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Abstract

Mechanical systems with dry friction are typical Filippov systems. Such class of systems
have complicated dynamical behaviors due to the existence of sliding motion. In this work,
we consider a one-degree-of-freedom oscillator with dry friction force. The phase map is
derived to reduce the system to a circle map, and then the existence of forward invariant
torus is proved under suitable assumptions. Moreover, the typical resonance phenomenon
and the grazing bifurcation of invariant torus are discussed. We find that the destruction
of invariant tori is due to a loss of transversality for sufficiently large perturbation, which
is different from the usual smooth tori dynamics.
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1. Introduction

The mechanical systems with dry friction are typical Filippov systems [1, 2], which have
many important realistic applications in the field of engineering, such as drill strings, rotor
models, railway wheels and so on. Moreover, the dynamical behaviors of such systems are
quite different from the smooth ones, see, for example [2–8]. Hence, the study of systems
with dry friction has gained considerable ground in recent years due to the theoretical and
applications interests.

One of the main characters of Filippov systems is that the orbits can slide along the
separatrix surface of the piecewise smooth vector field. This fact introduces the non-
smoothness of dynamics for Filippov systems. The real dimensions of such systems are
also decreased due to the existence of sliding motion. For example, it is known that one of
the Floquet multipliers of a sliding periodic orbit is zero, see [9]. When the sliding motion
is involved, we can reduce the dimensions of Filioppov systems by two by taking suitable
Poincaré sections. The Poincaré map, called phase map (see Section 2 for the definition),
which is a circle map first introduced in [10] for the oscillator with dry friction. Using the
phase map, the calculation of Lyapunov exponents for dry friction system is discussed in
[10]. Kunze and Küpper [3] studied the non-smooth bifurcations for a dry friction system
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through the phase map, and some resonance phenomena were shown by computing the
rotation number of the phase map. Galvanetto [11] discussed the numerical algorithm for
the stable set of an attractive sliding periodic orbit based on the phase map. If the degree
of freedom of the system is larger than one, the reduction of dimension can be larger than
two. For example, Galvanetto and Knudsen [12] considered two-degree-freedom systems
with dry friction and one dimension maps were derived at the intersection of separatrix
surfaces of vector fields.

Since most of the known results are numerical, we consider, in this work, a dimension
reduction method analytically for an oscillator with dry friction. Under suitable conditions,
we show that the phase map is well defined and is a small perturbation of a rotation on the
circle. So it is natural to ask whether there exists invariant torus for the original system.
For smooth systems, one usually consider the existence of invariant tori under some smooth
angular structure in the phase space, such as the neighborhoods of periodic orbits, or the
neighborhoods of elliptic fixed points and tori, see [13–16] and references therein. Since the
system in this work is non-smooth, the traditional methods cannot be applied. So some
new methods are introduced to overcome this difficulty. Due to the piecewise smoothness
property of the vector field, we glue the surfaces generated by smooth vector fields to
show the existence of invariant torus (called the sliding invariant torus). The intersection
of such torus with the separatrix surface is a cylinder. In addition, since only positive flow
is well defined for sliding orbits, we need to verify the forward invariance of the torus. We
also explain the relationship between the the flow on the sliding invariant torus and the
dynamics of the phase map by the KAM theory on circle maps.

The existence of grazing motion is based on the complexity of the piecewise smooth
systems. The bifurcations of grazing periodic orbits are well studied for impact systems
and Filippov systems [17–21]. The grazing bifurcations of invariant tori for impact systems
are studied in [22, 23]. In this paper, we discuss the grazing bifurcation of invariant tori and
its destruction for the Filippov systems. For smooth systems, the destruction of invariant
tori are usually due to too large perturbations, which make the tori to lose smoothness and
lead to their destructions, see [24, 25]. The case is different for the Filippov system in this
work. The invariant torus first lose the transversality instead of smoothness due to large
perturbation. Some orbits in the invariant torus tend to grazing ones when the parameter
is varied. It turns out that the torus breaks down but there still exists an invariant surface.
Such phenomenon is the so called grazing-sliding bifurcation of invariant torus, which is
similar to the grazing-sliding bifurcation of periodic orbit [20].

The remaining of this paper is organised as follows. In Section 2, we introduce the
model and give the definition of the phase map. The main theorems of this work and
illustrations of the phase map are also given. We discuss the resonance phenomenon and
present the grazing-sliding bifurcation of invariant torus numerically in Section 3. The
proofs of the theorems of Section 2 are presented in Section 4. The relationship between
the flow on invariant torus and the dynamics of phase map are discussed in Section 5. We
draw the conclusions and discuss some extensions in Section 6.

2. The oscillator with dry friction and the phase map

We consider the following equations that describe the mechanical system shown in
Figure 1:

ẋ =y,

ẏ =− cy − kx+ F (y − vs) + ϵf(t),
(1)
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where (x, y) ∈ R2, k, c > 0 are constants, f is a Cr (r ≥ 1) periodic function with period

Figure 1: The mechanical model of dry friction oscillator.

T > 0, ϵ is a small constant and vs > 0 is the velocity of belt. The friction function
F : R \ {0} → R is defined as

F (x) = −A Sign(x)(
α

1 + γ|x|
+ λ+ ηx2),

where α, γ, λ, η,A > 0 are constants. Let

±F0 = lim
x→0∓

F (x) = ±A(α+ λ).

See Figure 2 for an illustration of F (the parameter values are given at the end of this
section), and see [26] and reference therein for the physical meaning of the parameters in
the formula of F .
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Figure 2: The dry friction function F .

Firstly we extend the equation (1) on the extended phase space R2 × S1:

ẋ =y,

ẏ =− cy − kx+ F (y − vs) + ϵf(θ),

θ̇ =1,

(2)

where S1 is the circle with period T . Set X = (x, y, θ). Since vs is a fixed constant, we
identify X̄ = (x, θ) and (x, vs, θ) in the remaining of this paper. Let

H(X) = y − vs
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The surface {X : H = 0} is called the sliding surface on the extended phase space. The
vector field on the sliding surface {X : y = vs} is

ẋ =vs

θ̇ =1.
(3)

Let
M(X) = −kx− cvs + F0 + ϵf(θ).

Note that {X̄ : M = 0} is the curve on the sliding surface, which describes the condition
that the orbit can exit the sliding surface and get into the region {X : H < 0}. Since
M = 0, it implies that

x =
1

k
(−cvs + F0 + ϵf(θ)),

and {X̄ : M = 0} is a graph of a function from S1 to R. It follows that {X̄ : M =
0} is homeomorphic to S1 and we can choose θ as its global coordinate. Denote {X̄ :
M(x, θ, ϵ) = 0} by Sϵ. Choose θ as the global coordinate of Sϵ in the remaining of the
paper. We define the Poincaré map (called the phase map)

Rϵ : Sϵ → Sϵ

which is the usual first return map of the flow in the extended phase space. Roughly
speaking, the orbits of the phase map are the time revolution of the orbits exiting the
sliding surface and getting into the region {X : H < 0}.

In general, the phase map Rϵ may be discontinuous or even be not defined. We
restrict ourselves to some relevant cases. A periodic solution of (1) is called a sliding
periodic solution if it intersects {(x, y) : y = vs} with at least a line segment. We need the
following assumptions:

H. There exists a sliding periodic orbit of (1) on {(x, y) : y − vs ≤ 0} when ϵ = 0, and
the following transversality condition holds:

0 < −cvs − kx1 + F0 < 2F0, (4)

where x1 is the position coordinate at where the periodic orbit enters into sliding surface.

The assumption H holds for the usual parameter values of (1), see the end of this
section. The condition (4) is to insure that the orbit can get into the sliding surface
from the region {X : H < 0} transversally and it will not pass through it. When the
system is unperturbed, the phase map turns out to be a rigid rotation on a circle under
the assumption H. For small ϵ, we will prove that the phase map is a smooth circle
homeomorphism perturbed by a rigid rotation.

Here we list some notations that will be used in what follows. Denote ϕ(t,X, ϵ) by the
solution of the vector field on {X : H < 0} with initial conditions

x(0) = x, y(0) = y, θ(0) = θ.

Denote ϕs(t, X̄) by the solution of the vector field on the sliding surface with initial
conditions

x(0) = x, θ(0) = θ.
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Let h : S1 × R → R2 × S1 be defined as

h(θ, ϵ) = (
1

k
(−cvs + F0 + ϵf(θ)), vs, θ).

Note that {h(θ, ϵ) : θ ∈ S1} = Sϵ, and an orbit leaving from the sliding surface to the
region {X : H < 0} satisfies

(x̄, vs, θ) = h(θ, ϵ),

where (x̄, vs, θ) is the state such that orbit exits sliding surface.
Under assumption H, let t1(θ, ϵ) be the time such that the orbit first enters into the

sliding surface, i.e.,

ϕ(t(1)(θ, ϵ), h(θ, ϵ), ϵ) = (x(1)(θ, ϵ), vs, θ + t(1)(θ, ϵ)).

And there exists the unique time t(2)(θ, ϵ) such that

ϕs(t
(2)(θ, ϵ), x(1)(θ, ϵ), θ + t(1)(θ, ϵ)) ∈ Sϵ,

See Figure 3 for the meaning of notations and Section 4 for the existence of t(1)(θ, ϵ) and

Figure 3: The main notations.

t(2)(θ, ϵ). Define the following sets:

T(1)
ϵ :=

∪
θ∈S1

∪
τ∈[0,t(1)(θ,ϵ)]

ϕ(τ, h(θ, ϵ), ϵ),

T(2)
ϵ :=

∪
θ∈S1

∪
τ∈[0,t(2)(θ,ϵ)]

ϕs(τ, x
(1)(θ, ϵ), θ + t(1)(θ, ϵ)),

Tϵ :=T(1)
ϵ ∪ T(2)

ϵ .

The following theorems are the main theoretical results of our work.
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Theorem 2.1. Under assumption H, there exists ϵ0 > 0 such that Rϵ is well defined when
|ϵ| < ϵ0. Moreover, we have

Rϵ(θ) = θ + T0 + ϵg(θ) + o(ϵ), (mod T ), (5)

where T0 is the period of the unperturbed periodic orbit and g is a Cr−1 function with
periodic T .

Theorem 2.2. Under assumption H, let O be the sliding periodic orbit of unperturbed
system (1) on the plane (x, y). Tϵ is homeomorphic to the topological torus T0 = O × S1

when |ϵ| is sufficiently small. Moreover, Tϵ tends to T0 as ϵ tends to zero.

See Section 4 for the proofs.
In the remaining of this section we give some numerical illustrations about the phase

map. The following parameters are taken from [11], and are fixed throughout this paper:

k = 1, c = 0.2, vs = 1,

A = 10, α = 0.3, γ = 3, λ = 0.1, η = 0.01.

Figure 4 shows that the system (1) has a sliding periodic solution when ϵ = 0.

1 2 3 4
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Figure 4: The sliding periodic orbit of equation (1) when ϵ = 0.

When M(x, θ, 0) = 0, x is a constant independent of θ. Now we have R0(θ) = θ +
T0(mod T ), where T0 is the period of the sliding periodic solution. Take f(t) = cos(ωt)
and ω = 1.067. The phase maps for ϵ = 0 and ϵ = 0.2 in the extended phase space are
illustrated in Figure 5. We plot the graph of Rϵ numerically in Figure 6.

3. Typical resonance phenomena and the destruction of invariant torus

By the formula (5) in Theorem 2.1, the phase map is expected to show typical resonance
phenomena such as the devil staircase when the frequencies of f changes. We verify this
fact by numerical simulation.

Let f(t) = cos(ωt). The phase map is defined on the circle Sϵ with period 2π/ω.
To fix the parametrization of Sϵ, we rescale the phase map by defining the following
transformation:

R̄ϵ,ω(θ) = ωRϵ(
θ

ω
).
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(a) ϵ = 0 (b) ϵ = 0.2

Figure 5: The phase map in the extended phase space for (a) ϵ = 0 and (b) ϵ = 0.2.

Figure 6: Graph of Rϵ for ϵ = 0.2.

Hence, R̄ϵ,ω is defined on the circle with period 2π. Let ϵ = 0.35 be fixed. Denote the
rotation number of R̄ϵ,ω by ρ(ω). The graph of ρ for ω ∈ [2, 2.8] is shown in Figure 7,
which shows typical resonance phenomena.

According to Theorem 2.2, there exists an invariant torus when |ϵ| is small. The
destruction of invariant torus in here is different from the usual smooth tori. For sufficiently
large ϵ, the invariant torus first lose transversality instead of losing smoothness. Some
orbits starting at h(θ, ϵ) still intersect the sliding surface transversally. While some orbits
take more time in the region {X : H < 0} but they still get into the sliding surface
eventually. Moreover, there exist grazing orbits such that they and the sliding surface are
tangent at Sϵ, and the phase map turns out to be discontinuous. In such a case, we can still
define a positive invariant surface, though it is not homeomorphic to a torus in general. It
is expected that such invariant surface is still preserved under small perturbations since
both the grazing orbits and the regular orbits usually do not disappear.

Let ϵ be the control parameter and let f = cos(ωt), where ω = 1.067 is fixed in the
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Figure 7: The rotation numbers ρ(ω) for ϵ = 0.35 and ω ∈ [2, 2.8].

following numerical studies. When 0 ≤ ϵ ≤ 0.5, the phase map is a homeomorphism
(see Figure 8). The invariant torus in cylindrical coordinates is shown in Figure 9, where
X1 = (x+ 2) cos(ωθ), Y1 = (x+ 2) sin(ωθ), Z1 = y.

The bifurcation portrait of the phase map is presented in Figure 10. It can be seen that
with ϵ ≈ 0.514, the torus breaks down and the portrait is interwoven with attractive pe-
riodic orbits and complicated invariant sets. When ϵ ∈ [0.57, 0.585], the period-doublings
and period-halvings from a 4-periodic orbit to 8-periodic orbit and back occur, compared
to [3].

To show the grazing effect for the invariant torus as ϵ varies, it is convenient to plot
the set {(x(1)(θ, ϵ), vs, θ+ t(1)(θ, ϵ)) : θ ∈ S1}, i.e., the points that the orbits first arrive at
{X : H(X) = 0}, starting from h(θ, ϵ), see Section 2 for the notations. It is shown that
{(x(1)(θ, ϵ), vs, θ+ t(1)(θ, ϵ)) : θ ∈ S1} is a smooth curve, being a graph of S1 (see the proof
of Lemma 4.3) under the graph of h(θ, ϵ) when ϵ is small. When ϵ = 0.51403518, the set
is not a graph of S1 any longer and there is a cusp on Sϵ which is corresponding to the
grazing orbit (the orbit and the sliding surface are tangent at Sϵ), see Figure 11 (a). When
ϵ = 0.52, the set {(x(1)(θ, ϵ), vs, θ+ t(1)(θ, ϵ)) : θ ∈ S1} is not a continuous curve anymore,
see Figure 11 (b). The intersections of Sϵ and {(x(1)(θ, ϵ), vs, θ+t(1)(θ, ϵ)) : θ ∈ S1} are two
points that correspond to the grazing orbits and such intersections are preserved under
small perturbations. The torus is broken down but the phase map is still well defined
though it is not continuous anymore (see Figure 12). One of the grazing orbit is shown in
Figure 13.

4. Proofs of theorems in Section 2

With the notations in Section 2, now we prove Theorem 2.1.

Proof of Theorem 2.1. We choose the initial position h(θ, ϵ), which implies that the
orbit starts at Sϵ. Since the time it takes for the periodic orbit to arrive at the sliding
surface is independent of θ when ϵ = 0, there exists t1 > 0 such that H(ϕ(t1,

1
k (−cvs +

8



Figure 8: The graph of the map Rϵ for ϵ = 0.5.

Figure 9: Invariant torus in cylinder coordinate for ϵ = 0.2.
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Figure 10: Bifurcation diagram of the phase map for ϵ ∈ [0.48, 0.59].
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(a) ϵ = 0.51403518
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Figure 11: The sets {(x(1)(θ, ϵ), vs, θ + t(1)(θ, ϵ)) : θ ∈ S1} and Sϵ for (a) ϵ = 0.51403518 and (b) ϵ = 0.52.

Figure 12: The graph of Rϵ for ϵ = 0.52.
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Figure 13: The grazing orbit start from h(3.37317889, 0.52).

F0), vs, θ, 0)) = 0 for any θ ∈ S1, i.e.,

H(ϕ(t, h(θ, ϵ), ϵ))|ϵ=0,t=t1 = 0.

Moreover, by assumption H we have

∂

∂t
H(ϕ(t, h(θ, ϵ), ϵ))|ϵ=0,t=t1 =⟨∇H(ϕ(t1, h(θ, 0), 0)),

∂

∂t
ϕ(t1, h(θ, 0), 0)⟩

=− cvs − kx1 + F0 ̸= 0, ∀θ ∈ S1.

By the implicit function theorem, there exists a function t(1) : S1 × (−ϵ̃0, ϵ̃0) → R such
that

t(1)(θ, 0) = t1 and H(ϕ(t(1)(θ, ϵ), h(θ, ϵ), ϵ)) = 0

for (θ, ϵ) ∈ S1 × (−ϵ̃0, ϵ̃0).
The deviation of the perturbed orbits ϕ(t, h(θ, ϵ), ϵ) and the unperturbed orbits ϕ(t, h(θ, 0), 0)

at the times arrive at the sliding surface is

ϕ(t(1)(θ, ϵ), h(θ, ϵ), ϵ)− ϕ(t(1)(θ, 0), h(θ, 0), 0) = ϵ
∂ϕ

∂t
(t1, h(θ, 0), 0)

∂t

∂ϵ
(θ, 0) + o(ϵ)

+ ϵ
∂ϕ

∂X
(t1, h(θ, 0), 0)

∂h

∂ϵ
(θ, 0) + o(ϵ) + ϵ

∂ϕ

∂ϵ
(t1, h(θ, 0), 0) + o(ϵ). (6)

By (4) and (6), we have

0 < −kx(1)(θ, ϵ)− cvs + F0 + ϵf(t(1)(θ, ϵ)) < 2F0

for |ϵ| sufficiently small, where x(1)(θ, ϵ) is the second coordinate of ϕ(t(1)(θ, ϵ), h(θ, ϵ), ϵ)
and x(1)(θ, 0) = x1. Therefore, the orbits cannot pass though the sliding surface for small
|ϵ|.
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Let ϕ(t(1)(θ, 0), h(θ, 0), 0) = (x1, vs, θ1). Note that θ1 = θ+ t(1)(θ, 0) = θ+ t1 (mod T ).
Select the projection Π(x, y, θ) = (x, θ). Then we have

Π(ϕ(t(1)(θ, ϵ), h(θ, ϵ), ϵ)) = (x(1)(θ, ϵ), θ + t(1)(θ, ϵ)).

Let t2 be the time such that

M(ϕs(t2, x1, θ1), 0) = 0, ∀θ ∈ S1,

i.e.,
M(ϕs(t, x

(1)(θ, ϵ), θ + t(1)(θ, ϵ)), ϵ)|t=t2,ϵ=0 = 0, ∀θ ∈ S1.

By assumption H, we have

t1 + t2 = T0 and ϕs(t2, x
(1)(θ, 0), θ + t(1)(θ, 0)) = (

1

k
(−cvs + F0), θ + T0). (7)

A direct computation yields

∂

∂t
M(ϕs(t, x

(1)(θ, ϵ), θ + t(1)(θ, ϵ)), ϵ))), ϵ)|t=t2,ϵ=0 =

∂M

∂X̄
(
1

k
(−cvs + F0), θ + T0, 0)

∂ϕs

∂t
(t2, x1, θ + t1) = (−k, 0) · (vs, 1) = −kvs ̸= 0.

Hence, by the implicit function theorem, there exists a function t(2) : S1 × (−ϵ0, ϵ0) → R
such that

M(ϕs(t
(2)(θ, ϵ), x(1)(θ, ϵ), θ + t(1)(θ, ϵ)), ϵ))), ϵ) = 0

for (θ, ϵ) ∈ S1 × (−ϵ0, ϵ0), where t(2)(θ, ϵ) is the time spent on the sliding surface for the
orbit which starts from h(θ, ϵ) to Sϵ. Therefore, the phase map Rϵ is well defined when
|ϵ| < ϵ0.

We now estimate the distance between the starting point and the end point on Sϵ.
Since we have

ϕs(t
(2)(θ, ϵ), x(1)(θ, ϵ), θ + t(1)(θ, ϵ))− ϕs(t

(2)(θ, 0), x(1)(θ, 0), θ + t(1)(θ, 0))

=ϵ
(∂ϕs

∂t
(t2, x1, θ + t1)

∂t(2)

∂ϵ
(θ, 0) +

∂ϕs

∂x
(t2, x1, θ + t1)

∂x(1)

∂ϵ
(θ, 0)+

∂ϕs

∂θ
(t2, x1, θ + t1)

∂t(1)

∂ϵ
(θ, 0)

)
+ o(ϵ)

=ϵ

((
vs
1

)
∂t(2)

∂ϵ
(θ, 0) +

(
1

0

)
∂x(1)

∂ϵ
(θ, 0) +

(
0

1

)
∂t(1)

∂ϵ
(θ, 0)

)
+ o(ϵ)

=(ϵvs
∂t(2)

∂ϵ
(θ, 0) + ϵ

∂x(1)

∂ϵ
(θ, 0), ϵ

∂t(2)

∂ϵ
(θ, 0) + ϵ

∂t(1)

∂ϵ
(θ, 0))tr + o(ϵ), (8)

where tr denotes the transpose of the vector. Note that the second coordinate of

ϕs(t
(2)(θ, ϵ), x(1)(θ, ϵ), θ + t(1)(θ, ϵ))

is Rϵ(θ) (we use the coordinate on Sϵ). Hence, (8) and (7) give that

Rϵ(θ) = θ + T0 + ϵ(
∂t(2)

∂ϵ
(θ, 0) +

∂t(1)

∂ϵ
(θ, 0)) + o(ϵ).
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By the implicit function theorem, Rϵ, t
(1), t(2) are Cr functions. By setting

g(θ) =
∂t(2)

∂ϵ
(θ, 0) +

∂t(1)

∂ϵ
(θ, 0),

the proof of theorem is completed.

Remark 1. There are no large difficulties to extend Theorem 2.1 to more complicated
and unperturbed sliding periodic solutions as long as we assume that the transversality
condition holds when the orbit gets into the sliding surface. We deal with the simplest case
here to avoid heavy notations.

In general, the sliding orbits cannot be reversed. Therefore, we can only define positive
invariant sets when sliding orbits are involved. Due to transversality, we can still define
unique positive orbits. We have shown that there exists a circle on the extended phase
space whose first return map is well defined when ϵ is small. It is natural to ask if there
exists an invariant torus (at least positive invariant) on the extended phase space.

The surfaces T
(1)
ϵ and T

(2)
ϵ (see Section 2 for definitions) are cylinders. In fact, we can

parametrize T
(1)
ϵ and T

(2)
ϵ . The parametric map P

(1)
ϵ : S1×[0, t(1)(θ, ϵ)] → T

(1)
ϵ is naturally

defined by
P (1)
ϵ (θ, τ) → ϕ(τ, h(θ, ϵ), ϵ).

One can show that P
(1)
ϵ is a diffeomorphsim. P

(2)
ϵ : S1× [0, t(2)(θ, ϵ)] → T

(2)
ϵ can be defined

in a similar way. Hence, both T
(1)
ϵ and T

(2)
ϵ are cylinders in the extended phase space.

Now we show that Tϵ is homeomorphic to a torus when |ϵ| is small. First we need the
following glue lemma.

Lemma 4.1. Let X and Y be metric spaces and X = A ∪B, Y = C ∪D, where A,B,C
and D are closed subsets. Moreover, we assume

A ∩B = ∂A = ∂B, C ∩D = ∂C = ∂D.

G1 : A → C and G2 : B → D are homeomorphisms such that

G1|∂A = G2|∂B.

Let G be defined by

G(x) =


G1(x) if x ∈ A \ ∂A,
G2(x) if x ∈ B \ ∂B,

G1(x)(G2(x)) if x ∈ ∂A(∂B).

Then G : X → Y is a homeomorphism.

Proof. Since G is well defined and it is a bijection, it suffices to show that G (resp. G−1)
is continuous on the boundary of A (resp. C). Take x ∈ ∂A. For any ϵ > 0, there exists
δ1 > 0 (resp. δ2 > 0) such that

dY (G1(x), G1(y)) < ϵ (resp. dY (G2(x), G2(y)) < ϵ) if dX(x, y) < δ1(resp. dX(x, y) < δ2)

for y ∈ A (resp. y ∈ B), where dX(·, ·) (resp. dY (·, ·)) is the metric of X (resp. Y ). By
taking 0 < δ < min(δ1, δ2) we have shown that G is continuous on ∂A. Similarly, G−1 is
continuous on ∂C. The proof is complete.
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The proof of the following lemma is straightforward.

Lemma 4.2. Suppose that g1, g2,m : R → R are continuous functions such that g2(x) >
g1(x) and m is strictly increasing. Then all the straight line segments with endpoints
(x, g1(x)) and (m(x), g2(m(x))) do not intersect each other.

Recall that we identify (x, vs, θ) and (x, θ).

Lemma 4.3. There exists a vector field (vs+O(ϵ), 1+O(ϵ)) between the curves {(x(1)(θ, ϵ), θ+
t(1)(θ, ϵ)) : θ ∈ S1} and {h(θ, ϵ) : θ ∈ S1} such that

ϕs,ϵ(t
(2)(θ, ϵ), x(1)(θ, ϵ), θ + t(1)(θ, ϵ)) = h(θ + T0, ϵ),

where ϕs,ϵ is the flow generated by (vs +O(ϵ), 1+O(ϵ)). And the following identity holds:

T(2)
ϵ =

∪
θ∈S1

∪
τ∈[0,t(2)(θ,ϵ)]

ϕs(τ, x
(1)(θ, ϵ), θ + t(1)(θ, ϵ))

=
∪
θ∈S1

∪
τ∈[0,t(2)(θ,ϵ)]

ϕs,ϵ(τ, x
(1)(θ, ϵ), θ + t(1)(θ, ϵ)). (9)

Proof. To define the vector field between {(x(1)(θ, ϵ), θ+ t(1)(θ, ϵ)) : θ ∈ S1} and {h(θ, ϵ) :
θ ∈ S1}, we connect the points

(x(1)(θ, ϵ), θ + t(1)(θ, ϵ)) and h(θ + T0, ϵ)

by a straight line segment. Let

θ̄(θ) = θ + t(1)(θ, ϵ) = θ + t1 +O(ϵ).

Denote the inverse of θ̄ by θ(·). Note that

x(1)(θ(θ̄)) <
1

k
(−cvs + F0 + ϵf(θ(θ̄)))

and that θ(θ̄) + T0 is strictly increasing for small |ϵ|. By Lemma 4.2, all straight line
segments connected by (x(1)(θ(θ̄), ϵ), θ̄) and h(θ(θ̄) + T0, ϵ) do not intersect each other.

We associate a vector at the point (x(1)(θ, ϵ), θ + t(1)(θ, ϵ)) with

1

t(2)(θ, ϵ)
(x(2)(θ + T0, ϵ)− x(1)(θ, ϵ), θ + T0 − (θ + t(1)(θ, ϵ))) = (vs +O(ϵ), 1 +O(ϵ)),

where x(2)(θ + T0, ϵ) is the first coordinate of h(θ + T0, ϵ). For points on the straight line
segments with endpoints (x(1)(θ, ϵ), θ + t(1)(θ, ϵ)) and h(θ + T0, ϵ), we associate the same
vector to (x(1)(θ, ϵ), θ+ t(1)(θ, ϵ)). Since all the straight line segments do not intersect, the
vector field is well defined and we have

ϕs,ϵ(t
(2)(θ, ϵ), x(1)(θ, ϵ), θ + t(1)(θ, ϵ)) = h(θ + T0, ϵ).

The identity (9) holds since we simply change the vector field slightly between the curves
{(x(1)(θ, ϵ), θ + t(1)(θ, ϵ)) : θ ∈ S1} and {h(θ, ϵ) : θ ∈ S1}, and the curves remain the
same.
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Proof of Theorem 2.2. Let I
(1)
ϵ : T

(1)
ϵ → T

(1)
0 be defined by

ϕ(τ, h(θ, ϵ), ϵ) → ϕ(
t1

t(1)(θ, ϵ)
τ, h(θ, 0), 0), τ ∈ [0, t(1)(θ, ϵ)].

Note that t(1)(θ, ϵ) is nearly t1, which is nonzero when |ϵ| is small. Therefore, I
(1)
ϵ is well

defined. Then we have

ϕ(τ, h(θ, ϵ), ϵ)− ϕ(
t1

t(1)(θ, ϵ)
τ, h(θ, 0), 0) =

∂ϕ

∂t
(τ, h(θ, 0))(τ − τ(1 + ϵ

1

t1

∂t

∂ϵ
(θ, 0) + o(ϵ)))

+ ϵ
∂ϕ

∂X
(τ, h(θ, 0), 0)

∂h

∂ϵ
(θ, 0) + ϵ

∂ϕ

∂ϵ
(τ, h(θ, 0), 0) + o(ϵ).

Recall that X = (x, y, θ) and X̄ = (x, θ). Since τ ∈ [0, t(1)(θ, ϵ)] is bounded, I
(1)
ϵ (X) =

X +O(ϵ). Let I
(2)
ϵ : T

(2)
ϵ → T

(2)
0 be defined by

ϕs,ϵ(τ, x
(1)(θ, ϵ), θ + t(1)(θ, ϵ)) → ϕs(

t2

t(2)(θ, ϵ)
τ, x(1)(θ, 0), θ + t(1)(θ, 0)), τ ∈ [0, t(2)(θ, ϵ)),

where ϕs,ϵ is the flow in Lemma 4.3. Similarly, one can show that I
(2)
ϵ (X̄) = X̄ +O(ϵ).

By the definitions of T
(1)
ϵ and T

(2)
ϵ , we have ∂T

(1)
ϵ = ∂T

(2)
ϵ and ∂T

(1)
0 = ∂T

(2)
0 . Moreover,

I
(1)
ϵ and I

(2)
ϵ are coincident on ∂T

(1)
ϵ = ∂T

(2)
ϵ . In fact, by definitions of I

(1)
ϵ , I

(2)
ϵ and Lemma

4.3, we have

I(1)ϵ (h(θ, ϵ)) = h(θ, 0), I(1)ϵ (x(1)(θ, ϵ), vs, θ + t(1)(θ, ϵ)) = (x1, vs, θ + t1),

I(2)ϵ (h(θ + T0, ϵ)) = h(θ + T0, 0), I(2)ϵ (x(1)(θ, ϵ), vs, θ + t(1)(θ, ϵ)) = (x1, vs, θ + t1).

Hence, by Lemma 4.1, the map Iϵ : Tϵ → T0 given by

Iϵ(X) =


I
(1)
ϵ (X) if X ∈ T

(1)
ϵ \ ∂T(1)

ϵ

I
(2)
ϵ (X) if X ∈ T

(2)
ϵ \ ∂T(2)

ϵ

I
(1)
ϵ (X) = I

(2)
ϵ (X) if X ∈ ∂T

(1)
ϵ = ∂T

(2)
ϵ

is a homeomorphism.

Tϵ tends to T0 is followed by the fact that I
(1)
ϵ and I

(2)
ϵ tends to the identity map as ϵ

tends to zero.

5. The dynamics on the invariant torus

We are concerned with the dynamics on the invariant torus. If the rotation number of
Rϵ is rational, then the existence of periodic points of Rϵ implying the existence of periodic
orbits for system (2). We are thus concerned whether every orbit is dense on the invariant
torus when the rotation number of Rϵ is irrational and Rϵ is topologically conjugate to a
rigid rotation. The following Proposition 5.1 shows that the answer is positive.

Lemma 5.1. When |ϵ| is sufficiently small, the flows restricted to the torus Tϵ are complete
and depend continuously on the initial conditions.
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Proof. Denote the flow on Tϵ by Φ(t,X, ϵ). Since the return map Rϵ is well defined, so is
the positive flow. We can reverse Rϵ so that the negative flow is also well defined. For

example, if X ∈ T
(1)
ϵ and X = ϕ(τ, h(θ, ϵ), ϵ), then we can define the negative flow as

follows:

Φ(−t,X, ϵ) = ϕ(τ − t, h(θ, ϵ), ϵ) for 0 ≤ t ≤ τ ;

Φ(−t,X, ϵ) = ϕs(t
(2)(θ, ϵ)− t+ τ,Π(ϕ(t(1)(R−1

ϵ (θ), ϵ), h(R−1
ϵ (θ), ϵ), ϵ)))

for τ < t ≤ t(2)(θ, ϵ) + τ ;

Φ(−t,X, ϵ) = ϕ(t(1)(θ, ϵ) + τ + t(2)(θ, ϵ)− t, h(R−1
ϵ (θ), ϵ), ϵ)

for t(2)(θ, ϵ) + τ < t ≤ t(2)(θ, ϵ) + τ + t(1)(θ, ϵ);

...

Since Rϵ is a homeomorphism, Φ(−t,X, ϵ) is unique. Similarly, we can define Φ(−t,X, ϵ)

for X ∈ T
(2)
ϵ . Hence, Φ(t,X, ϵ) is well defined and Φ(t,X, ϵ) ∈ Tϵ for any X ∈ Tϵ, t ∈

(−∞,∞). The continuous dependence of initial conditions directly follows from the con-
tinuousness of Rϵ and piecewise smoothness property of the vector field.

Proposition 5.1. Under the assumption H, every orbit of (2) is dense on the torus Tϵ

if Rϵ is topologically conjugate to an irrational rigid rotation.

Proof. Suppose it is not true. Let Φ(t,X, ϵ) be the flow on Tϵ. We can find a nonempty
open set U and an orbit γ in Tϵ such that U ∩ γ is empty. Let X1 ∈ U and X1 /∈ Sϵ.
Then we may choose a point X̄1 ∈ Sϵ such that Φ(s, X̄1, ϵ) = X1 and Φ(τ, X̄1, ϵ) /∈ Sϵ for
τ ∈ (0, s]. Since Rϵ is topologically conjugate to an irrational rigid rotation, any orbit in
Tϵ has dense intersection with Sϵ. For any δ > 0, we can choose X2 ∈ Sϵ ∩ γ such that
|X̄1 −X2| < δ. While

|Φ(s, X̄1, ϵ)− Φ(s, X̄1, ϵ)| ≥ K,

where K is the distance between X1 and the boundary of U , which contradicts to the fact
that δ is arbitrarily small by Lemma 5.1.

However, we cannot assert that the phase map Rϵ is topologically conjugate to an
irrational rigid rotation, even the ratio of the period of f to the period of unperturbed
sliding periodic solution is an irrational. The following Moser’s theorem [27], together
with Proposition 5.1, at least allows us to inform that every orbit of (2) is dense on Tϵ for
most frequencies of f when |ϵ| is sufficiently small.

Theorem 5.1. For sufficiently smooth map

g = θ + a+ δα(θ), mod 1,

the proportion of (a, δ) ∈ [0, 1] × [0, δ0], such that g cannot be smoothly conjugated to an
irrational rigid rotation, tends to zero as δ0 tends to zero, where α : R/Z → R is a smooth
function.

6. Concluding remarks

In this work, we consider the dynamics in the neighborhood of the sliding periodic
solution for periodic perturbation of an autonomous one-degree-of-freedom oscillator with
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dry friction. The system is reduced to a circle map and the existence of invariant tori
is proved by gluing the cylinders generated by smooth vector fields. Typical resonance
phenomenon of a circle map appears as the frequency of periodic excitation varies. We
show that the destruction of invariant tori is due to the loss of transversality when the
perturbation gets large, which is different from the usual smooth tori break down.

The results in Section 4 may have some reasonable generalizations. The integral man-
ifold theory [14] insures that an hyperbolic periodic solution of time-independent systems
become an invariant torus under a small periodic perturbation. The sliding periodic orbits
in time-independent systems have two Floquet multipliers, 0 and 1, under some transver-
sality conditions. It is natural to ask if the sliding periodic orbit becomes to an invariant
torus under small periodic perturbation when the norms of other Floquet multipliers are
not 1. Moreover, the stability of invariant torus is expected to coincide with that of the
unperturbed periodic orbit when the perturbation is small.

It is more involved to prove that the flow restricted to the sliding invariant torus is
conjugate to a linear flow, i.e., that there exists a torus T 2 = R2/Z2 such that

g(Φ(t,X, ϵ)) = φ(t, g(X)),

where g : Tϵ → T 2 is a homomorphism, φ(t, ·) is the flow generated by

θ̇1 = ω1, mod 1,

θ̇2 = ω2, mod 1,

ω1 and ω2 being constants. The piecewise smoothness property of Tϵ and the flow on
it cause new difficulty since the usual coordinate transformation method cannot apply
directly, and the cylindrical coordinate near the unperturbed periodic orbit is also not
available. Moreover, we have to smooth both Tϵ and the flow restricted to it.

The existence of an n+1 dimensional invariant torus is expected to be established if the
perturbation of the system is a quasi-periodic function with n non-resonance frequencies.
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