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Abstract

This thesis concerns deep learning approaches for anomaly detection in images.
Anomaly detection addresses how to find any kind of pattern that differs from the
regularities found in normal data and is receiving increasingly more attention in
deep learning research. This is due in part to its wide set of potential applications
ranging from automated CCTV surveillance to quality control across a range of
industries. We introduce three original methods for anomaly detection applicable
to two specific deployment scenarios. In the first, we detect anomalous activity
in potentially crowded scenes through imagery captured via CCTV or other video
recording devices. In the second, we segment defects in textures and demonstrate
use cases representative of automated quality inspection on industrial production
lines. In the context of detecting anomalous activity in scenes, we take an existing
state-of-the-art method and introduce several enhancements including the use of a
region proposal network for region extraction and a more information-preserving
feature preprocessing strategy. This results in a simpler method that is significantly
faster and suitable for real-time application. In addition, the increased efficiency fa-
cilitates building higher-dimensional models capable of improved anomaly detection
performance, which we demonstrate on the pedestrian-based UCSD Ped2 dataset.
In the context of texture defect detection, we introduce a method based on the
idea of texture restoration that surpasses all state-of-the-art methods on the texture
classes of the challenging MVTecAD dataset. In the same context, we additionally
introduce a method that utilises transformer networks for future pixel and feature
prediction. This novel method is able to perform competitive anomaly detection on
most of the challenging MVTecAD dataset texture classes and illustrates both the
promise and limitations of state-of-the-art deep learning transformers for the task
of texture anomaly detection.
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CHAPTER 1

Introduction

This thesis considers how to use modern machine learning techniques to perform

anomaly detection in images. Speaking generally, an anomaly is any deviation

from the kinds of patterns observed in normal data. This interest in detecting any

deviation from normality is what defines anomaly detection and separates it from

other machine learning tasks. Other tasks, such as image classification, require

predefining a set of relevant classes and supplying large quantities of samples for

each at training time [54]. This is not viable in anomaly detection since the set of

all anomalies could be considered a set of limitless classes, almost all of which are

unknown and unrepresented by any collected samples. In anomaly detection, we

therefore develop methods that can be trained using only samples of the plentiful

normal data and operate by detecting deviations from that normality at inference

time.

We address two specific contexts of anomaly detection. In the first context, we

aim to detect abnormal activity in scenes that may be captured for example via

CCTV, webcam or smartphone. Examples of such scenes include pedestrianised

zones and views of conveyor belts on industrial production lines. Here, our research

is motivated by the interest in the field and the availability of CCTV style datasets
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[65, 62, 64] on which existing anomaly detection methods have already been tested

[36, 81, 18, 40]. Computerised anomaly detection methods have potential application

in the automated monitoring of scenes to flag criminal activity or defected or foreign

objects that may have fallen onto a production line. In the second context, we aim

to segment defects in textural patterns such as textiles. This context is motivated

by interest from our industrial partner and the release of a new dataset [11] that

provides a high-quality and thorough benchmark for such defect segmentation.

Automated methods in this context are a key component within quality control for a

range of high-speed, high-yield manufacturing industries that rely on camera-based

visual inspection techniques. Computerised anomaly detection methods deployed

in these two contexts carry several advantages: they never become tired, can be

deployed 24 hours a day, and can be replicated across a network of locations for a

low cost.

Although the state-of-the art in computer vision tasks in general has made

tremendous progress over the past decade, there has only been recent focus on

anomaly detection. The effectiveness and suitability of automated anomaly detec-

tion methods in our stated contexts is bounded by their rates of false-positive and

false-negative errors. On the former type of error, automated methods serve no

purpose if they erroneously flag anomalies too frequently, tying up the resources

they were intended to save and causing alertness fatigue. On the latter type of

error, automated methods fail at the very purpose they were deployed for if they

frequently neglect to detect anything novel. This thesis aims to contribute to the

state-of-the-art in this field to improve the quality of our automated systems.

1.1 Contributions

We introduce three new methods of anomaly detection, each of which has its own

set of contributions.

The first method is the result of a series of enhancements to a method of anomaly

detection that is based on Kernel Density Estimation (KDE) on features extracted

from a deep, multi-task, neural network [40]. We improve processing speed by
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changing the region proposal system from a combination of classical hand-crafted

algorithms [51, 28] to our modified Region Proposal Network [80]. This pushes the

method into the realm of real-time anomaly detection, being capable of operation

on live video streams during both the training and inference phases. Leveraging this

enhancement in speed, we improve anomaly detection performance by constructing

higher-dimensional models. We further improve performance via a modified feature

preprocessing strategy, removing the ReLU activation on the features, and by taking

features from a lower layer.

The second method is a new method for textural defect segmentation that

surpasses all current state-of-the-art methods. We use a relatively simple archi-

tecture, in contrast to other methods that often employ more complex architec-

tures such as the Generative Adversarial Network [5, 9, 85], or the Variational

Autoencoder [60, 21]. This method is able to perform better despite its simplicity

due to a key reformulation of the task: we train an architecture to output the

pixel shifts required to restore a texture to normality, rather than to output the

restored image. This task is much simpler and enables the model to indicate areas

of normality via outputting all zeros, which overcomes the difficulty associated with

producing high-frequency outputs.

The final method introduces the concept of future pixel and feature prediction for

textural defect segmentation and is the first example of such a method. We utilise

a Transformer-based model for predicting the sequence of pixels or features that

follows some given sequence of context pixels. At the time of our experimentation

there were no Transformer-based methods of anomaly detection and at the time of

writing there are still no pixel prediction methods that we are aware of.
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The contributions presented in Chapter 3 and Chapter 4 of this thesis have been

previously published in the following peer reviewed publications:

• P. Adey et al. Region based anomaly detection with real-time training and

analysis. In International Conference On Machine Learning And Applications,

pages 495–499. IEEE, 2019

• P. Adey et al. Autoencoders without reconstruction for textural anomaly

detection. In International Joint Conference on Neural Networks, pages 1–8.

IEEE, 2021

The details of these contributions are presented in Chapters 3 - 5.

In addition, the method presented in Chapter 3 has been integrated into the

NOUS software product developed by our industrial partner COSMONiO (acquired

by Intel as of late 2020). See appendix A for an overview of some of the work carried

out during this integration period.

1.2 Methodology

The output of all our anomaly detection methods is an anomaly heat map. That is,

for each input frame we output a grey-scale image of the same size whose pixel values

represent anomaly scores from 0.0 (not at all anomalous) to 1.0 (most anomalous).

When used as figures throughout this thesis, these heat maps are inverted for greater

clarity so that the darker areas represent the more anomalous regions. Heat maps

are a very effective tool in the evaluation of anomaly detection algorithms since

they enable us to see why a particular numerical evaluation score was achieved. In

anomaly detection, it is always the case that some errors are better or worse than

others but this is not reflected in the binary ground truth anomaly segmentation

masks provided by datasets and consequently, not reflected in the final numerical

evaluation scores. For example, given a surveillance style dataset in which people

are considered normal and vehicles are considered anomalous, an anomaly detection

method that detects n pixels of a strangely coloured shirt as anomalous is penalised

as harshly as one that detects n pixels of sky as anomalous. Heat maps allow us to
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see precisely where high anomaly scores are assigned and make better judgements

about the performance of an anomaly detection method. For this reason, It is

common to see researchers making use of this kind of evaluation [60, 15, 85].

For the purpose of quantitative evaluation, a binary decision needs to be made

for each pixel concerning whether it is anomalous (positive) or not. This is achieved

by setting an anomaly score threshold. When a method assigns an anomaly score to

a pixel that is above this threshold, then the method has made a positive prediction

for that pixel. We construct a Receiver Operating Characteristic (ROC) curve by

thresholding the anomaly scores many times using a range of thresholds and plotting

the true-positive rate against the false-positive rate for each. The final evaluation

metric is then the Area Under the ROC Curve (AUC), which ranges from 0.0 to

1.0 with 1.0 representing perfect performance. For the surveillance style datasets,

this evaluation is carried out at both the frame-level and pixel-level, while for the

texture style datasets, there is only pixel-level evaluation. The definition of pixel-

level evaluation varies between the surveillance and texture style datasets. For the

texture style datasets, each individual pixel across the test set generates either a true-

positive or false-positive result for the ROC curve generation. For the surveillance

style datasets, each frame generates either a true-positive or false-positive result

based on anomalous pixel coverage. We follow other methods [104, 62, 40, 78] in

assigning a true-positive result for a frame if the positive pixel predictions cover

at least 40% of the ground-truth positive pixels and a false-negative result if, for a

negative frame, any positive pixel predictions are made. This allows for consistency

of evaluation for better comparison of methods.

Throughout this thesis we graphically represent the performance of our methods

using a box plot of AUC scores. Different AUC scores are produced by repeating

the training and testing phases eight times with different random seeds. This is

important to consider when comparing our anomaly detection performance measures

with others’ who most frequently report only a single AUC score. We found that

using a single fixed seed invariably results in a selection of hyperparameters tuned

to that seed. In this scenario, evaluation metrics such as the AUC score are

inflated because they do not reflect the performance on a typical run, but rather,
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a lucky run. From this point, any change in circumstances negatively impacts the

reported performance, even changes as immaterial as code refactoring that in no

way changes the anomaly detection method. An example of how this may occur

is if two sub-networks are initialised in a different order after refactoring, then the

identical sequence of numbers drawn from the random number generator are placed

into different parameters and thus, the networks start in a different initial condition

that is inevitably not as favourable.

There is frequent use of leave-one-out anomaly detection evaluation [107, 106, 31]

where a classification dataset is used to test an anomaly detection method by defining

one class to be the anomaly and the rest to be normal. We strongly question this

practice for evaluating anomaly detection methods and do not include any such

evaluation in this thesis. Firstly, anomalies could be any deviation from normality,

so there should be some variety in anomalous classes in the test set. Secondly,

anomalies may range from subtle to blatant and it is unlikely that a test set with a

single anomalous class will test a range of distances from the normal data. Thirdly,

in a leave-one-out scenario, it is likely that the anomaly class will be significantly

different from the others in some consistent way, which undermines the task. Finally,

having the normal class span multiple classification classes may not be faithful to a

real anomaly detection context.

1.3 Scope

Research into image-based anomaly detection takes place across a range of spectral

bands including thermal [73], visible [36, 60], and X-ray [35] imaging. In addition,

some research focuses on anomaly detection in medical imagery [86, 63], which

spans a range of spectral bands and also includes ultra-sound. We limit our scope

to anomaly detection in visible-band images.

The kinds of visible-band images used in anomaly detection research include

pictures of scenes as could be obtained from CCTV or webcam (usually of pedestri-

anised zones) [59, 64, 62], samples of textures [13], medical scans [63], and imagery

at the micro or nano-scales [71]. We deal exclusively with human-scale scene and
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texture datasets.

Griffin et al. [35] provide a taxonomy of anomalies in X-ray security. We gener-

alise this taxonomy to our scope as follows:

1. Appearance: an unusual shape, texture or colour.

2. Semantic: an unusual category of object.

3. Appearance-given-semantics : A normal category of object appears, in some

way, unusual.

4. Relative appearance: A subset of objects appearing different from others e.g.

among a set of uniformed workers in an office, one is wearing casual clothes.

5. Arrangement : Unusual distribution of objects.

6. Artefact : An image looks abnormal due to artefacts left by the capturing

process e.g. camera malfunction, noise or compression.

7. Co-occurrence: An unusual collection of objects to see together.

We consider item one a low-level anomaly in that it may be detectable through

inspection of local pixel data directly or through a small number of filters, such as

hand-crafted features or features learned at a layer in a deep neural network close to

the pixels. In contrast we consider item two a high-level anomaly. These anomalies

may be very difficult to detect through direct inspection of low-level pixel data,

rather, leveraging high-level concepts learned by units near the output layer of a

deep neural network may produce better results.

The scope of this thesis covers items one, two and three. In principle, item

six is also covered by the method presented in our second contribution chapter

(Chapter 4), but this is not tested. Although we deal with CCTV-style input

in Chapter 3, we only consider each object individually. We do not consider the

location, number or interaction of objects, and neither do we compare them.

Some anomaly detection methods in the literature do not require training [22, 44].

They simply receive the input imagery and find objects that are most easily sepa-
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rated from the others in some feature space. These kinds of method are the most

apt for satisfying item four, but we do not experiment with such methods.

We do not include evaluation on the Subway [1] and UMN [70] datasets reviewed

in Section 2.2. These datasets are old with poor quality imagery and do not contain

the pixel-level ground truth we consider to be best for evaluation. They also target

areas of the taxonomy that are outside of the scope of our methods such as relative

appearance and arrangement. We also do not use UCSD Ped1 [65] because the

pixel-level annotations are incomplete and again, the quality is quite low such that

when examining individual frames by eye it is often hard to identify the anomalies.

The ShanghaiTech Campus dataset [64] is a good quality dataset but so few other

methods have used it and none we have found with pixel-level evaluation. This

coupled with the computational time required to process this dataset means that

we have omitted this dataset too.

1.4 Structure

The literature review presented in Chapter 2 is split into three sections. The

background literature is discussed in Section 2.1 before anomaly detection datasets

and methods are discussed in Sections 2.2 and 2.3 respectively.

Following the literature review, there are three contribution chapters that each

present an original method of anomaly detection. The method presented in Chapter 3

foregoes any training of deep-learning models, relying exclusively on pretrained

models that have already been exposed to a large variety of imagery in combination

with a classic KDE based algorithm. Chapter 4 presents a method that rethinks

the application of autoencoders in anomaly detection, resulting in a simple, fast

and effective method that surpasses all state-of-the-art methods in textural defect

segmentation on the MVTecAD dataset [11]. Inspired by the recent rise of trans-

former networks in the image domain, our final method explores the possibility of

performing anomaly detection through future pixel prediction, resulting in a novel

method that can out perform some of the previous generation’s state-of-the art

methods. This method is presented in Chapter 5.
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Each of these chapters evaluates their respective method in the context for which

they were designed. For the first method, that is the detection of abnormal activity

in scenes. For the remaining two methods, that is the segmentation of textural

defects. Following the three contribution chapters, Chapter 6 evaluates all methods

across contexts.

The thesis concludes in Chapter 7 with an overall discussion of the methods

presented, contributions made, and possible directions for future work.
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CHAPTER 2

Literature Review

We review the literature in three parts: background literature (Section 2.1), anomaly

detection datasets (Section 2.2) and anomaly detection methods (Section 2.3).

2.1 Background

This section reviews the relevant literature that forms the basis for the current state-

of-the-art anomaly detection methods reviewed in Section 2.3 and those presented

in the three method chapters of this thesis (Chapters 3 - 5).

2.1.1 Kernel Density Estimation

Kernel Density Estimation (KDE) [87] is a nonparametric means of estimating the

Probability Density Function (PDF) of a random variable x ∈ Rd given a set of n

observations {xi}. It forms the basis for anomaly detection in our first proposed

method (Chapter 3), where it is used to estimate the probability density of features

extracted from test material.

KDE requires a kernel function K : Rd 7→ R that is centred at 0 and that

integrates to 1.0, common examples of which include the step and Gaussian func-
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tions. In a simplified manner, the algorithm may be understood as building up

the probability density function by adding the kernel function at every point in

the observed set. Thus, every point in the observed set contributes a lump in the

surface of the PDF. Many different kernel shapes are possible, but the shape has

less impact on the performance of the algorithm than the bandwidth parameter, h.

The bandwidth determines the spread of the lump over the d-dimensional space,

and one can imagine how too much or too little spread will negatively impact the

performance. Taking the Gaussian kernel as an example, one could imagine a very

tall but narrow kernel whose width is far smaller than the scale of distances between

the observed points. This results in an estimated PDF whose value is close to zero at

nearly all points in the d-dimensional space, but suddenly very large at the observed

points. Conversely, if the kernel is so wide as to envelop all of the observed points,

then the estimated PDF will be too smooth and will obscure underlying structures in

the observed points. There is a lot of attention given to bandwidth selection in KDE

[87, 88]. One rule-of-thumb often used is Scot’s rule [87] in which the bandwidth is

set as follows:

h = n
−1
d+4 (2.1)

Note that this rule-of-thumb only depends on the number of observed points and

the dimensionality of the space. This implies that there is some expected scale over

which all of the observed points occur. In our first contribution chapter (Chapter 3),

we propose a preprocessing stage applied the observed points that improves our

anomaly detection results.

The resulting PDF is a function of the observed points. Consequently, they

need to be remembered by the algorithm and are used in calculations to find the

estimated PDF at an arbitrary point. Therefore, as the number of observed points

increases, the time taken to calculate the PDF at an arbitrary point increases, and

does so quadratically. The main contribution of Chapter 3 is to significantly increase

the speed of the KDE-based anomaly detector by reducing the number of observed

points required.
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We have discussed a simplified view of KDE. In practice, the algorithm does

not simply accumulate the PDF via a series of summations with the kernel at the

observed points. there is also whitening of the input data and scaling to ensure a

valid PDF.

2.1.2 Image Classification Networks

The goal of image classification is to determine the label of the most salient object

within an image. Intermediate layers within a deep image classification network are

utilised in our first proposed method (Chapter 3) as feature representations for test

material.

Starting in 2010, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

[83] has been among the most widely used benchmarks for evaluating image clas-

sification algorithms. From 2012, the deep-learning class of image classification

algorithms began to dominate, with AlexNet [53] winning the competition that year.

One of the key innovations was their GPU implementation of the Convolutional

Neural Network (CNN) [55] to facilitate the training of the deepest architecture

of the time. AlexNet also introduces the use of Rectified Linear Units (ReLU) in

the architecture’s hidden layers and Local Response Normalisation. Since then,

deep-learning models for image classification have steadily advanced the state-of-

the-art. Simonyan et al. [89] investigated the effect of further increasing the depth

of these models, winning ILSVRC 2014. Concurrently, Szegedy et al. [96] developed

GoogLeNet (Inception-v1), achieving similar results and winning another branch

of the competition. A milestone is reached in 2015 with He et al. [39] surpass-

ing human performance on the 2012 challenge by introducing Parametric ReLU

(PReLU) units and an enhanced initialisation strategy. The same research team

won ILSVRC 2015 with their ResNet [38] model that utilises residual connections

in its architecture. The Inception team incorporate this idea into their architecture,

resulting in Inception-v4 [95]. The methods introduced in this thesis make use of

models and concepts from this generation of classifiers. Although research into image

classification has continued, this is out of the scope of this thesis.

Later, it emerged that the features learned at the intermediate layers of these
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models may be generalisable to other tasks [105]. Features learned at the lower

layers are the most general and tend to become more specific as layers approach the

output layer. This concept is very important for transfer learning [105] and feature

extraction [40].

2.1.3 Object Detection Networks

Object detection extends classification. In this task, the aim is to determine the label

of all salient objects within an image and furthermore, we aim to predict bounding

boxes to locate them. In our first proposed method (Chapter 3), Object detection

networks are used to form region proposals within the test material. These region

proposals determine the locations where anomaly detection will be performed.

Among the most significant contributions towards solving this task are the

Region-CNN (RCNN) [30] series of models developed by Girshick et al. The original

RCNN model utilises an external region proposal system to generate candidate

bounding boxes that may contain an object. Girshick et al. employ Selective Search

[99], although many other techniques are also suitable. They then extract features

from each region using AlexNet [53] and classify them using a per-class set of

support vector machines. RCNN is very slow due to requiring a forward propagation

through AlexNet for each region proposal. Fast-RCNN [29] addresses this by forward

propagating the entire image through the convolutional layers once and then pooling

a fixed size feature map for each region proposal. Only from this point are the

regions processed using separate computations through the fully-connected layers.

This iteration of the RCNN series introduces the bounding box regressor and replaces

the support vector machines with a softmax layer for outputting probabilities for

each class plus a catch-all background class. At this point, the external region

proposal system becomes the bottle-neck. Ren et al. [80] dispense with this external

system and produce region proposals within the RCNN framework by adding a

Region Proposal Network (RPN). The RPN shares the convolutional features with

the bounding box regressor and softmax branches of Fast-RCNN and is trained

alongside them. Other systems for object detection have been developed during

and since the RCNN series as well as networks for object segmentation including
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Mask-RCNN [37], the latest in the RCNN series. However, the anomaly detection

methods introduced in this thesis only make use of concepts from the RCNN series

before segmentation was introduced.

2.1.4 Autoencoders

A conventional autoencoder is a Multi-Layer Perceptron (MLP) that encodes an

input into a latent-space representation and then attempts to decode this represen-

tation into a reconstruction of the input [32]. During training, distance between

inputs and outputs are used to tune the autoencoder towards making more faithful

reconstructions. In our second proposed method (Chapter 4), We modify an au-

toencoder so as to predict the pixel-shifts required to push a test image towards

normality. These pixel shifts are then used to measure abnormality.

Masci et al. [66] adapt the conventional architecture by using convolutional

layers. These Convolutional Autoencoders (CAE) are better suited to operating

on image data and are often applied to anomaly detection in images and videos [36,

12, 60, 21].

Bengio et al. [10] introduce Denoising Autoencoders (DAE). DAE function sim-

ilarly to the conventional autoencoder except that the training inputs are inten-

tionally corrupted before encoding. DAE attempt to output a reconstruction of the

original clean input. Xu et al. [104] apply DAE in their anomaly detection method.

Whatever variant of the autoencoder is employed, anomaly detection is usually

accomplished via one of two methods. The first method utilises the inability of

the model to reconstruct novel inputs so that the reconstruction error becomes a

proxy for abnormality [36]. The second method uses the learned encoding function

as a dimensionality reduction algorithm. Samples are compressed before being fed

into a subsequent classification algorithm for anomaly detection such as K-Nearest

Neighbours [91] or a one-class support vector machine [104, 98].

Autoencoders often have difficulty reconstructing the higher frequency informa-

tion in the input image, which manifests in blurriness in the reconstructions [68].

When applied to anomaly detection, this results in errors in the values of normal

pixels and consequently, anomaly scores that are often too high [12]. In the second
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method chapter of this thesis we present an autoencoder-based method for anomaly

detection in textures that overcomes this drawback and produces state-of-the-art

results (Chapter 4).

2.1.5 Generative Adversarial Networks

Goodfellow et al. [33] introduce Generative Adversarial Networks (GAN) as a means

of training a generative model to capture some training data distribution px(x) over

the data domain X . The GAN framework has become a popular choice in anomaly

detection methods [6, 85] and the first iteration of our modified autoencoder used

in Chapter 4 was a subset of the GAN used by Akçay et al. [5].

In the GAN framework, there are two networks: a generator G and a discrimina-

tor D. The generator network is a function G : Z 7→ X that maps a latent vector z

sampled from some prior distribution pz(z) over a domain Z to a point x ∈ X . The

distribution pz and the domain Z are freely chosen by the implementation. The

probability distribution over X observed when G produces outputs mapped from

inputs sampled from pz is pg(x). The discriminator network is a function D : X 7→ R

that maps an input x ∈ X to the model estimation of the probability that x was

sampled from px. D is trained to improve its estimation of the probability that its

inputs are sampled from px(x) rather than from pg(x), while G is trained to minimize

the performance of D. The optimal solution for G is found when pg(x) = px(x),

in which case samples from the output of G look identical to samples from the

training distribution, and D can do no better than to predict a probability of 0.5

everywhere in X . Unlike the standard autoencoder (Section 2.1.4), the training

objective of GAN has an effective way of penalising the generation of blurry images

since the discriminator can easily learn to identify these as not belonging to the

data distribution. This procedure is equivalent to minimizing the Jensen-Shannon

distance between the distributions pg and px.

Although GAN has proved to be a powerful framework, a number of shortcomings

have emerged. Firstly, mode collapse can occur [76, 84]. If px is a multi-modal

distribution, there is no incentive for gx to distribute density among the modes. A

common strategy for G is to allow all outputs to converge onto a point that fools
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the discriminator well. The discriminator may learn that this point is likely from

the generator, but then the generator simply shifts its output point around the data

space [84]. Secondly, instability in the training of training GAN often produces

generators that yield noisy or incomprehensible outputs [76]. Finally, in the image

domain, GAN are only capably of generating low-resolution images [76]. Salimans

et al. [84] provide a suite of techniques for improving the training of GAN, most

relevantly, feature matching. When applying this technique, features are extracted

from discriminator inputs at an intermediate layer. The generator is trained to

minimize the distance between features extracted from its own outputs and those

extracted from the training data.

Radford et al. [76] propose a new GAN architecture for scaling up to higher-

resolution image generation with more stability. They call their architecture Deep

Convolutional GAN (DCGAN). Furthermore, they use trained DCGAN models

as feature extractors for other image-based tasks and visualise their convolutional

filters to show that specific filters learn to draw specific objects. They also show

that certain directions in the latent space correspond to semantically meaningful

variations in the training distribution such as gender or presence of glasses, and

that smoothly varying the input latent space vector produces generated images that

likewise vary smoothly in terms of their semantic content. The architectural changes

include removing all pooling and fully-connected layers in favour of convolutional

layers, using batch-norm, and changing the activation functions at each layer. They

favour using the leaky ReLU function for all layers in the discriminator, and the

ReLU function in all but the final layer of the generator, where they instead use the

tanh() function to squeeze the values back into the [−1..1] range. The addition of

batch-norm seems to alleviate mode collapse at the cost of allowing instances within

a batch to affect each other [84].

The semantic nature of the latent space described above hints at the possibility

that vectors from this space could serve as powerful features for use in down-stream

tasks such as image classification [25]. Unfortunately, while the generator is able

to map from the latent space to the data space, it is unable to perform the reverse

mapping and so cannot be used as a feature extractor. Donahue et al. [25] therefore
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introduce Bidirectional GAN (BiGAN) that simultaneously learns an encoder net-

work to map from the data domain back into the latent space alongside the generator

and discriminator of the original GAN framework. They are able to demonstrate

that the BiGAN encoder is an adversarially learned feature extractor that can be

trained without explicit labels, in contrast with typical supervised approaches [53].

Arjovsky et al. [8] improve the mode collapse and training instability by propos-

ing the Wasserstein GAN (WGAN). WGAN performs gradient decent on the Wasser-

stein distance between the distributions pg and px, rather than the JS distance. They

rigorously show that the Wasserstein distance has much better properties.

2.1.6 Transformers

Transformer Networks have revolutionised the way we apply deep learning to sequence-

to-sequence tasks. They were first introduced by Vaswani et al. [100] for use in

language translation, superseding Recurrent Neural Networks (RNN) that were

previously ubiquitous in the language processing domain. Transformers soon spread

into other applications of deep learning, eventually finding applications in image

processing [14, 74, 26]. In Chapter 5, we use a Transformer network to target

anomaly detection through future pixel prediction.

A Transformer network takes a sequence of tokens as input and transforms them

into an output sequence of tokens. Internally, the network represents each token of

the sequence as an embedding in Rn, which may be learned alongside the network

parameters. Each layer of the network consists of an MLP that is independently

applied at each position in the sequence, transforming each position into a new point

in Rn. Before the MLP however, an attention operation [100] is applied, which is

the key feature that most differentiates the Transformer architecture from those that

have come before.

The input to the attention operation consists of the query Q ∈ Rk and a set of

key value pairs {Ki ∈ Rk : Vi ∈ Rv} (often, v = k). The output is a weighted sum

of the values where each weight is determined via a scaled dot product of the query

with the associated key. A softmax function is used on the dot products to determine

the scaling factor of each value. In this way, the attention mechanism causes each
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position in its output to be a mixture of values, where each value is expressed

according to the similarity between its key and the query. When the query, keys

and values all come from the preceding layer in the network, this is referred to as

self-attention. Vaswani et al. [100] also introduce multi-headed attention in which

the query, keys, and values undergo multiple projections into a lower-dimensional

space before the operation, and are combined and projected back into the original

space after the operation.

The advantage that transformer networks have over the more conventional CNN

architectures in the image domain is that while the kernels of the convolutional layers

imply a hard-coded inductive bias that relevant information is only contained in

neighbouring pixels, the attention mechanism of the transformer network facilitates

learning where attention is best concentrated. However, this comes at the cost of a

larger parameter space that is particularly costly in the image domain where inputs

are often high-dimensional. Various schemes are employed to reduce computation

requirements of the attention mechanism in the image domain including downscaling

and clustering [14], memory blocks [74] and patch-based embedding [26].

The original Transformer architecture [100] consists of an encoder and a decoder,

each of which is made up of a stack of six identical blocks. A block in the encoder

performs multi-headed self-attention [100] over its input embeddings followed by a

transformation through an MLP. Layer normalisation is applied after each step in the

block. A block in the decoder is similar, except that the multi-headed self-attention

is masked so that attention cannot be given to tokens following the current position,

and multi-headed encoder-decoder attention follows the self-attention. The MLP

and use of layer normalisation after each step remains the same.

A series of modifications to the original transformer architecture results in the

GPT-2 model [77] and its application in the image domain [14]. This forms the

basis of the architecture used in the third method chapter of this thesis, in which

we propose a method of anomaly detection via pixel prediction (Chapter 5).

Liu et al. [58] provide the first modification to the original Transformer architec-

ture by removing the encoder stack, forming the Transformer Decoder (TD). This

architecture performs better under increasing sequence lengths; furthermore, they
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suspect that for their monolingual task, training separate encoder and decoder stacks

results in redundant learning and harder optimisation. This insight is interesting

because our proposed pixel prediction method could also be considered monolingual,

since the input and output tokens are from the same colour to token mapping.

Radford et al. [77] use the TD architecture with generative pretraining on a

large corpus of text and then fine-tune on a range of tasks. Due to the Generative

PreTraining, they call their method GPT. They also demonstrate an improved

method, called GPT-2, whose architecture is modified by changing the parameter

initialisations, moving the layer normalization to the start of each sub-block, adding

an additional layer normalization after the final self-attention block, and expanding

the vocabulary and context.

Chen et al. [14] apply the GPT-2 architecture [77] to the task of learning high-

quality latent image representations for use in down-stream tasks such as image

classification. In one of their approaches for learning these representations, they

use next pixel prediction. Here, the sequence-to-sequence task is to map an input

sequence of pixels, called the context, to the sequence of pixels that follows.

2.2 Anomaly Detection Datasets

A range of datasets for anomaly detection are commonly used in research. At one

end of this spectrum is the abstract, algorithmically generated dataset contributed

by the DAGM Symposium 2007 [102] that is intended to mimic the kinds of textures

and defects observed at the micro-scale in industrial optical inspection. At the other,

there are the surveillance style datasets such as that contributed by Shanghai Tech

[64]. These datasets contain videos of pedestrianised zones in which there are periods

of abnormal activity such as the appearance of a bike or other vehicles. In between

these extremes the MVTecAD dataset for industrial optical inspection [11] supplies

real image samples of textures and objects, a subset of which contain various defects

such as dents, folds or contaminants. We review the surveillance style datasets first,

followed by the texture style datasets in chronological order.
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Subway UCSD

Ent. Exit
UMN

Ped1 Ped2
Avenue Shanghai

Year 2008 2009 2010 2013 2017

Type Video Video Video Video Video

Channels Gr RGB/Gr Gr RGB RGB

Size 512x384 320x240 238x158 240x360 640x360 856x480

Scenes 1 1 3 1 1 1 13

Training Set

Videos 1 1 - 34 16 16 330

Frames 20,000 7,500 - 6,800 2,550 15,328 274,516

Testing Set

Videos 6 4 1 36 12 21 107

Frames 124,249 57,401 7,739 7,200 2,010 15,324 40,791

Anomalies

Count 66 19 11 50 20 58 136

Unique 5 3 1 6 3 11 25

Annotation

Frame X × × X X X X

Pixel X × × 10 / 36 X X X

Table 2.1: Summary of the surveillance-style datasets. The anomaly count is
subjective, since there are overlapping anomalies, and anomalies that repeat after
a short time period. In these cases there is a judgement to make about whether
or not the anomalies are separate. Likewise, the count of unique anomalies is also
subjective, since there is a judgement to make about how different one anomaly
needs to be from another to belong to a separate category.
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DAGM07 Leaf MVTecAD

Year 2007 2015 2019

Type Image Image Image

Channels Gr RGB RGB/Gr

Size 256x256 256x256 1024x768

Classes 6 14 5

Training Set

Images 6000 15,084 1266

Testing Set

Images 900 39,196 515

Anomalies

Count 900 39,196 382

Unique 6 26 25

Annotation

Coarse-Pixel X × ×
Pixel × × X

Table 2.2: Summary of the texture-style datasets. The grid class of the MVTecAD
dataset is grey-scale but all others are RGB.

21



Figure 2.1: Examples of frames from the Subway dataset. The left image is a
frame from the subway entrance, and the right image is a frame from the exit.

2.2.1 Subway Entrance & Exit

Adam et al. [1] introduce the 2008 subway dataset, which has been used in the

evaluation of a range of anomaly detection methods [36, 18, 64, 45, 22, 44, 109].

The dataset consists of CCTV videos of two similar scenes: a subway entrance

and exit. Each scene has one long training video, and several test videos. Despite

the reasonably high resolution, the quality of the video is not as good as most of

the other datasets, and it is quite noisy. Features within the imagery that would be

clear in the other datasets are blurry in this dataset.

Anomalies include people moving in the wrong direction, failure to pay, loitering

and irregular interactions. Some of these are quite subtle, and rely on a high-level

understanding of the situation. Anomalies of this kind of character are rare among

the anomaly datasets.

While this dataset is included here due to the number of methods that report

evaluation on it, this dataset will not be further utilised in this thesis because of the

concerns about quality mentioned above and because the nature of the anomalies

mentioned above do not fit within the scope of the thesis as outlined in Section 1.3.

2.2.2 UMN Unusual Crowd Activity

The University of Minnesota provides a number of datasets, one of which is fre-

quently used to evaluate the detection of unusual crowd activity [45, 22, 44, 42, 109].

This dataset is commonly referred to as the UMN dataset in anomaly detection

research. The UMN dataset consists of three different scenes as shown in Figure
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Figure 2.2: Examples of frames from the UMN dataset. All three scenes are
depicted, starting with scene one in the top row, and ending with scene three in the
bottom row. The first column depicts a frame from the normal period, while the
second column depicts a frame from the abnormal period.
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2.2. In each scene, the same scenario plays out some number of times. First, there

is period of normality lasting approximately 20 seconds or 600 frames in which a

group of about 18 people walk around the scene in a random but calm manner. The

scenario ends with a period of abnormality lasting approximately five seconds or 150

frames in which the people suddenly flee in all directions.

The video quality is fairly poor; the resolution is low and compression artefacts

can be seen throughout the frames. Anomaly detection methods tested on this

dataset need to be robust against this noisy input.

Similar to the Subway dataset discussed above, this dataset is discussed here

only due to the number of methods that report evaluation on it. We do not use this

dataset in our research because better quality datasets now exist and because we

are interested in detecting anomalies of a different nature as described in Section

1.3. The only kind of anomaly addressed by this dataset is the panic scenario. In

contrast, we are interested in detecting a wide variety of anomalies that we do not

know in advance. In addition, this kind of anomaly requires consideration of the

motion of actors relative to each other, whereas we consider the abnormality of

individual actors.

2.2.3 UCSD Ped1 & Ped2

The UCSD dataset was provided by Mahadevan et al. in 2010 [65]. It is split into

two parts: Ped1 and Ped2, each of which consists of grey-scale videos of pedestrians

walking along a path. The training videos only show people walking on the paths

and they move regularly with a fairly narrow distribution of speeds. The testing

videos show people as well as other entities moving along the path such as bikes and

skateboards. See Figure 2.3 for an example frame from each of the two parts.

In Ped1, the camera is pointed partially along the path, so that as the pixel row

increases, the distance to the path decreases. Consequently, objects at the top of the

video are smaller than objects at the bottom. Approximately 50% of the anomalies

are bikes, 25% are skaters and 12% are motorised vehicles. The remaining few are

wheelchairs, grass-walkers and one instance of someone pushing a cart along the

path.
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Figure 2.3: Example frames from the UCSD dataset. Left: the Ped1 dataset.
Right: the Ped2 dataset.

In Ped2, the camera is pointed across the path, which reduces the difference in

size between objects at the top and bottom of the video. There is slightly more

detail than Ped1, due to the camera positioning, and so the appearance of bikes and

skateboards is more obvious.

This dataset is popularly used for the evaluation of methods that target the kinds

of anomalies that we are interested in [104, 36, 81, 110, 18, 64, 44, 40]. Therefore,

this dataset is important for our research and will be used further in this thesis.

While pixel and frame-level annotations are included for both Ped1 and Ped2, the

pixel-level annotations for Ped1 are incomplete, and its quality is such that it is

often difficult to identify anomalies by eye given a single frame. Anomalies are most

apparent when watching the video, where the motions of the anomalous objects

capture attention. Consequently, we focus on Ped2 which does not suffer these

shortcomings.

2.2.4 CUHK Avenue

In 2013, Lu et al. [62] created a new dataset by capturing video from CUHK campus

avenue. The frames are in colour and their resolution is higher than that of the

UCSD datasets. Consequently, the level of detail is far superior, which significantly

increases the range of identifiable patterns. Anomaly detection methods applied to

this dataset will need to have a more sophisticated model of what is normal as they

will encounter much greater variety of inputs including all combinations of clothes,

accessories and rucksacks people could be wearing and items they could be carrying.

There is also a greater variation in what people are doing; in the UCSD datasets,
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Figure 2.4: An example frame from the CUHK Avenue dataset.

walking is the only normal activity, whereas in the Avenue dataset, people are

standing, walking, meandering, patrolling, reading, using phones, wheeling suitcases

etc. In addition, the light levels change from video to video, as does the colour-tone.

Similar to the USCD datasets, the background is very static, crowd density varies

and there is much occlusion. Figure 2.4 shows an example frame from this dataset.

The test set contains 58 anomalies, but there is a lack of variety. Of the 58

anomalies, 15 are a man throwing a bag, three are the same man throwing papers,

and fifteen are the same man bending over to pick up either the bag or the papers.

The objects are mainly thrown and picked up in exactly the same way, and so there

is little variety within these three examples of anomaly. Nine of the anomalies are

people running. Six are people entering or exiting from the path on which the camera

is situated. This makes the people appear exceptionally large on screen as they walk

past the camera. Unfortunately, there is an instance of this in the training set. Four

of the anomalies are a boy skipping and the remainder are a boy loitering at the

front of the scene, a bike being wheeled through the scene, some people dancing and

a man walking on the grass. At one point, the man who threw the earlier items

enters, hesitates and quickly leaves, which counts as the final anomaly.

There are also occurrences of events that are anomalous with respect to the

training set, but that are not labelled as anomalous. This subjectivity can lead to

algorithms reasonably generating false-positives, but being penalised for them as

harshly as when other algorithms raise false-positives for no justifiable reason. For

example, there is a woman sat on the grass with bright red bags, another woman

loiters on the grass for a long time without moving very much at all. At another

time, a man hurries through with colourful bags, and there are people on patrol who
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gesture enthusiastically.

Hinami et al. [40] had observed similar issues with this dataset, and so removed

five offending test videos. The remaining subset of videos is referred to as the

Avenue17 dataset. On this subset, algorithms perform better [45] due to the lower

apparent false-positive rate. Algorithms tested on this dataset are marked with an

asterisk in Table 2.4 and Table 2.5.

Within this thesis, We include evaluation on the Avenue dataset in Chapter

3 to match that provided by a closely related method [40]. While the quality of

this dataset is greater than all others discussed so far, that brings with it a range

of complexities and issues as discussed above. From this point onwards in the

development of anomaly datasets, it would be most useful to have a more refined

ground truth that marks each pixel as either normal, anomalous or both; because

with this level of detail, there are so many axes along which events can vary and

whether or not a particular axis should be considered a sensitive anomaly trigger is

a judgment call. For example, if someone enters the scene wearing a bright orange

jumper, is that abnormal? It is certainly rarely seen. A method that triggers over

such an event should be penalised less severely than a method that segments sections

of pavement as abnormal. Currently, this is not the case and all deviations from

the ground truth are penalised equally. This limits the usefulness of datasets of this

level of complexity onwards.

2.2.5 ShanghaiTech Campus

Luo et al. [64] introduced the ShanghaiTech Campus dataset in 2017. This dataset

is larger than all of the other datasets combined, with the training set containing

330 videos that span 13 scenes. Similar to the Avenue dataset, the level of detail and

colour is sufficient to significantly expand the range of inputs to anomaly detection

methods as shown in Figure 2.5. However, This dataset is better at capitalising on

this, and explores the normal input space more thoroughly.

Considering the range of normal inputs, pedestrians walk either along a path,

or on a pedestrianised zone. Similar to other datasets, there is large variety in

crowd density, and people frequently occlude each other. Different to the UCSD
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Figure 2.5: One example frame from each of the 13 scenes in the ShanghaiTech
Campus dataset. This figure begins with scene one depicted in the top-left corner,
and the scenes first increase to the right and then down.

and Avenue datasets, there are many normal paths that pedestrians can take. A

number of scenes have multiple entrances and exits, allowing paths to cross, and the

pedestrianised zones allow people to explore an area rather than a line. Anomaly

detection methods must be robust against large variations in light level. Sometimes

it is overcast with no shadows, sometimes it is brighter with well-defined shadows.

The appearance of objects can change abruptly as they move from light areas to

shaded areas. The dataset features lakes and large buildings that are fronted with

dark glass, which provide a significant source of distorted, wavy reflections that

could potentially trigger false-positive detections. Unique to this dataset, cameras

sometimes rotate slightly between two videos of the same scene. Some scenes are

the same as others, but shot from a different position and angle. No other dataset

provides differing perspectives in this way.

Considering the range of anomalous inputs, the test set contains 107 videos that

span 12 of the 13 scenes. This is far more testing videos than in other datasets,

but each video is short, and most often cover a single anomaly. By cropping the

anomalies out in this way, the range of normal inputs present in the test set is

reduced, thus decreasing the opportunity for algorithms to produce false-positives.

There are many more anomalies in this dataset, and they have greater variety. This

can be seen in Table 2.3, which shows the anomaly counts. For example, there

are several occurrences of pushing, falling and fighting that do not present in other

datasets. However, there are still overwhelmingly more instances of bikes than other
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Table 2.3: Summary of anomalies in the ShanghaiTech Campus dataset.

Actions Vehicles

Run / chase 19 Bike 46

Jump / repeatedly jumping 7 Skateboard 10

Fight / small conflict 6 Moped 6

Fall over / Push over 5 Van 2

Throw bag 5 Car 3

Abnormal path 4 Small 3-wheeled truck 2

Jogging 3 Segway 1

Steal bag 3 Other

Hop over railing 2 Pram 3

Swing tripod like batton 2 Wheeling trolley 1

Drop object 1 Kids stare at camera 1

Bend to pickup object 1 Toddler runs 1

Ambush 1 Step onto small wall 1

anomalies, leaving these new and novel anomaly classes only partially explored.

This dataset is not included further in this thesis because so few other methods

have provided evaluation on it, and none with pixel-level evaluation. There is also

a large computational time cost to using this dataset and of course, the issues

discussed with the Avenue dataset relating to increased complexity are relevant for

this dataset too.

2.2.6 DAGM07

The Symposium of the German Association for Pattern Recognition 2007 (DAGM07)

held a competition for weakly supervised learning in which challengers were tasked

with detecting defects in ten different algorithmically generated textures [102]. Fig-

ure 2.6 provides an example from each of these different textures. The images, being

algorithmically generated, bear no resemblance to anything in the real-world; how-

ever, the challenge is intended to simulate the task of industrial optical inspection

of products. One drawback of this dataset is that each texture class only exhibits

one kind of defect, although there is a wide variety in how the defect manifests itself

29



Figure 2.6: One example defected image from each of the ten DAGM07 classes.

across the images in terms of location, size, and orientation in most cases.

While there is ground truth supplied with this dataset, it is unfortunately very

coarse in that ellipsoids are provided to mark the general location, size and shape

of the anomalies rather than a pixel mask as in other datasets. Therefore, methods

that segment anomalies are severely penalised for not labelling the normal pixels

captured in the ellipse. We therefore use this dataset only for qualitative evaluation

of our method presented in Chapter 4. This dataset is not relevant for our method

presented in Chapter 3, since that operates on surveillance style datasets. We omit

this dataset from the evaluation of our final method presented Chapter 5 since we

were already able to demonstrate both the promise and the limitations of the method

using a dataset with fine-grained ground truth. In addition, this method is costly

in terms of computational time. It is also more important to include this dataset

for extra evaluation in Chapter 4 in particular, since there are hard-coded aspects

to the method that require demonstration that they have not been over-fit to one

particular dataset.

2.2.7 Leaf

Hughes et al. [43] provide the Leaf dataset, which consists of a very large number of

images of leaves spanning 15 species, some of which are healthy and some of which

show signs of various diseases. Figure 2.7 shows one example of each kind of leaf

with disease.
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Figure 2.7: One example image from each species of leaf in the Leaf dataset that
has a diseased category: apple, cherry, corn, grape orange, peach, pepper, potato,
squash, strawberry, and tomato.

Although none of the methods reviewed in Section 2.3 are tested on this dataset,

we use it as an additional test for the method that we present in Chapter 4, which

achieves state-of-the-art textural anomaly detection results. Justification for inclu-

sion and exclusion in each method chapter of this thesis is identical to that explained

for the DAGM07 dataset in the previous section.

2.2.8 MVTecAD

The anomaly detection dataset released by MVTec (MVTecAD) [11] focuses on

applications in industrial optical inspection, similar to DAGM07, but this dataset

provides real visible-band images of macro-scale textures and objects. This dataset

consists of five texture classes and ten object classes, with each class split into

defect-free samples for training and defective samples for testing.

Figures 2.8 and 2.9 depict one defective sample from each texture class and object

class respectively. There are a range of defects present in each class’ test set. For

example, the grid test set contains images where foreign material of either metal or

thread is present on the grid and images where the grid is either bent (as shown),

31



Figure 2.8: One example defective image from each of the five texture classes in
the MVTecAD dataset: carpet, grid, leather, tile and wood.

Figure 2.9: One example defective image from each of the ten object classes in
the MVTecAD dataset: bottle, cable, capsule, hazelnut, metal nut, pill, screw,
toothbrush, transistor, and zip.

broken, or contaminated with glue. The test set for each class typically contains four

or five different types of defect along with some defect-free examples. The images

represent a good variation of each type of defect ranging from obvious to subtle.

This dataset is the main dataset we use to evaluate both of our textural defect

segmentation methods (Chapters 4 and 5) since the dataset aligns strongly with

our particular objectives within anomaly detection, it is high-quality, it provides

accurate pixel-level ground truth, and it is widely used for evaluation on other

methods [11, 12, 63].

2.2.9 Conclusion

We have examined the datasets most frequently used to evaluate the performance

of anomaly detection methods. Broadly, we covered two main classes of dataset:

the surveillance and texture style datasets and highlighted the similarities and

differences among the datasets within each class. We conclude with a reflection on
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the anomalies occurring in these datasets with a view to stimulating consideration

over the datasets we use and their potential merits and drawbacks.

Overexplored Anomalies

While there is nothing wrong with using pedestrians to represent normality and

bikes to represent abnormality, it is not good that this is always the case. There

needs to be a variety of contexts because bikes are not inherently anomalous any

more than pedestrians are inherently normal. If the scene was of a cycle path, then

we would require the pedestrians to be labelled as anomalous and cyclists as normal.

Since most anomalies are bikes, an algorithm could achieve a reasonable AUC score

even if that is the only anomaly it recognises.

Composite Anomalies

Many of the anomalies exhibited in test sets are anomalous for multiple reasons.

Take the most common anomaly as an example; that of a bike being ridden through

a pedestrianised zone. The bike is an irregular object, since it was never observed

in the training set, while the cyclist is a regular object moving at irregular speeds

and potentially with irregular paths. Since these anomalies may be split into several

anomaly classes in this way, it is possible that only a subset of these actually trigger

anomaly detection. For example, it is not clear if sitting on a stationary bike would

trigger anomaly detection, since this does not occur in the datasets. This is a

problem with anomalies that always hit multiple areas of an anomaly taxonomy

simultaneously. It would be better if there was a mix of pure and composite

anomalies, to test algorithms on a wider variety of events.

Labelling anomalies

Considering the content of these datasets, it seems reasonable to assume that not all

false-positives are equal. Some false-positives may be reasonable if the training set

did not adequately cover the space of normality, or if the falsely detected anomalies

truly are anomalous in some sense, even if the human annotators considered them

to be uninteresting. It’s possible for a competent anomaly detector that only gives
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reasonable false-positive detections to achieve an equal AUC score to an incompetent

anomaly detector.

Scale of normal and anomalous events

Every surveillance style dataset defines normality as pedestrians walking, while

anomalous events are typically vehicles moving, items being thrown or people moving

quickly. A consequence of this is that anomalous events are often larger in scale or

faster than normal events. Our datasets could expand the concept of normality to

include larger and faster objects like cars, joggers and cyclists. Likewise, test sets

could exhibit anomalies that are subtle. If both of these changes are made, then the

scales and speeds of normal and anomalous events will have a much greater overlap.

To see why this is important, assume a poor anomaly detection algorithm that

assigns anomaly scores purely based on the size and speeds of certain patterns of

pixels. Such a detector could achieve a high AUC score since there is a correlation

between anomalous events and the events that the detector assigns high anomaly

scores to. In contrast, to achieve a high AUC score on a dataset where scales and

speeds are better merged, an algorithm must learn to suppress anomaly scores for

normal events that have a very high impact on the pixel values, while flagging

anomalies that only make subtle changes to the pixel values.

2.3 Anomaly Detection Methods

This section reviews a range of modern methods for anomaly detection arranged by

category based loosely on the kinds of techniques they employ. Within each category,

the methods are reviewed in chronological order. Anomaly detection performance is

reported in Tables 2.4 and 2.5 for the surveillance style datasets at the frame-level

and pixel-level respectively and Table 2.6 for the texture style datasets. Where

methods present several variants, we report the best performing overall variant.

For the texture style datasets, these are literal pixel-level evaluations in that

each individual pixel across the test set generates either a true-positive or false-

positive result for the ROC curve. For the UCSD and Avenue datasets these are

34



Table 2.4: Frame-level AUC scores achieved by anomaly detection methods on
surveillance style datasets. Results marked with an asterisk were obtained on the
Avenue17 subset (Section 2.2.4).

Subway UCSD
Method

Ent. Exit
UMN

Ped1 Ped2
Avenue Shanghai

Prediction

U-Net [59] - - - 0.83 0.95 0.85 0.73

Reconstruction

AMDN [104] - - - 0.92 0.91 - -

ConvAE-Has [36] 0.94 0.81 - 0.81 0.90 0.70 -

ConvAE-Rib [81] - - - 0.57 0.85 0.77 -

STAE-Zhao [110] - - - 0.92 0.91 0.77 -

STAE-Chong [18] 0.85 0.94 - 0.90 0.87 0.80 -

Deep CNN Features

Recount [40] - - - - 0.92 0.90* -

Dictionary

150-FPS [62] - - - 0.92 - - -

BSD [78] - - - 0.71 - - -

TSC [64] - - - - 0.92 0.82 0.68

NMC [45] 0.92 0.95 0.99 - - 0.88* -

No Training

Del [22] - - 0.91 - - - -

Unmask [44] 0.71 0.86 0.95 0.68 0.82 - -

Other

GPR [17] 0.93 - 0.84 - - -

SFA [42] - - 0.97 - - - -

LSH [109] - - 0.99 - - - -

pseudo pixel-level evaluations in that each frame generates either a true-positive or

false-positive result based on anomalous pixel coverage (Section 1.2). Methods may

be omitted if they did not provide any pixel-level results nor frame-level results for

either the Subway, UMN or Shanghai datasets.
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Table 2.5: Pixel-level AUC scores achieved by anomaly detection methods on
surveillance style datasets.

UCSD
Method

Ped1 Ped2
Avenue Shanghai

Reconstruction

AMDN [104] 0.67 - - -

Deep CNN Features

Recount [40] - 0.89 - -

Dictionary

150-FPS [62] 0.64 - - -

BSD [78] 0.56 - - -

NMC [45] - - 0.94 -

No Training

Unmask [44] 0.52 - - -

Other

GPR [17] 0.63 - - -

LSH [109] 0.77 0.90 - -

Gas [93] 0.65 - - -
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Table 2.6: Pixel-level AUC scores achieved by anomaly detection methods on
texture style datasets.

Method Carpet Grid Leather Tile Wood Mean

Reconstruction

BergAE (L2) [12] 0.59 0.90 0.75 0.51 0.73 0.70

BergAE (SSIM) [12] 0.87 0.94 0.78 0.59 0.73 0.78

VEVAE [60] 0.78 0.73 0.95 0.80 0.77 0.81

SMAI [56] 0.88 0.97 0.86 0.62 0.80 0.83

P-Net [63] 0.57 0.98 0.89 0.97 0.98 0.88

VAEgrad [21] 0.74 0.96 0.93 0.65 0.84 0.82

Generative Adversarial Networks

AnoGAN [85] 0.54 0.58 0.64 0.50 0.62 0.58

GANomaly [5] 0.70 0.71 0.84 0.79 0.83 0.78

Deep CNN Features

CNN Feats. [71] 0.72 0.59 0.87 0.93 0.91 0.80

Other

GMM [13] 0.88 0.72 0.97 0.41 0.41 0.68

FCDD [61] 0.96 0.91 0.98 0.91 0.88 0.93
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2.3.1 Future Frame Prediction

Videos introduce a temporal dimension to the problem: even if each individual frame

appears to be normal, there may be irregular motions that are only apparent over

a sequence of frames. Analysis of sequential inputs often relies on Recurrent Neural

Networks (RNN); however, training an RNN can be challenging due to the vanishing

gradient and exploding gradient problems [75]. Long Short Term Memory (LSTM)

[41] is a class of RNN that has mostly eliminated the vanishing gradient problem

and has proven to be very successful at tasks involving sequential inputs.

In future frame prediction, input frame sequences are mapped to output frame

sequences. The general problem of mapping sequences to sequences had a long

evolution before it was applied to frame prediction. Graves et al. [34] introduced

depth into the LSTM network to generate very long and realistic sequences of text

and handwriting. Sutskever et al. [94] extended this work so that the input and

output sequences could be of arbitrary length. Srivastava et al. [92] applied this

to predicting future frames, and showed that the accuracy of the output sequence

could be improved by adding a branch that simultaneously reconstructs the input

sequence.

Up to this point, all of the models used for mapping sequences to sequences

were fully-connected; Xingjian et al. [103] argued that this fully-connected structure

discarded valuable spatial information, and so they proposed a convolutional LSTM

network based on Srivastava’s architecture. Other researchers have applied this

convolutional LSTM architecture to anomaly detection in videos. In particular,

Medel et al. [69] use convolutional LSTM to predict future frames, and use the

accuracy of prediction to measure the normality of the input frames.

When predicting future frames, it is common to obtain blurry images [92].

Mathieu et al. [68] explain that using the `2 loss function during training can be

responsible for this, since this loss function is minimised by predicting images that

are averages over all probable outcomes. Using the `1 loss function has similar

consequences, but is not as severe. To alleviate this problem, they suggest two new

and complementary loss functions that may be used alongside the `p loss:
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• A gradient difference loss function. The gradient considered is the rate

of change in pixel intensity within a single frame. This gradient is calculated

at a pixel by considering its change with respect to the pixels to the left and

below it. The difference considered is between the target and predicted images.

Equation 2.2 gives the loss for a single frame:

Lgdl(Y , Ŷ ) =
∑
i,j

(∣∣∣|Yi,j−Yi−1,j|−|Ŷi,j−Ŷi−1,j|∣∣∣α+
∣∣∣|Yi,j−Yi,j−1|−|Ŷi,j−Ŷi,j−1|∣∣∣α)

(2.2)

Where Y is the ground-truth frame, Ŷ is the predicted frame, and α is a

parameter. The variables i and j index pixels within the images. This loss

function works with the `p loss, since the `p loss encourages the model to

predict images that are close to the ground-truth, while the gradient difference

loss encourages the model to predict images that are sharp where the ground-

truth images are sharp.

• An adversarial loss function. The model needs to invent a plausible

sequence of future frames Ŷ given a sequence of previous frames X. In this

respect, the model can be considered a generator in a conditional GAN; one

only needs to add a discriminator D(X, I) to predict a confidence level in the

range [0, 1] that the sequence of images I truly does follow the sequence X.

The discriminator network should be able to easily identify blurry images

as generated, thus the generator network is penalised for producing such

images. Only when the generator produces plausible, sharp images will the

discriminator network begin to have difficulty. During training, the generator

predicts a sequence of future frames Ŷ conditioned on a sequence of previous

frames X. The discriminator is shown the same set of previous frames, plus

a sequence of future frames that is either the ground-truth future frames Y ,

or the generated future frames Ŷ . The adversarial loss function encourages

the generator to predict images that the discriminator classifies as originating

from the ground-truth distribution:
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Ladv(Ŷ ) = LMSE(D(X, Ŷ ), 1) (2.3)

The adversarial loss function also works with the `p loss, since the generator

may learn to produce images that fool the discriminator despite being far away

from the ground-truth. If the generator attempts this, it will be penalised by

the `p loss. Of course, the discriminator is also trained, but the details of this

are not included since it is the generator that is of interest here.

Mathieu et al. [68] use their new loss functions to significantly improve future frame

prediction beyond what can be achieved using the `p loss function alone.

Liu et al. [59] build on the work of Mathieu et al. [68] and apply it to anomaly

detection. To generate future frames, they use a variation of the U-Net architecture

[82]. These frames are evaluated as being real or fake by a discriminator network

based on the patch discriminator of Isola et al. [46], thus forming the basis of the

adversarial loss. Isola et al. [46] use a patch discriminator because they note that the

`p loss is good for training models to produce images with the correct low frequency

structure, and fails only at allowing models to produce images with the correct high

frequency structure. Therefore, the GAN only needs to address the high frequency

structure, which is facilitated by only discriminating small patches of the generated

images.

GAN requires an input noise vector, conditional GAN requires an additional

input on which to condition the output. Mathieu et al. [68] and Isola et al. [46] both

found that conditional GAN tends to ignore the noise input, and may be omitted.

The consequence of this is that the stochastisity of the output of a conditional GAN

is limited, or is entirely deterministic when the noise is omitted. Liu et al. [59]

do indeed omit the noise; however, stochastisity is not required. In addition, they

introduce an optical flow loss to include a temporal consideration in the evaluation

of predicted frames. They use Flownet [27] to compute the optical flow, which is

applied twice: once to calculate the optical flow between the last seen frame and the

predicted next frame, and once to calculate the optical flow between the last seen

frame and the actual next frame. The difference between these forms the flow loss.
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2.3.2 Reconstruction

Typically, the aim of reconstruction methods is to achieve the following:

• Learn an encoding function that compresses an input down to a smaller feature

vector.

• Learn a decoding function that reverses the compression, such that normal

inputs are reconstructed very accurately while anomalous inputs are recon-

structed poorly.

• Use the accuracy of reconstruction as a measure of normality.

The encoding and decoding functions are usually learned by training an autoencoder

on a dataset of normal examples.

Xu et al. [104] introduce a method they called Appearance and Motion Deep

Net (AMDN). AMDN uses three separate stacked denoising autoencoders to learn

three different representations of patches taken from normal video frames. The first

learns to encode the original patches, the second learns to encode the corresponding

optical flow patches, and the last learns to encode both patches fused together along

the channel dimension. Each of the three encodings is used to train a separate

one-class SVM. Testing a sample frame entails passing image, optical flow and fused

patches to the respective encoders, and feeding the resulting encodings into the three

one-class SVMs, each of which makes a contribution towards determining whether

or not the input sample is anomalous.

Hasan et al. [36] use a convolutional autoencoder to learn the regularities in a

set of training videos. Their convolutional autoencoder attempts to reconstruct a

stack of single-channelled input frames, where the frames are selected via a sliding

window over the current video. The input is compressed through a series of convo-

lutional and pooling layers, and then uncompressed through a series of transposed

convolutional and unpooling layers to form the reconstructed version of the input.

The `2 difference between the original stack and its reconstruction forms the loss

function during training; while during testing, it forms the basis of a regularity

score. Their justification for using a convolutional autoencoder was that a regular
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fully-connected autoencoder loses spatial information, whereas convolutional layers

produce feature maps that preserve spatial information. We refer to this method as

ConvAE-Has.

A similar approach is taken by Ribeiro et al. [81]; however, they only use single

frames as input rather than a stack of sequential frames. Consequently, their model

does not have access to the same temporal information. They experiment with fusing

the input frame with features from either the Canny Edge Detector, Optical Flow or

both. Where Optical flow is used, this reintroduces the temporal information missing

from the single-frame approach. Curiously, introducing temporal information in

this way most often weakens performance, while the combinations with only spatial

information outperform ConvAE-Has [36] on the Avenue dataset. Ribeiro et al.

suggest that for this dataset, temporal information is not as relevant as the spatial

information for identifying the anomalies. Performance on the UCSD Ped1 dataset

is weak compared to all other methods mentioned. We refer to this method as

ConvAE-Rib.

The methods previously mentioned use two-dimensional convolutions, even when

operating on spatio-temporal inputs that are three-dimensional. This causes tempo-

ral information to be lost, since a neuron in a feature map connects to all channels.

Zhao et al. [110] address this weakness by moving to three-dimensional convolutions,

resulting in what they called a Spatio-Temporal AutoEncoder (STAE). This was

inspired by the three-dimensional convolutions used to increase performance on

action recognition problems [97, 47], which also involve recognising patterns of

motion. Following Srivastava et al. [92], their method also entails training the

model to predict future frames concurrently with reconstructing the current frames.

By forcing the model to learn to predict future frames, it needs to attend to the

regular motions of objects in addition to the appearance of the frames. On the

Avenue dataset, this approach is very similar to that of ConvAE-Rib; however, high

performance is maintained across both the UCSD Ped1 and Ped2 datasets, where

ConvAE-Rib only achieves good results on the UCSD Ped2 dataset. We refer to

their method as STAE-Zhao.

Chong et al. [18] address the loss of temporal information by applying two-
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dimensional convolutions over individual frames, rather than a stack of frames as

done by Hasan et al. [36]. This results in a sequence of feature maps that summarises

the spatial information, while avoiding collapse of the temporal information. Fol-

lowing this extraction of spatial features, the sequence is fed into a convolutional

LSTM [103] to summarise the temporal information. A mirror image of this network

attempts to reconstruct the input video volume in a similar way to the above

methods. We refer to this method as STAE-Chong.

Bergmann et al. [12] apply a simple CAE architecture on their proposed MVTecAD

dataset [11]. Since this dataset consists of images rather than videos, they do not

need to consider any special treatment of the temporal information as discussed in

the above methods. They perform experiments using two variants: one trained using

the `2 distance between the input and reconstruction and one trained using a distance

based on the SSIM measure [101]. Similar to the findings of Mathieu et al. [68]

described above, they find that using the `2 distance can form blurry reconstructions

that hinder performance. They obtain significantly better results using the SSIM

distance. We refer to their autoencoder architecture as the Bergmann autoencoder

or BergAE. Bergmann et al. [11] also test a range of contemporaneous methods [85,

71, 13] on their dataset, which we review in their respective categories.

Since Bergmann et al. [12], other researchers have tested new methods on the

MVTecAD dataset. Luo et al. [63] develop the P-Net architecture consisting of

structure extraction and image reconstruction modules. The image reconstruction

module takes input not only from the original image, as in previous methods, but

also from the extracted structure. In addition to comparing input images with

their reconstruction, they also extract structure from the the reconstructed image

and compare with that from the original image to give an additional measure of

abnormality. Li et al. [56] propose a method they refer to as Superpixel Masking

and In-painting (SMAI). This method is a variation on the theme of reconstruction

methods presented so far. They mask out a randomly selected superpixel from each

training instance and train the PEN-Net image in-painting network [108] to restore

the instance. When processing a test instance, superpixels are masked out in turn

and the trained PEN-Net model restores them. Inaccuracies in the restoration
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measure the abnormality of the superpixel region. Dehaene et al. [21] propose

improving autoencoder reconstruction by projecting input test samples onto the

learned normal data manifold via iterative gradient descent. This overcomes the

difficulty of the autoencoder to reconstruct high-frequency information and improves

performance on a range of autoencoder variants. They obtain their best results using

a VAE-based variant (VAEgrad); therefore, we use the performance of this variant

for comparison in results tables in this thesis.

2.3.3 Generative Adversarial Networks

When applied to anomaly detection, GAN are trained on the normal distribution of

data such that the outputs of the generator function are on the manifold of normal

data. In the AnoGAN method for anomaly detection, Schlegl et al. [86] use the

DCGAN [76] architecture to generate a sample on the normal manifold that has

a minimal distance to some test sample. Unfortunately, since the generator of the

DCGAN framework is unable to map from the data space to the latent space, the

generated sample must be found through a costly iteration over latent space vectors,

which makes the inference phase very computationally expensive. In a subsequent

work they introduce a fast version of AnoGAN called f-AnoGAN [85] that side-steps

the requirement to iterate over latent-space vectors by training an encoder network

alongside the generator and discriminator. They test the BiGAN [25] methodology

for training the encoder as well as introducing two new methodologies that train

the encoder in a separate step, making use of the pretrained generator network. In

addition, they substitute WGAN [8] in place of the DCGAN [76] architecture. They

demonstrate improved anomaly detection and segmentation performance when using

their encoder training methodologies.

Concurrently with f-AnoGAN, Akçay et al. [5] improve upon AnoGAN using a

novel encoder-decoder-encoder pipeline they call GANomaly, which yields signifi-

cantly better performance in terms of both anomaly detection and computational

cost. The first encoder maps an input image to a latent-space vector and the decoder

generates an image by mapping the vector back to the input space. The second

encoder maps the generated image back again to the latent space. Meanwhile, a
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discriminator network is employed as in the vanilla GAN framework to discern real

input images from generated ones. Three losses are used to train the architecture:

A context loss measures the distance between real and generated images so that the

encoder-decoder architecture generates images with the correct content; an encoder

loss measures the distance between the two latent vectors so that both encoders

learn a similar mapping to the latent space; and an adversarial loss is used as in

the vanilla GAN framework to train the encoder-decoder architecture to generate

realistic looking images, except that the training signal is formed from the distance

between features extracted from the discriminator rather than the discriminator

output. At inference time, the anomaly score is calculated via the distance between

the two latent space vectors formed from the test input. Since the generated image

should be missing the anomalies present within the test input, so too should the

final encoding vector be missing the anomalous information. Akçay et al. [6] later

improve GANomaly via the introduction of skip connections in the architecture,

resulting in Skip-GANomaly.

2.3.4 Deep Learned Features

The anomaly detection methods reviewed in this section use CNN architectures

that have been pretrained on large scale image datasets such as ImageNet [23],

leveraging the transferability of the features extracted from such networks [105] and

the generality of the imagery that these networks have been exposed to.

Recounting of anomalies requires explaining why a particular input is anomalous.

Hinami et al. [40] investigate joint anomaly detection and recounting by adapting

The Girshick Fast R-CNN architecture [29] (Section 2.1.3). They extend this net-

work by adding two branches: one for attribute labels and one for action labels.

Attributes are adjectives that describe the object, such as blue, tall, old and broken;

while actions are verbs such as bending, climbing and sitting. The class, attribute

and action labels are simultaneously trained under the multi-task paradigm such that

the network layer common to these three outputs must encode high-level semantic

information about all three tasks. They learned regularities based on these high-level

semantic features using KDE (Section 2.1.1). When their anomaly detector flags an
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input as anomalous, they are able to recount that anomaly by examining the network

output branches. From these, they can determine which object in the scene caused

the anomaly, and describe its attributes and action. Interestingly, they achieve their

best result (as displayed in Tables 2.4 and 2.5) when using a variant trained only

on the action labels.

Napoletano et al. [71] extract features from a ResNet-18 model [38] pretrained

on images from the ILSVRC 2015 challenge [83]. In the training phase, they

extract features from normal image tiles and form a dictionary of normal features

by clustering with the KMeans algorithm. In the inference phase, the Euclidean

distances between a given test tile feature representation and those of the m most

similar members of the dictionary are averaged to form an abnormality score.

2.3.5 Dictionary Learning and Sparse Coding

Sparse coding is the process of finding a vector x ∈ Rn that constructs a point

y ∈ Rn given a dictionary D ∈ Rn×m and a sparsity constraint as accurately as

possible [32]. The vector x is said to be a sparse representation of y. To arrive

at this sparse representation, one would like to minimise the construction error

under an `0 constraint; however, Cheng et al. [16] explain that this minimisation is

NP-hard. Instead, the minimisation may be performed under a relaxed `1 constraint,

which is equivalent under certain conditions [16]. Ren et al. [79] explain that the `1

minimisation benefits from the existence of efficient algorithms, and well-developed

theory. The most common `1 minimisation used is that of Equation 2.4.

x̂ = arg min
x

1

2
||Dx− y||22 + λ||x||1 (2.4)

This approach tries to balance minimising the construction error ||Dx − y||22 with

minimising the `1 norm of the representation. Even if a point y may be constructed

perfectly from atoms in the dictionary, doing so might require many atoms, thus

pushing up the penalty imposed by the `1 norm regularisation.

In sparse coding based anomaly detection methods, the space Rn is the input

space. Each point in this space may be a frame, an image patch, a spatio-temporal
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cuboid, or some feature vector extracted from any of the above. Dictionary methods

are typically agnostic to the type of representation used; however, the choice of

representation may affect the performance. To apply sparse coding to anomaly

detection, one can measure the normality of a test sample yi by the sparsity of its

sparse representation xi [20, 62]. The dictionary D needs to be learned to facilitate

this. It is common to find the dictionary that minimises Equation 2.4 over all

training samples yi; thus, one would like to take the arg min over both x and D.

While this problem is non-convex, each minimisation on its own is convex, and so

one normally proceeds via alternately minimising over x and D while keeping the

other fixed [62]. Once the dictionary is found, it can be used as a constant in future

instances of Equation 2.4 as previously described.

Cong et al. [20, 19] proposed the Multiscale Histogram of Optical Flow (MHOF)

algorithm as a feature extraction mechanism. These features extracted from the

training videos form a very large feature pool. The feature pool is pruned to reduce

the number of noisy and redundant features by searching for a minimal subset that

can best recreate the entire pool via their sparse linear combinations. The surviving

features form the atoms of a dictionary. The learned dictionary is used to derive

sparse representations of test features using a method very similar to Equation 2.4;

however, Cong et al. add a weight to each atom that affects the relative cost of

using the atom in representations. The weight is determined by the frequency of

the atom in the training pool, so that when a representation uses an atom that is

very common, it is penalised less than when it uses an atom that is rare.

A problem with sparse coding methods is that it takes a lot of computation to find

the optimal subset of atoms from which to form the sparse representation [62, 64].

There are many possible combinations of s atoms drawn from m atoms to search

through, considering the high dimensionality n of the input space, and the require-

ment of m >> n atoms in the dictionary. To improve the performance of sparse

coding methods, Lu et al. [62] proposed learning a set of optimal combinations of

atoms in advance, and only searching through those at test time. In 2013, they

achieved very fast performance of 150 FPS on a regular desktop computer running

MATLAB, without significantly compromising the detection accuracy. This work
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introduced the Avenue dataset (Section 2.2.4).

Ren et al. [78] learn a dictionary whose atoms are grouped into behaviours.

Rather than reconstructing samples from any combination of atoms, only combi-

nations from a single behaviour may be used. They call this a Behaviour Specific

Dictionary (BSD). They use the K-SVD algorithm [4] to yield an initial dictionary

that satisfies ||y −Dx||2 ≤ ε subject to ||x||0 ≤ s followed by spectral clustering

[72] to separate the atoms into behaviour groups. This technique respects the fact

that many normal behaviours are possible, and that a new example of any of these

behaviours should be constructible using only a representative sample of the same

behaviours. In contrast, previous techniques allow the mixing of atoms from diverse

behaviours.

Luo et al. [64] added temporal coherency to this class of anomaly detection

method by enforcing that neighbouring frames have similar sparse coefficients if the

frames themselves are similar; they called this Temporally-coherent Sparse Coding

(TSC). They showed that TSC can be interpreted as a stacked RNN, which increases

the speed of the algorithm during the testing phase, and facilitates optimisation

of parameters simultaneously. Using TSC directly would require choosing hyper-

parameters to optimise the reconstruction coefficients. This work introduces the

ShanghaiTech Campus dataset (Section 2.2.5).

Ionescu et al. [45] use Narrow Motion Clusters (NMC) to detect anomalies. They

extract features from spatio-temporal cubes, cluster them using k-means, discard

outlying clusters, and then shrink each cluster using an SVM. These narrowed

clusters form the dictionary.

2.3.6 Anomaly Detection Without Training

The methods reviewed in this section do not use the training set. They are auto-

matically ready for deployment on the test set without any previous exposure to the

dataset distribution. This requires a shift in our definition of an anomaly. Up to

this point, anomalies have been defined by the training set; but for these methods

that do not see the training set, anomalies are defined by their discriminability i.e.

how easily a testing sample can be separated from the complete corpus of testing
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samples. Similar to the sparse coding methods, the test samples are usually some

features extracted from the source material, rather than the source material itself.

Del et al. [22] propose a method in which a sliding window passes over the

features extracted from every frame of a test video. All features inside the window

are assigned the anomalous label, while all those before the window are assigned

the normal label. Features after the window are not used. Note that these labels

are assigned purely on the basis of whether or not the samples happen to be inside

the window at its current position; there is no regard for the truth of these labels.

A simple logistic regression classifier is trained on these labelled features. Following

this training, the classifier is applied to each feature inside the window and its

confidence that the feature is anomalous is used as a measure of the discriminability

of that feature. If a feature lies close to the decision boundary and is classified with

a low confidence of near 0.5, then it is assumed that feature is not easily separated.

As described, this method performs change detection. To extend to anomaly

detection, the features are shuffled prior to running the sliding window over them.

The features are repeatedly shuffled, and the process is repeated for each shuffle. An

average discriminability is used as a measure of abnormality. On the Avenue dataset,

the ROC curves produced by this method were very similar to those produced by

the sparse coding method of Lu et al. [62].

Ionescu et al. [44] have a similar approach, but they only consider observations

inside the window. Within the window, they label the first half of the frame features

as normal and the remaining ones anomalous. They then perform unmasking [50] on

these features, i.e. they repeatedly train a classifier on the features inside the window

and then remove the most easily discriminated features. They track the classification

accuracy across the iterations. Normality for the second half of the window is

measured by the extent to which accuracy drops. Their reported performance on

the Avenue dataset is omitted from our results tables since they only used five of

the dataset videos.

Andrews et al. [7] use a Forest of Random-Split Trees (FRST) as an anomaly

detector. Each tree in the forest is produced from the features extracted from every

test image. The test images are split into two groups based on a randomly selected
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feature and a randomly selected value of the feature. The same process is applied to

each of the two groups to produce four groups, and so on until every feature ends up

in a group on its own, becoming a leaf on the tree. This produces a single tree. The

forest is produced by repeating this many times. Those features which are easily

separated will tend to form leaves early on in this process, whereas those features

that are similar to many others will need to wait longer to be separated, and will

form leaves only at a much deeper part of the tree. The depth of leaf is then used

as a measure of normality.

2.3.7 Other Methods

The remaining methods reviewed in this chapter cannot easily be grouped with

others or each other and so we review each of them here in isolation. The justification

for their inclusion is that they have performed exceptionally well on at least one

dataset and together they represent the wider range of anomaly detection methods.

Cheng et al. [17] employ Gaussian Process Regression (GPR) to make inferences

about the likelihood of anomalies in videos. They first locate Spatio-Temporal

Interest Points (STIP) in an input video, and then extract features from each

STIP using an empirically chosen method that depends on the nature of the input.

During the training phase, these extracted features are clustered using the K-means

algorithm to form a visual vocabulary of normal features. A feature has a pattern

similarity measure, which is the k-nearest neighbours distance of the feature to the

visual vocabulary. Applying a threshold on the pattern similarity measure allows the

detection of abnormal events. However, they were also interested in the interactions

between events that would allow them to detect global anomalies. To achieve this

they form a code book of normal interaction templates between local STIP points as

follows. During training, they use a three-dimensional sliding window over the input

video. For each window, they locate the STIP points, extract the features, and derive

their pattern similarities. Each window is used to form an ensemble, consisting of

the relative location, pattern similarity and matched code words of each STIP in

the window. After filtering to remove bad ensembles, they cluster the ensembles to

form the code book. Gaussian Process Regression is used to learn a model of normal
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interaction templates that maps relative location to pattern similarity.

Hu et al. [42] use five layers of Slow Feature Analysis (SFA) nodes to extract

slowly varying features from input videos. Each SFA node in a layer receives input

from a spatial patch within the layer below, where the spatial patches of neigh-

bouring nodes half overlap in both directions. A training set is used to determine

how the features should be extracted. To detect anomalies in a test video, they

calculate the sum of square derivatives of each SFA node output. This is a measure

of how quickly the output features change, which of course should be a very small

measure if the input data is similar to that seen during training. This is similar

to the reconstruction methods seen above, where if input x is similar to those seen

during training, then the auto encoder should be able to compress the input and

reconstruct it accurately; likewise in this method, if input x is similar to those

seen during training, then the model should be able to succeed in extracting slowly

varying features. Since each node is only affected by a certain patch within the

input video, anomalies can be simply localised.

Zhang al. [109] use Locality-Sensitive Hashing Filters (LSHF). HOF features

are extracted from spatio-temporal cuboids in the training videos to produce the

training examples xi ∈ Rd. A hashing function maps an example to an integer

and a sequence of such functions maps an example to a sequence of integers. This

sequence of integers is the hashing bucket for a given example. Training points that

are close to each other are likely to be mapped to the same bucket. In this way, the

hashing process serves a similar function to the clustering that has been observed in

previous methods. The centre and radius of each bucket is calculated by considering

the points that fell into it. The centre of a bucket is the average position of the all

points that fell into it, while its radius is determined by the furthest point from

that centre. A test sample is hashed into a test bucket using the same hashing

functions. The abnormality degree of the test sample is calculated by considering

the distance of the test sample to the centre of the training bucket nearest the test

bucket. This distance is compared with the radius of that training bucket to obtain

the abnormality degree.

Bottger et al. [13] build a Gaussian Mixture Model for texture anomaly detection
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from normal patches using maximum likelihood. The model estimates the probabil-

ity of test-time patches to give a normality score. Using larger patches is beneficial

for allowing the model to capture long-range structure, but this results in a quadratic

increase in computational cost and also more redundancy. They therefore propose a

texture compression scheme to convert patches into features to reduce redundancy

and computational cost.

Liu et al. [60] attempt to Visually Explain VAE models (VEVAE) by producing

attention maps via back-propagation of the latent vector to the last convolutional

layer. Subsequently, they show that these attention maps are effective at localising

anomalies in images.

Liznerski et al. [61] apply one-class classification on features extracted from a

Fully Convolutional Network (FCN). This requires train-time access to samples not

belonging to the set of normal inputs, but rather than using anomalous samples

(which would not be in the spirit of anomaly detection), they use images from

publicly available large-scale datasets or synthetically generated images. The FCN

is trained such that for normal inputs, the loss is high when the network produces

features that are far away from some centre c in the output space and vice-versa

for inputs from the external dataset. Since the network is entirely convolutional,

spatial information is preserved. The output feature map can therefore be upscaled

to generate an anomaly heat map in the input space. They call their method Fully

Convolutional Data Description (FCDD).

2.3.8 Conclusion

Some methods make use of features extracted from networks that have been pre-

trained on large scale image datasets [40, 71]. The appeal of these methods in an

anomaly detection setting is that having been trained on a wide variety of image

data, the networks can be expected to have learned rich features for discerning

classes with wide-ranging appearances [71]. Since in anomaly detection we only

have access to normal data and aim to detect an unbounded range of variations

from that normal data, leveraging these classification networks as feature extractors

is desirable. Methods from this class of anomaly detection technique have the
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advantage that they can be deployed very quickly after having seen the normal data,

since there is no need to perform forward and backward propagations to train the

model; however, they can be very slow at inference time if they have been exposed

to a large quantity of normal data [40]. In Chapter 3, we propose a real-time

method of anomaly detection based on the gathering of normal features extracted

from a pretrained network. This is achieved by gathering features more sparingly,

improving the quality of the collection while, most crucially, reducing its size.

At the core of many methods is a model for generating imagery based on some

test input. Usually, this generation is performed by an autoencoder [36, 81, 18, 12]

or by a GAN [85, 5, 6, 63]. These methods show promise because they are very

effective at producing imagery with anomalies removed, and so those anomalies

are readily exposed via a distance measure between the test input and the model-

generated imagery. However, as some point out [68, 12], differences also occur over

the normal pixels due to the poor generation of high-frequency visual details. A

range of solutions are suggested to tackle this problem that either help to produce

sharper images [68], or make use of a less strict distance measure that can forgive a

certain amount of infidelity [12]. Nevertheless, the efficacy of this class of methods

will always be bounded by the model’s ability to accurately generate normal regions.

In Chapter 4, we propose a method for textural defect segmentation whose ability

to accurately generate normal regions is ensured by passing normal information

from the input to the output directly, resulting in unsurpassed anomaly detection

performance on the MVTecAD [11] texture classes.

None of the methods reviewed make use of the more recent Transformer net-

works [100], despite their growing popularity in the image domain [14, 74, 26].

In Chapter 5, we propose a method towards filling this gap by targeting anomaly

detection through Transformer-based future pixel and future feature prediction.
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CHAPTER 3

Anomaly Detection by Density Estimation

We introduce a method of anomaly detection that operates on a live-stream of video

data such as obtained from a CCTV camera or a webcam. Potential applications

include the automatic monitoring of CCTV for abnormal activity or the detection

of foreign objects on a production line. Given this context, the primary objective is

to perform anomaly detection in real-time during the inference phase. In addition

to meeting this criterion, our method is able to capture and process a training

live-stream of normal events in real-time and is ready to begin inference immediately

after its observation. Depending on the complexity and variability of the normal

live-stream, the required observation period may be very short.

Our method is based on the multi-task Kernel Density estimation (KDE) variant

of the method proposed by Hinami et al. [40] whose pipeline consists of three stages:

region proposal, feature extraction and KDE. We replace their traditional region

proposal stage with one that utilises a more modern deep learning approach and

adapt the feature preprocessing before KDE resulting in the following contributions:

• A method for classless region proposal that produces far fewer regions than

traditional approaches [51, 28], resulting in faster processing in down-stream

pipeline stages. When applied as the region proposal stage in the multi-task
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KDE model, this facilitates:

– Training a single density estimator to cover the entire frame space, rather

than twelve density estimators that each cover a zone within the frame

space.

– The opportunity to carry more information through the feature extraction

stage for enhanced density estimation, since less compression needs to be

applied to the features when far fewer regions are considered.

– Real-time performance in both the training and inference phases.

• An alternative feature preprocessing step that results in higher accuracy den-

sity estimation.

The method entails extracting features from a deep neural network pretrained

on very generalised object datasets. Therefore, this method is mostly applicable to

videos of scenes, as in the example applications described above, where high-level

knowledge of objects is relevant. We therefore focus this chapter on the CCTV

dataset UCSD Ped2 [65] where the anomalies are scene objects, rather than datasets

like MVTecAD [11], where anomalies are low-level defects at the pixel level. See

Chapter 6 for evaluation across all considered datasets.

This method has been integrated into NOUS, an industrial software product

developed by the company COSMONiO that has since been acquired by Intel. See

Appendix A for anomaly detection examples obtained while developing this method

for practical applications rather than academic.

3.1 Method

The proposed anomaly detection pipeline consists of three stages: region extraction,

feature extraction and density estimation.

The purpose of the region extraction stage (Section 3.1.1) is to select a number

of rectangular areas within the imagery to pass to feature extraction. The region

extraction stage should balance two competing criteria: to select a minimal number
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of regions and to not miss regions that may have relevant content. The former

reduces the computational time, facilitating real-time performance, while the latter

is a prerequisite for good anomaly detection performance.

The feature extraction stage maps the visual data from each extracted region to

a point in a feature space (Section 3.1.2). Features are obtained from a pretrained

AlexNet network [53], which has been modified following the procedure of Hinami

et al. [40] to perform multi-task classification. The seventh layer of this network

forms the feature representation of a region. This layer is the final fully-connected

layer before the output class logits.

Once a frame has been observed in the training phase, we store the feature

representation of each region and repeat the process of region extraction followed by

feature extraction for the next frame. After all frames have been observed, a KDE

model is formed from all of the stored features (Section 3.1.3). This model provides

an estimate of the probability density function over the feature space, which is used

during the inference phase to measure the probability density of features extracted

from the live video stream. A region whose feature representation has a probability

density less than a certain threshold is thus determined to be anomalous.

3.1.1 Region Extraction

Hinami et al. [40] use Geodesic Object Proposals [51] (GOP) and Moving Object

Proposals [28] (MOP) to extract approximately 2, 500 regions from each frame.

Section 3.1.3 explains how the time performance of the density estimation stage is

sensitive to the number of regions seen during the training phase. Both training

and analysis phases are negatively affected when the number of regions extracted

during training is high. To cope with this the input frames are divided into a grid

with twelve cells, and a separate KDE model is trained for each.

In contrast, our proposed method extracts regions using a Faster-RCNN [80]

model with a ResNet50 [38] backbone. This model was pretrained on Microsoft’s

Common Objects in Context (COCO) dataset [57] and obtained from the MaskRCNN-

Benchmark project [67]. Typically, this method produces only tens of regions per

frame, and so it is sufficient to train only a single normality model. However, in
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anomaly detection we do not know in advance what objects may appear; therefore,

the post-processing of the proposed regions needs to be altered to produce regions

that are more scattered over the input image, yet cluster preferentially around

probable targets. The following paragraph explains the specific alterations that are

made to the Faster-RCNN post-processing, and an example of the regions extracted

via this method is shown in Figure 3.1.

The bounding box regression head of the Faster-RCNN model produces a unique

region per class from each region it receives from the earlier RPN stage, including the

background pseudo class. The standard procedure in Faster-RCNN is to post-process

these boxes on a per class basis: for each class, all boxes whose class score is below

a threshold of 0.05 are discarded, and then Non-Maximum Supression (NMS) is

performed on the remaining class boxes using an IoU threshold of 0.5. In contrast,

we perform post-processing over all boxes together, since we are uninterested in

classes. We also use a lower class threshold to bring out boxes that are not so easily

recognisable as belonging to one of the COCO classes. Firstly, all boxes whose class

Figure 3.1: Examples of regions extracted using the Faster-RCNN model with
modified postprocessing. Red regions indicate a detected anomaly.
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score is lower than 0.001 are removed and then all background boxes are removed.

Finally, the boxes are ordered by class score before being passed through NMS all

together.

These values were chosen empirically. They were observed to produce sensible

candidate regions that consistently covered the vast majority of meaningful areas in

the scene while excluding background areas. In addition, for each captured entity

such as a person or a bike, further regions were captured at smaller scales within

the entity such as backpacks and wheels. We suspect that this is beneficial because

a wide variety of high-level entities, such as a person, may collapse to within a

small region in the feature space. If there is something abnormal about a backpack,

perhaps this will not be apparent in the feature representation for the whole person.

Changing the value of the NMS parameter will alter the degree to which these

subregions are included, resulting in either a proliferation of decreasingly meaningful

subregions or a reduction of subregions. This will also impact the computational

performance accordingly. Changing the other values will result in more or fewer

regions covering high-level entities. There is a balance to be found between covering

all interesting regions and excluding non-interesting regions.

3.1.2 Feature Extraction

Hinami et al. [40] pass the regions extracted in the first stage along with the input

frame to a Fast-RCNN [29] model that has an AlexNet [53] backbone. They adapt

the architecture by removing the bounding box regression head and adding two

new heads: one for attribute labelling and one for action labelling. Attributes are

descriptive labels describing things like colour and shape, while actions include verbs

such as playing or flying. These new heads are trained using the Visual Genome

dataset [52], while the original object classification head is trained using the COCO

dataset [57]. These heads receive activation from the seventh layer in the network,

which is common to all three tasks and must therefore encode information relevant

for solving all three tasks. It is expected that the activations of this layer will be

sensitive to various interesting shifts in the input, making them an ideal basis for

anomaly detection. Therefore, this layer is taken as the feature representation for a
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region.

Our method employs exactly the same feature extraction stage; however, the

feature extractor is trained using region proposals from the Region Proposal Network

(RPN) of Faster-RCNN [80] rather than GOP and MOP. It is not clear whether or

not Hinami et al. [40] include the Rectified Linear Unit (ReLU) activation sublayer in

their representation. We perform experiments excluding the ReLU activation in our

main variant and investigate the effect of including it in the analysis (Section 3.3.1).

We also investigate extracting features at layer six rather than layer seven, since it

is expected that these features may be more generalisable (Section 3.3.2).

3.1.3 Density Estimation

The seventh layer of AlexNet [53] taken as the feature representation consists of

4, 096 units. This gives the feature space too high a dimensionality for the density

estimation stage. To solve this, Hinami et al. [40] use Principal Component Analysis

(PCA) to compress the features down to sixteen dimensions. The feature vectors are

then normalised before beginning density estimation.1 We note that this procedure

casts every point in the 16-dimensional feature space onto the unit sphere, which

discards valuable information. Instead, we record the magnitude of the largest

16-dimensional feature vector seen during training, and scale every vector down by

that magnitude. This puts every normal feature vector inside the unit sphere rather

than on its surface, thus retaining the radial information. The magnitude used for

scaling is saved for use in the inference stage. We find that this produces significantly

better results than normalising (Section 3.3.3).

In one variant of their method, Hinami et al. [40] use KDE to estimate the

probability density function over the 16-dimensional feature space. They use a

Gaussian kernel with the band-width determined by Scott’s Rule [87]. The method

introduced here uses the same density estimation stage except that we produce only

one KDE model rather than twelve and we scale features rather than normalising

them. In addition, our less zealous region proposal system allows us to investigate

1This is not specified in their paper, but was observed in the associated reference implementation
they supplied.
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increasing the number of PCA components to discard less information (Section 3.2).

We refer to the process of collecting the features from the normal samples,

compressing them with PCA and constructing a KDE instance from them as forming

a normality model. To achieve real-time performance in both training and testing,

one needs to be careful about the quantity of regions extracted. PCA scales poorly

with large numbers of points when forming the normality model; however, it is very

fast during inference. In contrast, KDE is very fast when forming the normality

model, but if it is formed with too many normal points then its speed during inference

suffers. If the number of features collected from the training stream approaches 105,

then the performance requirements set out in the introduction to this chapter are no

longer satisfied. Our method of region extraction reduces the number of extracted

regions to a manageable level.

3.2 Results

We test our method on the same pedestrian based datasets as Hinami et al. [40]:

the UCSD Ped2 dataset [65] at both the frame and pixel levels, and the Avenue17

dataset [62, 40] at the frame-level. Within UCSD Ped2, it is normal for pedestrians

to be walking along the path, but the appearance of any kind of vehicle is abnormal

(Section 2.2.3). Within Avenue17, normality is the same as in Ped2, but people

running or throwing items is abnormal (Section 2.2.4). We first consider the pixel-

level Ped2 evaluation.

Figure 3.2 shows examples of success and failure cases on the Ped2 dataset. Our

method is effective at detecting anomalies based on their appearance, such as the

bikes and the van, but skateboarders are seldom detected since they appear similar

to the pedestrians. Such anomalies would benefit from a consideration of motion,

requiring the method to analyse multiple frames at a time. It is interesting to note

that the skateboard fails to be detected despite having its own region that is separate

from the skateboarder as a whole. We can suggest two possibilities to account for

this: firstly, the region is so small that any errors in the ROI pooling operation may

miss the information required to detect the anomaly; and secondly, considering only
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the pixels captured by the region, it is not at all clear what, if anything, the region

contains. Perhaps a higher-resolution image would allow the detector to work better

in this particular case.

We construct a Receiver Operating Characteristic (ROC) curve and use the Area

Under Curve (AUC) evaluation metric to measure the performance quantitatively.

The ROC curve is constructed following the pixel-level procedure commonly used

on this dataset [65]. In this procedure, each frame is considered positive or negative

depending on whether there are any positive pixels present in the frame. When

analysing a positive frame, the result is true-positive when an algorithm labels at

least 40% of the positive pixels as such. When analysing a negative frame, the result

is false-positive when an algorithm labels any of the pixels as positive.

Figure 3.3 shows the performance of our method based on this metric. Where

Hinami et al. [40] test their method using only sixteen PCA components, we test our

method over a range of used PCA components, as facilitated by our more discerning

region extraction stage. The dotted line represents the performance achieved by

Hinami et al. [40] when applying KDE on the features extracted from their multi-

task Fast-RCNN model. To evaluate the stability of our KDE model, we repeat

experiments eight times using a different random sample of at least 80% of the

features and use the repeated results to form a box plot.

Considering that the original feature space has 4, 096 dimensions, a reduction

down to sixteen dimensions is a severe compression, which results in the lowest AUC

score. Performance steadily increases as more PCA components are maintained,

until we are eventually able to match the performance reported by Hinami et al. [40]

at 128 components. The reason why our results are lower until that point is most

likely because we train a single KDE model to cover the entire frame space, rather

than having twelve KDE models that are each able to specialise to the patterns of

data observed in one-twelfth of the frame.

Next we consider the Frame-level evaluations on the Ped2 and Avenue17 datasets.

We report our results in Table 3.1 using a single figure rather than a box plot, since

the AUC scores are stable to within the level of precision reported.

It is interesting to note that we observe far less variation in the results in this case.
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Figure 3.2: Examples of anomaly detection outputs obtained from our method.
Top: the vehicle is successfully detected. Bottom: the bike is successfully detected,
but the skateboarder is missed.
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Figure 3.3: Pixel-level AUC evaluation of our KDE-based method on the UCSD
Ped2 dataset over a range of used PCA components when features are extracted
from the seventh layer without ReLU activation. The dotted line represents the
performance reported by Hinami et al. [40].

We suggest that this is due to a shift in how the per pixel abnormality scores map to

the true-positive or false-positive outcome for a frame. In this frame-level analysis,

once there is a single pixel above the threshold then the frame is automatically a

positive one. In contrast, for the pixel-level results we have seen thus far, the number

and distribution of above-threshold values is important. This results in a far richer

and fine-grained differentiation between frames that allows greater opportunity for

deviation in outcomes.

Overall, there is not a significant difference in the performance between our method

Table 3.1: Frame-level AUC evaluation of our KDE-based method on the
UCSD Ped2 [65] and Avenue17 [62, 40] datasets when features are extracted from
layer seven without ReLU activation.

PCA 16 32 48 64 80 96 112 128

Ped2: Hinami et al. report 0.88

0.88 0.92 0.92 0.92 0.93 0.93 0.94 0.94

Avenue17: Hinami et al. report 0.88

0.87 0.88 0.88 0.88 0.88 0.88 0.88 0.88
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and that of Hinami et al. [40], although our method performs slightly better on the

Ped2 dataset. In the following analysis section we test variants of our proposed

method to isolate the effect of various components and we examine the computa-

tional time benefits of our new region extraction stage.

3.3 Analysis

We perform a range of additional experiments to answer some questions about

our proposed method. Firstly, we investigate the effect of choosing to include the

ReLU activation sublayer in our feature representations (Section 3.3.1). Secondly,

we investigate whether extracting features from layer six rather than layer seven

improves results (Section 3.3.2). Since features tend to become more specialised

nearer the output layer [105], perhaps it is beneficial to extract features from this

lower layer. The justification for this is that we are applying a fixed, pretrained

feature extraction network on an anomaly dataset that is different to the datasets

on which it was trained. Thirdly, we investigate the effect of our proposed feature

preprocessing method. We scale features by a constant factor prior to KDE, rather

than normalising them. Finally, we determine the computation time benefits of

using our replacement region proposal system (Section 3.3.4).

3.3.1 Including the ReLU Activation

In our main variant described in Section 3.1, we extract features as the raw acti-

vations of the seventh layer before ReLU activation. Figure 3.4 shows the results

obtained when the features are extracted with ReLU activation. Here we observe

that performance is negatively impacted by the ReLU function. A likely explanation

for this is that the raw activations provide more information about the extracted

regions since two features that differ mainly in their negative values will look much

more similar after the ReLU function has transformed all negative values to zero.

We further speculate that using activation functions that maintain negative values,

such as the tanh() or Leaky ReLU functions, will also perform better than the ReLU

function but perhaps not as well as the identity function, since the Gaussian kernels
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used in the KDE will not be adapted to the changes in the scale of the feature space

introduced by the non-linearities.
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Figure 3.4: AUC performance of our method on the UCSD Ped2 dataset over a
range of used PCA components when features are extracted from the seventh layer
including ReLU activation. The dotted lines represent the median performance
achieved when excluding ReLU activation as in our main results.

3.3.2 Using Lower Level Features

Figure 3.5 shows the AUC performance of our method when using features from layer

six rather than layer seven. The comparison of these results with those obtained by

our main layer seven variant (shown in dotted lines) demonstrates that the sixth layer

produces much better features for anomaly detection on the UCSD Ped2 dataset.

It may be the case that extracting features from even further down the network are

better still, but this would cross over the ROI pooling layer into the convolutional

layers and would require different handling. This is identified as an area for future

work.

Table 3.2 makes a similar comparison for the frame-level evaluation on the

Ped2 [65] and Avenue17 [40] datasets. In this case there is not a significant difference

between the layer six and layer seven features; although, the layer seven features

perform a little better on the Avenue17 [40] dataset at sixteen PCA components.
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Figure 3.5: AUC performance of our method on the UCSD Ped2 dataset over a
range of used PCA components when features are extracted from the sixth layer
without ReLU activation. The dotted lines represent the median performance
achieved when using the seventh layer as in our main results.

Table 3.2: Frame-level AUC evaluation of our KDE-based method on the
UCSD Ped2 [65] and Avenue17 [62, 40] datasets when features are taken without
ReLU activation.

PCA 16 32 48 64 80 96 112 128

Ped2

Layer 6 0.88 0.90 0.91 0.93 0.93 0.93 0.94 0.94

Layer 7 0.88 0.92 0.92 0.92 0.93 0.93 0.94 0.94

Avenue17

Layer 6 0.83 0.86 0.86 0.86 0.86 0.87 0.87 0.87

Layer 7 0.87 0.88 0.88 0.88 0.88 0.88 0.88 0.88
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Figure 3.6: AUC performance of our method on the UCSD Ped2 dataset using
sixteen PCA components when the features are normalised (as done by Hinami et
al. [40]) and scaled (as in our main results).

The performance on the Ped2 [65] dataset is better than that on the Avenue17 [40]

dataset and this is almost certainly due to a combination of at least two factors:

firstly, the issue of determining anomalies in more complex scenarios as discussed

in Section 2.2; and secondly, the fact that in Ped2 [65], normality and abnormality

are largely determinable via identification of classes that were very prominent in the

training set for the class branch of the feature extraction network.

3.3.3 Normalising the Features

As described in section 3.1.3, we depart from Hinami et al. [40] in the way that we

preprocess the features before density estimation. Figure 3.6 illustrates the difference

resulting from scaling the features rather than normalising them. We observe a

significant increase in performance when preprocessing features using our scaling

approach rather than normalisation. This is most likely due to the information lost

during normalisation, which is preserved in our approach as described in Section

3.1.3.
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3.3.4 Real-Time Performance

The key advantage of our method is in its suitability for real-time applications. We

demonstrate the effect of allowing the number of regions extracted per frame to

increase to the quantity used in the method presented by Hinami et al. [40] and

establish a lower-bound on the increase in computational efficiency achieved when

using our proposed modifications. We implement a simulation of Hinami et al. [40]

whose region extractor selects 208 randomly chosen areas per frame. This is the

number of regions per frame per KDE model used by Hinami et al. [40] (recall

that they use twelve KDE models). In this simulation, we also disable the random

sampling of features so that the same number of points is fed into the PCA and KDE

models across all repeats of the experiment and across both variants. Otherwise,

the simulation is identical to our method described in Section 3.1. In contrast to the

original method of Hinami et al. [40], our simulation does not need to compute GOP

and MOP, and only computes a single PCA and KDE model rather than twelve.

Table 3.3 compares the computational efficiency of our method to the simulation in

terms of the time taken to form the PCA model and the inference-time Frames Per

Second (FPS). Despite the significant advantages afforded to our simulation, it still

cannot compete with our proposed method on these metrics and is still not suitable

for real-time application. These experiments are performed on a desktop computer

with a GTX 1080 Ti, a 3.60GHz i7-7700 CPU and 16GB of RAM.

Table 3.3: Computational Time Comparison

PCA
PCA Time (s) Inference FPS

Hinami-sim Ours Hinami-sim Ours

16 7.0 ± 0.8 0.6 ± 0.2 1.4 ± 0.1 8.3 ± 0.3

32 8.0 ± 0.9 0.6 ± 0.1 1.0 ± 0.1 8.4 ± 0.2

64 10.7 ± 1.0 0.8 ± 0.2 0.6 ± 0.1 7.9 ± 0.2

96 11.5 ± 1.2 1.1 ± 0.1 0.4 ± 0.1 7.8 ± 0.1

128 14.9 ± 1.5 1.4 ± 0.1 0.3 ± 0.1 7.6 ± 0.1
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3.4 Optical Flow

Our method operates on a single frame at a time and can only make use of informa-

tion contained within that frame to discern normal from anomalous events. If it were

able to consider information in neighbouring frames then the time-varying aspects

of the scene could also inform the anomaly scores assigned to pixels. This could be

very useful in a dataset like UCSD Ped2 and in other situations where anomalous

entities tend to move at different speeds and directions to normal entities. We

experiment with augmenting our method with optical flow so that it also has access

to information about the motion of objects.

We use the 64-component layer six variant without ReLU activation to process

the frames as normal. Alongside this, we compute the optical flow for the frame

and take a set of statistics from each area corresponding to an extracted region:

the maximum, minimum and mean optical flow value for the horizontal and vertical

dimensions are taken for this purpose. From these, we form an additional KDE

model with a six dimensional feature space. At inference time, we use the two

KDE models to give two anomaly scores for each extracted region and sum them to

produce a final anomaly score for the region. Each KDE model has its output shifted

and scaled based on a calibration subset of normal points to bring their anomaly

scores into a consistent range.

Incorporating optical flow in this manner gave an AUC score of 0.70 in our

preliminary experiments. The result using the optical flow anomaly score alone was

0.38.

Among our other preliminary experiments were alternative attempts to incorpo-

rate optical flow. We attempted to form a single KDE model by fusing semantic and

optical flow features into a single feature vector, resulting in no performance change.

This is likely because the optical flow features have only six dimensions, while the

semantic features have 4, 096 dimensions. Therefore, the optical flow features make

up only a small portion of the fused feature vector and their information is not likely

to be transmitted through the PCA step. Fusing the features after PCA avoids this

problem but results in an undefined AUC score. We also substitute the minimum,

maximum and mean statistics with a histogram of optical flow, with similar results.
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Finally, we replaced the green and blue channels of the input frames with horizontal

and vertical optical flow frames while keeping the red channel unmodified. Since

UCSD Ped2 is a grey-scale dataset, this causes no loos of information. This resulted

in an AUC score of 0.75.

Our inability to improve results using optical flow in our preliminary experiments

prevented us from taking this further. We leave attempting to incorporate temporal

information via optical flow or other means for future work. The most likely reasons

for this outcome include the setting of the hyper-parameters for the optical flow

algorithm and the fact that the feature extraction model was not trained on optical

flow information.

3.5 Conclusion

We were able to perform real-time training and analysis in anomaly detection tasks

due to a couple of key factors. Firstly, we extract features from fixed networks that

have been pretrained on general recognition tasks. Using a network that is fixed

during training avoids the computational cost of adapting network weights, and

since there is no need to iterate over training examples multiple times, the method

can observe a live video stream and be ready for deployment immediately afterwards.

Secondly, we use a region proposal system that produces far fewer candidate regions

that are better targeted, which reduces the computational load at the KDE stage.

We showed that this reduction in region proposals allows us to significantly increase

the dimensionality of the KDE model for enhanced anomaly detection performance.
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CHAPTER 4

Anomaly Detection by Restoration

We consider the problem of detecting abnormal or anomalous regions within complex

textural patterns such as leather, wood or carpet. A solution to this problem would

be applicable in many industrial contexts including the manufacture of electrical

components and the production of textiles, where anomalies may present in the

form of dents, folds, scratches, contaminants and other defects in the product. The

process of filtering defected samples could be made more efficient by the introduction

of automatic detection systems based on modern machine learning.

We propose a new method for anomaly detection in this context and evaluate it

on the MVTecAD [11], DAGM07 [102] and Leaf [43] datasets (Sections 2.2.8, 2.2.6,

and 2.2.7). Responding to the challenge represented by the variation and complexity

of these datasets, we make the following contributions:

• A new fast and simple method for training an encoder-decoder architecture

that allows the final layer to directly represent the per-pixel anomaly scores

without first having to generate an input reconstruction.

• Introduction of the Reflected Rectified Linear Unit (Reflected ReLU) output

activation function that eases the training of the architecture under this new

methodology.
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• Improved anomaly detection results on the texture classes of the MVTecAD

[11] dataset with respect to current state-of-the-art methods [71, 13, 12, 85, 5,

60, 56, 21, 63, 61], achieving an Area Under the ROC Curve (AUC) statistical

performance measure of 96% and consistent performance across all texture

classes.

We use a simple autoencoder-based technique for performing anomaly detection on

textures. Although previous autoencoder methods for anomaly detection vary, they

usually share two common features that impede their performance: firstly, they

use a loss function based on the `1 or `2 distance between the input example and

its reconstruction [12], and secondly, the inability of the autoencoder to effectively

reconstruct high-frequency information is not addressed [68]. Bergmann et al. [12]

point out the flaws in using `1 or `2 loss and substitute them for a perceptual loss

based on Structural SIMilarity (SSIM) [101]. The main contribution of this work

is to address the second issue by training the autoencoder to directly output the

per-pixel anomaly map rather than an input reconstruction.

In contrast with our previous method (Chapter 3), this method was developed

for low-level defect detection. Therefore, there is no consideration of how to prepare

the model with knowledge of high-level concepts such as objects. For this reason, the

focus of this chapter is on the MVTecAD [11] dataset. See Chapter 6 for evaluation

across all considered datasets.

4.1 Method

Ultimately, our task is to find an anomaly map: a tensor the same shape as the

input, including the channel dimension, whose elements measure the abnormality of

each pixel component. This anomaly map can then be summed along the channel

dimension to provide the two-dimensional per-pixel anomaly scores. When using

a conventional or denoising autoencoder (Section 2.1.4), this task is approached

indirectly by arranging for the model to first output a reconstruction of the input

[36]. The difference between the input and its reconstruction is then used to create

the anomaly map. In our proposed method, the anomaly map is the direct output
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of the model. Assuming that most pixels are normal, on the basis that anomalies

are rare, our model aims to output near-zero values in the majority of cases. By

contrast, conventional and denoising autoencoders need to output a detailed image

accurately with all image features exactly aligned.

An overview of our approach is shown in Figure 4.1. During training, an input

tile I is intentionally corrupted with random noise, resulting in the noised input

In. The encoder-decoder architecture transforms In directly into the anomaly map

A, which may be thought of as the per-pixel adjustment required to repair the

noise. To tune the architecture towards producing better anomaly maps A, we

compare the repaired image I ′ = In + A with the original, clean input image I.

This comparison is performed by extracting features from both I and I ′ using the

VGG-11 network [89] and taking `2 distance between these. We choose the VGG

network because Johnson et al. [48] successfully used this network for a similar

purpose in their research. We choose the VGG-11 network specifically because it

is computationally cheaper while still performing very well. The images I and I ′

are normalised according to the requirements of the pretrained VGG-11 network

before undertaking this comparison. During testing, we do not add noise to the

input tiles and the values in A are treated as the pixel-shifts required to repair any

naturally occurring anomalies. Different to other methods, there is no need to form

the reconstructed image I ′ during testing, since the anomaly map A is produced
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Figure 4.1: The architecture of our proposed texture restoration method.

Credit: Samet Akçay.
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earlier in the pipeline.

The following subsections each describe a component our approach. These in-

clude the preprocessing (Section 4.1.1), Noising Filter Bank (Section 4.1.2), encoder-

decoder architecture (Section (4.1.3), output activation function (Section 4.1.4), loss

calculation (Section 4.1.5), training procedure (Section 4.1.6) and testing procedure

(Section 4.1.7).

4.1.1 Preprocessing and Normalisation

Our architecture expects input image tiles whose values are normalised to the range

[−1..1] and whose dimensions are 65×65 pixels. These tiles are obtained from

the dataset images via different methods in the training phase (Section 4.1.6) and

testing phase (Section 4.1.7). All dataset images are downscaled to 256×256 before

training and testing. The original size of the dataset images are 1024 × 1024 for

the MVTecAD dataset [11], 512 × 512 for the DAGM07 dataset [102], and 256 ×

256 for the leaf dataset [43].

4.1.2 Noising Filter Bank

Each training tile I is intentionally corrupted using a noising algorithm randomly

selected from a collection of algorithms that we refer to as the Noising Filter Bank.

This results in the noised training tile In in Figure 4.1. The bank includes noise

filter operators that corrupt the image with the following types of image noise: salt,

pepper, salt and pepper, Gaussian blur, Gaussian noise, rectangle, line, ellipse arc,

shading, erosion, dilation and the identity filter [90]. Figure 4.2 provides examples

of each of these filters.

If the identity filter is chosen for a particular image, then that image is left

unaltered. Each of the remaining filters begins by creating a noise mask that defines

which pixels may be affected by the filter, thus protecting the rest of the pixels from

corruption.

In the case of the line and ellipse arc filters, the noise mask is formed by using

planar drawing commands. All position parameters are drawn from a uniform
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Figure 4.2: Examples of noise patterns generated by the noising filter bank. From
top-left to bottom-right these are: salt and pepper, Gaussian blur, Gaussian noise,
rectangle, line, ellipse arc, shading, erosion and dilation.
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distribution within the area of the image. Line width parameters, measured in

pixels, are random integers in the range [1..6]. Major and minor axes are random

integers in the range [1..30]. Angles and angle ranges are random floats in the range

[0..360].

In the case of the remaining filters, the noise mask is a rectangular region of

randomised width and height inside the area of the image.

Noise is then applied to the pixels that are activated in the mask as follows.

For the salt and pepper filters, pixels are changed to 1.0 or −1.0 with a probability

drawn from the range [0.0..0.5]. For the Gaussian blur filter, a new image is formed

by blurring the original image with a random kernel and sigma. Pixels from the

blurred image are then copied to the original image according to the noise mask.

Each axis of the kernel is a random odd integer in the range [3..15], while each axis

of the sigma is a random float in the range [1.0..100.0]. For the Gaussian noise

filter, Gaussian noise is added to the masked pixels, where the mean of the noise is

zero, and the standard deviation is a random float in the range [0.3..0.6]. For the

rectangle, line and ellipse arc filters, the masked pixels are changed to a randomly

chosen RGB colour. As described above, the mask determines whether the affected

region is a rectangle, line or arc. For the shading filter, a random float is drawn

from the range [−0.5..0.5] and added to the pixels activated in the rectangular mask.

Erosion and dilation both use a circular kernel whose size is an odd integer in the

range [1..7] with an iteration count in the range [1..2].

For all algorithms, the resulting image is clamped to the range [−1.0..1.0]. If the

original input image is grey-scale, as is the case for the grid class, then any randomly

selected colours are constrained to be gray-scale despite the use of a multi-channel

input.

4.1.3 Encoder-Decoder Architecture

The encoder-decoder architecture is comprised of three convolutional layers followed

by three transpose convolutional layers. Each layer has a kernel size of three, a stride

of two and padding of one unit thickness on every side. The first convolutional layer

has 128 feature maps and this number doubles at each additional convolutional layer
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and halves at each convolutional transpose layer as in DCGAN [76]. The number

of output feature maps is equal to the number of channels in the input. A Leaky

ReLU activation function with a slope of 0.01 is applied after each layer except for

the final layer, which is discussed in Section 4.1.4.

4.1.4 Reflected ReLU Activation

Often, a tanh() output activation function is used to squeeze the output back

into the [−1..1] range [5, 76]; however, this activation function is unsuitable for

our architecture because it prevents the learning of the simplest encoder-decoder

function. Ideally, the network should be able to simply output zeros wherever the

input is normal, thus minimising the amount of detail expected from the network in

the most common case: that of a pixel being normal. Unfortunately, applying the

tanh() activation would prevent this from happening. Consider a normal pixel in

the noised input In whose value is 0.5. If the network outputs a zero for this pixel

in A, then when A is added to In it will produce a value of 0.5. This represents

the perfect reconstruction that we would like to find in I ′, but applying the tanh()

at this point would result in a change in the value. Consequently, the network will

need to learn to output a value in A that will undo the effect of the tanh() function.

Furthermore, the appropriate value to output would depend on the value of the

input, which is the kind of coupling between input and output that we would like

to avoid. Therefore, we propose the Reflected ReLU function, which is shown in the

plot in Figure 4.3 and defined as:

RefReLU(x) =


0.01x− 0.99, x ≤ −1.

x, −1 ≤ x ≤ +1.

0.01x+ 0.99, x ≥ +1.

(4.1)

This activation function leaves the reconstruction pixel values unchanged when

they are in the range [−1..1], while reducing how far the they deviate from the

dynamic range. This ensures that the range of the input to the VGG-11 network

[89] is closer to the range on which it was trained. Section 4.1.4 analyses the effect
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Figure 4.3: Plot of the reflected ReLU function.

of using this activation function.

A further disadvantage of the tanh() function is that a pixel may need to be

shifted by a magnitude greater than 1.0, and such values do not lie in the range of

the tanh() function.

4.1.5 Loss Function

We use a perceptual loss similar to that of Johnson et al. [48]. In our case, features

are extracted from both the input image I and its reconstruction I ′ using a VGG-11

network [89] pretrained on ImageNet [23]. The `2 distance between these extracted

features forms the perceptual loss as shown in Figure 4.1. The features are taken

from the fourth convolutional layer after max-pooling and ReLU activation function

are applied.

4.1.6 Training Procedure

Before training commences, 80,000 tiles of size 65×65 are randomly cropped from

the downscaled training dataset images. The training batch for each iteration is

formed by randomly selecting 64 of these tiles without replacement. This batch

of 64 tiles is propagated through the pipeline shown in Figure 4.1 to produce the

loss used to train the encoder-decoder network via backpropagation. The method of
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optimisation is the same as that used in DCGAN [76] i.e. we use the Adam optimiser

[49]. We follow those researchers and use an initial learning rate of 0.0002, β1 = 0.5,

and β2 = 0.999. Training is stopped after 3,500 iterations, since this number proved

to be a compromise among the optimal number of iterations of each dataset class.

4.1.7 Testing Procedure

Each testing iteration processes a single image from the downscaled testing dataset.

We extract tiles that measure 65×65 pixels with a stride such that there is approx-

imately 50% overlap horizontally and vertically with every pixel represented by at

least one tile. These tiles are batched and propagated through the pipeline depicted

in Figure 4.1 until the anomaly map A for each tile is produced. No reconstruction

is formed, instead, for each tile we take the absolute value of the corresponding

anomaly map and sum it along its channel dimension. This yields the anomaly score

for each pixel. Anomaly scores from each tile are composed to form the per-pixel

anomaly scores for the entire test image. Where multiple tiles share a set of pixels,

anomaly score contributions from each tile are averaged.

4.2 Results

We train and test our proposed method on the texture classes of the MVTecAD

dataset [11]: carpet, grid, leather, tile and wood using eight different random seeds.

The performance is very strong across each of these classes as indicated by the AUC

results displayed in the box plot of Figure 4.4.

Table 4.4 compares the mean of the results from each class with those achieved by

the current state-of-the-art methods. In addition to outperforming these methods,

some of the closest performing methods employ the use of more complex Genera-

tive Adversarial Network (GAN) [63] or Variational AutoEncoder (VAE) [21, 60]

architectures that incur significant training requirements. By contrast, our method

is very simple and quick to train, requiring only 3, 500 iterations and less than ten

minutes of training time.

The key advantage of our method is that it is able to squeeze anomaly scores for
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Figure 4.4: Box-plot of the AUC results produced by our proposed method on
each of the MVTecAD [11] texture classes.

Table 4.1: Anomaly detection performance using textural restoration (AUC).

Method Carpet Grid Leather Tile Wood Mean

AE (L2) [12] 0.59 0.90 0.75 0.51 0.73 0.70

AE (SSIM) [12] 0.87 0.94 0.78 0.59 0.73 0.78

AnoGAN [85] 0.54 0.58 0.64 0.50 0.62 0.58

CNN Feats. [71] 0.72 0.59 0.87 0.93 0.91 0.80

GMM [13] 0.88 0.72 0.97 0.41 0.41 0.68

GANomaly [5] 0.70 0.71 0.84 0.79 0.83 0.78

VEVAE [60] 0.78 0.73 0.95 0.80 0.77 0.81

SMAI [56] 0.88 0.97 0.86 0.62 0.80 0.83

VAEgrad [21] 0.74 0.96 0.93 0.65 0.84 0.82

P-Net [63] 0.57 0.98 0.89 0.97 0.98 0.88

FCDD [61] 0.96 0.91 0.98 0.91 0.88 0.93

Ours 0.93 0.95 0.98 0.98 0.95 0.96
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normal pixels close to zero, resulting in anomaly segmentations that are incredibly

clean. This is apparent in the examples shown in Figure 4.5, where normal regions

are displayed in a near-constant white indicative of a low anomaly score. This is

achieved without any post-processing of the anomaly maps. Our method is also

sensitive to very fine anomalies that are not labelled in the ground truth of the

dataset. Two examples of subtle anomaly detection can be seen in the bottom

example of Figure 4.5, which depicts an example from the tile class that contains

two small blemishes above the main defect to the left and right.

Figure 4.5: An example anomaly detection output for each texture class. Left
images show a texture containing a defect with an anomaly segmentation in red.
Right images show a heat-map of the per-pixel anomaly scores output from the
autoencoder. Segmentations are produced by setting a threshold on the heat-map.

Since the Noising Filter Bank consists of a constant set of hand-crafted algo-

rithms, it might be the case that they happen to fit the distribution of anomalies

seen in the MVTecAD dataset particularly well. Therefore, we test our method on

two further datasets: the DAGM-2007 dataset [102] and the Leaf dataset [43].

The DAGM-2007 dataset [102] is an algorithmically generated dataset of artificial
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textures with defects. Example anomaly detections on this dataset are shown in

Figure 4.6. Unfortunately, the ground-truth is too coarse to allow for adequate

quantitative performance measure at the pixel-level; however, qualitatively we ob-

serve the same strong anomaly signatures against near-constant backdrops of low

scoring normal pixels. The detections are consistent across the dataset, even for

very subtle examples such as the middle-left example of Figure 4.6.

Figure 4.6: Examples of anomaly detection results on the DAGM-2007 dataset
[102]. Anomaly detection overlay has been omitted for clarity.

The Leaf dataset [43] consists of approximately 50,000 images of fourteen dif-

ferent species of leaf. A subset of these images are of leaves showing signs of

disease, while the remaining images are of healthy leaves. We train our method

on the healthy subset of images and then subsequently attempt to segment the

diseased pixels in the diseased subset. No ground-truth is provided with this dataset

but qualitatively, overall anomaly detection performance is strong as shown in the

examples provided in Figure 4.7 that are representative of the majority of cases. In

a minority of cases, our method fails to produce good anomaly segmentations on
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this dataset as shown in Figure 4.8.

Figure 4.7: Examples of anomaly detection results on the Leaf dataset. Left images
show an example leaf that contains a disease, middle images show the same images
with anomaly segmentation overlaid in red, and the right images show the anomaly
heat map.

Figure 4.8: Examples of poor anomaly segmentations in the Leaf dataset.

The DAGM07 and Leaf datasets are good examples of use cases for our method

and we include them here as additional support for our method. Unfortunately, to

our knowledge, other researchers have not applied their methods to these datasets

and so we do not provide comparative results.

4.3 Analysis

Our method differs in several ways to the conventional autoencoder. The following

subsections consist of ablation studies and investigations to measure the effect of
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using the perceptual loss instead of the `2 loss (Section 4.3.2), downscaling the

dataset images (Section 4.3.3), using the noising bank (Section 4.3.4), outputting

the error map rather than a reconstruction (Section 4.3.5), and using the Reflected

ReLU activation function (Section 4.3.6).

Downscaling the dataset images is a preprocessing step that could also be applied

to the conventional autoencoder. For this reason, Section 4.3.3 also includes an

analysis of the effect of downscaling images when using the conventional autoencoder

of Bergmann et al. [12]. This analysis finds that downscaling dataset images hinders

the performance of the conventional autoencoder due to compressing image patterns

into a higher-frequency space.

For ease of comparison with our main results, the box-plots located throughout

this section include dashed lines representing the medians found in the box plot of

Figure 4.4. Also for comparison, we include a section that analyses the progress

of the training phase of our method (Section 4.3.1), which may be referred to in

subsequent sections.

4.3.1 Progression of Training

In this section, we describe typical features of the training, using only the Carpet

class as an example for brevity. Our method requires less than ten minutes of

training or 3, 500 iterations to achieve the performance outlined in Section 4.2.

Figures 4.9 and 4.10 show how the training loss progresses with iteration count

when the perceptual and `2 losses are used respectively, with each showing a graph

with and without downscaling applied.

Training always progresses with loss decreasing in a stable manner, and the be-

haviour of these graphs is consistent across multiple runs of the method. Perceptual

losses are larger than `2 losses due to the higher dimensionality of the feature space

compared to the image-tile space. Interestingly, the full-scale loss tracks above the

downscale loss when using the perceptual loss, but this characteristic is reversed

when using the `2 loss. In addition to examining the progress of training in terms of

the training loss, we also provide example training output batches at 10, 100, 1000

and 3500 iterations in Figure 4.11.

84



0 500 1000 1500 2000 2500 3000 3500
Iteration

60

80

100

120

140

160

Lo
ss

Down-scaled, Perceptual
Full-scale, Perceptual

Figure 4.9: The perceptual training loss of our method on the carpet class of the
MVTecAD dataset [11] both with and without the downscaling described in Section
4.1.
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Figure 4.10: The `2 training loss of our method on the carpet class of the
MVTecAD dataset [11] both with and without the downscaling described in Section
4.1.
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Figure 4.11: Example training output batches at various iterations. From top-left
to bottom-right the iteration counts are: 10, 100, 1000 and 3500.
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Within 10 iterations the model has learned to pass through all information i.e.

the encoder-decoder architecture has learned to output near-zero values for every

pixel in its output regardless of whether these pixels correspond to noised pixels

or not. As training progresses, the model is learning to output larger magnitude

values where the output pixels correspond to noised pixels. At first, this results in

an obvious defacing of the input tiles, but gradually, the values are tuned to phase

out the noise so that the output tiles look cleaner.

This training objective is slightly at odds with the task. Wherever pixels are

affected by noise, we would like the model to output values as large as possible

rather than values that are just large enough to counter the noise. However, all

attempts to target this outcome resulted in worse performance. We infer from this

that there may be some utility in forcing the model to attend to the underlying

normal pattern during training.

4.3.2 Effect of Perceptual Loss

We use perceptual loss [48] to measure the distance between a clean input tile and

its training-phase reconstruction (Section 4.1.5). Figure 4.12 shows the performance

of our method when we instead use `2 loss.

Similar to Bergmann et al. [12], we find that using `2 loss is inferior to using a

perceptual loss. This result still stands despite investigating a different perceptual

loss to Bergmann et al. Nevertheless, the difference in performance is not enough to

account entirely for the success of our method. The performance of the `2 variant of

our method is still far in excess of most of the state-of-the-art methods referenced

in Section 4.2. We suggest that the other components of our method mitigate to a

large extent the drawbacks of `2 loss. Firstly, in our method, all image features in

the input and reconstructed tiles are automatically exactly aligned, since we predict

pixel deviations rather than pixel values. This is important for `2 loss since, unlike

perceptual losses, there is no position invariance. Secondly, our method produces

reconstructions that have no limit on their sharpness. While perceptual losses can

forgive some lack of fidelity, the `2 loss is critical of every pixel error. Therefore, when

applying our method, the advantages offered by perceptual losses are somewhat
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diminished.

4.3.3 Effect of Downscaling

One of the preprocessing steps in our method is to downscale all dataset images to

256× 256 (Section 4.1.1). The box plot in Figure 4.13 shows the results obtained

when this downscaling is not applied. From this, we can see how downscaling signif-

icantly improves performance, especially for the carpet and grid classes. Examples

of anomaly segmentations in the high-resolution setting are depicted in Figure 4.14

for the leather, tile and wood classes including examples from all failure cases, if

any.

The anomaly segmentations are very precise; consequently, they may only be

sparsely filled due to the presence of normal pixels within the anomalous region. In

such cases, the anomaly map resembles a cast of the anomaly rather than a solid

segmentation as required by the ground truth. This is particularly evident in the

top-left example of the wood class and the bottom two examples of the tile class.

At full size we also observe that anomaly segmentations sometimes do not cover the
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Figure 4.12: AUC results achieved by our proposed method when `2 loss is used
instead of perceptual loss [48]. The dashed lines represent the medians of the box
plot in Figure 4.4 in which perceptual loss was used.
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entire anomalous region as can be seen in the bottom-left example of the leather

class. In addition, there are a total of two failure cases across the three datasets,

namely the presence of glue on tile (top-right example) and the presence of liquid

on wood (bottom-right example). Sparsely filled and low coverage detections may

be relieved in part by post-processing operations such as opening and closing.

In summary, although some of the performance gain acquired by downscaling

can be accounted for by considering the degree to which anomalies are fully covered,

the more significant factor is that downscaling allows the model to detect more of

the anomaly types (e.g. contamination with glue and liquid). When evaluating the

efficacy of the model as an anomaly detector, one could argue that the former factor

is irrelevant, since in these cases, the model is still able to tag anomalies with a high

concentration of positive detections while ignoring the vast majority of the normal

pixels. It is the latter factor that is relevant because here, the model fails to trigger

for certain anomaly types. Only when evaluating the efficacy of the model as an

anomaly segmentation mechanism is the former factor relevant.

Downscaling improves performance on the Carpet and Grid classes the most.

We suspect that this is because for these classes, the repeating characteristic of the

leather woodtilegridcarpet
0.5

0.6

0.7

0.8

0.9

1.0

A
U
C

Figure 4.13: AUC results achieved by our proposed method when the images are
not downscaled before training and testing. The dashed lines represent the median
performance when downscaling to 256× 256 is applied, as shown in Figure 4.4.
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Figure 4.14: Examples of anomaly detection results on the leather, tile and wood
classes of the MVTecAD dataset at full resolution.
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textural pattern is only apparent over a larger area of pixels. This is particularly true

for the Grid class, in which there is a lot of space between neighbouring segments

of wire mesh, but a similar principle holds for the Carpet class in which the weave

of the fabric requires a large area of pixels to be clear. In contrast, the other classes

are more homogeneous. This might present a challenge because the inner-most

units of the encoder-decoder architecture have a very small receptive field and thus

are not provided with enough contextual information when the relevant patterns

are spread in space. Downscaling squashes the pattern into a tighter space, which

may mitigate this. Without downscaling, very fine blemishes were detected by our

method. Whether or not these minor defects are still visible after downscaling is not

relevant to the performance of the model since these were not labelled anomalies.

Since downscaling is a preprocessing step that can as easily be applied to the

conventional autoencoder, we need to consider whether or not this method can

similarly benefit from downscaling.

Applying Downscaling to the Conventional Autoencoder

We consider the conventional autoencoder of Bergmann et al. [12] on the carpet class,

since this class was one of the two classes that most benefited from downscaling. The

discussion focuses on the training procedure over tens of thousands of iterations. For

comparison, recall that we used 3, 500 iterations to produce the results presented

throughout this chapter. Figure 4.15 shows how the training loss decreases with the

number of iterations when using full-scale dataset images. Training improves the

quality of reconstructions by introducing successively higher frequencies as shown

in the examples overlaid in the figure. First, the model learns to reconstruct the

lowest frequency, the DC-component of the Fourier space. At this point, the model

is able to reconstruct the average colour of the input tile but nothing more. Next we

observe some slightly higher frequency details, but nothing significantly meaningful.

A sudden decrease in training loss occurs when the model is able to reconstruct the

frequency of the weave of the carpet in one dimension and then in both dimensions.

From here the training loss falls slowly as the model introduces higher frequency

details into the weave.
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Reconstructions begin to look competent after about 3, 500 iterations as shown in

the final example of Figure 4.15, but even after 80, 000 iterations the autoencoder is

failing to introduce the sharpness of the highest frequencies as shown in Figure 4.16.

Reconstruction quality stagnates as is indicative of the flattening of the training loss

curve.

Contrast this behaviour with that observed when the dataset images are down-

scaled to 256×256. Figure 4.17 shows the training loss with example reconstructions

taken from the same key points. The first thing to notice is that the model progresses

through the same frequency milestones as before, only this time it takes much

longer. The model gets temporarily stuck at each of these milestones, giving the

training loss curve a more pronounced step-like appearance. Reconstruction ability

becomes competent only after about 15, 000 iterations, where once again we observe

stagnation and flattening of the training curve as before, only this time at a higher

training loss. By downscaling the images, we push the weave of the carpet into a

higher frequency space, which is a weakness of the conventional autoencoder.
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Figure 4.15: The training loss of the `2 Bergmann autoencoder [12] on the
carpet class of the full-scale MVTecAD dataset, together with example training
reconstructions at key points.
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Comparing this behaviour with that observed in Figure 4.9, we observe that the

training loss never gets stuck when using our method. The figure shows that this is

true whether we downscale or not. For better comparison, Figure 4.10 demonstrates

the same for the `2 variant of our method. Figure 4.11 demonstrates how much more

quickly the reconstruction quality progresses. The encoder-decoder output of both

methods progresses in frequencies, reaching the DC-component very quickly; while

for the conventional autoencoder this means reconstructing the average colour of the

input tile, for our method this means reconstructing the noised tile with all frequency

components expressed. Likewise, the encoder-decoder output of both methods fail

to reach the highest frequencies; while for the conventional autoencoder this means

reconstructions will lack sharpness, for our method this means reconstructions will

not eliminate quickly varying noise patterns. This is an unimportant consequence

since we are not aiming to eliminate the noise, but for the conventional autoencoder,

this is a serious flaw.

Figures 4.18 and 4.19 show example input instances and their reconstructions

for the full-scale and downscaled variant respectively for a middling iteration count

of 10, 000. We see how downscaling hinders the reconstruction quality of the

conventional autoencoder for a given number of iterations.

Figure 4.16: Example instances from the 80, 000th training iteration of the `2
Bergmann autoencoder [12] on the carpet class of the full-scale MVTecAD dataset.
Left: input examples. Right: reconstructions.
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Figure 4.17: The training loss of the `2 Bergmann autoencoder [12] on the
carpet class of the downscaled MVTecAD dataset, together with example training
reconstructions at key points.

Figure 4.18: Example instances from the 10, 000th training iteration of the `2
Bergmann autoencoder [12] on the carpet class of the full-scale MVTecAD dataset.
Left: input examples. Right: reconstructions.
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Altogether, this results in lower performance from the conventional autoencoder

and a decrease in that performance when images are downscaled. The performance

ranges of the conventional autoencoder on full-scale and downscaled images are

shown in Figure 4.20. We trained up to 80, 000 iterations, at which point it appears

as though performance on the downscaled dataset is saturating while performance

on the full-scale dataset may still be able to increase. The performance of our

reimplementaion of the conventional autoencoder [12] has exceeded that reported in

the original publication on the MVTecAD dataset [11] (Table 4.1), but is nevertheless

still substantially below the performance achieved by our method after only 3, 500

iterations. See Figure 4.4 and Table 4.1 for results on the downscaled dataset and

Figure 4.13 for results on the full-scale dataset.

4.3.4 Ablation of Noising Filters

Our proposed method entails corrupting the input training tiles using noising filters

randomly selected from the Noising Filter Bank (Section 4.1.2). This raises the

question of how the method would perform when using different subsets of the

Noising Filter Bank. Different subsets are produced by splitting the algorithms

into five families: opaque, consisting of rectangle, line and ellipse arc; transparent,

Figure 4.19: Example instances from the 10, 000th training iteration of the `2
Bergmann autoencoder [12] on the carpet class of the downscaled MVTecAD dataset.
Left: input examples. Right: reconstructions.
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consisting of shading and Gaussian blur; speckle, consisting of salt and pepper noises;

distribution, consisting of Gaussian noise; and morphological, consisting of erosion

and dilation. Positive and negative noise ablation tests are performed using these

families and their results displayed in Figures 4.21 and 4.22 respectively. During a

positive noise ablation study, a single family is tested in isolation, while during a

negative noise ablation study, a single family is excluded.

These results show the benefit of increasing the variety of noises; no single kind

of noise is responsible for good performance.

4.3.5 Resistance to False-Positives

We investigate the key advantage of our proposed method: that anomaly scores

for normal pixels are kept very low, providing a quiet backdrop with minimal noise

against which anomalies may be identified clearly. Figure 4.23 shows a histogram of

anomaly scores assigned to all normal pixels in the leather dataset. Our proposed

method (shown in blue) keeps almost all anomaly scores below 0.03. By contrast,

when our method is modified to behave like a regular denoising autoencoder (shown
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Figure 4.20: Performance ranges of the `2 Bergmann autoencoder [12] on
downscaled and full-scale images of the carpet class of the MVTecAD dataset over
a range of training iterations.
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Figure 4.21: AUC results achieved by our proposed method when the Noising
Filter Bank consists of only a single family of noising filters. The dashed lines
represent the median performance when all noising algorithms are used, as shown
in Figure 4.4.
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Figure 4.22: AUC results achieved by our proposed method when the Noising
Filter Bank consists of all families of noising filters except one. The dashed lines
represent the median performance when all noising algorithms are used, as shown
in Figure 4.4.
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in orange), anomaly scores fill a much wider spread of values centred approximately

on 0.13. The difference is that the regular denoising autoencoder needs to output

a reconstruction of each input tile, which is a more error-prone task than simply

measuring deviations from normality. Consequently, our approach creates anomaly

maps that are very quiet in normal areas of the image, as shown in Figure 4.24.
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Figure 4.23: Histogram of anomaly scores assigned to negative (normal) pixels
across the entire leather dataset. The blue area shows the scores assigned by
the unmodified encoder-decoder architecture that outputs anomaly maps directly.
The orange area shows the scores assigned when the encoder-decoder training is
modified to mimic the behaviour of a regular denoising autoencoder. In this case,
the architecture outputs reconstructions.

4.3.6 Effect of the Reflected ReLU

Often, a tanh() output activation is used in encoder-decoder architectures similar

to ours [76, 5]; however, we replace this with the proposed Reflected ReLU function

(Section 4.1.4). Figure 4.25 shows the effect of using the original tanh() activation

function and no activation function. The results support the hypothesis that the new

Reflected ReLU function is superior for use in our proposed method, likely because
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it simplifies the task by allowing the autoencoder to output zeros for normal pixels.

Compared to using no output activation function, the benefit of using the Reflected

ReLU function is less significant. The most significant factor is the fact that the

output of tanh() function differs from its input through the useful output range of

the encoder-decoder architecture. Using either the Reflected ReLU function or no

function will avoid this flaw and so the difference between the two is small.

Figure 4.24: Examples of anomaly maps generated for a sample frame from the
leather dataset. Left: the encoder-decoder architecture outputs the anomaly map
directly. Right: the encoder-decoder architecture outputs a reconstruction of the
input.
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Figure 4.25: AUC metrics produced by our proposed method when our Reflected
ReLU activation function is either replaced with the tanh() function or removed.
The dashed lines represent the median performance when using the Reflected ReLU
function, as shown in Figure 4.4.
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4.4 Improving Performance at Higher Resolution

We attempt to improve the performance of our method at a higher resolution of

512 × 512. We begin by considering the fact that two of the five dataset classes

greatly benefited from downscaling while the remaining three benefited by a smaller

degree. The classes that benefited the least: leather, tile and wood, are textures

where information about the nature of the pattern is contained in a very local area

of pixels. One could describe these textures as more homogeneous. In contrast, the

carpet is made up of threads that weave among themselves and the grid is made up

of metal wire that is twisted into a particular pattern. Therefore, a local area of

pixels does not contain the basic repeating unit of the texture. Our encoder-decoder

architecture is shallow and quick to train, but a drawback of having only three

convolutional layers is that pixel information is not aggregated over a very wide

area. We perform experiments at varying input kernel sizes to investigate whether

there is a relationship between the major frequencies contained in the image data

and the preferred kernel size.

Figure 4.26 is a box plot of results achieved under a range of varying input kernel

sizes. The strides of the kernel are maintained at dk/2e and the tile size expands

with the kernel size so as to maintain the same number of units at every layer

within the architecture. At higher kernel sizes we notice some training instability

due to the perceptual loss network. Figure 4.27 shows a box plot of the experiment

repeated using the `2 loss. It is possible that adapting the learning rate may also

have alleviated this problem.

We find that increasing the input kernel size improves performance at the higher

resolution of 512 × 512. This provides some support to the hypothesis that the

benefit of downscaling was to increase the percentage of the pattern that could be

consumed by individual units in the architecture.
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Figure 4.26: The performance of our method when images are downscaled only to
512×512. Each section represents the performance when the input-layer kernel size,
k, is adapted to the size shown in the section label, and the stride is maintained at
dk/2e. Tile size is adapted to maintain the number of units throughout the network.
Dashed lines represent the performance of our method in its original configuration,
as presented in Figure 4.4.
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Figure 4.27: The performance of our method under the same conditions as in
Figure 4.26 except that the `2 loss is used rather than the perceptual loss. Dashed
lines represent the performance of our method in its original configuration, as
presented in Figure 4.4.
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4.5 Conclusion

We introduce a new autoencoder based architecture for textural anomaly detection.

Rather than presenting training examples directly to the autoencoder, we first

corrupt them with random noise in a way comparable to Denoising AutoEncoders

(DAE). In contrast with DAE, we use a bank of noising filters to increase the variabil-

ity of the noise. Furthermore, our autoencoder does not directly output a noise-free

reconstruction of the input, rather, it predicts the negative of the noise, which may

be used directly as an anomaly map during the testing phase when no artificial noise

is added. In combination with the new Reflected ReLU output activation function,

this allows the autoencoder to output a near-zero value for each normal pixel, which

facilitates the pass-through of high-frequency information during the training-phase.

Our proposed method is capable of achieving an average AUC score of 96% across

the MVTecAD texture classes [11], where the best state-of-the-art method achieves

93%. Furthermore, we achieve this with a method that is simple, fast and stable

during training and that requires less than ten minutes of training.
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CHAPTER 5

Anomaly Detection by Pixel Prediction

Previous methods have attempted anomaly detection in video data by predicting

future frames [59, 69] (Section 2.3.1). With the recent rise in Transformer networks

for generalised sequence-to-sequence tasks, and their even more recent application in

the image domain, we investigate the possibility of performing anomaly detection in

image data by predicting future pixels. See Section 2.1.6 for the relevant background

on Transformer networks.

We take an input sequence of pixels as context and use a Transformer network

to predict the sequence of pixels that follows (Section 5.1). Having been trained

on normal pixel sequences, the Transformer network is unable to predict novel

pixel sequences and therefore the difference between the predicted and actual pixel

sequences can be used as a measure of abnormality at inference time. We later

extend this idea to predicting future features rather than pixels, leading to some

improvement (Section 5.5).

At the time of experimentation there were no Transformer-based anomaly de-

tection methods and at the time of writing there are still no Transformer-based

pixel-prediction methods. The contribution of this chapter is then a first and novel

attempt at targeting anomaly detection through this means. Using this method, we
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demonstrate competitive anomaly detection on most of the challenging MVTecAD

dataset texture classes [11] and outperform some of the previous generation state-

of-the art methods [85, 5, 12, 13] (Section 5.2).

Similar to our previous method (Chapter 4), this method was developed for

low-level defect detection and we once again focus on the MVTecAD [11] dataset.

See Chapter 6 for evaluation across all considered datasets.

5.1 Method

Given a sequence of pixels to serve as context, we use the Transformer-based GPT-2

architecture [77] and our variations thereof to predict the sequence of pixels that

follows. Chen et. al [14] also use GPT-2 for predicting pixel sequences (Section 2.1.6)

but, in their case, this is a generative pretraining step for tasks other than anomaly

detection. We modify the work of Chen et. al [14] to reduce computational time,

facilitate anomaly detection, and to explore possibilities for tailoring the architecture

for our own purpose. In particular, we generalise the method of predicting individual

pixels to small arbitrarily sized regions of pixels we call brush-strokes (Section 5.1.1).

We still refer to this image generation strategy as pixel prediction, and speak of

predicting a sequence of pixels.

Unfortunately, applying transformer networks on image data can be compu-

tationally intensive [14, 74, 26] (Section 2.1.6). Therefore, we downscale dataset

images to a size of Dimg ×Dimg and then extract tiles measuring Dtile ×Dtile. Unless

otherwise stated, we use Dimg = 256 and Dtile = 64 so that 16 tiles are required to

cover the image. The method described in this chapter operates on tiles.

The input and output of the GPT-2 architecture is a sequence of integers or

tokens, S. The set of all possible tokens V is referred to as the vocabulary of the model

and determines all that is interpretable by the model at the input and expressible by

the model at the output. Input tiles must therefore be tokenised before propagation

through the network (Section 5.1.1). This is facilitated by having used K-means

clustering on normal brush-strokes to yield a set of brush-stroke centroids or visual

words, each identifiable by an index that may be used as a token. After tokenisation,
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an input tile has been transformed into a linear sequence of |S| tokens, where the

first token carries information about the top-left of the tile and subsequent tokens

represent areas of the tile first spreading to the right and then down. This particular

ordering of the sequence is not important for the method, but it is the one we adopt.

During the training phase, the model takes some number Ltrainctx of the tokens as

context and attempts to predict the next (Section 5.1.3). The output is a probability

distribution over the tokens in the vocabulary, which is analogous to the output of

a regular classification network that outputs a probability distribution over classes.

We therefore train in a similar manner using the cross-entropy loss function with

the ground-truth taken from the known tile sequence.

During the inference phase, the model takes the first half of the tile tokens as

context i.e. Ltestctx = |S|
2

. A forward propagation yields the first predicted token, which

is then appended to the context and the process is repeated to generate the second

half of the tile (Section 5.1.4). The completed tile is then assigned anomaly scores

at the brush-stroke level (Section 5.1.5). By setting the vertical stride of the tiles to

be Dtile

2
, the model can provide anomaly scores for every pixel in the dataset image

except for those in the first Dtile

2
rows.

A second model is trained simultaneously to read a tile from the bottom to the

top. This second model provides alternative anomaly scores that may be averaged

with those from the first and fills in the top of the dataset image for which the first

model had no context (Section 5.1.6).

An overview of the pixel prediction method is depicted in Figure 5.1 withDtile = 8

and b = 2. The top-left of this figure represents an input tile with each coloured

square representing a pixel. From here, the pipeline progresses via the red arrows

during the training phase and the green arrows during the inference phase. The

figure shows how, during both phases, the input tile is transformed into a sequence

of brush-strokes. In the stack of brush-strokes depicted, the top brush-stroke is the

first in the sequence and was taken from the top-left of the input tile. Subsequent

strokes progress first across the image and then down as described earlier. In this

example, it takes four brush-strokes to cover the top row and eight to cover the top

half. Following the training and inference paths one step further, the figure depicts
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Figure 5.1: A schematic of the pixel prediction method, starting from the input
tile (top-left).

107



each brush-stroke being mapped to its nearest visual word (Section 5.1.1). This

forms a sequence of words whose indices are the sequence of tokens that are the

input to the GPT-2 architecture (Section 5.1.2). At this stage, there is a divergence

in the training and inference paths. During training, we select a random number

of tokens greater than half the total number of tokens (Section 5.1.3) while during

inference, we select the first half of the tokens that correspond to the top half of

the input tile (Section 5.1.4). In either case, we append the place-holder token

to the sequence, which the GPT-2 model will replace with its prediction of the

next token. This marks the end of the training path. At this point, the error in

the predicted token is back-propagated through the GPT-2 model and the pipeline

starts again with a new input tile. During the inference phase however, a prediction

loop is entered by appending the predicted token to the input sequence and forward

propagating through the GPT-2 model again to make the next prediction. This

process is repeated until the whole bottom-half of the image is predicted. We now

have a choice of how to measure the prediction accuracy of the model. In the

figure, QE represents the quantisation error, c2c represents the centroid-to-centroid

distance, and c2i represents the centroid-to-image distance. We can also measure

the nearest centroid probability, but this is not shown in the figure since it takes place

inside the box representing the GPT-2 model in the figure. All of these measures of

prediction accuracy are discussed in Section 5.1.5.

5.1.1 Forming the Vocabulary

Chen et al. [14] use K-means clustering on the RGB training pixel values to produce

a smaller palette of colour values. Each colour value in the palette is represented

in the GPT-2 input and output as the value’s centroid index, as described above.

Under this formulation, one token represents a single pixel. Instead of converting

each pixel to a token, we take brush-strokes of size b×b and convert those into tokens

in a similar way. Unless otherwise stated, we use a brush-size b = 4. The model

then expresses its prediction in terms of a sequence of brush-strokes rather than a

sequence of pixels, allowing the model to paint a larger area of image much more

quickly. Since the prediction requires a forward propagation per output token in the
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output sequence, this drastically increases the speed at the cost of sacrificing some

level of model expressiveness. Clearly, a much smaller proportion of the possible

brush-strokes are representable with a given vocabulary size than possible pixel

values; however, this can be mitigated to some extent by increasing the vocabulary

size, which, up to a point, has little impact on speed.

The vocabulary is formed by applying K-means directly on the normal brush-

strokes of the dataset class, forming |V| visual words. We use a vocabulary size

|V| = 256. Figure 5.2 shows the set of visual words obtained on the grid class of the

MVTecAD dataset.

Figure 5.2: Visual words obtained on the grid class of the MVTecAD dataset.

Due to the large number of brush strokes in the training set, we apply stochastic

K-means with a batch size of 1, 024 on a random sample of 10, 000 brush-strokes

from the training set. In stochastic K-means, rather than applying each iteration

on the whole dataset, a random subsample of points is chosen for each iteration.
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5.1.2 Architecture

We configure the GPT-2 architecture [77] (Section 2.1.6) to use an eight-block

decoder with each block using 16-dimensional token embeddings, dual-headed at-

tention and an MLP-scale of four, as shown in Figure 5.3.

In this figure, the sequence dimension is directed from left to right and the

embedding dimension is directed into the page as shown by the legend in the bottom

left of the figure. Therefore, this figure depicts a situation where eight context

tokens are provided and the model is required to predict the ninth token. The

context positions in the sequence correspond to the first eight columns in the figure,

while the predicted position in the sequence corresponds to the final column in

the figure. Along the right edge of the figure, the numbers represent the length

of the embedding dimension. The GPT-2 architecture begins by embedding the

input integer tokens in Rd, where d = 16 in our case. In addition, the position

indices [0..Lctx] are also embedded and added to the token embeddings to encode

positional information. These embeddings are learned separately. The embedding

dimension remains fixed throughout the architecture except in the hidden layer of the

MLP, where our MLP-scale of four extends the embedding dimension temporarily

to 64. At the output layer, the output weights project the embedding dimension

into R|V| so that for each position, there is one output unit per possible token.

A softmax activation converts the raw output into a probability distribution over

tokens. The decoder block, repeated for i from 0 to 7 in the figure, consists of an

attention operation followed by an MLP. The subscripts in the MLP weight matrix

symbols indicate that each block and each MLP layer have unique weights, while

weights are shared among the sequence positions. This facilitates the use of arbitrary

context lengths, which is important during the testing phase. The Gaussian Error

Linear Unit (GELU) activation function is used in the MLP. The attention operation

requires three inputs: the query Q, the keys K and the values V . The figure shows

that all three inputs come from the same set of embeddings, indicating that this is

a self-attention operation.
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5.1.3 Training Procedure

Each training batch consists of B = 32 tiles and is assigned a training context length

Ltrainctx uniformly sampled from the range [Ltestctx ..|S|−1]. Sampling a training context

length in this way is not part of the procedure employed by Chen et al. [14]. Our

justification for doing so is that since the model will be used to generate tokens

one at a time during the inference phase, there is a prediction generation loop over

context lengths in that range. Our scheme simulates a single randomly selected step

in the prediction generation loop, thus training the model over the entire range of

context lengths it will encounter while keeping the training inputs randomised and

balanced fairly.

Each training tile is mapped to its corresponding sequence S of |S| tokens, of

which the first Ltrainctx tokens serve as context for the model to predict the (Ltrainctx +1)th

token. The training sequence length is Ltrainseq = Ltrainctx + 1, where the final token is

the place-holder into which the model will populate the predicted next token. The

first Ltrainctx tokens of S and place-holder are forward propagated through the GPT-2

model to yield the output sequence. The cross-entropy loss is applied to the output

tokens with the ground-truth class labels taken to be the first Ltrainseq tokens of S. This

loss is back-propagated through the model to train the model to copy the context

from the input to the output and to replace the place-holder with the prediction.

Figure 5.4 shows an example training input batch and the corresponding output.

The image depicting the input batch shows how the input tiles are quantised into

a sequence of visual words. Since each word is associated with a token number

(the K-means centroid index), the quantised image represents a sequence of tokens

starting in the top-left corner and progressing to the right then down. For this

particular batch, Ltrainseq = 159, which means that the first 158 of these tokens plus a

place-holder token are propagated through the model. In the output image we see

the 159 output tokens mapped to their corresponding visual word. The first 158 of

these are the given context and the 159th is a prediction. All positions thereafter

are filled with token index zero and are not used.

We use the Adam optimiser [49] and follow Chen et al. [14] in using linear warm-

up and cosine annealing with a learning rate of 3× 10−3, β1 = 0.9 and β2 = 0.999.
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We train for 150, 000 iterations since we found that was sufficient for producing

competent predictions.

5.1.4 Inference Time: Completing the Tiles

We generate output tokens one at a time for a given test tile starting with a context

length of |S|
2

. This means that the model first receives tokens from the upper-half

of an input tile as context, and on the first forward propagation generates the first

token of the next row of the tile. The model output is a probability distribution

over the tokens in V allowing the possibility to sample this output token from the

distribution. The chosen token is then appended to the context sequence and a

second forward propagation generates the next token. This process is repeated until

the entire lower-half of the tile is generated.

In this way, we are able to generate the unseen lower-half of the test tile.

However, it is important to consider that in some cases, numerous pixel sequences

could plausibly follow a given context. If the model only predicted one possible tile

completion then it may perform poorly due to predicting sequences that are only

slightly more probable than others and that are consequently incorrect much of the

time. For this reason, we make numerous predictions and choose the version that

most closely matches the test sample. This is achieved by repeating the input nsample

times along the batch dimension. Since the predicted tokens are always sampled from

the output probability distribution, each entry in the extended output batch will

have a slightly different completion. Unless otherwise stated, we choose the number

Figure 5.4: An example training batch. Left: the input batch and its quantisation.
Right: the output batch.
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of samples to be nsample = 48. Figure 5.5 shows an example test tile from the grid

class and the predictions generated when the top half of this example tile is used as

context.

Figure 5.5: Top: an input tile from the grid class of the MVTecAD dataset.
Bottom: the nsample predictions generated by the model when given the top half of
the above tile as context. The closest prediction is highlighted in red.

The samples look very similar at first glance. However, on closer inspection one

can see alternative visual words that have been chosen to texture the grid and mild

distortions in the structure that vary from one sample to the next. For the most

part, these alternative texture and structure choices vary within normal parameters.

5.1.5 Inference Time: Scoring the Tiles

This method allows a variety of anomaly scoring measures. We apply these scoring

measures at the brush-stroke level and assign a uniform anomaly score over the pixels

of the brush-stroke. Brush-strokes are typically much smaller than anomalies and

so we are still able to obtain reasonably fine-grained anomaly segmentation masks.

They are also sufficiently small that in the discussion of the scoring measures below,

we assume they carry colour information but negligible structural information.

114



Quantisation Error (QE)

This scoring measure is particularly fast to compute since we do not require even

a single forward propagation through the model. We simply simulate a perfect

tile completion by mapping each input brush-stroke to its nearest visual word and

then computing the Euclidean distance between each brush-stroke of the original

image and its counterpart in the simulated completion. This is essentially using the

K-means clustering algorithm alone to predict anomalies. Intuitively, this score will

perform well when anomalies present as discolourations but will perform poorly when

anomalies present as structural deformations. The extent to which the anomaly

detection performance of this method is due to the K-means clustering alone is

explored in Section 5.3.1.

Centroid-to-Centroid Distance (c2c)

The anomaly score for each brush-stroke region is the Euclidean distance between

the predicted visual word and the visual word closest to the brush-stroke from the

original tile.

Centroid-to-Input Distance (c2i)

The anomaly score for each brush-stroke region is the Euclidean distance between

the predicted visual word and the corresponding brush-stroke from the original tile.

This method for scoring the tiles combines elements from c2c and QE. Errors in

the model prediction are associated with unpredictability in structure and result in

incorrect visual words; meanwhile, even for a perfect prediction, there remains some

distance between the predicted visual word and the original brush-stroke due to the

K-means quantisation. This distance captures deviation in the colour of the sample

brush-stroke from those seen in the training set.

Nearest Centroid Probability (NCP)

This scoring measure is fast to compute since we do not need to take samples.

We start with the input context and forward propagate to produce the output
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probability distribution over V for the first predicted token as usual. At this point

we query the probability of the correct token, where the correct token is taken as

the index of the visual word nearest the input brush-stroke. The anomaly score

for this brush-stroke region is then one minus the found probability. We append

the correct token to the input sequence and proceed with the subsequent predicted

tokens. Since we automatically fill in the predictions with the correct brush-strokes,

there is no need to sample.

5.1.6 Prediction Direction Averaging

As described to this point, this method would produce anomaly scores for all pixels

except those that served as context for the top row of tiles. To solve this problem and

to incorporate an ensemble into the method, we train two models simultaneously.

The first is trained as described, and the second is trained as described except that

the tiles are vertically flipped before entering the training and testing pipelines.

Consequently, one iteration over one tile will produce anomaly scores for every pixel,

where those scores in the top half were assigned by the second model that saw the

bottom half as context, and those scores in the bottom half were assigned by the

first model that saw the top half as context. A further consequence is that the

second model learns to make predictions in row-reversed order, which may influence

its decisions. Therefore, we maintain the vertical tile stride at half the tile length so

that most pixels will obtain a score from both models. These scores are averaged.

5.2 Results

We test our pixel prediction method on the texture classes of the MVTecAD dataset.

Figure 5.6 shows the results obtained using the three different pixel-prediction based

measures of abnormality: c2i, c2c and NCP when the method is configured as

described in Section 5.1 i.e. Dimg = 256, Dtile = 64, b = 4 and |V| = 256. For the

c2i and c2c measures that support sampling, nsample = 48. Table 5.1 compares our

results with those obtained by state-of-the-art methods.

We find that the best and most consistent results are obtained on the grid class,
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Figure 5.6: Box plot of AUC scores obtained by pixel prediction on the MVTecAD
texture classes when configured as described in Section 5.1.

Table 5.1: Anomaly detection performance using pixel prediction (AUC).

Method Carpet Grid Leather Tile Wood Mean

FCDD [61] 0.96 0.91 0.98 0.91 0.88 0.93

P-Net [63] 0.57 0.98 0.89 0.97 0.98 0.88

SMAI [56] 0.88 0.97 0.86 0.62 0.80 0.83

VAEgrad [21] 0.74 0.96 0.93 0.65 0.84 0.82

VEVAE [60] 0.78 0.73 0.95 0.80 0.77 0.81

CNN Feats. [71] 0.72 0.59 0.87 0.93 0.91 0.80

Ours: c2i 0.71 0.92 0.92 0.53 0.81 0.78

GANomaly [5] 0.70 0.71 0.84 0.79 0.83 0.78

AE (SSIM) [12] 0.87 0.94 0.78 0.59 0.73 0.78

Ours: c2c 0.69 0.91 0.88 0.46 0.69 0.73

Ours: NCP 0.74 0.94 0.77 0.52 0.59 0.71

AE (L2) [12] 0.59 0.90 0.75 0.51 0.73 0.70

GMM [13] 0.88 0.72 0.97 0.41 0.41 0.68

AnoGAN [85] 0.54 0.58 0.64 0.50 0.62 0.58
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while by far, the worst performance is on the tile class. The discrepancy between

these classes is explored in the analysis in Section 5.4. As shown in Table 5.1,

our method does not reach the state-of-the-art standard set by some contemporary

anomaly detection approaches [63, 61, 56]; however, it does comfortably outperform

some of the previous generation state-of-the-art methods such as AnoGAN [85],

especially when taking the c2i anomaly score.

Overall, the c2i anomaly score is the strongest performer across these dataset

classes. We hypothesise that this is because the c2i score is the only one to be

influenced by both medium-scale structural predictability and small-scale colour

novelty. Combining both of these aspects appears to be stronger than using just one

or the other. The c2i anomaly score dominates the c2c anomaly score, surpassing

its performance on every class; however, is is beaten by NCP on the carpet and

grid classes by a small margin. NCP is often either the best anomaly score or

matches c2i but curiously, its performance drops significantly on the leather and

wood classes. There may be some benefit in combining these procedures rather

than using them in isolation. In particular, combining the c2i and NCP procedures

could be interesting because they each consider opposite aspects of the problem:

c2i considers how close the most likely pixels are to the ground truth, whereas

NCP considers the likelihood of the ground truth. Unfortunately, these anomaly

scores are very different in character and are not trivial to combine in a meaningful

way. The c2i score produces a distance in image space that behaves linearly: twice

the score implies twice the distance. In contrast, the NCP score is calculated via

a probability. In theory, twice the probability implies twice the likelihood but in

practice, the true interpretation of the probability figure is unknown and is unlikely

to be linear. We base this on the observed behaviour of classification networks, where

measurement of confidence through analysis of the output probability distribution

is often unreliable. Therefore, we anticipate that the solution to this problem will

be much more involved than a weighted combination of scores. The NCP score may

be improved by considering the top-N nearest visual word probabilities. Figures 5.7

- 5.11 show example detections using the c2i anomaly score.

Using pixel prediction, it is easy to detect anomalies in the structure of grid class
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Figure 5.7: Example detections on the carpet class of the MVTecAD dataset using
the c2i anomaly score. Right images show the per-pixel anomaly scores with darker
pixels indicating larger scores. Left images show the dataset image with detections
overlaid in red.

Figure 5.8: Example detections on the grid class of the MVTecAD dataset using
the c2i anomaly score. Right images show the per-pixel anomaly scores with darker
pixels indicating larger scores. Left images show the dataset image with detections
overlaid in red.
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Figure 5.9: Example detections on the leather class of the MVTecAD dataset using
the c2i anomaly score. Right images show the per-pixel anomaly scores with darker
pixels indicating larger scores. Left images show the dataset image with detections
overlaid in red.

Figure 5.10: Example detections on the tile class of the MVTecAD dataset using
the c2i anomaly score. Right images show the per-pixel anomaly scores with darker
pixels indicating larger scores. Left images show the dataset image with detections
overlaid in red.
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images. In the case of bends or breaks, a line of grid material exhibits a discontinuity

where the model predicts that it should continue in a predictable manner as shown

in Figure 5.12. Likewise, the presence of foreign material is detected without much

difficulty as shown in Figure 5.13.

Often, this method has difficulty where normal variation is quite diverse. In the

Figure 5.11: Example detections on the wood class of the MVTecAD dataset using
the c2i anomaly score. Right images show the per-pixel anomaly scores with darker
pixels indicating larger scores. Left images show the dataset image with detections
overlaid in red.

Figure 5.12: Top: an input tile from the grid class of the MVTecAD dataset
in which there is a bend in the grid structure. Bottom: the nsample predictions
generated by the model when given the top half of the above tile as context. The
closest prediction is highlighted in red.
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carpet class, we observe an increased density of false-positive detections where the

colour tone of the carpet suddenly but subtly changes and where the weave is subtly

distorted. Similarly, in the leather class, false-positive detections often cluster along

the cracks where it is difficult to determine the precise route they will take and all

kinds of routes would be normal. In Figure 5.14 we observe the model predicting

all manner of crack-routes across the 48 samples. Due to the difficulty of predicting

these routes, more samples may benefit the performance of the method on this class.

In the same figure, we also observe the behaviour of the K-means clustering alongside

the behaviour of the pixel prediction model. In the context region, the clustering

is responsible for concealing the rip to some extent; while in the predicted region,

the model joins forces with the clustering to repair the rip altogether. This causes

a large distance between the anomalous regions of the input and predicted tiles as

intended.

Figure 5.13: Top: an input tile from the grid class of the MVTecAD dataset that
contains some foreign material. Bottom: the nsample predictions generated by the
model when given the top half of the above tile as context. The closest prediction
is highlighted in red.
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Figure 5.14: Top: an input tile from the leather class of the MVTecAD dataset
in which the leather is ripped. Bottom: the nsample predictions generated by the
model when given the top half of the above tile as context. The closest prediction
is highlighted in red.
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5.3 Analysis

Each of the following subsections examine an isolated aspect of the method described

in Section 5.1. The aspect is modified in some way or removed and the new results

are compared with those displayed in Section 5.2 to see what difference it made.

This section examines the extent to which the anomaly detection performance was

due to K-means clustering rather than prediction (Section 5.3.1), the benefit of

taking multiple samples for the c2c and c2i anomaly scoring schemes (Section 5.3.2),

and the effect of using a secondary model for simultaneous backwards prediction

(Section 5.3.3).

5.3.1 Anomaly Detection by Clustering

The accuracy of the future pixel prediction is affected not only by what the model has

learned about the patterns in normal sequences, but also by the clustering algorithm

that affects what is interpretable and expressible by the model. If, for example, all

normal samples of carpet have a particular colour, then the K-means algorithm will

not find visual words that are of a vastly different colour. At test time, we may

encounter a sample of carpet that has paint spilled on it, drastically changing the

colour of the carpet. In this case, tokenisation will map this sample to a sequence of

tokens representing regularly coloured brush-strokes. One could imagine that in such

cases, successful anomaly detection could be achieved by dispensing with the model

entirely and simply taking a distance measure between the input brush-strokes and

their nearest visual word. We perform this experiment and present the box-plot of

AUC results in Figure 5.15. Dashed lines are used to compare these box plots with

those from Figure 5.6, in which future-prediction is employed.

In most cases, not using the future pixel prediction models severely harms

performance. This is not the case for the tile dataset that performed very poorly

under future pixel prediction but was greatly improved under pure quantisation

error. Section 5.4 explores the tile dataset further and offers an explanation for why

this may be the case. Overall, these results suggest that there is some utility in

using the Transformer-based models for predicting upcoming pixel sequences. This
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allows for detection of anomalies in the structure of patterns such as warps, bends,

breaks, rips and folds that do not necessarily entail deviations in colour.

5.3.2 Sampling

As described in Section 5.1, we produce a number of alternative plausible tile com-

pletions based on the tile’s top half by sampling from the model output distribution.

The results discussed in Section 5.2 were produced using nsample = 48, allowing the

method to choose the most accurate prediction from among 48 alternatives. This

applies to the c2c and c2i anomaly scores for which sampling is relevant. Using the

same models, but setting nsample = 1, we produce the results shown in Figure 5.16.

With the exception of the tile class on both anomaly scores and the leather class

on the c2c anomaly score, the results are worse in every case, which supports the

claim that taking multiple samples is good for performance.

There are a few different scenarios to consider when reasoning about the effect

of sampling from a purely theoretical perspective. Given a tile with an anomaly

contained entirely outside of the context, it is inconceivable that any number of
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Figure 5.15: The AUC performance when using the QE anomaly score. Dashed
lines show the greatest median performance achieved when using future pixel
prediction as displayed in Figure 5.6.
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samples will generate the anomaly, in which case, more samples can only increase

performance. Given a tile with an anomaly contained entirely inside of the context,

the model should be able to generate accurate tile completions, but the novel

sequence of tokens in the model input may decrease the probability of this happen-

ing. In this way, the anomaly may cause high anomaly scores in the neighbouring

predicted region that is normal. In this case, sampling mitigates this effect by

offering the model more chances to predict the correct sequence. Given a tile

with an anomaly spanning the context and prediction regions, sampling may have

afforded the model more chances to generate the anomaly and in this case, may have

negatively affected performance. We observe that this does not typically happen.

For example, Figure 5.17 shows a tile from the tile class that has a crack running

vertically down the middle. In the samples, we observe that the crack usually

terminates on entry to the predicted regions. It is interesting to note that in some

samples, the model does attempt to continue the crack down into the predicted

region for a short while using a centroid that is close in colour, but the model

always favours eventually returning to a more typical distribution of pattern.
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Figure 5.16: AUC results obtained from the same model used to obtain the results
in Section 5.2 when only one sample prediction is taken. Dashed lines show the
results from Section 5.2.
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5.3.3 Prediction Direction Averaging

The results shown in Section 5.2 were produced by averaging the anomaly scores

assigned by two different models: one that is passed sequence tokens from top-left to

bottom-right and one that is passed sequence tokens from bottom-left to top-right

(Section 5.1.6). To investigate the utility of performing this averaging, we measure

the performance of each of these models in isolation. A consequence of only using

a single model is that there will be an unreachable block of pixels located either at

the very top or very bottom of each dataset image, depending on which model is

being investigated. These pixels are discarded before calculating the AUC scores.

Figure 5.18 displays the AUC results achieved by each of the two models in

isolation. In the left half of the figure, the results are from the model that receives

the tiles without flipping and therefore takes the top-half as context. In the right

half of the figure, the results are from the model that receives the flipped tiles and

therefore takes the bottom half as context. The dashed lines are for comparison

with the base-line results from figure 5.6 in which the two models are combined.

When using the c2i and c2c anomaly scoring methods, performance is always

improved by using both models in combination. Even the tile class, which has

Figure 5.17: Top: an anomalous input tile from the tile class of the MVTecAD
dataset. Bottom: the nsample predictions generated by the model when given the
top half of the above tile as context. The closest prediction is highlighted in red.
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Figure 5.18: AUC results obtained from each of the models in isolation using each
of the three model-based methods of anomaly score. Top: the model that uses the
top-half of the tile as context to predict the bottom-half. Bottom: the model that
uses the bottom-half of the tile as context to predict the top-half. Dashed lines show
the median performance of both models combined as displayed in Figure 5.6.
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acquired a reputation for breaking trends, is marginally improved. In contrast, when

using the NCP scoring method, performance on the tile and wood classes is slightly

hindered. The most interesting observation from these results is that for the leather

class, there appears to be a preference for reading the tiles in row-reversed order i.e.

the model that receives the bottom-half of the tile as context has the advantage. This

behaviour is very curious, and has also been observed in preliminary experiments

under different conditions. There is a systematic asymmetry in the images of the

leather class: cracks present as dark lines with light lines running underneath, which

does cause the character of the images to change when they are flipped; however, it

is unclear if this is the cause and why this would be important.

5.4 The Tile Class

The results obtained on the tile class were very poor. This section explores why this

may have been the case, drawing comparisons with the grid class that performed

very well.

Figure 5.19 shows the nsample predictions generated by the model for the shown

test tile. Unlike the grid example shown in Figure 5.5, the diversity in the samples

is very large. Although all variations predicted by the model are plausible, they do

not begin to cover the full range of possibilities because the pattern exhibits very

high entropy. It is very hard to predict exactly how the tile pattern will continue

to develop from the context because exactly where the mottling in the pattern will

occur is only weakly related to where it has been distributed before. A dataset

like this may need very many more samples, but this will make the distance-based

anomaly scores very slow to compute. Alternatively, this class may benefit from less

downscaling and a smaller tile size, both of which will restrict the degree of possible

variations within an input tile.

This inherent lack of predictability is evident in the model output distribution

over centroids. Figure 5.20 depicts a typical output distribution for both the grid

and the tile classes. For the grid class, the model is often able to predict with

high confidence the centroid that is supposed to come next. On the other hand, for
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the tile class, the model output is much closer to a uniform distribution and so we

observe that the high entropy in the texture is reflected in the high entropy in the

output distribution.

However, as shown in Figure 5.17, the model does fail to accurately predict

anomalous patterns as intended. The failure of the tile class is therefore due to the

model’s inability to predict normal sequences due to their inherently random nature.

The findings in Section 5.3.1 also support the hypothesis that it’s the entropy

of the tile class that is to blame. There, we saw that the tile class is the only one

Figure 5.19: Top: a normal input tile from the tile class of the MVTecAD dataset.
Bottom: the nsample predictions generated by the model when given the top half of
the above tile as context. The closest prediction is highlighted in red.
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Figure 5.20: Bar charts showing the typical probability distributions over centroids
obtained on two of the classes. Left: grid. Right: tile
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to benefit from disabling the future pixel prediction and relying exclusively on the

quantisation error.

5.5 Feature Prediction

We propose a variant that predicts features, rather than pixels. To form the new

vocabulary, we first propagate each brush-stroke through a pretrained VGG-11

network [89] to yield its feature representation. In this case, features are extracted

from the third convolutional layer, and the brush-size is chosen to ensure that at

that layer, the network activations have collapsed to a size of 1 × 1 in the spatial

dimensions. The features are then used in the K-means algorithm as before. Based

on a range of preliminary experiments, we choose a tile size of Dtile = 96 and

extract features from the third convolutional layer after ReLU activation is applied,

since this configuration gave the most consistent performance. This requires a

brush-size b = 12 to collapse the features in the spatial dimensions as described

above. Figure 5.21 compares the results obtained using future feature prediction

with those obtained using future pixel prediction.

In almost every case, results are significantly improved when predicting features

rather than pixels. The only notable exception is the leather class for which the

performance is adversely affected. It is not clear why leather in particular should

be affected in this way.
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Figure 5.21: AUC results obtained when using future feature prediction rather
than future pixel prediction. Features are extracted from the VGG-11 network [89]
at the third convolutional layer after ReLU activation is applied. Dashed lines show
the performance of future pixel prediction.
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5.6 Conclusion

We contribute a first attempt at targeting anomaly detection through Transformer-

based pixel prediction. At the time of experimentation there were no Transformer-

based anomaly detection methods and at the time of writing there are still no

Transformer-based pixel-prediction methods to our knowledge. We are able to very

consistently generate a range of plausible future pixel predictions based on a given

input context, which leads to competent anomaly detection in most cases; however,

when textural patterns exhibit high entropy, the variability in plausible patterns

limits the anomaly detection performance. Nevertheless, we outperform some of the

previous generation state-of-the art methods such as AnoGAN [85].

We have shown that the method is made more robust by sampling multiple tile

completions and by ensembling models that read the data in different directions. In

principle, both of these techniques may be extended and it is likely that this would

improve results. Extra samples could be taken, and extra models could be trained

to predict horizontally rather than vertically, but this would come at a significant

computational cost. In addition, we showed that making predictions in the feature-

space rather than the pixel-space most often leads to improved performance.
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CHAPTER 6

Cross-Context Evaluation of Methods

The previous contribution chapters evaluated methods applied within their own

anomaly detection subdomains. Chapter 3 evaluated our KDE-based method on a

CCTV dataset, a domain where anomalies are at the object-level, while Chapters

4 and 5 evaluated the methods they present on the MVTecAD dataset, a domain

where anomalies are more pixel-level defects. Here, we investigate the performance

of our methods when applied across these two genres of anomaly detection.

6.1 KDE-based detection on MVTecAD

Figure 6.1 shows the AUC results obtained by the KDE-based method presented in

Chapter 3 on the texture classes of the MVTecAD [11] dataset. Since the application

of the region extractor makes little sense in this context, we use manually extracted

regions of side-length 64. During the training phase, the regions are extracted from

50 random locations per frame. During the inference phase, the regions are tiles

spanning the entire frame. We downscale images to 512 × 512, since this is the

middle of the range of sizes experimented with in Chapter 4. We use the layer six

variant of the feature extractor without ReLU activation and 48 PCA components.
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The features from layer six without ReLU activation proved to be the best on the

Ped2 dataset, and 64 PCA components gave a good balance between performance

and computational complexity.
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Figure 6.1: AUC results obtained by our KDE-based method on the MVTecAD
texture classes. Dashed lines represent the performance of our best performing
method shown in Figure 4.4

The performance on the texture classes is very good on the whole, especially

considering that the texture classes are very different to those that the feature

extractor was originally trained on. This demonstrates the generality and transfer-

ability of the layer six features. When comparing these performance metrics with

our other two methods, it should be understood that this method is a region-level

anomaly detection method, while the other two are pixel-level anomaly segmentation

methods. Counter-intuitively, advantage is gained by the region-level detector when

being evaluated against a pixel-level ground-truth. Since normal pixels usually

outnumber anomalous pixels by a large margin, it is far better to apply high anomaly

scores liberally in anomalous areas, striking all anomalous pixels at the expense of

also striking some peripheral normal ones, than it is to accurately segment anomalies,

missing almost all normal pixels but also missing a few anomalous ones. Indeed, one

easy way to significantly improve results for our two anomaly segmentation methods

is to simply blur the anomaly heat maps produced so as to bleed detections into

135



the normal regions, but we consider this not really within the original spirit of the

evaluation criteria intended by the dataset designers [11].

Figure 6.2: Example anomaly detections obtained by our KDE-based method on
the carpet class of the MVTecAD dataset.

Figure 6.3: Example anomaly detections obtained by our KDE-based method on
the grid class of the MVTecAD dataset.

Figures 6.2 - 6.6 show example anomaly detections on the same dataset classes.

Some kinds of anomaly are sometimes only partially detected. For anomalies where

this is the case, the example shown is from a poorly detected anomaly, but it would

have been possible to cherry-pick a perfect example. In the examples for the three

poorest performing classes: grid, tile and wood, we can see the reason for the lower
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Figure 6.4: Example anomaly detections obtained by our KDE-based method on
the leather class of the MVTecAD dataset.

Figure 6.5: Example anomaly detections obtained by our KDE-based method on
the tile class of the MVTecAD dataset.

137



Figure 6.6: Example anomaly detections obtained by our KDE-based method on
the wood class of the MVTecAD dataset.

performance. These classes contain examples where at least one kind of anomaly

has a significant proportion of anomalous pixels left undetected.

6.2 Restoration Model on Ped2

To apply our restoration method (Chapter 4) to the UCSD Ped2 dataset [65], it

makes sense to apply the region extractor used in our KDE-based method to first

filter out the background scene. The restoration model can then focus training

on restoring the figures of people rather than large areas of sky and ground. The

extracted regions are forced to be square and of a size acceptable to the architecture.

Following our procedure described in Section 4.1, we force extracted regions to be

65× 65 but we perform no resizing of the dataset images. Figure 6.7 shows example

anomaly segmentations given by our restoration method on this dataset. We can

see that the method consistently segments the wheels of the bikes and other fine

anomalous details like the skateboards. This method detects skateboards far more

competently than the KDE-based anomaly detector that makes decisions based on

entire regions as a whole, rather than on the fine details of the pixels they contain.

We would like to produce AUC metrics to compare performance with the KDE-

based method. Unfortunately, where region-based anomaly detectors gain a moder-
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ate advantage over anomaly segmentation models in a literal pixel-level ground truth

context, they gain an enormous advantage in a Ped2 pixel-level context, to the point

where comparison is meaningless. Consider that our restoration method produces

a unique anomaly score per pixel. Given a normal frame, if any one of those pixels

is scored too highly then the entire frame counts against the model. Conversely,

given an anomalous frame, the method needs to produce a high anomaly score

for at least 40% of the anomalous pixels. Most anomalies consist of cyclists, and

the ground-truth contains a solid convex region encompassing the bike, the person,

and a fair number of background pixels that can be seen through the wheels, bike

frame and much of the area around the cyclist. The restoration method, considering

only pixels, never assigns a high score to the cyclist, only pixels belonging to some

of the bike. Also, in the case of the skateboarders, only the skateboard itself

is considered anomalous by the restoration model. Therefore, the method never

gains credit for detecting any of the skateboard, despite doing so better than the

KDE-based method; seldom gets credit for detecting any of a bike; and almost

always scores a false-positive on negative frames, despite leaving the vast majority

of pixels undetected. Consequently, AUC scores average around 0.003, which does

not provide any useful information about the performance of the method.

The former of those problems, the under-segmentation of normal parts of anoma-

Figure 6.7: Example anomaly segmentations obtained by our restoration method
on the UCSD Ped2 dataset [65].
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lous entities, could be addressed in a post-processing step. For example, connected

components of the segmentation mask could be grown to fill areas of the image

that are similar. If the background is fixed, as in this dataset, then this could be

made more robust by growing to fill areas of the image that do not belong to the

background instead. The major shortcoming of this is that the segmented region

will occasionally leak out of the anomalous object into the wider image. It may

be better to classify anomaly detectors as fine-grained or coarse-grained and allow

users to select what kind of anomaly detection is appropriate, rather than to try to

fit an output to one particular definition of abnormal set by some ground truth.

6.3 Pixel Prediction on Ped2

We use the same region extraction procedure as in the previous section to apply

our pixel prediction method on the UCSD Ped2 dataset. The method is applied

as described in Section 5.1 using the c2i anomaly scoring method. Figure 6.8

demonstrates how this method fails to transfer to this domain. Segmented regions

appear to be random and are not stable frame-to-frame. AUC metrics on this

dataset are not included for the same reason described in the previous section for

our restoration method.

Figure 6.8: Example anomaly segmentations obtained by our pixel prediction
method on the UCSD Ped2 dataset [65].
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6.4 Conclusion

Our KDE-based method for abnormal activity detection in scenes is the most trans-

ferable, making a more than satisfactory attempt at textural defect detection when

its region extractor is disabled in favour of simple tiling. In the context of ab-

normal activity detection in scenes, our restoration method is hindered by being

too fine-grained and low-level since anomalies in this context lend themselves to

region-level detection based on high-level concepts. Nevertheless, it competently

segments fine anomalous details in the scene such as bike wheels and skateboards.

This is consistent with our previous experiments that consistently show that the

restoration method is a very strong pixel-level defect segmentation method. In

contrast, our pixel prediction method is not strong enough to transfer to this

anomaly detection context.

141



CHAPTER 7

Conclusion

We conclude this thesis with a discussion of our three proposed methods, detailing

the contributions made and highlighting areas for future development.

7.1 Contributions

Within this thesis, we introduce three original methods for anomaly detection: one

specialised towards detecting abnormal activity in scenes and two specialised towards

defect segmentation in textures.

The first method is based upon Kernel Density Estimation (KDE) on features

extracted from a neural network pretrained on a combination of large-scale image

datasets. Some existing state-of-the-art methods similarly employ features extracted

from pretrained networks to build a model of normality [40]. Relative to these, we

achieve significant increasaes in computational speed and real-time performance

by replacing classical region proposal systems with our modified Region Proposal

Network (RPN), which significantly reduces the number of regions to be processed

at the KDE stage. Furthermore, we achieve greater anomaly detection performance

via three design choices. The first is to take advantage of the reduced computational
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load to dramatically increase the dimensionality of the KDE model. The timings

reported in Section 3.3.4 produced from our simulation of an existing technique using

classical region proposal systems, suggest that increasing the dimensionality in this

way is not a viable option without our RPN modification. The remaining two design

choices are to take features from a lower network layer before the ReLU activation

and to scale the features rather than normalising them. These alterations could

be applied to existing methods without difficulty. Removing the ReLU activation

allows much greater variation in the extracted features because the negative values

remain. This helps to separate normal and anomalous features since they are able to

differ in the negative values in addition to the positive. Taking features from a lower

network layer may be beneficial because they are more general [105] i.e. they are less

specialised towards indicating the output classes of the classification network, whose

training examples are unlikely to be representative of the imagery observed in the

anomaly detection dataset. Using the pixel-level evaluation on the Ped2 dataset [65],

our modifications increase the inference-time frame-rate by at least six times when

using sixteen PCA components and 25 times when using 128 PCA components, as

shown by experiment in Section 3.3.4. While maintaining real-time performance,

we are able to increase the number of PCA components from sixteen until anomaly

detection performance is equal to that reported by Hinami et al. [40]. The remaining

design choices improve performance by a further 3%.

The second method is a result of rethinking the application of autoencoders to

anomaly detection. Many existing state-of-the-art methods make use of autoen-

coders by training them to reconstruct normal input frames [36, 104], resulting in a

model that is able to form reconstructions with anomalies omitted, but is unable to

form reconstructions with high-frequency detail and sufficient accuracy across the

normal pixels. Consequently, the anomaly map formed via the difference between the

input and reconstructed frames is often noisy, reducing performance. In contrast,

our method aims to output the anomaly map directly, which is a much simpler

image than the texture itself. The normal regions in the anomaly map, having a

constant target anomaly score of zero, have no high-frequency content to produce.

It is trained by performing texture restoration on normal samples that have been
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artificially defaced using one of a wide variety of noising algorithms. We arrange

for the model to output the pixel shifts required to restore the texture, rather than

the restored texture itself. These shifts become the direct output anomaly map

at inference time and facilitate the generation of anomaly maps with stark contrast

between the normal and anomalous pixels, which significantly enhances performance.

Direct generation of the simple anomaly map rather than the complex texture allows

our method to achieve a new state-of-the art in textural defect segmentation on the

MVTecAD dataset [11]. Our method achieves an average Area Under the ROC

Curve (AUC) score of 96% across all of the texture classes compared with 93% for

the next best performing model. In addition, we demonstrate the generalisability of

our method to other challenging datasets with vastly differing characters [43, 102].

We show conclusively in Section 4.3.4 that the wide variety of noising algorithms is

key to achieving good performance from our method, which is something that is not

considered in other denoising methods [104] nor in the use of denoising autoencoders

in general [10].

The final method is an experimental exploration towards performing textural de-

fect segmentation via Transformer-based future pixel and feature prediction. While

Transformer-based architectures are increasingly used in the image domain [14, 26],

at the time of experimentation there were no Transformer-based architectures for

anomaly detection specifically. Our final method therefore contributes towards

filling that gap in the research. Through developing this method, we introduce

a means of processing image data in units of brush-strokes rather than pixels to

cover image generation much more quickly, the method of sampling from the trans-

former output distribution to select the best possible completion, the method of

ensembling Transformer models that predict sequences in different directions, and

four different anomaly scoring metrics. We prove the utility of applying the future

prediction model over and above simple clustering alone in Section 5.3.1, and we

show concretely the benefit of sampling and ensembling in Sections 5.3.2 and 5.3.3

respectively. We then extend this idea to predicting sequences of features rather than

pixels, with some improvement in results as shown in Section 5.5. We demonstrate

both the potential of this approach and its limitations. The potential of this method
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is in its consistency in generating a range of plausible texture completions with

anomalies omitted, however, it is unable to compete with the former two methods

in terms of speed and performance. The barrier to speed is the large computational

cost of requiring one forward propagation per predicted token, when one predicted

token only covers a brush-stroke area. The barrier to performance is the wide variety

of plausible texture completions given the context, especially for textural patterns

with high entropy.

Overall, the strongest of the methods we introduced is the second method: the

texture restoration method described in Chapter 4. This method provides very

stable and consistent outputs compared to the other two methods. All figures in

Chapter 4 that depict example detections were created using a fixed threshold that

was not especially tuned. In contrast, the other two methods required setting a

different threshold for each dataset class, and the appearance of the output was

sensitive to the choice of value. This follows from the difference in character of the

per-pixel heat maps of the anomaly scores, where for the second method, heat maps

are characterised by a deep contrast between normal and anomalous pixels, while

for the other two methods, heat maps can appear more noisy.

7.2 Learning From Cross-Context Experiments

In the methods we present, there are two main components involved in specialising a

method towards either detecting abnormal activity in scenes or segmenting textural

defects. The first is whether or not anomaly scores are assigned per region or

per pixel. The second is whether or not high-level concepts are leveraged from

pretrained deep neural networks that have been exposed to a wide variety of object

categories from a large-scale dataset. On the surveillance style datasets, methods

for texture defect detection are too focused on small details and do not consider

objects as a whole, resulting in noisy false-positive detections and under segmented

positive regions. This is a significant disadvantage. However, methods for abnormal

activity detection do not show a similar disadvantage when applied to textural

defect segmentation. Naturally, these systems severely over-segment anomalous
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regions, but this is not critical for either real-world deployment nor quantitative

evaluation. For deployment, we are usually more interested in whether there is a

defect rather than the shape of the defect. For quantitative evaluation, detecting all

of the anomalous pixels at the expense of falsely detecting normal peripheral pixels

is a good strategy, since the number of normal pixels that are far away from defects

far exceeds the number that are close to defects.

7.3 Limitations

This section highlights the limitations of the three methods presented in this thesis,

while the following section suggests future work that may address some of these

limitations.

The KDE-based method presented in Chapter 3 only ever uses a single source of

feature representations: one whole layer of activations from the feature extraction

network. There are many other features throughout the network that may contain

relevant information and conversely, there may be features within the selected layer

that are redundant. This method may also be hindered in general application

when both the region and feature extraction networks are pretrained on a specific

application; however, we show in Chapter 6 that this need not be a significant

problem.

The restoration method presented in Chapter 4 uses a hard-coded noising filter

bank. This is not flexible and requires many design choices that are hard to justify

theoretically rather than empirically.

The pixel prediction method presented in Chapter 5 may benefit from alternative

uses of the Transformer architecture. Currently, a sequence of tokens plus the place-

holder token gets mapped to an identical sequence of tokens plus predicted token. It

is a lot of work during training and inference to produce mainly the same tokens as we

supplied at the input, when all that is required is a predicted token. The anomaly

detection performance of this method is limited by the need to find the correct

completion among a large quantity of plausible completions, while the computational

performance is limited by the need for one forward propagation per predicted token.
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7.4 Further Work

Considering the KDE-based method presented in Chapter 3, it would be interesting

to explore whether the performance may be improved by preselecting a set of random

subsets of features from the feature extraction network, and then employing the

method using each of these subsets in an ensemble. Features may be randomly

selected from within a particular layer or across layers. An ensemble could also

be formed from a set of entirely separate feature extraction networks, each trained

on different datasets. On top of the feature extractor, a range of different classical

techniques may be applied to measure the anomaly scores such as the k-Nearest

Neighbour (kNN) distance or the distance to centroids found via clustering algo-

rithms. These may also be investigated.

For the restoration method presented in Chapter 4, it would be desirable to move

away from the hard-coded noising filter bank and instead use a noising network

that learns how to add noise to the training samples. This would facilitate an

adversarial element to the training of the restoration network since the noising

network can be continuously adapted to find noising patterns that the restoration

network cannot undo. By taking snapshots of these noising patterns, a learned

noising filter bank could be automatically grown over time that could potentially

cover a more substantial range of noising patterns than any hard-coded filter bank.

We suspect that without taking snapshots, the restoration network may simply

adapt to the current noising pattern and forget how to solve previously seen pat-

terns. Meanwhile, the noising network may aimlessly explore the space of noising

patterns, maybe repeating those previously found. The difficulty we found with this

approach is that the noising network learns a kind of noise that is unrealistic in

terms of its high-frequency content, deposits noise liberally across the input images,

and rather than exploring many different modes of noise, it simply increases the

severity of the currently found noise. All attempts to address these issues did not

result in better performance. These include learning the noise in Fourier space

and penalising the use of higher frequencies, penalising the use of high-magnitude

noise and those pixels taken out of dynamic range by the noise, aiming for a chosen

target error in the restoration network rather than aiming to maximise its error,
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and producing an output batch of noising patterns and penalising their structural

similarity. Nevertheless, a solution to this problem may be obtainable through other

means and significantly enhance the method.

Using the BERT objective [24] to train the Transformer architecture of the

pixel prediction method may be more suitable since more than one token could

be predicted at a time and both forward and backward context could be considered.

The former of those two points will help the computational performance, while the

latter of those two points may help the problem associated with finding the correct

completion.
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[12] P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger. Improving
unsupervised defect segmentation by applying structural similarity to au-
toencoders. International Conference on Computer Vision Theory and Ap-
plications :372–380, 2019.
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APPENDIX A

NOUS Integration For Industrial Applications

Our KDE-based method from Chapter 3 was integrated into the NOUS system

developed by COSMONiO, which was was later acquired by Intel. We share some

test material that was produced during the method development in the lead-up to

that integration. This material was not included in the main body of the thesis

due to its limited academic significance. It does however, demonstrate the method

working in a wider range contexts.

Figure A.1 shows example detections on a dataset we recorded to simulate a real-

world anomaly detection scenario of interest to a potential client of COSMONiO. We

aimed to show the method to be capable of detecting foreign objects on a conveyor

belt. In the simulated case, the purpose of the conveyor belt was to transport

potatoes. Anything other than a potato was considered to be foreign. Following the

success of this demonstration, COSMONiO produced a promotional video using the

model output we supplied.

After COSMONiO obtained the code to the method, they purchased a model

conveyor belt and ran a wide range of their own tests. They performed live demon-

strations of the method on their new conveyor belt during the Hannover Messe trade

fair, one of the leading global platforms for industrial innovation. Figure A.2 shows
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Figure A.1: Examples of anomaly detections on our Potato dataset.

some example frames taken from one of the videos they produced on their conveyor

belt.

Figure A.2: Examples of anomaly detections performed by COSMONiO on their
own experimental conveyor belt setup.

The intended domain of the KDE-based method was live footage of scenes

containing objects, where anomalies of interest are on the scale of objects. COS-

MONiO became interested in learning whether the method could be adapted for

slightly different domains, such as detecting small defects within objects. We were

able to demonstrate that by altering some parameters within the region extractor,

once could significantly transform the nature of the regions produced to suit other

domains. Figure A.3 demonstrates this capability on a video taken of a business

card with small defects drawn using a pen.

The method has now been integrated into NOUS and in use for approximately

two years.
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Figure A.3: A demonstration of the effect of altering parameters within the region
extractor. Regions are modified to suit the different domain

160


