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A variety of numerical techniques have been explored to solve the shallow water equations in real-time water simulations for
computer graphics applications. However, determining the stability of a numerical algorithm is a complex and involved task
when a coupled set of nonlinear partial differential equations need to be solved. This paper proposes a novel and simple
technique to compare the relative empirical stability of finite difference (or any grid-based scheme) algorithms by solving the
inviscid Burgers’ equation to analyse their respective breaking times. To exemplify the method to evaluate numerical stability, a
range of finite difference schemes is considered. The technique is effective at evaluating the relative stability of the considered
schemes and demonstrates that the conservative schemes have superior stability.

1. Introduction

Fluid dynamics is widely used in computer game technology
to simulate a range of phenomena including water, smoke,
and soft bodies. A variety of numerical techniques have been
explored for simulating fluids in real-time such as position-
based dynamics (e.g., [1, 2]), the finite-volume method
(e.g., [3–6]), and the finite-element method [7]. There are
two broad modelling approaches to describing fluids: grid-
based Eulerian or particle-based Lagrangian methods [8, 9].
The Lagrangian approach follows an individual fluid parcel
as it moves through space and time, whereas the Eulerian
approach describes the fluid motion from specific fixed
points in space as time passes. Both approaches have
enjoyed widespread use in game technology. Particle-
based approaches are advantageous when considering
arbitrary boundaries, fluid mixing [10], and interactions with
rigid bodies [11]. Grid-based approaches are widely used in
computer graphics applications and can attain higher
numerical accuracy since dealing with spatial derivatives is
easier to accommodate on a fixed grid. However, in contrast

to particle-based methods, grid-based approaches have
difficulty ensuring the conservation of mass and can be
computationally slower. Furthermore, in real-time water
simulations in games, grid-based methods perform much
better at tracking smooth water surfaces [9].

Smooth Particle Hydrodynamics (SPH) is a popular
particle-based method for simulating fluids in game technol-
ogy, computer animation, virtual reality, and the movie
industry. For example, incompressible SPH is a promising
numerical scheme for large-scale and large-deformation
simulations used in interactive fluid flow simulations [12].
Two of the challenges faced by SPH is unstable solid
boundary handling and numerical dissipation, both of which
inhibit stable and realistic fluid evolution. Using a position-
based dynamics framework integrated into the SPH solver
[2, 13], these issues can be overcome [14]. SPH is also useful
for simulating viscoelastic materials such as gels, gelatin,
and mucus by applying a velocity correction to limit the
fluid deformation, making it attractive to soft-body simu-
lation as well. This produces visually accurate results but
is offset by computational performance costs; however,
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simulations can be accelerated using GPUs [15]. Recently,
neural networks have been used to accelerate particle-
based fluid simulations that run significantly faster than
a GPU Position-Based Fluid Solver whilst preserving visual
quality [16].

The Lattice-Boltzmann method (LBM) is a grid-based
method that indirectly solves the fluid dynamical equations
by solving the Boltzmann equation that describes the under-
lying particle distribution function [17–19]. The Boltzmann
equation is easier to numerically solve in contrast to the
classical fluid equations, and LBM can be run efficiently on
massively parallel architectures. LBM is useful for solving
complex, coupled, and multiphase flows and can accommo-
date complex boundaries with relative ease [17]. However,
tracking and preserving small-scale features, such as a fluid
drop or splash, is a challenging problem. Recent work has
looked at a novel grid-particle method for reconstructing
distribution functions of interface grids and coupling the
reconstruction method with the LBM and Volume of Fluid
method to track the free surface [20]. The method enhances
the accuracy of the reconstruction and helps preserve the
fluid surface detail.

The shallow water equations (SWEs) are a simplified set
of fluid flow equations that are widely used in computer
graphics applications. The SWEs are well suited to game
technology applications due a number of practical reasons:
in contrast to the full 3D Navier-Stokes equations, the rela-
tive simplicity of the SWEs lead to a significant performance
advantage; the solutions produce a full velocity field which is
useful for providing plausible interactivity and solid-fluid
coupling, and the rendering of the simulation results can
be undertaken with common, fast rendering techniques
[8, 21]. In contrast, full 3D simulations require surface
tracking, volumetric rendering techniques, or mesh gener-
ation algorithms for visualisation. Although the SWEs can
describe complex nonlinear fluid phenomena such as vor-
tices, it is unable to handle breaking waves or splashing
phenomena [8, 21].

A variety of numerical methods exist for solving the
SWEs. Finite difference (FD) techniques are particularly
popular in real-time applications due to the relative simplic-
ity of their implementation and their ability to capture com-
plex phenomena such as shocks. In particular, a range of
finite difference techniques has been applied to the conser-
vative form of the shallow water equations including the
Lax-Friedrichs (LF) scheme, the Richtmyer two-step Lax-
Wendroff (LW) method, and the McCormack (MC) method
[22, 23]. Variations of these popular algorithms have also
been investigated such as the corrected LF (CF); composite
schemes, e.g., LWLF, MCLF, and CFLC [24, 25]; filtered
LW, MC, and CF schemes; and the Picard Integral Formula-
tion of the Weighted Essentially Non-Oscillatory (WENO)
scheme [26]. Many of the numerical schemes, such as the
LW, MC, and CF methods, suffer from oscillatory phenome-
non (high-frequency jitter) as a result of instability. As a con-
sequence, attempts are made to mitigate instabilities from
occurring. The filtered schemes tackle the stability issues by
using an oscillation smoothing method, for example, Liang
et al. [27] and Hsieh et al. [28] for stabilizing their tsunami

simulations using the MC scheme. Similarly, Ransom and
Younis [29] used a total-variation diminishing limiter with
the MC method to help avoid oscillatory behaviour, hence
stabilizing the scheme.

Recent studies have proposed a generalized finite
difference-split coefficient matrix method along with the flux
limiter technique to eliminate potential numerical oscilla-
tions that could lead to instability [30]. Li et al. presented a
fifth-order weighted essentially nonoscillatory scheme for
simulating dam break flows in a finite difference framework
[31] that produces smaller truncation errors and provides
the same accuracy order and stability as contemporary
WENO schemes. To accommodate more complex systems,
such as flat-bottom geometry, a new discretization of the
source term of the SWEs is suggested by Prieto-Arranz
et al. [32]. In the approach, a Smooth Particle Arbitrary
Lagrangian-Eulerian formulation based on Riemann solvers
is used to solve the SWEs where stability is achieved using a
posteriori MOOD paradigm. Benchmarking demonstrates
that the MOOD limiting procedure is able to prevent artifi-
cial oscillations occurring in the neighbourhood of disconti-
nuities and shocks. Wu et al. presented a high-order entropy
stable discontinuous Galerkin method for solving the
SWEs on curved triangular meshes that preserves a semi-
discrete entropy inequality and remains well-balanced for
continuous bathymetry profiles [33]. Such an approach is
advantageous as it can accommodate complex geometries
through unstructured meshes; it is simple to parallelize
and is able to take advantage of acceleration techniques
using GPUs.

Determining the stability of a numerical algorithm is a
complex task. For linear cases, the von Neumann stability
analysis [22] can be applied analytically but is intractable
in nontrivial scenarios including complex nonlinear prob-
lems, where a set of coupled partial differential equations
have to be solved. In nontrivial scenarios, elaborate numeri-
cal tests can be used (such as circular dam breaks and flows
around a bump) to give an in-depth characterisation of the
numerical algorithms performance (e.g., see Parna et al.
[26]), but this approach can be time-consuming, complex
to set up, and difficult to analyse.

This paper proposes a novel and simple technique to
compare the relative empirical stability of finite difference
algorithms (or any grid-based scheme) by solving the invis-
cid Burgers’ equation to analyse their respective breaking
times. A similar technique has been used to determine suit-
able plasma fluid solvers in astrophysics [34]. The proposed
technique provides a quick and easy way of determining the
stability of a proposed algorithm prior to more thorough
stability tests tailored to the specific system to be solved
and its application. The proposed method is in keeping
with the method of A- and L-stability where numerical
methods for stiff problems involving ordinary differential
equations are analysed by applying them to the test equa-
tion y′ = ky for yð0Þ = 1, k ∈ℂ. In the fluid context, the
inviscid Burgers’ equation emulates the form of partial dif-
ferential equations (PDEs) in which there is an advective
term such as in Euler’s equations of fluid dynamics and
the SWEs.
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The inviscid Burgers’ equation (or the nonlinear wave
equation) is given by

∂tu + u∂xu = 0: ð1Þ

It describes a nonlinear wave propagating in the positive
x-direction with a speed proportional to its amplitude, u.
Therefore, larger wave amplitudes propagate faster than
smaller components: this causes the wave to break due to
nonlinear steepening, like the phenomenon of breaker ocean
waves, yielding an advective instability. Obtaining the char-
acteristics for the first-order PDE reveals a solution that
may become triple-valued after a period of time—this is
wave breaking. The onset of wave breaking is characterised
by the solution having a vertical tangent at the leading wave
edge. The timescale for this to first occur is the breaking
time. In the numerical context, multivalued solutions are
not possible and the numerical schemes become unstable.
The ensuing nonlinear instability manifests itself as a series
of oscillating spikes that form in the wake of the leading
wave edge. The relative empirical stability of two numerical
methods can be assessed by analysing their respective
breaking times. Due to the nature of the instability, where
a discontinuity forms due the solution becoming triple-
valued, the method also gives an indication of how well
numerical schemes deal with discontinuities such as shocks
and boundary interactions. To exemplify the method to
evaluate numerical stability, a range of FD schemes will be
considered.

This paper is structured as follows. The Methodology
introduces and derives the FD algorithms that will be
used to exemplify the stability analysis technique. It out-
lines the initial and boundary conditions for the stability
evaluation and calculates the corresponding analytical
solution, including the breaking time and location, for
the system. The Methodology concludes by defining a
quantitative metric to evaluate the numerical stability of
the numerical schemes. Following this, the Results and
Discussion evaluates the numerical stability of the FD
algorithms using the quantitative metric. In this paper, a
comparison is made of the relative stability of FD numer-
ical methods, but other grid-based numerical schemes
could be similarly analysed.

2. Methodology

The finite difference methods are popular numerical
schemes for solving partial differential equations (PDEs).
The utility and efficacy of these numerical methods depend
upon a number of criteria including stability, accuracy, and
ease of implementation.

The LWmethod transforms a continuous problem into a
discrete one by replacing spatial and temporal derivatives
with second-order accurate finite difference approximations,
thus reducing the problem to an iterative algebraic exercise
[22]. The LW method is reliable, stable, and accurate. How-
ever, depending on the complexity of the individual PDE or
if the system is governed by a coupled set of PDEs, imple-
menting LW can be very complicated.

Finite Difference Time Domain (FDTD) is an alter-
native numerical method [35–37]. It entails recasting
the PDE as a series of ordinary differential equations
(ODEs) with respect to time by discretizing the spatial
domain and replacing the spatial derivatives with finite
difference approximations. The ODEs are then solved
numerically via an ODE solver such as the Runge-
Kutta or leap-frog methods. Its main advantage lies in
its ease of implementation.

2.1. Lax-Wendroff Method. To obtain a finite difference
solution of (1), the domain described by the PDE is defined
in terms of a rectilinear grid, its edges parallel to the x and t
axes. We define discrete coordinates so that an arbitrary grid
point is given by ðx, tÞ = ðmh, nkÞ such that m ∈ ½0,mmax�
and n ∈ ½0, nmax�, where m, n are integers and h, k are the
grid spacings in the x, t coordinates, respectively. Writing
uðnk,mhÞ = unm, the finite difference formulae are obtained
from the Taylor expansion of u about t in the neighbour-
hood of k, while holding x fixed [22],

un+1m = exp k∂tð Þunm, ð2Þ

≈ 1 + k∂t +
1
2 k

2∂2t

� �
unm: ð3Þ

This is second-order accurate in time. The LW method
contains an inherent diffusion term, ∂2t , that helps dampen
the instability. For the case of the linear wave equation,
∂tunm is replaced by −a∂xunm and ∂2t u

n
m by a2∂2xu

n
m, where

a is a constant wave speed. Therefore,

un+1m = 1 − ka∂x +
1
2 k

2a2∂2x

� �
unm: ð4Þ

Using the finite difference approximations:

∂xu
n
m = unm+1 − unm−1

2h +O h2
� �

, ð5Þ

∂2xu
n
m = unm+1 − 2unm + unm−1

h2
+O h2

� �
: ð6Þ

This yields the Lax-Wendroff algorithm for the linear
wave equation,

un+1m = 1 − p2a2
� �

unm −
1
2 pa unm+1 − unm−1ð Þ

+ 1
2 p

2a2 unm+1 + unm−1ð Þ,
ð7Þ

where p = k/h is the mesh ratio. This algorithm is second-
order accurate in space and time. One of the advantages of
the finite difference method is that it is very easily
extended to the solution of nonlinear equations since in
all but special cases many of the methods and proofs are
invariant [22].

3International Journal of Computer Games Technology



For the nonlinear equation (1), the finite difference
formula (3) is used where ∂tunm is replaced by −unm∂xu

n
m,

using (1), and ∂2t u
n
m is replaced by the following,

∂2t u
n
m = −∂t u

n
m∂xu

n
mð Þ, ð8Þ

= −∂tu
n
m∂xu

n
m − unm∂t ∂xu

n
mð Þ, ð9Þ

= unm ∂xu
n
mð Þ2 + unm∂x unm∂xu

n
mð Þ, ð10Þ

= 2unm ∂xu
n
mð Þ2 + unmð Þ2∂2xunm: ð11Þ

Substituting into the finite difference expression (3)
yields

un+1m = unm − kunm∂xu
n
m + k2unm ∂xu

n
mð Þ2 + 1

2 k
2 unmð Þ2∂2xunm:

ð12Þ

The Lax-Wendroff algorithm for the nonlinear wave
equation becomes

un+1m = unm −
1
2 pu

n
m unm+1 − unm−1ð Þ + 1

4 p
2unm unm+1 − unm−1ð Þ2

+ 1
2 p

2 unmð Þ2 unm+1 − 2unm + unm−1ð Þ,
ð13Þ

where the finite difference approximations (5) and (6) have
been used.

Numerical algorithms for solving partial differential
equations are only useful if they are convergent and stable.
A finite difference algorithm is deemed convergent if the dif-
ference between the theoretical solutions of the differential
and difference equations at a fixed coordinate ðx, tÞ tends
to zero when the number of grid points in a fixed size
numerical domain is increased: h, k⟶ 0 and m, n⟶∞.
An algorithm is considered stable when the difference
between the theoretical and numerical solutions of the dif-
ference equation remains bounded as n tends to infinity.
The von Neumann stability analysis for the linear wave
equation algorithm states that the scheme is stable pro-
vided 0 < pjaj ≤ 1, which appropriately coincides with the
Courant-Friedrichs-Lewy (C.F.L) condition for the conver-
gence of the algorithm. This result is used as a guide for
the stability and convergence of the nonlinear expression;
ergo, 0 < pjunmj ≤ 1 [22].

An alternative numerical algorithm is possible if the sec-
ond righthand term of (10) is differenced directly: substitut-
ing (10) into (3) gives

un+1m = unm − kunm∂xu
n
m + 1

2 k
2unm ∂xu

n
mð Þ2 + 1

2 k
2unm∂x unm∂xu

n
mð Þ,

ð14Þ

where

∂x unm∂xu
n
mð Þ = 1

2h ∂x u
n
m unm+1 − unm−1ð Þ½ �

= 1
4h2

unm+1 unm+2 − unmð Þ − unm−1 nnm − unm−2ð Þ½ �:
ð15Þ

This yields an alternative algorithm

un+1m = unm −
1
2 pu

n
m unm+1 − unm−1ð Þ + 1

8 p
2unm unm+1 − unm−1ð Þ2

+ 1
8 p

2unm unm+1 unm+2 − unmð Þ − unm−1 unm − unm−2ð Þ½ �:
ð16Þ

Note that this version uses next nearest neighbours.
Additional finite difference algorithms can be derived by
considering the conservative form of the nonlinear wave
equation,

∂tu + ∂x f = 0,

f u, x, tð Þ = u2

2 :
ð17Þ

Following the previous derivation and using (3), the
∂2t u

n
m term is replaced with

∂2t u = −∂x ∂t fð Þ = −∂x ∂u f ∂tuð Þ = ∂x ∂u f ∂x fð Þ = ∂x u∂x fð Þ,
ð18Þ

= ∂xu∂x f + u∂2x f : ð19Þ
Substituting (19) into (3) and using ∂tunm = −∂x f

n
m

yields

un+1m = unm − k∂x f
n
m + 1

2 k
2∂xu

n
m∂x f

n
m + 1

2 k
2unm∂

2
x f

n
m, ð20Þ

where f nm = ðunmÞ2/2. The Lax-Wendroff algorithm for the
conservative form of the nonlinear wave equation is

un+1m = unm 1 + 1
4 p

2 unm+1ð Þ2 + unm−1ð Þ2 − 2 unmð Þ2
h i� �

−
1
4 p unm+1ð Þ2 − unm−1ð Þ2

h i
+ 1
16 p

2 unm+1 − unm−1ð Þ
� unm+1ð Þ2 − unm−1ð Þ2
h i

:

ð21Þ

Using (18) in (3) instead of (19) yields

un+1m = unm − k∂x f
n
m + 1

2 k
2∂x unm∂x f

n
mð Þ: ð22Þ
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Differencing the derivative in the final term directly
produces an alternative conservative algorithm:

∂x unm∂x f
n
mð Þ = 1

2h ∂x u
n
m f nm+1 − f nm−1ð Þ½ �

= 1
4h2

unm+1 f nm+2 − f nmð Þ − unm−1 f nm − f nm−2ð Þ½ �:
ð23Þ

Therefore,

un+1m = unm 1 − 1
16 p

2unm unm+1 + unm−1ð Þ
� �

−
1
4 p unm+1ð Þ2 − unm−1ð Þ2

h i
+ 1
16 p

2 unm+1 unm+2ð Þ2 + unm−1 unm−2ð Þ2
h i

:

ð24Þ

2.2. Finite Difference Time Domain Method. The FDTD
method is as follows. Using the predefined discrete coordi-
nates x =mh and writing uðt,mhÞ = umðtÞ = um, the spatial
derivative in the nonlinear equation was replaced by the
central difference formula (5), yielding

∂tum = −um
um+1 − um−1ð Þ

2h : ð25Þ

This is a first-order ODE with respect to time where h
is the distance between successive spatial grid points. Solv-
ing using a 4th-order Runge-Kutta method gives

k1 = −
Δt
2h um um+1 − um−1ð Þ, ð26Þ

k2 = −
Δt
2h um + k1

2

� �
um+1 − um−1ð Þ, ð27Þ

k3 = −
Δt
2h um + k2

2

� �
um+1 − um−1ð Þ, ð28Þ

k4 = −
Δt
2h um + k3ð Þ um+1 − um−1ð Þ, ð29Þ

Δt = T
N
, ð30Þ

un+1m = unm + k1
6 + k2

3 + k3
3 + k4

6 +O Δt5
� �

, ð31Þ

where Δt is the time step, N is the number of time steps,
and T is the integration time such that T =NΔt. By con-
sidering the conservative form of the nonlinear wave equa-
tion, another FDTD algorithm can be derived. Substituting
for the central difference formula yields

∂tum = −
1
4h um+1ð Þ2 − um−1ð Þ2� 	

: ð32Þ

The corresponding Runge-Kutta algorithm is, therefore,

k1 = −
Δt
4h um+1ð Þ2 − um−1ð Þ2� 	

k1 = k2 = k3 = k4

un+1m = unm + k1 +O Δt5
� �

:

ð33Þ

Both the FDTD algorithms described here are second-
order accurate in space and fourth-order accurate in time.
For stability, the algorithms require that vΔt ≤ h, where v is
the maximum expected phase velocity. This ensures that
the solution cannot vary significantly over one spatial incre-
ment during one temporal step [36].

2.3. Initial and Boundary Conditions. To compare the FD
algorithms, they were used to solve the nonlinear wave equa-
tion, the inviscid Burgers’ equation,

∂tu + u∂xu = 0: ð34Þ

For the initial conditions, the wave amplitude was
perturbed from a uniform equilibrium in the shape of a
Gaussian waveform

u0m = A0 exp −ς m −m0ð Þ2� 	
, ð35Þ

∀m, where A0 is the amplitude of the perturbation, ς
defines its width, and m0 is the centre of the computational
domain (see n = 0 plot of Figure 1). Each algorithm was
computed for a prescribed length of time T = nmaxk =NΔt
for the specified initial condition. So that the LW and FDTD
methods could be compared, the values of p = k/h and Δt
had to be chosen carefully. Setting N = nmax requires that
Δt = k implying p = k/h = Δt/h. For the simulations, the
boundary conditions were un0 = unmmax

= 0 for all n. For the
simulations discussed here, the parameters listed in Table 1
were used, without loss of generality.

2.4. Analytical Considerations of the Inviscid Burgers’
Equation. To evaluate the relative empirical stability of the
FD algorithms, it is instructive to evaluate the breaking time
and position analytically for the prescribed initial and
boundary conditions. The inviscid Burgers’ equation is
given by

∂tu + u∂xu = 0: ð36Þ

Performing the change of variables x =mh and t = nk
yields

∂nu + pu∂mu = 0, ð37Þ

where p = k/h. For the initial conditions, a Gaussian wave
packet is prescribed:

u n = 0,mð Þ = A0 exp −ς m −m0ð Þ2� 	
: ð38Þ
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A solution to this initial value problem can be sought
using the method of characteristics. The characteristics are

ffiffi
ς

p
m −m0ð Þ = ffiffi

ς
p

pA0e
−σ2n + σ, ð39Þ

where σ is a constant on a given characteristic. The
implicit solution for u is

u n,mð Þ = A0 exp −ς m −m0 − upnð Þ2� �
: ð40Þ

One can rewrite the solution as an explicit function form,

m = upn +m0 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ln u/A0ð Þ

ς

s
: ð41Þ

A plot of u versus m for various n evaluated using (41) is
plotted in Figure 2. The solution shows the wave amplitude
as a function of position for various values of n up to, includ-
ing and beyond, the breaking time.

The solution (Equation (40)) may become triple-valued
after a period of time—this is wave breaking. The onset of
wave breaking is characterised by the solution having a ver-
tical tangent at the leading wave edge. The breaking time is
the time at which this first occurs. Recall the characteristics,

ffiffi
ς

p
m −m0ð Þ = F σð Þn + σ, ð42Þ

where FðσÞ = ffiffi
ς

p
pA0e

−σ2 . Defining GðσÞ = −ð1/F ′ðσÞÞ, one
can find a particular value of σ = σb such that G′ðσbÞ = 0.
Using σb, the breaking time is simply

nb = G σbð Þ,

= 1
pA0

ffiffiffiffiffi
e
2ς

r
:

ð43Þ
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Figure 1: Solution of (1) obtained from the FDTD algorithm (FDTD1) (31). Plots display spatial structure, m, for time steps n = 0 (initial
conditions), 250, 500, 750, and 1000 exhibiting the evolution of the nonlinear wave and the advective instability. The nonlinear wave has a
propagation speed proportional to its amplitude; therefore, the crest of the perturbed wave structure moves faster than its base. As a result,
the crest of the wave tries to overtake the smaller amplitudes requiring a multivalued solution, forbidden in this numerical framework
resulting in instability. The FDTD solution plotted here exhibits the qualitative behaviour of the numerical methods used in this paper.

Table 1: Parameters for numerical simulations.

Parameter Value

A0 5:0 × 10−1 Amplitude of the perturbation

m0 50 Centre of computational domain

mmax 100 Number of spatial points

N , nmax 1000 Number of time steps

Δt, k 1:0 × 10−2 Temporal step size

h 0:2 Spatial mesh increment

ς 5:0 × 10−3 Gaussian coefficient

p 0:05 Mesh ratio
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Given the breaking time nb, one can calculate the
corresponding breaking location, mb, by solving the charac-
teristics for m with σ = σb and n = nb,ffiffi

ς
p

mb −m0ð Þ = F σbð Þnb + σb: ð44Þ

Therefore, the breaking location

mb =
ffiffiffi
2
ς

r
+m0: ð45Þ

For the particular problem described in this manuscript,
parameterized by the values in Table 1, the breaking time
and location are nb = 659:5 and mb = 70, respectively (illus-
trated by the solid curve in Figure 2). In comparison, for
the numerical solutions, the wave will break earlier (n < nb)
and at a premature location ðm <mbÞ, which is to be
expected since the numerical grid resolution will be defeated
long before the leading wave edge approaches an infinite
gradient.

2.5. Evaluating the Numerical Stability. To compare and
quantify the development of the instability, we define the
fractional change of the numerical solution relative to the
analytical solution,

δ = u0 − unbsmbs

�� ��
u0

, ð46Þ

where u0 = uðn = nbs,m =mbsÞ is the analytical solution
(Equation (40)) evaluated at n = nbs and m =mbs, the break-
ing time and breaking location of algorithm s, respectively,
and unbsmbs

is the numerical solution of algorithm s, evaluated

at n = nbs and m =mbs. The earlier the instability evolves
for a particular algorithm, the smaller the value of nbs and
the poorer the algorithm performs. The bigger the value of
δ, the poorer the stability of the algorithm. Note that the
definition of δ is consistent with the quantity, Zn

m, defined
by Mitchell and Griffiths [22], to determine the stability of
a finite difference numerical algorithm.

To determine the breaking time, nbs, and breaking loca-
tion,mbs, for algorithm s, for each time step, n ∈ ½0, nmax�, the
maximum value of the wave amplitude, ðunmÞmax, is deter-
mined for m ∈ ½0,mmax�. Using this, the absolute magnitude
of the difference between the maximum amplitude and the
amplitude of the initial perturbation, A0, is calculated:
jA0 − ðunmÞmaxj. In the first instance that this quantity is
greater than or equal to a threshold value, α0, then the corre-
sponding values of m and n are the breaking location, mbs,
and breaking time, nbs, of algorithm s, respectively. In this
paper, the threshold value, α0, is set to be 1% of the amplitude
of the initial perturbation, α0 = 0:01A0 = 5 × 10−3.

3. Results and Discussion

In the discussion that follows, LW1, LW2, LW3, LW4,
FDTD1, and FDTD2 denote numerical solutions of (1)
obtained from the formulae (13), (16), (21), (24), (31), and
(33), respectively. Figure 1 shows the evolution of the non-
linear wave equation solved using FDTD1. The plot encap-
sulates qualitatively the typical behaviour of the nonlinear
wave equation as a function of position and time. The initial,
perturbed wave-form propagates in the positive x-direction
with a speed proportional to its amplitude. Therefore, small
amplitude wave components propagate slower than their
larger counterparts, leading to wave steepening. In general,
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Figure 2: Plot of the analytical solution (41) of the inviscid Burgers’ equation for n = 0 (dashed line), n = 500 (dotted line), n = nb = 659:5
(solid line), and n = 1000 (dash-dot line).
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as fast moving wave elements overtake those moving slower,
the wave solution becomes multivalued for a single value of
x. Within the numerical context discussed here, multivalued
solutions are not possible and the numerical schemes
become unstable. The ensuing nonlinear instability mani-
fests itself as a series of oscillating spikes that form in the
wake of the leading wave edge. As the leading wave edge
tries to overtake further wave elements, more spikes are
formed in its wake. Figure 3 exhibits the initial development
of the advective instability using FDTD1 and FDTD2 as
example cases. The plot shows a close-up of the wave crest
for time steps n = 510 (cross), n = 530 (plus sign), and n =
555 (point), illustrating the formation of the initial spike that
disrupts the solution.

To quantify the development of the instability, we calcu-
late the fractional change of the numerical solution relative
to the analytical solution, δ. For the algorithms LW1, LW2,
LW3, LW4, FDTD1, and FDTD2 considered here, δ ≈
0:0413, 0.0412, 0.0273, 0.0279, 0.0473, and 0.017, respec-
tively (see Table 2), demonstrating that in order of stability
from best to worst, we have FDTD2, LW3, LW4, LW2,
LW1, and FDTD1. The nonconservative algorithms appear
to have inferior stability in comparison to the conservative
algorithms. Of the nonconservative algorithms, the FDTD1
solution has the least stability, while the two nonconserva-
tive LW methods (LW1 and LW2) are virtually identical.
Of the conservative algorithms, the FDTD2 solution has
the most stability, and very little separates the two LW solu-
tions (LW3 and LW4). Although the FDTD2 algorithm

appears to break before the LW algorithms (as indicated by
its nbs value), its comparison to the analytical solution for
the same position and time indicates that it ultimately has
superior stability. Note that δ can also be viewed as a mea-
sure of accuracy, since instability leads to inaccuracy and
so is a dependent concept.

4. Conclusion

This paper proposes a novel and simple technique to com-
pare the relative empirical stability of finite difference algo-
rithms (or any grid-based scheme) by solving the inviscid
Burgers’ equation to analyse their respective breaking times.
The proposed technique provides a quick and easy way of
determining the stability of a proposed algorithm prior to
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Figure 3: (a) Solution of (1) obtained from the FDTD algorithm (FDTD1: Equation (31)), displaying the spatial structure, m ∈ ½55, 70�, for
time steps n = 510 (cross), n = 530 (plus sign), and n = 555 (point) exhibiting the evolution of the nonlinear wave and the advective
instability. (b) Solution of (1) obtained from the conservative FDTD algorithm (FDTD2: Equation (33)), displaying the spatial structure
for the same time steps. The plots illustrate the formation of the initial spike, as a result of the instability that disrupts the onward
solution. FDTD1 and FDTD2 span the range of δ calculated in this paper.

Table 2: Results for the fractional change of the numerical solution
relative to the analytical solution for n = nbs and m =mbs.

Algorithm, s nbs mbs δ

LW1 (Equation (13)) 559 66 0:0413
LW2 (Equation (16)) 558 66 0:0412
LW3 (Equation (21)) 577 66 0:0273
LW4 (Equation (24)) 576 66 0:0279
FDTD1 (Equation (31)) 553 66 0:0473
FDTD2 (Equation (33)) 557 65 0:017

8 International Journal of Computer Games Technology



more thorough stability tests tailored to the specific system
to be solved. The relative empirical stability of two numerical
methods can be assessed by analysing their respective
breaking times. Due to the nature of the instability, where
a discontinuity forms due the solution becoming triple-
valued, the method also gives an indication of how well
numerical schemes deal with discontinuities such as
shocks and boundary interactions. The proposed method
is analogous to the A-stability method but tailored to
PDEs in which the advective derivative is key.

The technique is effective at determining the relative sta-
bility of grid-based numerical algorithms. It demonstrates
that the conservative schemes behave very similarly to one
another as do the nonconservative schemes and that the sta-
bility of the conservative algorithms is marginally better than
the nonconservative algorithms. In order of most to least
stable, we have the conservative FDTD algorithm (FDTD2),
the conservative Lax-Wendroff algorithms (LW3 then
LW4), the nonconservative Lax-Wendroff algorithms (LW2
then LW1), and the nonconservative FDTD algorithm
(FDTD1). The LW algorithms contain an inherent diffusive
term that can help to dampen the instability, quenching the
wave steepening for a while. In contrast, the FDTD algo-
rithms lack a diffusive term to help counteract the inevitable
instability. In spite of this, the FDTD algorithms do well to
sustain coherent behaviour. In principle, one could add a
stabilizing diffusive term:

∂tu + u∂xu − ν∂2xu = 0: ð47Þ

This is Burgers’ equation where ν is the viscosity coeffi-
cient. If the diffusive term quenches the wave steepening, a
stable solitary wave structure persists. Alternatively, the
time-fractional inviscid Burgers’ equation is worth investi-
gating: the inclusion of a fractional time derivative may stave
off the breaking time for longer, potentially improving sta-
bility [38]. Fractional-order differential equations (FDEs)
have gained importance and popularity recently in their
application to physical systems due to their nonlocal proper-
ties. This means that the next evolutionary state of the
system depends on its historical states not just its current
state. Recent investigations have analysed the time-
fractional Navier-Stokes equation [39] and the SWEs [40]
for bespoke systems. Many numerical schemes have been
proposed for solving FDEs [41, 42] as well as for those appli-
cable to fluid simulation, e.g., the fractional Burgers equation
[43], the fractional diffusion equation [44] (relevant to the
incompressible Navier-Stokes equation), and the fractional
parabolic differential equations [45] (relevant to vorticity-
stream function formulation of fluids).

The efficacy of a numerical algorithm depends upon a
number of criteria including stability, accuracy, and ease of
implementation. LW methods are, by definition, second-
order accurate in space and time. In general, the choice of
the ODE solver in FDTD dictates the temporal order of
accuracy: here, a fourth-order Runge-Kutta method was
used. However, other techniques can be used such as the
leap-frog method. In this respect, FDTD has superior versa-

tility since greater temporal accuracy can be achieved. Addi-
tionally, FDTD can be easily modified to have a higher
spatial accuracy by simply using higher order finite differ-
ence approximations of the spatial derivatives used. Extend-
ing the LW method in such a way is nontrivial. In
comparison to the LW method, FDTD is very easy to imple-
ment, particularly when a system of coupled differential
equations is considered. For a system of equations, the LW
algorithm can become hard to obtain as the Jacobian of
the system becomes more involved. With this in mind, it
would seem reasonable to opt for FDTD for certain prob-
lems, especially when a system of differential equations is
being considered, such as for the numerical solution of the
shallow water equations.
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