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Abstract

Reduced order modelling (ROM) in engineering has rapidly become of

great interest, yielding potential of speed up while maintaining high fidelity.

Practical problems involving neutron diffusion, scattering and shielding have

particularity complex multi-scale behaviour in energy and space making real-

time, multi-query, design or data assimilation applications are beginning

to benefit from ROM research. This is typically done via Proper Orthogonal

Decomposition (POD), coupled with Galerkin projection. In this thesis we

demonstrate multiple novel approaches to Non-intrusive reduced order

modelling (NIROMs), building on the work done in [1]. We apply them to

two research areas, shielding and neutron diffusion.

First a novel way of using reduced order models (ROMs) in a coupling scheme

to model more complex material configurations from a library of individual

material reduced order models (ROMs) is presented. Secondly this framework

is generalised to n-group and validated with a 2-group shielding benchmark.

Finally the lack of guaranteed conservative NIROM solutions is addressed and

demonstrated with variants of the Advection-Diffusion equation, achieved

through a novel Sub-Grid Scale ROM (SGS ROM) to add conservation and

resolution to ROM solutions.
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α ROM Coefficients

∆t Change in t

∆x Change in x
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U/U Left Reflection and Rotation Matrix in SVD

X Snapshot Matrix

ΦS Abstract POD basis functions

ψ Neutron Flux

ψ+,ψ− Positive Flux, Negative Flux

Σ Entries of Matrix Σ are the singular values

Σc,Σs,Σf Macroscopic capture, scatter and fission cross-section
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I The Identity matrix
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NSnim
Minimum number of snapshots

NS Number of snapshots
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wi,j NIROM Weights
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ASPIS Greek term for shield referring here to a series of shielding benchmarks

CUP Central processing uni

CV Control Volume

DEIM Discrete Empirical Interpolation

DOF Degrees of Freedom

GNAT Gauss-Newton with approximated tensors
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Chapter 1

Introduction

The aim of this thesis is to develop and apply new reduced order models

(ROMs), techniques that increases computational efficiency while maintaining

accuracy to problems relevant in nuclear energy. Two areas of application

were outlined: Shielding and Reactor Physics.

Shielding. In operation and design, shielding is a key consideration. An

operational reactor is a powerful source of radiation. Fission and the

subsequent decays, produce neutrons and gamma rays, both very penetrating

forms of radiation. The whole site must consider this to maintain the safety

of personnel from possible exposure. This biological shielding is often made

from various steels, void and water configurations and the problems studied

here use a well known benchmark, ASPIS [3]. The calculations of the space-

energy distribution of neutrons, necessary for operation and design, are

known as multi-group methods in biological shielding [4]. In general free

neutrons can be divided into many energy groups with 2-group, 3-group,

10-group examples presented in table 1.1 and mono-energetic all neutrons

lumped into a single group while the cutting edge 47-group classification can

be seen in [5]. Many applications do not require a fine division of neutron

energies. The subdivision of energy regions into groups is a choice and is

chosen to best reflect the application at hand. For example the Cadmium

and Epicadmium distinction is a physical cut-off for absorption by cadmium.

Chapters 4 and 5 solve real world shielding problems, first mono-energetic

shielding and then 2-group shielding, building a generalisable framework for

n-group applications. While chapters 1-3 provide background, motivation and

introduce the necessary concepts to understand the reduced order models.
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Reactor Physics. The other area of application in this thesis is reactor

physics, with focus on radiation transport equations and, later, in chapter

chapter 6, more general Advection-diffusion type problems. More elementary

problems are used to develop the property of conservativeness in ROM

solutions. The Advection-diffusion equations with source and absorption can

cover a wide range of physical quantities in a system undergoing processes

of diffusion, advection and absorption, heat transfer and thermal hydraulics

being relevant in the study of nuclear reactors. Outside this, analysis of the

Advection-diffusion equations provides insights into similar, formally identical

or closely related equations in different contexts, the Fokker–Planck equation

[6][7], the Black–Scholes equation [8], the Navier–Stokes equations [9] to

name a few.

Table 1.1: In shielding and beyond, the choice of group classification represents the
distribution of neutron energies within some medium. The main differences among
reactor types are informed by this distribution, sometimes know as the neutron flux
or energy spectra. Interactions within and between groups will be either neutron
scattering or neutron attenuation through capture, with increased complexity in
multi-group, multi-directional, materially inhomogeneous problems such as ASPIS.

n 2-group 3-group 10-group
1 Thermal neutrons

group 0.025eV −1keV
Thermal neutrons
0.025eV − 1eV

Cold Neutrons 0 eV −
0.025eV

2 Fast neutrons group
1keV − 10MeV

Resonance neutrons
1eV − 1keV

Thermal Neutrons
0.025eV

3 Fast neutrons 1keV −
10MeV

Epithermal Neutrons
0.025eV − 0.4eV

4 Cadmium Neutrons
0.4eV − 0.5eV

5 Epicadmium
Neutrons 0.5eV −1eV

6 Slow Neutrons 1eV −
10eV

7 Resonance Neutrons
10eV − 300eV

8 Intermediate
Neutrons 300eV −
1MeV

9 Fast Neutrons
1MeV − 20MeV

10 Relativistic Neutrons
beyond 20MeV
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1.1 Motivation and Objectives

Numerical simulations are a key part of understanding many physical systems

in various fields such as climatology, economics, biology and engineering.

Simulations often involve a large number of partial differential equations

(PDEs). Typical discretization techniques yield a system of n ordinary

differential equations (ODEs). This can make the number of degrees

of freedom large [10]. Whence a complicated enough problem will be

prohibitively expensive to compute: both in storage and CPU cost. A

diversified approach to energy generation is the only viable strategy to meet

the increasingly complex needs of the globe. Nuclear Power provides a

large carbon-free base load [11]. With developments in the design of next

generation plants and fuels, comes the need for high fidelity computational

modelling [12].

The application of Reduced Order Modelling (ROM) is fast becoming an

established tool in many industries providing a speed up and computational

cost reduction while maintaining desirable accuracy. This field has already

been employed in many nuclear specific problems. For motivation we will

briefly present a few triumphs from nuclear specific problems as well as

problems in the wider engineering context.

Transport In Neutron and photon transport [13] demonstrated the first

Reduced Order Model (ROM) that efficiently resolves the angular dimension

of the time independent, Boltzmann Transport Equation, applying this

discretisation to a 2D kinked duct shielding problem and an infinite pincell

model noted for the complex angular flux profiles it generates [14]. Similarly

an angular ROM has been applied to model radiative transfer in non grey

media: specifically air/H2O mixture flowing in a square differentially heated

cavity [15]. Impressively, the paper [16] produced fast predictions of

reactivity and neutron distributions within reactor cores with temperature

variation and control rod adjustments efficiently integrated into the model

through ROMs. Additionally ROMs have been employed in the non-

linear coupling between neutronics and heat transfer phenomena for sub-
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channel models with geometric and physical quantities being used in ROM

parameterisations [17].

Design Engineering design focused applications such as, rapid prototyping

[18] [19], sensor placement [20] and experimental design [21] have all

leveraged ROMs for better, more efficient techniques. In aerospace, shape

optimisation ROMs [22] and [23] were used to design and optimise aircraft

wings, reducing reliance on expensive wind tunnel experiments.

Oceanography In models of convective boussinesq flows, fluid flow models

ignoring density differences except in terms multiplied the acceleration due

to gravity, ROMs have been successfully used both in the abstract [24] [25]

and in ocean modelling [26]. Successes have been found in more complex

fluid flows. In large scale upper ocean circulation [10] uses a ROM technique

to assimilate weather forecasting data in the context of an optimal control

problem, oceanic general circulation that fits real observations in a fixed time

interval.

Geothermal/Petrochemical ROMs have been used in the instrumentation

systems for geotechnical investigation, environmental site assessment

and mineral exploration. Specifically systems that transmits and receives

electrical signals along different positions within a borehole. A borehole

induction modelling ROM [27] reduced costs of the computation several

orders of magnitude compared with established practices. In Reservoir

management and optimisation, a 3D ROM for two-phase flow through porous

media [28] made a five-fold speed up on standard approaches. In [29]

standard approaches for maximising a field’s potential recovery are adaptively

refined with a ROM, a cost reduction 96% with only 1% difference in solution

quality when compared with a new standard calculation.

Optics In the simulation and design of semiconductor electronics, specifically

photonic crystal design [30] achieved a speed up while maintaining accuracy

of a band gap optimization problem with nested grids coupling a state

equation and evolution equation for the system. The paper [31] maximises
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the energy output of mode-locked lasers through use of ROMs. Quantum

eigenvalue problems involving the Schrödinger equation subjected to electric

potential and energy band variations induced by electric fields, photons,

molecular structures and defects have used ROMs for speed up of large scale

problems, for example [32].

Power grids Computational complexity of large power system networks for

example non-linear swing dynamics [33] and maximum power tracking pitch

controller for grid connected wind turbines [34] have benefited from use of

ROMs. Many of these applications being a combination of real-time, hugely

complex, expensive and non-linear.

Air pollution Real time models of the build environment have yielded to

ROMs. In [35] large eddy simulation to resolve turbulence elegantly handles

the complexity of non-linear dynamics with a quadratic expansion method.

Work for large regional scale pollution modelling tools have been completed

using ROMs, the speed up providing a rapid response tool [36].

Medicine ROMs with fluid-structure interactions models can help us better

understand response of aneurysms [37] and haemodynamics [38].

As such this is an active research topic with variants of ROM techniques being

successfully applied in nuclear realm as well as a broad range of other fields.

The contributions of this thesis build on this via addressing limitations of

a specific and particularly versatile family of ROMs, Non-intrusive Reduced

Order Models (NIROMs). With this is in mind, the importance and potential in

addressing coupling and conservation in shielding and neutron transport is

now presented.
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1.2 Contributions

This thesis explores novel ways of using Reduced Order Models in the analysis

of Nuclear Reactors, neutral particle radiation transport, shielding and the

Advection-Diffusion equation. The emphasis of the thesis is Non-intrusive

Reduced Order Models (NIROMs), that is a type of ROM that avoids projection

and solving expensive governing equations after the ROM training has

been completed: first realised in [1]. Chapters 3,4 and 5 are exclusively

working with NIROMs, where as chapter 6 can in principle be extend to

more established intrusive, projection based ROMs. This is expanded in the

appendices, with application left to future work.

Along side a review of the current literature and a comprehensive presentation

of the background theory, chapter 2, including more elementary Non-intrusive

Reduced Order Models (NIROMs), chapter 3, the novel contributions of the

thesis are:

1. Novel coupling of NIROMs. Several models with absorption and 1-group

scattering are employed to build a library of individual material reduced

order models (ROMs), then using a non-intrusive ROM technique (NIROM)

are coupled together to model more complex material configurations.

2. This novel ROM coupling is then applied in an easily to generalise way

to 2-group scattering and absorption models and validated against a

known benchmark: the ASPIS shield [3].

3. A novel conservative numerical method is derived, solving the

Advection-Diffusion equation that increases resolution additively. This is

further expanded becoming two-dimensional and including source and

absorption terms.

4. This method is then applied to generate data for a NIROM. Now the

conservative properties of the numerical method are conferred on to

the NIROM solutions.
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Coupling The coupling of simple models to model more complex

configurations is a common technique, used across many numerical methods

and applications but yet to be explored in Non-intrusive Reduced Order Models.

The coupled models presented in chapters 4 and 5 are trained on analytical,

closed form solutions providing a proof of principle for the coupling of NIROMs.

This demonstrates that experimental data or more expensive models with

the same parameterisation and boundary conditions, as informed by the

scattering physics, can be successfully coupled and speed up. The preliminary

work with NIROMs, chapter 3, experiments with interfaces as just another

parameter of the NIROM with the limited scalability further justifying exploring

ROM coupling as an alternative.

Conservation The other theme in these achievements, addressing

conservation, is also highly desirable in numerical methods. Physical

conservation laws are associated with a symmetry in the underlying physics

with continuity equations and transport equations being prevalent in most

engineering applications [39]. The way conservation has been addressed

in this work is a strong form of conservation law in that: local conservation

law (flow or flux in and out of a local volume is a conserved quantity) implies

control over global conservation through a series of partial sums that also

increases resolution. Previously ROMs have addressed conservation through

intrusive projections with NIROMs not directly addressing conservation,

instead sampling more parameters at boundaries through a Smolyak

grid to get acceptable accuracy [40]. As such this thesis provides a

novel contribution, addressing conservation for NIROMs as a mathematical

certainty.
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1.3 An overview of current Reduced Order

Modelling literature

The specific concepts and methods needed to understand the contributions

of the thesis will be expanded in chapter 2. For now we will briefly, survey the

work that has already been done in the field of reduced order modelling.

A wealth of reduced order modelling (ROM) techniques exist with articles

reviewing and surveying ROM techniques: system-theoretic approaches with

their origins in control theory and single progressing have found success

in electronics, reviewed in [41], [42], while projection-based, reduced basis

approaches have been very suitable to problems with many complex PDEs

such as fluid flow and multi-physics, surveyed in [43],[44], [45],[46], with

machine learning neural networks also proving a promising ROM technique

[47]. Amongst these approaches for constructing a ROM proper orthogonal

decomposition (POD) [48],[49] is becoming increasingly prevalent for many

disciplines with the work in this thesis being build on applications, variations

and improvements of the POD method. This is an exciting method in reduced

order modelling chiefly because the POD method captures of the greatest

possible information of a system for a given dimensionality reduction.

The vast majority of POD based papers referenced here are accessible enough

to provide an introduction however for current, accessible larger texts for

reduced order modelling, a good place for introductory study is the book [50]

and associated series of online open-source lectures. A more in depth text

featuring a-priori analysis of convergence, stability and non-linearity with a

sophisticated level of mathematical vigour applied to established projection

based ROMs would be the book [51] or the online handbook [52].

Mathematically speaking when constructing a ROM we are finding a subspace

to represent high dimensional data in a low dimensional sub-space. The first

instance of a ROM in this sense has its origins in the work of Lawrence Sirovich

[53], [54], [55], using ROM to research kinetic theory and its connection to

supersonic flow, turbulence and the dynamics of coherent structures. The
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underlining notion is that structures in high quality data for a set of problems,

either through experiment or high fidelity simulations, can be used to recreate

cheap solutions to the same problems for some new parameter or time

instance from a low dimensional sub-space of the high quality data. We call

the model used to obtain high fidelity training data for ROMs a full order

model (FOM).

Broadly, to construct a ROM we have two stages: we must find a low

dimensional sub-space of the training data obtained with the full order model

(FOM), then find new reduced solutions for untrained parameterisations and

time instances.

1.3.1 Intrusive Reduced Order Modelling literature

The most prevalent ROM approach is the use of Proper Orthogonal

Decomposition (POD) as a projection-based, intrusive method. Success

with POD is not limited to the field of reduced order modelling. The

resulting multitudes of confusing nomenclature and initialisms and should

be cleared-up: the Karhounen–Loeve expansions in signal analysis and

pattern recognition [56], principal component analysis (PCA) in statistics

and some data science applications [57], empirical orthogonal functions

(EOF) in geophysical fluid dynamics and meteorology [58] and the Singular

Value Decomposition (SVD) in linear algebra [59]. From this point on the

terminology we will use is POD when referencing reduced basis functions or

specific POD-based methods with the SVD only be mentioned in reference to

the decomposition of a specific matrix.

In reduced order modelling the POD method finds a basis that spans a low

dimensional sub-space of the high fidelity training data and then uses Galerkin

projection to get new, cheaper, "reduced" governing equations: solving them

for untrained parameterisations and time instances [60]. Using the governing

equations of the full order model maintains the properties and characteristics

of the full order model; for example stability and conservation. We call

methods reliant on projection in this sense "intrusive" as they refer to the

original governing equations.
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The two main issues with the convectional approach are stability [61] and

inefficiency in non-linear terms [62] with early work attempting to address

both piece-wise [63]. With Galerkin projection POD based approaches there

are some problems where spurious oscillations and Gibbs-like phenomena can

degraded ROM solutions [64]. Concepts such as the Petrov–Galerkin method

[65],[66], calibration, regularisation and Fourier expansion overcome many

issued with stability.

There are stabilisation approaches that give good results but are very problem

specific: [67] addresses the closure problem of the discarded POD basis

functions in turbulence models for instance. Interesting work has been done

on the sensitivity of POD methods and how close the attractors and phase

space of ROMs match the FOMs in the context of fluid flow problems [68].

Control of the stability and asymptotics is been discussed [69],[70], avoiding

erroneous states in ROM applications where long-time integration is necessary.

Numerical stability is also dependant on the inner product used in the Galerkin

projection with [71] addressing this using linear constraints on the projection

[71]. Other stabilisation methods for the inner product of POD-Galerkin ROMs

have been very problems specific [72],[73].

As we have seen with the many fluid-flow applications of POD, detailed

features in high fidelity FOM data including non-linear behaviour is captured

well with a POD basis. The problem lies in recovering the reduced solutions via

projection. Without a strategy to separate and over-come the non-linear terms

in the projection, POD is limited to linear and bi-linear problems [49],[74].

Fortunately inefficiency in non-linear terms can be overcome with techniques

such discrete empirical interpolation method (DEIM) [75],[60], [74] where an

interpolation of the non-linear quantities in a reduced domain includes only

a small number of elements. Another approach handling non-linear terms

in POD-Galerkin is to approximation the non-linear terms with quadratic

expansion of the non-linear term [76]. The paper [77] convincingly

demonstrates a hybrid approach of DEIM and quadratic expansion, providing

significant improvements for fluid flow problems in comparison with either
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appoch alone. Gauss–Newton with approximated tensors method (GNAT)

[78],[79] works well at the discrete level and is very suitable for parallel

computing but may inconvenient with changes at each time step meaning

the ROM cannot generally be expressed as a low-dimensional ODE.

In stark contrast with intrusive ROMs, Non-Intrusive Reduced Order Model

(NIROM) require no knowledge of the physical system and in fact are entirely

data-driven: making use of experimental data or FOM data indiscriminately

thus avoiding issues like stability or inefficiency in non-linear terms.

1.3.2 Non-Intrusive Reduced Order Modelling literature

An alternative to intrusive ROMs is use a Non-Intrusive Reduced Order Model

(NIROM) [1]. The NIROM method is data driven, as such the NIROM does

not require us to solve more governing equations. This is exciting as ROMs

can be constructed straight from the full order models in state of the art

commercial codes. Work with FOM legacy codes or software without access

to the source code is an attractive reason to use a NIROM: avoiding difficult or

impossible modifications, ports or APIs that may be need to work with them

and a projection based ROM.

The NIROM approach used in the rest of this thesis is based on Radical

Basis Interpolation (RBF-interpolation) has been applied successfully in

[40],[80],[81]. The RBF-interpolation is combined with the POD basis as

a means of calculating POD coefficients, elegantly construing ROM solutions

for new parameterisations or time instances. This is detailed in chapter 2.

This RBF-interpolation can be improved via renormalising the

parameterisation [82],[83] and as such most of the ROMs in this work are on

unit domains and normalised parameterisations: physical units re-mapped in

post-processing steps. The paper [84] expands the family of interpolation

based NIROMs, using Kriging interpolation in a way analogous to the

RBF-interpolation method.
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The paper [85] uses a meshless moving least-squares approach to solve

a particularly challenging problem: incompressible magnetohydrodynamic

flow. This method depends on high-order accuracy for integrals in variational

weak form however. Other data-driven approaches include [86] which is

based of a genetic algorithm and [87],[88] using deep neural networks. The

disadvantage of the such methods is the intensive training time. Excitingly

the paper [88] addresses the same problem as chapter 6: lack of guaranteed

conservation in NIROM solutions. The paper does this using deep learning,

whereas here we guarantee conservation for NIROM solutions with the more

simple, quick to train RBF-interpolation approach to NIROM.

The RBF-interpolation NIROM technique has two distinct stages: a offline

stage were a matrix kernel and training data are assembled and an rapid

online stage that yields a solution for new untrained inputs. The online stage

is rapid and thus suitable for developing a new coupling scheme. We therefore

aim to develop and apply this new reduced order modelling techniques to

well understood nuclear specific test problems.
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Chapter 2

Background Theory

In this chapter we will briefly discuss terms and concepts need to understand

the methods presented and developed in later chapters in this thesis. Firstly

through reviewing a few common numerical methods and concepts of

numerical analysis, then the background mathematics of reduced order

modelling and finally reactor physics models needed in shielding and neutron

transport.

Both the field of reduced order modelling in general and radial basis

interpolation specifically used in our particular class of reduced order models

are still emerging fields. As such there are many acronyms and multiple

names and modes of understanding. Here we will endeavour to bring clarity

through pairing the broad motivations and themes with examples. When

concepts have multitude acronyms, this will be initially clarified and minimally

referenced thereafter with preference to conventions from projection based

POD reduced order models. Terminology is introduced in italics.

2.1 Numerical methods

In the most general sense, a numerical scheme or numerical method can

by thought of as a recipe or algorithmic description which when successfully

applied solves a mathematical problem via approximation. The study of

numerical methods is called numerical analysis. The practical implementation

of a numerical scheme is called a solver and is computed with software and

code. This is done with provision for setting up, inputting the problem and

outputting the solutions in a useful way.
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Areas of study in numerical analysis include many sub-disciplines. Some

examples featured in this work are:

• Solving eigenvalue or singular value problems, for example the singular

value decomposition of a matrix.

• Systems of linear equations, for example solutions and approximations

of the matrix equation Ax = b where A is an m× n matrix, x is a column

vector with n entries, and b is a column vector with m entries.

• Interpolation, extrapolation, and regression, for example using radial

basis interpolation.

• Systems of ordinary (ODEs) and partial differential equations (PDEs).

Initially the most important area in numerical analysis for this thesis is

the solution of ordinary (ODEs) and partial differential equation (PDEs).

Such techniques being sometimes known as "numerical integration" as they

"integrate" the differential equation in some sense. The physical problems in

this thesis, shielding and neutron transports can all be posed as differential

equations.

Upwinding, an illustrative example

We will present an example numerical scheme called Upwinding to solve an

important differential equation called the advection equation. A version of an

Upwinding scheme is vital to the work in chapter 6.

Advection is the bulk motion or transport in 1-dimension and can be can be

thought of as changes in density or field T . A small change in time ∆t and

space u∆t can be made:

T (x, t+∆t) = T (x− u∆t, t) (2.1)

Although advection is a simple problem that can be solved analytically via the

method of characteristics and for some initial condition T0 = T0(x, o) there
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is a unique solution: T = T0(x − ut), some problems do not have known

analytical solutions, for example the Navier-Stokes equations which govern

most practical fluid dynamics applications [89].

A Taylor series expansion of both sides yields a partial differential equation

(PDE) which can be discretized:

∀u, ∂T
∂t

+∇ · (uT ) = 0 (PDE: Continuous) (2.2)

u > 0
T̃n+1
i −T̃n

i

∆t
+ u

T̃n
i −T̃n

i−1

∆x
= 0 (Upwinding scheme: Discrete) (2.3)

u < 0
T̃n+1
i −T̃n

i

∆t
+ u

T̃n
i −T̃n

i+1

∆x
= 0 (Upwinding scheme: Discrete) (2.4)

where T is the field being advected,T̃ is a discrete approximation of T , t is

time, ∇ is the gradient operator and u > 0 is the velocity. This is shown in

figure 2.1.

Discretization is the process of converting continuous mathematical equations

into discrete equations. Analytical solutions are represented continuously

in all space. Numerical solutions are represented on a discrete set of points

called a mesh [90].

The discrete equation is solved on a mesh in time and space. A uniform mesh

takes the form:

tn = t0 + n∆t xi = 1 +∆x (2.5)

for some index n = 0, 1, ..., TFinal and i = 0, 1, ...,M on the domain [o, L] with

∆x = L
M

.

Figure 2.1: A schematic visualisation, called a stencil, showing how the Upwinding
scheme propagates in time and space.
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Upwinding has the following useful properties:

• Conditionally stable: errors are damped on the condition |u∆t
∆x
| ≤ 1, the

Courant–Friedrichs–Lewy condition, but blow up outside this region.

• First order: First order derivative terms highest used, Specifically p = 1

and the truncation error behaves as O(∆xp) in big-O-notation .

• Bounded: the error is bounded.

In the derivation of the numerical scheme, the continuous terms of the

advection equation can be replaced by discrete terms via inspection from a

possible stencil. A more general approach to deriving numerical scheme is

using Finite volume method. There both sides of the (PDE) are integrated

and replaced with quadrature methods for approximating surface and volume

integrals. This is the approach used in the derivation of the Sub-grid Scale

model in chapter 6.

Other popular techniques for numerical integration include:

• Finite element methods: Dividing the domain into small pieces and

finding local solutions that satisfy the differential equation within the

boundary of this pieces [91].

• Finite volume methods: One differential equation is replaces be lots of

small integrals that can be dealt with via quadrature [92].

• Monte Carlo methods: Other methods use a fixed grid. Here the

integrand is evaluated at random points [93],[94],[95],[96].

• Meshless: There is no mesh, each point is tracks its interactions with its

neighbours [97].

In this work we will mostly be using raw data or PDE solutions from finite

volume methods as they are widely known and simple to work with. These

solutions will be necessary to build the reduced order model and the
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techniques for analysis of numerical methods are applicable to the ROM

techniques in this thesis. Practical actions like parallelisation can improve

most methods so that each processor can work in parallel. Some techniques

can focus numerical efforts where they are most needed such as Domain

decomposition methods breaking the problem down or Adaptive meshes

which can add and removes detail where the problem necessitates [98],[99].

Numerical analysis

We use an iterative approach in two distinct respects in this work: the reduced

order models in chapters 4 and 5 are coupled (joined together) through an

iterative scheme and also the methods in chapter 6 uses an iterative approach

called successive over-relaxation [100]. Iterations index repeated steps of

the algorithm and a numerical solver will typically provide better and better

approximations to the solution in a step-wise manner or iterate a numerical

scheme towards a solution.

The process of getting closer to the true solution is known as convergence.

When the numerical scheme is approaching the correct solution then we see

that the error between the true, exact solution and the solutions offered by

the numerical scheme closes. If this change is bellow a certain value we call

the tolerance ϵ we consider the solution to be the correct. We say the solution

has converged, whence |Texact − Tapproximation| < ϵ. If this does not happen

then we know the solution is not getting any better and we would need to

investigate the methodology.

There are various desirable properties and ways to compare numerical

schemes. If convergence is fast then processing time is saved and thus

a solution is found more rapidly. Although speed is an important feature it is

often more important to find a solution even when the initial guess is far from

a good solution. We call this property robust. If the solver is not robust we may

not achieve convergence at all. A scheme is stable if convergences steadily to

a solution and dampens rather than magnifying approximation errors. When

his does not happen it many get farther from the solution in which case we say

the solutions has diverged. It many also stop at a point above the tolerance,
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we say the scheme has not suitability converged. In some numerical methods

stability can be precisely quantified via Von Neumann stability analysis where

the numerical error decomposed though a Fourier series.

Numerical methods are approximations and as such understanding sources

of inexactness is vital to obtain high levels of accuracy. While precise values

of inaccuracy are specific to the application at hand, understanding how they

are introduced is important to compare and develop numerical schemes.

For example the use of a truncated series, ignoring higher order terms,

will be a source of some inexactness referred to as truncation error. Many

numeral schemes over estimate diffusion and this is called numerical diffusion.

This can sometimes be desirable to avoid singularities where they might be

unwanted. An other important point to note is the precision of the values

stored by the computer. The floating-point values will be set in some byte size

which will correspond so a rough number of decimal places as storage may

often be not base ten. There will always be some trade-off between computing

time and precision. The complexity and hence the number of operations a

computer processor has to perform will vary considerably between different

numerical schemes. Large operations such as populating large matrices or

matrix inversions many only need to be done once in the whole calculation or

multiple times in a single iteration. This must all be taken in to account when

building a viable solver. The over all workload of the processor is called the

computational cost. This may be measured in overall computing time, storage,

number of iterations or time complexity. It is often helpful to understand the

worst-case behaviour of a scheme and this is done through looking at the

asymptotic behaviour of the complexity in terms of big-O notation or order.

This is of particular importance in the field of reduced order modelling .
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2.2 Reduced order modelling

As the emphasis of this thesis is to explore reduced order modelling in

nuclear specific problems, we introduce some broad definitions and

conceptualisations before getting in to the mathematics.

Full order model: A full order model is the mathematical model that

undergoes reduction. The original model is often unfeasible, complex or

expensive in particular if the application necessitates near real time solutions.

Many computational fluid dynamics or neutronics applications have degrees

of freedoms upwards of 106. To generate the reduced order model it is often

necessary to make limited and carefully chosen runs of the full order model.

Reduced order model: A reduced order model (ROM) sometimes know as a

model order reduction is a technique for reducing the computational

complexity of mathematical models in numerical methods. Complexity has

many precise meanings in different scientific fields. For our purposes we

consider a large number of dimensions or degrees of freedom, high

non-linearity or resources required to run the model: importantly time and

memory. Reduced order modelling aims to address this and in order to fulfil

this reduced order models must:

• Have a small approximation error compared to the full order model

• Maintain the desired properties of the full order model such as stability

• Be computationally efficient and robust.

• The reduced order model should have the same capabilities as the full

order model.

The ROM can then be thought of as a black box meeting these characteristics,

see figure 2.2. The models should share input variables, boundary conditions

and parameterization for example, but should be much quicker or cheaper
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than a new run of the full order model for the same initial problem set-up.

Although the scope of reduced order models can be more sophisticated, a

helpful conceptualisation is the language a simple control theory problem.

Numerical models will have an associated state-space dimension or number

of degrees of freedom with a successful reduced order modelling technique

reducing one or both of these while being a good approximation to the original

model.

Full order space 

Reduced order space 

High fidelity model 
at select points  - a 

sample of time 
steps for example 

Outputs Inputs 

Reduced order 
model 

Inputs Outputs 

Figure 2.2: An overview of the reduced ordering modelling process. The full order
model’s state space dimension or number of degrees of freedom is reduced forming
an approximation to the full order model, namely the reduced order model.

The solutions from the full order model that are used in the construction of a

reduced order model must be pre-calculated and stored. We structure these

solutions in the snapshot matrix. The data from the full order model can be

collected and stored in a snapshot matrix. Each column is called a snapshot

and contains the high fidelity, full order model solutions. This is typically

organised such that for some snapshot matrix with entries i, j, the same

variable or multiple variables are stored in ith row position. If the ROM is

testing for time as its ROM parameter for example, the columns (each
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individual snapshot) would be full order solutions at different time steps. The

purpose of the ROM would then be a black box model that takes new times

unknown by the snapshots but in between their corresponding times, will call

the parameter the ROM tests p̂, and returns a new, reduced solution that

rapidly approximates what a full order model would recover for the time step

p̂. The choice of which data is included in the snapshot matrix is called the

model training. You can only extrapolate outside the area which the model

was trained so far. All choices of parameter inside the training space should

be viable for the application at hand.

Offline and Online stage: The reduced order model process is divided into

two sections, a longer and expensive offline stage where the data from the

full order model is collected in the snapshot matrix and an online stage

where new ROM solutions are rapidly generated from a chosen ROM

technique [101].

Intrusive and non-intrusive: Intrusive reduced order models are

projection-based reductions. A basis in which new solutions can exist is found

and the coefficients to reconstitute this basis are then obtained through

projection of this basis onto the original physics of the full order model. A

non-intrusive reduced order model (NIROM) does not require this projection,

it can be a data driven way to combine the reduced basis for new solutions.

The specific ROM techniques in this thesis use a non-intrusive reduced order

model (NIROM). To understand how this method is implemented we must

take an aside to look at two concepts in depth: POD basis functions and

radial basis interpolations.

2.2.1 Proper Orthogonal decomposition (POD)

Reduced order models find solutions in a reduced space that is closest, in

a least squares sense, to the space described by the training data in the

snapshot matrix [102]. These are vector spaces and thus is spanned by a
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basis. The mathematical task at hand in developing ROM techniques is to find

coefficients to reconstruct new solutions from this basis.

We introduce proper orthogonal decomposition (POD) [103]. The POD basis

functions are obtained by first forming a snapshot matrix X where each

column is the solution of the model equations at each time step.

The goal of POD is to find a set of orthogonal basis functions {Φs} ∈

{1, 2, . . . , NS}, such that;

1

S

NS∑
s=1

|⟨U,Φs⟩L2|2, (2.6)

is maximised subject to
NS∑
s=1

|⟨Φs,Φs⟩L2|2 = 1, (2.7)

where ⟨·, ·⟩ is the inner product associated with the L2 norm. As introduced in

[55] the singular value decomposition (SVD) can be used to find a solution for

this optimisation problem [104],[105].

Theorem. Singular Value Decomposition - SVD

Every matrix A ∈ Cm×n has a singular value decomposition, U = UΣV ∗.

Where,

• U,Σ, V ∗ are unique. V ∗ is Hermitian transpose of V .

• U∗U = I, V ∗V = I that is, U, V are unitary. If U ∈ Rn×n, V ∗Rm×m entries

are orthonormal columns.

• Σ ∈ Rn×m is diagonal.

Singular value decomposition is a generalisation of spectral decomposition

of a positive-semi-definite matrix. Intuitively, U = M represents a linear

transformation between for vector spaces. We see in figure 2.3 the SVD does

this transformation in three steps, a rotation or reflection, a scaling and a

further rotation or reflection.
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Figure 2.3: The singular value decomposition (SVD) can be visualised geometrically
in three steps, a rotation or reflection U , a scaling Σ and a further rotation or
reflection V∗ [2]

The POD basis vectors are the column vectors of the matrix V ,

Φs =
1√
λs

UV:,s, (2.8)

where λs are the non zero entries of the singular value matrix Σ and form a

monotone decreasing sequence. Thus an optimal basis of size P is the first

P columns of U . We are optimal in the sense the basis the closest to U for

size P in the Hilbert-Schimdit norm. The information captured by POD basis

functions can be quantified the normalised cumulative sum of the singular

values:

IEnergy =

∑t
i=1 λ

2
i∑NS

i=1 λ
2
i

, (2.9)

which approaches 1 as t is increased. This is often called the energy of the

POD basis. The reduced solution variables y for some test parameter that the

ROM is investigating p̂ can be expressed through POD by:

y(x, p̂) =

t<ndof∑
i=1

αi(p̂)Φi(x), (2.10)

where αj are coefficients arising from a ROM technique and ndof is the size

of a snapshot vector, the columns of X. The coefficients in this work will be

obtained though Radial basis interpolation.
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2.2.2 Radial basis interpolation

Radial basis function and Radial basis interpolations: A radial basis function is

a real valued function that only depends on the distance between the input

and some fixed distance c. That is: ϕ(r) = ϕ(∥x− c∥). The weighted sum of

theses functions can be used to approximate other functions [106]. In the

context of this work we approximate the coefficients of the reduced basis. The

functions used as radial basis functions are sometimes called characteristic

functions and can be any real valued smooth function of a distance, called

centres in some literature. Common functions include:

• Gaussian curve:

ϕRBF (r;σ) = e−
r2

σ2 (2.11)

• Inverse quadratic curve:

ϕRBF (r;σ) =
1

r2 + σ2
(2.12)

• Multiquadratic curve:

ϕRBF (r;σ) =
√
r2 + σ2 (2.13)

• Inverse multiquadratic curve:

ϕRBF (r;σ) =
1√

r2 + σ2
(2.14)

• Polyharmonic spline:

ϕRBF (r) = rm, m = 1, 3, . . . (2.15)

ϕRBF (r) = rmln(r), m = 2, 4, . . . (2.16)

Background Theory 25



The parameter σ is the characteristic length [107]. With Gaussian

characteristic function this is a shape parameter that tunes the shape of the

function so that it can smoothly change from a flat curve to a thin spike [108].

The functions are chosen such that the interpolate exists and is unique. This

uniqueness acts as a classifier and is a very simple form of neural network.

Series expansions: The ROM solutions are in most techniques reconstructed

through a series expansion. The series expansion is a sum of two parts: a

basis vectors are formed by the reduced basis ϕ(x) that spans the space

the reduced order model solutions y(x) must be members of and the ROM

coefficients α which are unknown until the Online stage of the ROM and

specific to the ROM technique used.

y(xi) =
∑
i

α(xi, p)ϕ(xi) (2.17)

where the number of terms in the series is less then the degrees of freedom

of the full order model.

We will briefly look at an example of how to use radial basis functions to

interpolate an elementary function.

‘

Let f(x) = sin2(3π∥x∥)
∥x∥−1

and also let xi =
i
35

,i = 0, 1, ..., 35 be 36 equally spaced

points on the unit interval. The approximation for the elementary function

f(x) is then:

f(x) ≈ f̂(x) =
35∑
i=0

wiϕ(||x− xi||) (2.18)

where ϕ is a choice of radial basis function and the weights wi are chosen

by forming the radial basis kernel and solving the inversion of the matrix

equation:
ϕ(||x0 − x0||) ϕ(||x1 − x0||) · · · ϕ(||x35 − x0||)

ϕ(||x0 − x1||) ϕ(||x1 − x1||) · · · ϕ(||x35 − x1||)
...

...
. . .

...

ϕ(||x0 − x35||) ϕ(||x1 − x35||) · · · ϕ(||x35 − x35||)




w1

w2

...

w35

 =


f(x1)

f(x2)
...

f(x35)


(2.19)
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The solving this matrix equation is equivalent to setting the approximation

equal to the function f(xi) for all i and solving for the weights. Note that the

approximation f̂(x) is a function of x not xi and is thus a mesh-free method

of interpolation. The nodes need not be equally spaced or even structured

and the interpolation works well for large numbers of degrees of freedom or

high dimensions. Radial basis interpolation has been used to interpolate

differential operators to solve PDEs such as the Naiver-stokes equations. In

the figures 2.4,2.5,2.6 we show the interpolation of f with best and worse

cases of characteristic length. A Gaussian characteristic function is used.

Figure 2.4: The interpolation is good when the characteristic length is suitably
chosen. However you can still see a Runge’s phenomenon (or Gibb’s phenomenon)
at the far right of the domain. Here σ = 0.1, the red curve is the original 36 data
points and the blue curve is an attempted radial basis function interpolation for 113
points.

Figure 2.5: The interpolation fails if the characteristic length is too small. The radial
basis functions become narrow and the interpolation kernel matrix becomes close to
the identity matrix. The solution will be close at the interpolation point and almost
zero everywhere else. Here σ = 0.001, the red curve is the original 36 data points
and the blue curve is an attempted radial basis function interpolation for 113 points.
We call this the bed-of-nails case.
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Figure 2.6: The interpolation is noisy when the characteristic length is too large.
The radial basis functions become too flat and give little information. Here σ = 0.8,
the red curve is the original 36 data points and the blue curve is an attempted radial
basis function interpolation for 113 points.

You can see that the choice of characteristic length in radial basis interpolation

an yield very varied results. Practically the choice should be such that the

matrix equation formed in interpolation is close to being ill-conditioned so as

to avoid the bed-of-nails case but not so ill-conditioned as to make the matrix

equation uncomputable or the interpolation noisy and featureless. This can

be heuristically managed by choosing a length of physical significance to the

problems scale or keeping the condition close but a few orders of magnitude

above the machine precision. This is often tracked as part of matrix solvers.

It is important to note that in some literature the characteristic length is

written as reciprocal to the presented framework in equations (2.11) through

to (2.16) and the phenomena in figures 2.4,2.5,2.6 would then need different

characteristic lengths to be reproduced. In this work the NIROM makes use of

radial basis interpolation to find ROM coefficients α for corresponding POD

basis functions.
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2.3 Non-Intrusive Reduced Order Models

Non-Intrusive Reduced Order Model (NIROM) approach for a single parameter

is presented. Here radial basis (RBF) interpolation is used to find POD basis

coefficients. This is done without loss of generality as the single parameter

can be a vector of parameters and possible time-stepping applications may

be considered as just another parameter. We therefore present the algorithm

in general, in "steady state" with specific worked examples and visualisation

of the NIROM algorithm presented later in chapter 3.

Recall from our discussion of POD basis functions, equation 2.10. A reduced

ROM solution y for some test parameter p̂ will take the form of the linear

combination:

y(x, p̂) =

t<ndof∑
i=1

αi(p̂)Φi(x), (2.20)

The training data is a collection of snapshots from a model or data set with

each snapshot depending on some variable x and a different parameter from

a vector of parameters p. Multiple variables can be handled in the NIROM via

concatenation into a single variable: this is expanded on later in chapter 3

and used through the rest of the work. Consider an example snapshot:

ψ(x;P ) ≈ ϕ(x; p) (2.21)

where ψ and ϕ(x; p) are snapshots that are either know solutions/data or

the result of high fidelity numerical models respectively. We use a range of

parameters to cover the domain of interest for the problem at hand:

p ∈
(
pmin, ..., pmax

)
(2.22)

with the a ROM being able to investigate new test parameters in this range

with confidence and rover the training snapshots if investigated at the same

point as one of them with very close to the same fidelity in spite of the

dimension reduction.
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We thus take our snapshot matrix X to be a collection of snapshots:

X =
(
ϕ(x; p1), ..., ϕ(x; pNS

)
)

(2.23)

This matrix is our training data along with the parameter the ROM has to

investigate are is the principle inputs of the NIROM algorithm. Characteristic

length and function are the ways we can tune the NIROM output and behave

just like the radial basis interpolations in figures 2.4,2.5 and2.6. With the right

training, smooth and accurate ROM solutions are obtainable with the NIROM

algorithm that offer a real speed-up for large classes of numerical problems.

The full NIROM algorithm is now presented, however the key take-away for

the reader at this stage is:

• Large Offline stage is slow but need only be done once - data

collection, POD basis, weights calculations happen here.

• Rapid Online stage is very fast and can be done for any new test

parameter p̂ in the training range .

For an overview of the steps we:

First high fidelity training data is collected to best cover the

parameter ranges of interest−→ a POD basis that best captures

the information needed and thus physics for possible new

solutions in the range of parameters is computed −→ a set of

ROM coefficients αknown, RBF kernel and weights wi,j is fun

and completes the offline stage −→ finally for the online stage,

a new, more simple RBF kernel using the test parameter is

calculated and a linear combination of ROM coefficients and

POD basis functions is formed.
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2.3.1 The NIROM algorithm for steady state problems

We outline a way of getting the ROM coefficients αi. The Non-Intrusive

Reduced Order Model (NIROM) algorithm used here takes the form:

Algorithm 1 Offline stage - Construct the ROM

1: procedure 1: POD basis construction
2: Generate snapshots over the parameter space p by running full order

model for the ; ▷ Store in snapshot matrix X.
3: Obtain POD basis functions Φi by performing an SVD of the snapshot

matrix X; ▷ At this point the user can wish to analyze the
energy/information captured by the POD basis functions.

4: procedure 2: Obtaining known α and weights
5: Obtain the ROM coefficients α for the known solutions in the snapshot

matrix by taking the dot product of the snap matrix dot product of POD
basis functions with solutions. That becomes:

αknown = ⟨ϕ,ΦT ⟩ (2.24)

▷
6: Calculate weights by solving for the known α:

α =

NS∑
i=1

wi,jf(∥pi − pj∥), pi ∈ p. (2.25)

The function f is taken to be a Gaussian with characteristic length scale
taken as the min(p). The matrix F can be pre-computed and inverted.

Fi,j = f(∥pi − pj∥), pi ∈ p. (2.26)

In Einstein notation the weights calculation becomes:

αi,jF
−1
j,β = wj,αFα,jF

−1
j,β = wi,αδα,β = wi,β (2.27)

▷ Set aside the POD basis function and weights for Online stage
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Algorithm 2 Online stage - Evaluate the ROM

1: procedure 3: New ROM coefficients for parameter p̂
2: Evaluate the ROM coefficients for new p̂

αp̂ =
t∑

i=1

wi,jf(∥pi − p̂∥), pi ∈ p. (2.28)

3: The solution is reconstructed:

ϕ(x; p̂) =
t∑

i=1

αi(p̂)Φi(x) (2.29)

2.4 Reactor Physics and shielding

The reactor is a source of highly penetrating radiation. Neutron radiation

without suitable shielding can travel macroscopic distances in the order of

100s of meters. Free from charge, neutrons travel in straight lines until

interaction and only are an indirect source of ionising radiation. Some will

eventually decay via beta decay with a half-life of about 15 minutes. Others

will deviate from their straight paths to collide with a nucleus, subsequently

scattered in a new direction or absorbed and will thus produce further

sources radiation. The wear and tear of structures such as the shielding is

called the embrittlement and can only be combated through replacement

and annealing. There are therefore sizeable economic and safety

considerations in the engineering of shielding.

Neutron transport equation

Neutron transport or neutronics is a type of radiative transport with its origins

in the Boltzmann transport equation [109]. Even after the advent of high

performance computing it is a very computationally taxing problem being

a fully 3D, time dependant problem with variables of energy span several

orders of magnitude from fractions of meV to several MeV. The Boltzmann

transport equation conserves neutrons with each term representing a loss
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or gain of neutrons. In neutron transport we can interpret the Boltzmann

transport equation as:

Rate of change in neutron flux + Loss via free streaming

===

Loss of neutron to all reactions

+++

Gain of neutrons from scattering from other angles or energies

+++

Gain of neutrons via fission reactions (2.30)

We represent the neutrons with a variable ψ(rrr,ΩΩΩ, E, t) the neutron flux, a

measure of the number of neutrons passing though a volume element divided

by its cross section area and by the time interval. The typical cm−2s−1, units

are neutrons per centimetre squared per second. It is a function of energy

E,angle Ω, time t and direction r. Typically in real world engineering problems

neutron flux will be function of angle. In chapters 4 and 5 we integrate the

angle over hemispheres so that we only have two "angles" - left and right. The

preliminary works in chapter 3 consider a scalar flux which can be thought of

as the number of neutrons crossing through some arbitrary cross-sectional

unit area in all directions per unit time. This is the same as the sum or

integration of all angular fluxes.
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The neutron cross-section defines the likelihood of certain interactions and

will be very important throughout this thesis. The cross-sections Σs,Σa,Σt

etc, denotes the probability that a nuclear reaction will occur in a given area,

for scatter, absorption, total and so on. These will determine the capture and

scattering behaviours, linking the various models to real world materials and

physics.

In the rest of this chapter we will survey a few standard formulations for

neutron transport and introduce a very simple model shielding that we can

use to investigate the reduced order modelling techniques.

The full neutron transport equation with time-dependence is given by:

(
1

v(E)

∂

∂t
+ Ω̂̂Ω̂Ω · ∇ψ(rrr, Ω̂̂Ω̂Ω, E, t) + Σt(rrr, E, t)

)
ψ(rrr, Ω̂̂Ω̂Ω, E, t) =

∫
Ω̂̂Ω̂Ω′

∫
E′

Σs(rrr, Ω̂̂Ω̂Ω
′ −→ Ω̂̂Ω̂Ω, E

′ −→ E, t)ψ(rrr, Ω̂̂Ω̂Ω, E, t)dE
′
dΩ̂̂Ω̂Ω

′

+λ
χ(E)

4π

∫
E′
νΣf (rrr, E

′
)

∫
Ω̂̂Ω̂Ω′
ψ(rrr, Ω̂̂Ω̂Ω

′
, E

′
, t)dE

′
dΩ̂̂Ω̂Ω

′
(2.31)

The angular neutron flux ψ(rrr, Ω̂̂Ω̂Ω, E, t) is a function of space rrr, angle Ω̂̂Ω̂Ω, energy,

E and time t. The neutron velocity vector is given by v, the average number of

neutrons emitted per fission ν, the cross-sections Σt,Σs,Σf representing total,

scattering and fission respectively. The fission energy spectrum is given by χ.

The eigenvalue λ is related to the neutron multiplication factor keff = 1
λ
: this

dictates if the reactor is "critical" - the neutron density remains unchanged

keff = 1 , "sub-critical" - the neutron density is decreasing as time passes

keff <, "super-critical" - the neutron density is increasing with time keff > 1.

For shielding the calculations are "fixed-source" that is, the source is known

and treated as a boundary condition and we will be interested in finding the

neutron distribution throughout the problem. We will consider keff = 1 and be

mostly considering steady-state problems.
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The steady-state version of the transport equation is given by:

Ω̂̂Ω̂Ω · ∇ψ(rrr, Ω̂̂Ω̂Ω, E) + Σt(rrr, E)ψ(rrr, Ω̂̂Ω̂Ω, E) =

∫
Ω̂̂Ω̂Ω′

∫
E′

Σs(rrr, Ω̂̂Ω̂Ω
′ −→ Ω̂̂Ω̂Ω, E

′ −→ E)ψ(rrr, Ω̂
′

Ω̂
′

Ω̂
′
, E)dE

′
dΩ̂̂Ω̂Ω

′

+λ
χ(E)

4π

∫
E′
νΣf (rrr, E

′
)

∫
Ω̂̂Ω̂Ω′
ψ(rrr, Ω̂̂Ω̂Ω

′
, E

′
)dE

′
dΩ̂̂Ω̂Ω

′
(2.32)

The angular neutron flux ψ(rrr, Ω̂̂Ω̂Ω, E) is now only a function of space rrr, angle Ω̂̂Ω̂Ω

and energy, E.

The standard discretisation for energy brakes down energy with multi-group

methods where each energy represents a band. For more details see the

book [110]. For many problems where thermal neutrons are the only

consideration, 2-group is sufficient i.e g = 2. The multi-group transport

equation is therefore given by:

Ω̂̂Ω̂Ω · ∇ψg(rrr, Ω̂̂Ω̂Ω) + Σt,g(rrr)ψg(rrr, Ω̂̂Ω̂Ω, E) =

∫
Ω̂̂Ω̂Ω′

G∑
g′=1

Σs−→g′ (rrr, Ω̂̂Ω̂Ω
′ −→ Ω̂̂Ω̂Ω)ψg′ (rrr, Ω̂̂Ω̂Ω)dΩ̂̂Ω̂Ω

′

+λ
χg

4π

G∑
g′=1

νΣf,g′ (rrr)

∫
Ω̂̂Ω̂Ω′
ψg′ (rrr, Ω̂̂Ω̂Ω

′
)dΩ̂̂Ω̂Ω

′ ∀g ∈ (1, 2, . . . , G). (2.33)

where g is an index representing the energy group. Note each energy group

will have sets of fluxes for each angular discretisation considered and will

have separate sets of cross-sections.

All shielding models in this work should be considered with this equation in

mind as this is the standard way of thinking about transport in both criticality

and shielding problems. For solution, time, when considered, and space are

straightforward to discretize however angular discretization may take the form

of functional expansion of spherical harmonics, namely PN methods, or the

quadrature of SN methods. Hopefully the reader can appreciate the Neutron

transport equations are straightforward to derive but solution, deterministic

or stochastic, is involved.

Background Theory 35



A simpler proxy for these governing equations is to use the multi-group and

mono-group diffusion equations. These equations can be derived from the

Neutron transport equations or derived from Fick’s law [111],[112]. In our

context the law states: The neutron current density J is directly proportional

to the negative gradient of the neutron flux ψ. That is:

J ∝ −∇ψ (2.34)

In one spatial dimension:

J = −D∂ψ
∂x

(2.35)

where the diffusion coefficient D can be related to the mean free path, the

mean cosine angle scattered in a medium or transport and absorption cross-

sections.

This derivation from Fick’s Law is the single step of substitution into the

continuity equation:
∂ψ

∂t
= S − Σaψ −∇J (2.36)

meaning,

Rate of change in neutron flux = production rate˘absorption rate˘leakage rate

(2.37)

This is the same neutron balance principle in the full Neutron transport

equations. The mono-energetic neutron transport equation takes the form:

1

ν

∂ψ

∂t
+ Σaψ +∇ · (ψ)−∇ · (D∇ψ) = S. (2.38)

where ψ the neutron flux density, ν is the average neutron speed of a thermal

neutron, D is the diffusion coefficient, Σa is the macroscopic absorption cross-

section and S is the source term. This is an equation of continuity and very

important to reactor physics [113]. Figure 2.7 gives a physical interpretation

of diffusion theory. Diffusion theory can be used in multiplying systems, where

fissile material is present Σf ̸= 0 in other words S ̸= 0.
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In non-multiplying systems such as shielding a simple analytical model can

arise by considering a infinite plane source in the y − z plane with the mono-

energetic neutron transport being then only as function of x. The only possible

solutions must take the form:

ψ(x) = c1e
−px + c2e

px (2.39)

where p is some attenuation parameter with units one over length. The only

physical part of this equation is:

ψ(x) = c1e
−px (2.40)

as finite flux is a necessary condition along with x > 0. In chapter 3 we

will take this equation as a toy model of shielding to investigate boundary

conditions, interfaces and reduced order models.

Figure 2.7: The diffusion approximation offers a physical interpretation is similar to
the fluxes of gases. Moving from high collision density to low collision density. There
are more collisions per cubic centimetre on the left so the neutrons are on average
scattered left to right, diffusing to the right.

This equation has its origins in Fick’s law, key assumptions in deriving this law

are widely known with figure 2.7 giving an overview and the validity of those

assumptions to this physical situation must be considered: infinite medium,

sources, isotropic scattering, slowly varying flux and time-dependent flux

[114].

These assumptions can be weakened considerably if a) we are a few mean

free paths away from extremities and b) S >> Σ. Anisotropic scattering can

be corrected for using transport theory. Nevertheless models based on Fick’s

law gives a reasonable approximation.
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2.5 The ASPIS benchmark

The ASPIS experiments were a series of benchmarks taken at the United

Kingdom Winfrith Atomic Energy Authority site [3]. The shielding facility

installed at the site shared the same name. Winfrith housed several

experimental reactors over is lifetime. The ASPIS benchmarks made use of the

experimental reactor NESTOR, a source of large amount of neutrons, primarily

developed as a useful tool for investigating the design of power-producing

reactors and carrying out sub-critical experiments on core assemblies.

In this work we use a configuration of a shield array, figure 2.8, from one of

these experiments as a recognisable problem to compare accuracy of results.

The experiments show up to a full 47-group result. To consider 1D scattering

with pairs of positive-negative directional fluxes for 1-group and 2-group

models respectively angular components of the neutron flux are integrated

over hemispheres. The only components of the total scalar flux that remain

are the fluxes travelling in the left (negative) or right (negative) direction.

The exact solutions used to evaluate the ASPIS benchmark ROMs performance

in chapters 4 and 5 come from the code WIMs [5], where a 47-group model

with the angular dimension of the problem represented potentially in full 3D

is integrated over two hemispheres with the energy groups condensed to

give appropriate solutions for comparison with the 1D ASPIS benchmarks in

1-group and 2-group classifications.

Figure 2.8: The material configuration used in the coupled ROMs, chapter 3 and 4.
This a modified version of the domina uised in the ASPIS benchmark.
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Chapter 3

Preliminary Reduced Order Models

Overview

This chapter presents a toy-ROM using an analytical model to

generate training data and investigates a few different ROM

paramterisations, starting with a single attenuation parameter

p = Σt that could be thought of a total cross-section and

later examples using width or interface position also having

p = p(Σt, l) where l is the width or interface position.

There is emphasis in building an intuition of the factors

effecting the ROM: How many snapshots are needed?,

What number of spatial nodes should be employed?, Which

paramterisations of the training space make sense? Exploring

the logarithmic pre-conditioner? Should interfaces in NIROMs

be approached as multiple coupled ROMs or just different

paramterisations or a single ROMs? A few metrics and

conventions are presented which will be useful in the analysis

of ROMs in later chapters such as error metrics, investigating

unseen-points in the training space of the ROM farthest from

the sen-points, normalised boundary conditions, uniform

meshing and uniform sampling in training regimes, singular

values presented as a cumulative energy sum, Gaussian

radical basis functions as the default choice. Insight from this

chapter are employed in chapters 4 and 5 to the ASPIS ROMs.
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Introduction

In the previous chapter we introduced the mathematical background needed

to understand the Non-intrusive reduced order model NIROM technique and

the basic definitions and concepts used in numerical methods and shielding.

In this chapter we make use of some preliminary analytical models for

shielding as well as some more abstract elementary functions as we build an

understating of the Non-intrusive reduced order model NIROM technique. The

exponential function, formulated as equations 3.2 or 2.40, is used frequently

in these models as it is safe to assume a dominant behaviour in shielding

models will be attenuation.

Recall while numerical methods such as finite difference approximate

solutions of the governing equations of a model, reduced order modelling

(ROM techniques) reduces computational complexity of high fidelity models

generating a rapid approximation to similar models. ROM is in this sense

a meta-technique: traditional numerical methods model a real world

phenomena with certain levels of abstraction whereas ROMs start with a

model or data set as an input and add a further level of abstraction to highlight

or improve upon properties of the model itself.
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We will investigate how the NIROM performs as we vary a few key model

parameters that make up the input models or data of the ROM, the parameters

that govern the training in the Offline stage of the ROM and the choice of

characteristic length in the Online stage of the ROM:

• Model parameters: The most important and universal consideration

here is the size of the model, quantified as the number of degrees of

freedom, being the number of parameters of the system that may vary

independently. In models with a state space representation this would

be the dimension of the model state space

• Offline Training parameters: The Offline stage is outlined in the NIROM

algorithm in figure 3.2 and consists obtaining the data used as snapshots

and building the ROM from them. In the Offline line stage the number

of snapshots, logarithmic spacing, concatenation for multi-variable

problems, vectorised input parameters all will determine the ROMs

effectiveness.

• Online parameters: Here choice of characteristic length has a large

effect on whether radial basis function interpolation of the ROM

coefficients is sufficient.

The number of degrees of freedom will add more detail to the snapshots

used as training data but increase the size of the problem. Accessing how

this trade-off functions will let us understand whether more snapshots or

degrees of freedom within individual snapshots is the best choice to improve

the NIROM. The actual shape and range of the training space is important to

consider: the training across different orders of magnitude can be enhanced

with logarithmic spacing in the training stage. The training should include

the maximum and minimum parameterization of any desired ROM solution.

The shape of the training space is formed as each parameter for training

is assigned an axis and together taken as a whole these axis form a hyper-

cube. As the offline stage of the ROM is constructed we have to index our

way through this space in some arbitrary manor and you could choose to
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sample just some of the points. In this work we limit ourselves to a brute-force

approach using all points in the hyper-cube but we may apply logarithmic

spacing to the axis first.

An investigation into all the considerations mentioned above with simpler

preliminary models will enable us to build the broad intuition needed to

apply the NIROM to complex, larger scale problems in shielding. We aim in

later chapters to consider the ASPIS problem, a materially inhomogeneous

problem. As such another factor we investigate using preliminary models how

the position of material interfaces as a ROM parameter behaves. We will see

variable preliminary results in this approach and demonstrate that a more

promising approach is to build a library of homogeneous ROMs and couple

them together.

3.1 A single parameter attenuation model of

shielding

This first simple model serves as a test case to develop and understand the

NIROM approach for a single parameter.

For this analytical test case a set of exponential functions are used

to approximate solution to the Boltzmann Transport Equation (2.38) for

neutrons. A general solution to the neutron transport equation takes the

form ψ(x,Ω, E, ;P ) and depends on x some position, Ω direction of motion, E

energy, nuclear cross-sections and is not in steady state. In this model we

assume we have a single energy group, a one dimensional spatial domain,

and steady state solutions. In the later chapters we break down attenuation

into multiple parameters to model more complex scattering behaviours with

the total attenuation p = Σt. In this chapter we will use the model of an

attenuation parameter simplifying and modelling material and geometric

properties by using just a single attenuation parameter, namely p the probably

of neutron capture per unit length and ignoring anymore complex behaviour

such as scatter. In the later chapter we will work towards models of full
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neutron transport, for now the governing equation of the attenuation model

takes the form of an attenuation equation:

− ∂ϕ

∂x
= p (3.1)

When solved with unit bound condition at the start of the shield and zero at

the end applied gives us a closed form solution for to use as the model. We

have:

ψ(x,Ω, E, ;P ) ≈ ϕ(x; p) = e−px (3.2)

with the choice of parameter in the range:

p ∈
(
101, ..., 105

)
(3.3)

with the set the divided with logarithmic spacing. This forces the solution

ϕ(x = 1) at the last point on the unit domain to be ϕ(x = 1) = 10n for some n

corresponding to a snapshot solution. When multiple shields are modelled the

input of the next shield is the output of the previous. This analytical model

allows us to construct toy-ROMs in order to show the general considerations

needed when using the NIROM, explore different parameterisations and

investigate a logarithmic pre-conditioner of the snapshot matrix.

To begin the Offline stage of the ROM we store all the solutions from our model

as columns of a matrix of snapshots and so we take this snapshot matrix X

to be:

X =
(
ϕ(x; p1), ..., ϕ(x; pNS

)
)

(3.4)

or visually:
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Figure 3.1: Visualization of the snapshots stored as column vectors of the snapshot
matrix.

In the previous chapter we presented a general version of the NIROM

algorithm that can be thought of as a the general approach. Here the NIROM

algorithm is specific to this application only in the sense that it is steady state.

A time dependant problem would be very similar in that it would have the

time stepping through as just another parameter whereas here we only have

attenuation parameter p.

The NIROM algorithm for steady state problems

We recall the way of getting the ROM coefficients αiin the Offline stage of

the algorithm and then a specific solution in the Online stage. The NIROM

technique is thus:
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Algorithm 3 Offline stage - Construct the ROM

1: procedure 1: POD basis construction
2: Generate snapshots over the parameter space p by running full order

model for the ; ▷ Store in snapshot matrix X.
3: Obtain POD basis functions Φi by performing an SVD of the snapshot

matrix X; ▷ At this point the user can wish to analyze the
energy/information captured by the POD basis functions.

4: procedure 2: Obtaining known α and weights
5: Obtain the ROM coefficients α for the known solutions in the snapshot

matrix by taking the dot product of the snap matrix dot product of POD
basis functions with solutions. That becomes:

αknown = ⟨ϕ,ΦT ⟩ (3.5)

▷
6: Calculate weights by solving for the known α:

α =

NS∑
i=1

wi,jf(∥pi − pj∥), pi ∈ p. (3.6)

The function f is taken to be a Gaussian with characteristic length scale
taken as the min(p). The matrix F can be pre-computed and inverted.

Fi,j = f(∥pi − pj∥), pi ∈ p. (3.7)

In Einstein notation the weights calculation becomes:

αi,jF
−1
j,β = wj,αFα,jF

−1
j,β = wi,αδα,β = wi,β (3.8)

▷ Set aside the POD basis function and weights for Online stage

Algorithm 4 Online stage - Evaluate the ROM

1: procedure 3: New ROM coefficients for parameter p̂
2: Evaluate the ROM coefficients for new p̂

αp̂ =
t∑

i=1

wi,jf(∥pi − p̂∥), pi ∈ p. (3.9)

3: The solution is reconstructed:

ϕ(x; p̂) =
t∑

i=1

αi(p̂)Φi(x) (3.10)
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Figure 3.2: Visualisation of the Offline stage of the NIROM. The principle input of the
algorithm is the snapshot matrix X in which the training data is stored. The NIROM
produces the POD basis and the weights needed to reconstruct any new solution in
the Online stage.

In figure 3.2 we visualise the steps of the Offline stage to the NIROM algorithm.

In the first step (a)i the data is collected in the snapshot matrix. Each column

is associated with a training parameter vector p in a way that will let us

Preliminary Reduced Order Models 46



reconstruct any new solution for a new value of p = p̂ in the Online stage.

Recall form the background in the previous chapter, the SVD of the snapshot

matrix in step (a)ii. gives the POD basis functions. The columns of the first

matrix are the basis functions sorted in order of the information they confer

when used in the Online stage. The size of the singular values in the middle

matrix quantify this information capture. The step (b)i. takes the dot product

of the individual snapshots, giving a set of ROM coefficients for the known

solutions. The final step of the Offline stage (b)ii. calculates the weights

needed for a radial basis interpolation of these known coefficients.

In the Online stage these weights enable radial basis interpolation to

approximate any ROM coefficient for any new training parameter. The

solutions are finally reconstructed from linear combinations of ROM

coefficients and POD basis functions.
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3.1.1 A logarithmic pre-conditioner

Sometimes an extra step in the NIROM process is used in this work.

Qualitatively, the idea that a logarithmic pre-conditioner could improve ROMs

where the applications have are dominated by exponential decay is worth

considering. The pre-conditioner used in this work takes the logarithm of the

snapshot matrix, performs the ROM calculations and takes the exponential of

the final ROM solution as:

Algorithm 5 Logarithmic pre-conditioner

1: training data for each parameter under investigating is collected in the
snapshot matrix

2: the logarithm of this snapshot matrix is taken to be the new snapshot
matrix

3: the NIROM algorithm is then employed
4: During post-processing, the ROM solution is recovered via taking the

exponential of the NIROM output solutions.

3.1.2 Error, stability, and convergence measures used

in this work

Throughout this work we are interested in systematically understanding

error, stability and convergence hence validity of the method in question.

Error is considered with respect to some reference value taken from an

accepted source such as a benchmark experiment or theoretical exact value

etc. Stability of the method evaluates how the error propagates through

the algorithm. Measures of convergence typically give an idea of how

many iterations are needed in an iterative method. Different quantitative

and qualitative insights can be gained from different error measures with

a consistent collection building up a more complete picture for direct

comparisons.

Preliminary Reduced Order Models 48



The error measures used throughout this work are:

• The root mean squared error:

RMS =

√∑
i(ψROM(xi)− ψexact(xi))2

ndof

=

√
1

ndof

∥ψROM − ψexact∥L2

(3.11)

aggregates the distribution of the error around their average into a

single number. The distance between the value predicated by the ROM

and the reference value ψROM(x) − ψexact(x) is called the residual (or

absolute error). The sign of the residual qualifies whether there is an

under or over estimation of the actual value. The RMS gives an overall

value of the error.

• The relative error:

erelative =
|ψROM(x)− ψexact(x)|

|ψexact(x)|
(3.12)

shows discrepancy between the ROM and the reference solution at each

choice of spatial node x. The absolute value is sometimes omitted when

under or over estimation is not clear from the absolute error. However

absolute relative error is the default measure used in this work unless

otherwise stated.

• The percentage error:

epercentage = 100× erelative (3.13)

• An error bound: is the maximum error.

• The L2 error:

erelative =
∥ψROM − ψexact∥L2

∥ψexact∥L2

(3.14)

The relative error can undergo the L2 norm as shown in the formula to

give a single overall measure. This is useful when looking a convergence

with respect to different model parameters.
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• Relative error at last point:

erelative(x = 1) =
∥ψROM(x = 1)− ψexact(x = 1)∥

∥ψexact(x = 1)∥
(3.15)

is useful for understanding error at and across the boundaries of the

domains. This is particularly important in shielding problems and in the

coupling of one system to another.

By convergence we mean making improvements to the solutions from one

run or iteration to the next. The iterations can be steps in an algorithm or in

some contexts just a run of the method with a different model parameter if

investigating sensitivity of error to that given parameter. An example would

be finding out how the model improves with more spatial nodes. Convergence

behaviour can be extrapolated with the order of convergence, the slope of

the line of best fit in plots of L2 error against the property under investigation

for convergence behaviour of a log-log scale.

Stability is particularly a consideration in time-dependant problems and we

will need this in the final chapters. A helpful tool for understanding stability is

Von Neumann stability analysis in which particularly suitable for numerical

schemes in PDEs. A scheme is stable if errors made at one time step or spatial

node do not magnify as the scheme propagates to the next time step or spatial

node. A well known example would be the Courant–Friedrichs–Lewy condition,

|u∆t
∆x
| < 1

2
, arising from numerical schemes with explicit time integration of

the advection equation with speed u. A good text for detailed explanation of

deriving conditions for numerical is [115]. Broadly a derivation of a stability

condition for some specific scheme would be as follows: Consider numerical

round-off error, the difference in numerical and analytical solutions for the

same finite-precision. As the exact solution must satisfy the discretisation of

the problem, the error must also satisfy discretisation of the problem. Showing

this fact demonstrates the scheme has the same growth or decay in error

with respect to time. You can then perform a Fourier decomposition of the

error ϵ(x, t) as a function of space giving a series in which the amplification

factor G(t) can be identified and is a function of time and set this factor to
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be bounded such that |G| ≤ 1. This gives a condition for how and if error

propagates as you step in time and space.

Throughout the rest of this work we will make use of these measures.

Specifically the next section will use of some of these measures to investigate

how a simple ROM of a model shield with a single attenuation factor behaves

as we go from a very small amount of training data to a larger number of

snapshots. First however we will introduce the concept of time complexity

which can be used to understand limitations in scale of numerical methods.

3.1.3 Time complexity and POD basis information

capture

Scalabity of algorithms is an important consideration. In principle ROMs

enable us to solve bigger problems than a fresh direct numerical simulation

making use of existing training data. In practice this is a great tool for

prototyping, design and digital twins. Time complexity of generating training

data, number of future runs desired and the information of the ROM will

inform when this technique the best choice.

We expect that using more snapshots or more degrees of freedom will take

longer to compute. An a priori measure of time complexity comes from

considering asymptotics of the operations in the NIROM algorithm is big-O

notation [116]. This estimate and notation is very important as we can quickly

distinguish between an algorithm that just needs better implementation or

an algorithm that will always be too slow for a large enough input. To see this

we introduce the following definition.

For operations represented by functions on the integers f(n) we have that:

f(n) = O(g(n)) if there exists M such that f(n) ≤Mg(n) (3.16)

for some sufficiently large n. For example the function: f(x) = x2+x+1 can be

written f(x) = O(x2) for x −→∞. Which fulfills the definition as |f(x)| ≤Mx2

for suitable x > x0 and M .
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We expect a dominant operation in the NIROM to be the matrix inversion

which using Gauss–Jordan elimination is order O(n3). Similarly the SVD is an

operation of order O(nm2). Consequently the NRIOM should take about 23

times longer to run if the number of degrees of freedom doubles and 22 times

longer when the number of snapshots is doubled.

Recall from the background theory in the previous chapter, a measure specific

to the POD based ROM techniques is the information captured by POD basis

sometimes called energy and is defined in the previous chapter. We use

this to inform how many POD basis functions are needed to construct ROM

solutions and when combined with the plots of the POD basis functions give

an indication of when a basis function is just representing noise.
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3.1.4 Results and discussion for a ROM of simple

exponential attenuation flux

This first investigation fixes most of the model parameters, only varying the

amount of training data in the form of the number of snapshots. A simple

toy model helps check the code used to implement the NIROM is robust and

develops some expectations we can use to ensure robustness going into more

complicated applications, how much data to use initially for example. Here

we will apply the simple model presented at the start of this chapter, the

single attenuation parameter model as shown in equation (3.2) on a highly

idealised shield of unit length, figure 3.3, with the setup with the following

parameters:

• Number of snapshots at most: NS = 60

• Minimum number of snapshots: NSmin
= 3

• Spatial nodes, ny = 6,

• Pre-conditioned training with and without logarithmic spacing as section

3.1.1

• All basis functions used, initially no truncation of the POD basis

ny = 6

Figure 3.3: The spatial resolution here is a unit fixed with 6 spatial nodes while we
investigate the effects of adding more training data though additional snapshots.

The values of spatial nodes in this first example is fixed at 6 so it is clear if

the ROM can handle a low number of spatial nodes and also is fixed so we

can investigate the number of snapshots. Starting at 3 snapshots we expect

to see poor results as the range of parameters the model was trained on p

spans orders of magnitude. It is mathematically not possible to have less that

2 and 3 was chosen so as to have a middle value. By using a fixed percentage

of basis functions of 100% we don’t have to worry about the reduction as a
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source of error in this initial investigation. Later on we will pick the number of

basis functions based on understanding this information capture.

As the training took place with attenuation factors that span 5 orders of

magnitudes, 101, .., 105 and the snapshots themselves are exponentially

shaped we expected to see some large variation in error across the domain

initially using the minimum number of snapshots. In figures 3.4 and 3.5 we

look at the error at each spatial node as the number on snapshots is increased,

the first as a ratio of ROM to exact solutions to show the point at which the

error is constantly positive and the second to show the solution reaches

constancy with the osculations diminishing. We see that in figure 3.4 a model

can yield acceptable results after 11 or more snapshots for training. Before

this we see the ROM is incapable of resolving the smallest points satisfactorily.

In contrast we see that the addition of a pre-conditioner from section 3.1.1

for logarithmically spaced training gives acceptable results in this case with

very little training. The line correspond to the 6 spatial nodes. The highest

error is for the point at at the end of the shield and the lowest is for the point

at the initial boundary.

Figure 3.4: Here we see for the no-log snapshot matrix, at some points towards
the end of the spatial domain values of the ROM solutions are negative in sign and
far from the expected solution. This is eventually resolved by increasing the number
of snapshots or immediately resolved by taking log of the snapshot matrix and exp
of the ROM solutions. Note the x-axis is number added beyond the minimum which
here was 3, so in this case the no log data becomes positive after 11 snapshots in
total. Each line is the error at a spatial node with the error highest in nodes right to
left.
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The true values of the relative error are more clear in figure 3.5 however it is

does not show the sign of the error.

Figure 3.5: The relative error plot for each spatial node shows the effectiveness
of the logarithmic pre-conditioner from section 3.1.1 and the point at which adding
more data yields diminishing returns. Each line is the error at a spatial node with the
error highest in nodes right to left.
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Figure 3.6 shows the L2-error, an average of all the spatial nodes. The slope

of the best fit line of this plot is an estimate for the order of convergence. We

see it can be bounded by a straight line with a negative slope on the log-linear

scale, meaning the L2 error is inversely proportional to the log of the number

of snapshots ie) y(x) = yintercept +mslopelog(x).

We see periodicity which could be explained as a result of the points the ROM

is resolving being fixed. In general a function f is periodic if f(x+ P ) = f(x)

for some P ̸= 0. We suggest that P = log(p̂), the point in the parameter space

the ROM is resolving and that x ≈ k log(∆x) is the distance to the nearest

neighbour in the training space when plotted on a log-log plot for some k > 0.

Figure 3.6: We see the order of convergence is not smooth due to oscillations but
can be found to be bounded at about 0.8 for both runs.

In figures 3.7 (a) and (b) we the singular values from two of the runs, with

and without the logarithmic preconditioner. The singular values show us

the energy or information gained by additional POD basis functions. This

method of analysis will guide our choice of the number of POD basis functions

and in this preliminary problem we need just a single basis function with

the preconditioner and very few without the preconditioner. The POD basis

functions in (3.7) (c) and (d) holds shape information that enables us to build

the ROM solutions. The first few hold the most and eventually the last basis

function just represent noise.
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(a) (b)

(c) (d)

Figure 3.7: Singular values are quickly dropping off (a), instantly for the log data set,
(b) the energy captured starts fairly high with just one basis function. reaching 98%
after just 4 POD basis functions. The first few most dominant POD basis functions
without the preconditioner (c) and with the preconditioner (d). We can see that the
1st one in both instances hold much of the same shape information as the training
data set, the set of exponentials from equation (3.2).

Looking at the NIROM of these preliminary model we see how the size of

the potential dimensionality reduction can be understood from the singular

values. We also highlight the importance of the ROMs training, both in number

of snapshots and shape of the training space, and note that positivity is not

guaranteed at the boundaries. However we see promising results from only 6

spatial nodes.
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3.2 Two and three parameter attenuation

models of shielding

This second simple model serves as a test case to develop and understand

the NIROM approach for more than a single parameter. Here inhomogeneous

materials are modelled piecewise with fixed lengths of each material. Each

material now has its own attenuation coefficient. Later in this chapter we

investigate making the length, and hence interface, a ROM parameter.

For this analytical test case a set of piecewise exponential functions are used

to approximate solutions to the Boltzmann Transport Equation for neutrons.

We assume we have a single energy group, a one dimensional spatial domain,

and steady state solutions. Now however we model material and geometric

properties by use of a different attenuation parameter in each section of the

domain; namely p1, p2 and p3 probability of neutron capture per unit length in

the 1st and 2nd or possibly 3rd section of the unit interval.

For two parameters with unit domain split evenly in half we have that:

ψ(x,Ω, E, ;P ) ≈ ϕ(x; p) =

C1e
−p1x, for 0 ≤ x ≤ 1

2

C2e
−p2x, for 1

2
≤ x ≤ 1

(3.17)

where C1 = 1 and C2 = e−
p2
2 . For three parameters with unit domain split

evenly into thirds we have that:

ψ(x,Ω, E, ;P ) ≈ ϕ(x; p) =


e−p1x, for 0 ≤ x ≤ 1

3

C1e
−p2x, for 1

3
≤ x ≤ 2

3

C2e
−p3x, for 2

3
≤ x ≤ 1

(3.18)

where C1 = 1 C2=e
− p2

3 and C3 = e−
2p3
3 .

For each parameter we use a choice of parameter domain with range log(p):

p ∈
(
101, ..., 105

)
(3.19)
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with the set the divided with logarithmic spacing such that:

P = (p1, p2, p3) (3.20)

where p1 = p2 = p3 = p and P matrix of the parameters for some ordering

such that every snapshot vector has a corresponding point in this space

of parameters formed by treating p1,p2 and p3 as axes. Note the solutions

are still forced to have ϕ(x = 1) at the last point on the unit domain to be

ϕ(x = 1) = 10n for some n corresponding to a snapshot solution.

We take our snapshot matrix X to be:

X =
(
ϕ(x;P1), ..., ϕ(x;PNS

)
)

(3.21)

for some order of parameter coordinates P = (p1, p2, p3).
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3.2.1 Results and discussion for two and three

parameter attenuation models of shielding

The following results and discussion show the RMS error as spatial degrees of

freedom and number of snapshots is varied as surface plots. This confirms

our assumptions that convergence will be improved by adding more data

both in the form of more snapshots and more spatial nodes. We would also

like to see if the log preconditioner offers improvements when using a data

set that is now only piecewise logarithmic. The model was setup with:

• Maximum number of snapshots: NSPmax = 30

• Minimum number of snapshots: NSmin
= 3

• Number of spatial nodes, ny = 60.

ny = 6 ny = 6

Lowest resolution two shield mesh

ny = 30 ny = 30

Typical two shield mesh

ny = 30 ny = 30 ny = 30

Typical three shield mesh

Figure 3.8: The spatial domain here is now modelling two or more individual shields.
Both the effects of adding more training data through more snapshots and also now
increasing the number of nodes and hence spatial resolution are explored. These
example meshes show two shields one in blue and one in orange and the lowest
resolution mesh with 6 node in each shield and a 30 node mesh with resolution being
a range investigated from 6 nodes to 60 nodes.

In the set of figures 3.9 we just look a slice the two parameter ROMs coordinate

space. This is done to more simply compare with the previous on parameter

ROM. Plots (a) and (b) are taken from the first section of the two parameter

ROM and (c) and (d) are taken from the second section. The ROM solutions

are at an unseen point in the training space, furthest from the seen-points,

and the exact solutions are the analytical solution at the ROM parameter in

question.
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We see that in figures 3.9 (a) and (b) from looking at the Root mean

squared error, RMS error, as we increase spatial nodes and number of

snapshots used the log preconditioner still improves NIROMs for shielding for

inhomogeneous materials. As the models are made more complex and depart

form constituting single exponential we expect to see this improvement

somewhat diminished. We will see that in later chapters this preconditioner

still can give some improvement. In figures 3.9 (c) and (d) we look at

the maximum relative error as we increase spatial nodes and number of

snapshots used. We see more clearly the effects of increasing spatial degrees

of freedom.

(a) (b)

(c) (d)

Figure 3.9: Root mean squared error of ROM solutions drops off rapidly with addition
of more snapshots and for this problem very genitally as the spatial degrees of
freedom increase (a). With the preconditioner this is even more rapid (b). Maximum
Relative error of ROM whole solution with the preconditioner applied drops more
rapidly (c). At this smaller scale you begin to see the periodic oscillations as the
number of snapshots increases (d) which was clear in the 1D log-log plots in the
previous sections of results 3.6.
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We show in figure 3.10 results across the whole domain for the ROM model

and exact solution with the two parameter case using p = [2.5, 10]. We expect

that we will need fewer than all 24 of the POD basis function to obtain good

results. The energy in 3.11 shows the information captured by using more

POD basis functions and thus informs our choice of the number of POD basis

functions.

Figure 3.10: This plot shows ROM and exact solutions for the two parameter
problem. A single POD basis function is not sufficient to capture all the information
and we expect this from the cumulative energy. We see little difference between 4
and 12 POD basis functions. The problem mesh is a 60 node version of 3.8.

(a) (b)

Figure 3.11: The energy capture with POD basis and shape of the first few the POD
basis functions is shown.

In figure 3.12 we see the results across the whole domain for the ROM model

and exact solution of the three parameter case with p = [3, 5, 8]. We see that

the case with three parameters still has good agreement. In general we see
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that for sufficient numbers of POD basis functions ROMs will have good feature

recognition and that adding more interfaces poses little trouble. The energy

in 3.13 shows the information captured by using more POD basis functions.

We can also see features such as the position of the three interfaces captured

in the POD basis functions.

Figure 3.12: This plot shows solutions for the three parameter problem. Similarly
we see that a single POD basis function is not sufficient. Using 4 and 12 POD basis
functions gives good results. The problem mesh is based on 3.8 with the addition of
an extra shield.

(a) (b)

Figure 3.13: The energy capture with POD basis and shape of the first few the POD
basis functions is shown.

Preliminary Reduced Order Models 63



3.3 Four parameter attenuation models of

shielding

This third model uses the same analytical test problem for a global NIROM for

a two domain shield. The thickness of the domains and respective attenuation

factors are used as the four NIROM parameters.

For this analytical test case a set of piecewise exponential functions are used

to approximate solution to the Boltzmann Transport Equation for neutrons.

We assume we have a single energy group, a one dimensional spacial domain,

and steady state solutions. Now however we model material and geometric

properties by using a different attenuation parameter in each section of the

domain; namely p1, p2 and p3 probability of neutron capture per unit length in

the 1st and 2nd or possibly 3rd section of the interval. The new parameters

introduced are the proportion of the interval that the fist shield occupies

l1 ∈
(
0, 1
)

and the total length of the interval two shields combined occupy

l2 ∈
(
0.5, 1.5

)
. The exact solution used to generate the snapshots is now:

ψ(x,Ω, E, ;P ) ≈ ϕ(x; p) =

C1e
−p1x, for 0 ≤ x ≤ l1

C2e
−p2x, for l1 ≤ x ≤ l2

(3.22)

where C1 = 1 and C2 = e−l1x. We sample l1 and l2 evenly from l1 ∈
(
0, 1
)

and

l2 ∈
(
0.5, 1.5

)
. For each attenuation parameter we use a choice of parameter

domain with range log(p:

p ∈
(
101, ..., 105

)
(3.23)

with the sets p1 and p2 divided with logarithmic spacing and l1,l2 evenly spaced

such that:

P = (p1, p2, l1, l2) (3.24)

where p1 = p2 = p and P matrix of the parameters for some ordering such that

every snapshot vector has a corresponding point in this space of parameters
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formed by treating p1,p2,l1 and l2 as axis.

We take our snapshot matrix X to be:

X =
(
ϕ(x;P1), ..., ϕ(x;PNS

)
)

(3.25)

for some order of parameter coordinates P = (p1, p2, l1, l2).
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3.3.1 Results and discussion for four parameter

attenuation models of shielding

This third preliminary model shows the convergence results for spatial

degrees of freedom and number of snapshots as surface plots for the four

parameter model. With more training parameters the training data is more

dense in some sense and thus the convergence as more data is added is very

rapid. The effect of characteristic length is also investigated to develop some

heuristics, informed by [117], we can use as a first choice in later work.

The model was setup with: P = [5, 8, 0.65, 0.7] all untrained points in the

parameter space, NS ∈
(
24, 64

)
, Spatial nodes, ny ∈

(
6, 30

)
. As with the

previous model we look at convergence of the ROM solutions as we increase

the training data using both more spatial nodes and snapshots.

In figure 3.14 (a) and (b) we see rapid improvement from 6 to 10 snapshots

and little gain thereafter and very gentle improvement from adding spatial

nodes. With a more complex model we see the difference with and without

the preconditioner is somewhat lessened but still deliver an improvement

none the less. In (c) and (d) we see the maximum relative error. With little

data the preconditioner is actually worse for the first time. After an increase

form 6 to 10 snapshots we see the preconditioner improves the results.
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(a) (b)

(c) (c)

Figure 3.14: Root mean squared error of ROM solution drops rapidly with the
addition of more snapshots and for this problem very genitally as the spatial degrees
of freedoms increase (a). With the preconditioner we improve the solutions even
more rapidly (b). Looking at the maximum relative error we see initial variation with
only 6 spatial nodes and a low amount of snapshots. Adding more snapshots quickly
eliminates this without (c) and with (d) the log preconditioner.

Here in figure 3.15 we see ROM results for the four parameter case with

p = [2.5, 10, 0.5, 1] an untrained point with parameter space of size 84 and also

24. More training data improves the results. We can see a lot of variation

in the results for different characteristic lengths. The best results would

come from the choice of characteristic length that makes kernel matrix of

the radial basis interpolation on the edge of being ill-conditioned. Its is not

practical to find this point for every run of the ROM as we try a few heuristics.

The rational behind them is that we seek to characterise the shape of the

parameter space with a singe number. The most robust choice we found in

this investigation was the difference in maximum and minimum values in

the parameter space, normalised by dividing through by the mean number

of snapshots in a parameter axis. The other choices came from thinking of
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the training as a space and trying measure that characterise spaces such as

volume.

(a) (b)

(c) (d)

Figure 3.15: Here we have ROM solutions for the four parameter problem on linear
(a) and log-linear (b) plots for 84 snapshots and linear (c) and log-linear (d) plots for 24

snapshots. We can see clearly that with more snapshots greatly improves the results.
A selection of characteristic lengths are used. POD basis functions are chosen such
that 95% energy is captured. We can see in the log-linear version of the plots that
(max−min)/mean gives the best results here.

In this section we make few important realisations:

1. choice of characteristic length is extremely important.

2. adding more parameters scales geometrically in terms of snapshots.

Noting some characteristic lengths performed better in different sections of

the domain, we see that going forward to a more complex problem where

each section will represent different materials, consistency between each
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material will be important and difficult to obtain with one global ROM for all

materials. This will be compounded as more complex shielding problems will

have fluxes spanning more orders of magnitude. We also see that a limit to

how many materials we can model is imposed by the scalability of the ROM.

A novel way to overcome this is to couple ROM solutions together. By this we

mean that solutions at the boundary of one ROM for one material inform the

solutions of next ROM for the next material.
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3.4 Coupling of ROM towards the ASPIS

benchmark model

In the previous section we suggested that for more complex problems

involving more materials would benefit from breaking down a global ROM into

a library of different ROMs for each material and joining them together through

a coupling scheme. In this section we make a preliminary investigation into

coupling ROMs and compare with the global ROMs from the previous section.

This lays the ground work for building a more detailed ROMs for each material

in the ASPIS benchmark our target application in later chapters. With a

single parameter and flux we can only couple in one direction, forwards or

backwards. In later work we use models with directional and inter energy

group scattering as well as attenuation and will need a scheme to couple

these fluxes successfully. In this preliminary work we will couple a single flux

in the forward direction.

Results and discussion of preliminary coupling

The same model as in the previous sections is used for a single parameter,

the attenuation factor. The coupling used the value at the end of the first

shield as the input boundary condition for the second and so on across the

whole domain. This model simply couples the flux is coupled in one direction

only. We also add a model for shielding of air that just returns the input flux

though the region where the material is air. This model of air will be sufficient

through this work. In Figure 4.6 we see two single attenuation factor ROM

models for steel coupled together with a small section of air between. The

ROMs were trained with data chosen 20% either side of the attenuation factor

representing steel.

Figure 3.17 shows the same simple coupling as the previous figure but for

a larger selection of materials, air, stainless and mild steels. The properties

come from the Iron-88 benchmark and the order is inspired by the ASPIS

problem. On the log-linear scale we can see upon coupling several materials

we begin to span more and more orders of magnitude in flux. Each ROM is
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Figure 3.16: This plot shows the flux profile of three ROMs coupled in one direction.
The ROM is trained 20% either side of the ASPIS data for three regions, namely steel,
air and steel. The unknown point the ROMs is finding is chosen to be far from the
training data with out leaving the space and a value of 95% of the energy informed
the number of POD basis functions used.

simple however coupling allows a more complex overall model to emerge. In

later work when we add more complex coupling scheme due to scatter being

modelling we will see shields effecting both forward and reverse neighbours.

A clear advantage of coupling is that we can add detail where needed and

remove when unnecessary. Each shield ROM could in principle have different

training, degrees of freedom and snapshots etc.

(a) (b)

Figure 3.17: Here show multiple slabs coupled together coupled with physical
properties, the attenuation factor, calculated from the Iron-88 benchmark but with
the geometry of the ASPIS problem in linear (a) and log-linear (b) scales.

In figure 3.18 we see that when the training is set up with the same total

number of snapshots the coupled ROM performs better than the global ROM.
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The preliminary model used has a fixed interface and is a two parameter,

the attenuation factors in each material, model. Note the coupled ROM out

performs the global ROM with effectively half the number of snapshots as the

two methods have the same total number of snapshots but in the coupled

ROM these are split evenly in each material.

(a) (b)

Figure 3.18: Here we have a comparison of coupled vs global NIROM for a test
problem for attenuation of [2.5, 10] (a). Here we see the error in the two methods (b)).
Even though we only have two parameters, coupling gives an improvement.

Going forward we will need to develop ROMs scheme that can handle multiple

variables and we demonstrate how this can be done in the next section using

concatenation of snapshot data. The conceptual leap is that the columns of

the snapshot matrix need not have direct physical meaning as long as the

variables can be recovered in post-processing. We will also need to develop

more complex coupling for realistic physical problems.
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Using elementary functions to investigate

multiple variable ROM

In this section we investigate how to handle multiple variables with our ROM

technique. A way to approach this is to concatenate multiple variables into a

single snapshot vector. The ROM now reproduces a profile that contains

several variables. The individual variables can be recovered in a post-

processing step.

3.4.1 Results

In figure 3.19 we see that the ROM trained on concatenated data can

reproduce the concatenated ROM solutions. Each of the two variable was

represented by two sets of single exponential profiles concatenated in a way

that each snapshot is just one profile from the first variable followed by one

from the second. The individual variables can be recovered after the ROM.

(a) (b)

Figure 3.19: For elementary functions made of exponential functions we see and
error in the order of 0.1 or less even for this few snapshots, here 12

In figure 3.20 we use a pair of functions that are no longer smooth: a two sine

curve with increasing amounts of random noise and shift across the domain

left-to-right f(x) = sin(px) +W , where p is varied to get a snapshot matrix

and W is a random number. This is done to briefly show that the ROM can

capture noisy training data. We see that we need more snapshots to get

comparable results. This is a still a small number for an erratic function and

shows that the ROM is very capable of feature recognition.
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Figure 3.20: Highly erratic functions as expected need more snapshots to get
similar errors. Here we have gone from 12 to 40 to get an error comparable to the
first set of profiles.

In this chapter we have prepared all the tools we need to develop and apply

the ROM to the ASPIS benchmark problem. We can see that coupling provides

a way to add more materials without scalability issues. We also saw the

potential in a logarithmic preconditioner and a method for ROMs with multiple

variables.

Conclusion

These preliminary investigations demonstrate a few concepts. First, the

validity of the logarithmic pre-conditioner with decay dominated training data.

Second, that coupling ROM domains is worth investigation and could offer

an improvement over interface position as a ROM parameter with multiple

parameters being modelled. Third, that multiple variables can be treated

as a concatenated variable making up a single snapshot. We also learn that

characteristic length is extremely important. These insights will all be useful

going forward.
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Chapter 4

Coupled 1-Group Reduced Order

Models for generic and ASPIS

benchmark configurations of slabs

Overview

This chapter presents a bi-directional

analytical scattering model of shielding

for a single energy group. This is applied to

an inhomogeneous material domain with the

configurations of materials based on the ASPIS

benchmark experiments. A coupling scheme

is introduced to join homogeneous material

models to form the larger inhomogeneous

models. This coupling is first understood

with analytical solutions. Following this a

coupled ROM is developed testing the widths

as the main ROM parameter and testing

boundary conditions as a ROM parameter that

facilities the coupling. We demonstrate that

the online component of the NIROM is rapid

enough to be used in the iteration loop of

the coupling scheme. A multi-group version

of this scattering model of shielding is later

developed in chapter 5.
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Introduction

The following numerical examples in this chapter are intended to demonstrate

the concept of coupling single slab reduced order models (ROMs). Generic

configurations of different material slabs are first coupled to show to

how the coupling scheme works. Ultimately the full configuration of

the ASPIS benchmark are coupled. The analytical model used here has

scattering in two directions in and out of the slabs and hence the coupling

scheme is 1-dimensional. Beyond 1D, angular discretization is the standard

[118]. Although this model was chosen as a stepping stone to enable the

development of a multi-dimensional coupling scheme for N-group problems,

1-group models have quantitative applications in very fast or very thermal

reactors with appropriate choice of cross-sections. Neutron transport is still an

area of active development in research and industry. Problems can be highly

challenging as they often necessitates a full 3 spatial plus a time dimension

and possibly meV to MeV ranges of energy spectra. Even though the full order

models used here are analytical, hence not costly to evaluate, and can be

coupled to solve the problem for the whole configuration, the work done here

is indented to be a proof concept. The novel concept here is a methodology

for coupling ROM solutions and the library built from these analytical single

slab solutions could in the future be replaced with real life data or a most

sophisticated model for a single slab.

4.1 Model with positive and negative scatter

We derive the model for a 1-group shield with positive and negative scatter.

The model gives us neutron flux, a scalar measure of the number of neutrons

in an arbitrary cross-sectional unit area in all directions per unit time, as a

function of distance, the material properties: macroscopic capture, scatter

and fission cross-sections Σc,Σs,Σf and domain length L. This model comes

from the mono-energetic neutron transport equations for a reactor shield

however here we will derive it from first principles.

Let the component of the neutron flux in the positive direction be ψ+(x) and
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the negative direction ψ−(x). We can represent the potential affects on the

neutron flux of all possible scatterings in a matrix operator Ŝ:

Ŝ · ψ̂ =

Σ++ Σ+−

Σ−+ Σ−−

ψ+

ψ−

 (4.1)

where Σ++ is the cross-section for scattering from the positive x-direction to

the x-direction, which in the 1-group, mono-energetic problem has no effect

on the flux. By symmetry of the 1-dimensional domain Σ++ = Σ−− and the

flux scattering from positive x-direction to the negative x-direction or, vice

versa by symmetry, Σ+− = Σ−+. Hence the scattering can be represented

by two numbers, ΣS a total scattering and α the probability that the scatter

changes the direction of the particle. Thus

Ŝ · ψ̂ =

(1− α)ΣS αΣS

αΣS (1− α)ΣS

ψ+

ψ−

 = ΣS

(1− α) α

α (1− α)

ψ+

ψ−


(4.2)

For isotropic scattering α = 1
2
.

Suppose a small change δx is made. The first term is just any unchanged

positive flux ψ+(x). There will be losses and gains in flux due to the

interactions represented by the cross-sections to account for. The first few

terms are some positive flux ψ+(x) lost due to capture, fission or a change in

direction from scattering positive to the negative. However some positive

flux ψ+(x) is also gained from scatter in the opposite direction from negative

to positive. The last term is the flux gained from fission of both directions.

Therefore we can form a particle balance equation:

ψ+(x+δx) = ψ+−(Σc+αΣs+Σf )ψ+δx+αΣsψ−δx+
1

2
λνΣf (ψ++ψ−)δx (4.3)

and thus a corresponding particle balance for the negative flux ψ−(x) can be

formed:

ψ−(x+δx) = −ψ−+(Σc+αΣs+Σf )ψ−δx−αΣsψ+δx−
1

2
λνΣf (ψ++ψ−)δx (4.4)
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where ν is the neutron speed and λ is the fundamental eigenvalue. To make

the flux distribution time-independent, that is to say the chain reaction in the

source is materials is in a steady-sate. We call this state reactor criticality

and is represented by λ = 1.

Taking the limit as δx approaches zero yields a pair of differential equations:

dψ+

dx
+ (Σc + αΣs + Σf )ψ+ = αΣsψ− +

1

2
λνΣf (ψ+ + ψ−) (4.5)

− dψ−

dx
+ (Σc + αΣs + Σf )ψ− = αΣsψ+ +

1

2
λνΣf (ψ+ + ψ−) (4.6)

The scalar flux given by:

ψ(x) = ψ+(x) + ψ−(x) (4.7)

gives the total flux of neutrons in all directions and the current is given by:

J(x) = ψ+(x)− ψ−(x) (4.8)

gives the net flux of neutrons in the positive direction. We can take the sum

and the difference of the pair of differential equations to get a pair for the

scalar flux and the current instead:

dψ

dx
= ΣtJ = 0 (4.9)

dJ

dx
= Σeψ = 0 (4.10)

where Σt = Σc + 2αΣs +Σf is the total cross-section and Σe = Σc− (λν − 1)Σf

is the emission cross-section. The first of which can be differentiated and the

gradient of the current can be substituted from the second to yield:

d2ψ

dx2
− ω2ψ = 0 (4.11)

where ω =
√
ΣtΣe. Now Σt > 0 so the general form of the solution depends

exclusively on the sign Σe. In the case of our shielding problem we have no
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fissile material and so Σf = 0 hence: Σt = Σc + 2αAΣs and Σe = Σc and takes

the general form:

ψ+(x) =
(1− β)Aeω̄x + (1 + β)Be−ω̄x)

2
(4.12)

ψ−(x) =
(1 + β)Aeω̄x + (1− β)Be−ω̄x)

2
(4.13)

where Σc,Σs,Σf and the capture, scatter and fission cross-sections

respectively. For isotropic scattering we have that αA = 1
2
. we also fix λ = 1.0

and ν = 1.0. We have the constants: ω =
√
ΣeΣt and β = ω̄

Σt

The first model will be on a single slab with flux at the start Ψ+(0) = 1 and

ψ−(L) = R. The purpose of setting the right hand boundary to be arbitrary is

to build a model of multiple slabs using ROM to couple them together.

Applying the boundary conditions we get:

2 = A(1− β) +B(1 + β) (4.14)

2R = A(1 + β)eω̄L +B(1− β)e−ω̄L (4.15)

for ψ+ and ψ− respectively. These form a pair of linear simultaneous equations.

Multiply the first equation by (1 + β)eω̄L and the second equation by (1− β) to

eliminate the A terms:

2(1 + β)eω̄L = A(1− β)(1 + β)eω̄L +B(1 + β)(1 + β)eω̄L (4.16)

2R(1− β) = A(1 + β)(1− β)eω̄L +B(1− β)(1− β)e−ω̄L (4.17)

We subtract the second equation from the first and collect the terms:

2
[
R(1− β)− (1 + β)eω̄L

]
= B

[
(1− β)2e−ω̄L − (1 + β)2eω̄L

]
(4.18)

Therefore we have that:

B = 2
(1 + β)eω̄L −R(1− β)[

(1 + β)2eω̄L − (1− β)2e−ω̄L
] (4.19)
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Similarly, eliminating the B terms in the first simultaneous equations we have

that,

A = 2
(1 + β)R− eω̄L(1− β)[

(1 + β)2eω̄L − (1− β)2e−ω̄L
] (4.20)

Now we have an analytical solutions for the flux:

ψ+ =
(1 + β)(1− β)R− eω̄L(1− β)2[
(1 + β)2eω̄L − (1− β)2e−ω̄L

] eωx + (1 + β)2eω̄L −R(1 + β)(1− β)[
(1 + β)2eω̄L − (1− β)2e−ω̄L

] e−ωx

(4.21)

ψ− =
(1 + β)2R− eω̄L(1− β)(1 + β)[
(1 + β)2eω̄L − (1− β)2e−ω̄L

] eωx + (1 + β)(1− β)eω̄L −R(1− β)2[
(1 + β)2eω̄L − (1− β)2e−ω̄L

] e−ωx

(4.22)

The total flux is:

ψ(x) = ψ+(x) + ψ−(x) (4.23)

and the net current is:

J(x) = ψ+(x)− ψ−(x). (4.24)

setting ψ−(L) = R = 0, a zero flux boundary, will yield a model with the

whole domain acting as a large single slab.

The cross-sections show the probability that a nuclear reaction occurs: shown

in table 4.1. Microscopic cross-sections are typically measured

experimentally and corresponds to the target area on the scale of the

individual nucleus, measured in Barns or cm2. One Barn in SI units is 10−28m2

and has its origins in the secrecy of the Manhattan project a coded reference

to the US idiom: "couldn’t hit the broad side of a barn" meaning poor aim. The

Macroscopic cross-section is the probability of interaction in the target area

of all nuclei in a given volume. It is important to note we use the Macroscopic

cross-sections and that they are denoted with capital ΣI where I is a label for

the interaction of interest. For a capture interaction for example we have:

Σc = σcN (4.25)

where N is the atomic number density and σc is the microscopic cross-section.

The void is modelled to have transmission of flux only are therefore no

interactions occur. The model just returns the boundary conditions when

ω = 0.0 and β = 0.5.
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Table 4.1: 1-Group Macroscopic Cross-sections in the 1-Group problem. These have
been derived from the periodic table and confirmed by the code WIMS.

Material Σc (cm
−1) Σs (cm

−1)
Boral 6.913127× 10−1 2.099684× 10−1

Mild Steel 1 9.715767× 10−3 5.21055× 10−1

Stainless Steel 1.192884× 10−2 5.43487× 10−1

Water 1.828413× 10−3 8.640224× 10−1

Mild Steel 2 9.485925× 10−3 5.136567× 10−1

Concrete 2.802773× 10−3 3.549348× 10−1

ω (cm−1) β (Dimensionless)
Void 0.0 0.5

4.2 The coupling scheme

It is often useful to break down problems in numerical methods into smaller

sub-domains. This can aid in parallel computation when the sub-domains are

independent. Tools such as Domain decomposition methods split boundary

value problems down in to smaller parts for example. In this work we break

down problems into different homogeneous materials in particular, shielding

on the ASPIS configuration for each material.

We now introduce the coupling scheme used to join the individual single

shield models derived in the last section. The two directional fluxes are given

by the equations 4.21 and 4.22. The equations are parameterised by the

boundary conditions of the model. As such, the coupling scheme for the

configuration of single shield models can be formulated naturally in

accordance with the structure of the boundary conditions. In this problem if

we were interested in the coupling of two shields with fluxes Ψ+
1 ,Ψ−

1 in the

first shield and Ψ+
2 ,Ψ−

2 the in the second, then they would both have Dirichlet

boundary conditions in following the forms:

ψ+
1 (0) = 1

ψ−
2 (L2) = 0

(4.26)

two being fixed at the start 0 and end L2 of the configuration of shields. The

rest of the boundary conditions are free boundary conditions an used to gain
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continuity across the interfaces. For two shields we would have one interface

at L1 and thus free boundary conditions:

ψ+
1 (L1) = ψ+

2 (L1)

ψ−
1 (L1) = ψ−

2 (L1)
(4.27)

This leads to a system of boundary conditions where a set of guesses can

first be made for the values of the free boundary conditions and the fixed

boundary conditions remain fixed. The values of the neutron fluxes at the free

boundaries after the initial set of guesses are applied can then be used as a

new set of guesses. This can be repeated until the fluxes across the interfaces

of the free boundaries have continuity up to some pre-set tolerance ϵ.

ψ−
2 (L1)− ψ−

1 (L1)

ψ−
2 (L1)

< ϵ (4.28)

At this point we have an approximate solution for the whole domain and say

the slabs have been coupled. We only need to check continuity in the negative

fluxes across the interfaces as the analytical model for both directional

fluxes they are both a function of the boundary condition in the negative

flux. More generally for the case with n > 2 shields, we have a set of free

boundary conditions than can be dealt with with a set of corresponding pre-set

tolerances or a single tolerance that bounds above the relative differences

across the interfaces:

max
(ψ−

2 (L1)− ψ−
1 (L1)

ψ−
2 (L1)

, . . . ,
ψ−
n (Ln−1)− ψ−

n−1(Ln−1)

ψ−
n (Ln−1)

)
< ϵ (4.29)

where L0 is the the start of the shield, Ln is the end of the shield and

L1, . . . , Ln−1 are the interfaces the lie between.

The models that are used in this coupled scheme could be obtained from

either ROMs or analytical models. The work is is a proof of concept and these

models could be replaced by any model with the same structure of boundary

conditions. Although the model used here is simple the online stage of the

ROM technique is rapid compared to most more sophisticated calculation.
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Here the coupling scheme is outlined in the following algorithm:

Figure 4.1: The iterative coupling scheme is outlined. The boundary conditions at
the start and end of the problem are fixed while the free boundary conditions are
gradually improved as guesses yield flux profiles in the shields with can inform new,
better guesses until the scheme converges.
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To increase the stability of the coupling when ROM solutions are used,

instead of updating the next iteration with the interface fluxes from the free

boundaries as the guess, we implement a new guess in a manner similar to

successive over-relaxation: using the guesses from the previous iteration as

well. This slows but stabilises the convergence behaviour of the scheme. This

may be due to the relaxation potentially reducing the conditioning number of

the problem. Recall the choice of characteristic length in the radial basis

functions is heuristically thought to be best chosen when the problem is on

the edge of being ill-conditioned. This conditioning number is not known at

the outset of the problem so the use of successive over-relaxation like

guessing gives us more control over the scheme should results or

convergence not be suitable on first choice of characteristic length and

relaxation factor.

To illustrate this, consider a generic iteration scheme f :

xn+1 = f(xn) (4.30)

then the successive over-relaxation inspired modification of the scheme would

be:

xSOR
n+1 = ω(1− xSOR

n ) + ωf(xSOR
n ) (4.31)

where ω > 1 will typically speed up convergence and ω < 1 will help to

improve convergence where a scheme may otherwise diverge or overshoot

[100].
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Coupled Exact Solutions

Here the analytical solutions can be used to help build understanding and

develop the method, particularly convergence properties. During the

development of the solver for the coupling scheme, the coupled analytical

solutions are here checked against known solutions from analytical solutions

for n-slabs on the configuration 2.8. These exact solutions come from the

state of the art code WIMS, with the full 47-group model collapsed down to a

1-group model [5]. Here the results of the coupled exact solutions with the

set-up of the ASPSIS benchmark are constructed for later use as a

comparison with the ROM coupling. The exact and coupled exact are plotted

on there own meshes. The RMS error of the scalar flux is: 0.0182. In figure

(a) (b)

(c) (d)

Figure 4.2: The results for the 1-group coupling of two directional fluxes from the
analytical model for the ASPIS configuration are shown. Here in we have the scalar
flux, the total of the two directional fluxes, in log-linear (a) and linear scales (b)
the error in the scalar flux in linear (c) and log-linear plots (d). The tolerance for
continuity in the negative flux is chosen to be 1.0− 10−6 and hence the continuity at
all free boundaries of the negative flux at the material interfaces is bounded above
by this tolerance value.

4.2 we can that there is a large variation in the flux profiles even when the

boundary conditions are fixed to be a unit flux. In general, for later models
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with 2-group scatter or more the boundary conditions sum to a unit flux. The

use of log-linear scales make the dominate behaviours in the different

materials more clear. The first 10% of the shield is effective, capturing 95% of

the scalar flux from the boundary condition however 1
6
th of the scalar flux at

the start of the shield is now from scatter, an increase from the fixed

boundary condition. You can see the many narrow void slabs have only

transmission of flux thorough the shield hence the flux in both directions

remains constant where the voids occur. This can be modelled my setting

β = 0.5 and ω = 0.0 in the analytical model. The capture is higher in the boral

and stainless steel slabs and the scatter is highest in the water shields. The

plots of the individual directional fluxes show scattering back to the start of

the shield. In the boral we see this scatter causing negative flux values higher

than the unit boundary condition. In figure 4.3 we can see that although most

flux is captured or scattered by the shield, flux of the order 10−6 still reaches

the end of the shield. At the start of the shield you can see an increase

beyond the original boundary condition for scattering from the rest of the

shield. The profile of the fluxes becomes more similar as we progress across

the shield. This is in line with the 2-group and n-group models where the

most interesting behaviours occur at the start of the shield.

(e) (f)

Figure 4.3: Here we have log-linear plots of the directional fluxes, the positive flux
exact solutions coupled (e) and negative flux exact solutions coupled (f).

The relative error shown in figures 4.2(c) and (d) is fairly similar across the

domain until the very end portion where it is higher towards as the size of the
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fluxes involved are considerably smaller. The oscillation may be from small

interpolation errors.

(g) (h)

Figure 4.4: Here we have the absolute error in the scalar flux on linear plot with
true sign of the error (g) and log-linear scale with just the size of the error (h).

In figure 4.4 you can see the absolute error is constantly a few orders of

magnitude less than the value of the fluxes. The sign of the error, hence over

or under estimation is not systemic. The absolute error is however bounded

my the RMS error.

(i) (j)

Figure 4.5: The relative error at the interfaces (i) is shown along the RMS error.
There is no difference at the interfaces with the void parts of the shield. There is
not much structure beyond this but the variation is less than an order of magnitude
within the RMS. The tolerance progresses towards the desired tolerance, in this case
10e-6. (j)

The condition used to check the tolerance of the iteration scheme is the

maximum relative difference across the interfaces in the free boundary of the

negative flux: the maximum ofo the values in figure 4.5(i) for each interface.
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In the case of the analytical models in this section we can see in figure 4.5(j)

it as the scheme iterates it is smooth and an order of convergence can be

inferred from the plot.
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Coupled ROM Results

Here we couple ROM solutions with the set-up of the ASPIS benchmark.

Recall the shield in the set-up contains several materials and voids of

different specifications however then are spread thought out the domain and

hence orders of magnitude variation in flux will be observed. The training of

the ROM will thus contain ranges of points in respect to this.

We will see in the ROMs only the first two POD basis functions are required to

capture all the dynamics as they capture 71% and 29% respectfully. The rest

being only noise in this instance suggesting the underlying physics an be

represented with only two modes.

Training

The training of the ROMs is on logarithmically spaced intervals for the

boundary condition fluxes and evenly spaced interval 20% either side for

the slab widths. The logarithmically spaced intervals always include the end

points R = 1.0 and L = 1.0 and the other end points are scaled to estimate

their order of magnitude via a crude exponential decay fit.

• The boral is trained on 33 snapshots with the boundary condition fluxes

R and L trained on [0.1 , 0.31622777, 1. ].

• The sets of steel slabs are both trained on 73 snapshots with the

boundary condition fluxes R and L trained on [1.0× 10−7, 1.46779927×

10−6, 2.15443469×10−5, 3.16227766×10−4, 4.64158883×10−03,6.81292069×

10−2, 1.0]

• The water is trained on 43 snapshots with boundary conditions fluxes R

and L trained on [1.0× 10−5, 4.64158883e× 10−4, 2.15443469× 10−2, 1.0].

• The concrete is trained on 53 snapshots with boundary conditions fluxes

R and L trained on [1.0×10−7, 1.0×10−6, 1.0×10−5, 1.0×10−4, 1.0×10−3].
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• The stainless steel is trained on 43 snapshots with the boundary

condition fluxes R and L trained on [1.0× 10−7, 3.16227766× 10−4, 1.0].

Ranges close to 0− 1 were chosen to cover all possible boundary conditions.

This is prudent to give the user a full choice of problem set-up and also to

accommodate large possible fluctuations on the way to convergences.

Although in the analytical case the tolerance is approached monotonically

decreasing, this is no longer guaranteed with ROM solutions. This is possibly

due to factors such as Gibbs like phenomenon in the radial basis

interpolation.

It is important to note that this training regime is a brute force approach that

works well here with few, < 7, points in each axis of parameters. Even so for

2 + 1 parameters, the boundary conditions and the width, 73 points to train on

is a large number and presents difficulties scaling as we will see in the

2-group model. Future work would be to sample this space of possible

training regimes in some way to get best results, a Smolyak grid of points or

a Monte Carlo approach may be viable for models with more parameters. It is

also important to note how well the model performs with limited points in the

parameter axis.

The first set of figures 4.6 show that the ROM results closely mirror the

coupled exact results, displaying the same underling physics. The scalar flux

is rapidly absorbed across the shield and the voids show transmission only.

Importantly, the scalar flux at the end of the shield is in the same order of

magnitude as the coupled exact results and the increase due to scatter at

the start of the shield is with in 0.1% of the coupled exact flux. We can see

the RMS error in the scalar flux ROM solutions is: 0.0483 with the first half of

the shield having error less than 5%, typical errors being lest that 10%, until

the end of the shield where higher error is introduced by values close very

close to zero but still different order so magnitude. The drop in flux from the

start of the shield is rapid to the extent that a lot of the behaviour is only

clear on a log-linear plots.

Coupled 1-Group Reduced Order Models for generic and ASPIS benchmark configurations of
slabs 90



(a) (b)

(c) (d)

Figure 4.6: Here we have the scalar flux from the ROM coupling in log-linear (a)
and linear scales (b) the error in the scalar flux in linear (c) and log-linear plots (d).
The tolerance is 1.0 − 10−2 in other words a maximum of a 1.0% error across the
interfaces.

In figure 4.6 we have strong agreement until the end of the shield even

thought the model is only trained on < 7 points in a range spanning 7 orders

of magnitude. Many materials occur though out this range with few or no

training points in the ultimate solution’s range, however the modes provided

by the POD basis capture the structure within each ROM, giving the best

basis for the ROM for a given dimensionality in an L-2 sense. For each ROM,

the mean number of training points is 5.71, with standard deviation of 1.55

points. The ROMs training means half the individual ROM models are trained

on 7 points and the other half on 5 or fewer. The materials that span fewer

orders of magnitude require less points to train.
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The run times for the different steps of the scheme are:

• Total time: 1272.6 Coupling scheme time: 1256.8 Offline time: 15.9 plot

time: 11.5 Total its: 136.0

• The total run time here is about 21mins.

The run times here are a worst case scenario as the starting guesses used

are zeros. With some prior knowledge of the solution better guesses can

significantly reduce the run time.

For a more complicated problem possessing the same structure of boundary

conditions, this work shows that the coupling of ROM solutions may be viable

as a way of breaking problems down or speed-up. With guesses 5% of the

true values a run time of 31.6s is possible.

(a) (b)

(c) (d)

Figure 4.7: Here we have the error at the start and end of each slab and void model.
(a) the value of the tolerance (b) the positive flux exact solutions coupled (c) and
negative flux exact solutions coupled (d). The tolerance is 10−6. The end point of the
slab is omitted as it is not an interface. We can see the ROM produced a different
value to represent zero then the reference solution. The interface values all have
error less than 0.12 with most 2% to 4%.
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We can see in figure 4.7 (b) the condition, maximum error across the different

shield interfaces as it tend towards the tolerance. Overall it improves but is no

longer smooth as in the analytical case shown in figure 4.5. The convergence

is no longer monotonic and now appears noisy or oscillating. Its is hard to tell

if beyond the set tolerance is it osculating or just converging really slowly.

The directional fluxes are also faithful to the reference solutions having the

same physical features. In the figure 4.8 you can in absolute terms the error

(e) (f)

Figure 4.8: Here we have the absolute error in the scalar flux on linear plot with
true sign of the error and log-linear scale with just the size of the error.

changed sign with more over estimate than underestimate.

Conclusion

From this work we can conclude that the coupling of ROMs for a 1-group

shielding problem is a viable tool, even with a very small number of training

points, producing strong results in agreement with both the coupled analytic

model and the solution from the double P0 model. Another implication of

this work is that experimental data from a set-up with various different fluxes

at the start and end of shields could be assimilated to replace the similar

analytical model within each shield. The few training points, less than 7 in

fact, required would also mean fewer experiments needed to assimilate an

experimental model of the flux. This capability could enable modelling in real

time.
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Recall the two flux variables are recognized by the ROM is the form of

a concatenated flux profile. The detailed feature in this profile describes

the unprescribed boundaries at the shield. The ROMs gives strong feature

recognition even at low number of POD basis functions as evident from the

low error at the shield interfaces. This would suggest that a more feature

rich model would still be viable. In the next chapter this work is developed to

model coupled 2-group ROMs for shielding.
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Chapter 5

Coupled 2-Group Reduced Order

Models for generic and ASPIS

benchmark configurations of slabs

Overview

This chapter presents a bi-directional

analytical scattering model of shielding

for a 2-group formulation. The physics have

more depth in this chapter and so the initial

results build a library of individual material

homogeneous shield models before going on

to couple inhomogeneous material domains

with the configuration of materials based on

the ASPIS benchmark experiments. Again,

the ROM is testing boundary conditions as a

ROM parameter that facilities the coupling.

We demonstrate that the online component

of the NIROM is rapid enough to be used in

the iteration loop of the coupling scheme for a

multi-group problem.
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Introduction

For applications covering more than just the fast or just the thermal range

of energies, multi-group models are essential. From a 2-group model we can

build a basis to understand and generalise to multi-group ROM models and

more sophisticated coupled ROMs.

In this chapter, similarly to the 1-group chapter, an analytical two group model

for homogeneous single slabs is derived. We make the following assumptions:

with 2-groups the fast neutrons only have the option to leave the region via

streaming, scattering out to the thermal group or absorbed. The thermal

neutrons can only be absorbed or streamed out. For each scatter interaction

there is given a direction in 1D. This is gives a wide range of outcomes and

with more groups we see increasingly more complicated interactions.

This model is parameterised in terms of four boundary conditions,as apposed

to the two in the previous chapter, which is made use of to couple the

homogeneous single slabs to form more complicated configurations of slabs.

At the end of the configuration of slabs these boundaries can be fixed and

the remaining interfaces between slabs can be free boundary conditions

and thus used to iterate towards the model for the full configuration. The

models for homogeneous singles can be replaced by reduced order models.

A library of different homogeneous single shields is built up to train a reduced

order model capable of modelling complicated configurations of slabs. This

demonstrates the principle that reduced order models can be be coupled for

a complicated multi-group problem.
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5.1 Two-Group Analytic Solutions derivation

Here a derivation of a 2-Group model for a single shield is presented. The

model is parameterised in terms of the boundary conditions and width, later

enabling the development of a new coupling scheme to model multiple

materials at once. Starting from modified two-group diffusion theory, with

groups 1, 2 representing the fast and thermal respectively. The cutoff energy

for the thermal group is chosen such that upscattering from the thermal

group can be ignored. This choice is problem specific to the reactor setup,

typically 0.5eV − 3eV and tend to be higher in gas-cooled reactors and lower

in water-moderated reactors.

Let the capture cross-sections in groups 1 and 2 be Σc1 and Σc2, respectively.

The scatter cross-sections from group 1 to group 2 takes the from Σs1,2 and

scatter from group 2 to group 1 Σs2,1 with directional indices read similarly

left-to-right, for example Σs1+,2− is the scatter form group 1 to 2 and from

positive-x direction (right) to negative-x direction (left). Finally the in-group

scatter denoted by Σs1−,1+ = Σs1+,1− and Σs2+,2− = Σs2−,2+.

Conservation with the removal of up-scatter can then be written in the from

of:

Ψ1+

dx
+ (Σc1 + Σs1+,1− + Σs1+,2+ + Σs1+,2−)Ψ1+ = Σs1+,1−Ψ1−, (5.1)

−Ψ1−

dx
+ (Σc1 + Σs1−,1+ + Σs1−,2+ + Σs1−,2−)Ψ1− = Σs1−,1+Ψ1+, (5.2)

Ψ2+

dx
+ (Σc2 + Σs2+,2−)Ψ2+ = Σs1+,2+Ψ1+ + Σs1−,2+Ψ1− + Σs2−,2+Ψ2−, (5.3)

−Ψ2−

dx
+ (Σc2 + Σs2−,2+)Ψ2− = Σs1+,2−Ψ1+ + Σs1−,2−Ψ1− + Σs2+,2−Ψ2+. (5.4)

Let the Scalar Flux and Net Current in each group be:

ϕ1 = ψ1+ + ψ1−, J1 = ψ1+ − ψ1− (5.5)

ϕ2 = ψ2+ + ψ2−, J1 = ψ2+ − ψ2−. (5.6)
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This simplifies the PDEs to the form:

ϕ1

dx
+ Σt1J1 = 0 (5.7)

J1
dx

+ Σe1ϕ1 = 0 (5.8)

ϕ2

dx
+ Σt2J2 = Σs12pJ1 (5.9)

J2
dx

+ Σe2ϕ2 = Σs12mϕ1. (5.10)

where the total in-group cross-sections and emission cross section are:

Σt1 = Σc1 + 2Σs1+,1− + Σs1+,2+ + Σs1+,2−, (5.11)

Σe1 = Σc1 + Σs1+s2 + Σs1+,2−, (5.12)

Σt1 = Σc2 + 2Σs1+,2−, (5.13)

Σe2 = Σc2, (5.14)

Σs12p = Σs1+,2+ + Σs1+,2−, (5.15)

Σs12m = Σs1+,2+ − Σs1+,2−. (5.16)

and we make use of the following symmetries:

Σs1+,1− = Σs1−,1+, (5.17)

Σs1−,1− = Σs1+,2+, (5.18)

Σs1−,2+ = Σs1+,2−, (5.19)

Σs2−,2+ = Σs2+,2−. (5.20)

The group one equations are independent from the group 2 and thus can be

solved:

ϕ1(x) = A1e
ω1x +B1e

−ω1x, (5.21)

J1(x) = −β1(A1e
ω1x −B1e

−ω1x). (5.22)
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These can be substituted in to the group 2 PDEs and solved via characteristics:

ϕ2(x) = A2e
ω2x +B2e

−ω2x + α1(A1e
ω1x +B1e

−ω1x), (5.23)

J2(x) = −β2(A2e
ω2x −B2e

−ω2x)− α2(A1e
ω1x −B1e

−ω1x). (5.24)

where:

ω1 =
√

Σt1Σe1, ω2 =
√
Σt2Σe2, (5.25)

β1 =

√
Σe1

Σt1

, β2 =
√

Σe2

Σt2
, (5.26)

α1 =
Σt2Σs12p + Σe2Σs12m

ω2
2 − ω2

1

, α2 = β1(α1
Σt1

Σt2
+ Σs12m

Σt2
). (5.27)

Whence we have that:

ψ1+(x) =
A1(1− β1)eω1x +B1(1 + β1)e

−ω1x

2
(5.28)

ψ1−(x) =
A1(1 + β1)e

ω1x +B1(1− β1)e−ω1x

2
(5.29)

ψ2+(x) =
A2(1− β2)eω2x +B2(1 + β2)e

−ω2x

2

+
A1(α1 − α2)e

ω1x +B1(α1 + α+)e
−ω1x

2

(5.30)

ψ2−(x) =
A2(1 + β2)e

ω2x +B2(1− β2)e−ω2x

2

+
A1(α1 + α2)e

ω1x +B1(α1 − α2)e
−ω1x

2

(5.31)

The values of A and B are determined from the boundary conditions for the

four fluxes. Hence:

L1 = ψ1+(x1), L2 = ψ2+(x2), (5.32)

R1 = ψ1−(x1), R2 = ψ2−(x2). (5.33)

So the 1-group boundary conditions at x1 and x2:

2L1 = A1(1− β1))eω2x1 +B1(1 + β1))e
−ω2x1 , (5.34)

2R1 = A1(1 + β1))e
ω2x2 +B1(1− β1))e−ω2x2 . (5.35)
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Hence:

A1 = 2
(1 + β1)e

−ω1x1R1 − (1− β1)e−ω1x2L1

∆1

, (5.36)

B1 = 2
(1 + β1)e

ω1x2L1 − (1− β1)eω1x1R1

∆1

, (5.37)

∆1 = (1 + β1)
2eω1(x2−x1) − (1− β1)2e−ω1(x2−x1) (5.38)

Having determined A1 and B1, we can determine A2 and B2:

2ψ2+(x1) =A2(1− β2)eω2x1 +B2(1 + β2)e
−ω2x1 (5.39)

+A1(α1 − α2)e
ω1x1 +B1(α1 + α2)e

−ω1x1 (5.40)

we re-arrange and let:

2L̃2 = 2L2 − A1(α1 − α2)e
ω1x1 +B1(α1 + α2)e

−ω1x1 (5.41)

= A2(1 + β2)e
ω2x1 +B2(1− β2)e−ω2x1 (5.42)

Similarly

2R̃2 = 2R2 − A1(α1 + α2)e
ω1x2 +B1(α1 − α2)e

−ω1x2 (5.43)

= A2(1 + β2)e
ω2x2 +B2(1− β2)e−ω2x2 (5.44)

Finally:

A2 = 2
(1 + β2)e

−ω2x1R̃1 − (1− β2)e−ω2x2L̃1

∆2

, (5.45)

B2 = 2
(1 + β2)e

ω2x2L̃1 − (1− β2)eω2x1R̃1

∆2

, (5.46)

∆2 = (1 + β2)
2eω2(x2−x1) − (1− β2)2e−ω1(x2−x1). (5.47)

This gives a complete 2-group model for a positive and negative directional

scatter parameterized by the input and output fluxes for each energy group

R1,R2 and L1,L2. These parameterized boundary conditions will be used to

coupled the individual shield ROMs together.

In a multi-group problem the input and output fluxes form a spectra. The

boundary conditions are, in total, a unit positive flux input at the left hand
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boundary, situated at the start of the slab. In these examples the flux is

distributed evenly between the two energy groups, thus an input flux of

0.5 for the fast energy group (group 1) and also 0.5 for the thermal energy

group (group 2). Thus there is unit scalar flux input at x = 0; however, the

scalar flux at x = 0 will be greater than 1 due to the fluxes in the negative

x-direction produced by scattering. A free boundary condition (no incoming

flux) is assumed at the right hand boundary.

The ASPIS configuration form 2-group problems

The material specification in terms of typical ROM training ranges of the ASPIS

1986 configuration are used as table 5.2: Two-group Cross-Sections here

Table 5.1: Material Geometry

Material Training Range (cm) Comments

Boral 0.4-0.6 Only one boral plate.
Mild steel 1 4.1-6.1 All plates have the same thickness.
Mild steel 2 2.0-3.0 Only one mild steel 2 plate.

Stainless steel 2.4-3.6 Plates of two different thicknesses.
Water 15.8-23.8 Two water slabs of similar thickness.

Concrete 12.2-18.3 Two slabs of same thickness.
Void N/A. Just checking that fluxes remain constant through the gap.

are formed by the code WIMS flux volume condensing 47 group data driven

solutions [5]. The macroscopic cross-sections for the capture in and scatter in

and between the 2 groups is presented in table 5.2. The values are given in

the units (cm−1).

Table 5.2: 2-Group Material Cross-sections

Material Σc1 Σc2 Σs1+,1− Σs1,2 Σs2+,2−

Boral 0.003618 2.98814 0.114572 5.28E-07 0.092136
Mild Steel 1 0.000858 0.069514 0.164661 4.23E-05 0.480411
Mild Steel 2 0.002718 0.144996 0.249934 0.000533 0.477519

Stainless Steel 0.002476 0.173454 0.266546 0.000297 0.436575
Water 0.000302 0.019251 0.543568 0.038501 1.59705

Concrete 0.000239 0.00816 0.219499 0.008912 0.427796
Void 0 0 0 0 0

Coupled 2-Group Reduced Order Models for generic and ASPIS benchmark configurations of slabs
102



The table 5.2 summaries and quantifies the following properties:

• All materials have low capture in the fast group,

• Water and concrete have lower fast capture than boral or steel,

• Boral has much higher capture in the thermal group,

• Water and concrete have lower thermal capture than the steels,

• Boral and steels have very little down-scatter,

• Water has much higher within-group scatter than the other materials.

• Void has transmission only.

As with the 1-group model the we build a library of single shield ROMs. In

the next section we will illustrate the effects of the various cross-sections

shown in the previous table. This has two distinct purposes: to build

understanding of the underlining physics, informing us of what to look for as

the coupling scheme attempts to converge and also to understand how well

the concatenated ROM profile for all fluxes is represented by the ROM. This

will inform the number of POD basis functions needed in the coupling scheme

and give insight into training regimes and characteristics length choice.
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5.1.1 Single Shield 2-group ROMs

For the individual ROMs the training is initially done with the same set-up

for all materials. The individual shields for all the materials involved with

the ASPIS problem are trained with boundary conditions for thermal and fast

fluxes on the LHS being sampled from the ranges 0.5 − 1.00495 and for the

RHS fluxes ϵ − 1.00495. Here ϵ is just a positive number very close to zero.

This is done as using zero as a point in the training when the coupling scheme

iterates can lead to two problems: singular matrices in the construction of

the offline stage of the ROM and also divergence into regions where fluxes

that are negative and non-physical. This range of training points is chosen

to in practice cover the range 0.0 to 1.0 and thus maintaining a normalised

versions of the problem. The widths used for ROM parameterisation sampled

from points ranging 20% either side of widths for a give shield, for example a

shield of width of 0.5cm has a training range 0.4− 0.6cm.

In testing the individual ROMs a challenging test point is used. The values of

the 5 ROM parameters (shield widths, and the two pairs of inlet and outlet

boundary conditions) are chosen to be as far from the training points as

possible. The use of 4 basis functions gives 0.999% of the energy in all

materials. This is to be expected as the have similar underlining physics.

The total amount of training data used is 35 points; three points from each

parameter the shield width, and the two pairs of inlet and outlet boundary

conditions are permutated as the ROM is trained. The total degrees of freedom

in the concatenated ROM is 160. Figure 5.1 shows the boundary conditions

used for the specific results in this section.

Coupled 2-Group Reduced Order Models for generic and ASPIS benchmark configurations of slabs
104



ψ1+ = 0.5

ψ2+ = 0.5

Boundary condition: Fixed
Direction: Inlet −→

ψ1− = 0.0

ψ2− = 0.0

Boundary condition: Free

Direction: Outlet←−

ψ1+ = 0.0

ψ2+ = 0.0

Free

Inlet: −→

ψ1− = 0.0

ψ2− = 0.0

Fixed

Outlet: ←−

Figure 5.1: This figure gives a general overview of the boundary conditions at the
beginning and end of a shield. Later the coupled models will have extra boundary at
interfaces. For now we are considering a single shield to build intuition of the physics
of each material. Each of the material examples in figures 5.2,5.3,5.4 and 5.5 has a
width chosen from table 5.1 and cross sections as table 5.2.

Here a selection of single slab reduced order models is presented along side

the exact solution, the first few POD basis functions and their energy.The

two directional fluxes in the two groups are concatenated to form a single

1-dimensional snapshot from the four total fluxes. The different fluxes span

a few orders of magnitude however the reduced order model is still capable

of representing the features of all the directional group fluxes. In in figure

5.2 (a) we can see the ROM is close to the exact solution. We can also see in

(d) that only four POD basis functions are need, POD basis functions beyond

this are only noise. We can see variation in the size of the different flux

profiles. The higher capture in the thermal group reduces the thermal flux

down to 0.02cm−2 by the end of a thin 0.5cm shield of boral. The small within-

group scatter cross-section results in the production of only small amounts

of negative flux. In figure 5.3 (a), the stainless steel shield, we see the best

agreement with the exact solution out of the selection of the different single

material shield ROMs in the set of figures: figure 5.2 a 0.5cm shield of boral,

figure 5.3 a 5.08cm shield of stainless steel, figure 5.4 a 19.9cm shield of water

and figure 5.5 a 15.24cm shield of concrete.
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(a) (b)

(c) (d)

Figure 5.2: Here for a thin, 0.5cm boral shield we have (a) the individual directional
fluxes for the ROM and exact solutions (b) the relative error in scalar flux (c) the first
4 basis functions and (d) and the energy of the POD basis functions (d).

We continue to see only four POD basis functions are need. We can also see

more capture. We see the thermal flux is reduced to near zero by the end

of the shield and the fast group is also significantly attenuated. Part of this

is due to being ten times thicker than the boral plate. The greater transit

time allows the within-group scatter to be more prominent, generating more

negative fluxes.
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(a) (b)

(c) (d)

Figure 5.3: Here we have the individual directional fluxes in the ROM and exact
solutions (a) the relative error 2 (b) the first 4 basis functions (c) and the energy plot
(d) in a thick 5.08cm stainless steel shield.

In 5.4 we see strong agreement for most of the shield with higher error only at

the end portion. All fluxes are reduced to near zero by about half way through

the slab. Again only four POD basis functions are needed. We can see that

the shape of the POD basis function varies significantly between materials.

In all cases however you can see how the POD basis functions resemble the

concatenated ROM profiles.

In figure 5.5 we expect to see very similar, but less exaggerated, results to

the water slab: concrete having a high water content. By half way through the

flux is close to zero. The log-scale makes it more clear that the exponential fall

off continues until the very end of the shield. We see much steeper gradients

at the end of the shield. The thickness and high within-group scatter enables

the negative fluxes to be considerable.
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(a) (b)

(c) (d)

Figure 5.4: Here we have the individual directional fluxes in the ROM and exact
solutions (a) the relative error 2 (b) the first 4 basis functions (c) and the energy plot
(d) in a thick 19.9cm water slab.

From looking at each individual material we gain a few insights that we

can take on board for the coupling of multiple ROMs for the whole ASPIS

configuration. The concrete and water, being highly scattering and thick,

have profiles that will range several orders of magnitude just with in a single

shield. In the coupling scheme the training will have to reflect this by having

more data in these materials. The error in the flux at the start and end of each

material ROM will be very important in getting good results in the coupling

scheme, particularly in these materials. The mild steel will also need more

data as is occurs often throughout the ASPIS configuration and thus will span

many orders of magnitude but the error at the boundaries is less of a concern.

The other metals can get away with less training, being very similar to mild

steel. We can also confirm that 4 POD basis functions is sufficient for all ROMs

of this problem and gain insight into as good characteristic length for each
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(e)

Figure 5.5: Here we have the individual directional fluxes in the ROM and exact
solutions in log-linear plot for a 15.24cm concrete shield.

material ROM. We expected the range of order of magnitude of flux in the

coupled problem to be much greater in the 2-group case.
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5.2 Coupled two group ASPIS Configuration

Scheme and Results

The 2-group model for the ASPIS configuration, 2.8, will combine a boarder

range of physical behaviours than the 1-group model. Also the input can now

be a spectrum of fast and thermal boundary flux at the start of the shield and

as such will require more training to reproduce results for all input values. We

will also need to consider how to couple the 2-group solutions.

We can now apply what we have learned in the coupling of the 1-group shields

and in the individual 2-group material ROMs to couple 2-group ROMs. First the

coupling scheme for 1-group ROMs can be adapted to cope with two groups.

This is done in much the same way as the 1-group coupling where we check

continuity across each material boundary in the negative flux and update

boundary conditions from one adjacent materials to the next. This is now

done twice, one set of conditions on the boundaries in the fast group and one

set in the thermal. Both must be less that a total tolerance for the scheme to

have continuity and thus be a 2-group coupled model.

Coupling scheme for two group problems

Here the iteration scheme for coupling the single slabs is presented. The

coupling scheme joins the individual models of the slabs together. This is

done by passing the fluxes from one slab to the next to ensure continuity

within a certain tolerance. The incoming flux from one slab is the outgoing

flux from the previous slab or the relevant total assembly boundary condition

if the slab is the first or last. The overall assembly of slabs has boundary

conditions fixed at each end, in this instance 1.0 at start and 0.0 at the end,

figure 5.7. The parameters ψ+(L0) = p1 and ψ−(L1) = p2 are the inputs and

outputs for the coupling scheme as figure 5.8.
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Here the coupling scheme is outlined:

Figure 5.6: ROM iterative coupling scheme
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ψ1+ = 0.5, 1.0

ψ2+ = 0.5, 0.0

Boundary condition: Fixed
Direction: Inlet −→

ψ1− = 0.0

ψ2− = 0.0

Boundary condition: Free

Direction: Outlet←−

ψ1+ = 0.0

ψ2+ = 0.0

Free

Inlet: −→

ψ1− = 0.0

ψ2− = 0.0

Fixed

Outlet: ←−

Figure 5.7: Domain for the ROM ASPIS configuration is made of 25 homogeneous
shields with widths and cross sections show in tables 5.1 and 5.2 respectively. This
figure gives an overview of the boundary conditions at the beginning and end of the
whole shield. Two cases for the inlet are presented, a flux spectra split evenly and a
case with all the inlet flux in the 1st group.

For n individual shields we have a set of free boundary conditions and a

tolerance that bounds above the relative differences across the interfaces:

max
(ψ1−

2 (L1)− ψ1−
1 (L1)

ψ1−
2 (L1)

, . . . ,
ψ1−
n (Ln−1)− ψ1−

n−1(Ln−1)

ψ1−
n (Ln−1)

)
< ϵ1 (5.48)

in the fast group and

max
(ψ2−

2 (L1)− ψ2−
1 (L1)

ψ2−
2 (L1)

, . . . ,
ψ2−
n (Ln−1)− ψ2−

n−1(Ln−1)

ψ2−
n (Ln−1)

)
< ϵ2 (5.49)

where L0 is the the start of the shield, Ln is the end of the shield and

L1, . . . , Ln−1 are the interfaces the lie between.

Now in the 2-group coupling scheme both ϵ1‘and ϵ2 must be less than the

tolerance ϵ. That is:

max
(
ϵ1, ϵ2

)
< ϵ (5.50)

This means that the coupling can still be done in a way very similar to the

1-group problem. Namely in a single if loop with one tolerance ϵ. This suggest

that generalising to n-group would work in the same way with:

max
(
ϵ1, . . . , ϵn

)
< ϵ (5.51)

where n is the number of total groups.
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ψ1−
steel(LI)− ψ1−

water(LI) < tol

ψ2−
steel(LI)− ψ2−

water(LI) < tol

Boundary condition: Free at 1st iteration,
continuity condition placed on the fluxes thereafter.

LI

Figure 5.8: This figure is an example of how the boundary conditions at each
interface are used to achieve continuity between a shield model for steel one for
water at an interface point LI . Excluding the inlet and outlet boundary condition at
the beginning and end of the whole shield and zooming in on one of the remaining
free boundary conditions at each material interface of each material we see that the
pairs of directional fluxes must match up to a tolerance condition for the coupling
scheme to achieve continuity across the domain.

Now in figure 5.9 we test the coupling scheme with the exact solutions. This

gives us an idea of what the ROM solutions should look like. Two sets of

solutions are coupled, fist with with the input spectrum split evenly between

fast and thermal flux and the with all flux in the fast group only. In the total

scalar flux we can see that the input spectra makes little difference and that

some of the features are similar to the 1-group model. The biggest difference

is that the 2-group model covers more order of magnitude. Comparing the

two sets of figures we can see that the thermal flux strongly attenuated by

the boral slab and then build back up due to mostly scatter. By 16cm we see

fluxes become very similar.
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(a) (b)

(c) (d)

Figure 5.9: (a),(b) The results, on liner and log-linear scales, for exact slabs coupled
together in the ASPIS configuration with input fluxes of (0.5, 0.5) for the left hand
boundary conditions and (c),(d) The results for exact slabs coupled together in the
ASPIS configuration with input fluxes of (1.0, 0.0) for the left hand boundary conditions
in both linear and log-linear scales. The fluxes at the end of the shield remain similar
in both cases. Even with no input thermal fluxes a sizable amount builds up from
scatter.
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5.2.1 Two group ROM results and training

The results for the 2-group coupled ROM for the ASPIS configuration are

presented. Interestingly we can get good results with just two training

points in the boundary conditions parameter axis. We therefore use 25 sets

of parameters training on an lattice of 5D inputs made of the 4 boundary

condition fluxes and 1 axis for the width of the shields. With 5 parameters

we see that a uniform lattice of training points formed from all permutations

of a parameters is beginning to not scale strongly. While this sampling of

the training points for 1-group and 2-group problems shows it is possible to

get good agreement with exact solutions. The limitations in the scalability of

sampling training points on a lattice indicated a more effective sampling of

training points would be a desirable avenue of inquiry in further works. Extra

training point could be added near the boundary conditions and interfaces

using a Smolyak sparse grid as [77]. We will now explain the uniform

lattice training regime and show that even with simple assumptions on

implementation of a coupled ROM we can get very convincing results for

the 2-group problem and valuable insight into how to further develop the

techniques.

Training regime

Here the ROM is using 25 snapshots, each boundary condition is trained with 2

data points at 10−18 and 0.6 and the width is trained from 0.95 the shield width

to 1.1 of the shield width. What might not be obvious is that more training

data in this problem does not necessarily give better results. Using 35 yields

worst results and takes longer to converge. Using 55 data points gives very

similar results to 25 data points however takes much longer to converge. The

range of training parameters covers a range of possible flux spectra, the

desired spectra for this problem is taken as (0.5, 0.5) between the fast and

thermal group as to show an extreme case of the physical problem. An upper

flux boundary condition training 0f 1.0 was initially tested in the development

of these results as to cover all possible input spectra and is a valid method

but a more narrow range, specific to the test case gives faster convergence.

The value 10−18 was chosen to be close to zero and much smaller than any a
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priori assumptions of the end flux, the 1-group flux was in the order 10−6 at

the exist, but also large enough to keep matrices used with in the method,

such as the kernel matrices of the RBF interpolation, from becoming singular

and thus not invertable.

Maintaining the width as a training parameter and also a full range of flux

spectra demonstrates that this framework could be used with experimental

data varying in the same parameters. With suitable convergence from a well

chosen relaxation factor and characteristic lengths, real time calculations

are a possibility. This indicates that coupled ROMs can be valid tool for rapid

prototyping of shielding.

Recall from the individual ROMs that with the choice of just 4 POD basis

functions, we get close to 100% of the information. The choice of characteristic

length is made heuristically taking the best values from looking at how the

library of interval material ROMs behaves with variation in characteristic

length. An extreme choice of characteristic length makes the RFB kernel

matrix almost singular, and the computation of its inverse prone to large

numerical error. If this is managed however the RBF interpolation will have

the best fit, that is the heuristic choice must make the problem close to this

point but not stray to instability or unnecessarily long convergence.
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5.2.2 Results and discussion of Coupled 2-Group ASPIS

problem

The coupled 2-group ROM gives results very close to the coupled exact

solution until the very end of the configuration. In the set of figures 5.10 we

see the error for most of the domain is less than 0.05. The error begins to

rise at the very end of the domain this is firstly due to a very rapid drop in

flux this close to the end of the shield. Secondly, concerning the the very last

point is largely a numerical artifact, representing zero with inconstant close

to machine precision level numbers. The physics reproduced are therefore

the same as in the coupled exact solutions and the details of this are clear on

the log-linear scale.

(a) (b)

(c) (d)

Figure 5.10: (a),(b) The flux profiles in linear and log-linear scales, (c) (d) the
relative error in linear and log-linear scales. We see low error in the coupled ROM
solutions until the very end of the domain. This is due to the rapid drop in flux at the
very end of the shield.
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In figure 5.11 we see where the model under or over estimates the solutions as

indicated by the sign of the absolute error. The interface that the maximum

tolerance is associated with is tracked as to show whether the ROM can

converge any further.The first 14 are the fast group interfaces and the rest are

the thermal group interfaces. We see that the scheme converges smoothly

initially until pushing the tolerance beyond ϵ = 0.995. After this point a more

haphazard convergence follows.

(a) (b)

(c) (d)

Figure 5.11: (a),(b) The absolute error in linear and log-linear scales. (c) The value
of the tolerance at each iteration. The value of the characteristic length has been
tuned to permit the smallest tolerance still stable. (d) The worst interface at each
iteration. Interfaces 1 to 14 are group-1 and 15 to 28 are group-2.

The work in this chapter shows coupled ROMs are a viable approach to 2-

Group problems on relevant inhomogeneous materials. High information is

possible from just 4 POD basis functions to build a POD basis in which reduced,

hence cheaper, solutions exist. The non-intrusive online interpolation ROM

stage, with basic training and an informed characteristic length choice yields

very low errors near 0.05 and good continuity across the boundaries of at least
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ϵ = 0.995. Little further convergence was possible under the current training

regime.

The loss of smoothness in convergence may be due the error introduced in

numerical matrix inversion and its limitations. The area of convergence is

one that could be further investigated as RBF interpolation is an emerging

technique. As this is informed by the values at boundaries, efforts to reduced

Gibb’s (or Runge’s) phenomena would be beneficial with clustering of data

near boundaries [119]. Radial basis function interpolation is very suited to

sparse and scattered data and as such another very important future piece

of work the would be to refine the training as to not be on an evenly spaced

lattice. This is dues to scalability as moving a 3-group model for example

would require at least 27 data points in this current lattice taring regime. A

Latin hyper cube has been used to sample possible training points and thus

reduced the number required [120]. This would make sense as a sampling

technique as it produces near random sampling that is very representative

of the variability in a sample. Direct random sampling is not viable as the

snapshots must be indexed for the ROM algorithm to be implemented. The is a

promising area of research using neural networks in place of RBF interpolation

which could also be perused.

Conclusion

A limitation of the ROM scheme presented in this work is that there is no

guarantee the ROM solutions are physically conservative. Conservation laws

are not necessarily preserved: in our current application this one mean the

total number of neutrons is the property that is not conserved. In the last

chapter of this thesis a Sub-grid scale full order method is developed to

addressed this problem. Understanding this method may help to build a

non-intrusive ROM with this property.

Coupled 2-Group Reduced Order Models for generic and ASPIS benchmark configurations of slabs
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Chapter 6

Derivation of a Sub-Grid Scale Full

Order Method

Overview

This chapter derives a novel sub-grid scale

NIROM for 1D and 2D advection-diffusion

type problems that can give conservatism

to the ROM solution additively. The

discretisation process is shown in depth

with increasingly complex terms added to

the governing equations, starting with just

advection and building towards advection,

diffusion, absorption and source. The NIROMS

are tested on unseen time steps with the

results at the end of the chapter show

a speed up over the conventional finite

volume approach with the NIROM guarantying

conservation laws are obeyed in the ROM

solutions.
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Introduction

In the previous chapter we saw coupling was a very viable tool for problems

with an inhomogeneous material domain, with errors typically 0.05 for a

problem spanning 14 orders of magnitude, however we identified three key

limitations:

1. Training time: Scalability of a brute force lattice sampling training.

2. Heuristic choices: Reliance on the modellers time and experience with

choice of characteristic length.

3. Conservation laws: Lack of control over whether ROM solutions obey

conservation laws of properties conserved in the training data or models.

For limitation (1) there has been work done, partially in the area of fluid

modelling that uses more sophisticated sampling and training regimes. An

impressive result using the Latin Hyper cube to build complex ROMs of known

fluid dynamics benchmark problems can be seen in [1]. For (2) the choice

of characteristic length can be refined through understanding the condition

numbers involved in the ROM calculation, physically based characteristic

lengths such as wet diameter in a fluid dynamic context for example or

employing a neural network to improve heuristics. This would be an exciting

piece of further work in the context of coupled ROMs. This chapter explores

(3) namely conservation laws.

There has already been great interest in adding conservation in other kinds

of data-driven approaches. Work in Gaussian process regression based

hidden physics models [121] and physics-informed neural networks [88] are

promising and data-efficient areas. To outline the need for conservative ROM

solutions we change from steady-state to problems involving time stepping.

We must depart from directly solving problems in the field of shielding to more

abstract mathematical formulations that start with very simple behaviours

and add complexity to cover behaviour of interest, starting with advection
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of a flux profile to diffusion absorption and source terms. In many numerical

methods we can see problems from loss of conservation in the form of either

numerical diffusion, where excess of diffusive behaviours is a numerical

artefact or in the language of Hamiltonian mechanics we might think of loss

of conservation an energy drift [122]. We might be interested in what time

scales this drift happens or the artificial diffusion appears.

In this work we look at homogeneous materials as we have demonstrated

they can be coupled to model inhomogeneous cases. This is also a more

simple problem to start from. Advection of a scalar field in 1D was chosen

as the starting point as numerical diffusion is partially clear in a case with no

physical diffusion present. A square initial profile will make clear any changes

as we would expect to see the shape unchanged in the analytical solution to

such a problem. How we begin to address the loss of conservation in ROM

solutions is to develop a numerical scheme that solves this problem on two

length scales. A careful choice of sub-grid scale representation with Haar

wavelets enables us to gain conservative solutions. This numerical scheme

forms a basis that could be used in a projection based intrusive ROM and thus

solve the problem of conservative ROM solutions. A Non-intrusive (NIROM)

approach is later presented, demonstrating the control over conservation.

Here we present the derivation of a numerical method that solves the

differential equation on both the super and sub-grid scales. We will later

show that the sub-grid scale model can be expanded to cover diffusion and

absorption processes, generalised to 2D and be applied to non-intrusive

reduced order modelling.
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6.1 Sub-grid scale modelling

We develop a two-scale numerical model, in the form of a finite volume

scheme tested at the two scales, and apply this to a series of equations of

increasing complexity so as to model advection, then diffusion, sources and

absorption. This will be done for for an arbitrary scalar field that we will refer

to as a temperature.

Starting with the advection equation for an arbitrary scalar field temperature:

∂T̃

∂t
+∇ ·

(
uT̃
)
= 0 (6.1)

where T̃ is the scalar field undergoing advection, t is time, ∇ is the gradient

operator and u is the velocity [123]. We use a Dirichlet boundary condition of

zero.

We approximate the analytical solution T̃ with T and decompose the solution

into a two-scale form of a coarse scale solution TC and a fine sub-grid scale

solution TSGS.

T̃ ≈ T = TC + TSGS (6.2)

As 2D case will be expanded upon later in this chapter we will focus on the

1D case. Without loss of generality we can consider the 1D problem

∂T̃

∂t
+
∂(uT̃ )

∂x
= 0 (6.3)

where u is now treated as a scalar advection speed. We partition the spatial

domain into i control volumes Ωi. The control volume shape functions (or

basis functions), Mi(x), are given by

Mi(x) =

 1 for x ∈ Ωi

0 elsewhere
(6.4)
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which act as indicator functions, showing whether a value of x is in control

volume Ωi and we expand TC with time dependent coefficients TCi
(t) as

follows

TC(x, t) =
∑
i

TCi
(t)Mi(x) . (6.5)

Within each control volume Ωi is a sub-grid scale solution TSGSi
(x, t) expanded

in Haar wavelets Hi,j(x) so the sub-grid solution for control volume i is given

by

TSGSi
(x, t) =

∑
j

TSGSi,j
(t)Hi,j(x) , (6.6)

where Hi,j(x) corresponds to the jth Haar wavelet in the ith control volume.

The dependence of the basis functions Mi(x) and Hi,j(x) on x and the

coefficients TCi
(t) and TSGSi,j

(t) on t is assumed from this point onwards

and no longer written out explicitly.

The first few wavelet basis functions can be seen in figure 6.1 super imposed.

The Haar wavelets form an orthonormal basis on the unit interval. The Haar

wavelet basis does not contain a constant function as this is already contained

in the control volume basis, ie. Mi is constant over the ith control volume.

They look like a sequence of scaled rectangles and are defined as follows:

The mother wavelet on the unit interval defines the basic shape

H(x) =


1 for x ∈ [1, 1

2
),

−1 for x ∈ [1
2
, 1],

0 elsewhere

(6.7)

and basis of daughter wavelets are generated as

Hi,j(x) = H(2ix− j) (6.8)

for i > 0 integer 0 ≤ j ≤ 2i − 1 [124]. Although there are other families

of wavelets used in numerical methods, [125],[126], we choose the haar

wavelet for a few key reasons: they are the simplest wavelet basis and they

are odd functions which integrate to zero over a symmetric domain. We will

important make use of this later.
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Wavelet level: l = 1,

each wavelet now indexed: j = 1.

Wavelet level: l = 2,

each wavelet now indexed: j = 2, 3.

Wavelet level: l = 3,

wavelets now indexed: j = 4, 5, 6, 7.

Figure 6.1: The levels of the wavelet basis functions as well as the numbering of
the wavelet basis functions.
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The derivation will take the form of a finite volume scheme in which volume

integrals of divergence terms are converted to surface integrals which can the

be considered as discrete boundary fluxes. An other example of this process

is in [127]. Finite volume is in reference to the volume surrounding each point

on the mesh. In this method we will have coarse finite volumes and a number

of sub-grid scale finite volumes associated with each coarse volume.

Returning to the derivation we now test the governing equation (6.3) over

each of the two scales with the shape functions to give a Galerkin projection,

integrate this over the problem domain and then set the result to equal zero

∫
Ω

Mi

(
∂T

∂t
+
∂(uT )

∂x

)
dx = 0 ∀ i (6.9)∫

Ω

Hi,j

(
∂T

∂t
+
∂(uT )

∂x

)
dx = 0 ∀ i, j , (6.10)

where Ω is the domain of interest, here a 1D line, which satisfies Ω = ∪iΩi.

Galerkin projection as a method of numerical solution lends itself to this

problem as the integrals can be evaluated on domains of arbitrary shape.

Both control volume basis functions and wavelet basis functions contain

discontinuities and in order to integrate the wavelet equation we split the

domain of the integral in equation (6.10) into two parts,

∫
Ω+

i,j

Hi,j

(
∂T

∂t
+
∂(uT )

∂x

)
dx+

∫
Ω−

i,j

Hi,j

(
∂T

∂t
+
∂(uT )

∂x

)
dx = 0 ∀i, j , (6.11)

where Ω+
i,j is associated with the positive wavelet values and Ω−

i,j negative

wavelet values as shown in figure 6.2.

This is now a form were we can apply the divergence theorem to transform

volume integrals into surface integrals. These terms can then be evaluated

as fluxes at the surfaces of each control volume. This is done as because the

flux entering a given volume is identical to the flux that leaves the adjacent

volume we will have a two-scale conservative method.
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We now apply the divergence theorem to equations (6.9) and (6.10) resulting

in:

∫
Ω

Mi
∂T

∂t
dx+

∫
Γi

uTnx dΓ = 0 ∀ i (6.12)∫
Ω

Hi,j
∂T

∂t
dx+

∫
Γ+
i,j

Hi,juTnx dΓ +

∫
Γ−
i,j

Hi,juTnx dΓ dx = 0 ∀ i, j , (6.13)

where Γi is the surface of control volume Ωi, Γ
+
i,j is surface associated with

the region where the jth wavelet of the ith control volume is positive, and Γ−
i,j

is surface associated with the region where the jth wavelet of the ith control

volume is negative.

ΓL
i ΓR

i

Ωi

Ω+
i,j Ω−

i,j

ΓL+
i,j ΓR+

i,j

ΓL−
i,j ΓR−

i,j

Γ+
i,j = ΓL+

i,j ∪ ΓR+
i,j

Γ−
i,j = ΓL−

i,j ∪ ΓR−
i,j

Figure 6.2: The Wavelet basis showing the domain Ωi it occupies and its boundaries
on which we consider flux entering and leaving.
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Noting that an even function times an odd function is odd and odd functions

on symmetric domain integrate to identically zero [128]. We have that Hi,j is

odd and Mi is even. ie.

∫
Ω

MiHi,jdx = 0 ∀ i, j , (6.14)

thus we have that

∫
Ω

Mi
∂TSGSi

∂t
dx = 0 and

∫
Ω

Hi,j
∂TCi

∂t
dx = 0 . (6.15)

We can therefore simplify the time derivative in equation (6.12) as follows

∫
Ω

Mi

(
∂TCi

∂t

)
dx+

∫
Γi

uTnx dΓ = 0 ∀ i

(6.16)∫
Ω

Hi,j

(
∂TSGSi

∂t

)
dx+

∫
Γ+
i,j

Hi,juTnx dΓ +

∫
Γ−
i,j

Hi,juTnx dΓ dx = 0 ∀ i, j .

(6.17)

Evaluating the surface integrals gives

∫
Ω

Mi

(
∂TCi

∂t

)
dx− (uT )

∣∣∣
xL
i

+ (uT )
∣∣∣
xR
i

= 0 ∀ i

(6.18)∫
Ω

Hi,j

(
∂TSGSi

∂t

)
dx− (uT )

∣∣∣
x+L
i,j

+ (uT )
∣∣∣
x+R
i,j

− (uT )
∣∣∣
x−L
i,j

+ (uT )
∣∣∣
x−R
i,j

= 0 ∀ i, j .

(6.19)

where xLi and xRi are the leftmost and rightmost points of the control volume

Ωi, x
+L
i,j and x+R

i,j are the leftmost and rightmost points of surface Γ+
i,j (the

surface associated with the positive values of the jth Haar wavelet of the ith

control volume), and x−L
i,j and x−R

i,j are the leftmost and rightmost points of

surface Γ−
i,j.
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Discretising in time using the θ-method and evaluating the volume integrals:

∫
Ω

Mi

(
T n+1
Ci
− T n

Ci

∆t

)
dx− (uT )

∣∣∣n+θ

xL
i

+ (uT )
∣∣∣n+θ

xR
i

= 0 ∀ i (6.20)

∫
Ω

Hi,j

(
T n+1
SGSi
− T n

SGSi

∆t

)
dx− (uT )

∣∣∣n+θ

x+L
i,j

+ (uT )
∣∣∣n+θ

x+R
i,j

+ (uT )
∣∣∣n+θ

x−L
i,j

− (uT )
∣∣∣n+θ

x−R
i,j

= 0 ∀ i, j . (6.21)

in which θ = 0 gives an explicit, Forward Euler scheme, θ =

1 gives an implicit, Backward Euler scheme and θ = 0.5 gives

a Crank-Nicholson scheme. Now evaluating the volume integrals

on the left and using the orthogonal properties of the wavelets:

∆xi

(
T n+1
Ci
− T n

Ci

∆t

)
− (uT )

∣∣∣n+θ

xL
i

+ (uT )
∣∣∣n+θ

xR
i

= 0 ∀ i

(6.22)

∆xi,j

(
T n+1
SGSi,j

− T n
SGSi,j

∆t

)
− (uT )

∣∣∣n+θ

x+L
i,j

+ (uT )
∣∣∣n+θ

x+R
i,j

+ (uT )
∣∣∣n+θ

x−L
i,j

− (uT )
∣∣∣n+θ

x−R
i,j

= 0 ∀ i, j .

(6.23)

in which ∆xi is the width of the ith control volume and ∆xi,j is the width of

the interval in which Hi,j is non-zero. To improve stability or accuracy one

can solve equation (6.22) for T n+1
Ci

and then update the value of TCi
at the

endpoints Γ
+/−
i,j in equation (6.23). Considering the fluxes above, they need to

be evaluated at points where the basis functions are discontinuous. Several

options are available which include the upwind value could be used (common,

low accuracy, stable), the downwind value could be used (not used as

information cannot propagate in the direction of u), the average of the upwind

and downwind values could be taken (2nd order accurate but unstable),

a nonlinear combination of the average and upwind values depending on

whether oscillations are detected (based on Normalised Variable Diagram

(NVD) or Sweby diagram approaches) [129]. Here we choose upwinding for

simplicity and stability.
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Assuming an explicit discretisation in time (θ = 0), equations (6.22) and (6.23)

become

T n+1
Ci

= T n
Ci

+
∆t

∆xi

(
(uT )

∣∣∣n
xL
i

− (uT )
∣∣∣n
xR
i

)
∀ i

(6.24)

T n+1
SGSi,j

= T n
SGSi,j

+
∆t

∆xi,j

(
(uT )

∣∣∣n
x+L
i,j

− (uT )
∣∣∣n
x+R
i,j

− (uT )
∣∣∣n
x−L
i,j

+ (uT )
∣∣∣n
x−R
i,j

)
∀ i, j .

(6.25)

in which ∆xi,j is the width of the wavelet (over which it is non-zero) j within

super-cell i.

It will be convenient to map between wavelet basis Hi,j and a new control

volume discretisation TCV :

∫
Ω

MCV i,k(TCV
n − T n)dV = 0 (6.26)

in which k is a sub-CV discretisation index for super-control volume i and

MCV i,k a CV basis function. Thus we can write:

T n
CVi,k

= T n
Ci

+
L∑
l=1

sw(k, l)T
n
SGSi,jw(k,l)

, (6.27)

where L is the number of levels of Haar wavelets and l is the level of Haar

wavelet and in which

jw(k, l) =

⌊
k − 1

2L−l+1
+ 1

⌋
+ Pr(l − 1) , (6.28)

and

sw(k, l) = 2

(
2 (jw(k, l)− Pr(l − 1))−

⌊
k − 1

2L−l
+ 1

⌋)
− 1 (6.29)
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or

sw(k, l) = 2

(
2

⌊
k − 1

2L−l+1
+ 1

⌋
−
⌊
k − 1

2L−l
+ 1

⌋)
− 1 (6.30)

and

∆xi,j = ∆xi/2
(hw(j)−1) . (6.31)

In addition, the wavelet level associated with wavelet j is:

hw(j) = maximum l s.t. j − Pr(l − 1) > 0. (6.32)

Also the product function is

Pr(l) =
l∑

k=1

2k−1 with Pr(0) = 0. (6.33)

Thus equation (6.27) becomes:

TCV = MCV 2CWT = (MCV 2C MCV 2W )

 TC

TSGS

 . (6.34)

There is also a way of mapping from a CV space to wavlets space:

ATSGS = b (6.35)

Ai,j = ∆xi/2
(hw(j)−1), (6.36)

with

Ai,j = 0, (6.37)

for i ̸= j.

bjw(k,l) =

NSUBCV −1∑
k

L∑
l=1

sw(k, l)(TCVk
− Tc), (6.38)
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Tc =
1

NCV

N1∑
i1=1

TCV . (6.39)

Since A is diagonal we have that,

TSGS = A−1b, (6.40)

where

A−1 =
2(hw(j)−1)

∆xi
, (6.41)

with

A−1 = 0, (6.42)

for i ̸= j.

We return to the derivation. Now that we have TCV and assuming u is

constant, equations 6.24,6.25 simplify to:

T n+1
Ci

= T n
Ci

+ u
∆t

∆xi

((
T n
Ci−1
− T n

Ci

)
+

L∑
l=1

(
−T n

SGS
i−1,2l−1

− T n
SGS

i,2l−1

))
∀ i ,

(6.43)

T n+1
SGSi,j

= T n
SGSi,j

+ u
∆t

∆xi,j

(
T
∣∣∣n
x+L
i,j

− T
∣∣∣n
x+R
i,j

− T
∣∣∣n
x−L
i,j

+ T
∣∣∣n
x−R
i,j

)
∀ i, j .

(6.44)
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Expanding the right hand side of these equations in terms of CV basis

functions then:

T n+1
Ci

= T n
Ci

+ u
∆t

∆xi

(
TCV

n
i−1,NCV

− TCV
n
i,NCV

)
∀ i ,

(6.45)

T n+1
SGSi,j

= T n
SGSi,j

+ u
∆t

∆xi,j

(
TCV

n
v(i,j),m+

L (j)
− TCV

n
i,m+

R(j)
− TCV

n
i,m−

L (j)
+ TCV

n
i,m−

R(j)

)
∀ i, j .

(6.46)

in which the functions m return the CV number associated with wavelet j and

in which Nw = Pr(L) = NSUBCV − 1 is the number of wavelet basis functions

and NSUBCV is the number of CV basis functions within supercell i (or super

control volume) and there will be NSUPCV supercells.

The other fluxes are (for the left or positive + part of the wavelet on the last

level) expressed in terms of m:

m̃+
L(j) =

(
2(j − Pr(hw(j)− 1))− 2

2hw(j)

)
NSUBCV , (6.47)

m+
R(j) =

(
2(j − Pr(hw(j)− 1))− 1

2hw(j)

)
NSUBCV , (6.48)

m−
R(j) =

(
2(j − Pr(hw(j)− 1)) + 0

2hw(j)

)
NSUBCV . (6.49)

The following expressions are also needed to find the fluxes and are defined

in terms of m̃+
L(j):

v(i, j) =

 i− 1 for m̃+
L(j) = 0,

i otherwise
(6.50)

m+
L(j) =

 NSUBCV for m̃+
L(j) = 0,

m̃+
L(j) otherwise

(6.51)
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and

m−
L(j) = m+

R(j). (6.52)

The pair of equations (6.46) are the results of this discretization and form

a numerical scheme for the coarse scale and the sub-grid scale. We can

combine the two scales and get the numerical solution to the advection

problem:

T̃ (x, t) ≈ T n
Ci

+ T n
SGSij

∀ i, j, n. (6.53)

The mapping to the CV basis finally allows all the control volume fluxes to

be understood in terms of the indices i the coarse control volume and j the

individual wavelet. This gives a conservative numerical scheme with more

detail being added by increasing both the number of coarse control volumes

or the number of wavelet levels. The coarse level scheme takes the familiar

form of a 1st order upwind scheme, all be it with this new basis. The sub-grid

level of the scheme can be conceptualised as a correction to existing coarse

schemes with minimal bespoke changes, Lax-Wendroff for example [130].

Some key properties of this discretisation include:

• Demonstration of how to approximate surface integral terms mapped

onto the wavelets for a finite volume scheme.

• Upwinding is proven stable, a positive scheme (T ≥ 0) with no gibbs

oscillations, already accounts for the flow direction

• Conservative numerical scheme

Recall during the derivation, terms with a mix of the two types of wavelets,

the Haar wavelets Hi,j and the Indicator functions Mi cancelled to zero when

integrated of the control volumes (6.15). This demonstrates that the space

{Mi, Hi,j} has linear sub-spaces Mi and Hi,j allowing the additive correction

to the coarse scale scheme to be made. This logic holds as more new terms

are added to our original PDE.

Derivation of a Sub-Grid Scale Full Order Method 134



We will go on to suggest how this scheme could be used to yield conservative

ROM solutions in intrusive ROMs in the appendices. The rest of this section

shows how the SGS technique can be extended to apply beyond advection.

This is done by deriving the full order sub-grid scale scheme for a diffusion

approximation to the scalar transport equation with an added advection term,

that is with diffusion, source and absorption terms. This is the extend to 2D.

We will conclude with examples applying these numerical schemes to FOM

results and NIROM results.
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6.2 Extending the sub-grid scale approach to

model diffusion, source and absorption.

In this section we will add diffusion, sources and absorption into the

discretization of the sub-grid scale model. A governing equation that builds

on the advection equation, equation (6.3), through adding extra terms takes

the form of the diffusion approximation of transport:

∂T̃

∂t
+ σT̃ +∇ ·

(
uT̃
)
−∇ · (k∇T̃ ) = S̃. (6.54)

If we were to consider diffusion theory of some scalar T̃ as the application

the, σ governs absorption, κ is the diffusion coefficient, S is a source or

driving term and u advection speed. This equation looks like diffusion

approximation of neutron transport with the addition of an artificial advection

term [113],[131].

6.2.1 Diffusion in the sub-grid scale model

To develop a discrete sub-grid scale model for the diffusion term the of the

diffusion approximation of the transport equation we go through a similar

process as the derivation of the sub-grid scale advection scheme.

• The two test functions, the coarse indicator function Mi and the haar

wavelet Hi,j are used.

• We integrate the diffusion approximation of the transport equation over

these test functions to start deriving a finite volume scheme as in the

derivation of 6.45 and 6.46.

• Recall this works as volume integrals in a partial differential equation

that contain a divergence term are converted to surface integrals. Fluxes

can then be found at the boundary of each discrete volume element.

The additional term −∇ · (k∇T̃ ) captures the diffusion. When introduced in

the sub-grid scale approach, through discretization by finite volumes, the
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flux across the interfaces of the wavelets has an associated directions. This

comes from thinking about the flux at some small distance left or right of a

boundary of the positive or negative part of the wavelet to interpolate the

fluxes involved in the diffusion term.

Now we end up with a pair of equations for the two scales, the coarse scale:

T n+1
Ci

= T n
Ci

+ vnu
∆t

∆xi

(
TCV

n
i−1,NCV

− TCV
n
i,NCV

)
−vn

∆t

∆xi
kleft

(
TCV

n+1
i,1 − TCV

n+1
i−1,NCV

∆xleft

)

+vn
∆t

∆xi
kright

(
TCV

n+1
i+1,1 − TCV

n+1
i,NCV

∆xright

)
+vn∆t σTC

n+1
i + vn∆t SC

n+1
i ∀ i , (6.55)

with

∆xleft =
1

2
(∆xi,1 +∆xi−1,NCV

), ∆xright =
1

2
(∆xi+1,1 +∆xi,NCV

), (6.56)

kleft =
1

2
(ki,1 + ki−1,NCV

), kright =
1

2
(ki+1,1 + ki,NCV

), (6.57)
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and the sub-grid-scale equations:

T n+1
SGSi,j

= T n
SGSi,j

+ vnu
∆t

∆xi,j

(
TCV

n
v(i,j),m+

L (j)
− TCV

n
i,m+

R(j)
− vnTCV

n
i,m−

L (j)
+ TCV

n
i,m−

R(j)

)
−vn

∆t

∆xi
k+left

(
TCV

n+1

i,u−(m+
L (j)+1)

− TCV
n+1

v(i,j),m+
L (j)

∆x+left

)

+vn
∆t

∆xi
k+right

(
TCV

n+1

i,m+
R(j)+1

− TCV
n+1

i,m+
R(j)

∆x+right

)

+vn
∆t

∆xi
k−left

(
TCV

n+1

i,m−
L (j)+1

− TCV
n+1

i,m−
L (j)

∆x−left

)

−vn
∆t

∆xi
k−right

(
TCV

n+1

w−(i,m−
R(j)+1),u−(m−

R(j)+1)
− TCV

n+1

i,m−
R(j)

∆x−right

)
+vn∆tσT

n+1
SGSi,j

∆t

2

+vn∆t S
n+1
SGSi,j

∀ i, j .

(6.58)

with

∆x+left =
1

2

(
∆xi,u−(m+

L (j)+1) +∆xv(i,j),m+
L (j))

)
, (6.59)

∆x+right =
1

2

(
∆xi,m+

R(j)+1 +∆xi,m+
R(j)

)
, (6.60)

∆x−left =
1

2

(
∆xi,m+

R(j)+1 +∆xi,m−
L (j)

)
, (6.61)

∆x−right =
1

2

(
∆xw−(i,m−

R(j)+1),u−(m−
R(j)+1) +∆xi,m−

R(j)

)
, (6.62)

and

k+left =
1

2
(ki,u−(m+

L (j)+1) + kv(i,j),m+
L (j)), (6.63)

k+right =
1

2
(ki,m+

R(j)+1 + ki,m+
R(j)), (6.64)
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k−left =
1

2
(ki,m+

R(j)+1 + ki,m−
L (j)), (6.65)

k−right =
1

2
(kw−(i,m−

R(j)+1),u−(m−
R(j)+1) + ki,m−

R(j)). (6.66)

The extra fluxes introduced by the discretization of the diffusion term are

expressed by the mappings u− and w−:

u−(k) =

 1 for k = NSUBCV + 1,

k
(6.67)

w−(i, k) =

 i+ 1 for k = NSUBCV + 1,

i otherwise.
(6.68)

with the other mappings m+, v, w, k,∆x defined in the previous section (6.51).

The source and absorption terms are are carried through this stage of the

derivation without mapping to the CV basis. This will be done in the next

section. For use at this stage the corresponding the source and absorption

terms must be set to zero.

6.2.2 Source and absorption in the sub-grid scale model

The absorption, σT , and source S(T ) are both functions of T and therefore

can be discretized in a similar manner. We will start with the source to derive

the CV representations. This mapping will let us find the discretized source

and absorption written in terms of a CV source or absorption which can then

be slotted into the existing sub-grid scale discrete upwind equations (6.85)

and (6.86).

Analogous to equation 6.27 the source S can be mapped from wavelets to

control volumes as follows:

SCV
n
i,k = SC

n
i +

L∑
l=1

sw(k, l)SSGS
n
i,jw(k,l), (6.69)

This mapping let the source terms be re-written in matrix form:

SCV
n = G

 SC
n

SSGS
n

 . (6.70)
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Premultiplying this equation by GT results in an equation that can be used to

form the reverse mapping, that is: SC
n

SSGS
n

 = D−1GTSCV
n, (6.71)

which uses the wavelet orogonality property:

GTG = D. (6.72)

Thus taking the transpose of equation 6.69:

SC
n
i = 0, SSGS

n
i,j = 0, ∀i, j, (6.73)

SC
n
i → SC

n
i + SCV

n
i,k, ∀i, k (6.74)

SSGS
n
i,jw(k,l) → SSGS

n
i,jw(k,l) +

L∑
l=1

sw(k, l)SCV
n
i,k, ∀i, k (6.75)

We now have a CV representation for the source terms

The aborption term discretised is:

∫
Ω

MCV i(σT )dV, (6.76)

∫
Ω

Hi,j(σT )dV. (6.77)

Thus treating the σT product like a source one can get, in matrix form, the

result of equations 6.76, 6.77:

GTD−1σG

 TC
n

TSGS
n

 , (6.78)

in which σ is the diagonal matrix containing the CV values of σ.
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The discretized source can also be written in terms of CV sources (equations

6.76, 6.77): For the course grid scale (multiplying by vn
∆t
∆xi

to the discretization

fits directly into equations 6.55, 6.55):

vn
∆t

∆xi

NCV∑
k=1

∆xCV i,k SCV
n+1
i,k , (6.79)

and for the SGS source:

vn
∆t

∆xi,j

 m+
R(j)∑

k=u−(m+
L (j)+1)

∆xCV i,kSCV i,k +

m−
R(j)∑

k=m−
L (j)+1

∆xCV i,k SCV i,k

 . (6.80)

Similarly for the discretization of sigma:

vn
∆t

∆xi

NCV∑
k=1

∆xCV i,k σCV i,k TCV
n+1
i,k , (6.81)

and for the SGS σT discretized term:

vn
∆t

∆xi,j

 m+
R(j)∑

k=u−(m+
L (j)+1)

∆xCV i,k σCV i,k TCV
n+1
i,k +

m−
R(j)∑

k=m−
L (j)+1

∆xCV i,k σCV i,k TCV
n+1
i,k

 .

(6.82)

For purposes of solving the equations it will be useful to define a course grid

and SGS σ:

σ̃Ci =
1

∆xi

NCV∑
k=1

∆xCV i,k σCV i,k +
1

∆xi

(
kleft
∆xleft

+
kright
∆xright

)
, (6.83)

σ̃SGSi,j =
1

∆xi,j

 m+
R(j)∑

k=u−(m+
L (j)+1)

∆xCV i,k σCV i,k +

m−
R(j)∑

k=m−
L (j)+1

∆xCV i,k σCV i,k


+

1

∆xi,j

(
k+left
∆x+left

+
k+right
∆x+right

+
k−left
∆x−left

+
k−right
∆x−right

)
.

(6.84)

Notice that in addition the the physically significant adoption term on the CV

basis we have added another absorption term, a pseudo-absorption term, on

both sides of the equations. This has been combined the the physical diffusion
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terms and these pseudo-absorption terms used for the solution relaxation

[132]. This is possible as the differential operator can be rewritten as the sum

of two complementary operators, sometimes called a splitting method. Such

methods are suitable for large, sparse non-linear problems and least-squares

linear problems. In the previous chapter we used a similar approach called

Successive Over-Relaxation, equation (4.31). These relaxations will speed up

convergence and stabilise the scheme with appropriate choices step size and

number of iterations.

Using these values of σ, equations (6.83), (6.84), to help with an iterative

process, in which the left hand side of the equations are treated implicitly and

the right hand side explicitly, then equations (6.55), (6.58) become for the

course grid:

(
∆xi
∆t

+∆xiσ̃Ci

)
TC

n+1
i = ∆xiσ̃CiTC

n+1
i +

∆xi
∆t

TC
n
i + u

(
TCV

n
i−1,NCV

− TCV
n
i,NCV

)

−kleft

(
TCV

n+1
i,1 − TCV

n+1
i−1,NCV

∆xleft

)

+kright

(
TCV

n+1
i+1,1 − TCV

n+1
i,NCV

∆xright

)

+

NCV∑
k=1

∆xCV i,k σCV i,k TCV
n+1
i,k

+

NCV∑
k=1

∆xCV i,k SCV i,k, ∀ i , (6.85)

and for the sub-grid-scale:

Derivation of a Sub-Grid Scale Full Order Method 142



(
∆xi,j
∆t

+ σ̃SGSi,j

)
TSGSi,j

n+1 = ∆xi,jσ̃SGSi,jTSGSi,j
n+1 +

∆xi,j
∆t

TSGS
n
i,j

+u
(
TCV

n
v(i,j),m+

L (j)
− TCV

n
i,m+

R(j)
− TCV

n
i,m−

L (j)
+ TCV

n
i,m−

R(j)

)

−k+left

(
TCV

n+1

i,u−(m+
L (j)+1)

− TCV
n+1

v(i,j),m+
L (j)

∆x+left

)

+k+right

(
TCV

n+1

i,m+
R(j)+1

− TCV
n+1

i,m+
R(j)

∆x+right

)

+k−left

(
TCV

n+1

i,m−
L (j)+1

− TCV
n+1

i,m−
L (j)

∆x−left

)

−k−right

(
TCV

n+1

w−(i,m−
R(j)+1),u−(m−

R(j)+1)
− TCV

n+1

i,m−
R(j)

∆x−right

)

+

m+
R(j)∑

k=u−(m+
L (j)+1)

∆xCV i,k σCV i,k TCV
n+1
i,k −

m−
R(j)∑

k=m−
L (j)+1

∆xCV i,k σCV i,k TCV
n+1
i,k

+

m+
R(j)∑

k=u−(m+
L (j)+1)

∆xCV i,kSCV i,k −
m−

R(j)∑
k=m−

L (j)+1

∆xCV i,k SCV i,k, ∀ i, j . (6.86)

We now have a scheme for the sub-grid scale model of the diffusion

approximation of the scalar transport equation. This demonstrates the

approach can be performed for increasingly more complex PDEs and here

we have many of the building blocks of Navier-stokes like PDEs. The source

term being mathematically a generic function of T adds a lot of scope for
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complexity or control applications, this is an area of increasing interest [133].

Higher order derivatives would follow a similar approach as the addition of

the diffusion term. The addition of pseudo-absorption and move to implicit

time stepping is a particularly desirable feature of numerical methods for

PDEs due to the stability of the scheme being increasingly hard to guarantee

as more terms are added.
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6.3 1D Sub-Grid Scale Numerical Results

In this section we show numerical results for the Sub-Grid Scale Model derived

earlier in the chapter:

1. A Full Order Model - to demonstrate the added conservation and

resolution from the Sub-Grid Scale Model,

2. A Non-Intrusive Reduced Order Model (NIROM) - to show how time

stepping can be just another ROM parameter as [81].

The results are based on the Sub-Grid Scale Model taking the form of the pair

of equations (6.85) and (6.86) for the two respective length scales.

Note on different control volumes

There are constraints on some of the choices regarding control volumes and

wavelet levels. Recall we use:

• NSUPCV or NSUP for the number of coarse or super-control volumes -

this is indexed i,

• NSUBCV or NSUB for the number of fine control volumes per super-

control volume - this is indexed j,

• Nw or NW for the number of wavelets for each coarse grid node i.

Valid choices for Nw for a sub-grid sacle model obey Nw = 2n − 1 for n ≥ 1.

With total number of nodes being: NTotal = (Nw + 1)NSUPCV .

For example if a mesh is desired with 20 total nodes it could be constructed two

ways: Ntotal = 20 = 5(3+1) or Ntotal = 20 = 10(1+1), withNw = 3,NSUPCV = 5

or Nw = 1,= NSUPCV = 10 .

We can also check that a choice of Nw = 0 will return a model that only has

coarse contributions: Ntotal = NSUPCV (0 + 1) = NSUPCV .
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6.3.1 Full Order Full Order Sub-Grid Scale Numerical

Results

The model is implemented with implicit time-stepping, an advection speed of

u = 2.0 and a small amount of diffusion D = 0.012. The domain is always the

unit interval with a selection of different combinations of coarse and sub-grid

scale control volumes considered. In 1D this is the same as nodes.

Fixed zero boundary conditions at the end of the domain are used. The source

and absorption are not present for ease of communicating the benefits of the

Sub-Grid Scale approach. Initial profile of unit step function centred at 0.2

in the domain. This is always represented with coarse control volumes only

occupying a width 1
5
th of the whole unit interval shown in figure 6.3.

(a) (b)

Figure 6.3: (a) A fully coarse representation of the initial condition (b) a possible
representation using on the sub-grid scale nodes. Throughout this work the initial
conditions are representation as figure (a), that is fully coarse with initial sub-grid
scale corrections of zero.

Figures 6.4 and 6.5 show the power of the Sub-Grid Scale approach: an

additive Sub-Grid Scale correction to a coarse numerical solution can add

resolution and bring in control of conservation. In figure 6.4 (a) the solutions

are with no Sub-grid scale corrections Nw = 0. We have increasing total

numbers of control volumes Ntotal = NSUPCV = 20, 40 and 80 respectively.

It is vital to note that this does not improve the solution as it worsens the

numerical diffusion.
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This is partially egregious as the majority of the diffusion is therefore a

numerical artefact with D = 0.012 being small and u = 2.0 large we expect

the advection of the wave to dominant.

With the Sub-grid scale corrections in 6.4 (b) we see a more greatly improved

representation of the true diffusion. The control volumes shown in the results

in (b) from lowest to highest total are: {Ntotal,Nw,NSUPCV ,NSUBCV } being,

{10, 1, 5, 2},{40, 3, 10, 4},{40, 7, 10, 4}, and {160, 15, 10, 16} respectively. For any

of these total numbers of control volumes numerical diffusion is increasingly

close to being eliminated. In all cases we can see the outlet side of the domain

where the wave front has not reached has a flux of zero. The crest of the

wave is much larger as a result of the reduction in numerical diffusion. We

can see that the increase in wavelets shows a convergence of partial sums,

each correction adding to a solution that more closely obeys the conservation

laws contained within the governing equations.

(a) (b)

Figure 6.4: (a) Solutions without Sub-Grid Scale corrections and (b) with Sub-Grid
Scale corrections (b). Increasing the number of wavelet levels improves the resolution
of the solutions. Without the Sub-Grid Scale corrections numerical diffusion is present
and distorts the solution. The solutions with more wavelet levels approach the true
solution.

Figure 6.5 contrasts the two approaches with a solution of the same resolution.

Here the number of wavelet levels is denoted by NW = 7 gives the same

number of total nodes as 80. We can see with the addition of the Sub-Grid

Scale correction there is no flux in the part of the domain that the wave front

has not yet reached as the desired diffusion is small. The coarse solution

shows how much of a problem numerical diffusion can be as much of the

shape and flux is lost.
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Figure 6.5: Coarse control volume solution with Sub-Grid Scale correction and
uncorrected coarse solution with same reference. The Sub-Grid Scale corrections
remove the numerical diffusion.

Figure 6.6 shows the shape of solutions with just advection and just diffusion

present with true shape thank to wavelets. The zero boundary condition

control volumes on the sides of the domain are clear and free of flux. The

advection-diffusion equations takes the form of Fick’s law of diffusion when

only diffusion terms are non-zero.

We can see the exact solution for diffusion only reference in [38] taking the

form:

f(x, t) =
c

2
erf(

a− x
2
√
dt

) + erf(
b+ x

2
√
dt
) (6.87)

where a, b, c, d are real number that will result from application of boundary

conditions.

For advection only we have:

f(x, t) = F (x− ut) (6.88)

where u is the wave speed and F is some arbitrary function from the initial

and boundary conditions.
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(a) (b)

Figure 6.6: (a) Sub-Grid Scale solutions over a range of time steps with no diffusion
NUSP = 10, NW = 63, U = 1.0 and (b) Sub-Grid Scale solutions over a range of time
steps with no advection NUSP = 9, NW = 7, D = 0.16.

Understanding the basic shapes of the solutions and their behaviours helps

give convince in the successful implementation of the numeral scheme. If we

consider the asymptotics of both only advection and only diffusion terms we

see in the former, solutions full propagates out of the domain and in the latter

diffuse to zero. The asymptotic expansion of the error function as a function

of dt gives:

erf(x, t) ∼ exp(− x2

4dt
) (6.89)

as shown in [134]. Thus we can expect to see a more Gaussian shape as we

undergo diffusion.

We define the correlation coefficient as:

r(TROM , TFOM) =
cov(TROM , TFOM)

σ(TROM)σ(TFOM

) (6.90)

where TROM and TFOM are the solutions to the ROM and FOM respectively. σ

is the standard deviation of the solutions and cov is the covariance defined

as:

cov(TROM , TFOM) = E[(TROM)− σ(TROM)(TFOM − σ(TFOM))] (6.91)

with E being the expected value. We will use this in the next section of

results to compare the ROM with the FOM for different numbers of POD basis

functions .
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6.3.2 Reduced Order Sub-Grid Scale Numerical Results

In this section we demonstrate a single parameter NIROM trained on data from

the Sub-Grid Scale model. The problem is set up similar to the last section

now with u = 0.5 and D = 0.3. The model now uses a total of Ntotal = 20

spatial nodes with a single level of Sub-grid scale corrections, NW = 1. The

NIROM is parameterized in time. As such the snapshots for the training data

are taken for a selection of time steps as the solution progresses across the

domain and undergoes diffusion.

Figure 6.7 shows the training data used. Here we can see that the flux

initially at the origin only shows a wave-like motion and with time its peak

travels across and out, through the zero boundary condition of the domain.

The lengths involved and size of initial flux have been normalised to clearly

present the results.

Figure 6.7: Snapshots of Sub-Grid Scale Advection-Diffusion equation are taken at
different time steps. We can see the wave front cross the domain and under goes
diffusion as the flux leaves the domain.

The NIROM is trained on 7 snapshots sampled as the solution evolves over

time. This small number of snapshots still shows the NIROM approach working

at any test point in the time domain. The initial flux is at the start of the

domain only. With the initial condition being a single node of flux 1 and zero

elsewhere, the flux initially drops very rapidly and later slows as the front

progresses over the domain. The large variation in shape makes this a more

challenging problem for the NIROM to handle.
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NIROM result: no pre-conditioner We see in figures 6.8 (a) and (b) that

about 10% error is achievable with only 7 snapshots. The parameter the

NIROM is evaluating is the time the farthest from the training points within the

training data set to further emphasis the strength of the NIROM approach. The

first 3 POD basis functions were used capturing about 90% of the information

with a Gaussian RBF employed of characteristic length 0.15 . If we were to

used more training data we would see steeper information gain. The shape

information presented by the POD basis functions gives an indication of which

details are likely to be picked-up by the NIROM. We can see in figure 6.8 (d) a

selection curves started with an exponential-like shape, various wave-forms

taking shape and by 5 POD basis function we begin to see noise creeping in.

The choice by the user can eliminate any noise with some insight as to what

shape the solution is going to take verses what is noise. This model runs in

seconds while the training data takes minutes to generate demonstrating

with this simple problem the NIROM offers a speed-up.

Here figure 6.8 shows the results of the NIROM:

(a) (b)

(c) (d)

Figure 6.8: (a) The NIROM and exact solution, (b) the relative error, (c) the
information captured by the POD basis functions and (d) the shape of the POD
basis functions.
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By way of convergence analysis figure 6.9 gives us the correlations between

ROM and FOM solutions tested at each known time snapshot with (a)

showing correlations in viable ROMs and (b) showing the correlation when

not enough POD basis functions are used. When viewed in contrast with the

information/energy eigenvalues in figure 6.8 (c) we can see correlation gives

a more complete metric for evaluating a ROMs performance. The eigenvalues

however are known from the offline stage of the ROM whereas the correlation

requires multiple enquires of the online stage. Looking for the point when the

shape of the POD basis functions in figure 6.8 (b) becomes noisy is the first

and fastest available heuristic to build a good ROM. Taking all figures gives a

more complete picture.

In figure 6.9 (b) the case using 2 POD basis functions shows a marginal choice

of POD basis functions. Although starting poorly, there is some improved

correlation at the later time steps, more in line with the 3 POD basis function

case. When considering the training data in figure 6.7 this makes sense as

there is larger variation in the earlier time steps in contrast with the later

ones. This is due to the initial condition of a flux of 1 at node 0 and with values

of zero elsewhere giving varied set of shapes for the POD basis function to

capture.

(a) (b)

Figure 6.9: (a) For 3 or more POD basis functions the ROM and the FOM are strongly
correlated. and in (b) the use of 2 POD basis functions shows little correlation for
early time steps with vague correlation later in time. A single POD basis function
performs even worse at early time, showing inverse correlation from the ROM to the
FOM in some parts of the time domain.

In figure 6.10 we can compare the run times of the full order model with the

Reduced Order Model. We can see the ROM offers substantial speed up. This
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is still true if we were to consider the size of the time stepping. In the full

order solutions a time step of dt = 0.01
NSUPCV

= 1
1000

is used for stability reasons.

We can see that the difference in run time between the full order and ROM

is at least 4 orders of magnitude. The output of the ROM is a new solution

for a single time step so even per time step the ROM offers a speed up of an

order of magnitude. It is interesting to see the break down of the run times.

We expect the SVD to be one of the longest stage of the ROM. We see this

becoming more dominate as the degrees of freedom increase. The SVD is

order O(m2n+n3) for an m by n input matrix. Constructing known coefficients

αknown and the ROM weights wi both rely on matrix inversion and thus scale

order O(n2.37) -O(n3). The Radial basis kernel scales with matrix population,

that is O(nm). We expect this to be lessen as the degrees of freedom increase.

Asymptotically the ROM should scale O(n2.37) -O(n3). The full order results

are constructed from a large variety of operations but likely to be dominated

by matrix inversions being O(N3) where N > n, since we are reducing the

dimensionality. We have a condition that shows for all practical, stable runs is

will always be faster than out full order model.

(a) (b)

Figure 6.10: (a) Run times, in seconds (s), of the Reduced Order Model and its
internal calculation phases, (b) The Reduced Order Model run time and the full order
run time. You can see orders of magnitude of speed up.

‘
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Now we can also look at the same model as figure 6.8 but with two different

pre-conditioners:

• A logarithmic pre-conditioner as done in chapters 4 and 5: taking natural

logarithm of the snapshot matrix and the the exponential of the ROM

solution as a pre and post-conditioning step to the NIROM.

• A deviation from the mean pre-conditioner: taking the derivation from

the mean of the snapshot matrix and adding it back later for the ROM

solution.

NIROM result: logarithmic pre-conditioner In figure 6.11 we see that,

everything else being equal, a logarithmic pre-conditioner improves the ROM

results substantially. The information captured by the POD basis functions

is immediately higher and after the same number used as without the pre-

conditioner capturing a similar 99.9% of the energy of the POD basis functions

we reduce the error by an order of magnitude for much of the domain.

(a) (b)

(c) (d)

Figure 6.11: (a) The NIROM and exact solution, (b) the relative error, (c) the
information captured by the POD basis functions and (d) the shape of the POD basis
functions for a logarithmic pre-conditioner of the NIROM.
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The energy captured by the PDO basis for 3 or more POD basis functions is

a couple of percent improved from the case with no pre-conditioner. The

correlations in figure 6.12 show a very similar pattern however a bit more

variation, some time steps a little better and some worse. This might indicate

that with in this case, the logarithmic pre-conditioner benefits the radial basis

interpolation but has less effect on the POD basis representation than in

earlier chapters.

(a) (b)

Figure 6.12: (a) For 3 or more POD basis functions the ROM and the FOM are strongly
correlated. and in (b) the use of 2 POD basis functions shows little correlation for
early time steps with vague correlation later in time. A single POD basis function
performs even worse at early time, showing inverse correlation from the ROM to the
FOM in some parts of the time domain. There is some slight overall improvement
with the logarithmic pre-conditioner

NIROM result: deviation from mean pre-conditioner In figure 6.13 we

see that, again with everything else being equal to the original NIROM, a

deviation from the mean pre-conditioner improves the results. The nodes

near the left boundary are intentionally exuded from the pre-conditioner

as removing the mean should improve the feature capture of the POD

basis functions however the noise around the zero values was subsequently

perceived as a feature, distorting the initial few nodes. Excluding these nodes

from the pre-conditioning and leaving them just as the raw snapshot values

resolved this. We see comparable results to the logarithmic pre-conditioner

with better results all but the very start of the domain. Using both conditioners

in tandem produces similar results but no improvement over using just the

deviation from the mean pre-conditioner.
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In figure 6.14 we can see correlation is strong for 3 or more POD basis functions

are poor for fewer. Interestingly although strong, correlation here is not as

strong as the other two cases, with no pre-conditioner and with the logarithmic

pre-conditioner. This is odd at face value as the results in figure 6.13 suggest

this case is the lowest error. This is explained as the correlation is taken at the

training points whereas the ROM results in figure 6.13 are taken at a testing

point furthest from the training points.

(a) (b)

(c) (d)

Figure 6.13: (a) The NIROM and exact solution, (b) the relative error, (c) the
information captured by the POD basis functions and (d) the shape of the POD basis
functions with a deviation from the mean as a pre-conditioner.

The speed up offered by the NIROM of this problem should not bee overlooked

and as we have seen adding pre-conditioners that are informed by the

expect physics and shape information of the snapshot data confers significant

advantages. Improved overall accuracy from the deviation from the mean pre-

conditioner has the most to offer a problem with a wide range of training data

as this is why popular use in intrusive ROMs is not surprising. The logarithmic

pre-conditioners perform well here also and are suitable anywhere in which

exponential shapes are expected in the POD basis functions. Here we have

shown that the use of pre-conditioners can be an important consideration

in the NIROM as well. It is interesting to note that the POD basis shapes in
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(a) (b)

Figure 6.14: (a) For 3 or more POD basis functions the ROM and the FOM are strongly
correlated. and in (b) the use of 2 POD basis functions shows little correlation for
early time steps with vague correlation later in time. A single POD basis function
performs even worse at early time, showing inverse correlation from the ROM to the
FOM in some parts of the time domain.

figures are in some sense less user-friendly with the use of pre-conditioner,

being not as intuitively a representation of the solutions different behaviour.

The use of the Sub-Grid Scale approach for obtaining full order ROM training

data adds no additional difficultly beyond the numerical method for the full

order model, itself being and additive term to existing schemes, but confers

conservativeness to the ROM solutions and an increase in resolution. The

Sub-Grid Scale snapshot matrix takes in the order of minutes to construct and

the NIROM takes 1
10

th of a second.

In the next section we will show the slight subtly in extending to 2D as the

basis will be different, namely a cross product of the basis functions which

could be extended to more dimensions or a less didactic choice of mesh.

An extension to a non-uniform mesh can be done as in the appendix [135].

The paper [136] provides instruction for the adaptive mesh generation in the

research code fluidity for example. Similar concepts are leveraged in [137]

and applied to reduced order modelling.
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6.4 Extension of the Sub-Grid Scale model to

2D

The easiest way to extend to 2D is to use a basis function that is a simple

cross product of the basis functions. This can be done as the tensor product of

Hilbert spaces forms another Hilbert space [138]. We must also cross multiply

the wavelet basis functions with unity, the basis function associated with the

course grid scale. This is perhaps not the best approach as it mixes wavelets

in the x and y- directions that are different scales however a change of basis

is always possible from an existing basis.

Through a Galerkin projection this results in:

TCV
n
i1,i2,k1,k2 = T n

Ci1,i2
+

L1∑
l1=0

L2∑
l2=0

zw(l1, l2)sw(k1, l1)sw(k2, l2)TSGS
n
i1,i2,jw(k1,l1),jw(k2,l2),

(6.92)

Notice we have started from 0 rather than 1 as in the 1D base. The reason for

this is to introduce the cross product of the wavelet basis functions with the

unity basis functions associated with the course grid scale, thus

sw(k, l) = 0 if l = 0 (6.93)

otherwise sw(k, l) = 2

(
2

⌊
k − 1

2L−l+1
+ 1

⌋
−
⌊
k − 1

2L−l
+ 1

⌋)
− 1. (6.94)

Also:

zw(i, j) = 0 if i = j = 0 otherwise zw(i, j) = 1 (6.95)
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Expanding the rhs of the discretized equation in 2D in a similar way to the

way we did it for 1D in terms of CV basis functions then:

T n+1
Ci1,i2

= T n
Ci1,i2

+

N2CV∑
j2=1

u1
∆t

∆x1i

(
TCV

n
i1−1,i2,N1CV ,j2 − TCV

n
i1,i2,N1CV ,j2

)
/N 2CV

+

N1CV∑
j1=1

u2
∆t

∆x2i

(
TCV

n
i1,i2−1,j1,N2CV

− TCV
n
i1,i2,j1,N2CV

)
/N 1CV

∀ i,

(6.96)

T n+1
SGSi1,i2,j1,j2

= T n
SGSi1,i2,j1,j2

+

m−
R(j2)∑

k2=m̃+
L (j2)+1

u1
∆t

∆xi1,j1

(
TCV

n
v(i1,j1),i2,m+

L (j1),k2
− TCV

n
i1,i2,m+

R(j1),k2

−TCV
n
i1,i2,m−

L (j1),k2
+ TCV

n
i1,i2,m−

R(j1),k2

)
+

m−
R(j1)∑

k1=m̃+
L (j1)+1

u2
∆t

∆xi2,j2

(
TCV

n
i1,v(i2,j2),k1,m+

L (j2)
− TCV

n
i1,i2,k1,m+

R(j2)

−TCV
n
i1,i2,k1,m−

L (j2)
+ TCV

n
i1,i2,k1,m−

R(j2)

)
∀ i, j, (6.97)

in which the 1 and 2 corresponds to the x- and y-coordinates for the 2D

problem.

This pair of equations can form the basis of a sub-grid scale ROM for a more

sophisticated range of phenomena than the advection problem in 2D. The

method could be projection based as illustrated in the intrusive ROM section

of this chapter or employ a NIROM approach. As with the simpler example

the sub-grid scale can form a correction to other coarse models. The Sub-

Grid Scale model brings in conservation automatically and increases the

resolution some via an additive correction to the coarse model, conferring

these properties to Reduced Order Models trained or in the intrusive case

projected on these Sub-Grid Scale dynamics.
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6.4.1 2D Full Order Sub-Grid Scale Numerical Results

The figure 6.15 shows the 2D Sub-Grid scale full order model, the 2D

equivalent of figure 6.5. Here we have a prolate Gaussian shaped initial profile

advected upwards across the plane with an advection speed uy = 5.0, ux = 0.0.

There are 14 coarse control volumes used for each 1D axis giving a total of

196. A single wavelet level is used giving 4 sub-grid control volumes in each

coarse volume. The size of the time stepping is dT = 0.1
14(1+1)

= 1
280

. A sample

set of 7 time steps is stored to represent the time evolution.

The corrections from the Sub-Grid scale approach range in size from 12% to

−12%. The symmetry here is due to these particular plots only possessing

numerical diffusion and no physical diffusion. We can see the corrections

improve the results and the prolate Gaussian keeps is shape as it travels

across the domain.

(a) (b)

(c) (d)

Figure 6.15: (a) The coarse control values in coloured contours and sub-grid scale
control volumes in white inline contours at t5, (b) the coarse control values in coloured
contours and sub-grid scale control volumes in white inline contours at sampled time
step t8, (c) the coarse solution with the sub-grid scale correction at t5 (d) the coarse
solution with the sub-grid scale correction at sampled time step t5.
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The figure 6.16 shows the maxima, minima and positive mean of the Sub-Grid

scale corrections as time steps forward and further shows the symmetry in

the problem. We can see the mean correction in the 2D case is small when

compared with the 1D case 6.5. This is partly due to the much larger amount

of zeros in the 2D the domain. The largest corrections are in the wake of the

direction of travel.

Figure 6.16: Size of corrections in Sub-Grid Scale as time evolves take from the 1D
profile that forms the peak of the 2D solutions at 8 evenly sampled time steps.

The terms we have considered in this work, advection, diffusion and source

functions, when combined can be used to enhance ROMs based on a large

class of PDEs. We have also provided a framework for extending this both

in terms of a 2D mesh and higher non-linear order derivative terms. The

two most pressing tasks left to future work are a computational example

and generalising to an unstructured mesh. Solving problem with these

kinds of ROM on an adaptive mesh without an expensive re-mapping to

non-adaptive reference mesh before constructing the ROM would also be

a significant contribution making use of state of the art research codes

such as Imperial College’s Fluidity [139]. One way of using adaptive mesh

techniques with NIROM could be through constructing a super-mesh [140].

Expanding the terms covered until the scheme can handle solving the Navier-

Stokes equations or other systems characterised by bifurcations, instabilities

and hysteresis, through Sub-Grid Scale version of [141] or likewise other

prominent and hard to solve PDEs are obvious pieces of work left for the

future.
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6.4.2 2D Reduced Order Sub-Grid Scale Numerical

Results

To extend the NIROM approach as used to a 2D mesh is straightforward

due to the method being meshless and data driven. Analogous to the

concatenation approach in chapter 5 employed to handle multiple energy

groups, a concatenation of the 1D slices of a full 2D solution for each time

instance become the ROM snapshots used here. The procedure goes as

follows:

Algorithm 6 NIROM for 2D problems - concatenated snapshots

1: 2D training data for each time step is collected in a series of matrices
2: At each time step the data is then reshaped and stored in a single

long vector where each 1D slice that makes up the full 2D solution is
concatenated to form a non-physical snapshot for the NIROM to process

3: This vector is fed through the NIROM
4: During post-processing, 2D ROM solution is recovered from a ROM solution

of the concatenated data.

chosen so the profile can completely cross the domain,

The following results come from applying this algorithm to construct a NIROM

for the Advection-diffusion problem dominated by advection,u = 1.0 with no

source or absorption. An initial profile of a prolate Gaussian is positioned

centred in the x direction and near the boundary in y direction. Time stepping

is dt = 0.00025, with a run time chosen so the profile can completely cross the

domain. A total of 400 snapshots sampled evenly from this. An equal number

of spatial nodes, NSUPCV = 40 in each axis is used for a total of 1600 spatial

degrees of freedom. The 2D Sub-Grid scale numerical scheme is taken as the

FOM with a single level of sub-grid scale correction, generating the snapshots.

The NIROM is parameterised to investigate new, unseen time steps.

In figure 6.17 we see that even with a challenging point for the ROM to

investigate in the training space and the 2D profiles concatenated into a

non-physical snapshot, strong agreement between the FOM and the NIROM is

achievable. In figure 6.18 we see the shapes of the first few POD basis

functions. As in the shielding NIROMS in chapter 5, the concatenation
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approach still does not limit the feature recognition although the user may

need more degrees of freedom to clearly distinguish feature recognition from

noisy basis functions.

(a) (b)

Figure 6.17: (a) The reduced order model solution and (b) the exact solution of a 2D
Gaussian profile undergoing advection to the right. The point the ROM is investigating
is an untrained point as far from the training data as possible, the mean of the 160th
and 161th time step.

Figure 6.18: (The POD basis functions.
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Figure 6.19: The energy of the POD basis functions. Only the first 13 out of a
possible 100 are shown.

Figure 6.19 informs further the choice of basis functions, with 24 being

used in this set of results. The choice of 24 POD basis functions is used

throughout these results and gives an energy of 99.86%, capturing enough

of the information to adequately represent the ROM for all points in the

training space. The shape of radial basis function used is Gaussian with

a characteristic length chosen to give smooth results in the centre of the

training data points. Gaussian is used as the default in this thesis to keep

matrices non-singular, strictly positive-definite and such that any range of

smooth ROM solutions are possible between the bed-of-nails case, suitable

interpolation and noise.
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Figure 6.20: The error in the ROM solution compared with the exact solution. The
ROM uses just 24 POD out of a possible 400.

The figures 6.20 and 6.21 show the performance of the NIROM more clearly.

In absolute terms the error does not exceed 2% of the solution at this, worse

case point under investigation. The RMS error shows small of variation in the

NIROM result of the training time domain with the extremes at the edges due

to Gibbs-like phenomena, the maximum error gives an upper bound for the

model.
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Figure 6.21: The RMS error of the ROM along with the maximum relative error both
at each time step. The ROM uses just 24 POD out of a possible 400.

Recall we define the correlation coefficient as:

r(TROM , TFOM) =
cov(TROM , TFOM)

σ(TROM)σ(TFOM

) (6.98)

where TROM and TFOM are the solutions to the ROM and FOM respectively. σ

is the standard deviation of the solutions and cov is the covariance defined

as:

cov(TROM , TFOM) = E[(TROM)− σ(TROM)(TFOM − σ(TFOM))] (6.99)

with E being the expected value.
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Figure 6.22: The value of the correlation coefficient between the ROM and FOM
solutions at each time step. Convergence is demonstrated through using 8, 16 and 24
POD basis functions.

In figure 6.22 the normalised correlation between the ROM solutions and the

FOM solutions shows a strong, positive correlation. This is strictly positive and

close to 1.0 demonstrating a near-linear relation. The Gibbs-like phenomena

are decreased significantly as more POD basis functions are used. Using 24

basis functions is only 6% of the total 400 however by this point the correlation

shows little variation across the time steps. Taking further numbers of basis

functions yields little further improvement.
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The total run time for the FOM takes 318s, about 5mins. In terms of speed-up,

table 6.1 illustrates run times and shows the big-O complexity of each part of

the NIROM. The sub-grid scale NIROM offers a real speed-up, with the ROM

taking 3% of the time of the FOM, while bringing in the conservative properties

of the sub-grid scale model. Taking the model to 2D offers little difficulty for

the NIROM due to its fundamentally meshless nature. The features picked out

by the POD basis functions in 2D when trained as concatenated snapshots may

eventually break down if the concatenation is pushed to its limit though this

is not close to happening with the current setup. The shapes of the POD basis

functions are certainly less user friendly in the 2D case so being conservative

with then umber of basis functions used, the amount of snapshots and the

fineness of the mesh is advisable. Even with cautious choice of problem setup

the speed-up is significant and the numerical diffusion is removed.

Table 6.1: Run times (s)

Stage Time (s) Asymptotics in big-O notation

ROM 6.96 O(n3)
Offline 6.80 O(n3)
Online 0.16 O(n1.46)
SVD 1.56 O(m2n+ n3)

alpha 0.10 O(n2.37)−O(n3

weights 0.02 O(n2.37)−O(n3)
RBF kernel 5.09 O(nm)
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

This research aimed to develop and apply new reduced order model

techniques to two areas with relevance to nuclear energy: Shielding and

general Advection-diffusion type problems of interest physics of nuclear

reactors. In this thesis several novel approaches of the NIROM technique

have been introduced and applied to the areas outlined.

In chapter 1 the key contributions are outlined, along with motivating work

and a brief foray into the status of the surrounding literature. Most of the

applications listed apply a fairly direct POD-Galerkin, intrusive, approach

to show applicability in a wide range of fields. The short literature that

follows aimed to highlight more sophisticated techniques and give an idea

of the considerations a ROM practitioner must make when first approaching

a new problem to model. Chapter 2 provides the basic definitions in the

fields of Numerical Methods, Reduced Order Modelling, Neutron Diffusion and

Transport Theory, and Shielding. Here the algorithm for the NIROM is first

presented and a vigorous definition of the POD basis functions in shown along

with the Radial basis function interpolation.

Then in chapter 3 the Non-intrusive Reduced Order Model (NIROM) is applied

to some preliminary problems based on elementary functions approximating

attenuation of flux. We show how we will use the language of convergence

and error measures and shape and energy capture of the POD basis functions.

Forward coupling is contrasted with using the location of an interface as a
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NIROM model parameter. This detailed background of the NIROM approach

some of the advantages and limitations of this type of ROM were illustrated

provides motivation for the main chapters of work that follow in which two

novel contributions were made.

Chapter 4 presents coupling of ROMs to solve complex problems in shielding,

recovering the ASPIS benchmark for positive and negative scatter with 1-

group interactions. Firstly the physics of scattering is presented to outline the

physical model assumptions and provides a place from which the left-right

approach scattering could be modified to get an angular framework. The

coupling scheme in first introduced along with efforts to control the stability

and convergence through successive over-relaxation. The exact solutions for

the flux scattering in each material are intruded and coupled to confirm the

shape for the ROM coupling and to help calibrate the convergence process.

Only 2 POD basis functions where used in the ROM coupling, illustrating

a significant reduction. The quality of the results show the accuracy is

maintained while scope for CPU cost or the avoidance of a more complex

series of experiments is introduced.

Chapter 5 in a similar way presents coupling of ROMs to solve complex

problems in shielding, recovering the ASPIS benchmark for positive and

negative scatter with 2-group interactions. We see that the coupling is simply

extended as the tolerance across the interfaces is now the maximum of a

set of different group tolerances. This is a promising area as a library of

comparatively simple models can be confidently coupled together to solve

a problem of industrial scale and relevance. The work also demonstrates

the generalisation to n-group models and the training data could assimilate

experimental data with ease.

In chapter 6 the derivation of a Sub-Grid Scale numerical scheme to make the

NIROM approach conservative. This is done through testing a finite volume

scheme over Haar wavelets and coarse indicator functions for the two scales

respectively. Control over conservation laws is a desirable property when

modelling a wide range of phenomena. A range of more complex phenomena
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are systematically introduced up to the Advection-diffusion equation with

source and absorption and a 2D version of the scheme. The full order of

this scheme is presented and shows the effectiveness of this approach

in controlling conservation. This is along with a NIROM of the 1D that is

parameterized in time-stepping and offers very significant speed up with only

7 snapshots of training and just 3 POD basis functions used capturing over

90% of the energy. How this could be done through a POD-Galerkin based

projection is also explored.

It can be concluded from these works that widespread applications of ROMs

such as prototyping, product development, real-time simulation or shorter

design cycles can be extended to larger problems though ROM coupling just

as ROM itself may take unfeasible direct numeral simulations into the realm

of possibility. Improved real-time simulation for larger problems could also

improve control systems, visualisations or optimisation. A typical limitation

of ROMs are that they may require more user input to setup and develop

than direct numerical approaches thus applications that require multiple

runs as recently alluded. This is slightly exasipated by using the techniques

developed in this thesis however there are numerous settings which the extra

manual set-up is worthwhile. Recall the results from the sub-grid scale model

require little work to employ as they can be re-written as a small correction

to well known numerical schemes. This is a significant development, yielding

control over conservation laws in ROMs. Practitioners should consider that

making the most out of these insights only needs a small amount of extra

work in the data collection phase.
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7.2 Future Work

The ROM coupling and control over NIROM conservativeness have been

constructed and demonstrated as valid additions to the NIROM approach.

Due to the scope of this thesis, there are many natural extensions of this work

that have been left for a future time.

7.2.1 Extending training and possible applications

Natural extensions to the work presented in this thesis are generalisations to

yet higher dimensions. Models with 2-group and n-group coupled shielding

with 2D,3D or angular more complex spatial and group scattering physics

would be partially interesting to study, building of the elementary exponential

in-shield models in previous chapters 4 and 5.

The most pressing work is to sample the training of the NIROMs in a more

intelligent manor and a necessary step if the methods developed in this

thesis are to be applied to thermal-hydraulics or n-group shielding problems.

This could be done through latin hyper-cube sampling, [142],[120]. Adaptive

meshing is highly desirable. Overcoming spatial inconsistencies between

the POD basis functions and spatial nodes introduced attempting to use an

adaptive mesh would greatly expand the scope of what is possible [137].

Taking this approach to wider ranged of phenomena could develop a ROM

model for a full reactor core. This work suggests this is possible and would be

a significant achievement.

Outside of nuclear applications fields such as urban wind flow, human comfort

studies and pollution models would be interesting research topics to apply

the NIROM coupling and conservativeness. If paired with fluid-structure

interaction, medical applications could be interesting. Addition of these

techniques and optimisation of the solvers and code involved in a commercial

or well used research code could lower any barriers to use and promote ROM

practices.
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7.2.2 Additional directions

Integrating other emerging techniques posses many interesting questions,

warranting study. Neural networks could be introduced in a variety of ways, for

example to replace or supplement the radial basis interpolation with a set of

ROM coefficients learned from training on a few iterations of the conventional

NIROM approach. This could lead to many different choices of architecture

and domain decomposition [143]. Multigrid methods should be considered

beyond what has been done here with the sub-grid scale model. The deviation

of the sub-grid scale numerical scheme for the advection-diffusion equation

could be applied to other PDEs of interest conferring the same benefits of

conservative ROM solutions to new problems. The important question here

is asking which method is best to obtain ROM coefficients for a particular

problem.

The reduced space itself is also an area that could be developed. A variational

auto-encoder could be used in place of POD. This would improve the accuracy

of the method at the cost of ROM solutions no longer existing in a reduced

linear subspace. While POD is the best linear subspace in a L2 sense, a

non-liner space that maintains the most important variance with a smaller

error introduced may be desirable. This has been demonstrated in [144] for

similar dynamics as the diffusion approximation of the transport equation.

Assimilating experimental data and more sophisticated models into the ROM

coupling approach present in this thesis could yield a cutting edge shielding

tool. If the condition number of the interpolation kernel was tracked an

adaptive choice of characteristic length may be possible when ROM is used in

a iterative scheme.
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7.3 Appendices

7.3.1 Linear Algebra

Linear algebra is a powerful, well understood tool that underlines much of

mathematics. It deals with concepts such as matrices,linear transformations

and many important spaces. A decent elementary text for Linear Algebra is

[145], a full history is [146] and [147] is a more advanced text. It is important

for a few key reasons:

• It is fundamental for most presentations of geometry, lines, planes,

spaces etc...

• The problems we are interested in can make use of established tools

like algebra and calculus with mathematical vigour and that comes from

an axiomised system.

• Linear algebra gives you intuitive mini-spreadsheets for your equations.

The axioms and definitions in this appendix elaborates and serves a reference

to many underlining concepts used in this thesis.

Vector space and field axioms

A vector space V is a set that is closed under finite vector addition and scalar

multiplication. This is equivalent to saying linear combinations of elements of

the set V are themselves elements of V . A vector space can be axiomised as

follows:

For all elements X, Y, Z in V and any scalars a,b in F

1. Commutativity: X + Y = Y +X.

2. Associativity of vector addition: (X + Y ) + Z = X + (Y + Z).

3. Additive identity: For all X, 0 +X = X + 0 = X.
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4. Existence of additive inverse: For any X, there exists a−X such that

X + (−X) = 0.

5. Associativity of scalar multiplication: a(bX) = (ab)X.

6. Distributivity of scalar sums: (a+ b)X = aX + bX.

7. Distributivity of vector sums (X + Y ) = aX + bY .

8. Scalar multiplication identity: 1X = X.

where elements a, b, c in F obey the field axioms:

1. associativity (a+ b) + c = a+ (b+ c) (ab)c = a(bc)

2. commutativity a+ b = b+ a ab = ba

3. distributivity a(b+ c) = ab+ ac (a+ b)c = ac+ bc

4. identity a+ 0 = a = 0 + a a · 1 = a = 1 · a

5. inverses a+ (−a) = 0 = (−a) + a aa−1 = 1 = a−1a if a! = 0

Elements of a field are referred to as scalars and elements of a vector space

are referred to as vectors.

Example

The complex, rational and real numbers are examples of a field. The Euclidean

vectors representing physical forces are an example of a vector space.

Vector Basis

A consequence of the axiom of choice is that every vector space has a vector

basis.

The axiom of choice states: Given any collection of bins, each containing at

least one object, it is possible to make a selection of exactly one object from
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each bin, even if the collection is infinite.

Set theory is, informally, the study of binary relations of collections of objects.

Zermelo–Fraenkel set theory with the axiom of choice is commonly used as

the logical and philosophical foundation of mathematics. They are many

excellent texts available on the subject.

A vector basis of a vector space V is defined as a subset v1, ..., vn of vectors in

V that are linearly independent and span V .

Vectors f1, f2....fn that cannot be expressed in the form

a1f1 + a2f2 + ...+ anfn = 0 with a1, a2, ... constants which are not all zero are

said to be linearly independent.

The span is the set of linear combination of all elements of the vector space

ie) {av1 + bv2 : a.b ∈ F}.

An Orthonormal basis,ei, is a basis on a inner product space V that has unit

size and orthogonal elements.

For vectors x, y, z ∈ V an inner product space is a vector space with a

function ⟨·, ·⟩ −→ F called the inner product that satisfies:

1. Linearity in the first argument a⟨x, y⟩ = ⟨ax, y⟩, ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩

2. Conjugate symmetry or Hermitian symmetry ⟨x, y⟩ = ¯⟨y, x⟩

3. Positive-definite ⟨x, x⟩ ≥ 0, x ̸= 0.

Hilbert–Schmidt norm and Hilbert space

The Hilbert–Schmidt norm is the norm of the bounded operator A in Hilbert

space H is:

∥|AHS∥|2 = Σi∥|Aei∥|2 (7.1)

The condition for A to be bounded is that there exists some M such that for

all x ∥Ax∥ ≤M∥x∥.

A Hilbert space is an inner product space with an inner product defined in a

way that lets length and angle to be measured and complete in the sense

that limits behave in a way calculus can be employed. Formally a Hilbert
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space is a complete metric space.

A metric space has an inner product acting as the norm ∥|x∥| = ⟨x, x⟩ such

that a distance function: d(x, y) = ∥|x − y∥| =
√
⟨x− y, x− y⟩ obeys the

triangle inequality.

The triangle inequality states that:

d(x, z) ≤ d(x, y) + d(y, z) (7.2)

.

Completeness means that a Cauchy sequence of elements converges with

respect to this norm. A Cauchy sequence has the property that given any

small positive distance, all but a finite number of elements of the sequence

are less than that given distance from each other. This is necessary for the

limits that define calculus to be valid.

7.3.2 The Error function

The analytical solution to the equations that describe Fick’s law of diffusion

rely on a non-elementary function erf(x, t) called the Error function [134].

For real or complex value z we have that:

erf(z) =
2√
π

∫ z

0

e−p2dp (7.3)

Note that the variable z is contained in the limit of integration. A property

of the function is that erf(−z) = −erf(z), that is the Error function is an odd

function, following from the integrand being even.

7.3.3 Notes on coding languages and tools

This work is made possible through fantastic open source tools such as:

the languages Python and FORTRAN [148],[149], visualisation of data with

matlibplot [150], matrices and arrays in numpy [151], numerical schemes

from SciPy [152].
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7.3.4 Odd and even functions

We make use of the property of odd and even functions and the integration in

the sub-grid scale model chapter. Let f be some real valued function. Then

for all x if:

f(x)− f(−x) = 0 (7.4)

we call f and Even function and if:

f(x) + f(−x) = 0 (7.5)

we call f and Odd function [153],[154]. The names come from the whether

the power functions f(x) = xn have even of odd integers n.

Form functions of the same parity, that is two odd functions for example, the

sum or difference will not change the parity.

The sum different party functions, an even and odd function is neither even

or odd, unless one of the functions is equal to zero over the given domain.

For differentialable, continuous functions:

• The derivative of an even function is odd.

• The derivative of an odd function is even.

• The integral of an odd function over a symmetric domain, from [a,−a],

is zero.

• The integral of an even function over a symmetric domain, from [a,−a]

is double in integral of the function from [0, a]

7.3.5 Condition number

The condition number of a problem is a measure of how much an output of

a function depends on small changes to the input. A high condition number

in a function is said to be ill-conditioned. This has particular relevance to
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Radial basis interpolation as the choice of characteristic or shape parameter

determines not only error in interpolation but the solvability. The specific

constraint in the solvability of the RBF interpolation is called conditional

positive definiteness:

λ||w||2 ≤ wTKw (7.6)

where w ∈ R, λ is a positive constant and K is the kernel matrix for the RBF

interpolation. The equation:

||K−1|| ≤ λ−1 (7.7)

holds in the spectral norm, that is the norm induced by L−2max ||Kx||2
||x||2 . There

follows a kind of uncertainty relation between error and solvability proved in

[155].
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7.3.6 Intrusive reduced order models

So far the Reduced Order Models, ROMs, we have discussed derive their ROM

coefficients using the Non-Intrusive Reduced Order Model, NIROM, approach

in which the ROM coefficients are found using radial basis approximation.

Unlike the rest of the work in this thesis the majority work with ROMs use

a form of intrusive technique though data driven approaches are gaining

recent traction [47]. The intrusive class of ROMs relies on projection of the

dynamics of a PDE onto the POD basis functions such that the evolution

of the coefficients of the POD basis function is the variable that changes

instead of the problems state variables: in our advection problem T (t) is

the state variable. In the paper [78] we can gain understanding of how an

intrusive ROM is put together for the Naiver-stokes equations with insight into

handling the non-linear terms of the PDEs. The paper [55] is part of a series

of papers seminal for the intrusive approach in fluid dynamics and beyond,

also providing a practical procedure concisely and in the abstract that we can

follow.

It is is within this framework of separating the governing equations into linear

and non-linear operations an intrusive ROM for the sub-grid scale numerical

scheme can be constructed. The advection equation is initially chosen so that

the additional considerations in projecting non-linear dynamic onto POD basis

functions can be ignored. The numerical scheme derived in the sub-grid scale

section can directly yield conservative ROM solutions using an intrusive ROM.

Generally a non-linear system of governing PDEs in the form:

dT (t)

dt
= LT (t) +N(T (t)) (7.8)

where some variable T (t) evolving in time t according to linear and non-linear

operations L and N . PDEs will have some associated boundary conditions

and initial conditions.
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The intrusive ROM relies on the projection of the dynamics onto the POD basis

functions. This takes the form:

dα(t)

dt
= ΦT

r LΦrα(t) + ΦT
rN(Φrα(t)) (7.9)

where Φr is a truncated set of POD basis functions and α is the coefficients of

the ROM. As with the NIROM the intrusive ROM is reconstructed from linear

combinations of POD basis functions:

T̂ (t; p̂) =
r∑

i=1

αi(p̂)Φi(t) (7.10)

where α(t) now arises from solving (7.9) instead of radial basis interpolations

and p̂ is the parameterization of the governing equations. The first

contribution of this chapter is thus to replace the general operators L and

N with the specific ones that follow from the sub-grid scale derivation. The

linearity depends on if the advection speed is a function of time or a constant

and for the sake of simplicity it is assumed constant. Thus the operators are:

N = 0 and L = −u d
dx

for a general advection equation and this linearity allows

a strait forward projection of the POD basis functions onto the discretized

sub-grid scale dynamics all be it with two intrusive ROMs coupled though

the shared indexing. The POD basis functions therefore could be formed

hierarchically or as two distinct snapshot matrices.

The projection in the case where just a single POD basis functions is enough

too capture the dynamics for our advection equation problem would take the

form:
dα(t)

dt
+ uα(t)

dΦ(x)

dx
= 0 (7.11)

as the inner product ⟨Φ,Φ⟩ = 1 when one POD basis function is used. This

equation for the ROM coefficients comes from substituting the reconstructed

form of the solutions (7.10), and then taking the inner product of the equation

with respect to the POD basis functions. For a truncated series of POD basis

functions we would have

dα(t)

dt
+ uΦT

r

(dΦ1(x)

dx
,
dΦ2(x)

dx
, ...,

dΦr(x)

dx

)
α(t) = 0 (7.12)

Conclusion and Future Work 181



In the intrusive approach the terms G = ΦT
r

(
dΦ1(x)

dx
, dΦ2(x)

dx
, ..., dΦr(x)

dx

)
can be

pre-computed in an offline stage before solving the new PDE for α. The online

stage would solve new PDE for α for some parameter not included in the

training data: this could be yet untrained time steps or different values of u

than in the training data. Unlike this NIROM this requires solving a new PDE

for each new what-if analysis with a new parameter. The equation (7.12) can

be solving with the numerical scheme derived in this chapter encapsulated

by the discretized equations (6.46) with the operator L acting on α. We have

αn+1
Ci

= αn
Ci

+ uG
∆t

∆xi

(
αCV

n
i−1,NCV

− αCV
n
i,NCV

)
(7.13)

for the coarse scale and the sub-grid scale takes a similar form and are subject

to initial conditions

αCi
(t = 0) = (T (t = 0),ΦCi

). (7.14)

This is now everything needed to obtain the ROM intrusively using the

coefficients from 7.13 and the combination 7.10. Recall that the addition of

nonlinear dynamics can extend the cost of calculation inner products. In the

initial review of the relevant literature techniques such as DEIM are referenced

are solutions to this problem.
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It may be desirable to precondition the snapshots matrix in some way. For

example taking the deviation from the mean of the snapshots modifies the

snapshot matrix as follows

X̃ = X− X̄ (7.15)

A correction of +T̄ , the mean of variable T to the linear combination

7.10 is then needed along with a modified initial condition αCi
(t = 0) =

(T (t = 0− T̄ ), Φ̃Ci
). This modification may help the POD basis functions pick

out more features in the data and is partially suited to snapshots in an

ensemble that cover multiple variables.

This method of projection had been chosen for illustration and in general is not

always the most desirable approach. The paper [156] contrasts Galerkin non-

linear ROMs with least-squares Petrov–Galerkin non-linear ROMs and gives the

theoretical background. Broadly we have that, Galerkin is continuous-time

optimal in that the PDE has a continuous residual that is the best in a l2-norm

sense and Petrov–Galerkin discrete-optimal being discrete-optimal. Ease of

use is a key consideration and many choices in the field of ROMs are strongly

problem-dependent.

With this framework for constructing intrusive ROMs we can get ROM solutions

that are both detailed and conservative in nature.
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