extend-policy: The weak extend-policy weakExtendPolicy that is invoked when the ledger ex-
tends one of its branches checks a few simple validity validity conditions. It takes a state-tree
state-tree and pointer pt as input. It first computes a default block ~Ndf which can be
appended at the longest branch of state-tree without rendering the state invalid. Then
it checks if the proposed blocks (by the adversary) ~N can be safely appended at the node

pt without violating the validity of the chain. If this is the case it returns ( ~N, pt). Oth-

erwise it returns the ~Ndf and a pointer to the leaf of the longest branch in state-tree.
In contrast to strong ledger in [17], the weak extend-policy does not check if the adversary
inserts too many or too few blocks, does not give guarantees whether old transactions will
be included, and does not enforce a fraction of honest blocks.

The ledger further obtains time-stamps from a clock functionality (Fig. A.1).
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2.6 Cryptography and game theory

2.6.1 Implementing games without collusion

Collusion-freeness (CF) was introduced by Lepinski et al. [100] to capture the requirement of
non-collusion when implementing a game of poker in a cryptographic protocol. Lepinski et al.
identified the issue of using the standard cryptographic security definition: malicious parties are
always assumed to be able to coordinate by having a direct channel to share information, or
collude, with each other (otherwise known as a monolithic adversary). In other words, a secure
protocol is not necessarily a collusion-free protocol.

Here, we will focus on the composable version of CF, called collusion-preservation (CP), which
extends the idea of CF with Global UC (GUC), which we introduced in the previous section. Similar
to the CF, CP requires the lack of collusion among corrupt parties, by replacing the monolithic
adversary in (G)UC with a set of independent malicious parties who must communicate only with
the available channels described in the protocol or functionality.

2.6.1.1 Collusion-preservation

Collusion-preserving computation (CP), proposed in [9], differs from (G)UC in the following man-
ner. For n the number of parties, the malicious attacker is described as a set of adversarial strate-
gies (which we call for convenience adversaries), instead of one monolithic adversary/simulator
(as in (G)UC) which controls all corrupt parties. In more detail, we consider a set of independent
PPT adversaries and simulators, which requires the following:

- Split adversaries/simulators: Instead of a monolithic adversary/simulator we consider a
set of n polytime adversaries A[n] = {Ai, i ∈ [n]}, where Ai corresponds to the adversary
associated with the player i–and can corrupt at most this party. We also ask that for each
Ai ∈ A[n] there exists an (independent) simulator S, who only has access to Ai.

- Corrupted-set independence: We also require that the simulators do not depend on
each other. In other words the code of Si is the same for any set of adversaries A[n] and
B[n] as long as Ai = Bi.

Similar to the GUC framework (but in contrast to plain UC) we distinguish between two
types of functionalities: resources, denoted with capital calligraphic font as in R, and shared
functionalities, denoted with an additional over-line as in Ḡ. Formally, a resource R maintains
state only with respect to a single instance of a protocol, while a shared functionality Ḡ can
maintain state across protocol instances. For example, concurrent executions can maintain shared
state via e.g., a global CRS or global PKI as long as they are modeled as shared functionalities.
However, although concurrent instances of a protocol Π may use the same resource R, the
behavior of R in one execution of Π must be independent of all other executions of Π (and
more generally of all other concurrent protocols instantiated by the environment). For clarity,
in the remainder of this thesis we will usually refer to shared functionalities simply as setup,
and protocols that share state across executions only through some setup Ḡ as Ḡ-subroutine
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respecting. We denote by cp-execRΠ,A,Z the output of the environment Z in the execution of Π
with adversaries A := A[n] in the R-hybrid model. We say that a protocol Π is R-exclusive if it
makes use of no resources or shared functionality other than R. We note that unlike (G)UC, CP
limits parties to communicate with at most one single instance of the resource. Intuitively, if F
is a one-bit channel, then the simulator only using one instance of F has a completely different
meaning in terms of collusion-preservation to the simulator using unlimited calls to F . As in the
definition of UC security, we denote two random variables as computationally indistinguishable
by the notation ≈.

Definition 11 (Collusion-preservation [9]). Let Ḡ be a setup, R and F be n-party resources, Π
be a {Ḡ,R}-exclusive protocol and φ be a {Ḡ,F}-exclusive protocol (both with n parties). Then
we say that Π collusion-preservingly (CP) emulates φ in the {Ḡ,F}-hybrid world, if there exists
a collection of efficiently computable transformations Sim = {Sim1, . . . , Simn} mapping ITMs
to ITMs such that for every set of adversaries A = {A1, . . . ,An}, and every PPT environment

Z the following holds: cp-execḠ,RΠ,A,Z ≈ cp-execḠ,Fφ,Sim(A),Z

Following [9], we distinguish between the notion of emulation and its special case realization.
For a functionality F we denote by DF the ith dummy F -hybrid protocol which simply acts as a
transparent conduit between the ith honest and adversarial interfaces of F and the environment Z.
Specifically, DF forwards all messages it receives from Z to the F (where the choice of adversarial
or honest interface is specified by Z) and vice-versa. If for functionality F , an R-hybrid protocol
Π CP-emulates DFi then we say that Π realizes F (in the R-hybrid world).

2.6.2 Rational protocol design (RPD):
Security against incentive-driven attackers

In Chapters 4 and 5 we will adapt the rational protocol design framework (RPD) [15, 65] to
study collusion-preserving games and blockchain incentives, respectively. The goal of RPD is
to model security of protocols against incentive-driven attackers, especially when the desired
security properties are impossible against general (non-rational) attackers. RPD is compatible
with (G)UC security, and as we will show in Ch. 4 Sec. 4.3, RPD can also be modified to capture
collusion-preservation (CP) against rational attackers. In Sec. 2.6.3, we will detail how the RPD
framework was used in [15] to analyze the Bitcoin backbone protocol.

In RPD, a protocol designer D engages in an attack game Ḡ with an attacker A. The designer
first chooses a (n-party) protocol Π ∈ ITMn. Then, based on Π, the attacker decides on an
adversarial strategy A to attack Π. Each pair (Π,A = A(Π)) (called a strategy profile in line
with game theory) induces a utility for the designer and the attacker. Consistent with [65],
we consider an attack game Ḡ, where M is the attack model M = (F , 〈F〉, vA), a vector of
parameters of the game. F is the functionality which the designer would like to achieve, and 〈F〉
is a relaxed version of F in the sense that it includes extra commands that break certain security
properties of F . The value function vA allows us to define utilities of the attacker. It assigns
payoffs when certain events occur in the ideal world, such as when the simulator uses the extra
commands in 〈F〉 to help him complete a successful simulation.
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The goal when analyzing in RPD is ensure that it is not in the attacker’s best interest to
force the simulator to use weaknesses of 〈F〉. This is captured by the notion of attack-payoff
security. A protocol 〈F〉 is attack-payoff secure if no adversarial strategy (which we refer to as
the adversary A) attacking Π can achieve more utility for the attacker than a strategy attacking a
“dummy” protocol that just uses the functionality F (i.e. without weaknesses of 〈F〉). In other
words, Π is “as secure as” the dummy (trivially-secure) protocol in this model. Following [15],
we can also augmentM with the designer’s value function vD, and consider whether the protocol
is incentive compatible for the designer.

2.6.2.1 Utility of the attacker A

The utility of the attacker uA is a function mapping protocols and sets of adversaries, i.e. the
strategy profile (Π,A) = (Π, A(A)), to a real number. More formally: First, we have a value
function vA, defined in the attack model, which maps the views of the simulators and environment
in the ideal world to a real value. Looking ahead, we define the real payoff of a particular A
attacking the protocol, as the minimum payoff over all simulators that can emulate A. Finally,
uA(Π,A) is the real payoff of A, maximized over all possible environments Z.

Ideal payoff of the simulator In more detail, we define the real-valued random variable en-
semble {v〈F〉,S,ZA (k, z)}k∈N,z∈{0,1}∗ (or v

〈F〉,S,Z
A for short) as the random variable ensemble resulting

from applying value function vA to the view of the environment Z and simulator S in the ideal
execution. The ideal expected payoff of a particular simulator S with respect to Z is defined as
the expected value: U

〈F〉
IA (S,Z) = E(v

〈F〉,S,Z
A ).

Real payoff of the adversary Recall that given a setup Ḡ and resource R, a protocol Π
realizes some functionality 〈F〉 if, for all adversaries A, there exists a simulator S that emulates
A. That is, the environment Z cannot distinguish between the real world with A and resource
R, and ideal world with S and 〈F〉.

Denote SA as the class of simulators S that can emulate the adversary A. In other words, for
setup Ḡ and resource R,

SA =
{

S ∈ ITM|∀Z: execḠ,RΠ,A,Z ≈ exec
Ḡ,〈F〉
Π,S,Z

}
.

The expected payoff of a set of adversaries and environment (A,Z) is then defined as

U
Π,〈F〉
A (A,Z) = infS∈CA

{U 〈F〉IA (S,Z)}. The attacker’s utility is then maximized over all envi-

ronments Z, i.e., uA(Π,A) := Û
Π,〈F〉
A (A) = supZ∈ITM{U

Π,〈F〉
A (A,Z)}.

2.6.2.2 Attack-payoff security in RPD

The work of [65] introduces the following notion of security against incentive-driven adversaries:
No matter the utility achieved by an adversary A running the protocol Π in the real world, there
exists an adversary A′ running the dummy protocol with access to the ideal functionality F that
achieves the same or better utility. In other words, even the best adversary attacking Π, cannot
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achieve better utility than one who does not invoke any of the “bad events” in 〈F〉. Note that
here F can be any strengthening of its weaker version.

Definition 12 (Attack payoff security [65]). Let M = (F , 〈F〉, vA, vD) be an attack model
inducing utility uA, and let ΦF be the dummy F -hybrid protocol. A protocol Π is attack-payoff
secure for M if for all A, there is an A′ such that uA(Π,A) ≤ uA(Φ

F ,A′) + negl(κ)

2.6.2.3 Security for the protocol designer D

On the side of the protocol designer, the definition that captures his willingness to follow the
prescribed protocol Π is called incentive compatibility (IC) [15]. To define IC, we first define
what is a ε-subgame-perfect equilibrium [65]. Informally, a strategy profile is an ε-subgame-
perfect equilibrium if no deviation could improve utilities by more than ε. Intuitively, a protocol
Π is incentive compatible when even the designer is incentivized to stick with it.

Definition 13 (ε-subgame-perfect equilibrium [65]). Let G be an attack game. A strategy
profile (Π, A(Π)) is an ε-subgame perfect equilibrium in G if the following conditions hold: (1)
for any Π′ ∈ ITMn, uD(Π

′, A(Π′)) ≤ uD(Π, A(Π)) + ε, and (2) for any A′ ∈ ITM, uA(Π, A
′(Π)) ≤

uA(Π, A(Π)) + ε.

Definition 14 (Incentive Compatibility (IC)). Let Π be a {Ḡ,R}-exclusive protocol and ~Π be a

set of polynomial-time {Ḡ,R}-exclusive protocols. We say that Π is ~Π-IC in the attack model
M iff for some A ∈ ITM, (Π, A(Π)) is a negl(κ)-subgame perfect equilibrium on the restricted

attack game where the set of deviations of the designer is ~Π.

2.6.3 Rational treatment of the Bitcoin backbone protocol in RPD

The work of [15] analyzes the the Bitcoin protocol ΠB in RPD. We include some details of this
analysis for completeness, and as an example application of the RPD framework. The Bitcoin
backbone protocol ΠB, detailed in Sec. 2.5, was shown in [15] to only implement a weaker ledger

functionality GB
weak-ledger when the honest majority assumption is lifted. We recall that the weak

ledger is derived from the stronger version [17] by introducing a few weaknesses. For example,
it allows the adversary to fork the ledger state and hence allows it to break consistency (this
event corresponds to a deep reorganization of the blockchain in the real world). This is allowed

by the fork command in GB
weak-ledger. Given the views of the simulator and environment in an

ideal world execution, the value functions vA and vD assign payoffs to the attacker and designer
respectively, when certain events happen in the views, such as when the simulator forks the
blockchain via GB

weak-ledger. Looking ahead, in Ch. 5 we will also analyze ΠB in RPD, to find
conditions under which a simulator would not need to invoke the consistency-breaking command
of GB

weak-ledger in order to simulate rational attackers (i.e., attacks that break consistency are
disincentivized). For example, if under a class of utilities, no rational attacker invokes the fork
command, then we essentially obtain a stronger ledger (i.e., the same except that this command
is absent and hence the ledger state remains a unique chain) against attackers incentivized by
this class of utilities.
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2.6.3.1 Utility of the Attacker from [15]

We detail the attacker’s utility in [15], which in the RPD framework captures the expected payoff

of a particular adversarial strategy A in a given protocol Π (in this case Π = ΠB). This payoff is
calculated based on different events that occur in the real execution and the corresponding ideal
experiment where a black-box simulator is attempting to simulate this adversarial strategy.

Specifically, the work of [15] considers the following events:

1. Event W A
q,r, for each pair (q, r) ∈ N2: The simulator simulates q mining queries by the

adversary in round r of the simulated execution.

2. Event IAb,r, for each pair (b, r) ∈ N2: The simulator inserts b blocks into the state of the
ledger in round r, such that all these blocks were previously queries to the (simulated)
random oracle by the adversary. Informally, this event occurs when an honest party views
these blocks as “confirmed” (part of his own ledger state).

A different payoff is associated with each event. In order to make q mining queries and invoke
event W A

q,r, the attacker must pay q · mcost, where mcost is the cost of making a mining query
(e.g. electricity cost per hash query). When b blocks made by the adversary are inserted into
the ledger and event IAb,r occurs, the attacker receives payoff b · breward · CR. Here breward is
the reward for making a block in the currency of the blockchain (e.g. Bitcoins), and CR is an
exchange rate to the same currency used for mcost (e.g. USD).

Then, [15] defines the following attacker’s utility for a strategy profile (Π,A). Let CA denote
the set of simulators that can emulate an adversary A in the ideal world with access to the weaker
ledger functionality GB

weak-ledger, and Z denote an environment. The real payoff of an adversary
A attacking the protocol is defined as the minimum payoff over all simulators in CA . If CA = ∅
(there are no simulators that can simulate A) then uA(Π,A) =∞ by definition. Then, the utility
uA(Π,A) is the real payoff, maximized over all possible environments Z (we assume for simplicity
that environments are closed and run in polynomial time in the security parameter [37]).

uA(Π,A) := sup
Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

(
b · breward · CR · Pr[IAb,r]

)
(2.2)

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

}}
.

Strictly speaking, the utilities are also functions in the security parameter κ (the environment
obtains the parameter as input in UC) but we omit it for notational simplicity. We note that as
functions in the security parameter κ, the asymptotic behavior of the involved functions is the
relevant aspect.

2.6.3.2 Utility of the protocol designer D

In [65], the attack game is assumed to be zero-sum, i.e. when considering the designer’s utility
uD, we set uD = −uA. To remove this assumption, we follow the methodology of a more recent
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work [15] to define uD. In more detail, for each (Π,A), we must assign utility for the designer
using the same simulators and environments as those used for the attacker. Let SA denote the
class of simulators that were used to obtain the utility of the attacker, and ZA denote the class
of environments maximizing the utility for simulators in SA. That is,

SA =

{
S ∈ SA : sup

Z∈ITM
{U 〈F〉IA (S,Z)} = uA(Π,A)

}
and

ZA =
{

Z ∈ ITM : for some S ∈ SA , U 〈F〉IA (S,Z) = uA(Π,A)
}
.

Then, let v
〈F〉,S,Z
D and U

〈F〉
ID (S,Z) be defined similar to the payoffs v

〈F〉,S,Z
A and U

〈F〉
IA (S,Z)

respectively. Again following the definitions of [15], the real payoff of the designer is

U
Π,〈F〉
D (A,Z) = supS∈SA{U

〈F〉
ID (S,Z)}. The utility of the designer is then uD(Π,A) :=

Û
Π,〈F〉
D (A) = infZ∈ZA

{UΠ,〈F〉
D (A,Z)} We can extend the attack model with the value function

of the designer vD: M = (F , 〈F〉, vA, vD).

2.6.3.3 Strongly attack-payoff security

This notion of attack-payoff security defined above in Def. 12 does not necessarily mean an
incentive-driven adversary will honestly follow the protocol—there is no restriction on the honestly
of the actions of A′ in the above definition. To capture this stronger requirement in the context
of Bitcoin, we also consider a stronger notion introduced by [15]: the attacker is incentivized to
always choose a front-running, passive-mining adversary over any (potentially malicious) strategy.
Informally, this passive adversary behaves exactly like an honest party (mining with all his hashing
power and releasing a block he has found immediately), except the adversary’s messages are
always delivered before the honest parties’ (front-running). Front-running gives the adversary an
advantage since if an adversary’s block is concurrently competing with an honest party’s block
to be appended to the longest chain, the adversary always wins.

Definition 15 (Front-running, passive-mining adversary [15]). The front-running adversarial
strategy A ∈ Afr is specified as follows: Upon activation in round r > 0, A activates in a
round-robin fashion all its (passively) corrupted parties, say p1, . . . , pt. When corrupt party pi
generates some new message to be sent through the network, A immediately delivers it to all its
recipients. In addition, upon any activation, any message submitted to the network FN-MC by an
honest party is maximally delayed.

ΠB was proved to be strongly attack-payoff in [15] for the utility in Equation 2.2. Informally, a
protocol is strongly attack-payoff secure if there is always a passive adversarial strategy that is at
least as good as any malicious strategy. In our analyses, we are also interested in the case where
security does not hold: we say an adversary A breaks strong attack-payoff security if uA(Π,A)
exceeds uA(Π,A′) for any A′ ∈ Afr, by a non-negligible amount.

Definition 16 (Strongly attack-payoff secure [15]). A protocol Π is strongly attack-payoff secure
for attack model M if there is a A′ ∈ Afr such that for all A, uA(Π,A) ≤ uA(Π,A′) + negl(κ)
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In studying the (rational) security of the Bitcoin backbone protocol, we will follow the approach

from [15] that simplifies the proofs when analyzing the utilities from mining in the protocol ΠB by
utilizing the composition theorem of RPD. As explained in Section 2.5, instead of analyzing the
probabilities of payoff-inducing events for ΠB which uses the random oracle as the lottery, one can
analyze probabilities for the modular ledger protocol w.r.t. an idealized lottery that makes use of
the state exchange functionality FStX (Fig, 2.6). In more detail: when a party (or the adversary
in the name of a corrupted party) wishes to extend a chain, they would invoke FStX with a
submit-new command, which performs a coin toss and informs him whether he is successful.
If the party is successful, the functionality includes this new chain into a tree data structure and
allows the party to multicast this new chain with a send command; this multicasting is done
automatically for honest parties. Due to the correspondence of RO queries in the Bitcoin protocol
and the submit-new-commands in the modularized Bitcoin protocol [17], the events defined
for the utility function in Eqn. 2.2 above remain valid and meaningful also in this hybrid world,
because the black-box simulator for the overall Bitcoin protocol simulates one RO-query (as a
reaction to an input by a corrupted party) whenever the (black-box) simulator for the modular
ledger protocol simulates one submit-new-command, as a reaction to the corresponding input
by the same party [15].
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Chapter 3

Privacy of Deterministic Voting Rules

3.1 Introduction

Differential privacy (DP) has gained much public attention recently, partly due to its use in the
United States 2020 Census. Improving upon ad-hoc privacy techniques that were broken in the
previous census [69], formal privacy definition like DP are much more suitable for controlling the
leakage of sensitive data.

Yet, sensitive data is still published today without necessarily understanding the privacy leakage
it incurs. In particular, voting data has been surprisingly accessible. In the US, histograms of votes
are revealed per county, and voting and registration tables are released including fields like sex,
race, age, location, and marital status [6]. This abundance of information has enabled politicians
to buy voter profiles from data mining companies, allowing them to more easily manipulate public
opinion [31, 124].

Unfortunately, differential privacy, though now a standard in data privacy, is not easy to achieve
in voting. One must not only protect voter registration tables with proven privacy techniques,
but also the election outcome itself. To see how an individual’s vote can be inferred by observing
the winner of the election, we consider the following example. Suppose Alice cast a vote in an
election, and then the winner is announced. Further suppose that an adversary can accurately
estimate other votes from questionnaires or by machine learning from the other voters’ social
media, and it turns out these other votes ended up with a tie among the candidates. In this case,
the adversary can distinguish Alice’s vote even if he knows nothing about Alice, since she must
have voted for the winner as the tie-breaker.

The strict definition of differential privacy means the mere possibility of the above scenario
is a privacy violation. Moreover, ties do occur more often than expected in real life elections;
e.g., 9.2% of STV elections on Preflib election data [106] are tied [125]. One can possibly
consider another formal privacy definition that accepts the risk of the (arguably unlikely) event
of deanonymizing Alice’s vote in the above example. For example, it can take into account an
attacker’s uncertainly on votes in the election stemming from machine learning methods, or low

Most of the results in this chapter have been published in [103].
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likelihood of ties. However, even so it is unclear how to quantitatively measure the effect of such
uncertainty, and how (or whether) privacy differs for different voting rules.

Motivated by the privacy concern in voting, in this chapter we focus on the following key
question.

How private are commonly-used voting rules?

The importance of answering this question is both practical and theoretical. On the practical
side, minimizing the amount of an individual voter’s information leakage from voting rules helps
protect against censorship, coercion, and vote buying. On the theoretical side, privacy provides
a new angle to comparing voting rules and designing new ones.

A first attempt would be to employ differential privacy (DP) [58] which we introduced for-
mally in Ch. 2, Def. 4. DP is a measure of privacy that has been widely-accepted and widely-
applied in the cryptographic community. Below, we re-introduce the definition of DP in the
language of voting. Recall that mathematically, a voting rule f v for n ∈ N voters is a map-
ping f v : Un → Range(f v), where U is the set of all possible votes; Un is a dataset of votes
called a preference profiles (here, we consider preference profile with n votes); the range of the
function f v, Range(f v) is the set of all possible outcomes of voting, e.g. possible winners or
histograms/tallies of votes. Then we say f v is (ε, δ)−differentially private if for any pair of pref-

erence profiles ~X ∈ Un and ~X ′ ∈ Un that only differ on one vote, and any subset of outcomes
S ⊆ Range(f v), the following inequality holds:

Pr
[
fv( ~X) ∈ S

]
≤ eε Pr

[
fv( ~X ′) ∈ S

]
+ δ. (3.1)

Smaller ε, δ are desirable as it means the outcome of f v is affected less by the change of one
vote, and thus reveals less about an individual voter. Note in general f v must be randomized to
satisfy Inequality 3.1; indeed [84, 98, 121] achieved DP via randomized voting.

Yet most, if not all, voting rules used in high-stakes political elections are deterministic.
Most randomized voting rules suffer from difficulties in verifying implementation correctness—a
prominent example being the controversy in the 2016 Democratic primary election in Iowa [48].
In other words, randomized voting can act against voter incentives, by bringing doubt on the
legitimacy of the election winner. Unfortunately, the randomness in Inequality 3.1 above comes
from the voting rule itself, so deterministic rules cannot achieve DP except with the trivial
parameter of δ ≥ 1, which always holds. We present the following Example 3 to show more
concretely why this is the case.

Example 3 (DP fails for deterministic voting rules). Consider the plurality rule for two candidates
{a, b} and three voters (n = 3). We have U = Range(f v) = {a, b}. In Inequality 3.1, let
~X = (a, a, b), ~X ′ = (b, a, b), and S = {a}. Then, (Inequality 3.1) becomes 1 ≤ eε × 0 + δ,
which means that δ ≥ 1.

3.1.1 Overview of our contributions

To overcome the critical limitation of DP in high-stakes voting scenarios, we study the privacy
of deterministic voting rules using distributional differential privacy (DDP) [22], another well-
accepted notion of privacy that works for deterministic functions. Informally, DDP measures the
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amount of individual information leakage, while assuming the adversary only has uncertain infor-
mation about voter preferences—due to e.g., the randomness from a machine learning algorithm.
Our result on the DDP of commonly-used voting rules carries the following encouraging message:

Main Message 1: Many commonly-used voting rules achieve good DDP in natural
settings.

More precisely, we focus on a natural DDP setting where the adversary’s information is
represented by a set of i.i.d. distribution’s over preference profiles, denoted by ∆ ⊆ Π(U), where
Π(U) is the set of all probability distributions over U with full support. A voting rule f v’s DDP
is now measured by three parameters (ε, δ,∆). A deterministic function is DDP (Definition 17)
if it satisfies an inequality similar to that in DP, but now the randomness is provided by the
adversary’s uncertainty about the profile ~X, represented by ∆. Like DP, smaller ε and δ in DDP
are more desirable as they represent less information leakage.

With DDP, we can quantitatively measure the privacy of the histogram rule Hist, which
outputs the frequency of each type of vote in the preference profile, in the following Theorem 1.
As an immediate consequence, many common voting rules also achieve good privacy.

Theorem 1 (DDP for Hist). Given any U = {x1, . . . , x`} and ∆ ⊆ Π(U) with |∆| < ∞,

let pmin = minπ∈∆,i≤`(π(xi)). For any n ∈ N and any ε ≥ 2 ln
(

1 + 1
pminn

)
, Hist for n voters is

(ε, δ,∆)-DDP where δ = exp(−Ω(npmin[min(2 ln(2), ε)]2)).
Theorem 1 states that Hist is private with good parameters, as even a small ε results in δ that

is considered negligible in cryptography literature. The winner of many commonly-used voting
rules depends only on the outcome of Hist, and thus contain (often strictly) less information
than Hist. Thus, they achieve at least as good privacy w.r.t. DDP as simply outputting the
histogram.

Next, we highlight that DDP (as well as DP and its variants) parameters only describe loose
bounds on privacy. For example, by definition if a voting rule satisfies (ε, δ,∆)-DDP, it also
satisfies (ε+ 0.1, δ + 0.1,∆)-DDP. To compare the privacy-preserving capability of voting rules,
we introduce the notion of exact distributional differential privacy (eDDP), whose parameters
describe tight bounds on ε and δ. We focus on the ε = 0 case as a first step to compare various
voting rules with their eDDP in the δ parameter. Our results on the eDDP of commonly-used
voting rules carry the following message:

Main Message 2: For many combinations of commonly-used voting rules and ∆, the
(0, δ,∆)-eDDP exhibits a dichotomy between δ = Θ(

√
1/n) and δ = exp(−Ω(n)).

More precisely, we prove the following dichotomy theorem for two candidates {a, b} and α-
biased majority rules with α ∈ (0, 1), which chooses a as the winner iff at least αn out of n votes
prefer a.

Theorem 2 (Dichotomy in Exact DDP for α-Majority Rules over Two Candidates,
Informal) Fix two candidates {a, b} and ∆ ⊆ Π({a, b}) with |∆| < ∞. For any α ∈ (0, 1),
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the α-biased majority rule is (0, δ,∆)-eDDP for all n, where δ is either Θ(
√

1/n), when ∆
contains a distribution π with π(a) = α, or exponentially small otherwise.

For more than two candidates, we prove the following dichotomy theorem for a large family
of voting rules and ∆ ⊆ Π(U).

Theorem 4 (Dichotomy in Exact DDP of A Large Class of Voting Rules and ∆, Infor-
mal) For any fixed number of candidates, and any voting rule in a large family, the (0, δ,∆)-
eDDP is δ = Θ(

√
1/n), when ∆ contains the uniform distribution, or δ = exp(−Ω(n)), when

∆ is finite and does not contain any unstable distributions.
Intuitively, a distribution π is unstable under a voting rule f v if adding small perturbations can

cause a different candidate to win (Definition 21). Instead of conducting case-by-case studies of
eDDP for commonly-used voting rules, we prove Theorem 4 for a large family of voting rules called
generalized scoring rules [127] that further satisfy monotonicity, local stability, and canceling-out.
We show that many commonly-used voting rules satisfy these conditions (Section 3.4.2). We also
compute and compare the concrete δ values for small elections (Table 3.1 below, and Table 3.2
in Section 3.5). Intuitively, 2-approval and plurality are the most private in the list, since votes
only reveal the voters’ top one or two candidates. Borda, on the other hand, uses the voters’
entire rankings to decide the winner, and thus is the least private.

f v Borda STV Maximin Plurality 2-approval

δ(n)
1√

1.347n+ 0.5263

1√
1.495n+ 0.02669

1√
1.553n+ 4.433

1√
1.717n− 0.09225

1√
1.786n+ 0.3536

Table 3.1: δ values in (0, δ,∆)-eDDP for some commonly-used voting rules under the i.i.d. uniform

distribution, m = 3 and n ≤ 50. From left to right, we rank rules from least to most private.

3.1.2 Related works

The first works on DP described how one can create mechanisms for answering standard statistical
queries on a database (e.g., number of records with some property or histograms) in a way
that satisfies the DP definition. This ignited a vast and rapidly evolving line of research on
extending the set of mechanisms and achieving different DP guarantees—we refer the reader
to [60] for an (already outdated) survey—to a rich literature of relaxations to the definition, e.g.,
[21,27,57,101], that capture among others, noiseless versions of privacy, as well as works studying
the trade-offs between privacy and utility of various mechanisms [22, 30, 71, 83, 107].

Generalized Scoring Rules (GSRs) is a class of voting rules that include many commonly
studied voting rules, such as Plurality, Borda, Copeland, Maximin, and STV [127]. It has been
shown that for any GSR the probability for a group of manipulators to be able to change the winner
has a phase transition [110, 128]. An axiomatic characterization of GSRs is given in [128]. The
most robust GSR with respect to a large class of statistical models has been characterized [42].
Recently GSRs have been extended to an arbitrary decision space, for example to choose a set of
winners or rankings over candidates [126].
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Relaxations to Differential Privacy and Noiseless Functions and Distributional Differen-
tial Privacy (DDP) Relaxations to differential privacy have been proposed to allow functions
with less to no noise to achieve a DP-style notion of privacy. Kasiviswanathan and Smith [89]
formally proved that differential privacy holds in presence of arbitrary adversarial information,
and formulated a Bayesian definition of differential privacy which makes adversarial information
explicit. Hall et al. [81] suggested adding noise to only certain values (such as low-count com-
ponents in histograms) to achieve a relaxed notion of Random Differential Privacy with higher
accuracy. Taking advantage of (assumed) inherent randomness in the database, several works
have also put forward DP-style definitions which allow for noiseless (i.e., deterministic) functions.
Duan [57] showed that sum queries of databases with i.i.d. rows can be outputted without noise.
Bhaskar et al. [27] introduced Noiseless Privacy for database distributions with i.i.d. rows, whose
parameters depend on how far the query is from a function which only depends on a subset
of the database. Motivated by Bayesian mechanism design, Leung and Lui [101], suggested
noiseless sum queries and introduced Bayesian differential privacy for database distributions with
independent rows, where the auxiliary information is some number of revealed rows.

These ideas were generalized and extended by Bassily et al. who introduced distributional
differential privacy (DDP) [21,79]. Informally, given a distribution (X,Z), where X is the adver-
sary’s uncertainty in the database distribution and Z is a parameter used for proving composition
theorems (i.e. computing DDP when outputting results from two functions that are both DDP
with some parameters), we say a function f v is (ε, δ,∆ = {(X,Z)})-DDP if its output distri-
bution f v(X)|Z can be simulated by a simulator that is given the database missing one row.
In these works, deterministic functions which have been shown to satisfy DDP are exact sums,
truncated histograms, and stable functions where with large probability, the output is the same
given neighboring databases.

3.1.2.1 Differential privacy in rank aggregation

Differential privacy [58] has been used to add privacy to rank aggregation, functions whose
inputs are rankings/linear orders (e.g., voting rules aggregate votes, which are rankings on a set
of candidates): [121] applied Gaussian noise to the histogram of linear orders, while [84] used
Laplace and Exponential mechanisms applied to specific voting rules. [98] also developed a method
of random selection of votes to achieve differential privacy. One interesting aspect of adding noise
to the output that was observed in [28, 98] is that it enables an approximate strategy-proofness;
the idea here is that the added noise dilutes the effect of any individual deviation, thereby making
strategies which would slightly perturb the outcome irrelevant. We remark that if one wishes to
achieve DP for a large number of voting rules, well-known DP mechanisms (like adding Laplace
noise [59]) can be applied to rules in GSR in a straightforward way, by adding noise to each
component of the score vector and outputting the winner based on the noised score vector. In
contrast, our results focus on the exact privacy of deterministic voting rules, which are more
commonly used.

In this chapter, we compare deterministic functions by their exact privacy. In differential
privacy literature where functions must be randomized, their accuracy, or utility, is often used to
compare them. A number of works have defined utility as a metric which describes the comparative
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desirability of ε-DP mechanisms. In [107], utility is an arbitrary user-defined function, used in
the exponential mechanism. The works of [22, 30, 83] define utility in terms of error, where the
closer (by some metric) the output of the function, which uses this mechanism to apply noise, is
from the desired (deterministic) query’s, the higher the utility; the definition of [71] in addition
allows the user to define as a parameter, the prior distribution on the query output. In contrast,
our results imply that in the context of distributional differential privacy, voting rules achieve a
well-accepted notion of privacy while preserving perfect accuracy/utility.

3.1.3 Summary of contributions

To the best of our knowledge, we are the first to illustrate how to measure privacy in high-stakes
voting using (e)DDP in a natural setting. We will see that the problem, though challenging,
can be solved by our novel trails technique. Below we summarise our conceptual and technical
contributions.

Conceptual overview. Our first conceptual contribution is the application of DDP to deter-
ministic voting rules. We note that the truncated histogram result of [21] does not suffice, since
in general, votes are not removed in an election. Moreover, we prove our results in a simpler
definition than DDP; the equivalence of this definition and DDP is proven in Lemma 1. Our
second conceptual contribution is the introduction of exact DDP, addressing the issue that pa-
rameters of DDP (and other relaxations of DP [21,27,57,79,81,89]) describe only upper bounds
on privacy. We are not aware of other works that explicitly propose to characterize tight bounds
on the privacy parameters ε and δ.

Technical contributions. Our first theorem (Theorem 1) is quite positive, showing the privacy
of outputting histograms. Theorems 2, 3, and 4 characterize eDDP in terms of δ values by fixing
ε = 0. We do so for the two reasons: (1) it is the common convention to compute δ based on a
fixed ε for DP or DDP; (2) ε = 0 is the most informative choice, since Theorem 1 shows that even
for small non-zero ε, any difference we can observe in the δ of two voting rules is exponentially
small—considered negligible in cryptography literature. While our theorems appear similar and
related to the dichotomy theorems on the probability of ties in voting [126, 127], the definition
and mathematical analysis are quite different, and previous techniques do not work for all cases;
see more discussions in the proof sketch for Theorem 4. To address the challenge, we developed
the trails technique, which significantly simplifies calculations. Informally, the trails technique
generalises the intuitive idea that the privacy of voting rules depends on the probability of a tie
in the voting outcome.

Generality of our setting. As the first work towards answering our key question, we assume the
adversary’s beliefs are modeled by a set of i.i.d. distributions over the votes. A special case is the
i.i.d. uniform distribution, which is known as the impartial culture assumption in social choice [80].
Extending to general (ε, δ), and non-i.i.d. distributions is an important and challenging future
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direction. Lastly, though our definitions and results are presented in the context of voting for the
sake of presentation, they can easily be extended to general applications.

Chapter organization. In Section 3.2, we introduce the version of the DDP definition which
we will use in all our analyses. We prove the privacy of outputting a histogram of votes, and
as corollary, show that all anonymous voting rules—those that depend only on the histogram of
votes—also achieve this arguably good privacy. In Section 3.3, we introduce the notion of exact
DDP (eDDP), in order to compare the privacy of different voting rules. We prove the eDDP
of a class of two-candidate voting rules, using this as a demonstration of our new trails proof
technique. In Section 3.4, we move on to voting rules with an arbitrary number of candidates.
We first establish the eDDP of the histogram function, which intuitively informs us of the “worst
case” privacy for all anonymous voting rules. Then, we prove the eDDP of a large subset of
generalized scoring rules (GSRs), showing the existence of an asymptotic separation of privacy
among voting rules. Finally, in Section 3.5, we directly compute of privacy for various voting
rules for a limited number of voters. This calculation both confirms our theoretical results, and
allows us to rank the privacy of these voting rules using concrete numbers.

3.2 Distributional differential privacy for voting

Our use of distributional differential privacy (DDP) is motivated by the unsuitability of differential
privacy (DP) to analyze deterministic voting rules. In the rest of this chapter, we will discuss
our definitions and results with respect to voting, although they could be generalized to other
applications.

At a high level, the DDP of a (deterministic or randomized) function is characterized by three
parameters (ε, δ,∆), where ε and δ are privacy parameters similar to DP, and ∆ is a set describing
the adversary’s knowledge about the preference profile. To simplify presentation, below we will
introduce a simpler alternative definition of DDP which we will use in our analyses. While this
alternative definition is not in general equivalent to DDP, it is equivalent under our settings.
The difference between this simper version (Def. 17) and DDP (Def. 5) is that we do not use
the“simulator” function h, and the definition also omits the “auxiliary information” Z in ∆.
Roughly, Z encodes the additional information leakage from composing multiple functions, an
aspect we do not consider as our goal is to compare voting rules. Instead, we encode adversarial
knowledge of the votes using ∆ ⊆ Π(U), i.e. a set of preference profile distributions where each
vote is i.i.d..

Definition 17 (DDP studied in this chapter). For any ∆ ⊆ Π(U), ε > 0, and δ > 0, a voting
rule f v is (ε, δ,∆)-DDP if for every π ∈ ∆, i ≤ n, x, x′ ∈ U , and S ⊆ Range(f v), the following
inequality holds.

Pr ~X∼π(f v( ~X) ∈ S| ~Xi = x) ≤ eε Pr ~X∼π(f v( ~X) ∈ S| ~Xi = x′) + δ, (3.2)

where ~X is a preference profile of n votes where each vote is i.i.d. generated from π.
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Lemma 1 (Equivalence of definitions). We denote the DDP defined in [21] by simulation-based
DDP1. For any U , let ∆ ⊆ Π(U) and ∆′ = (∆, Z = ∅) (where Z is a parameter in the [21]
definition). Suppose f v is (ε, δ,∆′)-simulation-based DDP, then f v is (2ε, (1 + eε)δ,∆)-DDP for
our Definition 17. Conversely, if f v is (ε, δ,∆)-DDP for Definition 17 then f v satisfies (ε, δ,∆′)-
simulation-based DDP.

Proof. We prove the first statement, that is, if f v is (ε, δ,∆′)-simulation-based DDP [21], then
f v is (2ε, (1 + eε)δ,∆)-DDP of Definition 17.

By the definition of f v being (ε, δ,∆′)-simulation-based DDP, the function h has to satisfy

the below inequalities for any (π, Z) ∈ ∆′, any i, and x ∈ Supp( ~Xi) (for ~X ∼ π). With Z = ∅,
we can write the inequalities in the DDP definition without Z as

Pr
~X∼π

(f v( ~X) ∈ S | ~Xi = x) ≤ eε Pr
~X∼π

(h( ~X−i) ∈ S | ~Xi = x) + δ

Pr
~X∼π

(h( ~X−i) ∈ S| ~Xi = x) ≤ eε Pr
~X∼π

(f v( ~X) ∈ S| ~Xi = x) + δ (3.3)

(We make ~X ∼ π implicit to ease presentation.) Now consider any x′ ∈ Supp( ~Xi), possibly
different from the x above. By the definition of DDP, the inequalities should also hold for x′, i.e.

Pr(f v( ~X) ∈ S | ~Xi = x′) ≤ eε Pr(h( ~X−i) | ~Xi = x′) + δ

Since h is not given ith entry of the database, its output does not depend on the value of the ith
row. Moreover, if database rows are independent, the distributions ~X−i| ~Xi = x′ = ~X−i| ~Xi = x.

Thus Pr(h( ~X−i) | ~Xi = x′) = Pr(h( ~X−i) ∈ S | ~Xi = x). So,

Pr(f v( ~X) ∈ S | ~Xi = x′) ≤ eε Pr(h( ~X−i) ∈ S | ~Xi = x) + δ

Pr(f v( ~X) ∈ S | ~Xi = x′) ≤ eε(eε Pr(f v( ~X) ∈ S| ~Xi = x) + δ) + δ (By Equation 3.3 above.)

Pr(f v( ~X) ∈ S | ~Xi = x′) ≤ e2ε Pr(f v( ~X) ∈ S | ~Xi = x) + eεδ + δ

Thus, we have shown that for all x, x′ ∈ Supp( ~Xi) (and all i),

Pr(f v( ~X) ∈ S | ~Xi = x′) ≤ e2ε Pr(f v( ~X) ∈ S | ~Xi = x) + (eε + 1)δ

So, f v is (2ε, (1 + eε)δ,∆)-DDP, proving the first statement.

We now prove the second statement. That is, if f v is (ε, δ,∆)-DDP of Definition 17 then f v

is (ε, δ,∆′)-simulation-based DDP. To do so, we define the function h to be the algorithm which

inserts any x′ ∈ Supp( ~Xi) to the missing ith row of the database, and apply f v to the result.

1(Following the function h being referred to as the “simulator” in [21])
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By independence of rows, Pr(h( ~X−i) | ~Xi = x) = Pr(h( ~X−i) | ~Xi = x′) by our definition of h,

equal to Pr(f v( ~X) | ~Xi = x′). Then, for any ~X ∈ ∆, i, and x, x′ ∈ Supp( ~Xi),

Pr(h( ~X−i) ∈ S | ~Xi = x) = Pr(f v( ~X) ∈ S | ~Xi = x′) ≤ eε Pr(f v( ~X) ∈ S | ~Xi = x) + δ

by inequality of Definition 17. This proves the second statement.

3.2.1 Privacy of the histogram function

We show that the histogram function Hist (Def. 6) satisfies good DDP. As corollary, all voting
rules (whether deterministic or randomized) whose output only depends on the histogram of votes
also satisfy good DDP. We will show this corollary by proving that DDP (both the definition of [21]
and our simplification) is immune to post-processing (Lem. 2), a notion originally defined for DP.

Theorem 1 (DDP of Hist). Given any k ∈ N. U = {x1, . . . , x`} and ∆ ⊆ Π(U) with |∆| <∞,
let pmin = minπ∈∆,i≤`(π(xi)). Then Hist is (ε(n), δ(n),∆)-DDP where ε(n) = 2 ln(1 + 1

pminn
)

and δ(n) = exp(−Ω(npmin[min(2 ln(2), ε)]2)), where n is the number of votes in the preference
profile.

Proof. At a high level, the proof is similar to Theorem 8 of [101].
Fix π ∈ ∆. Since votes are i.i.d. and all i ∈ [n] are equivalent for the histogram, we simplify

Pr ~X∼π(Hist( ~X) ∈ S| ~Xi = x) as Pr(Hist(x, ~X−1) ∈ S), where ~X−1 refers to ~X without the
first vote.

We need to show that for all xi, xj ∈ {x1, · · · , x`}, and all S ⊆ N`:

Pr(Hist(xi, ~X−1) ∈ S) ≤ eε Pr(Hist(xj, ~X−1) ∈ S) + δ

We observe that for any set B and x:

Pr(Hist(x, ~X−1) ∈ S) = Pr(Hist(x, ~X−1) ∈ S ∩ B) + Pr(Hist(x, ~X−1) ∈ S ∩ B) (3.4)

≤ Pr(Hist(x, ~X−1) ∈ S ∩ B) + Pr(Hist(x, ~X−1) ∈ B) (3.5)

Let B be the set of all histogram t ∈ N` where ti > pi(n − 1)eε/2 and tj < pj(n − 1)e−ε/2.
Fix a choice of ε > 2 ln(1 + 1

pminn
). We claim that for δ = exp(Ω(npmin(min(2 ln(2), ε))2), the

following hold:

Claim 1: Pr(Hist(xi, ~X−1) ∈ S ∩ B) ≤ eε Pr(Hist(xj, ~X−1) ∈ S ∩ B)

Claim 2: Pr(Hist(xi, ~X−1) ∈ B) ≤ δ
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If both claims are true, then by Inequality (3.5),

Pr(Hist(xi, ~X−1) ∈ S) ≤ Pr(Hist(xi, ~X−1) ∈ S ∩ B) + Pr(Hist(xi, ~X−1) ∈ B)

≤ eε Pr(Hist(xj, ~X−1) ∈ S ∩ B) + δ

≤ eε Pr(Hist(xj, ~X−1) ∈ S) + δ

which proves the theorem. Below we will prove both claims.

Claim 1 proof:
Since all entries in random variable ~X−1 are i.i.d., the random variable
Hist( ~X−1) which outputs the histogram of the database has distribution equal to the multinomial
distribution on n− 1 trials and ` events:

Pr(Hist( ~X−1) = (t1, · · · , t`)) =
(n− 1)!

t1! · · · t`!
pt11 · · · p

t`
`

where ti is the count of entries with the value xi and pi is the probability for an entry to have
the value xi.

Thus,

Pr(Hist(xi, ~X−1) = (t1, · · · , t`)) =
(n− 1)!

t1! · · · (ti − 1)! · · · t`!
pt11 · · · p

ti−1
i · · · pt``

and

Pr(Hist(xj, ~X−1) = (t1, · · · , t`)) =
(n− 1)!

t1! · · · (tj − 1)! · · · t`!
pt11 · · · p

tj−1
i · · · pt``

So, for every t = (t1, · · · , t`) ∈ S ∩ B:

Pr(Hist(xi, ~X−1) = t)

Pr(Hist(xj, ~X−1) = t)
=

(n− 1)!

t1! · · · (ti − 1)! · · · t`!
pt11 · · · p

ti−1
i · · · pt``

(n− 1)!

t1! · · · (tj − 1)! · · · t`!
pt11 · · · p

tj−1
i · · · pt``

=
ti
pi
· pj
tj

=
ti

pi(n− 1)
· pj(n− 1)

tj

By definition of B, ti > pi(n− 1)eε/2 or tj < pj(n− 1)e−ε/2,

so t ∈ B has ti ≤ ti(n− 1)eε/2 and tj ≥ pj(n− 1)e−ε/2

≤ pi(n− 1)eε/2

pi(n− 1)

pj(n− 1)

pj(n− 1)e−ε/2
= eε/2 × eε/2 = eε
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This proves Claim 1.

Claim 2 proof: Recall B is the set of all histogram t ∈ N` where ti > pi(n − 1)eε/2 and

tj < pj(n − 1)e−ε/2. For any i ∈ {1, · · · , `} let Hist(x, ~X−1)i denote ith component of the

random variable Hist(x, ~X−1).

Pr(Hist(xi, ~X−1) ∈ B)

= Pr
(
Hist(xi, ~X−1)i > pi(n− 1)eε/2 or Hist(xi, ~X−1)j < pj(n− 1)e−ε/2

)
≤ Pr

(
Hist(xi, ~X−1)i > pi(n− 1)eε/2

)
+ Pr

(
Hist(xi, ~X−1)j < pj(n− 1)e−ε/2

)
(By union bound)

= Pr
(
1 + Bin(n− 1, pi) > pi(n− 1)eε/2

)
+ Pr

(
Bin(n− 1, pj) < pj(n− 1)e−ε/2

)
(Where Bin(n, p) denotes binomial r.v. with n trials and success probability p)

= Pr(Bin(n− 1, pi) > pi(n− 1)(eε/2 − (pi(n− 1))−1))

+ Pr(Bin(n− 1, pj) < pj(n− 1)e−ε/2)

The random variable Bin(n− 1, pi) has mean µ = pi(n− 1). When

2 ln(1 +
1

pi(n− 1)
) < 2 ln(1 +

1

pmin(n− 1)
) < ε ≤ 2 ln(2) < 2 ln(2 +

1

pi(n− 1)
)

we have 0 < β = eε/2 − (pi(n− 1))−1 − 1 < 1. By Chernoff bound,

Pr(Bin(n− 1, pi) > (1 + β)µ ≤ e−µβ
2/3

= exp(−Ω(pi(n− 1)(eε/2 − (pi(n− 1))−1 − 1)2))

= exp(−Ω(pinε
2))

The random variable Bin(n − 1, pj) has mean µ = pj(n − 1). By Chernoff bound, for any
0 < β = 1− e−ε/2 < 1 (ie. ε > 0),

Pr(Bin(n− 1, pj) < (1− β)µ) ≤ e−µβ
2/2

= exp(−Ω(pj(n− 1)(1− e−ε/2)2))

= exp(−Ω(pjnε
2))

So that:

Pr(Hist(xi, ~X−1) ∈ B) ≤ Pr(Bin(n− 1, pi) > pi(n− 1)(eε/2 − (pi(n− 1))−1))

+ Pr(Bin(n− 1, pj) < pj(n− 1)e−ε/2)

≤ exp(−Ω(pinε
2)) + exp(−Ω(pjnε

2))

≤ exp(−Ω(pminnε
2)) = δ
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for 2 ln(1 + 1
pmin(n−1)

) < ε ≤ 2 ln(2). To get rid of the upper bound on ε, notice when

ε = 2 ln(2), δ = exp(−Ω(pminn(2 ln(2))2)) suffices to satisfy the inequality

Pr(Hist(xi, X−1) ∈ S) ≤ eε Pr(Hist(xj , X−1) ∈ S) + δ

Thus, when ε > 2 ln(2), the same δ = exp(Ω(npmin[min(2 ln(2), ε)]2)) =
exp(−Ω(npmin(2 ln(2))2)) also suffices, as a larger ε only makes the right hand side of
the inequality larger.

This proves Claim 2.

3.2.1.1 Corollary for voting rules

The privacy of the histogram function Hist implies the privacy of voting rules which depend on
the histogram of votes—i.e., anonymous voting rules, where the identity of the voter does not
matter—are also private. This follows from the fact that similar to differential privacy, DDP is
immune to post-processing. Specifically, we prove that composing any (ε, δ,∆)-DDP f v with a
deterministic function g (as we focus on deterministic voting rules) results in a (ε, δ,∆)-DDP
function.

Looking ahead, we note that immunity to post-processing is not a property of exact privacy
which we define in the next section, since exact privacy describes tight bounds on ε, δ.

Lemma 2 (Immunity to post-processing). Suppose f : U∗ → O is (ε, δ,∆)-DDP. Let g : O → O′
be a deterministic function. Then g ◦ f : U∗ → O′ is also (ε, δ,∆)-DDP.

Proof. For any π ∈ ∆, x, x′ ∈ Supp( ~Xi) and S ⊆ O′, let W = {w : g(w) ∈ S}. Then

Pr(g(f( ~X)) ∈ S | ~Xi = x)

= Pr(f( ~X) ∈ W | ~Xi = x) (By definition of W)

≤ eε Pr(f( ~X) ∈ W | ~Xi = x′) + δ (By f being (ε, δ,∆)-DDP)

= eε Pr(g(f( ~X)) ∈ S | ~Xi = x) + δ (By definition of W)

Corollary 1. We call a voting rule anonymous if its output does not depend on the identity
of the voter. All anonymous voting rules are (ε(n), δ(n),∆)-DDP where ∆ ⊆ Π(U), ε(n) =
2 ln(1 + 1

pminn
) and δ(n) = exp(−Ω(npmin[min(2 ln(2), ε)]2)), where n is the number of votes in

the preference profile.

3.3 The exact privacy of voting rules: two candidates

As we briefly discussed in the introduction Section 3.1.1, the definitions of DDP (and DP)
are unsuitable for comparing the privacy of voting rules, as they describe only a possibly loose
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bound on privacy. To resolve this, in this section we present the definition of exact distributional
differential privacy (exact DDP or eDDP). We will then introduce a technique called the trails
technique which will in the next section aid us in analyzing exact privacy of general voting rules.
As a toy application of this technique, we characterize (0, δ,∆)-eDDP for two candidates under
any α-biased majority rule.

Intuitively, a function has exact privacy with parameters ε and δ if it cannot be private
with strictly better parameters. We remark that this definition can easily be altered to define
(ε, δ)-exact differential privacy (eDP) by omitting ∆.

Definition 18 (Exact distributional differential privacy (eDDP)). A function f is (ε, δ,∆)-exact
distributional differentially private (eDDP) if it is (ε, δ,∆)-DDP and there does not exist (ε′ ≤
ε, δ′ < δ) nor (ε′ < ε, δ′ ≤ δ) such that f is (ε′, δ′,∆)-DDP.

The α-biased majority rule, denoted by f vα, over two candidates (a, b) outputs a as the winner
if at least α fraction of votes prefer a over b. The most simple example of this type of voting rule
is plurality (Sec. 2.3) with two candidates, which is an α = 0.5-biased majority rule. Another
example is supermajority with α > 0.5, which has been used in government decisions around the
world. We categorize the exact privacy of α-biased majority rules in Theorem 2, which we will
prove using the trails technique we present in the next subsection.

3.3.1 Our tool to analyze privacy: trails technique

Let us describe the trails technique using a simple, toy example: suppose there are two candidates
{a, b}, and n = 5 votes. Let f v0.5 be the majority (plurality) rule where ties are broken in favor of
a, i.e. α = 0.5. We want to compute (0, δ,∆)-eDDP of f v0.5 for any ∆ ⊆ Π({a, b}). In light of
Definitions 17 and 18, we have:

δ = max
S,x,x′,i,π∈∆

[
Pr ~X∼π(fv0.5( ~X) ∈ S| ~Xi = x) −Pr ~X∼π(fv0.5( ~X) ∈ S| ~Xi = x′)

]
. (3.6)

Now, the majority rule is anonymous, that is, the identity of the voter is irrelevant and
it chooses the winner only based on the histogram of votes (i.e. how many people voted for
whom). We can thus write f v0.5 = f ◦Hist, where t = (ta, tb) and f(t) outputs a if ta ≥ tb and
outputs b otherwise. Then, Equation (3.6) can be rewritten with probabilities over histograms,

which is easier to compute (below, ~X ∼ π is implicit).

δ = max
S,x,x′,i,π∈∆

[
Pr(f(Hist( ~X)) ∈ S| ~Xi = x)− Pr(f(Hist( ~X)) ∈ S| ~Xi = x′)

]
= max
S,x,x′,i,π∈∆

 ∑
t : f(t)∈S

Pr(Hist( ~X) = t| ~Xi = x)−
∑

t : f(t)∈S

Pr(Hist( ~X) = t| ~Xi = x′)

 . (3.7)

Intuitively, we define trails as follows: if S = {a}, then T ≡ {t : f(t) ∈ S} =
{(5, 0), (4, 1), (3, 2)} is an example of a trail. Intuitively, a trail T is a set of histograms (outputs
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of Hist function) which are consecutive in the sense that, starting from some histogram t, we can
list exactly the elements of T by iteratively subtracting 1 from and adding 1 to two components
of t, respectively. In our example, this corresponds to iteratively changing one vote for a to a
vote for b. We see that T can be listed in such a way, starting from entry Enter(T) = (5, 0)
and ending at exit Exit(T) = (3, 2), by iteratively subtracting from the 1st component and
adding to the 2nd component of (5, 0) (thus we say the direction of T is (1, 2)). We denote by
End(a) (which we will define formally and use extensively in the proof of Theorem 4) the set of
histograms which are exits of the longest trail, along any direction, where a is the winner in all
histograms in the trail. In this example End(a) = {(3, 2)}. See Figure 3.1.

ta

tb
(0, 5)

Trail T with 

Enter(T) = (5, 0)

and Exit(T) = (3, 2)

(2, 3)

(1, 4)
a wins

b wins

(4, 1)

(3, 2)∈End(a)

(5, 0)

Figure 3.1: A trail for two candidates. A graph of number of votes for candidate a (= ta) versus
votes for candidate b (= tb). Each point in the line is a histogram where the total number of votes is
n = 5. The set {(5, 0), (4, 1), (3, 2)} forms a trail.

We now give intuition for our key Lemma 3 presented below using this example. Suppose in
Equation (3.7) the maximizing S is {a} (so that {t : f(t) ∈ S} = T), x = a, and x′ = b. Then,
for any i, and any π ∈ ∆:

δ =
∑

t∈{(5,0),(4,1),(3,2)}

Pr(Hist( ~X) = t| ~Xi = a)−
∑

t∈{(5,0),(4,1),(3,2)}

Pr(Hist( ~X) = t| ~Xi = b).

The core of Lemma 3 is the observation that when votes are independent (e.g. when ∆ ⊆
Π({a, b})), then for all t = (ta, tb) such that ta > 0, the following holds:

Pr(Hist( ~X) = (ta, tb)| ~Xi = a) = Pr(Hist( ~X) = (ta − 1, tb + 1)| ~Xi = b).

In light of this, Pr(Hist( ~X) = (5, 0)| ~Xi = a) cancels out with Pr(Hist( ~X) = (4, 1)| ~Xi = b),

and Pr(Hist( ~X) = (4, 1)| ~Xi = a) cancels out with Pr(Hist( ~X) = (3, 2)| ~Xi = b). This leaves:
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δ = Pr(Hist( ~X) = (3, 2) = Exit(T) = End(a)| ~Xi = a)− Pr(Hist( ~X) = (5, 0) = Enter(T)| ~Xi = b).

(3.8)

We note that here Pr(Hist( ~X) = Enter(T)| ~Xi = b) = 0, but this does not hold generally
for all trails for m ≥ 2. This calculation can be extended to the more general Lemma 3 below.
Before that, let us formally define trails. For any histogram t = (t1, · · · , t`) ∈ N`, any z ∈ Z and
j ≤ `, we let (t1, · · · , t`) + zxj denote the histogram (t1, · · · , tj + z, · · · t`).

Definition 19 (Trails). Given a pair of indices (j, k) where j 6= k, a histogram t, and a length q,
we define the trail Tt,xj ,xk,q = {t− zxj + zxk) : 0 ≤ z ≤ q}, where (j, k) is called the direction
of the trail, t is then the entry of this trail, also denoted by Enter(Tt,xj ,xk,q), and t− qxj + qxk
is called the exit of the trail, denoted by Exit(Tt,xj ,xk,q).

Alternatively, a trail T can be defined by just its entry and exit and the direction can be
inferred.

Note on End(·) and trails defined on profiles: For voting rules where the identity of voters
does not matter (i.e. anonymous voting rules, such as the generalized scoring rules (GSR) which
we study), the profile of votes is equivalent to the histogram of votes, and thus a trail can simply
be defined on profiles as well. Here, we only give a intuitive idea of the relationship between
End(·) and δ via Eq. 3.8. We define End(·) formally in Definition 23 with respect to trails
defined on profiles, where it is relevant in the proof of Theorem 4.

Lemma 3. Let T be a trail with direction (j, k), and let π ∈ Π(U). For any i, xj, xk ∈ U , we
have:

Pr
~X∼π

(Hist( ~X) ∈ T | ~Xi = xj)− Pr
~X∼π

(Hist( ~X) ∈ T | ~Xi = xk)

= Pr
~X∼π

(Hist( ~X) = Exit(T) | ~Xi = xj)− Pr
~X∼π

(Hist( ~X) = Enter(T) | ~Xi = xk).

Proof. Fix distribution π over n votes, where each vote is independently distributed. For ~X ∼ π,
we recall that we denote ~X−i as the random variable ~X but without the ith vote. The equality
in the lemma comes from the simple observation that when votes are independently distributed,
for any histogram t ∈ N` and any j ∈ [`]

Pr
~X∼π

(Hist( ~X) = t| ~Xi = xj) = Pr
~X∼π

(Hist( ~X−i) = t− xj)

(Below, ~X ∼ π is implicit). Let q be the length of the trail. For any 0 ≤ z < q, let
tz = Enter(T)− zxj + zxk. Then,

Pr(Hist( ~X) = tz| ~Xi = xj)

= Pr(Hist( ~X−i) = tz − xj)
= Pr(Hist( ~X) = tz − xj + xk| ~Xi = xk)

= Pr(Hist( ~X) = tz+1| ~Xi = xk).
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In other words,

Pr(Hist( ~X) ∈ T| ~Xi = xj)− Pr(Hist( ~X) ∈ T| ~Xi = xk)

= Pr(Hist( ~X) = tq| ~Xi = xj)

− Pr(Hist( ~X) = t0| ~Xi = xk)

+
∑

0≤z<q

(
Pr(Hist( ~X) = tz| ~Xi = xj)− Pr(Hist( ~X) = tz+1| ~Xi = xk)

)
= Pr(Hist( ~X) = tq| ~Xi = xj)− Pr(Hist( ~X) = t0| ~Xi = xk)

(Every term in the summation of differences cancels out.)

= Pr(Hist( ~X) = Exit(T)| ~Xi = xj)− Pr(Hist( ~X) = Enter(T)| ~Xi = xk)

Remark. In this subsection’s example, no matter the choice of S, the set {t : f(t) ∈ S} forms
one single trail, but this does not hold in general. Instead, to prove our main theorem we will
partition this set into multiple trails, and apply Lemma 3 to simplify probabilities over each trail.

3.3.2 A simple application of trails technique: α-Biased Majority Rule

We prove the eDDP of α-biased majority voting rules f vα. The following theorem states that
if the probability distribution of votes is split α-(1-α)), then δ = Θ(

√
1/n). As we will see

in Theorem 3, this is the privacy achieved by the histogram function Hist. By immunity to
post-processing (Lem. 2), this implies that such probability distribution incurs the “worst case”
privacy for a voting rule, which intuitively is due to the higher likelihood of ties (where changing
one vote can change the winning candidate).

Theorem 2 (Exact DDP for α-biased majority rules). Fix two candidates {a, b} and ∆ ⊆
Π({a, b}) with |∆| <∞. For any α ∈ (0, 1), the α-biased majority rule f vα is (0, δ,∆)-eDDP for
all n, where

δ = max
p=π(a) : π∈∆

Θ

(√
1

n

[( p
α

)α( 1− p
1− α

)1−α
]n)

.

In particular, δ = Θ
(√

1/n
)

if there exists π ∈ ∆ with π(a) = α; otherwise δ = exp(−Ω(n)).

Proof. For any π ∈ ∆, let p = π(a). Let trails Ta = {t : t = (k, n− k), k ≥ αn} and Tb =
{t : t = (k, n− k), k < αn}.

It follows that any histogram in Ta results in a being the winner, and any in Tb results in
b as the winner. Also, Equation (3.7) implies we should not consider S = {a, b} nor S = ∅
as otherwise that only gives us δ = 0 (the default lower bound on δ). Thus, we only consider
S = {a} (when winner is a, corresponding to trail Ta) or S = {b} (trail Tb). Then Equation
(3.7) becomes (we disregard the value of i since votes are i.i.d.):
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δ = max
j∈{a,b},x,x′

[
Pr ~X∼π(Hist( ~X) ∈ Tj | ~Xi = x)− Pr ~X∼π(Hist( ~X) ∈ Tj | ~Xi = x′)

]
(Equation (3.7))

= max
j∈{a,b},x,x′

[
Pr(Hist( ~X) = Exit(Tj)| ~Xi = x)− Pr(Hist( ~X) = Enter(Tj)| ~Xi = x′)

]
. (Lemma 3)

We first discuss S = {a} whose corresponding trail Ta starts at Enter(Ta) = (n, 0) and
exits at Exit(Ta) = (dαne, b(1− α)nc). Here, x = a and x′ = b maximize δ. Then,

Pr(Hist( ~X) = Enter(Ta)| ~Xi = b) = Pr(Hist( ~X) = (n, 0)| ~Xi = b) = 0,

and

Pr(Hist( ~X) = Exit(Ta) = End(a)| ~Xi = a)

= Pr(Hist( ~X) = (dαne, b(1− α)nc)| ~Xi = a)

= Pr(Hist( ~X) = (dαne − 1, b(1− α)nc))

= pdαne−1(1− p)b(1−α)nc (n− 1)!

dαn− 1e! · b(1− α)nc!

= Θ

[
1√
n
·
(

pn

dαn− 1e

)dαn−1e
·
(

(1− p)n
b(1− α)nc

)b(1−α)nc
]

(Stirling’s formula)

= Θ

(√
1

n

[( p
α

)α( 1− p
1− α

)1−α
]n)

.

The case for S = {b} is the same and Theorem 2 follows by maximizing δ over π ∈ ∆.

3.4 The exact privacy of voting rules: general case

In this section, we apply the trails technique introduced in our previous section to the histogram
function Hist and a class of voting rules called generalized scoring rules (GSR) (Definition 7),
both for arbitrary number of candidates. We first study the (ε = 0, δ,∆)-exact DDP of the
histogram function Hist (Theorem 3) in Section 3.4.1. Then, we characterise the (ε = 0, δ,∆)-
exact DDP of GSRs (Theorem 4) in Section 3.4.2. As corollary, this characterization holds for
most commonly-used voting rules (Corollary 2).

3.4.1 The exact DDP of the histogram function

As a complementary result to our Theorem 1 on the DDP of histograms, we present the exact

DDP of Hist with ε = 0. We show that the histogram function has eDDP of δ = Θ
(

1√
n

)
. As
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we see later in the section about the eDDP of GSRs, this is exactly the “worst case” privacy for
any GSR. This is intuitive: the privacy outputting the winner of an election should be at least as
good as outputting the histogram of votes (which usually contains more information).

Theorem 3 (Exact DDP of histogram). Fix ` ≥ 2, U = {x1, · · · , x`}, and ∆ ⊆ Π(U). If

∀i∀π ∈ ∆ : π[xi] > 0, then for all n ∈ N, Hist of n voters is
(

0, δ(n) = Θ
(√

1
n

)
,∆
)

-eDDP.

Otherwise Hist is (0, 1,∆)-eDDP.

We begin with a proof sketch then proceed with the full proof.

Proof Sketch of Theorem 3. By definition of (e)DDP, if there is some vote that has zero prob-
ability of being cast (which must the case if π(xi) = 0 for some π ∈ ∆ and xi), then it must
be that δ = 1 as Hist is a deterministic function. This is by the same reasoning as to why we
elect to use DDP instead of DP to analyze deterministic voting rules’ privacy. To sketch a more
intuitive version of the proof, we first present the case for ` = 2.

Lemma 4 (Exact DDP for histogram, when ` = 2). Fix U = {x1, x2} and ∆ ⊆ Π(U). The
histogram for n voters is (0,Θ(1/

√
n),∆)-eDDP.

Proof. Consider some π ∈ ∆, and let p = π(a). Without loss of generality (WLOG), let x and
x′ of Equation (3.6) be x1 and x2 respectively (otherwise, rename them). Then, the maximizing
set S in Equation (3.6) is exactly the set of histograms such that

Pr
~X∈π

(Hist( ~X) ∈ S| ~Xi = x1) > Pr(Hist( ~X) ∈ S| ~Xi = x2)

Since votes are i.i.d., these follow the binomial distribution (with n trials). Below we find that S
is the set of histograms (k, n− k) where k > pn.

Pr(Hist( ~X) = (k, n− k)| ~Xi = x1) > Pr(Hist( ~X) = (k, n− k)| ~Xi = x2)

=⇒ pk−1(1− p)n−k (n− 1)!

(n− k)!(k − 1)!
> pk(1− p)n−k−1 (n− 1)!

(n− k − 1)!k!

=⇒ k > pn

Thus, S = {t = (k, n− k) : k > pn}. This set forms a trail T which starts from Enter(T) =
(n, 0) and exits at Exit(T) = (pn+ 1, n− (pn+ 1)). Thus,

δ = Pr(Hist( ~X) ∈ S| ~Xi = x1)− Pr(Hist( ~X) ∈ S| ~Xi = x2) (Equation (3.6))

= Pr(Hist( ~X) = Exit(T)| ~Xi = x1)− Pr(Hist( ~X) = Enter(T)| ~Xi = x2) (Lemma 3)

= Pr(Hist( ~X) = (pn+ 1, n− (pn+ 1))| ~Xi = x1)− Pr(Hist( ~X) = (n, 0)| ~Xi = x2)

= ppn(1− p)n−pn−1 (n− 1)!

(pn)!(n− pn− 1)!
(When one vote is fixed to x2, the probability of histogram being (n, 0) is zero.)

= Θ(1/
√
n) (By applying Stirling’s formula)
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The general case of ` > 2 can be extended from the above proof for ` = 2, by also using
the trails technique. In this case, we again assume WLOG that x = x1 and x′ = x2. Let
t = (t1, · · · , t`) be the histogram, where ti counts the number of occurrences of xi. We observe
that, when votes are i.i.d, t3, · · · , t` are independent of t1, t2 when conditioned on the sum
s = t1 + t2. This means that we can compute δ for general `, as a sum

δ =
∑

0<s≤n

δs Pr(Bin(n, π(x1) + π(x2)) = s)

Where δs is the δ-value for ` = 2, when there are s votes. Using Chernoff bound we see that
Bin(n, π(x1) + π(x2)) is concentrated at its mean n(π(x1) + π(x2)). Plugging in the result for

` = 2, we get δ = Θ

(
1√

n(π(x1)+π(x2))

)
. This is Θ(1/

√
n) when π(x1) + π(x2) > 0 (recall these

probabilities are constants).

3.4.1.1 Full proof of Theorem 3

Below we present the full proof of Theorem 3, using Lemma 4 which showed the case for ` = 2.

Let pmin = minπ∈∆;i 6=j∈[`](π(xi) + π(xj)). By definition of (e)DDP, if there is an xi, π ∈ ∆
such that π(x) = 0 then only δ = 1 satisfies the inequality in the definition of (e)DDP. Thus,
below we will assume that for all x, π(x) > 0, and thus pmin > 0.

Proof of Theorem 3, Exact DDP of Histogram. Consider any π ∈ ∆, and let pi = π(xi). Like
in the ` = 2 case, without loss of generality, we can let x = x1 and x′ = x2 (otherwise, rename
them). Then, the maximizing set S (similar to when ` = 2) is exactly the set of histograms such
that

Pr
~X∼π

(Hist( ~X) ∈ S| ~Xi = x1) > Pr
~X∼π

(Hist( ~X) ∈ S| ~Xi = x2)

(We will implicitly assume ~X ∼ π from now on) Since we have i.i.d. votes, the histogram
follows the multinomial distribution (with n trials). For any 0 < s ≤ n, (t3, · · · , t`) where
t3 + · · ·+ t` = n− s, and k ≤ s:

Pr(Hist( ~X) = (k, s− k, t3, · · · , t`)| ~Xi = x1) > Pr(Hist( ~X) = (k, s− k, t3, · · · , t`)| ~Xi = x2)

pk−1
1 pn−k2 pt33 · · · p

t`
`

(n− 1)!

(k − 1)!(s− k)!t3! · · · t`!
> pk1p

n−k−1
2 pt33 · · · p

t`
`

(n− 1)!

(s− k − 1)!k!t3! · · · t`!
p2

s− k
>
p1

k

k >

(
p1

p1 + p2

)
s

Thus, the set S =
{
t = (k, s− k, t3, · · · , t`) : k >

(
p1

p1+p2

)
s
}

.
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Let p = p1
p1+p2

. For each 0 < s ≤ n and (t3, · · · , t`) which sum to n− s (i.e. t3 + · · ·+ t` =

n− s), let Ts,(t3,··· ,t`) be the trail starting from Enter(Ts,(t3,··· ,t`)) = (s, 0, t3, · · · , t`) and exiting
at Exit(Ts,(t3,··· ,t`)) = (ps+ 1, s− (ps+ 1), t3, · · · , t`). The set S then can be partitioned into
such trails. Thus,

δ = Pr(Hist( ~X) ∈ S| ~Xi = x1)− Pr(Hist( ~X) ∈ S| ~Xi = x2)

=
∑

Ts,(t3,··· ,t`)

Pr(Hist( ~X) ∈ Ts,(t3,··· ,t`)| ~Xi = x1)− Pr(Hist( ~X) ∈ Ts,(t3,··· ,t`)| ~Xi = x2)

=
∑

Ts,(t3,··· ,t`)

Pr(Hist( ~X) = Exit(Ts,(t3,··· ,t`))| ~Xi = x1)

− Pr(Hist( ~X) = Enter(Ts,(t3,··· ,t`))| ~Xi = x2) (By Lemma 3)

=
∑

0<s≤n

∑
(t3,··· ,t`)

t3+···+t`=n−s

Pr(Hist( ~X) = (ps+ 1, s− (ps+ 1), t3, · · · , t`)| ~Xi = x1)

− Pr(Hist( ~X) = (s, 0, t3, · · · , t`)| ~Xi = x2)

Now let us consider these two probabilities. Consider the distribution ~X−i, which is ~X but
without the ith row. Let the random variables of the individual components of Hist( ~X−1) be
(a1, · · · , a`). Since votes are i.i.d., for any (t1, · · · , t`),

Pr(Hist( ~X) = (t1, · · · , t`)| ~Xi = x1)

= Pr(Hist( ~X−i) = (t1 − 1, t2, t3, · · · , t`))
= Pr((a1, · · · , a`) = (t1 − 1, t2, t3, · · · , t`)) (Recall these a’s are components of Hist( ~X−i))

= Pr((a1, · · · , a`) = (t1 − 1, t2, t3, · · · , t`)|a1 + a2 = s)× Pr(a1 + a2 = s)

= Pr((a1, a2) = (t1 − 1, t2) |a1 + a2 = s)

× Pr((a3, · · · , a`) = (t3, · · · , t`) |a1 + a2 = s)× Pr(a1 + a2 = s)
(By Lemma 5 proven below, (a1, a2) and (a3, · · · , a`) are independent conditioned on a1 + a2 = s)

Similar to the ` = 2 case, Pr(Hist( ~X) = (s, 0, t3, · · · , t`)| ~Xi = x2) = 0. This is because
when one vote is fixed to x2, it is impossible to have zero in the second component in the
histogram (which is the number of occurrences of x2). Thus,
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δ =
∑

0<s≤n

∑
(t3,··· ,t`)

t3+···+t`=n−s

Pr((a1, a2) = (ps, s− (ps+ 1))|a1 + a2 = s)

× Pr((a3, · · · , a`) = (t3, · · · , t`)|a1 + a2 = s)× Pr(a1 + a2 = s)

=
∑

0<s≤n

Pr((a1, a2) = (ps, s− (ps+ 1))|a1 + a2 = s)× Pr(a1 + a2 = s)

×
∑

(t3,··· ,t`)
t3+···+t`=n−s

Pr((a3, · · · , a`) = (t3, · · · , t`)|a1 + a2 = s)

(Factor out the common terms Pr((a1, a2) = (ps, s− (ps+ 1))|a1 + a2 = s) and Pr(a1 + a2 = s))

=
∑

0<s≤n

Pr((a1, a2) = (ps, s− (ps+ 1))|a1 + a2 = s)× Pr(a1 + a2 = s)

(For any s, the second sum equals one.)

Where Pr((a1, a2) = (ps, s− (ps+ 1))|a1 + a2 = s) is the δ value for histogram when ` = 2,
the vote distribution is π′ ∈ Π({x1, x2}), where π′(x1) = p1

p1+p2
, and number of voters is s (we

refer to Lemma 4 of the ` = 2 case for this claim). We denote this δ by δs. Moreover,

Pr(a1 + a2 = s) = Pr(Bin(n, p1 + p2) = s)

We denote p′ = p1 +p2. Then, Bin(n, p′) is the binomial distribution with n trials and probability
p′ = p1 + p2 (recall that pi = π(xi)). Then

δ =
∑

0<s≤n

δs Pr (Bin (n, p′) = s)

=
∑

s≥
(

1−
√

3
4

)
np′

s≤
(

1+
√

3
4

)
np′

Pr (Bin (n, p′) = s)× δs +
∑

s<
(

1−
√

3
4

)
np′

s>
(

1+
√

3
4

)
np′

Pr (Bin (n, p′) = s)× δs
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Lower bound of δ:

δ ≥
∑

s≥
(

1−
√

3
4

)
np′

s≤
(

1+
√

3
4

)
np′

Pr
(
Bin

(
n, p′

)
= s
)
× δs

≥ δ(
1+
√

3
4

)
np′
×

∑
s≥
(

1−
√

3
4

)
np′

s≤
(

1+
√

3
4

)
np′

Pr
(
Bin

(
n, p′

)
= s
)

(δs decreases with larger s (more votes implies more privacy), so δ(
1+
√

3
4

)
np′

is the minimum.)

= δ(
1+
√

3
4

)
np′
×

[
1− Pr

(
Bin(n, p′) >

(
1 +

√
3

4
np′

))
− Pr

(
Bin(n, p′) <

(
1−

√
3

4
np′

))]

By Chernoff bound for binomial distribution, for any 0 < β < 1, we have:

Pr (Bin (n, p′) > (1 + β)µ) ≤ e−
β2µ
3

Pr (Bin (n, p′) < (1− β)µ) ≤ e−
β2µ
2

Where µ = np′ is the mean of Bin (n, np′). Now let β =
√

3
4
, which is between 0 and 1. Then,

1 ≥

[
1− Pr

(
Bin (n, p′) >

(
1 +

√
3

4

)
np′

)
− Pr

(
Bin (n, p′) <

(
1−

√
3

4

)
np′

)]
≥ 1− e−

3
4
µ
3 − e−

3
4
µ
2

= 1− e−
np′
2 − e−

3np′
2

(For large enough n, np′ ≥ 1, so e−
np′
2 ≤ e−1/2 and e−

3np′
2 ≤ e−3/2)

≥ 1− e−1/2 − e−3/2 ≥ 1

10

Which means

[
1−Pr

(
Bin(n, p′) >

(
1 +

√
3
4

)
np′
)
−Pr

(
Bin(n, p′) <

(
1−

√
3
4

)
np′
)]

=

Θ(1).
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By Stirling formula, we have

δ(
1+
√

3
4

)
np′

= Θ

 1√(
1 +

√
3
4

)
np′


= Θ

(
1√
np′

)
(Recall we assumed the maximizing x, x′ are x1, x2, up to renaming the xi’s, and that p′ = p1 + p2)

= Θ

(
1

√
npmin

)
(In general, pmin = mini 6=j∈[`](pi + pj).)

Which gives us the lower bound δ ≥ Θ
(

1√
npmin

)
.

Upper bound of δ:

δ =
∑

s≥
(

1−
√

3
4

)
np′

s≤
(

1+
√

3
4

)
np′

Pr
(
Bin

(
n, p′

)
= s
)
× δs

+
∑

s<
(

1−
√

3
4

)
np′

s>
(

1+
√

3
4

)
np′

Pr
(
Bin

(
n, p′

)
= s
)
× δs

Since δs ≤ 1 for all s and
∑

s≥
(

1−
√

3
4

)
np′

s≤
(

1+
√

3
4

)
np′

Pr
(
Bin

(
n, p′

)
= s
)
≤ 1

≤ max(
1−
√

3
4

)
np′ ≤s ≤

(
1+
√

3
4

)
np′

(δs) +
∑

s<
(

1−
√

3
4

)
np′

s>
(

1+
√

3
4

)
np′

Pr
(
Bin

(
n, p′

)
= s
)

= δ(
1−
√

3
4

)
np′

+ Pr

(
Bin

(
n, p′

)
<

(
1−

√
3

4

)
np′

)
+ Pr

(
Bin

(
n, p′

)
>

(
1 +

√
3

4

)
np′

)
≤ δ(

1−
√
− 3

4

)
np′

+ e−
np′
2 + e

3np′
2 (By Chernoff bound for binomial)

≤ δ(
1−
√
− 3

4

)
np′

+ 2

√
1

np′
(Since np′ ≥ 0, both e−

np′
2 , e

3np′
2 ≤

√
1
np′ )

By Stirling’s formula, δ(
1−
√
− 3

4

)
np′

= Θ

 1√(
1−

√
−3

4

)
np′


= Θ

(√
1

np′

)
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As is with the lower bound, in general (without assuming (x, x′) = (x1, x2)), we have p′ =

pmin = mini 6=j∈[`](pi + pj). Since both lower and upper bounds of δ are Θ
(√

1
npmin

)
, δ =

Θ
(

1√
npmin

)
= Θ

(
1√
n

)
as pmin is a constant.

We now present the lemma on conditional independence which is used in the proof of Theo-
rem 3.

Lemma 5 (Conditional independence). Let U = {x1, · · · , x`} and π ∈ ∆(U). Let #xi denote
the r.v. of the number of occurrences of the vote xi in π. Then, for all 0 ≤ s ≤ n, the random
variables (#x1,#x2) and (#x3, · · · ,#x`) are independent conditioned on #x1 + #x2 = s. In
other words, for any (t1, · · · , t`) such that

∑
i ti = n, we have

Pr((#x1, · · · ,#x`) = (t1, · · · , t`) | #x1 + #x2 = s)

= Pr((#x1,#x2) = (t1, t2) | #x1 + #x2 = s)× Pr((#x3, · · · ,#x`) = (t3, · · · , t`) | #x1 + #x2 = s)

Proof. We equivalently show that

Pr((#x3, · · · ,#x`) = (t3, · · · , t`) | #x1 + #x2 = s)

= Pr((#x3, · · · ,#x`) = (t3, · · · , t`) | #x1 + #x2 = s ∧ (#x1,#x2) = (t1, t2))
(3.9)

Now, conditioned on there being exactly s people who voted x1 or x2, let D1 > D2 > · · · > Ds

denote the random variables of the indices of the votes in the profile which voted for x1 or x2, in
ascending order. By total probability, the left hand side of Equation 3.9 is:

Pr((#x3, · · · ,#x`) = (t3, · · · , t`) | #x1 + #x2 = s)

=
∑

d1>d2>···>ds

Pr((#x3, · · · ,#x`) = (t3, · · · , t`) | #x1 + #x2 = s ∧ (D1, · · · , Ds) = (d1, · · · , ds))

× Pr((D1, · · · , Ds) = (ds, · · · , ds) | #x1 + #x2 = s)

We already assume there are exactly s votes for x1 or x2, so

Pr((#x3, · · · ,#x`) = (t3, · · · , t`) | #x1 + #x2 = s)

=
∑

d1>d2>···>ds

Pr((#x3, · · · ,#x`) = (t3, · · · , t`) | (D1, · · · , Ds) = (d1, · · · , ds))

× Pr((D1, · · · , Ds) = (d1, · · · , ds))

The right hand side of Equation 3.9 is:
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Pr((#x3, · · · ,#x`) = (t3, · · · , t`) | #x1 + #x2 = s ∧ (#x1,#x2) = (t1, t2))

= Pr((#x3, · · · ,#x`) = (t3, · · · , t`) | #x1 + #x2 = s ∧ (#x1,#x2) = (t1, t2))

= Pr((#x3, · · · ,#x`) = (t3, · · · , t`) | (#x1,#x2) = (t1, t2)) (Since we assume t1 + t2 = s)

=
∑

d1>d2>···>ds

Pr((#x3, · · · ,#x`) = (t3, · · · , t`) | (#x1,#x2) = (t1, t2) ∧ (D1, · · · , Ds) = (d1, · · · , ds))

× Pr((D1, · · · , Ds) = (d1, · · · , ds) | (#x1,#x2) = (t1, t2)) (By total probability,)

Since each vote is independent, (#x3, · · · ,#x`) is independent of (#x1,#x2). Moreover,
the vote indices (D1, · · · , Ds) are independent of (#x1,#x2). As votes are i.i.d., (#x1,#x2)
does not depend on the value of (d1, · · · , ds). Thus,

Pr((#x3, · · · ,#x`) = (t3, · · · , t`) | #x1 + #x2 = s ∧ (#x1,#x2) = (t1, t2))

=
∑

d1>d2>···>ds

Pr((#x3, · · · ,#x`) = (t3, · · · , t`) |(D1, · · · , Ds) = (d1, · · · , ds))

× Pr((D1, · · · , Ds) = (d1, · · · , ds))

This concludes that the left hand side and right hand side probabilities of Equation 3.9 are
equal. The random variables (#x1,#x2) are independent conditioned on (#x1,#x2).

3.4.2 The exact DDP of GSRs

In this section we characterize the privacy of a class of voting rules called generalized scoring rules
(GSR). Recall that a voting rule f v is a GSR if (1) the votes are rankings (linear orders) over the
candidates, and (2) can be described using functions f gsr, ggsr. Roughly, the function f gsr takes
a vote and outputs a vector of numbers called the score, and ggsr outputs the winning candidate
from the sum of the score vectors of all votes. Most popular voting rules (i.e., Borda, Plurality,
k-approval and ranked pairs) are GSRs. See Example 1 and Example 2 in the preliminaries (Ch. 2)
for f gsr, ggsr for plurality rule and majority rule.

We now define a set of properties of GSR voting rules to present our characterization of eDDP
in Theorem 4: canceling-out, monotonicity, and local stability.

Remark about f v(π) notation: In the following section, we will slightly abuse notation by
also defining voting rules f v on weighted profiles (where votes are weighted by a real number)
denoted with lower case vector notation e.g., ~p. This is possible for all GSRs due to the linearity
of f gsr. We also consider f v(π) when π is a distribution, which denotes the output of f v when
the voters cast fractional votes according π.
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Definition 20 (Canceling-out, Monotonicity, and Local stability). A voting rule f v satisfies

canceling-out if for any profile ~X, adding a copy of every ranking does not change the winner.
That is, f v( ~X) = f v( ~X ∪ L(C)).

A voting rule satisfies monotonicity one cannot prevent a candidate from winning by raising
its ranking in a vote while maintaining the order of other candidates.

A voting rule f v satisfies local stability if there exist locally stable profile. A profile ~X∗ is
locally stable (to f v), if there exists a candidate a, a vote/ranking W , and another vote/ranking
V that is obtained from W by raising the position of a without changing the order of other
candidates, such that for any ~X ′ in the γ neighbourhood of ~X∗ in terms of L∞ norm, we have
(1) f v( ~X ′) 6= a, and (2) the winner is a when all votes W in ~X ′ are replaced by V .

We also define what it means for a distribution to be unstable for a GSR f v.

Definition 21 (Unstable distributions). Given a GSR f v, a distribution π over U is unstable, if
for any ε > 0, there exists ~p and ~q with ‖~p‖2 = ‖~q‖2 < ε, such that f v(π+ ~q) 6= f v(π+ ~p) (i.e.,
the winners are not the same if the fractional profile is slightly perturbed), where ‖ · ‖2 is the
`2-norm.

Theorem 4 (Dichotomy of exact DDP for GSR). Fix m ≥ 2 and ∆ ⊆ Π(L(C)) with |∆| <∞.
For any n, any GSR f v that satisfies monotonicity, local stability, and canceling-out is (0, δ,∆)-
DDP, where δ is

• Θ(
√

1/n), if ∆ contains the uniform distribution over L(C), or

• exp(−Ω(n)), if ∆ does not contain any unstable distribution.

We first sketch the proof below.

Proof sketch for Theorem 4. We first prove the δ = exp[−Ω(n)] case. Recalling Sec. 3.3.1 and
the proof of Theorem 2, we know that δ is closely related to the probability of End(a) for some
a ∈ C, where intuitively, End(a) is the set of profiles that, if some votes are changed, a is
no longer the winner. It turns out that this is also the case for any GSR f v that also satisfies
monotonicity. For a preference profile P , let P − V be shorthand for “P minus a vote V ” (if P
has a vote V ), and P + W shorthand for “P with an additional vote W”. Applying our trails
technique, we have

δ ≤ max
a

∑
P∈End(a)

Pr(P − V ),

where V is a vote s.t. there exists vote W with f v(P −V +W ) 6= a. Thus, we know δ is upper
bounded by the probability of all profiles (P − V ) being “close” to a tie of voting rule r. For
any unstable distribution π, we can prove that the center of π is reasonably “far” away from any
profile in End(a) (or “far” away from any ties). Then, the exponential upper bound follows after
Chernoff bound and union bound. The proof for this part is similar to the analysis of probabilities
of tied profiles as in [127].

We now move on to the δ = Θ(
√

1/n) case. The upper bound O(
√

1/n) also derived
from the trails technique’s result: δ ≤ maxa

∑
P∈End(a) Pr(P − V ). The general framework of
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our proof is similar with the δ = exp[−Ω(n)] case. Since adding any vote to a uniform profile
results in a new winner, we know the uniform distribution of preferences is always an unstable
distribution when requirements in Theorem 4 are met. Thus, we can prove that the center of the
profiles’ distribution (multinomial distribution in m!-dimensional space) is “close” to a tie. Then,
we apply Stirling’s formula to each trails and give an upper bounds to Pr(P − V ) for profiles
P ∈ End(a).

For the lower bound Ω(
√

1/n), canceling-out and local stability properties are used to con-
struct a “good” subset of profiles. At a high level, canceling-out ensures that the constructed
subset is large enough, and locally stability ensures the trails constructed from the selected sub-
set is long enough. Our subset is contracted by certain profiles with O(

√
n) distance2 from the

center of profile distribution in the direction of local stable profile. Giving a lower bound to the
Pr(P − V ) for any profile P in our selected subset is the most non-trivial part of this proof and
is quite different from the proof in [127]. Unlike the profiles P in our selected subset of profiles,
P − V do not necessarily concentrated in a specific region in the space of profiles. Here, we
use a non-i.i.d. version of Lindeberg-Levy central limit theorem [78] to analyze the multinomial
distribution of m! kinds of votes.

We provide the full proof for Theorem 4 below.

3.4.2.1 General notation used in the proof

Throughout the proof in Theorem 4, we will use ~π to denote the probability distribution in each
vote, given the (i.i.d.) profile distribution D, and π[j] denote the probability of j-th kind of
ranking. We denote by P [V ] as the number of V votes in P and P [j] the number of j-th type
of vote in P . For any P ∈ Rn, let Piv(P ) = End(a) ∩ TP,V,W,∞ denote the intersection of
End(a) and the V -W trail starting at P . That is, Piv(P ) = P + l(V −W ) for some l ∈ Z,
r(Piv(P )) = a, and r(Piv(P )− V + W ) 6= a. Recall P + l(V −W ) means adding l votes of
type V to, and removing l votes of type W from profile P .

3.4.2.2 Full proof for Theorem 4

Proof of Theorem 4, (Exact) DDP for GSR. To present the result, we first introduce an equiva-
lent definition of GSR that is similar to the ones used in [Xia and Conitzer, 2009; Mossel et al.,
2013].

Definition 22 (The (H, gH) definition of GSR). A GSR over m candidates is defined by a

set of hyperplanes H = {~h1, . . . ,~hR} ⊆ Rm! and a function gH : {+, 0,−}|H| → C. For
any anonymous profile (recall GSRs are anonymous voting rules) ~p ∈ Rm!, we let H(~p) =

(Sign(~h1 · ~p), . . . ,Sign(~hR · ~p)), where Sign(x) is the sign (+,− or 0) of a number x. We let
the winner be gH(H(~p)).

2we use `2 distance in the m!-dimensional space of profile.
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That is, to determine the winner, we first use each hyperplane in H to classify the profile ~p, to
decide whether ~p is on the positive side (+), negative side (−), or is contained in the hyperplane
(0). Then gH is used to choose the winner from H(~p). We refer to this definition the (H, gH)
definition. In the next claim, we show the equivalence of two definitions of GSR.

Claim 1. The (H, gH) definition of GSR is equivalent to the (f gsr, ggsr) definition of GSR in
Definition 7.

Proof for Claim 1. We first show that any (H, gH) GSR can be represented by a (f gsr, ggsr) GSR

in the following way: for each ranking V , we let f gsr(V ) = (~h1 · ~eV , h2 · ~eV , . . . ,~hR · ~eV , 0).
Then, the ggsr function mimics gH by only focusing on orderings between the kth component
of f gsr(P ) and the last component, which is always 0, for all k ≤ R. More precisely, ordering

between the kth component of f gsr(P ) and 0 uniquely determines Sign(~hk · ~p).
We now prove that any (f gsr, ggsr) GSR can be represented by an (H, gH) GSR. For any

pair of distinct component k1, k2 ≤ K, we introduce a hyperplane ~hk1,k2 = ([f gsr(V )]k1 −
[f gsr(V )]k2)V ∈L(C). Therefore, for any profile ~p, ~hk1,k2 · ~p = [f gsr(~p)]k1 − [f gsr(~p)]k2 . The sign

of ~hk1,k2 · ~p corresponds to the order between [f gsr(~p)]k1 and [f gsr(~p)]k2 . Then, gH mimics ggsr.

(End of Claim 1 proof)

For the remainder of the proof we will mainly work with the hyperplanes definition. Below,
we define some general notation that will be used for the proof.

We will characterize eDDP under uniform distribution and give an exponential upper bound

on DDP under some other distributions. For any pair of ~π and ~h, we let Dist(~π,~h) = ~π·~h
||~h||2

to

denote the distance between hyperplane ~h · ~p = 0 and vector ~π.
We first show that w.l.o.g. we can assume that all hyperplanes in H passes ~1.

Lemma 6. A GSR satisfies canceling-out, if and only if there exists another equivalent GSR
r = (H, gH), where all hyperplanes pass ~1.

Proof. The “if” direction is straightforward: If hyperplanes in H pass ~1, i.e. ~h · ~1 = 0, then
adding one vote of each type (i.e., adding a vector ~1 to the profile) does not change the winner—
which is exactly the definition of canceling-out. To prove the “only if” part, it suffices to
prove that gH does not depend on outcomes of hyperplanes in H that does not pass ~1, i.e.,
~h · ~1 6= 0. W.l.o.g. let ~h1 ∈ H denote the hyperplane that does not pass ~1. We will prove that
for any ~u−1 ∈ {−1, 0, 1}L−1 and any u1, u

′
1 ∈ {−1, 0, 1}, such that there exist profiles P,Q with

H(P ) = (u1, ~u−1) and H(Q) = (u′1, ~u−1), we have gH(u1, ~u−1) = gH(u′1, ~u−1).
For the sake of contradiction, suppose this does not hold and let P,Q be the profiles such

that H(P ) and H(Q) differ on the first coordinate, and r(P ) 6= r(Q). Then, for sufficiently

large n we have that H(P + nL(C)) = H(Q + nL(C)). This is because for any ~h ∈ H that

passes ~1, we have ~h · (P + nL(C)) = ~h · P = ~h · (Q + nL(C)). For any ~h ∈ H that does not

pass ~1, we have ~h · (P + nL(C)) = ~h · P + n~h · 1, and when n is sufficiently large, the sign of
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~h · (P + nL(C)) is the same as the sign of n~h · 1, which is the sign of ~h · (Q + nL(C)). This

means that Sign(~h · P ) = Sign(~h · (P + nL(C))) = Sign(~h · (Q + nL(C))) = Sign(~h · Q),
which is a contradiction.

(End of Lemma 6 proof)

Let f v be a GSR (which can also be equivalently described by the hyperplanes definition as
r = (H, gH)), P ∗ be the locally stable profile and a be the candidate, V,W be the rankings as in
the statement of Definition 20. W.l.o.g. suppose V is the first type ranking and W is the second
type ranking. In other words, V (respectively, W ) is the first (respectively, second) coordinate in
the n-profiles space. We will show that the exact DDP bound is achieved when S is the set of
all profiles where the winner is a.

We recall that for any profile P , a pair of different votes V,W . and a length q ∈ N, TP,V,W,q

is the trail starting at P , going along the V − W direction, and contains q profiles. We let
TP,V,W,∞ = maxq TP,V,W,q denote the longest V −W trail starting at P . For a GSR f v, we define
End(a) below. As we see, there are no W votes in End(a).

Definition 23 (End(·)). Let f v be a GSR and a be a candidate. We define

End(a) = {Exit(TP,V,W,∞) : ∀V,W ∈ U , f v(P ) = a}

.

Figure 3.2: Example of End(a) and End(b), for 3-candidate case. The 3 kinds of votes other
than V,W and X are not shown to simplify notations. Number of unshown votes are considered
as constant.

Because f v satisfies monotonicity, for any profile P such that f v(P ) = a, we must have that
a is the winner under all profiles in the V -W trail starting at P . Therefore, S can be partitioned
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into multiple non-overlapping trails, each of which starts at a different profile, where a is the
winner, and a is no longer the winner if we go one step into the W -V direction. Formally, we
let End(a) (shown in Figure 3.2) denote all n-profiles P such that (1) f v(P ) = a and (2)
f v(P +W − V ) 6= a. Then, we define a partition Sa as follows.

Sa = {P : f v(P ) = a} =
⋃

P∈End(a)

TP,V,W,∞

It follows from Lemma 3 that

Pr(P ∈ Sa|X1 = V )− Pr(P ∈ Sa|X1 = W ) =
∑

P∈End(a):P (V )>0

Pr(P − V ).

Below, we will define a set of size-n profiles (which we abbreviate as n-profiles), i.e. profiles
with n votes Rn, and prove the lower bound with respect to it. For a locally stable profile P ∗

(with constant γ in the statement of Definition 20), let ~p0 = P ∗−~1 · |P
∗|

m!
. That is, ~p0 be obtained

from P ∗ by subtracting a constant in each component, such that ~p0 ·~1 = 0. For any n, we define
Rn to be the set of n-profiles that are in the γ

√
n neighborhood of n

m!
· ~1 + ~p0 ·

√
n w.r.t. L∞

norm for last m!− 2 dimensions. Formally:

Rn =
{
P : P [V ] = 0 and ∀j ≥ 3,

∣∣∣P [j]−
( n
m!

+ ~p0[j] ·
√
n
)∣∣∣ ≤ γ

√
n
}

We next prove that the number of V votes in Piv(P ) (defined in Sec. 3.4.2.1) and the
number of W votes in Piv(P ) are close—the difference is O(

√
n).

Claim 2. For any P ∈ Rn, we have |Piv(P )[V ]−Piv(P )[W ]| = O(
√
n).

Proof. We use the hyperplanes r = (H, gH) notation for a GSR f v. Let Q+ = Piv(P ) and
Q− = Piv(P ) − V + W . We note that Piv(P ) is at the boundary of S, which means that
r(Q+) 6= r(Q−). Therefore, we have a GSR, the line segment between Q+ and Q− must contain

the intersection of TP,V,W,∞ and a hyperplane ~h ∈ H. Therefore, it suffices to show that the
difference in number of V votes and number of W votes at the intersection of TP,V,W,∞ and any

hyperplane ~h is O(
√
n).

We recall that by Lemma 6, all hyperplanes for r pass ~1. For any ~h ∈ H, we recall that we
assumed that V and W corresponds to the first and second coordinate, respectively. Because
~h · (P + l(V −W )) = 0, we have (h2 − h1)l = ~h · P = ~h · (P − ~1 · n

m!
) = O(

√
n). This means

that |l| = |Piv(P )[V ]−Piv(P )[W ]| = O(
√
n).

(End of Claim 2 proof)

Claim 3. For any P ∈ Rn, there is a V -W trail passing P .
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Proof. According to the canceling out property of r, we can construct profile P ′ = P − n−|P ∗|
√
n

m!
,

which is equivalent to P . For any profile P ∈ Rn, we have
∣∣P [j]−

(
n
m!

+ ~p0[j] ·
√
n
)∣∣ ≤ γ

√
n,

which is equivalent with |P ′[j]− P ∗[j] ·
√
n| ≤ γ

√
n (recall P [j] is the number of jth type of

vote in profile P ), which means P ′√
n

is in the γ neighbourhood of profile P ∗ in terms of the 3-rd

to m!-th dimensions. According to the (H, gH) definition of GSR, we know r(P ∗) = r(P ′) and
the claim follows by local stability of P ∗.

(End of Claim 3 proof)

We will show that the probability of a subset of End(a)—the pivotal profiles on trails starting
at profiles in Rn—is Θ(1/

√
n) for the condition that π is uniform over U . Let R−n ⊆ Rm!−2 and

for any ~p− ∈ R−n , we define Piv(~p−) = Piv(P ), where P ∈ Rn and P [3, . . . ,m!] = ~p−.

∑
P∈End(a)

Pr(P − V ) ≥
∑
P∈Rn

Pr(Piv(P )− V )

=
∑

~p−∈R−n ,|P |=n−1

(
Pr(P [3, ...,m!] = ~p−)·

Pr(P [1] = Piv(~p−)[1]− 1,Pr(P [2] = Piv(~p−)[2]|P [3, ...,m!] = ~p−)
)

=
∑

~p−∈R−n ,|P |=n−1

A(~p−)B(~p−)

where A(~p−) = Pr(P [3, . . . ,m!] = ~p−) and

B(~p−) = Pr(P [1] = Piv(~p−)[1]− 1,Pr(P [2] = Piv(~p−)[2]|P [3, . . . ,m!] = ~p−)

It follows that B(~p−) is equivalent to probability of flipping a coin ( π[W ]
π[V ]+π[W ]

probability for head)

for Piv(~p−)[1]+Piv(~p−)[2]−1 times, with Piv(~p−)[1]−1 heads and Piv(~p−)[2] tails. The next
lemma gives a lower bound to

∑
~p−∈R−n ,|P |=n−1A(~p−)B(~p−) when π is a uniform distribution.

Lemma 7.
∑

~p−∈R−n ,|P |=n−1A(~p−)B(~p−) = Ω
(

1√
n

)
if π is uniform over U .

Proof. We first bound the total number of V and W votes in P ∈ Rn in the next claim.

Claim 4. Piv(~p−)[1] + Piv(~p−)[2]− 1 = Θ(n) for all ~p− ∈ R−n .

Proof.∣∣∣Piv(~p−)[1] + Piv(~p−)[2]− 2n

m!

∣∣∣ =
m!∑
j=3

∣∣∣P [j]− n

m!

∣∣∣ ≤ m!∑
j=3

(
γ
√
n+ |~p0[j]|

√
n
)
≤ (γ + 1)m!

√
n

(End of Claim 4 proof)
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According to Claim 2 & 4, we know that B(~p−) is equivalent to probability of flipping a fair
coin for 2n

m!
+ c1

√
n times and get n

m!
+ c2

√
n, where c1 and c2 are bounded constants. In the

next claim, we give a tight bound to B(~p−) for uniform distributed entries.

Claim 5. B(~p−) = Θ
(√

1
n

)
for any ~p− ∈ R−n

Proof. Letting n′ = 2n
m!

+ c1

√
n, c′ = c2 − c1

2
and assuming n′ is a even number, for the lower

bound, we have,

B(~p−) =

(
1

2

) 2n
m!

+c1
√
n( 2n

m!
+ c1

√
n

n
m!

+ c2

√
n

)
=

(
1

2

)n′ (
n′

n′/2 + c′
√
n

)
=

(
1

2

)n′
·
(
n′

n′/2

)
·
n′

2
× · · · × (n

′

2
− c′
√
n′ + 1)

(n
′

2
+ c′
√
n′ − 1)× · · · × n′

2

>
1

2n′

(
n′

n′/2

)
·

(
n′/2− c′

√
n′

n′/2

)c′
√
n′

=Ω

(
1√
n

)
(applying Stirling’s Formula)

(3.10)

Upper bound can be obtained using similar technique as lower bound.

(End of Claim 5 proof)

The next claim gives a lower bound on
∑

~p−∈R−n A(~p−). The proof uses the main technique
of Lindeberg-Levy Central Limit Theorem [78].

Claim 6.
∑

~p−∈R−n A(~p−) = Ω (1).

Proof of Claim 6. We first define a set of m! − 2 dimensions random variables that Yi =
(Yi[1], · · · , Yi[m!− 2]), where Yi[j] = 1 if ranking j happens to i-th row and Yi[j] = 0 oth-
erwise.

According to the definition of profile, we have P [j + 2] =
∑n

j=1 Yi[j] and E(P [j]) = n
m!

for uniform case. We further define a m! − 2 dimensional random vector ~u such that ~u[j] =(
P [j + 2]− n

m!

)
/
√
n, which is the scaled average of Y1, · · · , Yn. According to Lindeberg-Levy

Central Limit Theorem [78], we know that the distribution of ~u converges in probability to
multivariate normal distribution N (0,Σ), where

Σ =


m!−1
(m!)2

− 1
(m!)2

· · · − 1
(m!)2

− 1
(m!)2

m!−1
(m!)2

· · · − 1
(m!)2

...
...

. . .
...

− 1
(m!)2

− 1
(m!)2

· · · m!−1
(m!)2

 .
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Since each diagonal element in Σ is strictly larger than the sum of the absolute value of all
other elements in the same row, we know that Σ is non-singular according to Levy-Desplanques
Theorem [86]. According to Varah et al. [123], we obtain a bound on Σ−1’s L∞ norm as,

||Σ−1||∞ ≤
1

mini

(
|Σii| −

∑
j 6=i |Σij|

) ≤ (m!)2

2
.

For any m! − 2 dimensional random vector ~u constructed from a profile P using the procedure
that ~u[j] =

(
P [j + 2]− n

m!

)
/
√
n, we have,

P ∈ R−n if and only if ~u ∈ U = {~u : |~u[j]− ~p0[j]| ≤ γ, ∀j ∈ [m!− 2]} .

Thus, for all ~u ∈ U we know about its Probability Density Function (PDF) that,

PDF(~u) =
1√

(2π)m!−2|Σ|
exp

(
−1

2
~uTΣ−1~u

)
=

1√
(2π)m!−2|Σ|

exp

(
−1

2
|~uTΣ−1~u|

)
≥ 1√

(2π)m!−2|Σ|
exp

(
−1

2
||~uTΣ−1||∞ · ||~u||1

)
(Holder’s Inequality)

≥ 1√
(2π)m!−2|Σ|

exp

(
−1

2
||~uT ||∞ · ||Σ−1||∞ · ||~u||1

)
≥ 1√

(2π)m!−2|Σ|

[
exp

(
(m!)2

4

)]−||~u||2∞
= Ω (1) .

Thus, letting Vol(·) be the volume function,∑
~p−∈R−n

A(~p−) ≥ Vol(U) ·min
~u∈U

PDF(~u) ≥ γm!−2 · Ω (1) = Ω(1).

(End of Claim 6 proof)

Lemma 7 follows be combining Claim 6 and Claim 5.

(End of Lemma 7 proof)
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Let P1 = V mean to set one vote in profile P to V . Recalling Lemma 3, for the case that π
is uniform over all rankings, we have,

δ = max
x,x′,S

Pr(f v(P ) ∈ S|P1 = x)− Pr(f v(P ) ∈ S|P1 = x′)

≤Pr(f v(P ) ∈ Sa|P1 = W )− Pr(f v(P ) ∈ Sa|P1 = V )

=
∑

P∈End(a)

Pr(P − V ) = Ω

(
1√
n

)
.

Then, we derive an upper bound of δ using the similar technique to proving the lower bound
(~π can be non-uniform for this bound). We first give a definition of R′n, a subset of n-profile
space (i.e. the space of profiles with n votes), where event P ∈ R′n will be proved to happen
with high probability. Formally,

R′n =
{
P : P [V ] = 0 and ∀j ≥ 3, |P [j]− (n · ~π[j])| ≤ n3/4

}
.

Then, we recall Lemma 3, for the case that π such that mini π[i] > 0, we have,

δ = max
V,W,S

Pr(P ∈ S|P1 = V )− Pr(P ∈ S|P1 = W )

≤max
V,W

m∑
i=1

Pr(P ∈ Si|P1 = V )− Pr(P ∈ Si|P1 = W ) =
m∑
i=1

∑
P∈End(xi)

Pr(P − V ).

where Si = {P : r(P ) = xi} =
⋃
P∈End(xi)

TP,V,W,∞.

The next claim gives an upper bound to
∑

~p− 6∈R−n A(~p−).

Claim 7.
∑

~p− 6∈R′−n A(~p−) = O
(

1√
n

)
.

Proof. Let Y
(i)
j = ”the i-th agent gives vote of type j”. One can see that P [j] =

∑n
i=1 Y

(i)
j ,

E(P [j]) = n~π[j] and V ar(P [j]) = n~π[j](1− ~π[j]). Thus,

∑
~p− 6∈R−n

A(~p−) = Pr

[
m!⋃
j=3

{
|P [j]− n · ~π[j]| ≤ n3/4

}]

≤
m!∑
j=3

Pr
[{ ∣∣∣P [j]− E(P [j])

∣∣∣ ≤ n3/4
}]

≤
m!∑
j=3

n~π[j](1− ~π[j])

n3/2
(by Chebyshev’s Inequality)

=O

(
1√
n

)
(End of Claim 7 proof)
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Then, all we need is an upper bound on B(~p−), and we first prove that the length of V −W
sequence is Θ(n) for all P ∈ R′n.

Claim 8. Piv(~p−)[1] + Piv(~p−)[2]− 1 = Θ(n) for all P ∈ R′n.

Proof.

|Piv(~p−)[1] + Piv(~p−)[2]− n(~π[W ] + ~π[V ])| =
m!∑
j=3

|P [j]− n · ~π[j]| ≤
m!∑
j=3

n3/4 ≤ m! · n3/4

(End of Claim 8 proof)

The next claim gives am upper bound on the number of pivotal profiles sharing one End.

Claim 9. For any profile P in R′n, there are at most |H| pivotal profiles following V − W
direction.

Proof. We know from the (H, gH) definition of GSR that r’s output only changes while passing
at least one hyperplane. Considering a trail TP0 enter at (P0[1] + P0[2], 0, P0[3], · · · , P0[m!])
and exit at (0, P0[1] + P0[2], P0[3], · · · , P0[m!]) (P0 is an arbitrary n-profile). Thus, there are at
most |H| pivotal profiles sharing the same end point because TP0 passes hyperplanes at most
|H| times.

(End of Claim 9 proof)

Using the partition of R′n and arbitrarily selected candidate a, we have,

∑
P∈End(xi)

Pr(P − V ) ≤|H|

 ∑
P∈R′n

Pr(Piv(P )− V ) +
∑

P∈End(xi)\R′n

Pr(Piv(P )− V )


≤|H|

 ∑
~p−∈R′−n ,|P |=n−1

A(~p−)B(~p−) +
∑

~p− 6∈R′−n ,|P |=n−1

A(~p−)B(~p−)


≤|H|

 max
~p−∈R′−n

B(~p−) ·
∑

~p−∈R′−n

A(~p−) + max
~p− 6∈R′−n

B(~p−) ·
∑

~p− 6∈R′−n

A(~p−)


=O

(
1√
n

)
·O(1) +O(1) ·O

(
1√
n

)
(By applying the above Claims)

=O

(
1√
n

)
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Then, using the same technique of Claim 5, we know that,

B(~p−) = Θ

(√
1

n

)
for all p− ∈ R′−n

Thus, combining all results above, we have,

δ ≤
m∑
i=1

∑
P∈End(xi)

Pr(P − V ) =
m∑
i=1

∑
P∈End(xi)

Pr(P − V ) = O

(
1√
n

)

Next, we will give a exponential (tighter) upper bound on δ when ~π does not belong to any
hyperplanes. We first give a generalized definition of a pivotal profile.

Definition 24 (Generalized pivotal profile). A profile P is a (generalized) pivotal profile if there
exist pair of votes V and W such that r(P ) 6= r(P − V +W ).

Then, we define a distance function Dist∗(P, h) to be a generalized distance between profile
P and hyperplane h. We define

Dist∗(P,~h) = inf
P ′∈h̃
||P − P ′||2,

where h̃ = {P ∈ h : ∃ unit vector ~e s.t. r(P ′ − ~e) 6= r(P ′ + ~e)}. In the next lemma we will
show generalized pivotal profiles only lays close to hyperplanes. We also also define the distance
function Dist(·, ·) below:

1. For hyperplane h and a point (n-profile) P , Dist(h, P ) =
~h·P
||~h||2

, which is the Euclidean

distance between P and hyperplane ~h · ~p = 0.

2. For 2 points (n-profiles) P1 and P2, Dist(h, P ) returns the Euclidean distance between P1

and P2.

Claim 10. For any GSR represented by r = (H, gH) and one of its generalized pivotal profile P ,

there must exist one hyperplane ~h ∈ H such that Dist(h, P ) ≤
√

2.

Proof. Recalling the definition of generalized pivotal profiles, we know the GSR winner will change
at the 1 neighborhood of P . Thus, there must exist a hyperplane ~h ∈ H and pair of votes V,W

such that Sign
[
~h · P

]
6= Sign

[
~h · (P + V −W )

]
and Dist(h, P ) ≤ Dist(P, P + V −W ) =

√
2.

(End of Claim 10 proof)
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Lemma 8. Let D be the distribution on profiles (databases of votes), where each entry is
iid according to distribution ~π over linear orders on m candidates. Then GSR r(H, hH) is
(0, δ,∆ = {(D, ∅)})-DDP when only the winner is announced, where

δ = O

[
exp

(
− [minh∈H Dist∗(~π, h)]2

3(m!)2
(
maxi∈[m!] ~π[i]

) · n)] = O
[
e−Ω(n)

]
.

Proof. We first define the set of all generalized pivotal profiles PPiv. For any P ∈ PPiv, we
know that there exist hyperplane h ∈ H such that Dist∗(h, P ) ≤

√
2. According to triangular

inequality, we have Dist∗(n~π, P ) ≥ Dist∗(n~π, h) −Dist(h, P ) ≥ nDist∗(~π, h) −
√

2. The
second ≥ sign comes from the fact that all hyperplanes passes ~0. Thus, there must exist one

dimension j that |P [j]− n~π[j]| ≥ nDist∗(~π, h)−
√

2
m!

. Then, we bound δ as,

δ = max
V,W,S

[Pr(P ∈ Si|X1 = V )− Pr(P ∈ Si|X1 = W )]

≤
∑
P∈PPiv

[
max
V

Pr(P ∈ PPiv|X1 = V )
]

≤max
V,h,j

Pr

(
|P [j]− n~π[j]| ≥ nDist∗(~π, h)−

√
2

m!

∣∣∣∣X1 = V

)

≤max
h,j

Pr

(
|P [j]− n~π[j]| ≥ nDist∗(~π, h)−

√
2

m!
− 1

)

=O

[
exp

(
− [minh∈H Dist∗(~π, h)]2

3(m!)2
(
maxi∈[m!] ~π[i]

) · n)] by applying Chernoff bound.

(End of Lemma 8 proof)

Theorem 4 follows by combining all three bounds derived above.

(End of Theorem 4 proof)

3.4.3 Exact privacy: GSR examples

We first use a simple example of the plurality rule (i.e. 0.5-biased majority rule) to show the
results in Theorem 4 matches the 2-candidate results in our previous section.

Example 4 (Example of Definition 7 and Theorem 4). Let U = C = {c1, c2}, V = [c1 �
c2], and W = [c2 � c1]. For the α-biased majority rule with α = 0.5 (i.e. plurality rule),
we have f gsr(V ) = (1, 0) and f gsr(W ) = (0, 1). Then, the winner is chosen according to
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ggsr corresponding to the largest component in f gsr(P ). Recalling our definition of unstable
distribution, we know (1

2
, 1

2
) is the only unstable distribution for 2-candidate majority rule. This

is the intuitive reason behind δ = Θ(
√

1/n) when π = (1
2
, 1

2
) for both Theorem 4 and Theorem 2

(when α = 0.5). For any other π 6= (1
2
, 1

2
), these two theorems result in δ = exp[−Ω(n)]. We

note that while Theorem 4 covers more voting rules, Theorem 2 is a more fine-grained result for
two candidates.

Corollary 2. Plurality, veto, k-approval, Borda, Maximin, Copeland, Bucklin, Ranked Pairs,
Schulze (see e.g. [127]) are (0,Θ (1/

√
n) ,∆)-eDDP when ∆ contains the uniform distribution.

Proof. As shown in Definition 20, canceling-out and monotonicity are very natural properties of
most voting rules. These two properties can be easily checked according to the definitions of
voting rules discussed in Corollary 2. In the next proposition, we prove a more generalized version
of Corollary 2 for local stability, which indicate a large subset of the voting rules can satisfies all
properties required by Theorem 4.

Proposition 1. All positional scoring rules and all Condorcet consistent and monotonic rules
satisfy the property of local stability.

Proof. Let si to denote the score of the i-th candidate, i.e.the ith component of f gsr(P ) for
a profile P . Suppose s1 = · · · = sl > sl+1. We let V = [a � c1 � cl−1 � b � others] and
W = [c1 � cl−1 � b � a � others]. Let M be the permutation c1 → c2 → . . . cm−2 → c1.
Let V1 = [a � b � others] and V2 = [b � a � others]. Let P ′ =

⋃m−2
i=1 M i(V1) ∪M i(V2). Let

P ∗ = 2P ′ ∪ {V,W}. It follows that a and b are the only two candidates tied in the first place in
P ∗. Therefore, there exists ε to satisfy the condition in local stability.

The same profile can be used to prove the local stability of all Condorcet consistent and
monotonic rules.

Then, Corollary 2 follows by combining the results for all three properties.

Another commonly-used GSR called STV does not satisfy monotonicity, which means that
Theorem 4 does not apply. However, empirical results (Section 3.5) suggest that STV is likely
also (0,Θ (1/

√
n) ,∆)-eDDP for ∆ containing the uniform distribution.

3.5 Concrete estimation of privacy parameters

We present an example of computing concrete estimates of (0, δ,∆)-exact DDP values for several
GSRs. For this example, we let ∆ = {π} such that π ∈ Π({x1, x2, x3}) and π(xi) = π(xj) = 1/3
(i.e., votes are i.i.d. and uniform).

We generated these concrete estimates via exhaustive search over possible profiles for 3 can-
didates and n ≤ 50 votes, and computing the δ values exactly for each n. Since we know that
δ = Θ(1/

√
n), we fit these values to δ(n) = 1√

an+b
via linear regression. We rank voting rules

from most to least private. The larger the a, the smaller the δ value and thus more private:
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Rule Winner Mean Square Error (n ∈ [50])

Borda δ(n) =
1√

1.347n+ 0.5263
0.0566844201243

STV δ(n) =
1√

1.495n+ 0.02669
0.0542992943035

Maximin δ(n) =
1√

1.553n+ 4.433
0.0377631805983

Plurality δ(n) =
1√

1.717n− 0.09225
0.0477175838906

2-approval δ(n) =
1√

1.786n+ 0.3536
0.0454223047191

Table 3.2: δ values in (0, δ,∆)-eDDP for some commonly-used voting rules under the i.i.d. uniform
distribution. m = 3 and n = 10 to 50.

2-approval B Plurality B Maximin B STV B Borda

We show in Table 3.2 the fitted δ curves with the mean square error in the fit.
Figure 3.3 shows the comparison between Plurality, Borda, and STV voting rules w.r.t. their

δ values in (0, δ,∆)-eDDP, when fitted to δ(n) = 1√
an+b

.

Figure 3.3: The δ values in (0, δ,∆)-eDDP for Borda, STV, and plurality in our concrete estimates.
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3.6 Chapter summary and future work

We address the limitation of DP in deterministic voting rules by introducing and characterizing
(exact) DDP (eDDP) for voting rules, leading to an encouraging message about the good privacy
of commonly-used voting rules and a framework to compare them with respect to eDDP. There
are many directions for future work. An immediate open question for theoretical study is to
extend our studies to general (ε, δ), and non-i.i.d. distributions, as well as to other high-stakes
social choice procedures such as matching and resource allocation. On the practical side, it could
be informative to study the eDDP of other data that is often published during an election, such
as demographic information, and interpret their consequences.
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Chapter 4

Cryptographic Implementation of
Collusion-Free and Preserving Games

4.1 Introduction

Subliminal communication channels in protocols allow parties to embed extra information into
protocol messages, often without being detected. The existence of subliminal channels is problem-
atic in several applications of secure computation. In large-scale distributed systems, for instance,
subliminal channels could allow two parties to coordinate their actions (i.e., collude) even if they
may not have been aware of each other in advance. Such collusions have severe consequences in
game theoretic applications, where stability, e.g., Nash equilibrium, is defined in terms of isolated
strategies. An example is the prototypical application of distributed cryptography, namely, playing
poker in a distributed manner [75]. An MPC protocol which allows collusions changes the rule of
the game —think of playing poker against colluding opponents.

In the quest to combine game theory and cryptography, a number of works [8, 11, 41, 99,
100] put forth new security notions, and in particular the notion of collusion-freeness (CF).
Analogous to simulation-based security, where a protocol is “secure” if the view of the adversary
(controlling corrupt parties) can be emulated by a simulator, a protocol is collusion-free, if the view
of individual corrupt parties can be emulated by individual non-colluding simulators. However,
collusion-freeness is impossible when parties are connected by pairwise communication channels—
this is straightforward to see since such channels can directly be used for coordination.

The impossibility of collusion-freeness under pairwise channels led to the proposal of alterna-
tive models that enable this desirable property. The two most typical models are (1) assuming
players are physically collocated, have access to a semi-trusted “ballot box,” and can communi-
cate publicly via (physical) envelopes [99, 100], or (2) assuming that parties are only connected
to a semi-trusted party (via standard communication channels) called the mediator [8, 11] in a
star network topology. In each round, the mediator is trusted to correctly perform a two-party
computation with each party individually. Roughly, the goal of this computation is to remove any

Most of the results in this chapter have been published in [47].
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embedded subliminal communication in the protocol messages.
Unfortunately, collusion-freeness, as a standalone definition, is not enough to limit collusion

when parties can be engaged in multiple protocols. As argued by Alwen et al. [9], unlike what one
might expect, a CF protocol (secure according to the definition of [8, 11]) does not necessarily
preserve its “collusion-freeness” when composed with other protocols. Alwen et al. gives the
following simple counter-example. Suppose a CF protocol is augmented with the following: it
allows two parties A and B to collude only if party B can provide the correct (randomly-generated
at run-time) κ-bit password, but the password is given only to party A. The protocol remains
CF, since B can only guess the password with negligible probability. However, if through exe-
cuting another protocol, party A can communicate κ-bits to B, then A can send the password
and collusion-freeness is lost. This limitation motivated [9] to introduce the notion of collusion-
preserving computation (CP). Intuitively, this notion can be seen as a universally composable
(UC) [36] extension of CF, designed to explicitly address the above issue. (An alternative model
capturing collusion-preserving universally composable computation via local adversaries was con-
currently and independently proposed by Canetti and Vald [41].) As a concrete example, suppose
a protocol Π is CP, and suppose while executing Π, a corrupt party pi uses an external commu-
nication channel to send another party pj a message m (e.g. a secret value only pi knows). CP
ensures that knowing m does not allow pj to gain even more information in Π, such as pi’s input
or output, other than information already implied by m. Importantly, CP supports composition
and it is modeled with respect to arbitrary communication resources.

Continuing the line of works in the mediated model, [9] constructed a collusion-preserving (CP)
protocol, which achieves the following fallback guarantee: Assuming a global augmented common
reference string (ACRS) functionality [39] 1 , when parties are arranged in a star topology with
the mediator in the center, there exists a protocol which (1) CP emulates any given functionality
if the mediator is honest, and (2) remains GUC secure [39]—i.e., secure with abort according to
the monolithic-adversary definition—even if the mediator gets corrupted (though CP/CF is lost).

On the downside, the CP protocol of [9] in the mediated model presents several limitations.
First, it is straightforward to prove that desirable properties such as fairness and identifiable
abort are impossible in the mediated model when the mediator might get corrupted (Sec. 4.5.1).
This can lead to undesirable situations—such as a poker tournament where a player can always
abort the game when he realizes he is losing, without being identified as a cheater. Second,
the protocol (compiler) from [9] takes explicit steps to ensure that an abort does not allow
parties to correlate their strategies, by making sure that an abort is observable only in a final
round that is deterministically fixed at the beginning of the protocol. However, this means that
their solution cannot be used to compute reactive functionalities 2 Lastly, the protocol is not
round-efficient. Having a deterministic upper bound on the number of rounds means that, if the

1In strategic games, players may achieve additional (correlated) equilibria by observing the same public signal,
such as the ACRS in [9] and protocol messages in our construction. However, CP ensures that no meaningful
information (about the input or output) can be communicated using the additional correlation.

2In [100] it is observed that given a CF protocol for non-reactive games, avoiding collusion for reactive games
is trivial if they have short descriptions. That is, if players commit their entire strategies at the beginning, then
any collusion during the game does not affect the outcome. While situation is more complicated if malicious
parties aborts and stops the game, we solve this issue by disincentivizing penalization, e.g. Section 4.4.
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goal is to unanimously decide on whether or not an abort occurred even in the fallback setting
where the mediator is compromised, the protocol always needs a linear number of rounds. This
is true because a generic compiler for such a functionality would imply deterministic broadcast
which needs linearly many rounds [55]. In fact, in the [9] compiler, each round is emulated by a
round-robin sequential interaction of each party with the mediator, yielding an additional linear
multiplicative blowup in the round complexity.

In this chapter, we will circumvent several of the limitations of [9] and extend its applicability
towards a framework for collusion-preserving protocols over public networks. To our knowledge,
this is the first work proposing a solution that breaks the deadlock of collusion-free/preserving
computation, which was believed to only apply to the mediated model or require physical presence
of parties in the same room.

Concretely, our solution replaces the mediator by the strictly weaker (as we argue later)
assumption of an authenticated broadcast channel and honestly generated hardware tokens. As
we will show (Sec. 4.1.3): (1) Capturing such hardware tokens in a collusion-preserving framework
is non-trivial (2) Our protocols achieve CP when the adversary does not abort (and in fact CP is
impossible with the broadcast channel when the adversary can abort). To disincentivize aborts,
we show how to leverage the publicly identifiable abort (Section 4.2.1) property of our protocol
to concretely penalize (e.g., via the blockchain) aborting parties. The fact that our protocol is
CP means that any external communication introduced by the blockchain will not lead to even
more correlation in our protocol. To capture incentive-driven attackers in a composable manner,
we combine and extend the CP framework with the rational protocol design (RPD) methodology
[65], which we introduced in the preliminaries Ch. 2, Sec. 2.6.2. We believe that both our
treatment of hardware tokens in CP, and our incentives model which we term RPD-CP, can be
of independent interest.

As fallback in case the hardware tokens may be compromised, our proposed protocol protects
the inputs of honest parties and ensures identifiable (unanimous) 3 abort while guaranteeing termi-
nation (cf. [91]). This is the analogue—in the token-hybrid setting with a broadcast channel—of
the fallback property of [8,9,11] which preserves privacy against a corrupted mediator at the cen-
ter of a a star-network. In fact, our fallback is stronger than what the mediated-model permits [9];
indeed, the star-network topology makes it impossible to obtain identifiable (unanimous) abort
against a corrupted mediator. The reason is that since the mediator controls the communication,
it is impossible to correctly detect if a malicious party did not sent a message, or if it is the
malicious mediator is pretending that an honest party has stopped replying (Sec. 4.5.1).

Chapter organization. Sec. 4.1.1: Overview of our contributions. Sec. 4.1.2: Related liter-
ature. Sec. 4.1.3: Overview of our constructions and main techniques. Sec. 4.2: Protocol ΠHT

for CP functionalities assuming tokens, broadcast and no abort. Sec. 4.2.3: Protocol ΠHT-FBS

with fallback GUC security against compromised tokens. Sec. 4.3: New framework RPD-CP
for defining CPAP—security of CP protocols against rational attackers. Sec. 4.3.3: Proofs of

3Recall from preliminaries Sec. 2.4.1.3 that security with unanimous abort guarantees that either all or none of
the honest parties receive the output while identifiable abort ensures any party causing an abort can be identified
(and excluded from future executions).
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CPAP security for our protocols ΠHT and ΠHT-FBS. Sec. 4.4: Penalization scheme to make the
utilities defined in Sec. 4.3 concrete.

4.1.1 Overview of our contributions

We now present our contributions in more detail. The goals of this chapter are to construct CP
protocols that (1) replace the mediator-centered star-topology network by weaker resources which
are closer to modern communication networks, (2) achieve stronger fallback security properties
and (3) ensure CP computation of even reactive functionalities by proving that incentive-driven
attackers will not abort, in a security model that incurs the negative cost of abort to the adver-
sary. These goals bring the theory of CP closer to capturing real world applications such as a
decentralized-dealer poker game. For reference, a comparison of our results to [100] and [8, 9]
can be found in Table 4.1. In more detail, our protocol emulates CP functionalities, including
those with private actions, when no abort occurs. We disincentivize aborts via a concrete penal-
ization scheme and in addition, we achieve fallback security maintaining identifiable abort (and
unanimous abort). That is, even when hardware tokens are compromised and the parties are
allowed to abort we still retain standard GUC security. The abort column in the table specifies
the number of bits of subliminal communication possible when an abort happens.

As a first step towards our goals, we show how to construct a collusion-preserving protocol
ΠHT allowing n parties to CP emulate any given what we call CP-well-formed functionality which,
when everyone gets corrupted, give up on collusion-preservation.

Definition 25 (CP-well-formed functionality). We say that a functionality F is a CP-well-formed
functionality if, when all parties are corrupt F has the following behavior on its adversaries’
interfaces:

1. Whenever a message m is received on the ith adversarial interface, F outputs (i,m) to the
first adversarial interface.

2. Whenever a message of the form (i, msg) is received on the first adversarial interface, F
outputs the message m to the ith adversarial interface.

Our protocol uses as resources (1) honestly generated stateful trusted hardware tokens (HTs)
and (2) an authenticated broadcast channel available during protocol execution4. Our protocol,
which can CP-emulate any functionality as long as no abort occurs, improves upon the CF-
protocol of [100], which is also based on broadcast but is not CP and does not emulate games
with private actions (i.e. actions that are not publicly observable). We note that our protocol,
analogously to that of [100], remains (G)UC secure with identifiable abort (though not collusion-
free) in case of abort. We remark that ΠHT only requires two (broadcast) communication rounds
unlike that of [100] or [9]. Furthermore, unlike the mediator from [9], tokens do not need to
know in advance what computation they will be used for, and only need to be initialized with
correlated randomness independent of the protocol, discussed in the overview of our techniques.

4The broadcast channel we employ guarantees that messages are always delivered to the parties [64, 85].
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The protocol ΠHT only offers security guarantees when the tokens are uncompromised. This
is arguably a strong assumption since in reality the adversary may attempt to break the security
of the tokens. For this reason we present a protocol compiler ΠHT-FBS which on input a (standard
(G)UC secure) protocol with unanimous or identifiable abort, outputs a protocol with the same
CP guarantees as ΠHT and, additionally, preserves (G)UC security properties (i.e., security with
unanimous or identifiable abort, respectively) of the compiled protocol, even when hardware
tokens are compromised. Specifically, even if the memory/code of corrupt parties’ tokens can
be read/reprogrammed and the secret keys of honest parties’ tokens are leaked, the protocol
is still (G)UC secure. This improves upon the fallback security of [9] where, due to model
idiosyncrasies, these properties are impossible to achieve when the mediator is corrupted, even
with honest majority (also in this case the reason is that the mediator has full control of the
network, see Sec. 4.5.1). We note that ΠHT-FBS, even with the extra fallback guarantee, has round
complexity that is still lower than the mediated-model solution of [9].

We believe that the above corruption model for the fallback solution is quite realistic, and
captures most of the attacks that have been performed on hardware tokens. For this reason, our
main theorems are proven in this corruption model. However, for sake of completeness, we will
follow with a sketch of how to construct a protocol that preserves (G)UC security even in the case
where also the tokens of the honest parties are fully compromised (i.e., the memory/code of any
token can be read/reprogrammed). However, this protocol will require a higher communication
complexity, and we lose the property of identifiable abort.

As an additional contribution, we combine the Rational Protocol Design (RPD) [15,65] frame-
work (see Preliminaries Section 2.6.2)with CP and define a new model termed RPD-CP. Within
this model we define a CP-security notion collusion-preserving attack-payoff (in short, CPAP),
which intuitively corresponds to security against any combination of incentive-driven local ad-
versaries. We identify a natural class of utilities under which non-aborting strategies are strictly
dominant in ΠHT and ΠHT-FBS. That is, these protocols are collusion-preserving according to
CPAP against adversaries bounded by this utility. We believe that RPD-CP can be used to derive
formal composable versions of security statements with fair-compensation [12, 24, 93–95] which
we think is an interesting future direction. Finally we propose a concrete penalization mecha-
nism, which may be implemented via e.g., the blockchain, that induces utilities in the above class.
Combining this with the notion of CPAP, we can prove that any adversary who maximizes its
revenue (or at least minimizes loss) will not abort, making our protocol CP secure against such
adversaries. The ability of the CP security definition to make formal statements in the presence
of a global blockchain demonstrates the power of the CP definition. Indeed, CP ensures that the
protocol participants cannot abuse the external channel provided by the blockchain to increase
the number of bits of collusion. That is, suppose one devises an equilibrium in an ideal poker
game (with a trusted dealer) where the players can also access the blockchain. Then, by adapting
the results from [9], we can prove that this equilibrium would be preserved when the poker dealer
is replaced by our CP protocol.
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Channel,
assumption

Id-abort
(fallback)

U-abort
(fallback)

Private
actions

Abort

Lepinski et al., STOC 2005
Broadcast+physical presence of parties,

physical envelopes
3 3 7 poly(κ) bits

Alwen et al., Crypto 2009
Alwen et al., Crypto 2012

Star topology,
honest mediator

7 7 3
Ω(log κ) bits for

reactive functionalities

This work
Authenticated Broadcast,

hardware tokens
3 3 3 Disincentivized

Table 4.1: Comparison with existing approaches. Id-abort: identifiable abort, U-abort: unanimous
abort.

4.1.2 Related works

4.1.2.1 Collusion-freeness and preservation

We extend the comparison of our results with existing results on collusion-freeness (CF) and
preservation (CP). The work of Lepinski et al. [100] achieves collusion-freeness for parties that
communicate with a broadcast channel, assuming access to a physical primitive called “en-
velopes”. They motivate the use of envelopes by proving that with only (authenticated) broadcast
channels, CF is impossible, even when the adversary does not cause the computation to abort.
The idea is that corrupted parties can share the same random tape before the start of protocol
execution. Since all messages are sent through broadcast, all corrupted parties will have the same
view and thus emulate a monolithic adversary. In the setting of our results, parties also commu-
nicate via a broadcast channel, but we circumvent this impossibility since the random tape of a
corrupted party is not decided by the party himself, but by a hardware token (whereas Lepinski
et al. generate randomness through coin-tossing and hide the result in envelopes).

Using stateful hardware tokens, we can also circumvent another impossibility result of Lepinski
et al., that CF protocols with private actions/inputs are not possible even with envelopes. The
impossibility comes from the corrupted parties being able to see (different) protocol messages
that different private actions generate, such as the result of encryption on different inputs. The
corrupted party then may be able to choose his private action, such that the resulting protocol
messages convey subliminal information about the private action itself (e.g., the last bits of the
protocol message encodes the action). However, this can be circumvented by stateful hardware
tokens. Informally, tokens can be programmed to prevent users from changing his input and
ensure they cannot see messages generated by different inputs. Thus, our protocol remains CP
even with private actions.

Lastly, as described in more detail in the introduction, in the mediated model, [8,11] achieve CF
and [9] achieves CP. In [41] the authors consider the notion of UC security with local adversaries,
which is more general than the notion of CP as it captures more complex corruption models. In
particular, [41] captures the scenario where there are independent clusters of corrupted parties,
whereas CP assumes that each corrupted party works in isolation (though their code is generated
by a single malicious attacker).
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4.1.2.2 Authenticated broadcast assumption

We compare authenticated broadcast with assumptions from previous works. Existing works on
CF and CP either require parties to be present in person [100]—to pass around physical envelopes,
or rely on restricted star-topology communication networks [8, 9]. These assumptions are used
far less than the (authenticated) broadcast channel common in MPC literature, and have been
criticized as overly restrictive and/or unrealistic.

In particular, the physical presence assumption of [100] makes the resulting protocols inap-
plicable to the standard cryptographic setting, where the protocol is played by interactive Turing
machines (ITMs). Similarly, the mediated model [8, 9] requires both complete isolation of the
parties and a special star-network topology where the mediator (at the center) is required to
both preserve the privacy of the communication and generate (pseudo)randomness—these re-
quirement are proven to be necessary for CP in the mediated model [9]. This is in contrast to
the less demanding assumption of authenticated broadcast combined with honestly generated
hardware tokens, which not only we believe is more natural—authenticated broadcast is a stan-
dard assumption in the cryptographic protocols literature and trusted hardware is a far less exotic
assumption than it used to be, but is also formally weaker as discussed in Section 4.1.2.4.

As in previous works, if our communication resource (i.e. broadcast) is malicious (e.g., allows
undetectable communication between corrupt parties) then our protocols are no longer CP. (In fact
it is easy to verify that such undetectable communication would make CP infeasible.) Nonetheless,
analogous to “fallback” security in the CP setting with a corrupted mediator [9], our protocol
still preserves its standard (G)UC security guarantees under a malicious broadcast resource (see
Section 4.2.3.2).

4.1.2.3 Playing games over the blockchain

The question of playing games such as poker over the Internet has recently attracted considerable
attention, fueled by the new capabilities introduced by smart-contract-enabled (cryptocurrency)
blockchains, such as Ethereum. In a nutshell, this technology makes it possible to ensure that
parties cannot avoid paying their bid amount when they lose without the need of a trusted
escrow—by having them commit their bids on the blockchain, in a smart contract that releases
them to anyone that presents evidence of winning. Furthermore, the same technology enables a
mechanism that punishes cheating—or early aborting—by making parties commit collateral that
they can only claim if evidence is presented that they completed their protocol. This method
of penalization has been used by, e.g., [12, 24, 93–95], which gave rise to a number of proposals
for decentralized poker protocols [25, 96]. However, all these works use standard multi-party
computation, thus even players who do not know each other can collude via protocol messages.

4.1.2.4 Stateful tamper-resilient hardware tokens

Previous works (e.g. [10,52,56,74,77,90,109,114]) have based (UC-)secure protocols on stateful,
tamper-resilient hardware. In addition to theory, trusted hardware such as Intel’s SGX ( [19, 20,
63]) and Bitcoin Hardware Wallets, have also been deployed in real life. The protocol of Lepinski
et al. [100] is based on physical envelopes, a kind of trusted hardware as well. They constructed
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CF (though not CP) protocols for games with public actions, where parties pass around such
envelopes.

We extend the application of hardware tokens by presenting the first (in our knowledge)
collusion-preserving protocol based on stateful trusted hardware tokens. We emphasize that
while improving upon the limitations and impossibilities of previous works, we do not remove
the need for trust completely. However, instead of relying on a trusted mediator to achieve CP,
we replace it with authenticated broadcast (discussed in Section 4.1.2.2) and trusted hardware
tokens. Intuitively, these assumptions are weaker than the mediator, since an honest mediator
in a star topology can act as a broadcast channel and as a set of hardware tokens. In fact in
Sec. 4.5 we prove a formal separation of the assumption of a trusted mediator from the one used
here (i.e., the combination of broadcast and honestly generated hardware tokens) demonstrating
that our assumption is indeed strictly weaker than that of a trusted mediator; in particular we
show that a trusted mediator allows for CP even in the presence of an aborting adversary, which
is impossible in our setting.

With trusted tokens, we improve upon the solution of [100] by achieving composition,
games with private actions, and only requiring parties to broadcast messages instead of physi-
cally exchanging tokens. We also circumvent the impossibilities of previous works in collusion-
preservation, as discussed in the introduction. To improve the practicality of our solutions, in
Section 4.2.3 we propose protocols that provide fallback security in case of compromised to-
kens (we discuss two levels of severity of compromise), as well as address practical issues in
implementation (Section 4.2.2).

Below, we detail the properties of our token assumption. We follow the approach of [10] to
model hardware tokens as ideal functionalities. Our tokens require the following properties:

• Stateful: The token has internal memory which may be read/updated.

• Trusted and Tamper-resilient: The token manufacturer is trusted, and no one except the
token itself can read or write its contents. In Section 4.2.3 we also sketch solutions (with
some trade-offs) which preserve GUC security given untrusted or non-tamper-resilient to-
kens.

• Isolated from its creator: Only the token owner can query and get the outputs generated
by the token. In particular, we require that no other parties may communicate with the
token.

The formalism of isolated, tamper-resilient and stateful hardware tokens was introduced
by [90]. There, the creation process of a token is described by a “wrapper” functionality which
allows parties to store and run (possibly several) ITMs representing the code and memory of
tokens. The wrapper functionality models malicious token creators in the protocol. However,
to achieve CP, we assume that all the parties hold honestly-generated tokens that share some
common private information. Thus, following [10], we model each token as a ideal functionality
without using the wrapper. Proving collusion-preservation based on hardware tokens presents
several unique technical challenges. We detail these issues and their solutions in Section 4.1.3.
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4.1.3 Overview of our techniques

Let P be a set of parties who wish to compute a function f in a collusion-preserving way. We
assume that each party pi ∈ P has access to a hardware token (HT) HTi. All HT’s contain
as secret information pseudo-random function’s (PRF) keys k0, k1 and a master secret key msk
(a secret key for a strong signature scheme). The public interface of the hardware tokens is
represented by the master public key mpk for msk. We refer to the party pn ∈ P as the leader.
Moreover, each execution of the protocol is uniquely identified by a session id sid ∈ N.

A overview of the protocols in this chapter is shown in Fig. 4.1: (1) our simple CP protocol
ΠHT that does not preserve security when tokens are compromised; (2) our CP protocol with
fallback security for compromised tokens ΠHT-FBS, which makes use of a secure MPC protocol
and preserves its identifiable abort and fairness properties; (3) a penalisation scheme which
disincentivises adversary abort by requiring deposit of collateral, for example on a smart-contract-
enabled blockchain.

Collusion-preserving protocol via HT and non-aborting adversary with broadcast
Roughly, our first protocol ΠHT works as follows: Each party pi ∈ P − {pn} sends his input,
encrypted by his token HTi, to a designated leader party. Upon receipt, the leader gives these
messages, along with his own input, to his own token. The token then computes the output,
which the leader forwards to the other parties.

In more detail, each token HTi uses R0 ← PRF(k0, sid) as randomness to generate an en-
cryption key sk. In addition, it uses R1 ← PRF(k1, sid||i)5 to generate a pair of session signing-
verification (sigki, vki) keys for a strong signature scheme and certifies them by signing vki||sid||i
with the master secret key msk thus obtaining certi.

6 We refer to the encryption key sk as the
session encryption key and to (sigki, vki) as the session signing-verification keys7. Note that the
session encryption key sk is common to all the hardware tokens (since all the tokens share the
same PRF keys).8

After the session keys have been generated, the hardware token HTi encrypts his input xi, signs
this encrypted value together with f using sigki, and sends the encryption, the signature, and the
certificate certi over the broadcast channel. The leader pn collects all the encrypted values and
signatures, and gives them to his hardware token HTn along with his input xn, the function f ,
and sid. His hardware token HTn first checks that all certificates and signatures are valid and the
inputs are consistent with the function f . Then, if all the checks are successful, HTn generates,
as described earlier, the session encryption key sk and decrypts all the encrypted inputs of the
other parties using sk (we recall that the PRF key k0 is shared among all the hardware tokens).
Using everyone’s (decrypted) inputs x1, . . . , xn, , HTn evaluates y1, . . . , yn = f(x1, . . . , xn) and

5As an abuse of notation we refer to the identity of a party pi with i.
6We use || as the concatenation operator.
7Unless otherwise specified, a signing-verification key always refers to a session signing-verification key.
8Intuitively, we use session-keys instead of the master secret key because these keys will be leaked to the

simulator. Leaking the master secret key would completely compromise the token. A more detailed discussion
follows later this section.
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Figure 4.1: High level overview of the protocols in this chapter.

for i = 1, . . . , n − 1 encrypts yi using sk and signs the (concatenation of the) encrypted values
together with f using sigkn. The encryptions and the signature uses randomness generated from
evaluating PRF(k1, sid||n). Finally, the leader pn propagates the output of HTn on the broadcast
channel. Each party pi, upon receiving a message, forwards it to HTi, which verifies the certificate,
the signature, and the consistency between f and sid. If the checks are successful then HTi uses
sk to decrypt and output yi.

Using hardware tokens allows us to achieve the following: (1) generate fresh randomness
and session keys for each new session id sid, that are hidden from the parties themselves, and
(2) certify that each sid is used only once. Intuitively, for (1), the randomness used in the
computation must be hidden from the parties themselves to achieve CP over broadcast. A
concrete example to demonstrate why hiding the randomness is important: Suppose a party Alice
has access to a (limited) external channel and uses it to send this randomness to another party
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Bob. If, for example, the randomness is used as Alice’s decryption key in the protocol, Bob now
can also decrypt messages directed towards Alice, since Bob sees these encrypted messages over
broadcast. This breaks CP as the limited external communication led to additional information,
e.g., Alice’s output, to be leaked to Bob. For (2), to restrict any sid to one-time use, our
stateful hardware token stops replying when a sid is used more than once. This is necessary to
prevent an adversary from using the same sid (thus the same randomness) to evaluate different
inputs. Otherwise, he can send a subliminal message by picking an input where, for example, the
resulting encrypted message has its first two bits equal to the first two bits of his input—breaking
collusion-preservation. This adversarial strategy was indeed observed in [100], limiting the games
they consider to those with publicly observable actions (as informally explained in Sec. 4.1.2.1).
The proof that that ΠHT is CP for non-aborting adversaries intuitively comes from the fact that
ΠHT is deterministic given the tokens (which fixes the PRF and msk keys) and the sid we use.
We note that while this may appear contradictory (i.e., to obtain a secure protocol you need
entropy [76]), our protocol achieves security and collusion-preservation as the tokens generate
fresh (pseudo)randomness for each sid (which is used only once). ΠHT also enjoys identifiable
abort, and more interestingly, any external party observing the execution of the protocol without
participating it can identify malicious behavior, by verifying signatures of messages on the channel.
Following [93] we refer to this property as publicly identifiable abort. To reduce the amount of
token memory required for checking that each sid is used only once, we propose two alternate
solutions in Section 4.2.2.

Tokens in collusion-preserving computation One may wonder why hardware tokens can-
not directly use their master secret key to authenticate protocol messages. The reason lies in
the locality restrictions that the CP model places on the ideal world adversary (the simulator).
Specifically, CP requires the existence of a local simulator Si for each adversarial party pi, and
mandates that simulators cannot communicate with each other except if the environment explic-
itly allows them to. Thus, setups (in our case, tokens) which naturally introduce correlations
between parties are tricky to define and use, especially when the protocol is executed over a
broadcast channel. To understand the issue, one needs to observe that in a protocol over a
broadcast channel, all parties expect to see exactly the same messages from this channel. Indeed,
one of the novelties of our results is to show how in the real-world, i.e., in the protocol execution,
the correlations embedded in the tokens can be leveraged to ensure that every (honest-protocol)
broadcast message is predictable by any token. However, this correlation in the views inherently
requires the simulators’ views to be correlated in some way, in order to generate the same exact
protocol messages. For instance, if S1 (the ideal world adversary with 1 as their ID) reports to
the environment that he broadcasted message m in round ρ, then each Sj should also report to
the environment that they heard this message. However, for this we need to allow the simulators
to correlate their response. A naive first approach would be to allow them to interact over some
underlying communication network. However, this defeats the purpose of collusion-preservation,
as it explicitly introduces a venue of arbitrary correlations/collusion. A second approach would
be to also offer the simulators access to correlated tokens. But this leads to a new technical
issue: In order to simulate the token-hybrid protocol, our simulator needs to have extra control

81



of the hardware tokens (e.g., be able to program it). In fact, such asymmetry between the ca-
pabilities of the adversary and the simulator is proven necessary in various related settings (e.g.,
programmable random oracle).

We tackle the above issue by considering the hardware token as a (global) setup functionality
and embedding a trapdoor inside. To ensure that only the simulators in the ideal world can
use the trapdoor, we employ a technical trick inspired by [40] for the global random oracle.
At a very high level, the trapdoor allows the simulators to produce the same signed messages,
making their views on protocol messages consistent. Specifically, it gives access to a set of
pre-computed messages which contain no information about the input of the parties. These
messages are indistinguishable from the messages that would be generated in the real world
and are properly signed with respect to the n signing-verification session keys as they would be
in a real world execution. For example, for the protocol we have just described, the trapdoor
would allow the simulator to get a set of encryptions of 0, all authenticated with respect to the
corresponding signing-verification session keys. To enable such a mechanism, we introduce a
token global-functionality that allows functionalities registered to it to send a special command
(Trapdoor, sid). The registered functionalities can then relay the trapdoor information it receives
to its simulators, allowing them to complete their simulations.

Most importantly, this trapdoor information remains useless for other protocols, preserving
composability with other CP protocols. More concretely, consider an extension F? of F , which
behaves exactly as F but accepts an additional command GetTrapdoor from the ideal world
adversary. In the simulation each simulator can send to F? the command (GetTrapdoor, sid).
Upon receiving this command, F? sends (Trapdoor, sid) to the token functionality if and only if
sid is equal its session id. The token functionality, upon receiving the command (Trapdoor, sid)
from F?, sends to F? the trapdoor information (e.g., the authenticated encryptions of 0). When
F? receives a reply from the token functionality, it is forwarded to the simulator. Note that
we leak only messages that can be used within a specific session id, since they are signed using
signing key that are bonded to one session id. Indeed, as discussed previously, for each session
we create new session (e.g., signature) keys that are valid only within that specific session.

The mechanism described above is quite natural as in the real world the parties are allowed to
see signed messages passing on the channel and determine their actions based on these messages.
The same should be allowed in the ideal world. Hence, we enhance the ideal functionality F by
constructing F? which acts exactly as F as described above.

Collusion-preservation with fallback security Despite being simple and optimal in terms of
round complexity, the protocol ΠHT above suffers from a big limitation. That is, if the hardware
tokens are corrupted (e.g., the secret keys are leaked by the token manufacturer) then not only
the CP-property is lost, but we cannot even guarantee to protect the honest parties’ inputs. To
rectify this issue we propose the protocol ΠHT-FBS (“FBS” stands for fallback secure) that protects
the input of the honest parties (in a standard GUC-security sense) even in the case where: (1)
the adversary knows all the secret keys of the hardware tokens (including those held by honest
parties) and (2) the malicious parties can arbitrarily modify or replace their own hardware tokens.

This protocol achieves a similar fallback security as the original collusion-preserving protocol
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in the mediated model: When tokens are not compromised—and aborts are either excluded or
deterred by means of incentives (see below)—then the protocol is collusion-preserving; and in
any case (i.e., even when tokens are compromised) the protocol remains (G)UC secure—i.e., any
profile of adversaries can be simulated by a monolithic simulator. We refer to a protocol that has
such security guarantees as a fallback secure protocol.

Our fallback protocol guarantees also identifiable abort and unanimous abort for functionalities
that guarantee termination, even when tokens can be broken. Interestingly, these properties are
impossible to achieve in the analogous scenario of a corrupted mediator in the mediated model.
To obtain such a protocol we use as a main building block a protocol ΠMPC that is secure against
a malicious adversary and which enables identifiable (unanimous) abort. Each token computes
protocol messages on behalf of its owner. In addition, the randomness used is jointly decided by
the owner of the token and by the token itself.

More precisely, it is the XOR of the randomness produced by the hardware token, and a random
string given at run-time by the token’s owner. Intuitively, this means even if an honest party’s
token leaks its secret keys, it will still use an honestly-generated random string in the protocol.
Thus, the party’s input is protected by the security of the underlying MPC protocol, even if a
token’s secret keys are leaked. On the other hand, if all hardware tokens are uncompromised,
then the randomness of any party in the MPC protocol becomes unknown and untamperable to
everyone. Thus, no malicious party can send subliminal messages without being detected and
causing an abort.

For sake of completeness, we also sketch a protocol which, although less round-efficient
and without identifiable abort, preserves standard (GUC) security even when tokens are fully
compromised—that is, not trusted, isolated, nor tamper-resilient. This is a stronger version of a
“compromised” token since the adversary may read the contents or even change the behavior of
honest parties’ tokens. We make a simple alteration to our solution: Any computation performed
by the token, will instead be done via a secure two-party protocol between the token and its owner.
In more detail, each party pj runs a secure 2-party protocol with his token, to obtain the next
message of the protocol ΠMPC. When tokens are uncompromised, the behavior of this solution
is the same as in our original solution, achieving CP. When tokens are compromised, fallback
security follows from the security of 2-party protocol which ensures the tokens learn nothing.
This solution, however, cannot achieve identifiable abort against fully-compromised tokens since
any token can, e.g., be programmed to be unresponsive to any interactions. This also means the
solution can only implement functionalities with abort, even with honest majority.

How to deal with aborting adversaries We note that the above CP-protocols cannot prevent,
for example, a corrupt poker player from simply sending an encrypted message “I have an ace of
spades; let’s collude!” over the broadcast channel. While the protocol could detect such invalid
messages and abort, this attack already breaks CP and seems unavoidable if no assumptions are
made on the network topology (e.g., the mediated model [8, 9, 11]) and on the honesty of the
network nodes. In this chapter, we show how to circumvent the above issue by considering an
incentive-driven (rational) attacker. That is, we define a security notion called CPAP (collusion-
preserving attack-payoff secure) that captures the fact that some adversarial actions—in our case
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aborts—are not “for free” and instead incur a negative payoff. For example, as our protocols
have (publicly) identifiable abort, a judge in the poker game example can identify and penalize an
adversarial party causing the abort. Similar to the rational protocol design (RPD) framework [65],
CPAP considers a CP-well-formed (Def. 25) functionality F , and a relaxed functionality 〈F〉 that
acts the same as F except it explicitly includes weaknesses that allow a simulator to collude or
abort. Then, we define a value function v mapping the joint view of a set of simulators9 interacting
with the relaxed functionality 〈F〉 and the environment Z, to a real-valued payoff. Intuitively, the
real utility gained/lost by a set of adversaries for a given protocol is the payoff maximized over all
environments, and minimized over all sets of simulators that successfully emulate the adversaries
in the environment. For our CP protocols, we show that collusion always causes the real world
execution to abort (and identify a corrupt party). Thus, when the cost of abort exceeds the gains
from colluding, a rational attacker will never collude (otherwise simulator can trigger an abort in
〈F〉)—intuitively it means that our protocol implements F for rational attackers.

From “ideal” to “real” payoffs. In Sec. 4.4 we construct a penalization protocol Πpen which
runs the computation of our CP protocols ΠHT or ΠHT-FBS, and in addition penalizes the adversary
when he colludes (which can be done only by triggering an abort). For a natural class of utilities for
the protocol designer and attacker, Πpen enjoys both CPAP and CPIC, following similar arguments
as in Sec. 4.3.3.

4.2 Collusion-preserving (CP) MPC with non-aborting ad-
versaries

In this section we present our protocol ΠHT for any CP-well-formed functionality (Def. 25) under
the following assumptions: (1) each party has access to a hardware token (which we describe as
one global ideal functionality T HT) (2) all communication is done over authenticated broadcast,
and (3) adversarial parties do not make the protocol abort. For simplicity we restrict ourselves to
non-reactive functionalities, also known as secure function evaluation. (The general case can be
reduced to this case using a suitable form of secret sharing to maintain the secret intermediate
states of the reactive functionality.) Moreover, we describe all our protocols in a round based,
synchronous manner, where messages sent in some round are delivered by the beginning of the
next round. We first introduce some additional notation:

- sid ∈ N uniquely identifies an execution of ΠHT.

- Set of parties P = {p1, . . . , pn} running ΠHT compute the function f .

- We call leader the party that is in charge to run a special code and we assume w.l.o.g. that
the leader is pn ∈ P .

- T HT denotes the global token functionality.

9Recall that in CP, adversaries are not monolithic, so we consider a set of adversaries/simulators instead of
one single adversary/simulator.
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For our construction we use the following tools:

- Pseudo-random functions: PRF0 : {0, 1}κ×{0, 1}κ → {0, 1}κ, PRF1 : {0, 1}κ×{0, 1}2κ →
{0, 1}4κ, PRF2 : {0, 1}κ × {0, 1}2κ → {0, 1}(n+2)κ, PRF3 : {0, 1}κ × {0, 1}κ →
{0, 1}(4n−2)κ;

- A strong unforgeable signature scheme

Σ = (Kgen, Sign,Ver);

- A secret-key encryption scheme

ΠSK = (Gen,Enc,Dec).

The global setup Ḡ is represented by the token functionality T HT. We note that we use one
functionality to emulate the behavior of the hardware tokens held by the parties that run the
protocol. This token functionality replies to each party pi ∈ P using the appropriate code and
keys depending to the identity of the calling party (i.e. the functionality discriminates between
leader and non-leader parties). To not overburden the notation, in the formal construction we
denote the identity of a party pi ∈ P with i. Moreover, the token functionality exports as public
information the master public key mpk, and keep as part of its secret state the master secret key
msk together with with the PRF keys K0, K1, K2, K3. The parties are allowed to communicate
only via a broadcast channel denoted by B (c.f. Fig. 2.2 for formal definition).

We provide a formal description of T HT in Fig. 4.2 and Fig. 4.3. The complete formal descrip-
tion of the the protocol ΠHT for the non-leader party is proposed in Fig. 4.4, and the protocol run
by the leader parties is provided in Fig. 4.5. We assume that the ideal functionality F that we
wish to realize is registered to the token functionality. In addition, upon receiving the command
(GetTrapdoor, sid), F sends (Trapdoor, sid) to the token functionality if sid is equal its session
id, and forwards the answer to the ideal adversary. We recall that this trapdoor allows us to cap-
ture the broadcast channel, on which all parties see the exact same signed messages. Equipping
the ideal functionality with the trapdoor command translates this real-world leakage in the ideal
world. We also recall that the functionality leaks to the simulators messages that are valid within
one specific session without harming the token functionality globally.

We now prove that ΠHT is collusion-preserving against non-aborting adversaries for well-formed
functionalities (Def. 25). Formally, we prove the following:

Theorem 5. Let Ḡ = T HT be the setup as defined above, R = B (broadcast) and F be n-
party resources where F is a CP-well-formed functionality. Then the {Ḡ,R}-exclusive protocol
ΠHT (described by Fig. 4.4 and 4.5) CP realizes F in the R-hybrid world assuming non-aborting
adversaries.
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The token functionality is parameterized by a set of parties P and by a list F of ideal functionality
programs. The functionality manages the keys (mpk,msk) for the signature scheme Σ and the
PRF keys K0,K1,K2,K3.
If I = (Get key, sid) is received return mpk to the caller.

Input phase for non-leader parties.
If I = (Input, sid, x, f) is received from a non-leader party pj then do the following.

- If ctrsid
j is not defined then define it and set ctrsid

j ← 1 otherwise output ⊥ and stop.

- Compute R0 ← PRF0(K0, sid) and Kencsid ← Gen(1κ;R0)

- Compute R1 ← PRF1(K1, sid||j) and parse R1 as 4 strings of κ bits each rs1||rs2||r1||r2.

- (sigksid
j , vksid

j )← Kgen(1κ; rs1)

- certj ← Sign(msk, vksid
j ||sid||j; rs2)

- Compute x, σ ← Enc(Kencsid, x; r1), Sign(sigksid
j , x||f ; r2) and output (x, f, vkj , σ, certj).

Output phase for non-leader parties. If I = (Output, sid, z) is received, parse z as
(y1, . . . , yn−1, f, vkn, σ, certn) and do the following. If Ver(vkn, y1|| . . . ||yn−1||f, σ) = 1 and
Ver(mpk, vkj ||sid||j, certj) = 1 then compute and output Dec(Kencsid, yj), output ⊥ otherwise.

Trapdoor. If I = (Trapdoor, sid) is received from an instance of an ideal functionality in the list
F then do the following.

- If ctrsid
j is not defined then define it and set ctrsid

j ← 1 otherwise output ⊥ and stop.

- Pick r1|| . . . ||rn−1||r′1|| . . . ||r′n−1||rs1
1||rs2

1|| . . . ||rs1
n||rs2

n ← PRF3(K3, sid).

- For each i ∈ [n] (sigki, vki) ← Kgen(1κ; rs1
i ), certi ← Sign(msk, vki||sid||i; rs2

i ). For each
j ∈ [n− 1] ej ← Enc(pkn, 0

κ; rj), σj ← Sign(sigkj , ej ; r
′
j)

- For each j ∈ [n− 1] compute yj ← Enc(pkj , 0
κ; r′j)

- σn ← Sign(sigkn, y1|| . . . ||yn−1||f ||sid).

- Return to the calling instance {vki, certi, σi}i∈[n], {ei, yi}i∈[n−1].

Figure 4.2: Functionality T HT for the behavior of hardware tokens of non-leader parties.

Proof sketch. For simplicity we assume that only the leader is honest. To prove this theorem,
we need to show a collection of efficiently computable transformations Sim = {Sim1, . . . , Simn}
that satisfy the CP definition, Definition 11. For i = 1, . . . n, the simulator Si = Sim(Ai) queries
(GetTrapdoor, sid) F? with command (GetTrapdoor, sid). F? checks that sid is equal to its
session id. If so, then F? sends (Trapdoor, sid) to T HT. T HT then generates a set of encryptions
of 0κ, a set of signing/verification keys and uses them to authenticate these encryptions (see the
bottom of Fig. 4.2/Fig. 4.3). We note that each simulator will obtain the same set of ciphertexts
and verification keys. This is crucial for the proof to go through, as each individual simulator Si
internally runs the corrupted party pi, and it will act on the behalf of the other n − 1 parties
using the authenticated cipthertexts received by F?. Si will also intercept all the queries the
party pi makes to T HT. Assuming that pi is non-aborting, then at some point they will query
T HT with their input xi. Si now has the input of the corrupted party, and he will use it to query
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The token functionality is parameterized by a set of parties P and by a list F of ideal functionality
programs. The functionality manages the keys (mpk,msk) for the signature scheme Σ and the
PRF keys K0,K1,K2,K3.
If I = (Get key, sid) is received return mpk to the caller.

Input/output phase for the leader party.
If I = (Input, sid, xn, f, sid, (x1, vk1, σ1, cert1), . . . , (xn−1, vkn−1, σn−1, certn−1)) is received
from the leader party pn then check if for all j ∈ [n − 1] Ver(vkj , xj ||f, σj) = 1 and
Ver(mpk, vkj ||sid||j, certj) = 1. If it is not, then output ⊥ and stop, otherwise act as follows.

- If ctrsid
n is not defined then define it and set ctrsid

n ← 1 else output ⊥ and stop.

- R2 ← PRF2(K2, sid||n); parse as n+ 2 strings of κ bits each rs1||rs2||r1||r2|| . . . ||rn−1||r?.

- (sigksid
n , vksid

n )← Kgen(1κ; rs1)

- certn ← Sign(msk, vksid
n ||sid||n; rs2)

- Compute R0 ← PRF0(K0, sid) and Kencsid ← Gen(1κ;R0).

- For j = 1, . . . , n− 1 compute xj ← Dec(Kencsid, xj).

- Compute y1, . . . , yn ← f(x1, . . . , xn).

- For j = 1, . . . , n− 1 compute yj ← Enc(Kencsid, yj ; rj).

- σ ← Sign(sigksid
n , y1|| . . . ||yn−1||f ; r?);

- Output (y1, . . . , yn−1, f, vkn, σ, certn), yn
Trapdoor. If I = (Trapdoor, sid) is received from an instance of an ideal functionality in the list
F then do the following.

- If ctrsid
j is not defined then define it and set ctrsid

j ← 1 otherwise output ⊥ and stop.

- Pick r1|| . . . ||rn−1||r′1|| . . . ||r′n−1||rs1
1||rs2

1|| . . . ||rs1
n||rs2

n ← PRF3(K3, sid).

- For each i ∈ [n] (sigki, vki) ← Kgen(1κ; rs1
i ), certi ← Sign(msk, vki||sid||i; rs2

i ). For each
j ∈ [n− 1] ej ← Enc(pkn, 0

κ; rj), σj ← Sign(sigkj , ej ; r
′
j)

- For each j ∈ [n− 1] compute yj ← Enc(pkj , 0
κ; r′j)

- σn ← Sign(sigkn, y1|| . . . ||yn−1||f ||sid).

- Return to the calling instance {vki, certi, σi}i∈[n], {ei, yi}i∈[n−1].

Figure 4.3: Functionality T HT for the behavior of hardware tokens for the leader party.

the ideal functionality. In addition, Si sends to pi (acting on the behalf of T HT) an encryption
of 0 authenticated with respect to the verification key vki. Assuming that no party aborts, the
simulation is successful since the messages generated by the individual simulator on the locally
simulated broadcast channels are exactly the same for all the parties (unless the adversary breaks
the signature scheme).

Full proof. To prove CP, we must show n independent simulators S1, . . . ,Sn. At a very high level
for all i ∈ {1, . . . , n}, Si can query F with the command (GetTrapdoor, sid). F checks that sid
is equal to its session id, and if so, it sends (Trapdoor, sid) to T HT. T HT then generates the string
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We assume that the party pj is registered to the token functionality T HT and that it obtains mpk
by querying it with I = (Get key, sid). Each party is aware of the function that will be computed
f , of the identifier of each execution sid, and of the parties involved in each of those executions
P.
Input.

- The party pj on input (Compute, sid, x) sends (Input, sid, x, f) to T HT.

- Upon receiving the answer X from T HT, if X = ⊥ then pj outputs ⊥ and stops. Otherwise,
pj sends X to pn.

Output. The party pj , upon receiving z = (y1, . . . , yn−1, f, vkn, σ, certn) from pn sends
(Output, sid, z) to T HT. Upon receiving y from T HT, pj outputs y.
Check-channel. The party pj inspects all messages that are sent on the channel. If a message
(m, f ′, vk, σ, cert) is received from a party pi check if f = f ′ and Ver(vki,m||f, σ) = 1 and
Ver(mpk, vk||sid||i, cert) = 1. If it is not, then output (⊥, pi) and stop.

Figure 4.4: Protocol executed by the party pj.

Input/output
- The party pn on input (Compute, sid, xn) collects messages from pj∈[n−1] and sends I =

(Input, xn, f, sid, (x1, vk1, σ1, cert1), . . . , (xn−1, vkn−1, σn−1, certn−1)) to T HT.

- Upon receiving the answer Y from T HT, if Y = ⊥ then output ⊥ and stop. Otherwise parse
Y as ((m, f, vkn, σ, certn), y), send (m, f, vkn, σ, certn) to all the parties in P and output
y.

Check-channel. The party pj inspects all messages that are sent on the channel. If a message
(m, f ′, vk, σ, cert) is received from a party pi check if f = f ′ and Ver(vkj ,m||f, σ) = 1 and
Ver(mpk, vk||sid||j, cert) = 1. If it is not, then output (⊥, pi) and stop.

Figure 4.5: Protocol executed by the leader party pn.
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K̃, n pairs of signing-verification keys, and authenticates the verification keys using the master
secret key msk. T HT then sends this information to F which forwards them to the simulator Si.
Note that if all the simulators query F with (GetTrapdoor, sid) they will all get the same pair of

authenticated signing-verification key and the string K̃. Given the above information, a simulator
Si can use K̃ as input of a PRG to generate the randomness sufficient to: 1) to create a key
Kencsid for a secret-key encryption scheme 2) compute n+1 encryptions of 0κ and 3) authenticate
the encrypted value using the appropriate signature session keys. These authenticated messages
are now used to interact with p?i (who is not supposed to distinguish between the encryptions
of 0κ and the encryptions that contain the actual inputs of the parties). Moreover, whenever
Si receives the input form p?i he forwards it to the F which returns the output yi. The crucial
observation is that the messages seen by all the corrupted parties are the same since the simulators
use exactly the same strategy and randomness, and since the adversary cannot forge a signature
for the strong signature scheme we are using10. We now provide a more formal argument for the
proof.

We start by assuming that at least one party is honest. In order to prove this part
of the theorem we need to show a collection of efficiently computable transformations
Sim = {Sim1, . . . , Simn} mapping ITMs to ITMs such that for every set of adversaries
A = {A1, . . . ,An}, and every PPT environment Z the following holds:

cp-execḠ,RΠHT,A,Z ≈ cp-execḠ,Fφ,Sim(A),Z

For i = 1, . . . n, the simulator Si = Sim(Ai) queries(GetTrapdoor, sid) F? with the com-
mand (GetTrapdoor, sid). F? checks that sid is equal to its session id. If it is, then F? sends

(Trapdoor, sid) to T HT. T HT then generates the string K̃, n couples of signing-verification keys, and
authenticates the verification keys using the master secret key msk (as shown in Fig 4.2/Fig. 4.3)
thus obtaining {vki, certi, σi}i∈[n], {ei, yi}i∈[n−1]. F? then sends T HT this information to F? which
forwards them to the simulator Si.

From here onwards the behaviors of the simulators differ. Without loss of generality we
describe how the simulator S1 works since Si with i ∈ {2, . . . , n−1} will follow exactly the same
strategy as S1. We then show how the simulator Sn works.

S1: The simulator S1 internally runs the adversary A1, emulates the token functionality T HT

for A1 for the session id sid and acts on the behalf of the parties p2, . . . , pn. S1 executes the
following steps.

1. Send (e2, f, vk2, σ2, cert2), . . . , (en−1, f, vkn−1, σn−1, certn−1) to A1.

2. If A1 sends I = (Input, sid, x, f ′) to T HT then do the following.

- If ctrsid
1 is not defined then define it and set ctrsid

1 ← 1 otherwise output ⊥ and stop.

- Output (e1, f, vk1, σ1, cert1)

10We note that it is crucial to use a strong signature scheme to avoid the creation of a different valid signature
for a message m from valid signatures for the same message.
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3. If A1 sends (e1, f, vk1, σ1, cert1) over broadcast then send (sid, x1) to F .

4. Upon receiving y1 from F send (y1, . . . , yn−1, f, vkn, σ, certn) to A1.

5. Upon receiving (Output, sid, z) from p1, if z = (y1, . . . , yn−1, f, vkn, σ, certn) then send y1

to A1, output ⊥ otherwise.

Sn: The simulator Sn internally runs the adversary p?n, emulates the token functionality T HT

for p?n for the session id sid and acts on the behalf of the parties p1, . . . , pn−1. Sn executes the
following steps.

1. Send ((e1, f, vk1, σ1, cert1), . . . , (en−1, f, vkn−1, σn−1, certn−1)) to p?n.

2. If I = (Input, sid, xn, f
′, (e′1, f1, vk′1, σ

′
1, cert′1), . . . , (e′n−1, fn−1, vkn−1, σ

′
n−1, cert′n−1)) is re-

ceived from p?n, then check if for j = 1, . . . , n − 1: e′j = ej, σ
′
j = σj, vkj = vk′j and

certi = cert′i. If it is not, then output ⊥ and stop, otherwise execute the following steps.

- If ctrsid
n is not defined then defined it and set ctrsid

n ← 1 otherwise output ⊥ and stop.

- Send xn to F and upon receiving yn from F send (y1, . . . , yn−1, f, vkn, σ, certn) to
p?n.

The main differences from the real world are that the adversarial parties see dummy encryptions
instead of the encryptions. We note that the simulation strongly relies on the fact that the
adversaries cannot forge the signatures output of the hardware token functionalities. Indeed, by
forging a signature an adversary could: (1) change the input of another party, or (2) use the inputs
of the honest parties to evaluate a functions f ′ 6= f or (3) evaluate the same function multiple
times on the same honest parties inputs by changing the value sid thus completely breaking the
security of the protocol.

In the case that all the parties are corrupted then we rely on the fact that F is CP-well-formed
functionality and we allow the adversarial parties to communicate freely via F . More precisely,

1. Whenever a message m is received on the ith adversarial interface, F outputs (i,m) to the
first adversarial interface.

2. Whenever a message of the form (i,m) is received on the first adversarial interface, F
outputs the message m to the ith adversarial interface.

4.2.1 (Publicly) Identifiable abort

Another interesting property enjoyed by ΠHT is identifiable abort. Recall from the preliminaries
(Section 2.4.1.3) that a protocol run by a set of parties P is said to be secure with identifiable
abort if it either computes according to its specification, or it aborts with the index of some
corrupted party pi ∈ P —i.e., every honest party learns the identity of a corrupted pi.
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In ΠHT the adversary can only deviate from the protocol specification by either sending a
message authenticated with respect to a sid′ or f ′ not equal to the correct sid or f the honest
parties use, sending a message with an invalid signature or certificate, or fail to send a message.
Each event is verifiable by honest parties, and even third parties not involved in the protocol.
Indeed, with the master public key mpk, sid and function f , it is possible to claim who did abort
in a run of ΠHT by just inspecting its transcript. Formally, the protocol ΠHT securely realizes the
function FfIDA, where FfIDA involves n parties. More interestingly, we can modify ΠHT to support
an additional party pn+1 which takes no input, does not send any message and outputs a default
value (e.g., 0). Since pn+1 knows the master public key mpk, she can check the validity of
the signature and the certificate. Hence, she is able to identify an invalid message (in the case
pn+1 is honest). That is, our protocol allows an observer of the protocol execution to identify
a misbehaving party. Following [93] we refer to this property as publicly identifiable abort, and
to pn+1 as a judge. The code of the judge can be used by anyone who has the public setup and
wants to follow the protocol execution and decide who aborted the protocol given the parties’
messages.

4.2.2 Note on implementing T HT with real hardware tokens

Following the approach of [10], we describe the behavior of the hardware tokens (HTs) by means
of a single ideal functionality with a single set of shared keys. In particular, the master sign-
ing/verification keys allow tokens and parties to verify whether a message was signed by a hard-
ware token. In practice, such functionality can be replaced by tokens that each has its own secret
information (e.g., the HTs do not need share the same master signing key). More precisely, only
a global master verification key needs to be shared among the tokens. Each hardware token
manages its own signing and verification keys, mski and mpki, along with a certificate ci which
is a signature of mpki created by the HT manufacturer’s global master secret key. An example
of this approach is Intel SGX processors, where each processor has a unique attestation key and
“endorsement certificate” from the manufacturer [50]. To authenticate a message, HT HTi signs
it with its mski, and sends the signature together with his master verification key vki and the
certificate ci. Anybody that has the global master verification key can verify that the certificate
ci is valid for vki, and that the signature issued by HTi is valid w.r.t. vki.

Another important part of T HT is to ensure that the session ID sid must not be reused in
different protocol sessions. The most simple solution stores all sids that the token has seen.
Thus, if the token cannot store more sids, it will not be able to verify the freshness of new sids
and must stop responding all together. This in effect makes the token no longer usable for our
CP protocol. We present two alterations to improve upon the space usage of the simple solution.
First, the token can transfer the burden of storing the sids to an external memory, in a hash
chain data structure [97]. The token stores the head and tail of the hash chain, which ensures
that no malicious party can tamper with the sids on the external memory. The solution only
requires a small (i.e., constant in the number of sids) amount of storage. However, verifying a sid
requires interaction with the external memory to retrieve the hash chain—to use minimal space,
the token may choose to retrieve the chain one hash at a time. To eliminate interactions with
external memory, one may also opt for a Bloom filter [29]. This solution trades off the need for
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interaction with the possibility (depending on the space allocated to the filter) of falsely marking
some sids as “used”. This however does not impact security, as it is equivalent to the token
having seen a session with this sid.

4.2.3 Fallback solution when tokens can be compromised

While simple and optimal in terms of round complexity, the protocol ΠHT cannot guarantee any
form of security when hardware tokens are corrupted/compromised. For example, if the secret
keys are leaked by the token manufacturer then not only the CP-property is lost, but we cannot
even guarantee any protection with regard to the inputs of the honest parties. In this section we
propose a CP protocol ΠHT-FBS that provides fallback security (in a standard GUC-security sense)
in the following corruption model: (1) the secret keys of the tokens, including those of honest
parties, can be leaked and (2) the memory/code of corrupt parties’ tokens can be read/modified
completely. Let F be the function that the parties wish to compute. For our construction we
use the following tools.

- Pseudo-random functions PRF0 : {0, 1}κ×{0, 1}2κ → {0, 1}(2m+4)κ and PRF1 : {0, 1}κ×
{0, 1}κ → {0, 1}((m+3)n+1)κ

- A strong unforgeable signature scheme Σ = (Kgen, Sign,Ver).

- A n-party MPC protocol ΠMPC = (Next1, . . . ,Nextn) that GUC-realizes functionality F .

The global setup Ḡ is represented by the token functionality T HT-FBS. Similar to the token
functionality of the previous section, T HT-FBS has a master public key mpk and a secret state
consisting of the corresponding master secret key msk and the PRF keys K0, K1. We assume
without loss of generality that the setup required to run ΠMPC is part of T HT-FBS. We denote our
protocol with ΠHT-FBS (Fig. 4.7) and provide a formal description of T HT-FBS in Fig. 4.6.

Security of ΠHT-FBS:

We summarize the properties of the protocol ΠHT-FBS.

1. If the hardware tokens are not compromised, and no party aborts, then ΠHT-FBS is collusion-
preserving.

2. If the hardware tokens are compromised and ΠMPC GUC realizes FfAB with AB ∈
{IDA,UNA} , then ΠHT-FBS GUC realizes FfAB

3. If the hardware tokens are not compromised (but the malicious parties may abort), then
ΠHT-FBS GUC realizes the functionality F with publicly identifiable abort.

The properties 1 and 2 above enable the fallback security of ΠHT-FBS. In addition, the second
property states that in the case of corrupted tokens, ΠHT-FBS inherits all the properties of ΠMPC

(e.g., identifiable abort). We note that if the MPC protocol guarantees fairness (or even output
delivery), this property would be held by ΠHT-FBS as well. The third property states that if an
adversarial party aborts then the CP property might be lost, but the input of the honest parties
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are protected. We capture the case where the hardware tokens are compromised by considering

the token functionality T
HT-FBS

instead of T HT-FBS. T
HT-FBS

extends T HT-FBS with the additional

command Tamper. If the adversary queries the token functionality with Tamper then T
HT-FBS

leaks to the adversary its secret state (i.e., the master secret key msk and the PRF keys). Given
the master secret key, the adversary can authenticate any message he wants and therefore acts
on the behalf of the hardware token. To formally prove that ΠHT-FBS is fallback secure we need
to prove the following two lemmata.

Intuitively, to prove Lemma 9 we rely on the fact that any execution of ΠHT-FBS can be seen
as an execution of ΠMPC among honest parties. Indeed, in the case the hardware tokens are not
corrupted the adversary has no control on the messages of ΠMPC, and he can only act as a proxy
between the hardware tokens and the broadcast channel (since we assume that the adversary is
non-aborting). This allows the CP simulators S1, . . . ,Sn to internally run the simulator Sim of
ΠMPC (that exists by definition) for the case where no parties are corrupted. Hence, S1, . . . ,Sn
can just run Sim using the same correlated randomness obtained from the trapdoor information
K̃, following the approach proposed in Sec 4.2. To prove Lemma 10 we can reduce the security of
the entire protocol to the GUC security of ΠMPC. We note that in Lemma 10 the global setup is

represented by T
HT-FBS

, which captures the scenario where the hardware tokens are compromised.
We now provide more formal arguments.

Lemma 9. Let Ḡ = T HT-FBS be the setup, R = B (broadcast) and F be n-party resources where
F is a CP-well-formed functionality. Then the {Ḡ,R}-exclusive protocol ΠHT-FBS (described by
Fig. 4.7) CP realizes F in the R-hybrid world assuming that no parties abort.

Proof. We start the proof by assuming that at least one party is honest (otherwise the
lemma trivially holds since we assume a CP-well-formed functionality). In order to prove
this part of the theorem we need to show a collection of efficiently computable transforma-
tions Sim = {Sim1, . . . , Simn} mapping ITMs to ITMs such that for every set of adversaries
A = {A1, . . . ,An}, and every PPT environment Z the following holds:

cp-execḠ,RΠHT-FBS,A,Z ≈ cp-execḠ,Fφ,Sim(A),Z

By assumption on the security of the MPC protocol, we know that ∀A ∃S ∀Z such that

execḠ,B
ΠMPC,A,Z ≈ execḠ,FS,Z .

We consider now S (the MPC simulator) for the case where there are no corrupted parties
and describe how Si = Sim(A)i works for i = 1, . . . n. Without loss of generality we formally
describe how the simulator S1 works since the other simulators follow exactly the same strategy.

The simulator S1 queries (GetTrapdoor, sid) F? with the command (GetTrapdoor, sid). F?
checks that sid is equal to its session id. If it is, then F? sends (Trapdoor, sid) to T HT-FBS.

T HT-FBS sends {vki, certi}i∈[n], {msg`j, σ`j}j∈[n],`∈[m] information to F? which forwards them to
the simulator S1. Then S1 executes the following steps.

- Send (msg`2, vk2, σ
`
2, cert2), . . . , (msg`n, vkn, σ

`
n, certn) to A1.
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The functionality manages the keys (mpk,msk) for the signature scheme Σ. The functionality
manages also the PRF keys K0,K1. If I = (Get key, sid) is received return mpk to the caller.
Input phase. If I = (Input, sid, xj , Rj) is received from some party pj , then do the following,

- If ctrsid
j is not defined, then define it and ctrsid

j ← 1, otherwise output ⊥ and stop.

- Compute Rsid
0 ← PRF0(K0, sid||j) ⊕ Rj and parse Rsid

0 as (2m + 4) strings of κ bits
rs1
j ||rs2

j ||ρ1
j || . . . ||ρ

m+1
j ||r1

j || . . . ||r
m+1
j .

- (sigksid
j , vksid

j )← Kgen(1κ; rs1
j )

- certsid
j ← Sign(msk, vkj ||sid||j; rs2

j )

- Output the first message (msg1
j , sid,ΠMPC, σ, vkj , certj), where msg1

j = Nextj(1
κ, xj , ρ

1
j ,⊥)

and σ ← Sign(sigkj , msg
1
j ||ΠMPC||`; r1

j )

Next message function. If received I = (NextMsg, sid, {msg`i , σ`i , vki, certi}i∈[n]) from pj then:

- If ` > m or ctrapsid
j = 1 then output ⊥ and stop, else continue with the following steps.

- Parse Rsid
0 as rs1

j ||rs2
j ||ρ1

j || . . . ||ρ
m+1
j ||r1

j || . . . ||r
m+1
j .

- Store msg`sid = {msg`i}i∈[n].

- For all i ∈ [n] check if Ver(vki, msg
`
i ||ΠMPC||`, σ`i ) = 1 and Ver(mpk, vki||sid||i, certi) = 1.

If it is not then output (pi,⊥) and stop. Otherwise continue with the following steps.

- Set ` ← ` + 1, compute msg`j = Nextj(1
κ, xj , ρ

`
j , msg

<`) with msg<` = {msg`′i }i∈[n],`′<`

where msg`
′
i is the message from pi at round `′ that was stored in msg`

′
sid

- If ` = m+ 1 then output yj ← msg`j

else, output (msg`j , sid,ΠMPC, σ`j , vkj , certj), where σ`j ← Sign(sigksid
j , msg

`
j ||ΠMPC||`; r`j).

Trapdoor. If received I = (Trapdoor, sid) from instance of functionality in the list F then:

- If ctrsid
j is not defined, then define it, define ctrapsid

j , set ctrsid
j ← 1 and ctrapsid

j ← 1. Else
output ⊥ and stop.

- Compute ρ||r1
1|| . . . ||r

m+1
1 || . . . ||r1

n|| . . . ||rm+1
n ||rs1

1||rs2
1|| . . . ||rs1

n||rs2
n ← PRF1(K1, sid).

- For all i ∈ [n] (sigki, vki)← Kgen(1κ; rs1
i ), certi ← Sign(msk, vki||sid||i; rs2

i ).

- Use ρ to run the simulator of the MPC, S for the case where there are no corrupted party.

- Let {msg`j}j∈[n],`∈[m] be the messages contained in the transcript obtained by the MPC

simulator S. For all j ∈ [n] and ` ∈ [m] computes σ`j ← Sign(sigkj , msg
`
j ||ΠMPC||`; r`j).

- Return {vki, certi}i∈[n], {msg`j , σ`j}j∈[n],`∈[m]

Figure 4.6: Functionality T HT-FBS for hardware token behavior in fallback protocol ΠHT-FBS.
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We assume that the party pj is registered to the global token functionality T HT-FBS and obtains
mpk by querying it with I = (Get key, sid).
Input and next message generation.

- The party pj on input (Compute, sid, x) samples uniform random Rj ∈ {0, 1}(2m+4)κ and
sends I = (Input, sid, xj , Rj ,Π

MPC) to T HT-FBS
j .

- For each ` ∈ {1, . . . ,m}:

- Upon receiving message X from T HT-FBS
j check if X = (⊥, pi′). If it is then output

(⊥, pi′) and stop, otherwise send X over broadcast.

- Collect message (msg`i , sid,ΠMPC, σ`i , vki, certi) for round ` from each party pi ∈
[n]\{j} and send (NextMsg, sid, {msg`i , σ`i , vki, certi}i∈[n]) to T HT-FBS

j .

Output phase.

- Collect the message (msg`i , sid,ΠMPC, σ`i , vki, certi) for round ` from each party pi ∈ [n]\{j}
and send (NextMsg, sid, {msg`i , σ`i , vki, certi}i∈[n]) to T HT-FBS

j .

- Upon receiving yj from T HT-FBS
j output it.

Check-channel. The party pj inspects all messages that are sent on the channel. If a message
(m, sid,ΠMPC, σ, vk, cert) is received from a party pi check if Ver(vki,m||ΠMPC||`, σ) = 1 and
Ver(mpk, vk||sid||i, cert) = 1 for some ` ∈ [m]. If it is not, then output (⊥, pi) and stop.

Figure 4.7: Protocol ΠHT-FBS followed by pj to achieve fallback security.

- If I = (Input, sid, x1, R1,Π
MPC) is received from A1 then do the following.

- If ctrsid = 0 then ctrsid′ ← 1 otherwise output ⊥ and stop.

- Set x← x1, l← 1 and send (msg1
1,Π

MPC, vk1, σ
1
1, cert1) to A1.

- If I = (NextMsg, sid, {msg`i
′
, σ`i
′
, vki

′, certi
′}i∈[n]) is received then do the following.

- If ` 6= l or l > m output ⊥ and stop, otherwise continue with the following steps.

- For all j ∈ [n] if msg`j 6= msg`j
′

or σ`j 6= σ`j
′

or certi
′ 6= certi or vki

′ 6= vki then output
(⊥, pi) and stop.

- Set l← l + 1.

- If ` ≤ m then send (msgl1, sid,ΠMPC, σl1) to A1.

- If ` = m+ 1 then send x to F . Upon receiving y1 from F send y1 to A1.

The proof relies on the observation that (unless the adversary breaks the security of the
strong signature scheme), then the adversary just acts as an observer on the channel. That is,
the corrupted party A1 can only inspect the messages generated by T HT-FBS

1 and the messages
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received on the channel which are honestly generated using T HT-FBS.11 For this reason S1, . . . ,Sn
can run a simulator S of ΠMPC that works when there are no corrupted parties. We recall that
the behavior of the corrupted parties cannot influence the output of S as long as the signature
scheme is secure.

Lemma 10. Let ΠMPC be a protocol that GUC-realizes the n-party functionality FAB with

AB ∈ {IDA,UNA} that exclusively uses B as a resource. Let Ḡ = T
HT-FBS

and R = B then

∀A ∃Sim ∀Z execḠ,RΠHT-FBS,A,Z ≈ execḠ,F
AB

Sim,Z

Proof. This proof follows immediately from the GUC security of ΠMPC. Indeed, we note that the
token functionalities simply run ΠMPC even in the case that a unsigned message is received (or a
message is not received at all). This also enables identifiable abort (unanimous abort) if ΠMPC

enables it.

Having shown the above lemmas, we prove that the fallback protocol ΠHT-FBS indeed achieves
the property of identifiable abort.

Theorem 6. Let Ḡ = T HT-FBS be the setup, R = B and F be n-party resources where F is a
CP-well-formed functionality. Then, the {Ḡ,R}-exclusive protocol ΠHT-FBS (described by Fig. 4.7)
GUC realizes F IDA.

Proof. The only way that an adversary has to misbehave is by sending an invalid signature over
the channel. This behavior can be detected by any party that has the verification keys of the token
functionalities. Moreover, the first party that sends a unsigned message is identified as corrupted.
In all the schemes that we have described in this section, the broadcast channel is used exclusively
to run the protocol. Hence, once the protocol has been executed the broadcast channel is closed
(no messages can be send on that channel). We note that this is not a limitation since the notion
of CP tolerates composability. Hence, multiple broadcast channels might be available at the same
time.

4.2.3.1 Remark on fully-compromised tokens

As discussed in the introduction, to achieve fallback security against fully-compromised (that is,
untrusted, non-tamper-resilient, non-isolated) tokens, any computation performed by the token
must instead be done through a 2-party protocol between the token and the party holding it.
To be specific, this 2-party protocol will implement the following functionality: On request to
compute: (1) if round ` = 0: Take input xj from party pj and K0,mpk,msk from pj’s token.
It stores xj, K0,mpk,msk. (2) If ` ≤ m: Take input the messages from the current round from
pj, if a message fails to authenticate then the token stops and pj aborts. (3) Finally, output the
next message (msg`j, · · · ) as the token would, to pj.

11If that is not the case then either the protocol would abort, or a reduction to the security of the signature
scheme can be done.
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4.2.3.2 Remark on malicious broadcast

We also give intuition on what happens if our authenticated broadcast resource is malicious.
First, we will invariably lose CP, since a malicious broadcast resource can provide a private com-
munication channel for corrupt parties, trivially allowing collusion. However, like with a malicious
mediator in [9], we still achieve (G)UC security without unanimous abort/fairness. This is an inter-
esting feature of our model and results: our security degrades more gradually with respect to the
underlying assumptions than with a corrupted mediator. When only the tokens are compromised
but authenticated broadcast is honest, then we have (G)UC security with identifiable abort—
impossible with a corrupt mediator. If broadcast is malicious then we lose identifiable/unanimous
abort and fairness—e.g., the malicious broadcast can pass an unauthenticated invalid message
to just one honest party, making only this party abort, and it can also refuse to pass the output
to honest parties. Intuitively, security is preserved even with malicious broadcast since messages
from the tokens are encrypted and authenticated. If tokens are in addition compromised, then our
fallback protocol (when based on a MPC protocol with (G)UC security in presence of a malicious
broadcast), also preserves security.

4.3 Collusion-preserving MPC for rational adversaries

In the Preliminaries Ch. 2, Sec. 2.6.2, we detailed the rational protocol design (RPD) frame-
work. In this section, we will extend the RPD framework to study the feasibility of implementing
functionalities F in a collusion-preserving way, against incentive-driven attackers that may even
choose to abort the protocol. We first detail how to adapt RPD (with monolithic adversaries) to
the case of collusion-preserving functionalities (which we call RPD-CP), with local adversaries.
We then prove that our protocols ΠHT and ΠHT-FBS disincentivize collusion in this model, when
there is a sufficient penalty to the attacker for aborting. Recall that ΠHT and ΠHT-FBS are CP
against non-aborting adversaries, and can (publicly) identify a corrupt party in case of an abort.
Finally, we show how this model can be applied in practice, e.g. using the blockchain. In partic-
ular, we can abstract the blockchain by means of an ideal functionality that allows the parties to
deposit collateral, which can be reclaimed on the agreement of all parties. We provide a protocol
Πpen that uses this functionality to concretely penalize an attacker for aborting ΠHT or ΠHT-FBS.

4.3.1 Motivation for using penalization to disincentivize aborts

We observe that the notions of collusion-freeness (and so collusion-preservation) do not capture
all the attacks that send subliminal message using the ability to abort. Indeed and adversary
A = (A1,A2) could adapt the following strategy in a game of poker. A1 aborts any time that
he holds an Three of Spades in his hand. Clearly, even if A1 and A2 are isolated, when protocol
does not abort, A2 knows some information about A1’s cards that the honest parties do not.
This attack becomes more interesting in the case of reactive functionalities, where the parties
can get intermediate outputs. As a concrete example of a reactive functionality, we can think to
use a CP protocol to shuffle a deck of cards and let the parties play poker. A strategy could be
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to make corrupt party A1 abort in the first hand if he does not have an Ace, and abort in the
second hand if he does not have a King, and continues the game otherwise. It should be easy to
see that with high probability A1 will be able to communicate more than one bit of information
to A2. We note that this issue arises only because the CP definition allows the parties to abort,
which is in general an unavoidable attack. Thus, in our work we choose to disincentivize aborts.

4.3.2 RPD-CP: Tuning RPD to the CP setting

The Attack Model Following the RPD framework [65] (formally described in Sec. 2.6.2), we
capture collusion-preservation against incentive-driven attackers, by considering attacks as part
of an attack game GM between a protocol designer D and attacker A. Here, D comes up with
a protocol Π, and the attacker A ∈ ITM generates a set of adversaries/adversarial strategies
A(Π) = A = {Ai}i∈I , I ⊆ [n] to attack it. The attacker’s utility uA is then a function of the
choice of protocol Π and adversarial strategies A. The attack modelM = (F , 〈F〉, vA) (and vD,
if we also consider the designer’s utility) encompasses the parameters in this game—〈F〉 is the
weaker version of the functionality F we wish to implement. 〈F〉 explicitly allows (1) CP to be
broken by sending a colluding message to other adversarial parties and (2) the adversarial parties
to abort and being identified by all the other parties that are running the protocol. Note that
in contrast to monolithic adversaries and simulators, in CP the ideal adversarial parties do not
automatically share their views and must use 〈F〉 to collude (see. Fig. 4.8). Lastly, the attacker’s
utility uA is defined based on a value function vA, which assigns payoffs to events occurring in the
ideal world—more details below.

4.3.2.1 Utility of the attacker A

The utility of the attacker uA is a function mapping protocols and sets of adversaries, i.e. the
strategy profile (Π,A), to a real number. In our case, utility depends on whether a set of
simulators must collude via a weakness in 〈F〉 in order to emulate A in Π, and whether the
simulators trigger an abort. More formally: First, we have a value function vA, defined in the
attack model, which maps the views of the simulators and environment in the ideal world to
a real value. Then, we define the real payoff of a particular A attacking the protocol, as the
minimum payoff over all simulators that can emulate A. Finally, uA(Π,A) is the real payoff of
A, maximized over all possible environments Z.

Ideal payoff of a set of simulators In more detail, we define the real-valued random variable
ensemble {v〈F〉,S,ZA (k, z)}k∈N,z∈{0,1}∗ (or v

〈F〉,S,Z
A for short) as the random variable ensemble re-

sulting from applying value function vA to the view of the environment Z and a set of simulators
S = {Si}i∈I in the ideal execution. The ideal expected payoff of a particular set of simulators S
with respect to Z is defined as the expected value: U

〈F〉
IA (S,Z) = E(v

〈F〉,S,Z
A ).

Real payoff of a set of adversaries Recall that given a setup Ḡ and resource R, a {Ḡ,R}-
exclusive (that is, the protocol only uses Ḡ,R) protocol Π realizes a CP-functionality 〈F〉 if, for
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The functionality interacts with a set of parties P = {p1, . . . , pn}. It maintains a set of honest
parties H ⊆ P, and a set of malicious parties I ⊆ P

- Upon receiving (COLLUDE, sid,m) from party pi ∈ I, send message (SUB MSG, sid, pi,m) to
pj , for all pj ∈ P − {pi}.

- Upon receiving (ABORT, sid) from a party pi, send (ABORT, pi) to pj , for all pj ∈ P-{pi} and
stop.

- Upon receiving a message that is consistent with the interface of F act as F would do
acting as a proxy between F and the parties in P.

Figure 4.8: 〈F〉 weakens F with commands COLLUDE and ABORT.

all I ⊆ [n], and independent (rather than monolithic) adversaries A = {Ai}i∈I , there exists a
collection of efficiently computable transformations from ITMs to ITMs Sim = {Simi}i∈I such
that the simulator Si = Simi(Ai) emulates Ai. That is, the environment Z cannot distinguish
between the real world with A and resource R, and ideal world with S = {Simi(Ai)}i∈I and
〈F〉. Let 〈F〉 be a CP functionality and Π be a protocol. Denote CA as the class of simulators
S = {Si}i∈I that can emulate the adversarial parties A = {Ai}i∈I for I ⊆ [n]. That is, for
setup Ḡ and resource R,

CA =
{

Sim(A) = {Simi(Ai)}i∈I
∣∣∣ ∀i ∈ I :

Simi an efficiently computable mapping from ITM to ITM,

∀Z : cp-execḠ,RΠ,A,Z ≈ cp-exec
Ḡ,〈F〉
Π,Sim(A),Z

}
.

The expected payoff of a set of adversaries and environment (A,Z) is then defined as

U
Π,〈F〉
A (A,Z) = infS∈CA{U

〈F〉
IA (S,Z)}. The attacker’s utility is then maximized over all envi-

ronments Z, i.e., uA(Π,A) := Û
Π,〈F〉
A (A) = supZ∈ITM{U

Π,〈F〉
A (A,Z)}.

4.3.2.2 Utility of the protocol designer D

In [65], the attack game is assumed to be zero-sum, i.e. the designer’s utility uD = −uA. To
remove this assumption, we follow the methodology of a more recent work [15] to define uD. In
more detail, for each (Π,A), we must assign utility for the designer using the same simulators
and environments as those used for the attacker. Let SA denote the class of simulators that were
used to obtain the utility of the attacker, and ZA denote the class of environments maximizing
the utility for simulators in SA. That is,

SA =

{
S ∈ CA : sup

Z∈ITM
{U 〈F〉IA (S,Z)} = uA(Π,A)

}
and

ZA =
{
Z ∈ ITM : for some S ∈ SA , U 〈F〉IA (S,Z) = uA(Π,A)

}
.
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Then, let v
〈F〉,S,Z
D and U

〈F〉
ID (S,Z) be defined similar to the payoffs v

〈F〉,S,Z
A and U

〈F〉
IA (S,Z) re-

spectively. Again following the definitions of [15], the real payoff of the designer is U
Π,〈F〉
D (A,Z) =

supS∈SA{U
〈F〉
ID (S,Z)}. The utility of the designer is then

uD(Π,A) := Û
Π,〈F〉
D (A) = inf

Z∈ZA

{UΠ,〈F〉
D (A,Z)}.

We can extend the attack model with the value function of the designer vD: M = (F , 〈F〉, vA, vD).

4.3.2.3 Attack-payoff security with collusion-preservation

Similar to the definition of attack-payoff secure in [15,65], which we detailed in the Preliminaries
Def. 12, we define collusion-preserving attack-payoff (CPAP). Intuitively, a protocol is CPAP with
respect to an attack modelM = (F , 〈F〉, vA) if it enjoys security and collusion-preservation under
this model. That is, no attacker can gain more utility from running our protocol, than running
the dummy protocol that uses a functionality F as a resource.

Definition 26 (CPAP). Let M = (F , 〈F〉, vA) be an attack model and Π a {Ḡ,R}-

exclusive protocol that realizes 〈F〉. We say that Π is CPAP in M if supA∈ITM uA(Π,A)
negl

≤
supA∈ITM uA(ΦF ,A) where ΦF is the dummy {Ḡ,F}-hybrid protocol which forwards all inputs to
and outputs from functionality F .

To complete our framework, we also define ε-subgame-perfect equilibrium from [65], and
define collusion-preserving incentive-compatible (CPIC) similarly to the definition of incentive
compatible (IC) in [15], which we detail in the Preliminaries Def. 14. Informally, a strategy
profile is an ε-subgame-perfect equilibrium if no deviation could improve utilities by more than ε.
Intuitively, a protocol Π is incentive compatible when even the designer is incentivized to stick
with it.

Definition 27 (ε-subgame-perfect equilibrium [65]). Let GM be an attack game. A strategy
profile (Π, A(Π)) is an ε-subgame perfect equilibrium in GM if the following conditions hold: (1)
for any Π′ ∈ ITMn, uD(Π

′, A(Π′)) ≤ uD(Π, A(Π)) + ε, and (2) for any A′ ∈ ITM, uA(Π, A
′(Π)) ≤

uA(Π, A(Π)) + ε.

Definition 28 (CPIC). Let Π be a {Ḡ,R}-exclusive protocol and ~Π be a set of polynomial-

time {Ḡ,R}-exclusive protocols. We say that Π is ~Π-CPIC in the attack model M iff for some
A ∈ ITM, (Π, A(Π)) is a negl(κ)-subgame perfect equilibrium on the restricted attack game where

the set of deviations of the designer is ~Π.

4.3.3 ΠHT and ΠHT-FBS with incentives

In this section we show that the protocols ΠHT and ΠHT-FBS presented in the previous sections are
CPAP for a natural class of utilities uA. For simplicity we consider the ideal functionality Ff for
SFE parameterized by the function f : Fn → F (this form is without loss of generality—see,
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e.g., [102]), which we assume is a CP-well-formed functionality (Def. 25). We refer the reader to
the preliminaries, Ch. 2 for a formal definition of Ff . We consider the following events the value
function vA is concerned with. These are events defined on the views of the environment, the
(relaxed) CP-functionality 〈Ff〉, and the simulators S = {Si}i∈I , given adversaries A = {Ai}i∈I :

- Define the event Ecollude as follows: For some i ∈ I and message m, the ith simulator Si
sends the message (COLLUDE, sid,m) to 〈Ff〉.

- Define the event Eabort as follows: For some i ∈ I, party pi aborts and is identified by all
the parties as having aborted.

Now, we define the payoffs assigned by vA to the events above. Denote by γcollude the utility for
the attacker obtained by triggering Ecollude. Denote by γabort the penalty incurred as result of
a malicious party being identified by the honest parties as an aborting party. Then, the utility of
the attacker is:

uA(Π,A) = sup
Z

{
inf
S∈CA

{
γcollude Pr[Ecollude]− γabort Pr[Eabort]

}}
.

Our protocol satisfies CPAP security under the condition that the penalty of being identified
as having aborted is greater than the gain from sending a colluding message. In the next section,
we will discuss a penalization scheme that makes these penalties concrete.

Theorem 7. Let Ff be an ideal CP-well-formed functionality (Def. 25), and 〈Ff〉 be as defined
in Fig. 4.8. Let vA be as defined above, for any γcollude and γabort such that γabort > γcollude.
Then the protocol ΠHT described in Sec. 4.2 (and the protocol ΠHT-FBS described in Sec. 4.2.3) is
CPAP secure in the attack model M = (Ff , 〈Ff〉, vA).

Proof sketch. To prove this theorem we rely on the observation that ΠHT (ΠHT-FBS) is collusion-
preserving for Ff as long as nobody aborts. Moreover, ΠHT and ΠHT-FBS achieve (publicly) iden-
tifiable abort, since the only way subliminally communicate is by sending a message which is
incompatible with the protocol description. Given the way we have set the payoffs, it is always
inconvenient for the adversary to trigger the collusion event Ecollude, as it causes the abort event
Eabort.

Full proof. Our main observation is that ΠHT (ΠHT-FBS) is collusion-preserving for Ff as long as
nobody aborts. That is, the only way to do subliminal communication in ΠHT (and in ΠHT-FBS) is by
sending a message which is incompatible with the protocol description thus causing the protocol
to abort. Given this utility function, it is always inconvenient for the adversary to trigger the
collusion event Ecollude, as it causes the abort event Eabort. We observe that in the case where
we also consider the utility of the designer we can prove that our protocol is CPIC (according to
Def. 28) in the case there the utilities of the designer are symmetric to the utility of the adversary.

In the case that all the parties are malicious then we rely on the fact that 〈Ff〉 is CP-well-
formed functionality and we allow the adversarial parties to communicate freely via 〈Ff〉 following
the same approach proposed in the proof of Theorem 5.
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In the case that at least one party is honest then we need to show collection of efficiently
computable transformations Sim = {Sim1, . . . , Simn} mapping ITMs to ITMs such that for every
set of adversaries A = {A1, . . . ,An}, and every PPT environment Z the following holds:

cp-execḠ,RΠHT,A,Z ≈ cp-exec
Ḡ,〈Ff 〉
φ,Sim(A),Z

The simulators are equal to the simulators showed in the proof of Theorem 5 except for the
following details. If Si receives an invalid message m from p?i (i.e. a message that would yield
an honest party to abort) then Si sends (COLLUDE, sid,m) to 〈Ff〉 and stops. This situation
captures the ability of the corrupted parties to interact with each others at the price of being
detected by the honest parties. Indeed, we recall that ΠHT enjoys the identifiable abort property.
The payoff we have defined ensures that an adversary is never incentivized to abort (i.e. break
the CP property). Given that we have proved in Theorem 5 that the if no party aborts then ΠHT

is collusion-preserving then we can claim that ΠHT is CPAP. The same arguments can be applied
to ΠHT-FBS.

4.4 Realizing the incentives

The goal of this section is to create a penalization scheme that translates the utilities defined
above to concrete (monetary) values. Below, we describe a simple protocol Πpen that realizes a
CP functionality F assuming no aborts, and disincentivizes aborts with penalization. As we show
in Theorem 8 below, Πpen achieves CPAP, and is incentive compatible for the designer (i.e. is
CPIC), assuming the existence of one honest party. The protocol assumes a functionality Fpen,
which allows each party to deposit a collateral of amount d (a parameter of the functionality).
Parties can reclaim their collateral if and only if all parties send the functionality a RECLAIM

message (Fpen is defined formally in Fig. 4.9). In Πpen, honest parties only send RECLAIM if they
do not detect an abort during execution of ΠHT or ΠHT-FBS. The protocol Πpen works as follows.

1. Each party sends (DEPOSIT) to Fpen, to deposit a collateral of amount d. If the functionality
returns (DEPOSIT, 1), proceed. Otherwise, stop.

2. Run ΠHT (resp. ΠHT-FBS) (possibly multiple times for reactive functionality, using secret
sharing to maintain secret intermediate state) on the broadcast channel B.

3. If ΠHT (resp. ΠHT-FBS) did not abort, then all parties send (RECLAIM) to Fpen. Fpen ensures
that parties receive their deposits back if and only if everyone sends (RECLAIM).

We define below a class of utilities for the above protocol, making the arguably natural as-
sumption that the attacker (who chooses the adversarial strategies for all corrupted parties) cares
about the sum of deposits lost/gained by all corrupt parties, and similarly, the protocol designer
cares about the deposits of all honest parties. Let Ecollude be the event the simulator sends a
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The functionality is parameterized by a deposit amount d, and a tuple of initial balances of each
party, Balance = (b1, . . . , bn).

- Upon receiving (DEPOSIT) from party pi: If bi ≥ d:

1. In this round, if all pj ∈ P have sent (DEPOSIT) , and bj ≥ d, then continue. Other-
wise, send (DEPOSIT, 0) to each party pi ∈ P and stop.

2. Deposit collateral for each party: for each party pi ∈ P: bi ← bi − d
3. Send the message (DEPOSIT, 1) to each party pi ∈ P.

- Upon receiving (RECLAIM) from party pi ∈ P:

1. In this round, if received (RECLAIM) from all pi ∈ P, continue to return deposits to
all parties. Otherwise, return (RECLAIM, 0) and stop.

2. For each pi ∈ P, return the deposit to pi: bi ← bi + d and send the message
(RECLAIM, 1).

Figure 4.9: Fpen allows the parties to deposit an amount d, which can be withdrawn only if all
the parties registered to the functionality send a command RECLAIM.

COLLUDE message in 〈F〉; EA
deposit(t) (resp. ED

deposit(m)) is the event t corrupt (resp. m honest)
parties send (DEPOSIT) to Fpen and Fpen returns (DEPOSIT, 1); EA

reclaim(t) (resp. ED
reclaim(m))

is the event where t corrupt (resp. m honest) parties receive the message (RECLAIM, 1). Sets
CA,SA,ZA are defined in Section 4.3.2.

uA(Π,A) = sup
Z

{
inf
S∈CA

{
γcollude Pr[Ecollude]

−
∑
t∈[n]

td · Pr[EA
deposit(t)] +

∑
t∈[n]

td · Pr[EA
reclaim(t)]

}}

uD(Π,A) = inf
Z∈ZA

{
sup
S∈SA

{
− γcollude Pr[Ecollude]

−
∑
m∈[n]

md · Pr[ED
deposit(m)] +

∑
m∈[n]

md · Pr[ED
reclaim(m)]

}}
Informally, we show CPIC and CPAP by proving that the strategy profile (Πpen,A), where the

A is the passive adversarial strategy that just follows Πpen (and does not collude/abort), is an
equilibrium solution. We observe that corrupt parties know that if they try to gain more utility by
colluding (and thus abort), there is at least one honest party to ensure they lose their collateral,
which means they have no incentive to deviate from Πpen. The protocol designer also has no
incentive to deviate from Πpen if the adversary is passive, which means this strategy profile is an
equilibrium.
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Theorem 8. Let F be an ideal CP-well-formed functionality, and 〈F〉 be as defined in Fig. 4.8.
Let vA and vD be defined in the utility functions above, let td > γcollude where t is the number
of corrupt parties, and assume there is at least one honest party. Then, the {Ḡ,R}-exclusive
protocol Πpen, where R is broadcast and Ḡ = T HT,Fpen (resp. Ḡ = T HT-FBS,Fpen) :

- collusion-preservingly emulates the {Ḡ,F}-exclusive protocol φ assuming the adversary
does not abort,

- is CPAP secure in the attack model M, and

- is ~Π-CPIC in M.

Where M = (F , 〈F〉, vA, vD) and ~Π is the set of all protocols.

Proof sketch. To prove Πpen realizes the CP-functionality F , Si (the simulator for party pi)
communicates with Fpen to determine the status of the deposited collateral. To simulate ΠHT

(resp. ΠHT-FBS) it follows the simulator from the proof of Theorem 5 (resp. Lemma 9). To prove
CPAP, we show that Πpen realizes 〈F〉 by letting Si in addition use the COLLUDE command in
〈F〉 in case the adversary misbehaves during ΠHT (resp. ΠHT-FBS). Since in ΠHT (resp. ΠHT-FBS)
collusion always follows an abort, CPAP of Πpen follows from setting the deposit d so that the cost
of abort (losing td collateral) is higher than gains from collusion γcollude—that is, the adversary
cannot gain more utility via triggering weaknesses in 〈F〉. Lastly, to prove CPIC, we show that
given a passive adversarial strategy A that just follows Πpen, the designer has no incentive to
deviate from choosing Πpen. We show this by observing that uD(Πpen,A) = 0, which is the
maximum utility of the designer (as parties can only reclaim collateral which they have already
deposited).

Full proof. First, we prove that Πpen realizes the CP-functionality F as long as there is no abort.
To emulate Πpen, the simulator Si forwards (DEPOSIT) and (RECLAIM) to Fpen on behalf of
corrupt party pi and returns whatever Fpen does to pi. During ΠHT (resp. ΠHT-FBS), Si follows the
simulator for pi in ΠHT (resp. ΠHT-FBS). By Theorem 5 (resp. Lemma 9) which proved that ΠHT

(resp. ΠHT-FBS) realize F when there is no abort, Si emulates party pi in Πpen when there is no
abort.

Second, we prove that Πpen is CPAP-secure. To do so, we must show that (1) Πpen realizes
〈F〉, and (2) the adversary has no incentive to deviate from Πpen in such a way that forces
the simulators to use weaknesses in 〈F〉 (collude/abort) in order to simulate. To show (1), we
construct a simulator Si for each corrupt party pi. First Si sends (DEPOSIT) on behalf of pi (or
not, if pi chooses not to). Then, Si is made aware of whether all parties have sent (DEPOSIT) to
Fpen, when Fpen returns the message (DEPOSIT, 1) or (DEPOSIT, 0). If (DEPOSIT, 0) is returned,
the protocol stops. To simulate Step 2 of Πpen, we simply do as the simulator for ΠHT (resp.
ΠHT-FBS) would, except if it sees an invalid message m, then Si sends (COLLUDE, sid,m) to 〈F〉.
Finally, Si sends (RECLAIM) to Fpen if pi does, and forwards (RECLAIM, 1) or (RECLAIM, 0) from
Fpen.

To prove (2), we show that the adversary has no incentive to deviate from Πpen at all. Now,
from our utility function uA, we see that the only way the adversary can possibly gain utility by
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deviating is by triggering the event Ecollude (since in the protocol he can only reclaim collateral
he has deposited, collusion is the only possible way to gain positive utility). We observe the
only time we may need to use COLLUDE is during simulating Step 2 (running ΠHT or ΠHT-FBS). If
collusion occurs during Step 2, at least one honest party will refuse to send (RECLAIM). Thus,
the attacker achieves payoff of −td+ γcollude in this scenario (where t is the number of corrupt
parties). This means deviation is not profitable and we obtain CPAP, when we set deposit d such
that td > γcollude.

Finally, to achieve CPIC, we must find an attacker A such that (Πpen, A) is a ν(κ)-subgame

perfect equilibrium where the designer can arbitrarily choose another protocol in ~Π. Denote
Πpen as Π for ease of reading. Let A be the passive attacker who simply follows Πpen. We

now prove the two conditions of subgame perfect equilibrium, which are: (1) for any Π′ ∈ ~Π,
uD(Π

′, A(Π′)) ≤ uD(Π, A(Π)) + ε, and (2) for any A′ ∈ ITM, uA(Π, A
′(Π)) ≤ uA(Π, A(Π)) + ε.

We have already shown (2) in the CPAP proof above. For (1), we observe that the maximum
utility possible for the designer is zero, as Fpen only allows the parties to reclaim what they
have deposited. We also observe that except for negligible probably (that the adversary breaks
e.g. the signature scheme), for the passive attacker A, the designer achieves zero utility if he
chooses Π = Πpen (everyone deposits collateral, follows the protocol, and then reclaims), thus
uD(Π, A(Π)) achieves maximum utility (minus negligible utility loss from the negligible probability
of collusion via the adversary breaking e.g. signatures). This implies (1).

One could implement deposit/reclaim via, e.g., a smart contract-enabled blockchain. In our
next subsection, we will further discuss on penalization and on how to avoid that also honest
parties are penalized in the case a misbehavior is detected.

4.4.1 Open question: an alternative penalization functionality

The penalization solution Πpen in Sec. 4.4, while simple and satisfying CPAP and CPIC, requires
at least one honest party to penalize the misbehaving party even at the cost of his own collateral
being lost. In fact, if a corrupt party aborts during protocol execution, then honest parties can
increase their utility by ignoring the abort and still allow everyone to reclaim their collateral. In
other words, a strategy profile (Π,A), where Π is the same as Πpen except it allows parties to
always reclaim their collateral, and A is an adversarial strategy that makes a corrupt party collude
and abort, is also an equilibrium solution.

Below, we suggest below an alternative penalization functionality Fpenalize (Fig. 4.10) that
only punishes misbehaving parties and thus eliminates this unwanted equilibrium. It is clear to
see that if only misbehaving parties are punished, honest parties will have no incentive to deviate
from the penalization scheme, as they will always be able to reclaim their deposit. In addition,
this solution does not require one party to be honest, as the functionality Fpenalize is responsible
for verifying whether the protocol aborted and who is responsible. However, this functionality is
more complex and is more difficult to realize than Fpen, as discussed below.

Informally, a protocol Πpenalize running Fpenalize disincentivizes misbehavior by allowing parties
to run a protocol only if all parties have deposited a collateral. Throughout the protocol, it
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keeps track of PROTOCOL messages submitted by the parties. A party can reclaim his collateral if
he has behaved correctly throughout protocol execution (according to the PROTOCOL messages).
Otherwise, if the protocol aborts, by using the publicly identifiable abort property, the functionality
ensures that only identified corrupt parties lose their collateral.

Implementing Fpenalize on the blockchain: some caveats. A natural question is whether
Fpenalize can be implemented on the blockchain, for example following the approach of [93]. There,
parties make deposits on the blockchain before running an MPC protocol, and can only reclaim
their deposits if they submit correct messages to the blockchain at each round. In particular, if
the MPC protocol has constant number of rounds, [93] only requires a constant number of ledger
rounds.

However, a concerning caveat to implementing Fpenalize in the blockchain is that ΠHT and
ΠHT-FBS now run using the blockchain, a (usually) non-CP protocol, as its communication chan-
nel. In particular, this means that within the protocols ΠHT and ΠHT-FBS, corrupt parties might
trivially collude via its communication resource. We contrast this with the situation of Πpen, our
penalization protocol in Sec. 4.4. In Πpen, parties run ΠHT and ΠHT-FBS via broadcast, and do not
require the blockchain while executing these protocols. Even if we assume that the blockchain
is accessible to some parties at some point during this execution, we can handle the access as
an external communication resource. Collusion-preservation ensures that even given some ex-
ternal communication, the correlation between corrupt parties in ΠHT/ΠHT-FBS does not increase
substantially. For example, a corrupt party cannot simply post some secret key on the blockchain
that allows him to arbitrarily subliminally communicate with others. In addition to this caveat,
another concern is the difficulty keeping track of protocol messages on the blockchain. In general,
one cannot guarantee that transactions sent at some round r will be in the blockchain ledger
at round r, as is the case in the analyses of, e.g. [17]. In contrast, in Fpen (Sec. 4.4) protocol
messages of ΠHT or ΠHT-FBS use the broadcast channel instead of the blockchain, and thus are not
subject to idiosyncrasies of the blockchain.

4.4.2 Protocol Πpenalize for penalization

We describe below Πpenalize, which uses the penalization functionality Fpenalize (Fig. 4.10). The
only differences between Πpenalize and Πpen are that Πpenalize runs the entire protocol using
Fpenalize to communicate, and it penalizes only corrupt parties for misbehavior. That is, honest
parties never lose their collateral when playing Πpenalize.

Protocol Πpenalize:

• Each party sends (DEPOSIT) to Fpenalize, to deposit a collateral of amount d. If the func-
tionality returns (DEPOSIT, 1), proceed. Otherwise, stop.

• Run ΠHT or ΠHT-FBS on Fpenalize, by sending/receiving each protocol message m as
(PROTOCOL,m) to/from Fpenalize.

• All parties send (RECLAIM) to Fpenalize.
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We can thus prove a theorem about CP, CPAP, and CPIC for Πpenalize, analogous to Theo-
rem 8, using the same utility functions uA and uD defined in Sec. 4.4.

Theorem 9. The {Ḡ}-exclusive protocol Πpenalize, where Ḡ = T HT,Fpenalize (resp. Ḡ =
T HT-FBS,Fpenalize) satisfies the same theorem statements as Theorem 8, except assuming d >
γcollude.

Proof. The proof is exactly the same as Theorem 8, except instead of running on the broadcast
channel the protocol runs entirely on Fpenalize (accessible to the simulator, which makes the
simulator’s job easier than having to simulate broadcast messages in Πpen). For CPAP, an
attacker can now trigger Ecollude by only having one corrupt party abort and lose his collateral.
That is, we can have CPAP only if d > γcollude (i.e., the loss of one party’s collateral is more
than the gain from colluding). As for the designer D, same as in Πpen the maximum designer
utility is still zero, and thus the CPIC proof still holds.

The functionality is parameterized by a deposit amount d, a tuple of initial balances of each
party, Balance = (b1, . . . , bn), and a protocol Π which is either ΠHT or ΠHT-FBS. It keeps track
of PState, initialized as ⊥, which keeps track of all protocol messages (PROTOCOL, · · · ).

- Upon receiving (DEPOSIT) from party pi: If bi ≥ d:

1. In this round, if all pj ∈ P have sent (DEPOSIT) , and bj ≥ d, then continue.
Otherwise, send (DEPOSIT, 0) to each party pi ∈ P and stop.

2. Deposit collateral for each party: for each party pi ∈ P : bi ← bi − d
3. Send the message (DEPOSIT, 1) to each party pi ∈ P .

- For each round of Π, upon receiving (PROTOCOL,m) from party pi:

1. Verify this message via Π and PState. If Π aborts, stop processing PROTOCOL

messages.

2. Send (PROTOCOL,m) to all parties and store it in PState.

- Upon receiving (RECLAIM) from party pi, check PState to see if pi has misbehaveda:

1. If pi behaved correctly, return the deposit to pi: bi ← bi+d and send (RECLAIM, 1)
to pi.

2. Otherwise, send (RECLAIM, 0) to pi.

aThis can be checked as Π has publicly identifiable abort

Figure 4.10: Fpenalize
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4.5 Hardware tokens and broadcast vs. mediators

In this section, we motivate our study of collusion-preservation (CP) using authenticated broadcast
channels with hardware tokens, instead of the mediator model used in the previous work.

We show (Theorem 10) that authenticated broadcast (Fig. 2.2) with hardware tokens is a
strictly weaker set of assumptions than an honest mediator in a star-topology network (also
called the mediated model [9]). Thus, our feasibility results are not immediately implied by
existing results in the mediated model.

Perhaps more interestingly, although our assumptions are weaker, they are also better in terms
of the fallback guarantees we can achieve. We will show this by contrasting what happens when
tokens are broken, versus when the mediator becomes corrupted. Whereas we can still achieve
fallback security with identifiable and unanimous abort with corruptible hardware tokens, many
such important properties become impossible when the mediator can be corrupted—even with
honest majority.

Theorem 10. Hardware tokens with authenticated broadcast is a strictly weaker set of assump-
tions than an honest mediator in the mediated model.

Proof. We prove the theorem by combining the two claims below.

Claim 1. Hardware tokens with authenticated broadcast does not imply an honest mediator in
the mediated model.

Proof of claim: Let F be a CP functionality where for all i = 1, 3, 5, · · · , the outputs of parties
pi and pi+1 are xi+1 and xi respectively. That is, the pair of parties share their input with only
each other. Now consider the case where all but one party are corrupted. Let pi be the only
corrupt party which is supposed to share inputs with the one honest party. Suppose in the real
world pi sends the input of the honest party over broadcast, as soon as pi receives it as output.
This means another corrupt party pj now also knows the input of the honest party. However, in
the ideal world, the simulator for pj cannot simulate this part of the real-world execution, as F
does not allow him to know the honest party’s input. Thus, collusion-preservation is broken. On
the other hand, there exists a CP protocol via an honest mediator in the mediated model for this
adversary (e.g., the mediator simply ignores pi’s invalid message). Thus, an adversary breaking
CP under the tokens/broadcast assumptions, does not break CP in the honest mediator/mediated
model. This proves the claim.

Claim 2. An honest mediator in the mediated model implies hardware tokens with authenticated
broadcast.

Proof of claim: An honest mediator (in a star-topology network) can be used as a trusted party to
replace hardware tokens/authenticated broadcast. To emulate each party having his own token,
the mediator runs an instance of the hardware token’s code for each party. As the mediator is
assumed to be honest, it is able to emulate any code correctly, while maintaining each token’s
secret state. To emulate authenticated broadcast, the honest mediator simply sends each message
it receives to every other party with the identity of the sender attached.
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4.5.1 Impossibility results in the mediated model

In this section, we detail one of our main motivations to move away from the mediated model
(used by the previous work on CP [9]), mentioned in the introduction. We show that in this
model, desirable properties—robustness, fairness, and identifiable abort—are impossible when
the mediator may be corrupt. This implies undesirable scenarios—a game of poker implemented
in this model can be aborted at any time (for example, when a corrupt party sees he is losing),
without honest players being able to detect the cheater. In contrast, recall that in Lemma 10
and Theorem 6, we showed that even if our assumptions on honest hardware tokens are broken,
our construction can still achieve fallback security with identifiable and unanimous abort.

To see why these properties are impossible in the mediated model, we recall that in the
mediated model, every party communicates only to a central node called the mediator, in a
star-topology network. Intuitively, the impossibilities stem from the mediator being able to cut
off communication between itself and any party, at any time. Robustness is simple to show to
be impossible, since the mediator can simply stop all communication. To break fairness, the
mediator can end communication in the protocol after one party receives his output and before
another party receives his. This strategy can be used also to break unanimous abort and allow
one honest party to receive his output while others do not. Lastly, identifiability is not possible as
a corrupt mediator can “frame” an honest party as having aborted, by simply ignoring messages
from this party. Since other parties only communicate through the mediator, they cannot identify
whether the party or the mediator has misbehaved.

We state and prove these impossibilities formally in the theorems below.

Theorem 11. Robustness is not possible when the mediator may be corrupted. This holds even
when all other parties are honest.

Proof. The mediator simply does nothing, and thus nothing can be computed.

Theorem 12. Consider a protocol in which each party interacts with the mediator a number of
times that is polynomial in the security parameter. Then fairness and unanimous abort are not
possible when the mediator may be corrupted, unless the output can be computed without the
parties’ inputs. This holds even if all other parties are honest.

Proof. Consider in the mediated model three parties: (honest) parties Alice (A) and Bob (B),
and the corrupt mediator (M) who has no inputs and some constant as output (e.g., 1). Since
the mediator controls when messages are sent during the protocol, we consider the following
protocol format without loss of generality: In odd-numbered interactions, A interacts with M; in
even-numbered interactions, B interacts with M.

Suppose M does the following: M guesses an interaction number in which only one of A or
B has the output (this is always possible since A and B never receive messages at the same time
and in the mediated model, A and B cannot communicate except through M), and aborts at the
beginning of this interaction, depriving the other party of the output. Since there is a polynomial
number of choices, M succeeds with non-negligible probability.

Formally: Suppose the final interaction in the protocol is between A and M. Assuming that
fairness is possible, we show that if this protocol has fairness, then A and B can compute their
outputs without sending any messages.
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Since the final interaction does not involve B, B must have known the output prior to the final
interaction. Suppose the corrupt M chooses to abort in the final interaction (Since the number
of rounds is polynomial, he chooses to abort at this round with non-negligible probability). By
fairness (since B knows the output without the final message), A must also be able to learn the
output without the final interaction. This means both A and B learn the output without the final
interaction.

Similarly, the second-to-last interaction (between B and M) does not involve A, so A must
have known the output prior to this interaction. By fairness, if M chooses to abort in the second-
to-last interaction, B must also be able to learn the output without this interaction. Thus both
A and B learn the output without the second-to-last round.

Continue the argument for the number of interactions, and A and B both learn the output
without sending any messages.

The proof does not work when the number of interactions is superpolynomial. This is because
the mediator will only guess correctly with negligible probability, which interaction to abort at
(we allow negligible failure of the fairness property).

Theorem 13. Identifiability is not possible in the mediated model when the mediator may be
corrupted, regardless of the number of honest parties.

Proof. We show that it is impossible to distinguish between the case when (1) the mediator is
corrupt, and (2) a party A aborts at round r. Suppose M is corrupt and does the following: M
follows the protocol until round r − 1. At rounds ≥ r, M simply ignores (does not send nor
receive from) A, and does whatever it is supposed to do in the protocol if A aborts. Since all
parties communicate only via M, the messages they receive in this scenario are exactly the same
as if the mediator were honest, but a corrupt party A has followed the protocol before round r
and stops sending messages after round r. Thus, they cannot correctly identify whether M or A
is corrupt in the case of an abort.

4.6 Chapter summary and future work

In this chapter, we construct a simple decentralized collusion-free and preserving (CF and CP)
protocol using hardware tokens and authenticated broadcast, under assumption of non-aborting
adversaries. We motivate our model by showing the already restrictive mediated model solution
in previous works suffer from the impossibility of various desirable security properties when the
mediator can be corrupt. Then, we augment our simple CF/CP protocol to provide fallback
security with identifiable and unanimous abort (impossible in the mediated model) when the
hardware tokens are compromised and adversaries abort. Furthermore, we present two penaliza-
tion schemes and prove in the rational protocol design (RPD) framework (adapted to CP) that
they disincentivize rational attackers from aborting. We note that, while our solution is presented
in context of collusion-preserving games, the idea of CF/CP has been adapted to cryptographic
reverse firewalls [108]. We leave as an open question on adapting our protocols and penalization
schemes to this and other application scenarios.
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Chapter 5

Blockchain Consistency Against Rational
Attackers

5.1 Introduction

The classical cryptographic analysis of blockchain ledgers establishes worst-case guarantees on
their security either by proving central security properties [66,115], such as consistency/common-
prefix—the stable parts of the chains held by honest parties are prefixes of one-another—liveness—
new blocks with recent transactions keep being added–or by proving that the protocol realizes
an ideal ledger functionality [17]. Typically such analyses rely on an assumed limitation on
the adversary’s influence/presence in the system. In particular, the majority of an underlying
resource—e.g., hashing power for proof-of-work (PoW)-based protocols such as Bitcoin [111]
and Ethereum [34] (before version 2.0), or stake in proof-of-stake (PoS)-based protocols such
as Algorand, Ouroboros, and Snow White [16, 45, 51, 92]—is owned/contributed by parties who
honestly run the protocol.

Although such an analysis is instrumental for understanding the properties and limitations
of the analyzed ledgers and gaining confidence in their security, it does not take into account a
fundamental property of such systems, namely that the ledger’s state is often associated with
some monetary value and therefore the protocol’s security might rely on how profitable an attack
might be. Thus, in addition to the classical cryptographic analysis of such systems, it is useful to
analyze their so-called economic robustness, namely their level of protection or susceptibility to
attacks by an incentive-driven (also called rational) attacker. Such an analysis can augment the
security of these systems, by proving that under a rational assumption, e.g., an incentives model
of the attacker, security is maintained even when certain cryptographic assumptions fail. On the
other hand, it can indicate that the proven security is fragile by pointing out natural incentives that
lead to violating the security assumptions. Additionally, it can offer a higher resolution picture of
the systems guarantees—e.g., its tendency to decentralize [32]—and/or more realistic estimates
of the parameters associated with its security properties—e.g., relation between the density of

Most of the results in this chapter have been published in [104].
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honest blocks (that is, the chain-quality parameter [66]) and the properties of the communication
network [62, 112]. Perhaps, even more interesting, it can offer insight on the system’s behavior
when the main (cryptographic) assumption fails, e.g., when the attacker controls a 51% fraction
of the underlying resource of the blockchain protocol.

Motivated by the recent (repeated) 51% double-spending attacks that have drained millions
of dollars from popular blockchain-based cryptocurrencies, in this chapter we focus on the game-
theoretic analysis of such attacks for Nakamoto-style systems, e.g., Bitcoin, Bitcoin Cash/Gold,
Ethereum (Classic), etc. We use the adaptation of the rational protocol design (RPD) framework
by Garay et al. [65] to blockchains, which was recently proposed by Badertscher et al. [15], to
analyze the utility of an attacker against these systems as a function of their basic parameters.
In the preliminaries Ch. 2, Sec. 2.6.2 we discuss the RPD framework in more detail.

A central question to the relevance for practice of any game-theoretic analysis is to what
extent the model and assumed utilities capture the incentives of real world attacks. Indeed,
if the utilities are disconnected from reality, they can lead to counter-intuitive statements. We
demonstrate an instance of such an artifact in [15] and propose a different class of utilities which is
both natural and avoids this artifact. We validate our utility against a range of security parameters
matching those of Ethereum Classic, a PoW-based system that fell victim to 51% double-spending
attacks. We observe that when the payoff for double-spending is high, attacking is indeed a
dominant strategy. That is, predictions of our utility choice match reality. We then use our
framework to devise a generic tuning of one of the core parameters of such blockchains—namely,
the number cutOff of most-recent blocks needed to be dropped to achieve the so-called common-
prefix property with parameter cutOff (cf. [15,17,66])—to deter any attacks on consistency by a
rational attacker with our utility. Stated differently, we show how an incentive model can serve,
possibly in addition to cryptographic assumptions, to find a robust protocol parametrization. This
shows the unique property of our model over previous works, that it can be used to improve the
economic robustness of such blockchains, and offers a guide to how to “patch” such protocols
to avoid future occurrences.

5.1.1 Related works

A number of works have focused on a rational analysis of decentralized ledgers and cryptocur-
rencies (e.g., [43,61,62,70,105,112,116,118–120,122] to mention some). Typically, these works
abstract away the computational aspects of cryptographic tools (signatures, hash-functions, etc.)
and provide a game which captures certain aspects of the execution that are relevant for the
rational analysis. In contrast, RPD uses a cryptographic simulation-based framework to incorpo-
rate these computational considerations into the analyzed game, ensuring that predictions about
attacker behavior hold for the actual protocol and not only for an idealized version (unless the
idealization is obtained via a cryptographic composition argument such as UC). Incorporating
such computational considerations within a rational treatment is highly non-trivial (see [46, 65]
for a discussion).

The term 51% (double-spending) attack is defined in [4] as an attack where the adversary
gains any majority (not necessarily just 51%) of mining power and reverses transactions in order
to double-spend its coins, often by creating a deep fork in the chain. The site CoinDesk keeps
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track of news of 51% attacks [1], of which there are quite many: most recently, Verge suffered
an attack with 200 days worth of transactions erased in Feb. 2021, and Firo had in Jan. 2021
been in a “hash war” with a 51% attacker. Also recently, Ethereum Classic suffered three 51%
attacks in the same month of August, 2020, prompting a solution called MESS to mitigate such
attacks which still may not provide robust security [2]. Other recent victims of such attacks
include well-known coins such as Bitcoin Gold (Jan 2020), and Bitcoin Cash (May, 2019). A
major avenue of 51% double-spending attacks is the use of rented hash power [3]. The site
https://www.crypto51.app/ gives rough estimates on the vulnerability of different coins, based
on whether 51% of hashing power can be rented via a service called Nicehash. In some cases,
e.g. Bitcoin Gold, it is estimated (at time of writing, Feb. 2021) to only cost a few hundred
dollars to have 51% of hashing power for 1 hour.

Previous works have considered the ability of blockchain protocols to recover from 51% at-
tacks. In [13], conditioned on honest majority being satisfied on expectation, Bitcoin was proven
to be resilient against a (temporary) dishonest majority. In [14], no such condition is assumed
and the authors give concrete recovery bounds as a function of the actual power of the adversary
(captured as a budget to go over majority hashing power). We use the latter work for our analysis
of the blockchain’s security against incentive-driven attackers.

The profitability of 51% double-spending attacks have also been analyzed in previous works.
The work of [33] explores these attacks through an economics perspective, and leaving the cost
of the attack as a parameter that is computed via simulations. The work of [88] computes
probability of attack by modeling attacks as random walk of two independent Poisson counting
processes (PCPs). In comparison, our rational analyses are done in the rational protocol design
(RPD) framework, where a fork is formally defined as a command in a UC ledger functionality.
Another technique proposed is the Markov Decision Process (MDP) model, which is used by both
[70] and [82]. In this model, the adversary takes a series of actions relevant to double-spending:
adopting or overriding the honest party’s chain, waiting, or stopping. Solving the MDP allows
these works to reason about the optimal double-spending adversary. While we do not analyze an
optimal double-spending adversary, our model is more general. We do not restrict the actions of
the adversary, which allows us to analyze conditions under which the protocol is secure against
attacks on consistency by any incentive-driven adversary. Moreover, since standard MDP solvers
cannot solve infinite state MDPs, the MDP is restricted to only consider situations where the
chain length is less than some length c [70].

5.1.2 Overview of our contributions

We start by devising a utility in RPD which naturally captures the incentives of an attacker to
provoke a double-spending attack. To this direction, we observe that the utility considered in [15]
does not capture such an incentive. Intuitively, the reason is that the utility in [15] essentially
only considers incentives related to the consensus layer of the protocol. This means that an
attacker is rewarded when successfully mining a block, but is not rewarded depending on the
block contents—i.e. what kinds of transactions are in the block. Their extension to a utility
function to include transaction fees does not apply to double-spending attacks. In this case, the
(only) reason to attack the blockchain stems from the existence of a super-polynomial transaction
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fee, and assuming a moderate range of fees, they show that no incentive to attack is present.
We discuss why super-polynomial quantities are generally problematic in Section 5.3.

Using analyses from [15], it appears that an attacker with these reasonable utility functions
(and assuming moderate transaction fees) has no incentive to fork the blockchain. Yet, looking
at real-life double-spending attacks, this is clearly not the case. To understand this disparity
between the theoretical analysis and reality, we first notice that [15] does not include a payoff
that captures the profit from forking (and double-spending) the blockchain. This can be easily
rectified by introducing a special payoff that the attacker receives when successfully creating a
deep-enough fork (i.e., orphans a sufficiently long valid chain). Intuitively, this payoff corresponds
to the utility that the attacker receives when it double-spends transactions by replacing the original
longest chain with his own chain.

However, perhaps counter-intuitively, when analyzing Bitcoin 1 with this extended utility func-
tion, the attacker is still indifferent between forking and honest mining. We demonstrate this
artifact and pinpoint the reason for it: Intuitively, the utility function from [15] (with or without
the extra payoff for forking) rewards the attacker by the same amount in all rounds in which
it creates (mines) a block. This means that given any adversary that provokes a fork, there is
always an honest-mining adversary who achieves more utility without forking by simply accumu-
lating block rewards over a longer period of time. We distill the source of this issue in a property
which we call unbounded incentives, and demonstrate that any utility which satisfies this property
will make any deviation from passive mining a weakly dominated strategy.

To avoid the above counter-intuitive artifact and more closely model reality, we then devise
a revision of the utility class of [15]. This utility, which satisfies a property we term limited
horizons—a strong negation of unbounded incentives—has the property that the (actual) rewards
of an adversary mining a block diminish with time. This is a natural way to avoid reasoning about
extremely “long-lived” adversaries, i.e., that take decisions based on payoffs too far in the future,
and captures features which are well-known in utility theory [26]—intuitively, earning $10 today
is more attractive than $1 million in 100 years, an example of the “St. Petersburg Paradox”.
We next turn in analyzing the profitability of 51% double-spending attacks, by showing how our
revised utility can actually capture them. We provide a range of payoffs for double-spending which
would incentivize an attack. Then we visualize our result using concrete parameters estimated
from those of Ethereum Classic, for which performing the attack is indeed a dominant strategy.
This demonstrates that the above result can explain, in a game-theoretic framework, how recent
victims of 51% attacks are vulnerable.

Finally, we discuss whether and how the blockchain protocol can be tuned in order to deter
51% double-spending attacks. In fact, we provide a much stronger tuning, which deters attacks
on consistency by any incentive-driven adversary. The tuning depends on the costs (e.g. electricity
or cost to rent hashing power), positive payoffs (e.g. block rewards and payoff for causing a fork,
from double-spending or otherwise), and protocol parameters (e.g. the difficulty of creating a
block). Intuitively, for any combination of these parameters, we show how the window size of
the underlying blockchain protocol can be adjusted so that it is not rational for the attacker to

1Our analysis uses Bitcoin as a representative example of Nakamoto-style blockchain ledgers, but similarly any
blockchain protocol which realizes the ledger from [16, 17] could be analyzed.
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deviate from honest behavior. At the core of this results is a lemma that relates the incentive
model to an attack pattern, which coupled with the self-healing properties of Nakamoto-style
PoW, leads to the desired estimate of a safe parameter. We view this as demonstration of the
power of game theory (and in particular the RPD framework) to aid us in fortifying blockchains
even when assumptions made by the cryptographic analyses fail.

Chapter organization. Sec. 5.2: Description of artifact of unbounded incentives in the pre-
vious work’s utility function. Sec. 5.3: Modeling attacker incentives with limited horizons utility
functions. Sec. 5.4: Analyzing 51% double-spending attacks. Sec. 5.5: Mitigating 51% attacks.
Sec. 5.6: Concrete numbers used in figures and examples.

5.2 Artifacts of unbounded incentives

In this section, we discuss an artifact of the utility function Equation 2.2 from [15], which we
detailed in the preliminaries Ch. 2, Sec. 2.6.2. In the next section, we will eliminate this artifact
by altering this utility function. Concretely, we prove that Eq. 2.2 is inappropriate to capture
the most realistic situation of attackers that attack the system, e.g., attempt a fork to profit
from double-spending. To do so, we prove Lemma 11 and 12, which show this surprising fact: if
running the protocol (semi-)honestly is profitable in expectation, then there is no incentive for an
adversary to fork. This can be proven by using a similar technique as in [15]: Any fixed payoff for
forking incurred by the adversary can be offset by an adversary who runs slightly longer (and still
polynomially long) but does not fork. This, however, is an artifact of the asymptotic definition
and does not reflect real-world incentive-driven attack scenarios, where mining is anticipated
to be profitable—otherwise no one would mine—but attackers still perform forking attacks (in
particular, in order to double-spend coins). We distill a property of the utility from [15] that is
the reason this artifact, which we call unbounded incentives, and prove that any utility satisfying
this property will suffer from the same artifact. Looking ahead to the following section, we will
propose a natural adaptation of this utility function that does not suffer from the above artifact
(and where in particular the duration of an attack actually starts to matter).

5.2.1 Demonstrating the artifact

Let us first consider the straightforward adaptation of the utility from Equation 2.2 to model the
payoff (e.g. double-spending) an adversary gains by forking the ledger. Define the event K as:
There is a round r where the simulator uses the fork command of the weak ledger functionality
GB
weak-ledger (Fig. A.5) that allows the simulator to invoke a fork. Let fpayoff be the payoff for

invoking the fork (in order to simulate a real-world adversary). Then, the utility uf becomes:
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uf(Π,A) := sup
Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward · CR · Pr[IAb,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r] + fpayoff · Pr[K]

}}
. (5.1)

Below, we show that for the the utility function uf above, the Bitcoin protocol ΠB is strongly
attack-payoff secure (Def. 16) as long as mining is profitable. Our proof uses a similar proof
strategy as [15]. Informally, first we show that the payoff of any polynomial-run-time adversary
A is bounded by a polynomial p(κ) of the security parameter; then, we show that there is a
passive, front-running adversary whose run-time is also polynomial (albeit bigger than that of
A), and who achieves at least p(κ) utility.2

Lemma 11 (Attack payoff security with forking). Let Tub > 0 be the upper bound on total
number of mining queries per round, p ∈ (0, 1) be the probability of success of each mining
query, and cutOff = ω(log(κ)) be the consistency parameter. Let M be a model whose induced

utility uf has parameters fpayoff, breward, CR, mcost ≥ 0. The Bitcoin protocol ΠB is strongly
attack-payoff secure in M if p · breward · CR− mcost > 0.

Proof. Similar to [15] we analyze the modular Bitcoin protocol with access to the state exchange
functionality FStX (Fig. 2.6), which abstracts the proof-of-work puzzle of Bitcoin. Instead of
parties querying the hash function, they mine by querying FStX, which tells them whether the
mining attempt was successful.

Consider a real world execution with a front-running, passive adversarial strategy A1, who
makes q∗ queries to FStX in total (note that the code of this adversary is in fact static, and the
number of queries increases as it is executed for more rounds by the environment), and who does
not attempt to fork the chain. Let Xi be the random variable where Xi = 1 if and only if his ith
query successfully mines a block. Then, the real world payoff of A1 is

RA1 =

(
q∗∑
i=1

Xi

)
breward · CR− q∗ · mcost

Now, consider any adversary A2 in the real world. Let Q denote the number of queries made
by A2 in an execution of the protocol under the environment Z, and let PQ be the associated
distribution. Then we define q := maxSupp(PQ) (where Supp is the support). The expected
real world payoff of A2 is

E(RA2) ≤ q · breward · CR + fpayoff

2We note that for the simple utility function presented in [15] other proof techniques could conclude attack-
payoff security without the runtime-extension argument. The main point here is to demonstrate the importance
of considering the attack duration in the utility function.
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We want to show that A1 gains more payoff than A2. We do this by showing that for an
appropriate choice of q∗, the payoff of A1 exceeds the expected payoff of A2 with overwhelming
probability.

Now, let X =
∑q∗

i=1 Xi, then E(X) = q∗p. Let δ be such that (1−δ)p·breward·CR−mcost >
0 (this exists by assumption of p · breward · CR− mcost > 0 and that p, breward, CR, mcost are
constants). We have

Pr(RA1 < E(RA2)) = Pr

(
X <

q∗mcost + q · breward · CR + fpayoff

breward · CR

)
We can use Chernoff bound to upper-bound this probability, if q∗mcost+q·breward·CR+fpayoff

breward·CR < (1−
δ)E(X) = (1 − δ)q∗p. This inequality is satisfied if we set q∗ = (q·breward·CR+fpayoff)κ

(1−δ)breward·CR−mcost , which is
still a polynomial in κ. Thus, by Chernoff bound,

Pr

(
X <

q∗mcost + q · breward · CR + fpayoff

breward · CR

)
≤ exp

(
−δ2q∗p

2

)
= negl(κ)

To show that analysis of the real world utility is sufficient, we have to prove that this utility is
the payoff in the ideal world, minimized over simulators that can simulate the adversary (A1 or
A2), and maximized over all environments. This is true following the same argument as [15]: A
successful simulator must answer the same number of queries as the adversary. Moreover, the
number of mining successes must be the same (up to a negligible difference). Otherwise, the
environment can distinguish the real and ideal world.

5.2.2 A first attempt to eliminate the artifact

Although we proved that Bitcoin is strongly attack payoff secure even with a payoff for forking,
this is actually not a good sign, as this result does not reflect reality. In reality, attackers do
fork blockchains to gain profit via e.g. double-spending transactions. Thus, the fact that we can
prove Lemma 11 means that there must be a problem with our assumptions.

Why were we able to prove Lemma 11? It turns out the utility function we used has the
weakness that it considers an attacker who does not care about the ephemeral payoff for forking—
he can simply obtain more utility via block rewards if he just put in a bit more hashing power
for mining. Thus, somewhat counter-intuitively, to model incentives for forking attacks, we must
consider utilities that limit the amount of mining an attacker can do.

A first natural instinct may be to incorporate in the utility the (often substantial) initial invest-
ment (e.g. cost of buying mining rigs) an attacker must make before being able to participate in
the blockchain protocol. This turns out to be not only a natural extension, but also a very simple
one. Concretely, we capture this investment as cost of party corruption: in order to use party for
mining, the adversary needs to corrupt him, which corresponds to acquiring its mining equipment.
Formally, for each g ∈ N define CA

g as follows: The maximum number of corrupted parties at any
round is g. Let ccost(g) be the cost of event CA

g , i.e. corrupting g parties—this can be seen as
the total cost of mining rigs an attacker obtains. Then we define the utility function:
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uf,c(Π,A) := sup
Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward · CR · Pr[IAb,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

+ fpayoff · Pr[K]

−
∑
g∈N

ccost(g) · Pr[CA
g ]

}}
. (5.2)

Interestingly, as we see below, this natural extension is still insufficient to align the model
with the reality that forking attacks occur. Indeed, even with this additional cost, we can still
prove a result similar Lemma 11. Concretely, the following lemma shows that for uf,c above, we

can prove the statement as the one in Lemma 11 about ΠB being attack-payoff secure by again
exploiting the artifact of unbounded incentives.

Lemma 12 (Attack payoff security with forking, with cost of corruption). Let Tub > 0 be the
upper bound on total number of mining queries per round, p ∈ (0, 1) be the probability of success
of each mining query, and cutOff = ω(log(κ)) be the consistency parameter. LetM be the model
whose induced utility uf,c has parameters fpayoff, breward, CR, mcost ≥ 0, ccost(·) : N →
R+. The Bitcoin protocol is strongly attack-payoff secure inM if p · breward · CR− mcost > 0.

Proof. The proof goes the same way as in Lemma 11 except here we consider the front-running,
passive adversary A1 who corrupts exactly one party. Let Xi be the random variable where
Xi = 1 means the ith query yields a succesfully-mined block. Then, the payoff of A1 is

RA1 =

(
q∗∑
i=1

Xi

)
breward · CR− q∗ · mcost− ccost(1)

We want to show that the passive strategy gains more payoff than any adversarial strategy A2.
For any adversary A2: If he corrupts no one, then he has exactly the same payoff as an front-
running, passive adversary who corrupts no one so the lemma trivially holds. Thus, let us consider
the case if the adversary A2 corrupts at least one party. Let Q denote the number of queries made
by A2 in an execution of the protocol under the environment Z, and let PQ be the associated
distribution. Then we define q := maxSupp(PQ). Then, the expected payoff of A2 is

E(RA2) ≤ q · breward · CR + fpayoff− ccost(1)

Then, the probability

Pr(RA1 < E(RA2)) = Pr

(
X <

q∗mcost + q · breward · CR + fpayoff

breward · CR

)
which is the same negligible probability as in the proof of Lemma 11 and the proof follows.
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5.2.3 The source of the artifact: unbounded incentives

Distilling the issue in above lemmas, we observe that that as long as the adversary keeps accu-
mulating rewards as rounds are added to the protocol—i.e., mining remains profitable—he does
not care about the payoff for forking: there always exists a polynomial-time, passively mining
strategy that simply gains the same amount of utility by mining a bit more. However, not only
do real-life attackers in fact profit from forks, even the assumption on the profitability of mining
forever is unrealistic: any attacker is at least limited in time by e.g. the anticipated age of the
universe, and cannot, in practice, keep accumulating utility in perpetuity.

Thus, to make accurate prediction about the attackability of a blockchain protocol the utility
function must exclude the eternal profitability of passive mining. We generalize this intuition, by
defining the notion of unbounded incentives: a utility function has unbounded incentives if there
is an adversarial strategy A ∈ Afr such that for any polynomial h(κ), A can gain better payoff
than h(κ). (Conversely, we will say that a utility has bounded incentives if there there is no such
passive adversary.).

It is straightforward to verify that the utilities we have seen so far have unbounded incentives,
which explains the effect of the artifact exploited in the above lemmas. In fact, in the following
there is a simple argument for a generic statement about the strong attack-payoff security of
utility functions that have unbounded incentives.

Lemma 13. Let M be a model inducing a utility function uA. Assume for any adversary A,
in any real execution of the protocol his payoff is polynomially-bounded. 3If uA has unbounded
incentives for a protocol Π, then Π is strongly attack-payoff secure for M.

Proof. Suppose uA has unbounded incentives. Then letA ∈ Afr be the adversary in the definition
of unbounded incentives. Then A is a witness for strong attack-payoff security: For every real
execution of another adversary A′, the passive adversary A can gain better payoff than A′.

5.3 A RPD analysis of forks

In this section, we will tune our utility function to avoid the issue of unbounded incentives isolated
in the previous section. A straw man approach would be to make fpayoff a super-polynomial
function of the security parameter. But this would imply a very unnatural assumption, which,
intuitively, corresponds to ensuring that the polynomially-bounded adversaries are always incen-
tivized to fork. This would have the opposite effect and introduce a different artifact: it would
make attack-payoff security impossible, and making a 51% attack always a dominant strategy
no matter the systems parameters, contradicting the observable fact that many blockchains have
not fallen to 51% attacks.

Instead, we make breward a function of time. This captures, for example, inflation, or simply
that the adversary only plans to stay in the system for a limited amount of time. We refer to this

3This is true for the utility function uB
A in Equation 2.2 (as well as the utility functions we will consider)—no

adversary can get payoff that is superpolynomial in the run time of the execution.
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adaptation of uf,c as ubuy, which represents the utility function where the corruption cost ccost(·)
models the attacker buying mining rigs. Here, we do not consider the time when modeling the
corruption cost, as the cost of a mining rig is relatively stable. We also do not consider time for
fpayoff, since the “payoff” for a successful fork (i.e., the money stolen by an attacker) can be
considered as the fiat currency (e.g. USD) gained from the attacker trading in his coins, before
his attack to create a consistency failure on the chain and retrieve these traded coins.

ubuy(Π,A) := sup
Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward(r) · CR · Pr[IAb,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

+ fpayoff · Pr[K]

−
∑
g∈N

ccost(g) · Pr[CA
g ]

}}
. (5.3)

We also define a version of this utility urent (Eqn. 5.4), which models the attacker renting
hashing queries by replacing mcost with parameter rcost (rent cost) and setting ccost(·) = 0.
Renting especially has been observed in real attacks, such as the August 2020 attacks on Ethereum
Classic [3].

urent(Π,A) = sup
Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward(r) · CR · Pr[IAb,r]

−
∑

(q,r)∈N2

q · rcost · Pr[W A
q,r]

+ fpayoff · Pr[K]

}}
. (5.4)

Note that while breward is a function of time, we let the cost of a mining query, that is
mcost/rcost, remain constant. We do so to model the attacker’s anticipated monetary budget
to launch and maintain an attack, such as the costs for renting a certain amount of hashing
power (which are generally paid up-front), or cost of electricity (which realistically appears to be
relatively stable). Further, the parameter fpayoff should be seen as an abstract excess payoff
for the attacker arising from forking that is able to capture various use-cases. In the prototypical
(double-spend) example where the attacker sells some coins for fiat currency and later tries to
regain the coins with a successful attack, it corresponds to this extra fiat inflow gained prior to
attacking the blockchain. We note that the utility functions could be tweaked to allow for all
parameters to be time-dependent without changing the results qualitatively as long as the relations
among the parameters required by the definitions and theorems (which are time-dependent in our
treatment already) still hold.
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To capture realistic utilities, we restrict to instances of our utility function which satisfy what
we call limited horizons (Definition 29). Roughly, limited horizons constrains utilities by requiring
that passive mining eventually becomes unprofitable. Recall that in light of the St. Petersburg
Paradox discussed in the introduction, rational parties become increasingly reluctant to invest
some monetary budget for potential rewards gained only later in a randomized process (e.g.
due to uncertainty about the future or other specific utility-relevant considerations like relative
inflation between several quantities). We cast this general idea as a rather simple condition based
on our utility function.

After defining limited horizons, in Section 5.3.1, we will first address a technical challenge
imposed when payoff-parameters in the utility functions are non-constant. Then, in Section 5.3.2
we show that limited horizons implies bounded incentives (i.e., the opposite of unbounded incen-
tives) through Lemma 16. More precisely, limited horizon is a strong negation4 of unbounded
incentives. Looking ahead, we will prove that when utilities have limited horizons, there is always
a large enough payoff for forking such that (strong) attack-payoff security is broken. Informally, a
utility function ubuy (resp. urent) has limited horizons if there is a time limit after which passive
mining becomes unprofitable.

Definition 29 (Limited horizons). We say ubuy in Equation 5.3 (resp. urent, formally defined
in Equation 5.4), parameterized by breward(·) : N → R≥0, mcost, fpayoff ≥ 0, and non-
decreasing function ccost(·) : N → R≥0 (resp. breward(·) : N → R≥0, rcost, fpayoff ≥ 0)
satisfies limited horizons (resp. limited horizons with renting) if breward(·) is a non-increasing
function such that ∃x ∈ N : p · CR · breward(x) < mcost.

Remark. Technically, urent is a special case of the case of ubuy (since the utilities are the same
if we set mcost = rcost and set ccost(·) = 0); however semantically they are different: rcost
represents the cost of renting a hashing query, which usually is much higher than mcost which
represents the cost (e.g. electricity) of an adversary mining with his own equipment. Nevertheless,
to reduce redundancies in the technical sections, we will analyze the utility ubuy in Equation 5.3
(with a general ccost(·), including when ccost(·) = 0), and state the results for the renting
case as corollaries.

5.3.1 Addressing technical issue of non-constant payoff for block re-
wards

In this section, we address a technical issue with considering a non-constant breward—recall
that in limited horizons, breward is a non-increasing function of time/round number. By our
definition (which follows that of [15]), the event IAb,r happens when b blocks are placed into the
ledger of some honest party. This is intuitive—the block reward should be given only when the
block is “confirmed” to be in the ledger. However, there is a delay between when a block is
broadcasted, and when it makes it into the common prefix of an honest chain. This delay is

4Note that the strong negation of an assertion A is one which implies ¬A, but is not necessarily implied by
¬A.
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a random variable which depends on the amount of (honest and corrupt) hashing power in the
protocol, the network delay, and the adversary’s strategy. Fortunately, we can lower and upper
bound such a delay (which we denote by tlb, tub respectively), as we show in the following lemma.
This will in turn allow us to avoid the complication of analyzing when blocks enter the ledger state
and instead analyze when locks broadcasted by the adversary to honest parties (whose events are
easier to analyze). Note that we choose to analyze time-of-block-broadcast, instead of time-of-
block-creation, since the adversary may choose to withhold successfully-mined blocks instead of
broadcasting them immediately, making time-of-broadcast more suitable for incorporating such
adversarial strategies.

We first define a useful quantity t∆δ (q). As we will see, this quantity, which is derived from
the chain growth property of Nakamoto-style blockchains, is the maximum time for honest chains
to grow by cutOff blocks, given that in each round there are at least q honest mining queries.

Definition 30 (Maximum time to grow cutOff blocks). For network delay ∆, and p, δ ∈ (0, 1),
we denote t∆δ (q) := cutOff

(1−δ)γ , where γ := h
1+h∆

and h := 1− (1− p)q.

Let tlb := 0 and tub := t∆δ (Tub). Let BA
b,r denote the event: At round r, the adversary

broadcasts b blocks made by parties that are corrupted at the time of the blocks’ creation, and
which are part of the longest chain at round r. Let uhbuy be ubuy except

∑
(b,r)∈N2 b · breward(r) ·

CR·Pr[IAb,r] (which considers time of block confirmation) is replaced with
∑

(b,r)∈N2 b·breward(r+

tlb)·CR·Pr[BA
b,r] =

∑
(b,r)∈N2 b·breward(r)·CR·Pr[BA

b,r] (which considers time of block broadcast).

Similarly, let ulbuy replace the same term in ubuy with
∑

(b,r)∈N2 b ·breward(r+ tub) ·CR ·Pr[BA
b,r].

uhbuy(Π
B,A) = sup

Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward(r + tlb) · CR · Pr[BA
b,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

+ fpayoff · Pr[K]

−
∑
g∈N

ccost(g) · Pr[CA
g ]

}}
.

and
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ulbuy(Π
B,A) = sup

Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward(r + tub) · CR · Pr[BA
b,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

+ fpayoff · Pr[K]

−
∑
g∈N

ccost(g) · Pr[CA
g ]

}}
.

The following lemma tells us that instead of analyzing the utility function defined on when
a block is confirmed in the ledger we can instead approximate by only analyzing when a block
is broadcasted. This will be helpful in our proof of Lemma 16 on the utility of the optimal
front-running, passive adversary.

Lemma 14 (Translating time-of-block-confirmation to time-of-block-broadcast: uhbuy and ulbuy).
For any utility function satisfying limited horizons (in fact, we only require that breward(·) is a
non-increasing function), satisfies the following: For all adversaries A, and front-running, passive
A′,

ubuy(Π
B,A) ≤ uhbuy(Π

B,A) + negl(κ) and

ubuy(Π
B,A′) + negl(κ) ≥ ulbuy(Π

B,A′).

Proof. The first inequality is obvious: By limited horizons, giving block rewards using time-of-
block-broadcast (i.e., uhbuy) gives the attacker a higher payoff.

The second inequality: Let the environment be one which maintains Tub parties in each round
after r. The bound follows then from the chain-growth lower bound which states the minimum
chain length increase during a time period, depending on the honest parties’ hashing power and
the network delay (cf. [18, 115]). We state one version of the chain growth lemma below for
completeness.

Lemma 15 (Chain growth, Lemma 7.11 [18] ). For any miner pi, round number r ≥ 0, t ≥ 1,
success probability of one mining query p ∈ (0, 1), network delay ∆, and δ ∈ (0, 1), let γ := h

1+h∆

where h := 1 − (1 − p)q and q is the minimum total number of honest mining queries in any
round during the interval [r, r + t].

Suppose pi is honest in round r, and the longest state received or stored by pi in round r
has length `. Then, in round r + t, it holds, except with probability at most negl(γt)5, that the
length of the longest state (received or stored) of at least one honest miner pj in that round has
length at least `+ T if t ≥ T

(1−δ)·γ .

This concludes the proof.

5In fact, at most exp
(
− δ

2tγ
2+δ

)
.
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5.3.2 Optimal utility of front-running, passive adversaries

We show in this section if a utility satisfies limited horizons, then it also satisfies bounded in-
centives. We do so by proving the following optimal utility of a passive, front-running adversary.
We define uh

honest and ul
honest which, as we will see in Lemma 16 below, are the upper and lower

bounds on the optimal utility obtained by a front running, passive adversary in ΠB.

Definition 31 (Bounds uh
honest and ul

honest for optimal front-running, passive adversary). We
define the quantity

uh
honest(breward, CR, mcost, ccost)

:= g · p · CR ·
t∑

x=1

[breward(x+ tlb)− mcost]− ccost(g)

with

t := arg max
x∈N

(p · CR · breward(x+ tlb) ≥ mcost),

g := arg max
g∈[0,Tub]

(mg − ccost(g)) ,

for m :=
t∑

x=1

(p · CR · breward(x+ tlb)− mcost) ,

and the quantity

ul
honest(breward, CR, mcost, ccost)

:= g · p · CR ·
t∑

x=1

[breward(x+ tub)− mcost]− ccost(g)

with

t := arg max
x∈N

(p · CR · breward(x+ tub) ≥ mcost),

g := arg max
g∈[0,Tub]

(mg − ccost(g)) ,

for m :=
t∑

x=1

(p · CR · breward(x+ tub)− mcost) .

We simplify the above upper and lower bounds on the optimal front-running, passive adver-
saries as uh

honest and ul
honest, when the parameters to the utility function are clear from context.

As discussed before, although we prove the optimal passive adversary for ubuy, the renting case
for utility urent is a direct corollary by setting ccost(·) = 0 and mcost = rcost.

Intuitively, the following lemma is established by proving that (1) due to limited horizons,
there is a fixed time t after which an optimal passive adversary will not mine, and (2) it is
optimal for a passive adversary to corrupt parties statically. Then, we can re-write the utility of
a front-running, passive adversary as a function of his running time t, and the number of parties
he corrupts g. Optimizing for t and g gives us the optimal utility of this passive adversary.
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Lemma 16 (Optimal utility of a front-running passive adversary, for incentives with limited
horizons). Let Tub > 0 be the upper bound on total number of mining queries per round,
p ∈ (0, 1) be the probability of success of each mining query, and cutOff = ω(log(κ)) be the

consistency parameter. Given parameters such that ubuy satisfies limited horizons and protocol ΠB,

for A the optimal adversary in Afr, ubuy(Π
B,A) ≤ uh

honest +negl(κ) and ubuy(Π
B,A)+negl(κ) ≥

ul
honest

This lemma directly implies that any utility with limited horizons also has bounded incentives.

Proof. We show the proof for the upper bound. The lower bound can be proven in the exact
same way by constructing an optimal front-running, passive adversary for ulbuy, except replacing
breward′(x) with breward′′(x) := breward(x+ tub).

Let breward′(x) = breward(x + tlb). By Lemma 14, we can prove the upper bound on
utility in the lemma by constructing an optimal front-running, passive adversary A for the utility
function uhbuy.

We first show that, at any round, the optimal passive adversary A for uhbuy is the one who
either mines with all his corrupted parties, or does not mine at all.

Claim (1) There is a round t where it is optimal for a passive adversary to do the following:
For all rounds x ≤ t, the adversary does not de-register any party. That is, he mines with all
parties corrupted at round t. At round t + 1, the adversary de-registers all his corrupted parties
and stops execution.

Proof of Claim (1): Let gx be the number of corrupted parties at round x in a given protocol
execution. Suppose the adversary mines (queries the random oracle with blocks) with g ≤ gx
corrupted parties. Then the payoff for mining at round x is (up to negligible difference)∑

b∈N

b · breward′(x) · CR · Pr[BA
b,x]−

∑
q∈N2

q · mcost · Pr[W A
q,x]

= g · p · breward′(x) · CR− g · mcost
= g · (p · breward′(x) · CR− mcost) .

Since we assume cutOff = ω(log(κ)) and the adversary is passive, the probability and thus payoff
for a fork is negligible. The first equality holds since when the adversary is front-running and
passive, all successfully-mined blocks will be added to the ledger. Thus, both BA

b,x and W A
q,x only

depend on the number of queries made at round x.
We see that if (p · breward′(x) · CR− mcost) ≥ 0 he gains the optimal utility by mining with

all his rigs. On the other hand, when (p ·breward′(x) ·CR−mcost) < 0, then he obtains optimal
utility by not mining at all. Thus, he does not lose utility by de-registering his parties. There
exists a round t described in the claim by assumption of the utility function parameters satisfying
bounded mining incentives. �
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Our second claim says that the optimal adversary is the one who statically corrupts parties
at the first round. That is, adaptive corruption does not increase his payoffs.

Claim (2) Let G be the total number of parties corrupted by an adversary in a protocol
execution and PG be the associated distribution. Then, (1) given any front-running, passive
adversary where g = maxSupp(G), an environment Z which spawns g + 1 parties gives the
optimal payoff. Moreover, (2) given an environment which spawns at least g + 1 parties at
the first round, the optimal front-running, passive adversary who corrupts at most a total of g
parties, is to statically corrupt them at the first round.

Proof of Claim (2): The first statement (1) is given by the fact that the payoff of the passive
adversary only depends on the number of successful blocks inserted into the ledger. Since the
adversary is front-running, it does not matter how many honest parties there are, as long as the
environment spawns enough parties to allow for at least one honest party (for the technical reason
that the ledger state is accepted by some honest party). The second statement follows from the
fact that Claim (1) implies the adversary’s mining strategy at any round does not depend on the
number of corrupt parties nor view of the protocol execution. Thus, an adversary corrupting a
party at some round x always gains equal or better payoff by corrupting the party at the first
round. It is possible for the adversary to corrupt statically first round since we assumed the
environment spawns enough parties. �

Finally, we show that the optimal front-running, passive adversary A for uhbuy will corrupt a
deterministic number of parties at the first round. By Claims 1 and 2, it suffices to analyze the
utility of a front-running, passive adversary A who corrupts some g parties statically at the first
round and mines for t rounds.

ubuy(Π
B,A) ≤ uhbuy(Π

B,A)

=
∑
b∈N

∑
x≥1

(
b · breward′(x) · CR · Pr[BA

b,x]
)
− g · t · mcost− ccost(g) + negl(κ)

= CR
∑
b∈N

(
b · Pr[BA

b,1] ·
t∑

x=1

breward′(x)

)
− g · t · mcost− ccost(g) + negl(κ)

= CR

(
t∑

x=1

breward′(x)

)(∑
b∈N

b · Pr[BA
b,1]

)
− g · t · mcost− ccost(g) + negl(κ)

= CR

(
t∑

x=1

breward′(x)

)
· g · p− g · t · mcost− ccost(g) + negl(κ)

= g ·
t∑

x=1

(p · CR · breward′(x)− mcost)− ccost(g) + negl(κ)
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To go from line 2 to line 3: for x ∈ [1, t], Pr[BA
b,x] = Pr[BA

b,x′ ] = Pr[BA
b,1], and for x > t,

Pr[BA
b,x] = 0. To go from line 4 to line 5: we see

∑
b∈N b · Pr[BA

b,1] is the expected number of
blocks made in each round, which is gp. We next find the g, t that maximize the above expression.
We see that from Claim 1, and that ubuy satisfies limited horizons:

t = arg max
t∈N

(
t∑

x=1

(p · CR · breward′(x)− mcost)

)
= arg max

x≥1
(p · CR · breward′(x) ≥ mcost)

Let m be the mining profit defined by

m =
t∑

x=1

(p · CR · breward′(x)− mcost)

Then the optimal number of corruptions g is the following (recall Tub is the maximum hashing
power per round).

g = arg max
g∈[0,Tub],g∈N

(mg − ccost(g))

5.4 Analyzing 51% attacks

We can now utilize our above framework to analyze one of the most common types of forking
attacks, known as 51% double-spending attack [4]. We analyze a range of parameters for utility
functions with limited horizons, for which a 51% double-spending adversary breaks the strong
attack-payoff security of protocol ΠB (formalized by Theorem 14). In more detail, first we will
show a general lemma relating the number of honest/adversarial hashes per round, to the time
it takes to fork with a 51% double-spending attack (Lemma 17). Then, in Theorem 14 we
will show that if the payoff for a successful attack (fpayoff) satisfies certain conditions, then
an adversary performing a 51% double-spending attack achieves better utility than any passive-
mining strategy. This fpayoff is quantified as a function of the parameters of the protocol and
the utility function.

We call the following strategy a 51% double-spending attack: The adversary obtains any
majority fraction (“51%” is just a colloquial name) of the hashing power, and uses it to secretly
mine an extension of the currently longest chain (i.e., keeping successful blocks private to himself),
and which he will release after some time. We say that a 51% double-spending attack is successful
if, when released, the adversary’s secret chain is at least as long as the honest chain, and causes
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the ledger state of some honest party to fork (which in reality corresponds to a roll-back of
more than cutOff blocks, in order to adopt the released attack chain). If this happens, some
transactions on the reversed blockchain ledger state may become orphaned (no longer part of the
ledger state), thus allowing the attacker to double-spend his coins.

5.4.1 Time to fork

We start by showing a general lemma that relates the amount of honest and adversarial hashing
power in a system, to the time to cause a fork via a 51% double-spending attack. That is, how
long it takes for an adversary with majority hashing power to secretly create a chain that, when
released, would cause an honest party to roll back, or discard, more than cutOff blocks of his
own chain in order to adopt the new one.

Definition 32. We say that an adversary A causes a fork in a protocol Π if, except with negligible
probability in κ, all simulators SA ∈ CA (i.e. those which in fact simulate A according to UC
emulation) use the fork command6.

The fork command, which allows forking the confirmed ledger state (and hence corresponds
to rolling back more than cutOff blocks in the real world world), is necessary and sufficient to
simulate an adversary who succeeds in a 51% double-spending attack. We compute the (upper
bound) time for a 51% double-spending adversary to fork, which is obtained by the time for
honest parties to grow their chain by cutOff blocks (for which we can use guaranteed chain-
growth of Nakamoto-style blockchains. Since the adversary has more hashing power (and thus
more random oracle queries that can be issued sequentially) than the honest party, and since we
assume cutOff = ω(log(κ)) and that the adversary does not interfere with the honest parties’
mining, this implies that the adversary’s secretly-mined chain will be longer than the honest
parties’ chain, and be the only source for a large rollback, with overwhelming probability in κ.

Lemma 17 (Time to fork with 51% attack). Let cutOff = ω(log(κ)), [r, r + t] be any time
interval (starting from some round r ≥ 0) of t ≥ 1 rounds, ∆ ≥ 1 be the network delay,
p ∈ (0, 1) the success probability of one mining query.

Then for all δ, δ′ ∈ (0, 1), α ≥ 1+δ
1−δ , and q ≥ 1 such that t ≥ t∆δ′(q) (Definition 30) the

following holds. Suppose in time interval [r, r+ t], (1) the honest parties make at least q mining
queries per round, and (2) in total they make at most qt queries. Then, the adversary A who
performs a 51% double-spending attack for at least αqt queries during the time interval and then
releases his secretly-mined chain, causes a fork in the protocol ΠB. 7

Proof. As usual we analyze in the state exchange functionality (FStX) hybrid-world, which ignores
negligible-probability bad event like hash collisions that break the tree structure of chains (and
in any case can only serve to help the adversary as the honest parties do not take advantage of
such bad events).

6If CA = ∅, then in any case by definition the utility of A is infinite.
7More concretely, he succeeds except with probability at most exp

(
− δ

2αµ
2+δ

)
+ exp

(
− δ

2µ
2

)
+ exp

(
− δ

′2tγ
2+δ

)
.
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Let the adversary’s strategy be the following: He does nothing before some round r. Let C
be the longest known chain at the beginning of round r (since the adversary knows all the chains,
he knows the longest chain). During [r, r + t], the adversary mines secretly (i.e., mines without
releasing any successful blocks), starting from C (for αqt queries). After mining in round r + t,
the adversary releases his secretly-mined chain.

Let ca be the random variable (r.v.) that is the number of blocks made by the adversary’s
secret mining, and ch the r.v. that is the length of the longest chain fragment made by honest
parties, during [r, r + t].

First we claim that the adversary causes a fork if, except with negligible probability in κ, the
following conditions hold:

(1) ca ≥ ch and (2) ch > cutOff.

By (1) and the fact C is the longest chain at round r, the adversary’s secret chain is at least as
long as the longest honest chain, so his chain will be adopted by honest parties when he releases
it. In addition, by (2), the honest parties must roll back more than cutOff blocks to adopt the
adversary’s secret chain after it is released, which breaks consistency. In this case, any simulator
successfully simulating A must use the command fork.

Let bh and ba be the total number of blocks made by the honest and corrupt parties during
the time interval. Then ch ≤ bh and E(ch) ≤ E(bh) = µ = qtp. Moreover ca = ba since the
adversary does mine his own blocks sequentially, and E(ca) = E(ba) = αµ.

We recall the Chain Growth Lemma [17, 66, 115] that relates the time it takes an honest
chain to grow by some T blocks with the honest parties’ hashing power and the network delay.
We are in particular interested in T = cutOff—that is, how long it takes for the honest chain
to grow by cutOff blocks. This lemma tells us that if t ≥ cutOff

(1−δ)γ (implied by our assumption)

then ch ≥ cutOff except with probability at most negl(γt). Since cutOff = ω(log(κ)), we have
negl(γt) = negl(κ).

We analyze below the probability that either condition (1) or (2) above fail. To get from line
1 to line 2: By α ≥ 1+δ

1−δ , we have αqpt(1− δ) ≥ qtp(1 + δ); moreover ch ≤ bh. To get line 3 to
line 4: We apply Chernoff bound and Chain Growth Lemma.

Pr [(ca < ch) ∨ (ch ≤ cutOff)]

≤Pr [(ca ≤ αqtp(1− δ)) ∨ (bh ≥ qtp(1 + δ)) ∨ (ch ≤ cutOff)]

≤Pr [ca ≤ αqtp(1− δ)] + Pr [bh ≥ qtp(1 + δ)] + Pr [ch ≤ cutOff]

≤ exp

(
− δ

2αµ

2 + δ

)
+ exp

(
−δ

2µ

2

)
+ exp

(
− δ

′2tγ

2 + δ

)
where µ = qtp. Since we assume µ = qtp ≥ w = ω(log(κ)), exp(−cµ) = exp(−ω(log(κ))) is
negligible in κ for any constant c.8

8To prove that it is negligible, for contradiction suppose there is a polynomial xd that is asymptotically larger
than eg for some g = ω(log(κ)). But xd = ed log(x) which implies g = O(log(x)) which is a contradiction.
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A visualization. In Figure 5.1, the (upper-bound) time to fork with exactly 51% corruption,
is graphed against the total number of rigs in the system. The graph uses the formula from
Lemma 17. We use current parameters for Ethereum Classic as the source of the concrete
parameters for this figure, and refer the reader to Sec. 5.6 for more details.

Figure 5.1: Time to create a fork via 51% attack, versus the total number of mining rigs. Here
the adversary corrupts exactly 51%.

5.4.2 Payoff of 51% double-spending attacks

In this section, we prove Theorem 14 and its corollary Theorem 15, which quantify the size of the
payoff for double-spending, under which a 51% double-spending attack can break strong attack-
payoff security. That is, the attacker achieves better utility than any passive mining strategy.
While one may think that it is always profitable to attack if there is no assumption on the honest
majority of hashing power, there are a few things that may deter an attacker. For example,
the costs of buying or renting mining equipment for the attack may become too high compared
to constant double-spending payoff and the diminished block rewards as time goes on. Our
statement below quantifies an amount of payoff for forking (e.g. how much an attacker can
double-spend) to incentivize a 51% double-spending attack. Intuitively, the result below says
that as long as the payoff for forking (fpayoff) is larger than the loss of utility from withholding
blocks and corrupting a large number of parties to perform the attack, then there is a 51% attack
strategy that is more profitable than any front-running, passive adversary.

Theorem 14 (51% double-spending attacks that break (strong) attack-payoff security (ubuy)).
Let Tub > 2 be the upper bound on total number of mining queries per round, p ∈ (0, 1) be
the probability of success of each mining query, and cutOff = ω(log(κ)) be the consistency
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parameter. Then, the protocol ΠB is not attack-payoff secure/strongly attack-payoff secure in
any attack model M whose induced utility function ubuy satisfies limited horizons, if for some

δ ∈ (0, 1), α > 1 and g = Tub

1+α
the following holds:

fpayoff > uh
honest − α · g · t∆δ (g)

(
p · CR · breward(t∆δ (g) + tub)− mcost

)
− ccost(αg).

Proof. First we show an upper bound on the utility of an optimal passive adversary A1. Then,
we show that there is a 51% attacking adversary A2 who achieves better utility than A1.

We show the former, by showing the optimal payoff of any pair (Z,A1), where Z is the

environment and A1 a front-running and passive adversary in ΠB. This is directly from Lemma 16,
which shows that ubuy(Π

B,A1) ≤ uh
honest+negl(κ) for any utility function ubuy that satisfies limited

horizons.
Then, we show that there is an environment under which an (malicious) adversary A2 obtains

non-negligibly more utility than A1. Consider the adversary that corrupts αg = αTub

1+α
parties,

and mines a secret chain for t∆δ (g) rounds (so he will make α · g · t∆δ (g) mining queries) before
releasing his secret chain and then deregisters his corrupted parties. By Lemma 17, he successfully
causes a fork with overwhelming probability in κ. However, by withholding blocks (in order to
create a fork), he also loses some block rewards. This is because his blocks would end up in an
honest party’s ledger at a later time than if he just broadcasted successful blocks immediately
after creating them. Consider an environment which spawns Tub parties (which are honest as the
adversary does not corrupt them) after he releases his secret chain, which will reduce the time
between when the adversary broadcasts his secret chain and when the chain becomes confirmed
as part of the ledger to at most tub (Lem. 14). This means the adversary A2 achieves utility of:

ubuy(Π
B,A2) ≥ α · g · t∆δ (g)

(
p · CR · breward(t∆δ (g) + tub)− mcost

)
− ccost(αg) + fpayoff.

We ignore negligible probability/utility loss from an unsuccessful attack. We also recall that tub
is the upper bound from Lemma 14 on the time between a block is created, and the block enters
a honest party’s ledger (we also recall the utility is computed using the optimal environment
for the adversary). Since breward(·) is a non-increasing function, this lower-bounds the payoff
the adversary obtains from creating blocks. Given the conditions on fpayoff it then holds that
A2 breaks strong attack-payoff security. Because the attack provokes the fork-command, also
attack-payoff security cannot hold.

We state the case where the adversary mines with rented equipment (and uses utility function
urent), as a direct corollary to Theorem 14.

Theorem 15 (51% double-spending attacks that break (strong) attack-payoff security (urent)).
Let Tub > 2 be the upper bound on total number of mining queries per round, p ∈ (0, 1) be
the probability of success of each mining query, and cutOff = ω(log(κ)) be the consistency
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parameter. Then, the protocol ΠB is not attack-payoff secure/strongly attack-payoff secure in
any attack model M whose induced utility function urent satisfies limited horizons, if for any
δ ∈ (0, 1), α > 1 and g = Tub

1+α
the following holds:

fpayoff > uh
honest − α · g · t∆δ (g)

(
p · CR · breward(t∆δ (g) + tub)− mcost

)
.

5.4.3 Visualizations with concrete values

We will visualize Theorems 14 and 15 through Figures 5.2 and 5.3. We consider two utility
functions, one where the adversary buys mining equipment, and one where the adversary rents.
We then graph the utilities of passive/non-passive adversaries, against the maximum fraction of
corrupted parties. The concrete parameters are based on current (as of writing, Feb. 2021)
parameters for Ethereum Classic. The outline is given in Sec. 5.6.

Figure 5.2: Utility of the passive/51% double-spending attacker who rents hashing power, versus
the fraction of adversarial parties. Here we consider an expensive cost to rent hashing power
(1.96 BTC/TH/day, at $50, 000/BTC).

In Figure 5.2, we consider the incentives of a 51% attacker who rents his hashing power, using
the price for renting of 1.96 BTC/TH/day (Bitcoin per terahash per day), at $50, 000/BTC. In
this case, it is in fact not profitable to mine passively (and thus the optimal passive strategy is to
not mine at all). However, when the adversary corrupts more than majority of hashing power, it
may become profitable to mine in order to create a fork. It is less profitable for the adversary to
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Figure 5.3: Utility of the passive/51% double-spending attacker versus the fraction of adversarial
parties. We consider an attacker who runs for a short duration (1 week) and a long duration (40
weeks).

corrupt a larger fraction of the parties, as cost of renting becomes too high. We remark that even
when it is not profitable to mine (passively) using rented rigs, this does not exclude incentivizing
honest parties from mining with e.g., bought equipment.

In the next two examples in Figure 5.3, we compare the utility of the attacker who mines
with purchased rigs, and one who mines with rented rigs. For the attack who buys hashing
power, each rig costs $3000, and mining (electricity) costs $0.000047/s. For the attacker who
rents, for more interesting comparisons we consider a cheaper cost to rent hashing power (1.96
BTC/TH/day, at a cheaper $22, 000/BTC). We consider two scenarios: the attacker either (1)
only plans to mine for a short duration of one week, or (2) plans to mine for a longer duration of
40 weeks (time is expressed in seconds in the code). For the purposes of the graphs, we account
for the possible variance of Bitcoin-USD exchange rates by using an average exchange rate over
the relevant period of time. In either case, to more closely model reality, we restrict the duration
of the attack, where the adversary may obtain a majority of hashing power, to 3 days (which,
in the code, simply means we do not show attacks that last longer than 3 days). We see a big
difference between the two scenarios. In the short duration case, it is much more profitable to
mine or attack with rented rigs. In fact, it is not even profitable to fork using purchased rigs, as
the cost of purchase is higher than the payoff for double-spending. The long duration case is the
opposite. Although it may be profitable to mine in both cases, it is vastly more profitable to mine
and attack with purchased rigs than rented rigs. This agrees with our intuition and reality: the
high initial investment of buying mining equipment is offset in the long run by the lower cost of
mining. Moreover, an attacker who is only interested in mining in order to perform a 51% attack
for a short time is incentivized to use hash renting services.
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5.5 Mitigating 51% attacks

In previous sections, we studied utility functions with limited horizons, in which an attacker is
incentivized to perform a 51% double-spending attack and break (strong) attack-payoff security.
In this section, we turn to analyzing how to defend against 51% attacks. Specifically, given
an attacker’s utility function with limited horizons, and a cut-off parameter cutOff that achieves
security in the honest majority setting, we show a way to amplify cutOff to obtain security against
a rational (and possibly dishonest majority) attacker.

To show attack payoff security, one must show that for any adversarial strategy attacking the
protocol, there is another adversary who attacks the dummy protocol with access to the ideal
ledger functionality Gledger9, which achieves the same or better utility.

Even more difficult, we place very few restrictions on the adversary: he may corrupt any
fraction of parties (e.g. more than majority) and perform any currently known (e.g. block
withholding) or unknown strategy. The only restriction we place on the attacker is that he is
incentive-driven. Fortunately, a rational attacker is limited by his utility function. As we show,
given a utility function satisfying limited horizon, we are able to bound the amount of mining an
incentive-driven adversary will do, even in presence of a payoff for forking. Then, by choosing
a large enough consistency parameter cutOff, we ensure that attackers are disincentivized from
creating a fork.

More specifically: We first present in Section 5.5.1 a result that shows that if an adversary’s
hashing resources are limited by a budget B, then there is a bound on the interval of rounds
where the blockchain is at risk of a consistency failure (Lemma 18). For this, we apply a result
from [14] that, roughly, shows how fast a blockchain’s consistency can recover after an attack by
an adversary with a given budget (the self-healing property of Bitcoin). Based on this fundamental
property, we present in Section 5.5.2, the main result of the section: Given a utility function with
limited horizons, we show a condition on the parameter cutOff, depending only on the utility
function and protocol parameters, such that ΠB is attack-payoff secure. To do so, we show
that an adversary who spends too much budget will begin to lose utility (Lemma 19), and then
combine this result with that of Section 5.5.1.

5.5.1 Budget to vulnerability period

Assume an instance of the Bitcoin backbone protocol with cut-off parameter `. We distinguish
here between ` and cutOff for clarity, since we will eventually amplify ` to obtain our final cut-off
parameter cutOff.

Under the honest majority condition, we know that a consistency failure (expressed as the
probability that blocks which are ` deep in an honest parties adopted chain can be reverted)
appears with probability negligible in ` (and consequently also in any security parameter κ as long
as ` = ω(log(κ)). We now recall (and state a simple corollary from) the result from [14], which

9Recall this is the ledger functionality that ensures consistency and liveness, but since we will amplify the
cut-off parameter cutOff, we only achieve worse overall chain growth and chain quality parameters for the ledger
(cf. [14, 17]).
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defines a relationship between an adversary’s violation of honest-majority (measured as a so-called
budget B by which it can violate the honest-majority condition) and the time until Bitcoin (and
more generally, Nakamoto-style PoW chains) self-heals after the adversary returns to below 50%
hashing power. That is, until Bitcoin can again guarantee consistency for the part of the chain
that is at least ` blocks deep in a longest chain held by an honest party. The self-healing time
depends on the budget and the parameter `. Recall that θpow is the usual security threshold for
Bitcoin as explained in Section 2.5.

Definition 33 ((θpow, ε, Tlb,Tub, B)-adversary [14]). Let θpow, ε ∈ (0, 1), Tlb,Tub, B ∈ N. A
(θpow, ε, Tlb,Tub, B)-adversary is an adversary10 satisfying the following: At every round i, let nia
and nih be the mining queries made by corrupt and honest parties in this round. Then, (1) For
all i, Tlb ≤ nia + nih ≤ Tub, and (2) For all i, nia ≤ (1 − ε) · θpow · nih + Bi, where Bi ≥ 0 and∑

iBi = B.
We say the adversary attacks between rounds a < b if Bi = 0 for any i < a or i > b (i.e. he

spends all his budget between rounds a and b).
We say an adversary spends budget B over t rounds, if the adversary has budget B, and only

spends it in rounds r1 < r2 < · · · < rt, such that
∑

iBri = B.

The behavior of a blockchain protocol under an attack by an (θpow, ε, Tlb,Tub, B)-adversary
is described by a vulnerability period. The vulnerability period is an upper bound on number of
rounds before and after an adversary performs the attack, such that protocol is still at risk of a
(non-negligible) consistency failure.

Definition 34 (Consistency self-healing property and vulnerability period [14]). A protocol
is self-healing with vulnerability period (τl, τh) with respect to consistency, and against a
(θpow, ε, Tlb,Tub, B)-adversary who attacks between rounds (a, b), if the consistency failure event
ConsFail`(r) occurs except with at most negligible probability unless r ∈ [ρα − τl, ρβ + τh].
ConsFail`(r) is defined as the event that `-consistency is violated in an execution for rounds
(r, r′), w.r.t. some round r′ > r, and any two pairs of honest parties.

In other words, outside of these “dangerous” rounds [a − τl, b + τh], chains adopted by
honest parties are guaranteed to diverge by at the most recent ` blocks. Below, [14] gives a
characterization of the vulnerability period in terms of the budget B.

Theorem 16 (From [14]). A Nakamoto-style PoW blockchain with an upper bound Tub of
hashing queries per round, maximum network delay ∆, success probability p, and cut-off parameter
` satisfies the consistency self-healing property with vulnerability period (τl, τh) = (O(B), O(B)+
O(`)) against any (θpow, ε, Tlb,Tub, B)-adversary, for any ε, Tlb > 0.

The vulnerability period only bounds the number of “bad” rounds before the attack, and
after all the budget is spent. For our treatment, we consider a more applicable version of the
vulnerability period. In Lemma 18, we show the maximum number of consecutive rounds where
ConsFail may occur, by applying the above theorem in a piece-wise fashion. For example, if the

10Here the environment is also included in this statement.
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adversary spends his budget over a long period of time (e.g., spend a bit of the budget, wait for 2
years, then spend more of his budget), the theorem is not directly suitable for our needs, but it is
possible to isolate those “spending” rounds and applying the theorem to each such region. Then,
since the total hashing power in the system is bounded, we can use this maximum consecutive
“bad” rounds to bound the maximum number of blocks that can be rolled back at any given
round.

Lemma 18 (Max consecutive consistency failure rounds and associated number of blocks and
rollback). In the same setting as above in Theorem 16, except with negligible probability the
following holds: for any adversary with budget B, spent over t rounds (that is, for t different
rounds i it holds that Bi > 0), there is a maximum number R(B, t, `) = O(B) + O(`t) of
consecutive rounds rj where ConsFail`(rj) occurs, during which at most W (B, t, `) = 2Tubp ·
R(B, t, `) blocks are created.

Proof. To show R(B, t, `) we note that the rounds where ConsFail` occurs, are either (1) rounds
where adversary spends his budget (i.e., when adversary has majority) (2) some number of rounds
before some amount of budget is spent, bound by τ` in Theorem 16 (3) some number of rounds
after some amount of budget is spent, bound by τh in Theorem 16. For (1), there are exactly
t rounds by definition. For (2), we observe that this is at most O(B), regardless of how the
adversary spends his budget. For (3), we see that this is at most O(B) + O(`t), since τh gives
the adversary at most O(`) rounds (where ConsFail` may occur) each time the budget is spent,
and there are exactly t such rounds. Summing the above, we get R(B, t, `) = O(B) + O(`t).
We obtain W (B, t, `) through Chernoff bound (and for simplicity using 2 instead of (1 + δ)),
given that there are at most Tub hashes per round.

Looking ahead, this means that at any point in time, prefixes of honest parties’ chains must
agree (except with negligible probability) when dropping the most recent W (B, t, `) + ` blocks.
Here, we omit the dependency on p because we treat it as a constant parameter of the protocol.

5.5.2 Attack-payoff security

In this section we will show the following: For any utility function with limited horizons, we
give a characterization of how to adjust the consistency parameter (depending on the protocol

parameters and those of the utility function) such that ΠB is attack payoff secure. To do so, we
will first upper bound the utility of adversaries who spends a total budget B over some time t,
given a utility function ubuy with limited horizons (Lemma 19, and Corollary 3 for utility function
urent). In Theorem 17, we then combine this lemma with the result of the previous subsection,

and present our characterization of parameters for which ΠB is attack-payoff secure—i.e. for
which forks are disincentivized.

Below, we quantify an upper bound uubbuy(B, t) on the utility of any adversary spending budget
of at least B over exactly t rounds, assuming the utility function satisfies limited horizons. Why
are we interested in this quantity? Recall W (B, t)—which informally represents an interval of
blocks where consistency might fail—increases with B and t. Looking ahead, we will find a large
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enough W (B, t) that disincentivizes attacks (i.e., uubbuy(B, t) < 0). To show that the upper-bound
uubbuy(B, t) is useful, later we will show that it is possible use it to derive a maximum B, t, which

we denote by B̄, t̄.

Lemma 19 (Upper bound utility of adversary spending budget at least B, over time t). Suppose

ubuy(Π
B,A) satisfies limited horizons. Then an adversary A with budget at least B > 0, and

who spends it over exactly t ≥ B
Tub−n̄a

rounds, achieves utility at most ubuy(Π
B,A) ≤ uubbuy(B, t)

where

uubbuy(B, t) :=

th∑
x=1

Tub · (p · CR · breward(x)− mcost)

+
t∑

x=th+1

(n̄a + 1) · (p · CR · breward(x)− mcost)

− ccost

(
n̄a +

B

t

)
+ fpayoff

and where th := arg maxx∈N(p · CR · breward(x) ≥ mcost), n̄a := (1−ε)·θpow·Tlb
1+(1−ε)·θpow .

If t < B
Tub−n̄a

(in this case it is not possible to spend budget B over t rounds) or B ≤ 0, then

uubbuy(B, t) is undefined.

Proof. We first note that if t < B
Tub−n̄a

then it is by definition not possible for an adversary to
spend at least budget B over t rounds: In each round, at most Tub hash queries can be made,
and given a lower bound of Tlb mining queries in each round, the adversary must make more than
n̄a queries in order to spend budget.

Thus, let A be any adversary who spends at least budget B, over exactly t rounds for
t > B

Tub−n̄a
. Let T be the maximum running time of A in some environment Z. Let q1, · · · , qT

be the random variables where qi is the number of queries A makes in round i. Let g =
maxi∈[1,T ] qi be the maximum number of parties A corrupts at any given round. Let th =
maxx∈N x : p · CR · breward(x) ≥ mcost, which exists as ubuy satisfies limited horizons. Then,

ubuy(Π
B,A) ≤

T∑
x=1

qi · (p · CR · breward(x)− mcost)− ccost(g) + fpayoff

=

th∑
x=1

qi · (p · CR · breward(x)− mcost)

+
T∑

x=th+1

qi(p · CR · breward(x)− mcost)− ccost(g) + fpayoff.

Now by construction p · CR · breward(x) ≥ 0 for x ≤ th so it is optimal to make as many
queries as possible in these rounds. Thus,

∑T
x=1 qi · (p ·CR ·breward(x)−mcost) ≤

∑T
x=1 g · (p ·

CR·breward(x)−mcost). On the other hand, p·CR·breward(x) < 0 for x > th so it is optimal to
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make as few queries as possible in these rounds. Thus,
∑T

x=th+1 qi·(p·CR·breward(x)−mcost) ≤∑t
x=th+1 n̄a · (p · CR · breward(x)− mcost). The latter statement is because by assumption that

A spends his budget for t rounds, we have T ≥ t and he must make at least n̄a + 1 queries when
he spends his budget. Note we are ignoring whether a fork can be obtained this way, as in the
upper-bound we give fpayoff to the adversary “for free”.

In addition, it must be that g ∈ [n̄a + B
t
,Tub]—he must corrupt enough parties to spend B

budget in t time, but corrupting more than Tub (the upper bound on total hashing power in the
system) parties does not increase his hashing power. This gives us the bound in the lemma (due
to limited horizons, ccost is a non-decreasing function of g).

As a corollary, by setting ccost(·) = 0 and mcost = rcost, we obtain an upper bound on
the utility of any adversary who spends at least budget B, assuming the utility function satisfies
limited horizons with renting.

Corollary 3. Suppose urent(Π
B,A) satisfies limited horizons with renting. Then an adversary A

who spends budget of at least B > 0 over exactly t ≥ B
Tub−n̄a

rounds, achieves utility at most

urent(Π
B,A) ≤ uubrent(B, t) where

uubrent(B, t) :=

th∑
x=1

Tub · (p · CR · breward(x)− rcost)

+
t∑

x=th+1

(n̄a + 1) · (p · CR · breward(x)− rcost) + fpayoff

and where th := arg maxx∈N(p · CR · breward(x) ≥ rcost), n̄a := (1−ε)·θpow·Tlb
1+(1−ε)·θpow .

A natural question is whether the upper bound uubbuy(B, t) and uubrent(B, t) will be useful for
bounding B, t. We remark that it is not even trivially clear whether they bounded, as the budget
does not limit how many rounds (when honest majority is satisfied) the adversary can mine. Below,
we show that there indeed exist a maximum B, t for which uubbuy(B, t) ≥ 0 (resp. uubrent(B, t) ≥ 0,

which we denote by B̄, t̄.

Lemma 20. B̄ := arg maxB>0

(
uubbuy(B, ·) ≥ 0

)
and t̄ := arg maxt>0

(
uubbuy(·, t) ≥ 0

)
exist, or ∀t >

0, uubbuy(·, t) < 0. The same is true when replacing uubbuy with uubrent in the statement.

Proof. We prove for uubbuy then the case for uubrent follows. Let bmax =
∑th

x=1 Tub · (p · CR ·
breward(x) − mcost) where th = arg maxx∈N(p · CR · breward(x) ≥ mcost) (exists by limited

horizons), Let n̄a = (1−ε)·θpow·Tlb
1+(1−ε)·θpow .
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Suppose there is a t > 0 such that uubbuy(·, t) ≥ 0; we will show that (1) There is a t ≥ th
such that uubbuy(B, t) ≥ 0, and (2) t̄ := arg max

(
uubbuy(·, t) ≥ 0

)
exists. For (1),

uubbuy(B, t)

≤ bmax +
t∑

x=th+1

(n̄a + 1) · (p · CR · breward(x)− mcost)− ccost (n̄a + 1) + fpayoff

≤ bmax +

t=th∑
x=th+1

(n̄a + 1) · (p · CR · breward(x)− mcost)− ccost (n̄a + 1) + fpayoff.

The second line is by limited horizons: ccost is a non-decreasing function, so
ccost

(
n̄a + B

t

)
> ccost (n̄a + 1). The third line is by assumption p·CR·breward(x)−mcost <

0 for x > th, and taking t = th makes this term zero. Since there are no other terms with t, and
by assumption that there exists t > 0 such that uubbuy(·, t) ≥ 0, this means uubbuy(·, t) ≥ 0 for some
t ≥ th.

For (2), We bound t̄ first, then B̄ < t̄ (Tub − n̄a) follows from condition t < B
Tub−n̄a

. By

limited horizons, there is a constant (in the security parameter) δ > 0 such that for all x ≥ th+1,
mcost− p · CR · breward(x) > δ. Thus,

t̄ := arg max
t>0

(
uubbuy(·, t) ≥ 0

)
≤ arg max

t>0

(
bmax + fpayoff− δ · (n̄a + 1)(t− th − 1)− ccost(n̄a + 1) ≥ 0

)
=
(
bmax + fpayoff + δ · (n̄a + 1)(th + 1)− ccost(n̄a + 1)

)/(
δ · (n̄a + 1)

)
.

The second line is from minimizing the term ccost(n̄a + B/t) as ccost(n̄a + 1) (by lim-
ited horizons, ccost is a non-decreasing function) and minimizing

∑t
x=th+1(n̄a + 1) · (p · CR ·

breward(x)−mcost) = −
∑t

x=th+1(n̄a+1)·(mcost−p·CR·breward(x)) as−δ·(n̄a+1)(t−th−1)
(given what we showed in (1), we have t ≥ th). The third line is positive since we showed there
is a t > th such that uubbuy(·, t) > 0.

5.5.2.1 Concrete examples of B̄, t̄.

We give example estimate values of t̄, which we recall is the upper bound on the period of time
where the attacker is incentivized to spend budget. These values are obtained using the equation
from proof of Lemma 20, and from them B̄ can be computed easily as B̄ = t̄ · (Tub − n̄a).

In more detail: In the case there is no t such that uubbuy(·, t) ≥ 0 (resp. uubrent(·, t) ≥ 0) ; i.e.,
it is not profitable to perform a 51% attack at all), we display t̄ = 0. We use Tlb · (1− ε) ≈ 1 to
compute parameter n̄a, which requires an attacker to corrupt at least ∼ 50% of the total hashing
power. For simplicity we assume that the total hashing power is relatively stable during the period
of attack, and thus we set Tlb = Tub. We refer to Sec. 5.6 for details on the other parameters
used (e.g., electricity costs, cost per mining rig, block rewards, etc.), which are estimates from
Ethereum Classic at the time of writing (Feb. 2021).
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th (days) t̄ (days)
0.33 5.9
0.66 6.3

1 6.6
2 7.7
3 8.7
6 11.9
9 15.1

Table 5.1: t̄ varying over anticipated profitable
mining time th, price/rented rig 0.00023/unit
of hashing power (= 435MH), which is
$179,592 per day.

rcost (USD) t̄ (days) Cost/day (USD)
$0.0001 24.0 $78,084
$0.0002 10.5 $156,167
$0.0003 4.3 $234,251
$0.0004 3.2 $312,334
$0.0005 2.6 $390,418
$0.0006 2.1 $468,501

Table 5.2: Estimated t̄ and cost of attack per
day, varying over price per rented mining rigs
per second. If passive-mining is profitable at
all, we set th = 3 days, and otherwise th = 0
by default.

In the case of bought mining rigs, we see that t̄ = 0 for th ≤ 89 days (recall that th is the
length of time an attacker expects passive-mining to be profitable). Then, we estimate t̄ = 96
days if th = 90 days, and t̄ = 196 days if th = 100 days. However, the estimated cost to buy a
majority of mining rigs can be in the order of tens of millions in USD (using our estimated per-rig
cost, around $27 million). This high cost of attack, coupled with the difficulty of purchasing and
maintaining such a large number of rigs, may suggest why a 51% attacker might be incentivized
to rent mining rigs instead.

In the case of rented mining rigs, we see that the estimated cost of attack becomes more
reasonable. Below, we show estimated values of t̄, varying both over th (Table 5.1) and the price
of renting rcost (Table 5.2, Fig. 5.4). In particular, we see that for a realistic renting price of
$0.00045/unit of hashing power, the estimated t̄ is around 3 days—on par with the 2-day interval
of attack on Ethereum Classic, which we base our numbers on, in August, 2020.

Finally, we can make a general statement about the attack payoff security of protocol ΠB

for any utility function satisfying limited horizons. Informally: our utility function limits how
much budget B (spent over how many rounds t) any incentive-driven attacker could reasonably
have. Then, if the the window size is large enough to accommodate the largest of such budgets,
the protocol is attack-payoff secure. In the following, uubbuy(B, t), ul

honest, and W (B, t) are from
Lem. 19, Lem. 16, and Lem. 18 respectively. The equivalent statement for utility function urent
can be obtained by using the corollaries of the results above for the case of renting.

Theorem 17. Let Tub, Tlb > 0 be the upper and lower bounds on total number of mining
queries per round and p ∈ (0, 1) be the probability of success of each mining query and let

` = ω(log(κ)). Then, ΠB with consistency parameter cutOff is attack-payoff secure in any model
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Figure 5.4: Graph representation of Table 5.2.

M, whose induced utility ubuy satisfies limited horizons, whenever the condition holds that

cutOff > ` + max
(B,t):uubbuy(B,t)>u

l
honest

W (B, t, `).

The same statement is true replacing ubuy with urent and uubbuy with uubrent.

Proof. We prove for ubuy and uubbuy, and the renting case follows. We showed that for any (B, t)
there is an upper bound uubbuy(B, t) on the utility of any adversary who spends at least budget
B over exactly t rounds (Lemma 19). From Lemma 16, we obtain a lower bound on the utility
ul

honest of an optimal passive adversary. Since ul
honest ≥ 0, by Lemma 20 the maximum in the

theorem statement exists.
Then, we eliminate any incentive for adversaries to fork by letting cutOff > ` +

max(B,t):uubbuy(B,t)>u
l
honest

W (B, t, `), since no adversary can create a fork of more than ` blocks

except within a period of R(B, t, `) rounds (Lemma 18), without his utility being lower than an
passive adversary’s. We achieve consistency by using the consistency parameter of W (B, t, `)
blocks, the number of blocks created within this period of rounds. Liveness (that is, chain growth
and chain quality ensured by the ledger) follows from [14]. Now the only parameters affecting our
adversary’s utility are the block rewards, corruption costs, and mining costs, as we have eliminated
forks. Again we work in the FStX hybrid which abstracts mining for blocks as an ideal lottery.
The cost of playing such a lottery is mcost and the reward for winning the lottery and inserting
the block into the ledger at round r is breward(r) · CR. Importantly, one cannot get this block
reward twice, as attacks that cause forks have been eliminated. In this case, all payoff-inducing
events made by the adversary in the real world can be matched by an adversary who invokes
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an equivalent event in the dummy world with the same payoffs (corruption, mining, and block
reward). This implies attack-payoff security.

We remark the protocol is not strong attack-payoff secure: Recall a front-running adversary
always maximally delays honest parties’ messages. Intuitively, this reduces the mining power in
the system, which delays the time between a block is broadcasted, and when it becomes part of
the ledger. In effect, this reduces the payoff for block rewards for utilities with limited horizons.

5.6 Concrete values used in graphs

We discuss the parameters used in the figures. Utility is computed in US dollars (USD). While
our results are stated for the Bitcoin protocol, our analyses are in fact quite general, and work
for Nakamoto-style PoW blockchains such as Ethereum (Classic) among others. Our graphs use
numbers for the popular currency Ethereum Classic, as it has been the victim of several major
51% double-spending attacks whereas Bitcoin was not. For the numbers to be more accurate,
we use recent (as of writing, Feb. 2021) data.

Let time be measured in seconds and fiat currency be measured in USD for simplicity. Even
basic mining rigs can make millions of hashes per second, thus we model each party/mining rig
as capable of 435MH/s (mega hashes per second), the approximate hashing power of a rig with
eight AMD RX 5700 XT graphic cards, which costs about $3000 and uses about 1300W. We use
a electricity cost of $0.13/kWh (average cost in the US) to compute the cost of mining with this
rig as mcost = $0.000047. From the Nicehash marketplace we obtain the cost to rent 435MH
(our basic unit of hashing power per party), which is about 1.96 BTC/TH/day (TH is terahash)
at the time of writing. Since the price of Bitcoin (BTC) fluctuates wildly, we consider two cases:
the “expensive” case, of $50,000 USD/BTC (rcost = $0.00045), and the “cheap” case, of
$22,000 USD/BTC (rcost = $0.00022). We consider utility functions with limited horizons;
here consider an attacker who is only incentivized to make blocks before some time t. Thus, we
set the payoff for making blocks as breward(x) = $54.4 (which is the block reward given price
of ETC at $17) if x < t and breward(x) = 0 otherwise. We set the payoff for double-spending
to $1 million, a relatively modest amount (e.g., the equivalent of 5.6 million dollars in Ethereum
Classic had been stolen from an exchange on August 1, 2020).

In our figures we will consider a maximum total hashing power in the system of 18091 mining
rigs (each with hashing power 435MH/s), which is the approximate current hashrate of Ethereum
Classic. The probability of mining success for one rig per second is p = 0.00000435, computed
via the current difficulty of the blockchain. We set network delay ∆ = 100ms and set window size
cutOff = 500 blocks using the deposit and withdrawal confirmation time of the OKEx exchange
for ETC (100 and 400 blocks respectively).
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5.7 Chapter summary and future work

In this chapter we analyze in the rational protocol design (RPD) framework the problem of 51%
double-spending attacks on Nakamoto-style proof-of-work blockchains. We identify an issue with
the utility function in the previous work, which we call “unbounded incentives”, and alter their
utility function to avoid this issue. This allows us to both model protocol/utility parameters where
attacking is incentivized, and parameters under which honest behavior is the preferred strategy.
The latter, which is a general statement about all rational poly-time attackers, is in particular a
demonstration of the power of RPD over other rational analyses. Since our work is in the simpler
model of fixed difficulty blockchains, an immediate open question is to expand our analyses to
variable difficulty. Lastly, an interesting future direction would be to consider other more complex
utility functions, such as those with additional time-dependent cost or reward parameters.
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Chapter 6

Conclusion

This thesis has shown how incentive-driven mechanisms can lead to theoretically interesting
caveats that can be resolved by analyzing the problem through an alternate framework or set of
underlying assumptions.

In Chapter 3, we saw the limitation of differential privacy (DP) when encountering deter-
ministic functions. We introduced exact distributional differential privacy (eDDP) as a new
framework for comparing the privacy of different voting rules. We created a new trails technique
for analyzing the eDDP of common voting rules, which revealed the encouraging message on the
good privacy of most voting rules, and a dichotomy theorem for the class of generalized scoring
rules (GSR).

In Chapter 4, we showed impossibility results on fairness and identifiable abort that stem from
the mediated model in collusion-preserving (CP) protocols. Moving away from the mediated
model and towards a more decentralized setting, we employed stateful hardware tokens and
authenticated broadcast as the basis of our new CP protocol. Matching the fallback security in
the mediated model under a corrupt mediator, we altered our CP protocol to provide similar
fallback security—and the previously impossible fairness and identifiable abort—when tokens are
compromised or when the adversary aborts. Finally, we created a simple penalization scheme
that forces misbehaving parties to pay a financial collateral, and proved this indeed deters
collusion in (a slightly modified version of) the rational protocol design (RPD) framework.

We continued our study of the RPD framework in Chapter 5. We extended the previous
work on RPD analysis of the Bitcoin backbone protocol to consider 51% attacks, where a
majority-power adversary breaks the consistency property of the blockchain, creates a fork, and
double-spends transactions. We pointed out the issue of unbounded incentives in the previous
work which led to the unrealistic conclusion that 51% attacks are never profitable, and modified
the underlying utility function of their analysis to rectify this issue. This results in both a model
that describes scenarios where adversaries are incentivized to attack, and a guide on how to
deter attacks by increasing waiting time for transactions.
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There are many more fascinating problems waiting to be discovered and addressed in the
areas discussed in this thesis. In fact, this thesis serves as a starting step towards the areas of
deterministic voting privacy, decentralized collusion-preserving computation, and rational protocol
design analysis blockchain incentives. Below, we suggest a few of such next steps.

• Extend the study of voting privacy to general (ε, δ), and non-i.i.d. distributions.

• Study the privacy of other high-stakes social choice procedures such as matching and
resource allocation.

• Study the privacy of publishing other election data, such as demographic information, and
interpret their consequences.

• Adapt our CP protocols and penalization schemes to cryptographic reverse firewalls [108].

• Extend the CF/CP model and protocol to incorporate side-channel attacks.

• Expand our 51% attacks analysis to blockchains with variable difficulty, incorporating results
from e.g., [44, 67].

• Model additional time-dependent cost or reward parameters in the blockchain utility func-
tion, such as incentives relating to transaction fees.
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Appendix A

Additional Background on the Ledger
Functionality (Section 2.5)

A.1 Clock

In Fig. A.1 we model the global clock, which is used to keep track of the current time/round.

The functionality Gclock is available to all participants. The functionality is parametrized
with variable t, a set of parties P ′, and a set F of functionalities. For each party p ∈ P ′
it manages variable dp. For each F ∈ F it manages variable dF

Initially, t := 0, P ′ := ∅ and F := ∅.
Synchronization:

• Upon receiving (clock-update, sidC) from some party p ∈ P ′ set dp := 1; execute
Round-Update and forward (clock-update, sidC , p) to A.

• Upon receiving (clock-update, sidC) from some functionality F ∈ F set dF := 1,
execute Round-Update and return (clock-update, sidC ,F) to F.

• Upon receiving (clock-read, sidC) from any participant (including the en-
vironment, the adversary, or any ideal—shared or local—functionality) return
(clock-read, sidC , t) to the requestor.

Procedure Round-Update:
If dF := 1 for all F ∈ F and dp = 1 for all honest p in P ′, then set t := t + 1 and reset
dF := 0 and dp := 0 for all parties in P ′.

Figure A.1: The functionality Gclock
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A.2 Multicast

In Fig. A.2 we describe the multicast functionality with network delay ∆.

A.3 Ledger functionality

In Fig. A.3, we describe the ledger functionality Gledger from [17].

A.4 Weak ledger functionality

In Fig. A.5, we formally describe this weaker Bitcoin ledger functionality GB
weak-ledger from [15].
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The functionality F∆
N-MC is parametrized with a set possible senders and receivers P . Any

newly registered (resp. deregistered) party is added to (resp. deleted from) P .
• Honest sender multicast:

Upon receiving a message (multicast, sid,m) from some ps ∈ P, where P =
{p1, . . . , pn} denotes the current party set, choose n new unique message-IDs
mid1, . . . ,midn, initialize 2n new variables Dmid1 := DMAX

mid1
. . . := Dmidn :=

DMAX
midn

:= 1, set ~M := ~M ||(m,mid1, Dmid1 , p1)|| . . . ||(m,midn, Dmidn , pn), and send
(multicast, sid,m, ps, (p1,mid1), . . . , (pn,midn)) to the adversary.

• Adversarial sender (partial) multicast:
Upon receiving a message (multicast, sid, (mi1 , pi1), . . . , (mi` , pi`) from the adver-
sary with {pi1 , . . . , pi`} ⊆ P, choose ` new unique message-IDs midi1 , . . . ,midi` ,
initialize ` new variables Dmidi1

:= DMAX
midi1

:= . . . := Dmidi`
:= DMAX

midi`
:=

1, set ~M := ~M ||(mi1 ,midi1 , Dmidi1
, pi1)|| . . . ||(mi` ,midi` , Dmidi`

, p`), and send
((multicast, sid, (mi1 , pi1 ,midi1), . . . , (mi` , pi` ,midi`) to the adversary.

• Honest party fetching:
Upon receiving a message (fetch, sid) from pi ∈ P (or from A on behalf of pi if pi is
corrupted):

1. For all tuples (m,mid, Dmid, pi) ∈ ~M , set Dmid := Dmid − 1.
2. Let ~Mpi

0 denote the subvector ~M including all tuples of the form (m,mid, Dmid, pi)

with Dmid = 0 (in the same order as they appear in ~M). Delete all entries in ~Mpi
0

from ~M , and send ~Mpi
0 to pi.

• Adding adversarial delays:
Upon receiving a message (delays, sid, (Tmidi1

,midi1), . . . , (Tmidi`
,midi`)) do the follow-

ing for each pair (Tmidij
,midij ) in this message:

If DMAX
midij

+ Tmidij
≤ ∆ and mid is a message-ID registered in the current ~M , set

Dmidij
:= Dmidij

+ Tmidij
and set DMAX

midij
:= DMAX

midij
+ Tmidij

; otherwise, ignore this

pair.

• Adversarially reordering messages:
Upon receiving a message (swap, sid,mid,mid′) from the adversary, if mid and mid′ are
message-IDs registered in the current ~M , then swap the triples (m,mid, Dmid, ·) and
(m,mid′, Dmid′ , ·) in ~M . Return (swap, sid) to the adversary.

Figure A.2: The functionality F∆
N-MC
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The functionality manages variables state, NxtBC, buffer, τL, and ~τstate, as described
above. The variables are initialized as follows: state := ~τstate := NxtBC := ε, buffer := ∅,
τL = 1. The functionality maintains the set of registered parties P , the (sub-)set of
honest parties H ⊆ P , and the (sub-set) of de-synchronized honest parties PDS ⊂ H.
The set P ,H,PDS are all initially set to ∅. When a new honest party is registered,
it is added to all PDS (hence also to H and P) and the current time of registration
is also recorded; similarly, when a party is deregistered, it is removed from both P and PDS.

For each party pi ∈ P the functionality maintains a pointer pti (initially set to 1) and a
current-state view statei := ε (initially set to empty). The functionality also keeps track

of the timed honest-input sequence in a vector ~ITH (initially ~ITH := ε).

Upon receiving any input I from any party or from the adversary, send
(clock-read, sidC) to Gclock and upon receiving response (clock-read, sidC , t) set
τL := t and do the following:

1. If I was received by an honest party pi ∈ P :

(a) Set ~ITH := ~ITH ||(I, pi, τL);

(b) Compute ~N = ( ~N1, . . . , ~N`) := ExtendPolicy(~ITH , state, NxtBC, buffer, ~τstate)

and if ~N 6= ε set state := state||Blockify( ~N1)|| . . . ||Blockify( ~N`) and
~τstate := ~τstate||τ `L, where τ `L = τL|| . . . , ||τL.

(c) ∀ BTX ∈ buffer: if Validate(BTX, state, buffer) = 0 then delete BTX from buffer.

(d) If there exists j ∈ [`] with pij ∈ H \ PDS : |state| − p̂ti ≤ windowSize or

p̂tij ≥ |stateij |, then for every j ∈ [`] set pti := |state|−|~N| for every pi ∈ P .

2. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that were registered
at time τ ′ ≤ τL − Delay. Set PDS := PDS \ P̂ .

3. Depending on the above input I and its sender’s ID, Gledger executes the corre-
sponding code from the following list:

– Submiting a transaction: If I = (submit, sid, x) and is received from a party
pi ∈ P or from A (on behalf of a corrupted party pi) do the following

(a) Choose a unique transaction ID txid and set BTX := (x, txid, τL, pi)

(b) If Validate(BTX, state, buffer) = 1, then buffer := buffer ∪ {BTX}.
(c) Send (submit, BTX) to A.

Figure A.3: The functionality Gledger (Part 1)
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(Continued from description of Gledger, Part 1)
Upon receiving any input I from any party or from the adversary, send
(clock-read, sidC) to Gclock and upon receiving response (clock-read, sidC , t) set
τL := t and do the following:

3. Depending on the above input I and its sender’s ID, Gledger executes the corre-
sponding code from the following list:

– Reading the state: If I = (read, sid) is received from a party pi ∈ P then set
statei := state|min{pti,|state|} and return (read, sid, statei) to the requestor. If

the requestor is A then send (state, buffer, ~ITH) to A.

– Updating the state: If I = (maintain-ledger, sid,minerID) is received by an

honest party pi ∈ P and (after updating ~ITH as above) predict-time(~ITH) =
τ̂ > τL then send (clock-update, sidC) to Gclock. Else send I to A.

– The adversary proposing the next block:
If I = (next-block, (txid1, . . . , txid`)) is sent from the adversary, update
NxtBC as follows:

(a) Set NxtBC := ε.

(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid,minerID, τL, pi) ∈
buffer with ID txid = txidi then set NxtBC := NxtBC||txidi.

(c) Output (next-block, ok) to A.

– The adversary setting state-slackness:
If I = (set-slack, (pi1 , p̂ti1), . . . , (pi` , p̂ti`)), with {pi1 , . . . , pi`} ⊆ H \ PDS
is received from the adversary A do the following:

(a) If for all j ∈ [`] : |state| − p̂tij ≤ windowSize and p̂tij ≥ |stateij |, set

pti1 := p̂ti1 for every j ∈ [`] and return (set-slack, ok) to A.

(b) Otherwise set ptij := |state| for all j ∈ [`].

– The adversary setting the state for desychronized parties:
If I = (desync-state, (pi1 , state′i1), . . . , (pi` , state′i`)), with {pi1 , . . . , pi`} ⊆
PDS is received from the adversary A, set stateij := state′ij for each j ∈ [`]
and return (desync-state, ok) to A.

Figure A.4: The functionality Gledger (Part 2)
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The functionality GB
weak-ledger manages variables state-tree, NxtBC, buffer, and τL,

where state-tree is a tree of state blocks. The variables are initialized as follows:
state-tree = gen, NxtBC := ε, buffer := ∅, τL = 0. For each party pi ∈ P the
functionality maintains a pointer pti (initially set to the root of state-tree) which defines
the current-state view statei of pi. The functionality also keeps track of the timed honest-
input sequence in a vector ~ITH (initially ~ITH := ε).

Party Management: The functionality maintains the set of registered parties P , the
(sub-)set of honest parties H ⊆ P , and the (sub-set) of de-synchronized honest parties
PDS ⊂ H (following the definition of de-synchronized of [17]). The sets P ,H,PDS are
all initially set to ∅. When a new honest party is registered, if it is registered with the
clock then it is added to the party sets H and P and the current time of registration is
also recorded; if the current time is τL > 0, it is also added to PDS. Similarly, when
a party is deregistered, it is removed from both P (and therefore also from PDS or H).
The ledger maintains the invariant that it is registered (as a functionality) to the clock
whenever H 6= ∅. A party is considered fully registered if it is registered with the ledger
and the clock.

Upon receiving any input I from any party or from the adversary, send
(clock-read, sidC) to Gclock and upon receiving response (clock-read, sidC , t) set
τL := t and do the following:

1. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been
registered (continuously) since time τ ′ < τL − Delay (to both ledger and clock).
Set PDS := PDS \ P̂ . On the other hand, for any synchronized party p ∈ H \ PDS,
if p is not registered to the clock, then PDS ∪ {p}.

2. If I was received from an honest party pi ∈ P :

(a) Set ~ITH := ~ITH ||(I, pi, τL);

(b) Evaluate ~R= (( ~Npt1
, pt1, . . . , (

~Nptk
, ptk)) :=

weakExtendPolicy(~ITH , state-tree, NxtBC, buffer)

(c) For each pointer pti such that ~Npti
6= ε add path

Blockify( ~Npti,1
), . . . ,Blockify( ~Npti,`

) to state-tree starting at node
pti.

(d) Reset NxtBC := ε.

Figure A.5: The weak Bitcoin ledger functionality (Part 1)
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(Continued from description of GB
weak-ledger, Part 1)

Upon receiving any input I from any party or from the adversary, send
(clock-read, sidC) to Gclock and upon receiving response (clock-read, sidC , t) set
τL := t and do the following:

3. Depending on the above input I and its sender’s ID, GB
weak-ledger executes the

corresponding code from the following list:

– Submiting a transaction:
If I = (submit, sid, tx) and is received from a party pi ∈ P or from A (on
behalf of a corrupted party pi) do the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL, pi)

(b) Set buffer := buffer ∪ {BTX} and send (submit, BTX) to A.

– Reading the state:
If I = (read, sid) is received from a fully registered party pi ∈ P re-
turn (read, sid, statei) to the requestor. If the requestor is A then send

(state-tree, buffer, ~ITH) to A.

– Maintaining the ledger state:
If I = (maintain-ledger, sid,minerID) is received by an honest party pi ∈ P
and (after updating ~ITH as above) predict-time(~ITH) = τ̂ > τL then send
(clock-update, sidC) to Gclock. Else send I to A.

– The adversary proposing the next block:
If I = (next-block, pt, hFlag, (txid1, . . . , txid`)) is sent from the adver-
sary, update NxtBC as follows:

(a) Check that pt points to a leaf of state-tree and set listOfTxid ← ε
(otherwise, ignore command)

(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid,minerID, τL, pi) ∈
buffer with ID txid = txidi then set listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC[pt] := NxtBC[pt]||(hFlag, listOfTxid) and output
(next-block, ok) to A.

Figure A.6: The weak Bitcoin ledger functionality (Part 2)
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(Continued from description of GB
weak-ledger, Part 2)

Upon receiving any input I from any party or from the adversary, send
(clock-read, sidC) to Gclock and upon receiving response (clock-read, sidC , t) set
τL := t and do the following:

3. Depending on the above input I and its sender’s ID, GB
weak-ledger executes the

corresponding code from the following list:

– The adversary proposing a fork:
If I = (fork, pt, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC
as follows:

(a) Set listOfTxid← ε
(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid,minerID, τL, pi) ∈

buffer with ID txid = txidi then set listOfTxid := listOfTxid||txidi.
(c) Finally, set NxtBC[pt] := NxtBC[pt]||(0, listOfTxid) and output

(fork, ok) to A.

– The adversary setting state-slackness:
If I = (set-pointer, (pi1 , p̂ti1), . . . , (pi` , p̂ti`)), with {pi1 , . . . , pi`} ⊆ H \
PDS is received from the adversary A do the following:

(a) If for all j ∈ [`] : p̂tij has greater distance than ptij from the root

state-tree, setptij := p̂tij for every j ∈ [`] and return (set-slack, ok)
to A.

(b) Otherwise set ptij to the leaf with greatest distance from the root of
state-tree.

– The adversary setting the state for desychronized parties:
If I = (desync-state, (pi1 , state′i1), . . . , (pi` , state′i`)), with {pi1 , . . . , pi`} ⊆
PDS is received from the adversary A, set stateij := state′ij for each j ∈ [`]
and return (desync-state, ok) to A.

Figure A.7: The weak Bitcoin ledger functionality (Part 3)

164


	Introduction
	Preliminaries
	Notation
	General cryptography concepts

	Privacy
	Differential privacy
	Distributional differential privacy

	Voting
	Generalized scoring rules

	Cryptographic security in the universal composition (UC) framework
	Security in the UC model

	The Bitcoin backbone protocol
	Formal description of Bitcoin in UC

	Cryptography and game theory
	Implementing games without collusion
	Rational protocol design (RPD)
	Rational treatment of the Bitcoin backbone protocol in RPD


	Privacy of Deterministic Voting Rules
	Introduction
	Overview of our contributions
	Related works
	Summary of contributions

	Distributional differential privacy for voting
	Privacy of the histogram function

	The exact privacy of voting rules: two candidates
	Our tool to analyze privacy: trails technique
	A simple application of trails technique: -Biased Majority Rule

	The exact privacy of voting rules: general case
	The exact DDP of the histogram function
	The exact DDP of GSRs
	Exact privacy: GSR examples

	Concrete estimation of privacy parameters
	Chapter summary and future work

	Collusion-Free Games
	Introduction
	Overview of our contributions
	Related works
	Overview of our techniques

	Collusion-preserving (CP) MPC with non-aborting adversaries
	(Publicly) Identifiable abort
	Note on implementing THT with real hardware tokens
	Fallback solution when tokens can be compromised

	Collusion-preserving MPC for rational adversaries
	Motivation for using penalization to disincentivize aborts
	RPD-CP: Tuning RPD to the CP setting
	HT and HT-FBS with incentives

	Realizing the incentives
	Open question: an alternative penalization functionality
	Protocol penalize for penalization

	Hardware tokens and broadcast vs. mediators
	Impossibility results in the mediated model

	Chapter summary and future work

	Blockchain Consistency Against Rational Attackers
	Introduction
	Related works
	Overview of our contributions

	Artifacts of unbounded incentives
	Demonstrating the artifact
	A first attempt to eliminate the artifact
	The source of the artifact: unbounded incentives

	A RPD analysis of forks
	Addressing technical issue of non-constant payoff for block rewards
	Optimal utility of front-running, passive adversaries

	Analyzing 51% attacks
	Time to fork
	Payoff of 51% double-spending attacks
	Visualizations with concrete values

	Mitigating 51% attacks
	Budget to vulnerability period
	Attack-payoff security

	Concrete values used in graphs
	Chapter summary and future work

	Conclusion
	Additional Background on the Ledger Functionality (Section 2.5)
	Clock
	Multicast
	Ledger functionality
	Weak ledger functionality


