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Membership-Function-Dependent Design of
L1-Gain Output Feedback Controller for

Stabilization of Positive Polynomial Fuzzy Systems
Aiwen Meng, Hak-Keung Lam, Fellow, IEEE, Fucai Liu, and Yingjie Yang

Abstract—This paper presents the L1-gain polynomial fuzzy
output feedback controller design and the stability analysis
using sum-of-squares (SOS) approach for positive polynomial
fuzzy-model-based (PPFMB) control systems. The polynomials,
positivity and optimal L1 performance makes some existing
convex methods for general systems inapplicable. To overcome
this problem, an augmented system of the positive polynomial
fuzzy-model-based control system is first constructed, then by
introducing some constrain conditions and mathematical tech-
niques, the non-convex stability and positivity conditions are skill-
fully transformed into convex ones simultaneously. In addition,
to control the systems flexibly and lower the implementation
cost, the imperfect premise matching concept is taken into
account for controller design. Besides, the high degree polynomial
approximation method is adopted to conduct stability and posi-
tivity analysis by incorporating the information of membership
functions (MFs) and the boundary information of the state
variables. On the basis of the Lyapunov stability theory, the
relaxed stability and positivity conditions in terms of SOS are
obtained. Finally, a simulation example is presented to verify the
feasibility of the theoretical results.

Index Terms—Positive polynomial fuzzy-model-based
(PPFMB) control systems, output feedback control, membership
functions (MFs), L1 performance, sum-of-squares (SOS).

I. INTRODUCTION

POsitive systems, whose state variables and outputs always
remain in the non-negative quadrant if both of the initial

conditions and input are non-negative, are often encountered in
real-world applications [1]–[3]. A great deal of practical mod-
els of such systems exist in a variety of disciplines, for exam-
ple, the control of the cortisol level within the hypothalamic-
pituitary-adrenal gland axis in the field of biology, the human
immunodeficiency virus viral mutation dynamics in the area
of pharmacokinetic, the prey-predator model in the aspect
of ecology, and the concentration of substances in chemical
processes and so on [4]–[6]. As positive systems are closely
related to our daily life, it is of great practical significance to
conduct in-depth research on positive systems.
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From the perspective of system complexity, nonlinear sys-
tems are more common than linear systems in actual applica-
tion, such as network systems [7], robotic systems [8], multi-
agent systems [9] and nonlinear systems with stochastic im-
pulses [10], but it also makes the study of stability analysis and
control synthesis even more challenging due to the nonlinear
characteristics. Fortunately, since Takagi-Sugeno (T-S) fuzzy-
model-based technique provides a powerful mathematical tool
to express the nonlinearities, it considerably promotes the
investigation of stability analysis and control synthesis for
nonlinear systems [11]–[15]. In recent years, some outstanding
works on positive nonlinear systems based on T-S fuzzy
models have been obtained [16]–[19]. The work in [16] mainly
investigated the state estimation for positive T-S fuzzy systems.
Through proposing a new algebraic algorithm and constructing
a new Lyapunov function, an observer was designed for
positive systems and the stability analysis results were relaxed
effectively. In [17], the positive T-S fuzzy models were con-
trolled to be asymptotically stable and positive by employing
the state feedback control strategy. The stability conditions
were derived in terms of the single Lyapunov-Krasovskii
functional and the linear programming technique. In general,
the parallel distributed compensation design concept [20] is an
effective approach to reduce the conservatism of the stability
analysis. But this method will cause some limitations for the
design of fuzzy controllers, for instance, it will increase the
complexity of controller design if the plants are complex,
especially, when the number of the fuzzy rules is high or the
type of membership functions is complicated. To overcome
these drawbacks, imperfect premise matching concept was
firstly proposed in [21] and employed in [22] to investigate
the filtering problems for the positive T-S fuzzy systems.
Although it could lead to conservatism, it is worth mentioning
that the well-known membership-function-dependent (MFD)
analysis proposed by H. K. Lam [23]–[26] provided a great
help to reduce the conservatism by taking the information of
membership functions (MFs) into the stability analysis. Until
now, even though some MFD methods, such as, piecewise
linear MFs, Taylor series MFs and approximated polynomial
MFs, have been provided, this is still an open problem which
is worth the effort to study further.

In recent decades, with the further study of fuzzy theory,
T-S fuzzy model has been extended into polynomial fuzzy
model [27]–[33] which is more effective to represent complex
positive nonlinear systems. So far, plenty of researches on
general polynomial fuzzy systems can be found in the litera-
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ture, such as, output-feedback tracking control [30], sampled-
data output-feedback tracking control [34], event-triggered
networked control [35] and so on. However, the works with
respect to positive polynomial fuzzy-model-based (PPFMB)
systems are still not particularly fruitful, which is a strong
motivation for us to carry out the task.

In the view of control synthesis of PPFMB systems, it is rel-
atively simple to design fuzzy controllers according to the full
state feedback control strategy, but in actual life, it is usually
difficult to obtain the full states information of real systems.
Hence, when some of the state variables are not available, this
strategy does not work anymore. In this case, designing fuzzy
controllers based on output feedback strategy is more effective
and easier to implement because it does not dependent on
the full state information but only the output state variables.
Nevertheless, on the other hand, the head-scratching non-
convex problem also comes with the design of the polynomial
fuzzy output feedback (PFOF) controller, which make the
stability analysis and control synthesis problem challenging
for positive polynomial fuzzy output feedback control systems.
To alleviate this challenge, we have attached much importance
to designing the PFOF controllers for PPFMB systems in
recent years [36], [37], but the system performance index was
not taken into account in these works. Therefore, when some
external disturbances are present, these existing results may no
longer be applicable. After consulting the literature, it can be
seen that L1-induced performance is an effective performance
index for positive systems because it expresses the sum of the
values of the components [38], [39]. To our best knowledge,
there is still no result corresponding to the PFOF controller
design for PPFMB systems under L1 performance. To further
strengthen the research for positive nonlinear systems, it is a
challenging but worthwhile task for us.

As far as the methods of stability analysis for positive
systems are concerned, some of the analysis results are ob-
tained in terms of the linear-matrix-inequality approach which
is popular to be used for deriving stability and positivity
conditions [40], [41]. Although this approach is successful to
guarantee the stability analysis of positive nonlinear systems,
there still exist some sources of conservatism because of
the neglect of the characteristic of positivity. To make better
use of the positivity, the linear programming method which
is demonstrated to be more computationally efficient than
the linear-matrix-inequality method is employed in [42]–[44].
However, for PPFMB systems, on account of the existence of
polynomials in stability conditions, both of the two methods
are not as effective as the sum-of-squares (SOS) method
[25]. In this case, the free third-party MATLAB toolbox, i.e.,
SOSTOOLS [45], can be used to find feasible solutions.

On the basis of the above analysis, we need to focus on
cracking the following hard nuts. Firstly, as we all known
that converting non-convex stable conditions and positive
conditions to convex conditions simultaneously is very difficult
since most of the convex methods are just for general systems
and there are no positivity constrains for general systems.
When positivity constrains are taken into consideration, those
convex methods for general systems may not be able to work,
hence, the non-convex problem will become very tricky to be

TABLE I
DESCRIPTION OF THE ACRONYMS.

Acronyms Explanation Acronyms Explanation
T-S Takagi-Sugeno MFD membership-function-dependent
SOS sum-of-squares PPFMB positive polynomial fuzzy-model-based
MFs membership functions PFOF polynomial fuzzy output feedback

TABLE II
DESCRIPTION OF NOTATIONS.

Notation Description Notation Description
x system state vector u input vector
z control output w̃ disturbance
y output vector Kj(y) static output feedback gain

wi(x) MFs of positive systems mi(y) MFs of fuzzy controllers
ξ augmenting vectors λ constant vector to be determined
γ L1 performance level αd(x) fractional function

ηij,d(x) approximated polynomial ∆ηij,d(x) approximation error
β
ij,d

lower bound of error term βij,d upper bound of error term

solved. In addition, the convexification is problem dependent,
which means the convexificiation method from one paper
may not be able to be applied to other non-convex problems,
therefore, it is a hard task to find a proper method to deal with
a non-convex problem. Secondly, the introduction of some
constrain conditions and the absence of the information of
MFs will lead to strong conservatism of the stability analysis
results. How to obtain relaxed stability analysis results is still
an open problem that is worth working on. Aiming at dealing
with the above issues, the main contributions are made and
summarized as follows:

1) For coping with the non-convex conditions, the aug-
mented vector method is employed to construct an augment-
ing system of positive L1-gain PFOF control system. Then,
through introducing some constraint conditions and mathemat-
ical skills, the non-convex stability and positivity conditions
are approximated by convex ones simultaneously.

2) For reducing the conservativeness of the analysis results,
a high degree polynomial approximation method is adopted to
approximately express the original MFs so that the valuable
information of MFs helps to derive the relaxed stability
conditions. Different from other MFD methods, in our paper,
the information of the boundary information of state variables
is used for relaxing the stability analysis by introducing it into
the high degree polynomial functions instead of by introducing
a slack matrix, which help reduce the calculation burden.

The rest of this paper is formed as follows. Section II mainly
introduces a PPFMB system with bounded disturbance and
design a PFOF controller. Section III derives the basic stability
and positivity conditions of the positive L1-gain PFOF control
system. Furthermore, a high degree polynomial approximation
method is adopted to derive the relaxed stability and positivity
conditions. Section IV gives a simulation example to reveal the
effectiveness of the L1-gain PFOF control schemes. Finally, a
conclusion is drawn in Section V.

II. PRELIMINARIES

In this section, some standard notations and primary pre-
liminaries of the PPFMB system with bounded disturbance
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Polynomial Fuzzy 

Controller

Positive Polynomial 

Fuzzy System

u(t) y(t)

disturbance

Fig. 1. The positive polynomial fuzzy closed-loop system with disturbance.

and the PFOF controller are shown. The block diagram of a
polynomial fuzzy positive system with disturbance based on
polynomial fuzzy output feedback control is shown in Fig. 1.
The main acronyms are listed in Table I.

A. Notation

In order to facilitate the understanding, some notations
used in this paper will be explained in this section [46].
xr11 (t), . . . , xrnn (t) represent the monomial in the vector
x(t) = [x1(t), . . . , xn(t)]T , where ri, i ∈ {1, . . . , n}, is a non-
negative integer. The degree of a monomial is defined as r =∑n
i=1 ri. A polynomial p(x(t)) is indicated as the finite linear

combination of monomials with real coefficients. If a polyno-
mial p(x(t)) can be shown as p(x(t)) =

∑m
j=1 qj(x(t))2,

where m is a non-zero positive integer and qj(x(t)) is a
polynomial for all j, it can be concluded that p(x(t)) is a
SOS and p(x(t)) ≥ 0. mrs denotes the element on the r-
th row and s-th column in a matrix M ∈ <l×n. M � 0,
M � 0, M � 0 and M ≺ 0 represent that each element mrs is
non-negative, positive, non-positive and negative, respectively.
Q(x) = diag(x1, . . . , xn) denotes that the matrix Q(x) is
a diagonal matrix whose diagonal elements are x1, . . . , xn.
I1 ∈ <q and I2 ∈ <h are vectors with all of the elements are
1; In ∈ <n×n, Il ∈ <l×l, Im ∈ <m×m and Ih ∈ <h×h are
the identity matrices with the specified dimensions. The other
notions can be found in Table II.

B. Positive Polynomial Fuzzy Model with Disturbance

A p-rule PPFMB system with disturbance is shown:

Rule i : IF f1(x(t)) is M i
1 AND · · ·AND fΨ(x(t)) is M i

Ψ

THEN


ẋ(t) = Ai(x(t))x(t) + Bi(x(t))u(t)
+Biωw̃(t),
z(t) = Di(x(t))x(t) + Ei(x(t))u(t)
+Eiωw̃(t),
y(t) = Cx(t),

(1)

where x(t) ∈ <n, u(t) ∈ <m, w̃(t) ∈ <h, z(t) ∈
<q and y(t) ∈ <l are the system state vector, the input
vector, the disturbance signal, the measurement output and
the controlled output, respectively; Ai(x(t)), Bi(x(t)), Biω ,
Di(x(t)), Ei(x(t)), Eiω , and C are the system matrices with
appropriate dimensions for i ∈ {1, . . . , p}.

The overall dynamics of the PPFMB system is introduced:

ẋ(t) =
p∑
i=1

wi(x(t))
(
Ai(x(t))x(t)

+Bi(x(t))u(t) + Biωw̃(t)
)
,

z(t) =
p∑
i=1

wi(x(t))
(
Di(x(t))x(t)

+Ei(x(t))u(t) + Eiωw̃(t)
)
,

y(t) = Cx(t),

(2)

where wi(x(t)) is the normalized grade of membership

with satisfying wi(x(t)) =

∏Ψ
α=1 µMiα

(fα(x(t)))∑p
k=1

∏Ψ
α=1 µMkα

(fα(x(t)))
and∑p

i=1 wi(x(t)) = 1, wi(x(t)) ≥ 0 ∀i.
Definition 1: [42] Given any initial conditions x(0) = x0 �

0, a system can be perceived as positive if the corresponding
trajectory always stays in the non-negative quadrant, i.e.,
x(t) � 0 for all t ≥ 0.

Definition 2: [42] A matrix M is called a Metzler matrix
if its off-diagonal elements are non-negative: mrs � 0, r 6= s.

Lemma 1: [3] System (2) is a positive system if Ai(x(t))
is a Metzler matrix, Bi(x(t)) � 0, Biω � 0, Di(x(t)) � 0,
Ei(x(t)) � 0, Eiω � 0, and C � 0.

Assumption 1: There exist nonlinear systems with distur-
bance which can be approximated by the polynomial fuzzy
model (2) satisfying the conditions in Lemma 1.

Assumption 2: The disturbance signal w̃(t) � 0 is bounded.

C. Polynomial Fuzzy Output Feedback Controller

In terms of the imperfect premise matching concept [21],
[24], a PFOF controller with c rules is investigated to control
the PPFMB system to be asymptotically stable and positive:

Rule j : IF h1(y(t)) is N j
1 AND . . .AND hΩ(y(t)) is N j

Ω

THEN u(t) = Kj(y(t))y(t), (3)

where Kj(y(t)) ∈ <m×l for j ∈ {1, . . . , c} is the PFOF gain
of the j-th rule.

The overall PFOF controller is expressed as follows:

u(t) =
c∑
j=1

mj(y(t))Kj(y(t))y(t), (4)

where mj(y(t)) =

∏Ω
β=1 µNj

β

(hβ(y(t)))∑c
k=1

∏Ω
β=1 µNk

β
(hβ(y(t)))

and mj(y(t))

satisfies that
∑c
j=1mj(y(t)) = 1,mj(y(t)) ≥ 0, for all j.

Taking the equality y(t) = Cx(t) into (4), one can obtain
the PFOF controller as follows:

u(t) =
c∑
j=1

mj(y(t))Kj(y(t))Cx(t). (5)

For brevity, the t will be omitted in the following, for
instance, wi(x), mj(y), x and y will replace wi(x(t)),
mj(y(t)), x(t) and y(t), respectively.
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D. Positive L1-Gain Polynomial Fuzzy Control System

Based on the PPFMB system (2) and the PFOF controller
(5), the positive L1-gain PFOF control system is shown as:

ẋ =
p∑
i=1

c∑
j=1

wi(x)mj(y)
(
Ãij(x,y)x + Biωw̃

)
,

z =
p∑
i=1

c∑
j=1

wi(x)mj(y)
(
D̃ij(x,y)x + Eiωw̃

)
,

y = Cx,

(6)

where 0 ≤
p∑
i=1

c∑
j=1

wi(x)mj(y) ≤ 1. Ãij(x,y) = Ai(x) +

Bi(x)Kj(y)C, D̃ij(x,y) = Di(x) + Ei(x)Kj(y)C.
An augmented dynamic system of the control system (6)

will be introduced below to facilitate the stability and positivity
analysis. Let ξ = [xT yT ]T ∈ <n+l. According to Definition
1 and Lemma 1, we can find ξ � 0 for all t ≥ 0. By
introducing a constant matrix E ∈ <(n+l)×(n+l), we have:

Eξ(t) =

[
In 0
0 0

] [
x
y

]
=

[
x
0

]
, (7)

where E =

[
In 0
0 0

]
, In ∈ <n×n is an identity matrix.

According to (6), (7) and y = Cx, the augmented positive
L1-gain PFOF control system is represented as:

Eξ̇ =

[
In 0
0 0

] [
ẋ
ẏ

]
=

[
ẋ
0

]
=

p∑
i=1

c∑
j=1

wi(x)mj(y)
(
Āij(x,y)ξ + B̄iωw̃

)
, (8)

where Āij(x,y) =

[
Ãij(x,y) 0

C −Il

]
, B̄iω =

[
Biω

0

]
.

Remark 1: By reviewing Lemma 1, the positivity of the
control system (6) can be ensured if Ãij(x,y) is a Metzler
matrix, D̃ij(x,y) � 0, Biω � 0, Eiω � 0, C � 0.

Definition 3: [38] The positive L1-gain PFOF control
system (6) can satisfy L1-induced performance at the level
γ, if the following inequality can be ensured with satisfying
zero initial conditions

||z||L1
< γ||w̃||L1

, (9)

where γ is the optimal level to be determined.

III. STABILITY ANALYSIS

In this section, the stability and positivity analysis for
positive L1-gain PFOF control system (6) will be proved. In
addition, the MFD technique is adopted so that the information
of MFs can be captured and used to reduce the conservative-
ness of the stability and positivity analysis.

A. Basic Stability Analysis of Positive L1-Gain PFOF Control
Systems

Theorem 1: Given a PPFMB system with bounded distur-
bance (2), the PFOF controller (5) can ensure the positive
L1-gain PFOF control system (6) to be asymptotically stable
and positive under L1-induced performance, if there exist

optimal γ > 0, λ1 ∈ <n, λ2 ∈ <l, output feedback gains
Kj(y) ∈ <m×l, j ∈ {1, . . . , c} such that the following SOS-
based conditions hold:

airs(x) + bir(x)Kj(y)cs is SOS ∀ r 6= s, i, j; (10)
dirs(x) + eir(x)Kj(y)cs is SOS ∀ r, s, i, j; (11)

ρT
(
diag(λ1)− ε1In

)
ρ is SOS; (12)

σT
(
diag(λ2)− ε2Il

)
σ is SOS; (13)

− kjr(y)cs is SOS ∀ r, s, j; (14)

− υT
(

diag
(
IT1 Ei(x)− λT1 Bi(x)

)
+ ε3(x)Im

)
υ

is SOS ∀ i; (15)

− ρT
(

diag
(
IT1 Di(x) + 2IT1 Ei(x)Kj(y)C + λT1 Ai(x)

+ λT2 C
)

+ ε4(x,y)In

)
ρ is SOS ∀ i, j; (16)

− µT
(

diag
(
IT1 Eiw − γIT2 + λT1 Biw

)
+ ε5Ih

)
µ

is SOS ∀ i; (17)

where ε1 > 0, ε2 > 0, ε5 > 0 are predefined scalars and
ε3(x) > 0 and ε4(x,y) > 0 are predefined scalar polynomials;
ρ ∈ <n, σ ∈ <l, υ ∈ <m and µ ∈ <h are arbitrary vectors
independent of x and y. kjr(y) ∈ R1×l is the r-th row of
the output feedback gain Kj(y) which can be obtained if the
above conditions are satisfied, for all j.

Proof : The Lyapunov function candidate [44] is chosen as:

V (t) = λT (Eξ) = [λT1 λT2 ]

[
x
0

]
= λT1 x, (18)

where λ = [λT1 λT2 ]T ∈ <n+l, 0 ≺ λ1 ∈ <n and λ2 ∈ <l
are vectors to be determined.

Since x satisfies x � 0, then from (12), we have V (t) > 0.
Based on (8), the derivative of V (t) is obtained as follows:

V̇ (t) = λT (Eξ̇) = λT1 ẋ

=

p∑
i=1

c∑
j=1

wi(x)mj(y)
(
λT Āij(x,y)ξ + λT B̄iωw̃

)
.

When w̃ = 0, we have:

V̇ (t) =

p∑
i=1

c∑
j=1

wi(x)mj(y)
(
λT Āij(x,y)ξ

)
. (19)

If λT Āij(x,y) ≺ 0 holds for all i, j, then V̇ (t) < 0 can
be satisfied. Hence, we have:

λT Āij(x,y) =
[
λT1 λT2

] [Ãij(x,y) 0
C −Il

]
=
[
λT1 Ãij(x,y) + λT2 C −λT2

]
=
[
λT1 (Ai(x) + Bi(x)Kj(y)C) + λT2 C −λT2

]
. (20)

From (11), we have IT1 Di(x)+IT1 Ei(x)Kj(y)C � 0, then
combining with (16), IT1 Ei(x)Kj(y)C+λT1 Ai(x)+λT2 C ≺ 0
is obtained. From (14) and (15), we have:

λT1 Bi(x)Kj(y)C � IT1 Ei(x)Kj(y)C. (21)

From (21), the first term on the right hand side of (20) can
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be derived as follows:

λT1 (Ai(x) + Bi(x)Kj(y)C) + λT2 C

�IT1 Ei(x)Kj(y)C + λT1 Ai(x) + λT2 C ≺ 0. (22)

Then combining with (13), λT Āij(x,y) ≺ 0 can be proved,
which means V̇ (t) < 0 is satisfied. Because both of V (t) > 0
and V̇ (t) < 0 are satisfied, hence, the system (6) is asymptotic
stable when w̃(t) = 0.

Meanwhile, from (10) and (11), the positivity of the control
system (6) is ensured when w̃(t) = 0.

When w̃(t) 6= 0, we have:

||z||L1
− γ||w̃||L1

+ V̇

= IT1 z− γIT2 w̃ + V̇

= IT1

( p∑
i=1

c∑
j=1

wi(x)mj(y)
(
D̃ij(x,y)x + Eiww̃

))
− γIT2 w̃ +

p∑
i=1

c∑
j=1

wi(x)mj(y)λT
(
Āij(x,y)ξ + B̄iww̃

)
=

p∑
i=1

c∑
j=1

wi(x)mj(y)
((

IT1 Eiw − γIT2 + λT B̄iw

)
w̃

+
(
IT1 D̃ij(x,y)[In 0] + λT Āij(x,y)

)
ξ
)
, (23)

where I1 ∈ <q and I2 ∈ <h are vectors with all of the
elements being 1.

Firstly, according to (17), the first term on the right hand
side of (23) satisfies the following expression:

IT1 Eiw − γIT2 + λT B̄iw = IT1 Eiw − γIT2 + λT1 Biw ≺ 0.

Then, the second term on the right hand side of (23) can
be processed as follows:

IT1 D̃ij(x,y)[In 0] + λT Āij(x,y)

=IT1 D̃ij(x,y)[In 0] +
[
λT1 λT2

] [Ãij(x,y) 0
C −Il

]
=
[
IT1 D̃ij(x,y) + λT1 Ãij(x,y) + λT2 C −λT2

]
, (24)

where Ãij(x,y) and D̃ij(x,y) can be found in (6).

Next, the first term on the right hand side of (24) can be
dealt with as follows:

IT1 D̃ij(x,y) + λT1 Ãij(x,y) + λT2 C

=IT1 (Di(x) + Ei(x)Kj(y)C)

+λT1 (Ai(x) + Bi(x)Kj(y)C) + λT2 C. (25)

It can be seen that λT1 Bi(x)Kj(y)C in (25) is non-convex,
which is an obstacle to develop the stability and positivity
analysis. Although [36], [37] offered some methods to solve
this problem, unfortunately, these methods cannot be used in
this paper because the term IT1 Ei(x)Kj(y)C in (25) is an
additional non-convex term when these methods are adopted.
Thereby, the constrain conditions (14) and (15) is introduced
to approximate the non-convex term by convex one.

By introducing the constrain conditions (14) and (15), (21)

is satisfied, then (25) can be derived as follows:

IT1 (Di(x) + Ei(x)Kj(y)C)

+λT1 (Ai(x) + Bi(x)Kj(y)C) + λT2 C

�IT1 Di(x) + 2IT1 Ei(x)Kj(y)C + λT1 Ai(x) + λT2 C.

Therefore, from (16), the first term on the right hand side
of (24) satisfies:

IT1 D̃ij(x,y) + λT1 Ãij(x,y) + λT2 C ≺ 0.

Combining with (13), (24) satisfies:

IT1 D̃ij(x,y)[In 0] + λT Āij(x,y) ≺ 0.

Due to wi(x)mj(y) ≥ 0, w̃ � 0 and ξ � 0, from (23), if
there exist optimal γ > 0, λ2, output feedback gains Kj(y)
such that the (13)-(17) are feasible, we can obtain:

||z||L1
− γ||w̃||L1

+ V̇ ≺ 0. (26)

For any T > 0, integrating (26) on t from 0 to T , we have∫ T

0

||z||L1
− γ||w̃||L1

+ V̇ dt

=

∫ T

0

IT1 z− γIT2 w̃ + V̇ dt

=

∫ T

0

IT1 z− γIT2 w̃dt + V (T )− V (0) < 0. (27)

Under zero initial condition, we have V (0) = 0. Meanwhile,
V (T ) → 0 when T → ∞. Hence,

∫∞
0

IT1 z− γIT2 w̃dt < 0 is
obtained, which means IT1 z < γIT2 w̃.

Since the PPFMB system (2) is a positive system, therefore,
Biw � 0 and Eiw � 0. Then from (10) and (11), the
positivity of the positive L1-gain PFOF control system (6)
is also ensured when w̃(t) 6= 0.

In terms of the above analysis, the stability and positivity
for the positive L1-gain PFOF control system (6) has been
proved.

Remark 2: In Theorem 1, (10)-(11) are positivity conditions
which are used to guarantee the positivity of the positive
L1-gain PFOF control system (6). The rest conditions (12)-
(17) are stability conditions which are used to guarantee the
stability under L1-induced performance.

Remark 3: Although the convex method given in our
paper will introduce a certain degree of conservativeness,
this method makes it easier to transform the non-convex
stability conditions and positivity conditions into convex ones
simultaneously, which means the non-convex problem can be
dealt with skillfully. In order to alleviate the conservativeness,
in the following, a high degree polynomial approximation
method will be introduced so that the information embedded
in MFs can be found and introduced into stability conditions.

B. Stability Analysis of the Positive L1-Gain PFOF Control
System via High Degree Polynomial Approximation Method

Based on (23), we can see that the cross term of MFs
wi(x)mj(y) will also influence the stability analysis, but
they are ignored in the above analysis process. Thereby, the
following task is to cope with the cross terms of MFs by
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using the high degree polynomial approximation method so
that enough information of MFs can be mined.

To get a better approximation, the whole operating domain
is divided into D subdomains. In each subdomain, the cross
terms of MFs are approximated by high degree polynomial
functions. Meanwhile, because of y = Cx, hence, the MFs
mj(y) can be viewed as a function of x. Similarly, the output
feedback gain Kj(y) also can be viewed as a function of x.
Then we can get the following equality:

wi(x)mj(x) = ηij,d(x) + ∆ηij,d(x),∀ i, j, d,

where d means the d-th subdomain, d ∈ {1, . . . , D}. ηij,d(x)
denote the high degree approximated polynomial functions
and ∆ηij,d(x) denote the approximated errors with satisfying
β
ij,d
� ∆ηij,d(x) � βij,d where β

ij,d
and βij,d are the lower

bound and the upper bound of ∆ηij,d(x) .
In the previous work [36], we tend to increase more

subdomains instead of to increase higher degrees of approxi-
mated polynomial functions to reduce the approximated errors.
However, when the number of the subdomains is more, the
computational burden of computers will be heavier. Hence, to
overcome this difficulty, we will try to employ higher degrees
of approximated polynomial functions to relax the stability
conditions so that a small number of subdomains can achieve
a good relaxation effect. In addition, through this method, the
boundary information of the state variables can be introduced
in a different way. Now, the detailed steps and explanations
will be shown in the following.

For brevity, we define wi(x)mj(x) = Ξij,d(x) for d-th
subdomain. Then considering that the stability and positivity
conditions should be SOS-based form, thereby, the approxi-
mated polynomial functions of the original MFs should be of
even degrees so that the free third-party MATLAB toolbox,
i.e., SOSTOOLS [45], can be used to find feasible solutions.

To further relax the analysis, the boundary information of
the state variables will be brought into the approximated poly-
nomial functions through the following fractional functions:

αd(x) =
f

g(x− xdmin)(xdmax − x) + s
,∀ d, (28)

where f > 0, g > 0 and s > 0 are predefined scalars.
xdmin and xdmax are the lower bound and upper bound of
the state variables x in each subdomain. It can be seen that
αd(x) > 0 when x belong to the d-th subdomain. αd,num = f
and αd,den(x) = g(x− xdmin)(xdmax − x) + s represent the
numerator and denominator of αd(x), respectively.

Based on the above analysis, for guaranteeing the stability
conditions with approximated polynomial functions to be
SOS-based form, the function Ξ0.5

ij,d(x) =
√

Ξij,d(x)
αd(x) which

is the square root of Ξij,d(x)
αd(x) requires to be used.

To make the design process easier to understand and follow,
the detailed steps of the high degree polynomial approximation
method are shown as follows:

Step 1: Calculate Ξ0.5
ij,d(x);

Step 2: Employ a polynomial fitting approach to get the ap-
proximation function of Ξ0.5

ij,d(x), which is defined as η0.5
ij,d(x);

Step 3: Obtain the approximated polynomial functions of
original MFs as ηij,d(x) = (η0.5

ij,d(x))2αd(x).

Step 4: Calculate the approximated error ∆ηij,d(x) =
Ξij,d(x)−ηij,d(x) as well as the lower bound β

ij,d
and upper

bound βij,d of the approximated error ∆ηij,d(x).

Remark 4: The information of MFs is mainly introduced
into the stability condition (16) because the output feedback
gain Kj(x), decision variables λ1 and λ2 exist in this condi-
tion simultaneously.

Theorem 2: Given a PPFMB system with bounded distur-
bance (2), the PFOF controller (5) can ensure the positive L1-
gain PFOF control system (6) to be asymptotically stable and
positive under L1-induced performance, if there exist optimal
γ > 0, vectors λ1 ∈ <n, λ2 ∈ <l, output feedback gains
Kj(x) ∈ <m×l, and slack matrices Yij,d(x) ∈ <n, for all
i ∈ {1, . . . , p}, j ∈ {1, . . . , c}, d ∈ {1, . . . , D} such that the
following SOS-based conditions hold:

airs(x) + bir(x)Kj(x)cs is SOS ∀ r 6= s, i, j; (29)
dirs(x) + eir(x)Kj(x)cs is SOS ∀ r, s, i, j; (30)

ρT
(
diag(λ1)− ε1In

)
ρ is SOS; (31)

σT
(
diag(λ2)− ε2Il

)
σ is SOS; (32)

ρT
(

diag
(
Yij,d(x)

))
ρ is SOS ∀ i, j, d; (33)

ρT
(

diag
(
Yij,d(x)−Hij(x)

))
ρ is SOS ∀ i, j, d; (34)

− kjr(x)cs is SOS ∀ r, s, j; (35)

− υT
(

diag
(
IT1 Ei(x)− λT1 Bi(x)

)
+ ε3(x)Im

)
υ

is SOS ∀ i; (36)

− µT
(

diag
(
IT1 Eiw − γIT2 + λT1 Biw

)
+ ε4Ih

)
µ

is SOS ∀ i; (37)

− ρT
(

diag
( p∑
i=1

c∑
j=1

((
(η0.5
ij,d(x))2αd,num + β

ij,d
αd,den(x)

)
×Hij(x) +

(
βij,d − βij,d

)
αd,den(x)Yij,d(x)

))
+ ε5(x)In

)
ρ is SOS ∀ d; (38)

where ε1 > 0, ε2 > 0, ε4 > 0 are predefined scalars and
ε3(x) > 0 and ε5(x) > 0 are predefined scalar polynomials;
ρ ∈ <n, σ ∈ <l, υ ∈ <m and µ ∈ <h are arbitrary
vectors independent of x. kjr(x) ∈ R1×l is the r-th row
of the output feedback gain Kj(x) which can be obtained
if the above conditions are satisfied, for all j. Hij(x) =
IT1 Di(x) + 2IT1 Ei(x)Kj(x)C + λT1 Ai(x) + λT2 C.

Proof : The Lyapunov function is chosen as (18). Since
x � 0, then from (31), we have V (t) > 0.

When w̃ = 0, (19) is obtained, which means if∑p
i=1

∑c
j=1 wi(x)mj(y)λT Āij(x,y) ≺ 0 holds for all i, j,

then V̇ (t) < 0 can be satisfied. From y(t) = Cx(t) in (2),
it can be seen that y is a function of x, thereby, Kj(y) and
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mj(y) can be also seen as the functions of x. Then, we have:
p∑
i=1

c∑
j=1

wi(x)mj(x)λT Āij(x) =

p∑
i=1

c∑
j=1

wi(x)mj(x)

×
[
λT1 (Ai(x) + Bi(x)Kj(x)C) + λT2 C −λT2

]
. (39)

In the following, the high degree polynomial approximation
method is employed to deal with the information of member-
ship functions. According to (33) and (34), we have:

p∑
i=1

c∑
j=1

p∑
i=1

c∑
j=1

wi(x)mj(x)Hij(x)

=

p∑
i=1

c∑
j=1

(
ηij,d(x) + ∆ηij,d(x) + β

ij,d
− β

ij,d

)
Hij(x)

=

p∑
i=1

c∑
j=1

((
ηij,d(x) + β

ij,d

)
Hij(x)

+
(
∆ηij,d(x)− β

ij,d

)
Hij(x)

)
�

p∑
i=1

c∑
j=1

((
ηij,d(x) + β

ij,d

)
Hij(x)

+
(
βij,d − βij,d

)
Yij,d(x)

)
∀ d, (40)

where β
ij,d

and βij,d are the lower and upper bound of
∆ηij,d(x), respectively.

Based on the above step 3, ηij,d(x) = (η0.5
ij,d(x))2αd(x) is

defined, then by taking it into (40), we have:
p∑
i=1

c∑
j=1

((
ηij,d(x) + β

ij,d

)
Hij(x) +

(
βij,d − βij,d

)
Yij,d(x)

)
=

p∑
i=1

c∑
j=1

((
(η0.5
ij,d(x))2αd(x) + β

ij,d

)
Hij(x)

+
(
βij,d − βij,d

)
Yij,d(x)

)
∀ d. (41)

Since αd(x) is a fractional function with a polynomial in
the denominator, it is hard to achieve feasible solutions using
SOSTOOLS. To solve this problem, we first multiply both
sides of (41) by the denominator αd,den(x) of αd(x). Then
(41) will be derived as follows:

p∑
i=1

c∑
j=1

((
(η0.5
ij,d(x))2αd,num + β

ij,d
αd,den(x)

)
Hij(x)

+
(
βij,d − βij,d

)
αd,den(x)Yij,d(x)

)
∀ d. (42)

Thereby, from (38),
∑p
i=1

∑c
j=1 wi(x)mj(x)Hij(x) ≺ 0

is obtained. From (30), IT1 Di(x) + IT1 Ei(x)Kj(x)C �
0 is obtained. Then, in terms of the two inequali-
ties, we have

∑p
i=1

∑c
j=1 wi(x)mj(y)

(
IT1 Ei(x)Kj(x)C +

λT1 Ai(x) + λT2 C
)
≺ 0. By combining (35) with (36), (21)

can be obtained. From (21), the inequality (22) with MFs
wi(x)mj(x) can be obtained. Hence, combining with (32),∑p
i=1

∑c
j=1 wi(x)mj(y)λT Āij(x,y) ≺ 0 can be proved,

which means V̇ (t) < 0. Therefore, when w̃(t) = 0, the
positive L1-gain PFOF control system (6) is asymptotic stable.

From (29) and (30), the positivity of the positive L1-gain
PFOF control system (6) is ensured when w̃(t) = 0.

When w̃(t) 6= 0, we can obtain (23). Firstly, according to
(37), IT1 Eiw − γIT2 + λT B̄iw ≺ 0 is ensured.

Then,
∑p
i=1

∑c
j=1 wi(x)mj(x)

(
IT1 D̃ij(x,y)[In 0] +

λT Āij(x,y)
)

in (23) can be further processed as follows:
p∑
i=1

c∑
j=1

wi(x)mj(x)
(
IT1 D̃ij(x,y)[In 0] + λT Āij(x,y)

)
=

p∑
i=1

c∑
j=1

wi(x)mj(x)

×
[
IT1 D̃ij(x,y) + λT1 Ãij(x,y) + λT2 C −λT2

]
, (43)

where Ãij(x,y) and D̃ij(x,y) can be found in (6).
Through using the same method in Theorem 1 to solve

the non-convex problem, the first term in (43) with MFs
wi(x)mj(x) is derived as

∑p
i=1

∑c
j=1 wi(x)mj(x)Hij(x)

which satisfies the inequalities (40)-(42).
From (38),

∑p
i=1

∑c
j=1 wi(x)mj(x)Hij(x) ≺ 0 is ob-

tained, which implies the first term on the right hand side
of (43) with MFs satisfies:
p∑
i=1

c∑
j=1

wi(x)mj(x)(IT1 D̃ij(x,y) + λT1 Ãij(x,y) + λT2 C) ≺ 0.

Thereby, combining (31), we have:
p∑
i=1

c∑
j=1

wi(x)mj(x)
(
IT1 D̃ij(x,y)[In 0] + λT Āij(x,y)

)
≺ 0.

Due to wi(x)mj(y) ≥ 0, w̃ � 0 and ξ � 0, thereby,
from (23), if there exist optimal γ > 0, λ2, output feedback
gains Kj(x) and slack matrix Yij,d(x) such that (32)-(38)
are feasible, then (26) is obtained. The following derivation
follows the same logic in Theorem 1, and is thus omitted.

As for the positivity, it also follows the same logic in
Theorem 1. Hence, it is omitted.

The proof is done.
Remark 5: To reduce the number of the slack matrices,

Yij(x) = Yij,d(x) is considered, which means Yij,d(x) is
the same matrix for all d.

Remark 6: In Theorem 2, (29)-(30) are positivity conditions
that contribute to control the positivity of the positive L1-gain
PFOF control system (6). The rest conditions (31)-(38) are
stability conditions which are used to guarantee the relaxed
stability under L1-induced performance.

To facilitate the understanding, a summary of the PFOF
controller design and stability analysis is given: 1). Repre-
sent an unstable open-loop positive nonlinear system with
bounded disturbance by a set of polynomial fuzzy subsystems
which are combined by the MFs wi(x). 2). Design a set of
polynomial fuzzy subcontrollers which are combined by the
MFs mj(y). 3). Divide the entire operation domain into D
subdomains and choose the fraction αd(x) as (28). 4). In
accordance of the steps 1-4 of the high degree polynomial
approximation method, calculate the approximated polynomial
function ηij,d(x) and the approximated error ∆ηij,d(x) in each
subdomain. Furthermore, obtain the lower bound β

ij,d
and the
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upper bound βij,d of ∆ηij,d(x) in each subdomain. 5). Set up
the parameters, and acquire the feasible solutions through the
SOSTOOLS based on the corresponding theorems.

IV. SIMULATION EXAMPLE

In this section, the effectiveness and superiority of the
theorems proposed in this paper will be verified from the
following four aspects: 1) How the stability regions vary with
the values of D. 2) How the stability regions change with the
highest degrees of approximated polynomial function η0.5

ij,d(x).
3) How the stability regions are affected by the αd(x). 4)
Compare the stability regions obtained using the method with
the ones obtained using other methods.

A. Scenario

A positive polynomial fuzzy model is shown as follows:

A1(x1) =

[
−0.11 + 0.02a 0.34

0.95 −1.05− x 2
1

]
,

A2(x1) =

[
0.12 0.35 + 0.12x 2

1

0.88 −1.28− x 2
1

]
,

A3(x1) =

[
0.15 0.26 + 0.14x 2

1

0.68 −1.02− x 2
1

]
,

B1(x1) =

[
0.51 + 1.73x 2

1 + 0.1b
1.18

]
,

B2(x1) =

[
2.13 + 2.25x 2

1 + 0.1b
1.24

]
,

B3(x1) =

[
1.65 + 1.39x 2

1 + 0.1b
1.15

]
,

D1(x1) =
[

0.15 + 0.13x 2
1 0.12 + 0.01x 2

1

]
,

D2(x1) =
[

0.16 + 0.12x 2
1 0.16 + 0.01x 2

1

]
,

D3(x1) =
[

0.14 + 0.1x 2
1 0.12 + 0.01x 2

1

]
,

E1(x1) =
[

0.26 + 0.12x 2
1

]
,E2(x1) =

[
0.28 + 0.11x 2

1

]
,

E3(x1) =
[

0.24 + 0.10x 2
1

]
,C =

[
1 0

]
,

Bw1 =

[
0.01
0.01

]
,Bw2 =

[
0.02
0.02

]
,Bw3 =

[
0.01
0.01

]
,

Ew1 =
[

1.36
]
,Ew2 =

[
1.29

]
,Ew3 =

[
1.14

]
,

x = [ x1 x2 ]T , w̃ = κe−t| cos(2t)|

where a and b are constant scalars. The coefficients of the
disturbance are chosen as κ = 1, 2, 3, respectively.

Since the matrices Ai(x1), i ∈ {1, 2, 3} are Metzler matri-
ces, and the rest system matrices satisfy that each element in
these matrices is non-negative, hence, based on the Lemma 1,
the open-loop polynomial fuzzy system is a positive system.

The PPFMB system is with 3 fuzzy rules and the corre-
sponding MFs are chosen as follows: w1(x1) = 1− 1

1+e−(x1−9) ,
w2(x1) = 1 − w1(x1) − w3(x1), w3(x1) = 1

1+e−(x1−11) .
According to the imperfect premise matching concept [21],
the number of the fuzzy rules of the PFOF controller is chosen
as 2 which is different from the number of the rules of the

PPFMB system. The MFs of the PFOF controller are shown
as: m2(x1) = 1−m1(x1),

m1(x1) =


1, for x1 < 2;
−x1+18

16 , for 2 ≤ x1 ≤ 18;
0, for x1 > 18.

B. Settings when Applying Theorems

We choose the whole operating domain as x1 ∈ [0, 20],
ε1 = ε2 = ε3(x1) = ε4 = ε5(x1) = 0.001, the parameters
a ∈ [3, 15] at the interval of 1 and b ∈ [1, 9] at the interval of
1 as well as the highest degree of Yij(x1) to be 0 for checking
the stability regions.

Based on Theorem 1, the basic stability region is obtained,
which is used to compare with the results based on Theorem 2.
And according to Theorem 2, we mainly compare the results
from four aspects: Firstly, when the number of subdomains,
D, is set to different values, how the stability regions change
with D. Secondly, whether different highest degrees of the
approximated polynomial functions will affect the stability
regions. Thirdly, how the fraction αd(x1) impact the stability
regions. Finally, comparing the relaxing method given in this
paper with the previous relaxing method in [36].

C. Effect of Number of Subdomains D

The numbers of subdomains are chosen as D = 1 and
D = 2. Table III shows the details of the division. Recalling
the steps of the high degree polynomial approximation method
and in terms of the ”polyfit” function, the high degree poly-
nomial functions are obtained. Thereinto, the fraction αd(x1)
is chosen as αd(x1) = 10

10−3(x1−x1,dmin
)(x1,dmax−x1)+10 , for

all d. For reference, the approximated polynomial functions
obtained when the highest degree of the polynomial functions
is setting as 3 with the fraction αd(x1) for D = 1 and D = 2
are shown in Table IV. The corresponding approximated errors
are displayed in Table V. Finally, in terms of Theorem 1 and
Theorem 2, the corresponding stability regions are obtained.

In order to show the influence of the number of subdomains
D for stability regions, we mainly compare the results in the
following cases. Case 1: the highest degree of the polyno-
mial functions is set as 3 without the fraction αd(x1), then
comparing the stability regions for D = 1 and D = 2. Case
2: the highest degree of the polynomial functions is set as
5 without the fraction αd(x1), then comparing the stability
regions for D = 1 and D = 2. Case 3: the highest degree of
the polynomial functions is set as 3 with the fraction αd(x1),
then comparing the stability regions for D = 1 and D = 2.
Case 4: the highest degree of the polynomial functions is set
as 5 with the fraction αd(x1), then comparing the stability
regions for D = 1 and D = 2.

From Figs. 2 to 5, it can be seen that when the fraction
αd(x1) is removed/considered and the highest degrees of the
polynomial functions keep the same, the stability regions based
on D = 2 are larger than the ones based on D = 1. Taking
the stability regions in Fig. 5 for example, the two stability
regions belong to Case 4. It is distinct that the stability region
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for D = 1 ( “×”) is smaller than the one for D = 2 ( “+”).
From what has been discussed above, we may safely draw the
conclusion that the number of the subdomains is larger, the
stability region is more extensive.

Besides, the stability region obtained by Theorem 1 also is
shown in Fig. 2 (“◦”). From the comparison of these stability
regions in Fig. 2, it comes to a conclusion that the stability
regions obtained by Theorem 2 are larger than the one obtained
by Theorem 1. The results confirm that the information of MFs
is greatly helpful to relax the stability analysis.

D. Effect of the Degrees of Polynomial Functions

For showing how the highest degrees of polynomial func-
tions affect the relaxed stability regions, the following cases
are considered. Case 1: the number of subdomains is chosen
as D = 1, when the fraction αd(x1) is removed, comparing
the stability region for the highest degree of the polynomial
functions being 3 with the one for the highest degree of
the polynomial functions being 5. Case 2: the number of
subdomains is chosen as D = 2, when the fraction αd(x1)
is removed, comparing the stability region for the highest
degree of the polynomial functions being 3 with the one for
the highest degree of the polynomial functions being 5. Case
3: the number of subdomains is chosen as D = 1, when the
fraction αd(x1) is considered, comparing the stability region
for the highest degree of the polynomial functions being 3 with
the one for the highest degree of the polynomial functions
being 5. Case 4: the number of subdomains is chosen as
D = 2, when the fraction αd(x1) is considered, comparing
the stability region for the highest degree of the polynomial
functions being 3 with the one for the highest degree of the
polynomial functions being 5.

Through comparing the stability regions in Fig. 2 with the
stability regions in Fig. 3, or selecting the stability regions
in Fig. 4 and the stability regions in Fig. 5 for compar-
ison, it serves to show that when the fraction αd(x1) is
removed/considered and the number of subdomains D remains
the same, the stability regions obtained by setting the highest
degree of polynomial functions as 3 are smaller than the ones
obtained by setting the highest degree of polynomial functions
as 5. For instance, picking out the stability region (“�”) in
Fig. 4 and the stability region (“+”) in Fig. 5 to satisfy
Case 4. By comparing the two stability regions, we can see
that the stability region ( “�”) is smaller than the stability
region (“+”), which means the higher degrees of polynomial
functions will lead to more relaxed results.

E. Effect of the Fraction αd(x1)

In the following, we will analyze the influence of the
fraction αd(x1) for stability regions in four cases. Case 1:
the number of the subdomains is D = 1 and the highest
degree of the polynomial functions is set as 3, then comparing
the stability region obtained without considering the fraction
αd(x1) with the one obtained with considering the fraction
αd(x1). Case 2: the number of the subdomains is D = 1 and
the highest degree of the polynomial functions is set as 5, then
comparing the stability region obtained without considering
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Fig. 2. Stability region given by The-
orem 2 when the highest degree of
polynomial functions is setting as 3
without αd(x1) for D = 1 (“×”) and
D = 2 (“+”). And the stability region
given by Theorem 1 (“◦”).
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Fig. 3. Stability region given by The-
orem 2 when the highest degree of
polynomial functions is setting as 5
without αd(x1) for D = 1 (“�”) and
D = 2 (“×”).
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Fig. 4. Stability region given by The-
orem 2 when the highest degree of
polynomial functions is setting as 3
with αd(x1) for D = 1 (“∗”) and
D = 2 (“�”).
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Fig. 5. Stability region given by The-
orem 2 when the highest degree of
polynomial functions is setting as 5
with αd(x1) for D = 1 (“×”) and
D = 2 (“+”).

the fraction αd(x1) with the one obtained with considering
the fraction αd(x1). Case 3: the number of the subdomains is
D = 2 and the highest degree of the polynomial functions is
set as 3, then comparing the stability region obtained without
considering the fraction αd(x1) with the one obtained with
considering the fraction αd(x1). Case 4: the number of the
subdomains is D = 2 and the highest degree of the polynomial
functions is set as 5, then comparing the stability region
obtained without considering the fraction αd(x1) with the one
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Fig. 6. Stability regions given when
the highest degree of polynomial func-
tions is setting as 2 without the bound-
ary information of the state variables
for D = 4 by using the relaxed
method in [36] (“×”) and by using
Theorem 2 in this paper (“�”).
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Fig. 7. Stability region given when
the highest degree of polynomial func-
tions is setting as 2 with the boundary
information of the state variables for
D = 4 (“+”) by using the relaxed
method in [36] and by using Theorem
2 in this paper (“�”).
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Fig. 8. Time responses of the states
x1 and x2 for stability point (10, 8)
represented as (“×”) in Fig. 1 with
different κ.
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Fig. 9. Time responses of the states
x1 and x2 for stability point (4, 7)
represented as (“+”) in Fig. 1 with
different κ.
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Fig. 10. Time responses of the states
x1 and x2 for stability point (5, 2)
represented as (“�”) in Fig. 2 with
different κ.
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Fig. 11. Time responses of the states
x1 and x2 for stability point (4, 1)
represented as (“×”) in Fig. 2 with
different κ.
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Fig. 12. Time responses of the states
x1 and x2 for stability point (9, 6)
represented as (“∗”) in Fig. 3 with
different κ.

T ime (sec)
0 2 4 6 8 10 12 14 16 18 20

x
1
/
x
2

0

0.003

0.006

0.009

0.012

0.015

κ = 3, x2

κ = 3, x1

κ = 2, x1

κ = 2, x2

κ = 1, x1

κ = 1, x2

Fig. 13. Time responses of the states
x1 and x2 for stability point (7, 9)
represented as (“�”) in Fig. 3 with
different κ..
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Fig. 14. Time responses of the states
x1 and x2 for stability point (3, 9)
represented as (“×”) in Fig. 4 with
different κ.
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Fig. 15. Time responses of the states
x1 and x2 for stability point (10, 5)
represented as (“+”) in Fig. 4 with
different κ.
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Fig. 16. Time responses of the states
x1 and x2 for stability point (3, 1)
represented as (“×”) in Fig. 5 with
different κ.
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Fig. 17. Time responses of the states
x1 and x2 for stability point (14, 9)
represented as (“�”) in Fig. 5 with
different κ.
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Fig. 18. Time responses of the states
x1 and x2 for stability point (11, 6)
represented as (“+”) in Fig. 6 with
different κ.
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Fig. 19. Time responses of the states
x1 and x2 for stability point (9, 4)
represented as (“�”) in Fig. 6 with
different κ.

obtained with considering the fraction αd(x1).
Based on the four cases, it reveals that when highest degrees

of polynomial functions are set as the same and the numbers of
subdomains D remain the same, the stability regions obtained
without considering αd(x1) are smaller than the ones obtained
with considering αd(x1). For example, the stability region
(“×”) in Fig. 3 and the stability region (“+”) in Fig. 5 are
chosen for comparison and the results show that the stability
region (“×”) is smaller than the stability region (“+”), which
means αd(x1) is in favour of extending the stability regions.

F. Comparison with Other Results

For comparing with the approximated method in [36], we
will discuss the results in two cases. Case 1: setting the number
of subdomains as D = 4 and the highest degree of the
approximated polynomial functions as 2 without considering
the boundary information of the state variables, comparing the
stability region obtained by using the approximated method in
this paper with the one obtained by using the approximated
method in [36]. Case 2: setting the number of subdomains as
D = 4 and the highest degree of the approximated polynomial
functions as 2 with considering the boundary information of
the state variables, comparing the stability region obtained by
using the approximated method in this paper with the one
obtained by using the approximated method in [36].

For case 1, the stability regions are shown in Fig. 6. For case
2, the stability regions are shown in Fig. 7. Through comparing
the two sets of stability regions, it arrives at a conclusion that
the method in this paper can generate better relaxation effect
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than the method in [36] no matter the boundary information
of the state variables is taken into account or not.

It is worth mentioning that both of the bounded disturbance
and the L1-induced performance were not considered in [36],
whereas, both of the them are considered in this paper.
Thereby, only the approximated method but not the whole
Theorem 2 in [36] is used for comparison.

G. Time Response of the System State Variables

For different stability points in different stability regions, the
corresponding time responses of the system state variables x1

and x2 are checked in this section. Considering the limitation
of the length of the article, only one stability point (a, b) in
each stability region is picked out for testing. In Fig. 2, the
chosen stability point are a = 10, b = 8 (“×”) and a = 4, b =
7 (“+”), respectively. In Fig. 3, the chosen stability point are
a = 5, b = 2 (“�”) and a = 4, b = 1 (“×”), respectively.
In Fig. 4, the chosen stability point are a = 9, b = 6 (“∗”)
and a = 7, b = 9 (“�”), respectively. In Fig. 5, the chosen
stability point are a = 3, b = 9 (“×”) and a = 10, b = 5
(“+”), respectively. In Fig. 6, the chosen stability point are
a = 3, b = 1 (“×”) and a = 14, b = 9 (“�”). In Fig. 7,
the chosen stability point are a = 11, b = 6 (“+”) and a =
9, b = 4 (“�”). The Corresponding feedback gain matrices
Kj of these stability points are obtained and shown in Table
VI. In addition, for the sake of verifying the influence of the
bounded disturbance on the stability of the positive L1-gain
PFOF control system, we set the coefficients of the disturbance
as κ = 1, 2, 3, respectively. The time responses have been
shown from Fig. 8 to Fig. 19.

According to the time responses from Fig. 8 to Fig. 19, it
demonstrates that the positive L1-gain PFOF control system
can be stabilized succesfully, meanwhile, the positivity and
the optimal L1 performance index can be guaranteed as well.
Furthermore, the smaller the parameter κ of the disturbance,
the faster the time responses converge to 0. Hence, the control
effect is better with smaller parameter κ of the disturbance.

V. CONCLUSION

This paper has investigated the PFOF controller design and
the stability and positivity analysis of the positive L1-gain
PFOF control system using SOS-based method. For dealing
with the non-convex problem, some constraint conditions
and mathematical skills have been employed. Although the
introduction of the constraint conditions may lead to a certain
degree of conservativeness, this method makes it easier to
approximate the non-convex stability conditions and positivity
conditions by convex ones simultaneously. Besides, in order
to reduce the conservatism of the stability analysis, the high
degree polynomial approximation method has been adopted to
extract the information embedded in MFs. A simulation exam-
ple has been given to illustrate the feasibility and effectiveness
of the analysis results.
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Responses to the Reviewer 1’s comments and questions for the paper en-
titled “Membership-Function-Dependent Design of L1-Gain Out-
put Feedback Controller for Stabilization of Positive Polynomial
Fuzzy Systems” with Paper No.: TFS-2020-0730.

We would like to express our sincere gratitude to you for valuable and con-
structive comments. Our responses are as follows.

Comment 1
This paper mainly aims at positive polynomial fuzzy systems and the polyno-
mials functions are of n-degree. If we consider the function x(t) = [x0(t)...xn−1(t)]
in f1(x(t)), and x(t) = [xn(t)...x2n−1(t)] in f2(x(t)), the same conclusion in
the part of the fuzzy controller design can be drawn?

Response 1
Yes, the same conclusion in the part of the fuzzy controller can be obtained.
If we use the function as the reviewer mentioned, the dimension of the state
variables will be extended, but the expression of the polynomial fuzzy model
is invariant, in other words, the analysis does not limit the degrees of the
fuzzy controller and which state variables it depends on. Therefore, we can
draw the same conclusion.

Comment 2
Please state the assumptions in this paper. They must be clear in order to
make the readers understand this paper better.

Response 2
The authors would like to thank the reviewer for this comment. The following
assumptions have been added to the revised paper.

Assumption 1 There exists nonlinear systems with disturbance which can
be approximated by the polynomial fuzzy model (2) satisfying the conditions
in Lemma 1.

Assumption 2 The disturbance signal w̃(t) � 0 is bounded.

The above assumptions are added on the right column, lines 25-28, page 3
of the revised paper.

Comment 3
How fuzzy logic is helpful here?

Response 3
In this paper, we assume that the polynomial fuzzy model of a complex non-
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linear positive system has been obtained based on the fuzzy logic. Thereby,
we directly use the polynomial fuzzy model of a complex nonlinear positive
system in this paper. Because the focus of us is not mainly on how to use
fuzzy logic to deal with a nonlinear system but on how to realize the stabil-
ity and positivity analysis based on fuzzy models. Therefore, how to use the
fuzzy logic to obtain positive polynomial fuzzy models and to design fuzzy
controllers is not considered.

Comment 4
What about the conservatism of the analysis results? Please discuss it.

Response 4
The authors would like to thank the reviewer for the comment. we have
discussed the conservatism in the Remark 3 in the revised paper, the details
are shown as follows:

Remark 3: Although the convex method given in our paper will introduce a
certain degree of conservativeness, this method makes it easier to transform
the non-convex stability conditions and positivity conditions into convex ones
simultaneously, which means the non-convex problem can be dealt with skill-
fully. In order to alleviate the conservativeness, in the following, a high degree
polynomial approximation method will be introduced so that the information
embedded in MFs can be found and introduced into stability conditions.

The changes can be found on the right column, lines 44-52, page 5 of the
revised paper.

Comment 5
In my opinion, for (31), (32), (33), (43), they should be just for any “d”
instead of any “i, j, d” because there are two sets of summation symbols for
i and j.

Response 5
The authors would like to thank the reviewer for the comment. The expres-
sions (31), (32), (33) and (43) in previous version have been changed as (40),
(41), (42) and (38), respectively, in the revised paper. As suggested by this
reviewer, we have revised “∀i, j, d” as “∀d” in these expressions.

Comment 6
What is the whole operating domain in the simulation section? Please give
the scope of the whole operating domain in the simulation.

Response 6
The authors would like to thank the reviewer for the comment. We have
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added the sentence “We choose the whole operating domain as x1 ∈ [0, 20],”
into the simulation so that the whole operating domain is clear for readers.

The change can be found on the right column, line 11, page 8 of the revised
paper.

Comment 7
The following reference should be updated to enrich the background, such as
10.1109/TFUZZ.2020.2999746, 10.1109/TFUZ Z.2020.2982618.

Response 7
The authors would like to thank the reviewer for the comment. We have
cited these papers as reference [7] and [8] in the revised paper.

The changes can be found in the right column, line 16, page 1 of the revised
paper.

Comment 8
Please add the advantages and limitations of proposed approach in the con-
clusion.

Response 8
The authors would like to thank the reviewer for the comment. We have
added advantages and limitations of the proposed approach in the conclusion.
The details are shown as follows:

This paper has investigated the PFOF controller design and the stability
and positivity analysis of the positive L1-gain PFOF control system using
SOS-based method. For dealing with the non-convex problem, some con-
straint conditions and mathematical skills have been employed. Although
the introduction of the constraint conditions may lead to a certain degree of
conservativeness, this method makes it easier to approximate the non-convex
stability conditions and positivity conditions by convex ones simultaneously.
Besides, in order to reduce the conservatism of the stability analysis, the
high degree polynomial approximation method has been adopted to extract
the information embedded in MFs. A simulation example has been given to
illustrate the feasibility and effectiveness of the analysis results.

The changes can be found in the left column lines 42-51, page 11 of the
revised paper.

5

Page 18 of 58IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Responses to the Reviewer 2’s comments and questions for the paper en-
titled “Membership-Function-Dependent Design of L1-Gain Out-
put Feedback Controller for Stabilization of Positive Polynomial
Fuzzy Systems” with Paper No.: TFS-2020-0730.

We would like to express our sincere gratitude to you for valuable and con-
structive comments. Our responses are as follows.

Comment 1
Compared with the authors’ previous work, the non-convex problem is trans-
formed into a convex one via the inequality (16). While the conservatism of
such a simple inequality cannot be evaluated.

Response 1
The authors would like to thank the reviewer for the comment. We agree with
you that the introduction of the constraint conditions will lead to a certain
degree of conservativeness, but as we all known that converting non-convex
stable conditions and positive conditions to convex conditions simultaneously
is very difficult since most of the convex methods are just for general systems
and there are no positivity constrains for general systems. When positivity
constrains are taken into consideration, those convex methods for general
systems may not be able to work. In addition, the convexification is prob-
lem dependent, which means the convexificiation method from one paper
may not be able to be applied to other non-convex problems, therefore, it
is a hard task to find a proper method to deal with the non-convex prob-
lem so that the stability conditions and positivity conditions can be ensured
to be convex simultaneously. In our paper, the first task is to find a proper
method to transform the non-convex conditions into convex ones. After solv-
ing this tricky problem, the second task is to reduce the conservativeness by
employing membership-function-dependent techniques. Therefore, although
the convex method in our paper will bring some conservatism, the high degree
polynomial approximation method can effectively relax the conservativeness.
To clarify the concern, we have discussed it in Remark 3. The details are
shown as follows:

Remark 3: Although the convex method given in our paper will introduce a
certain degree of conservativeness, this method makes it easier to transform
the non-convex stability conditions and positivity conditions into convex ones
simultaneously, which means the non-convex problem can be dealt with skill-
fully. In order to reduce the conservativeness, in the following, a high degree
polynomial approximation method will be introduced so that the information
embedded in MFs can be found and introduced into stability conditions.
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The changes can be found on the right column, lines 44-52, page 5 of the
revised paper.

Comment 2
As for the so-called second difficulty, the High Degree Polynomial Approxi-
mation Method has also been used in the existing results, please clarify the
contribution of the paper.

Response 2
The authors would like to thank the reviewer for the comment. We agree
with you that the High Degree Polynomial Approximation Method has been
used in the existing results, but it was proposed in recent years, which means
this approach is still not very mature and there is still a lot of room for im-
provement. Therefore, based on this idea, we firstly divide the whole operate
domain into several sub-domains, and then the cross terms of wi(x)mj(x) in
each sub-domain are approximated by high degree approximation polynomi-
als. Different from the existed membership function-dependent methods, in
our paper, the information of state variables are used for relaxing the sta-
bility analysis by introducing it into the high degree polynomial functions
instead of through a slack matrix to introduce it into the stability analysis,
which is help to reduce the calculation burden. This idea can be found in
the equality (28) in the revised paper, which also is shown as follows:

αd(x) =
f

g(x− xdmin
)(xdmax − x) + s

,∀ d,

where f > 0, g > 0 and s > 0 are predefined scalars. xdmin
and xdmax are the

lower bound and upper bound of the state variables x in each subdomain.
It can be seen that αd(x) > 0 when the state variables x belong to the d-th
subdomain.

To verify the effect of the boundary information of the state variables, we
have analyzed the influence of the fraction αd(x) for relaxing stability regions
in four cases in Section IV-E. The details are shown as follows:

Case 1: the number of the subdomains is D = 1 and the highest degree
of the polynomial functions is set as 3, then comparing the stability region
obtained without considering the fraction αd(x1) with the one obtained with
considering the fraction αd(x1). Case 2: the number of the subdomains
is D = 1 and the highest degree of the polynomial functions is set as 5,
then comparing the stability region obtained without considering the fraction
αd(x1) with the one obtained with considering the fraction αd(x1). Case 3: the
number of the subdomains is D = 2 and the highest degree of the polynomial
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functions is set as 3, then comparing the stability region obtained without
considering the fraction αd(x1) with the one obtained with considering the
fraction αd(x1). Case 4: the number of the subdomains is D = 2 and the
highest degree of the polynomial functions is set as 5, then comparing the
stability region obtained without considering the fraction αd(x1) with the one
obtained with considering the fraction αd(x1).

a

3 5 7 9 11 13 15

b

1

2

3

4

5

6

7

8

9

Fig 1. Stability region given by Theorem 2 when the highest degree of polynomial functions

is setting as 3 without αd(x1) for D = 1 (“×”) and D = 2 (“+”). And the stability region

given by Theorem 1 (“◦”).
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b
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9

Fig 2. Stability region given by Theorem 2 when the highest degree of polynomial functions

is setting as 3 with αd(x1) for D = 1 (“∗”) and D = 2 (“�”).
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Fig 3. Stability region given by Theorem 2 when the highest degree of polynomial functions

is setting as 5 without αd(x1) for D = 1 (“�”) and D = 2 (“×”).
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Fig 4. Stability region given by Theorem 2 when the highest degree of polynomial functions

is setting as 5 with αd(x1) for D = 1 (“×”) and D = 2 (“+”).

Based on the obtained stability regions, it reveals that when highest degrees
of polynomial functions are set as the same and the numbers of subdomains
D remain the same, the stability regions obtained without considering αd(x1)
are smaller than the ones obtained with considering αd(x1). For example, the
stability region (“×”) in Fig. 3 and the stability region (“+”) in Fig. 4 are
chosen for comparison and the results show that the stability region (“×”)
is smaller than the stability region (“+”), which means αd(x1) is in favour of
extending the stability regions.

Besides, to the best of our knowledge, this approach has not been employed
to study the relaxation of the stability analysis for positive polynomial fuzzy
systems, which encourages us to carry out this work.

Finally, we also add some content in the Introduction to clarify the main
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contributions of this paper. The details are shown as follows:

“Aiming at dealing with the above issues, the main contributions are made
and summarized as follows:

1) For dealing with the non-convex conditions, the augmented vector method
is employed to construct an augmenting system of positive L1-gain PFOF
control system. Then, through introducing some constraint conditions and
using some mathematical skills, the non-convex stability and positivity con-
ditions are approximated by convex ones simultaneously.

2) For reducing the conservativeness of the analysis results, a high degree
polynomial approximation method is adopted to approximately express the
original MFs so that the valuable information of MFs helps to derive the re-
laxed stability conditions. Different from other MFD methods, in our paper,
the information of the boundary information of state variables is used for
relaxing the stability analysis by introducing it into the high degree polyno-
mial functions instead of by introducing a slack matrix, which help reduce
the calculation burden.”

The changes can be found on the right column, lines 28-45, page 2 of the
revised paper.

Comment 3
So many acronyms are used in the paper, which reduce the readability.

Response 3
The authors would like to thank the reviewer for the comment. As suggested
by the reviewer, we have deleted some acronyms and summarized the rest
acronyms in Table I to improve the readability of this paper. The details are
shown as follows:

1. ”LMI” is replaced by ”linear-matrix-inequality”.

2. ”IMP” is replaced by ” imperfect premise matching”.

3. ”LP” is replaced by ” linear programming”.

4. ”LKF” is replaced by ”Lyapunov-Krasovskii functional”.
Table I Description of the Acronyms

Acronyms Explanation Acronyms Explanation
T-S Takagi-Sugeno MFD membership-function-dependent
SOS sum-of-squares PPFMB positive polynomial fuzzy-model-based
MFs membership functions PFOF polynomial fuzzy output feedback

These changes can be found on the pages of 1-3.
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Comment 4
Some related references are missing.

Response 4
The authors would like to thank the reviewer for the comment. As suggested
by the reviewer, we have cited more references in the revised paper. For
example, the reference [1], [2], [7], [8], [9], [10] in the revised paper.

[1] D. G. Luenberger, Introduction to dynamic systems: Theory, models and
applications. John Wiley and Sons, 1979.

[2] V. D. Hof and M. J., Positive linear observers for linear compartmental
systems, Siam Journal on Control and Optimization, vol. 36, no. 2, pp.
590C608, 1998.

[7] H. Liang, X. Guo, Y. Pan, and T. Huang, Event-triggered fuzzy bipar-
tite tracking control for network systems based on distributed reduced-order
observers(revised manuscript of tfs-2019-1049), IEEE Transactions on Fuzzy
Systems, pp.1-1, 2020.

[8] Y. Pan, P. Du, H. Xue, and H.-K. Lam, Singularity-free fixed-time fuzzy
control for robotic systems with user-defined performance, IEEE Transac-
tions on Fuzzy Systems, pp.1-1, 2020.

[9] M. Xue, Y. Tang, W. Ren, and F. Qian, “Practical output synchro-
nization for asynchronously switched multi-agent systems with adaption to
fast-switching perturbations, Automatica, vol. 116, no. 108917, Jun. 2020.

[10] Y. Tang, X.Wu, P.Shi, and F. Qian, “Input-to-state stability for non-
linear systems with stochastic impulses, Automatica, vol. 113, p. 108766,
2020.
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Responses to the Reviewer 3’s comments and questions for the paper en-
titled “Membership-Function-Dependent Design of L1-Gain Out-
put Feedback Controller for Stabilization of Positive Polynomial
Fuzzy Systems” with Paper No.: TFS-2020-0730.

We would like to express our sincere gratitude to you for valuable and con-
structive comments. Our responses are as follows.

Comment 1
However, there are a number of results about the issues of positive systems,
polynomial fuzzy systems, output feedback control, L1-gain analysis, SOS
methods, and etc. This paper is a simple permutation and combination of
these issues and considered in a general without a profound contribution.
Therefore, it might not be suitable for the journal.

Response 1
The authors would like to thank the reviewer for the comment. Although
there are a number of results about the issues of positive systems, polynomial
fuzzy systems, output feedback control, L1-gain analysis, SOS methods, but
when considering these topics together, the difficulty will be vastly increased,
the main reasons are as follows:

Firstly, the positivity constrains of positive systems will make the non-convex
problem harder to be solved because in this case, we not only need to ensure
the stability conditions to be convex conditions, but also need to ensure the
positivity conditions to be convex conditions simultaneously, which will di-
rectly lead to the fact that many existing convex methods for general systems
are not applicable to positive systems. Besides, convexification is problem
dependent, which means a convex method from one paper may not be able
to be applied to other non-convex problems.

Secondly, since polynomial fuzzy models can express more complexity non-
linear systems than T-S fuzzy models, hence, we study the positive nonlinear
systems through the polynomial fuzzy models in our paper. But the existence
of the polynomials in the polynomial fuzzy systems will make the stability
analysis and controller design very challenging, especially, when solving the
non-convex problem, if the inverse matrices are used in a convex method
to facilitate the stability analysis, then such a method may not be able to
cope with the non-convex problem for polynomial fuzzy systems due to the
existence of the polynomials in matrices. In addition, L1-gain output feed-
back control will further make the stability and positivity analysis difficult
because the number of non-convex terms will be increased. The more non-
convex terms there are, the more complex the problem becomes.
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Thirdly, although there are some membership-function-dependent methods
to relax the conservatism of the stability analysis for general systems, few re-
searchers apply these methods to the stability analysis of positive polynomial
fuzzy systems. Moreover, different from these existed membership-function-
dependent methods, in our paper, the information of state variables are used
for relaxing the stability analysis by introducing it into the high degree poly-
nomial functions instead of by introducing a slack matrix, which is help to
reduce the calculation burden.

Based on the above analysis, the work in our paper is not just a simple
permutation and combination of these topics. We need to take all of these
problems into account when this paper is investigated.

Comment 2
This is a well-written conference paper, and in this shape even if rejected
from another IEEE journal, can be resubmitted to the conference series of
adequate scope.

Response 2
The authors would like to thank the reviewer for the comment. In order
to clarify the difficulties and contributions of this paper, we have added the
following content into the revised paper. The details are shown as follows:

“On the basis of the above analysis, we need to focus on cracking the fol-
lowing hard nuts. Firstly, as we all known that converting non-convex stable
conditions and positive conditions to convex conditions simultaneously is
very difficult since most of the convex methods are just for general systems
and there are no positivity constrains for general systems. When positivity
constrains are taken into consideration, those convex methods for general
systems may not be able to work, hence, the non-convex problem will be-
come very tricky to be solved. In addition, the convexification is problem
dependent, which means the convexificiation method from one paper may
not be able to be applied to other non-convex problems, therefore, it is a
hard task to find a proper method to deal with a non-convex problem. Sec-
ondly, the introduction of some constrain conditions and the absence of the
information of MFs will lead to strong conservatism of the stability analysis
results. How to obtain relaxed stability analysis results is still an open prob-
lem that is worth working on. Aiming at dealing with the above issues, the
main contributions are made and summarized as follows:

1) For coping with the non-convex conditions, the augmented vector method
is employed to construct an augmenting system of positive L1-gain PFOF
control system. Then, through introducing some constraint conditions and
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mathematical skills, the non-convex stability and positivity conditions are
approximated by convex ones simultaneously.

2) For reducing the conservativeness of the analysis results, a high degree
polynomial approximation method is adopted to approximately express the
original MFs so that the valuable information of MFs helps to derive the re-
laxed stability conditions. Different from other MFD methods, in our paper,
the information of the boundary information of state variables is used for
relaxing the stability analysis by introducing it into the high degree polyno-
mial functions instead of by introducing a slack matrix, which help reduce
the calculation burden.”

The changes can be found on the left column, lines 51-59 and the right
column, lines 17-45, page 2 of the revised paper.

To verify the effectiveness and superiority of the theorems proposed in this
paper, a numerical simulation has been done and the results have been dis-
cussed from the following four aspects: 1) How the stability regions vary with
the values of D. 2) How the stability regions change with the highest degrees
of approximated polynomial function η0.5ij,d(x). 3) How the stability regions
are affected by the αd(x). 4) Compare the stability regions obtained using the
method with the ones obtained using other methods. In addition, for each
of the aspects, we analyze and compare the simulation results from different
cases. To further check the correctness of the results, the time responses of
some stability points have been tested as well. The results indicates that
the asymptotic stability and positivity of the positive L1-gain PFOF control
system can be guaranteed, meanwhile, the optimal L1 performance index can
be satisfied as well.

Therefore, considering the results and contributions, we would like to have a
try to resubmit this paper to the IEEE transaction on Fuzzy Systems. After
seriously revising and improving, we hope this revision now meets the expec-
tation of the reviewer, and is suitable for publication in IEEE Transactions
on Fuzzy Systems.

Comment 3
The abstract is organized not well and the writing idea is also not clear, such
that the readers face difficulty in understanding the presented points. Thus,
the abstract can be reorganized carefully.

Response 3
As suggested by the reviewer, we have revised the abstract in the revised
paper. The details are shown as follows:
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This paper presents the L1-gain polynomial fuzzy output feedback controller
design and the stability analysis using sum-of-squares (SOS) approach for
positive polynomial fuzzy-model-based (PPFMB) control systems. The poly-
nomials, positivity and optimal L1 performance makes some existing convex
methods for general systems inapplicable. To overcome this problem, an
augmented system of the positive polynomial fuzzy-model-based control sys-
tem is first constructed, then by introducing some constrain conditions and
mathematical techniques, the non-convex stability and positivity conditions
are skillfully transformed into convex ones simultaneously. In addition, to
control the systems flexibly and lower the implementation cost, the imper-
fect premise matching concept is taken into account for controller design.
Besides, the high degree polynomial approximation method is adopted to
conduct stability and positivity analysis by incorporating the information
of membership functions (MFs) and the boundary information of the state
variables. On the basis of the Lyapunov stability theory, the relaxed stability
and positivity conditions in terms of SOS are obtained. Finally, a simulation
example is presented to verify the feasibility of the theoretical results.

The changes can be found on the left column, lines 14-40, page 1 of the
revised paper.

Comment 4
As mentioned above, the research points and methods studied in this paper
have basically been solved and the contribution is relatively weak. The main
results obtained are standard and not novel in essential.

Response 4
The authors would like to thank the reviewer for the comment. To our best
knowledge, most of the work related to the L1-gain control are for positive
linear systems and positive switched systems, such as the references [R1]-
[R3], but there are still no papers considering the L1-gain control for positive
polynomial fuzzy systems with disturbance. Besides, since the polynomial
fuzzy-model-based technique is still on the start-up stage, hence, the relevant
results on positive nonlinear systems in terms of polynomial fuzzy models
are relatively few, moreover, most of the results are from our team. As for
the L1-gain static output control for positive polynomial fuzzy systems with
disturbance, the related researches results are fewer.

In addition, as we all know that converting non-convex stable conditions and
positive conditions to convex conditions simultaneously is very challenging
since most of the convex methods are just for general systems and there are
no positivity constrains for general systems. When positivity constrains are
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taken into consideration, those convex methods for general systems may be
inapplicable. In addition, the convexification is problem dependent, which
means the convex method from one paper may not be able to be applied
to other non-convex problems, therefore, it is a hard task to find a proper
method to deal with a non-convex problem. In our paper, by introduc-
ing some constrain conditions and mathematical techniques, the non-convex
stability conditions and positivity conditions have been approximated into
convex ones simultaneously, which means the non-convex problem have been
dealt with skillfully.

Furthermore, in order to reduce the conservativeness, in our paper, a high
degree polynomial approximation method is introduced so that the informa-
tion embedded in MFs can be found and introduced into stability conditions.
Based on this idea, we not only approximate the cross terms of wi(x)mj(x) by
high degree approximation polynomials but also try to introduce the bound-
ary information of the state variables into the high degree polynomials at the
same time. This idea can be found in the equality (28) in the revised paper,
which also is shown as follows:

αd(x) =
f

g(x− xdmin
)(xdmax − x) + s

,∀ d,

where f > 0, g > 0 and s > 0 are predefined scalars. xdmin
and xdmax are the

lower bound and upper bound of the state variables x in each subdomain.
It can be seen that αd(x) > 0 when the state variables x belong to the d-th
subdomain.

To verify the effect of the boundary information of the state variables, we
have analyzed the influence of the fraction αd(x) for relaxing stability regions
in four cases, please refer to the details in Section IV-E in the revised paper.

Finally, we also add some content in the Introduction to clarify the main
contributions of this paper. The details are shown as follows:

“Aiming at dealing with the above issues, the main contributions are made
and summarized as follows:

1) For dealing with the non-convex conditions, the augmented vector method
is employed to construct an augmenting system of positive L1-gain PFOF
control system. Then, through introducing some constraint conditions and
using some mathematical skills, the non-convex stability and positivity con-
ditions are approximated by convex ones simultaneously.

2) For reducing the conservativeness of the analysis results, a high degree
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polynomial approximation method is adopted to approximately express the
original MFs so that the valuable information of MFs helps to derive the re-
laxed stability conditions. Different from other MFD methods, in our paper,
the information of the boundary information of state variables is used for
relaxing the stability analysis by introducing it into the high degree polyno-
mial functions instead of by introducing a slack matrix, which help reduce
the calculation burden.”

The changes can be found on the right column, lines 28-45, page 2 of the
revised paper.

[R1] M Xiang, Z Xiang. Stability. L1-gain and control synthesis for pos-
itive switched systems with time-varying delay, Nonlinear Analysis Hybrid
Systems, 2013, 9:9-17.

[R2] Y Ebihara, D Peaucelle, and D Arzelier. Optimal L1-controller syn-
thesis for positive systems and its robustness properties, American Control
Conference (ACC), 2012. IEEE, 2012.

[R3] J Zhang, Z Han, and F Zhu. L1-gain analysis and control synthesis of
positive switched systems. Taylor and Francis, 2015, 46(12):2111-2121.

Comment 5
The difficulties of handling the problem of fuzzy L1-gain output feedback
control for positive polynomial fuzzy systems should be highlighted. Are
these difficulties essential?

Response 5
As suggested by the reviewer, we have highlighted the difficulties and the
contributions in the Introduction of the revised paper. The details have been
shown in the response to Comment 2, please refer to it.

In addition, the reasons for why these difficulties are essential are listed as
follows: Firstly, in our paper, the obtained initial stability conditions are non-
convex, which cannot be solved by using SOSTOOLS directly. Therefore, it is
essential to transform the non-convex conditions into convex ones. Moreover,
not only does stability for positive systems need to be guaranteed, but also
positivity needs to be guaranteed, so when we deal with non-convex stability
conditions, the convexification of positivity conditions should be taken into
account as well, which makes the non-convex problem more tricky.

Secondly, when stability conditions are derived without considering mem-
bership functions, the obtained feasible solutions are suitable for any type
of membership functions. However, for a specific positive system, it only

17

Page 30 of 58IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



needs to find the feasible solutions under specific membership functions. So
the lack of the information of membership functions will lead to conservative
results. But introducing the original membership functions into the stability
analysis directly not only complicates the analysis process, but also makes it
impossible for the SOSTOOLS to deal with this kind of stability conditions
because original membership functions generally are not the Sum-of-Squares
form. Therefore, how to capture the information of membership functions
and introduce it into the stability analysis is also essential and meaningful.

Comment 6
What is the practical significance of studying the positive polynomial fuzzy
systems in this paper? The authors can combine the actual application
examples for specific analysis in the Simulation Examples.

Response 6
The authors would like to thank the reviewer for the comment. As mentioned
in our paper, many practical models of positive systems exist in a variety of
disciplines, for example, the field of biology, the area of pharmacokinetic, the
aspect of ecology, and so on. In order to highlight the practical significance of
studying positive systems, we add some relevant content in the Introduction
in the revised paper and give an example with a real system in the following.

“Positive systems, whose state variables and outputs always remain in the
non-negative quadrant if both of the initial conditions and input are non-
negative, are often encountered in real-world applications [1]-[3]. A great
deal of practical models of such systems exist in a variety of disciplines, for
example, the control of the cortisol level within the hypothalamic-pituitary-
adrenal gland axis in the field of biology, the human immunodeficiency virus
viral mutation dynamics in the area of pharmacokinetic, the prey-predator
model in the aspect of ecology, and the concentration of substances in chem-
ical processes and so on [4]-[6]. As positive systems are closely related to our
daily life, it is of great practical significance to conduct in-depth research on
positive systems.”

The changes can be found on the left column, lines 34-46, page 1 of the
revised paper.

Based on [R4], a biological system model is chosen and applied to check the
effective of Theorem 2, but due to the limitation of the pages, the correspond-
ing results are just shown in this reply letter for checking by the reviewers.
In the following, a single species with a stage structure model is given

ẋ1(t) = αx2(t)− γ1x1(t)− βx1(t)− ηx21(t) + δw̃(t) + ξu(t),

18

Page 31 of 58 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ẋ2(t) = βx1(t)− γ2x2(t),

where x1(t) is the density of immature population of the species and x2(t)
denotes the density of mature population of the species. α is the birth rate of
the immature population; for the immature population, γ1 and β are called
the death rate and transformation rate of immature, respectively; η is called
the density restriction for the immature population, γ2 is called the death rate
of the mature population; δ is the immigrant rates of immature population
of the species from other areas to this area; w̃(t) is the disturbance, which
denotes the density of the immigrant immature population of this species; ξ
is the control rate, and u(t) is the control input, which denotes the controlled
density of the immature population of this species.

Next, for simplify, x1(t) and x2(t) will be denoted by x1 and x2, respectively.

Defining the density of the immature species as x1 ∈ [0, 20], then we have

f(x1) = x1 = µ11(x1)fmax+µ12(x1)fmin, where µ11(x1) = f(x1)−fmin

fmax−fmin
, µ11(x1) =

1−µ12(x1), fmax = 20, fmin = 0. By employing the sector nonlinearity tech-
nique, we get the fuzzy model of this system, which is shown as follows:

Rule 1 : IF x1 is LARGE

THEN ẋ = A1(x)x + Bu + B1ωw̃,

Rule 2 : IF x1 is SMALL

THEN ẋ = A2(x)x + Bu + B1ωw̃,

Then the overall fuzzy model of this system is shown as follows:

ẋ =
2∑

i=1

wi(x)
(
Ai(x)x + Bu + B1ωw̃

)
,

y = Cx,

where wi(x), i ∈ 1, 2 is the membership function of the systems.

A1 =

[
−fmaxη − γ1 − β α

β −γ2

]
,A2 =

[
−fminη − γ1 − β α

β −γ2

]
,

B =
[
ξ 0

]T
,B1ω =

[
δ 0

]T
,x = [ x1 x2 ]T ,

where α, β, η, γ, k, β1, γ1, γ2, η1, δ and ξ are positive constant scalars.

The membership functions of the system are w1(x1) = x1

20
and w2(x1) =

1−w1(x1). Then we assume that the output is y = x1, so the output matrix
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is C = [1 0]. The controlled output z and the disturbance w̃ are chosen as
z = 1.5x1 + 1.1u and w̃ = 5e−t| cos(2t)|, respectively.

In the following, a polynomial fuzzy controller is designed as follows:

Rule 1 : IF y is LARGE

THEN u = K1(y)y,

Rule 2 : IF y is SMALL

THEN u = K2(y)y,

where K1(y) and K2(y) are the output feedback gains.

Then the polynomial fuzzy controller is designed as follows:

u =
2∑

j=1

mj(y)Kj(y)Cx,

where mj(y), j ∈ 1, 2 is the membership function of the controller.

Because y = x1 and the ranges of y is assumed as y ∈ [0, 20], hence, mj is
related to x1 and is chosen as follows:

m1(x1) =


1, for x1 < 2
−x1+18

16
, for 2 ≤ x1 ≤ 18

0. for x1 > 18

When we choose α = 0.3; γ1 = 0.1; β = 0.18; η = 0.01; γ2 = 0.1, δ = 0.5 and
ξ = 0.5, the system matric A1 and A2 are Metzler, B � 0 and C � 0, which
means the real system is a positive system. Then the whole operating region
is divided into 2 sub-regions and the highest degree of the approximation
polynomial functions is chosen as 3. The degrees of Kj(x) and Yij,d(x) are
chosen as 0, respectively. And by setting ε1 = ε2(x) = 0.001, the decision
variables λ1, λ2,Kj(x) and Yij,d(x) are obtained as follows:

γ = 1.1020, λ1 = [ 2.2020 9.1600 ]T , λ2 = 4.3095× 10−2,K1 = −1.2989,

K2 = −1.2905,Yij,d(:, :, 1, 1) =
[

1.3534 1.0218
]T
,

Yij,d(:, :, 1, 2) =
[

1.7592 1.2711
]T
,Yij,d(:, :, 2, 1) =

[
1.6862 1.3124

]T
,

Yij,d(:, :, 2, 2) =
[

1.3291 9.4836× 10−1
]T
,

By choosing x(0) = [1 2]T , x(0) = [10 10]T and x(0) = [15 18]T , respec-
tively, the corresponding time responses are shown in the following figures:

20

Page 33 of 58 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0 50 100 150 200 250 300
0

10

20

30

40

50

Time

x
(t
)

 

 

open-loop system x1

open-loop system x2

closed-loop system x1

closed-loop system x2

Fig 1. Time response of the states x1 and x2 with initial condition x(0) = [1 2]T and

time span of 300s for the open-loop and the closed-loop system, respectively.
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Fig 2. Time response of the states x1 and x2 with initial condition x(0) = [1 2]T and

time span of 100s for the open-loop and the closed-loop system, respectively.
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Fig 3. Time response of the states x1 and x2 with initial condition x(0) = [10 10]T and

time span of 300s for the open-loop and the closed-loop system, respectively.
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Fig 4. Time response of the states x1 and x2 with initial condition x(0) = [10 10]T and

time span of 100s for the open-loop and the closed-loop system, respectively.
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Fig 5. Time response of the states x1 and x2 with initial condition x(0) = [15 18]T and

time span of 300s for the open-loop and the closed-loop system, respectively.
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Fig 6. Time response of the states x1 and x2 with initial condition x(0) = [15 18]T and

time span of 100s for the open-loop and the closed-loop system, respectively.
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According to the time responses of the open-loop system, we can see that the
original systems are reasonable, because the density of immature population
and the mature polulation of the species are limited, which caters for the
fact that the species should not keep growing practically.

It can be seen from the time responses of the closed-loop system that the con-
troller can drive the system to be asymptotically stable. Meanwhile, we can
see that the positivity of the closed-loop system also can be ensured because
all of the state variables always stay in the positive quadrant. Therefore, the
validity and reliability of the theory in our paper are verified.

[R4] Zhang, Q., Liu, C., Zhang, X. “Complexity, analysis and control of
singular biological systems.” (Springer, London, 2012).

Comment 7
Is there a difference in the problem presented in this paper compared with
the problem for general systems (non-positive systems)? Please the authors
compare the proposed results with the existing related results for general
linear systems (non-positive systems).

Response 7
Yes, there are many differences between the work in our paper and the work
for general linear systems.

Firstly, for a positive system, the system matrix Ai(x) should be a Metzler
matrix which means the non-diagonal elements are non-negative. Mean-
while the elements of the rest matrices such as Bi(x) and C should be non-
negative. While for a general system, there is no the above characteristic for
system matrices. As far as a closed-loop positive system is concerned, both
of the convex stability and the positivity require to be ensured at the same
time, hence, transferring the non-convex stability and positivity conditions
into convex ones simultaneously will make the stability analysis process be-
come relatively complex. While for a closed-loop general system, there is
no requirement for positivity, which means the stability analysis process for
general systems is simpler than for positive systems.

Secondly, in terms of complexity of positive systems, we mainly aim at the
positive nonlinear systems instead of positive linear systems. As we all know,
a positive nonlinear system is more complex than a positive linear system
due to the nonlinearities. For this reason, most of the existing results are
for positive linear systems, although some researchers have tried to start
studying positive nonlinear systems through T-S fuzzy models, this kind of
fuzzy model can only express relatively simple positive nonlinear systems. In
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our paper, we mainly employ the advanced polynomial fuzzy model to ex-
press a positive nonlinear system, which makes the results suitable for more
complicated positive systems. However, it is worth mentioning that the poly-
nomials existing in the subsystems and membership functions will make the
stability and positivity analysis challenging because many matrix processing
techniques cannot be used directly, especially when the inverse matrix of a
polynomial matrix is used in the method. That is also the reason why not
many researchers have adopted the polynomial fuzzy model to investigate the
control synthesis and stability analysis for positive nonlinear systems. While
for a general linear system, it is simpler to design a controller and analyze
the stability because it is not constrained by the positive conditions and it
is not affected by polynomials.

Thirdly, considering the unique positivity, a novel Lyapunov function (linear
copositive Lyapunov function) V (t) = λTx(t) is used for the stability analysis
of positive polynomial fuzzy systems. This kind of Lyapunov function not
only can capture the unique positivity but also can reduce the difficulty
of analysis and calculation. While for a general linear system, in general,
the quadratic Lyapunov function V (t) = xT (t)P(x)(t) is used to analyze
the stability. By comparing the two kind of Lyapunov functions, it can
be concluded that the former is simpler and more helpful to facilitate the
stability and positivity analysis.

Comment 8
The significance of the results is scarce as well since they are extremely
specific: a special class of the membership functions is considered, which
guarantees stability and positivity not in general, but only provided that
some SOS conditions are satisfied.

Response 8
The authors would like to thank the reviewer for the comment. It is well
known that the stability conditions are valid for any arbitrary membership
functions when the information of membership functions are ignored, which
leads to the results in conservativeness. As the stability conditions only
need to be valid under the specific membership functions used in the inves-
tigated fuzzy plant and fuzzy controller, therefore, bringing the information
of membership functions into the stability analysis contributes to reduce the
conservatism of the analysis results.

In our paper, the information of membership functions are not considered
into the stability analysis when the Theorem 1 is derived, therefore, the
Theorem 1 is conservative. In order to relax the conservatism, Theorem 2 is
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derived by taking the information of membership functions into account. But
we just use some mathematical symbols to represent the detailed information
of membership functions in Theorem 2, such as ηij,d(x) (the approximation
polynomials of the original membership functions), βij,d and β

ij,d
(the upper

bound and lower boundary of the approximated errors), which means these
information can be obtained based on any classes of membership functions
instead of a special class of membership functions.

However, in the Simulation Example, for verifying the reliability of the Theo-
rem 2, we need to obtain these detailed information of membership functions
based on specific membership functions so that these mathematical symbols
can be assigned values and used for simulating. And that is the reason why
we have to choose specific membership functions in the Simulation Example.

To sum up, in the process of derivation, the positive polynomial fuzzy sys-
tems, the fuzzy controller and the corresponding membership functions are
universal. But when we try to verify the effective of Theorems by a numeral
example, we have to choose specific membership functions because the stabil-
ity conditions in Theorem 2 contain the information of membership functions.
If we still use the mathematical symbols instead of the detailed values of the
information of special membership functions, the specific feasible solutions
of these decision variables in Theorem 2 cannot be obtained by SOSTOOLS.

Comment 9
In Eq(12), the L1 performance index has been applied. Firstly, more specific
derivations should be given more clearly. Besides, why V (∞) and V (0) are
equal to 0 for T →∞ ? This issue should be explained more clearly.

Response 9
The authors would like to thank the reviewer for the comment. As suggested
by this reviewer, in order to make the derivations more clear and formal,
we have shown the formal proofs for both Theorem 1 and Theorem 2 in the
revised paper. The changes can be found from pages 4-7.

As for the question: why V (∞) and V (0) are equal to 0 for T → ∞ ? I
think it may since our expression was not very clear in the previous version,
which led to the misunderstanding of the reviewer. In fact, we want to ex-
press that under zero initial condition, V (0) satisfies V (0) = 0. And when
T →∞, V (∞) satisfies V (∞)→ 0. In the revised paper, we have shown the
derivation processes more formally so that readers can better understand the
theorems in our paper.
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Comment 10
The authors approximate the non-convex term into convex one by introduc-
ing the Eq (17). However, the Eq (17) will bring more conservativeness for
the main results, which will against the purpose of reducing conservativeness.

Response 10
The authors would like to thank the reviewer for the comment. We agree with
you that the introduction of the constraint conditions will lead to a certain
degree of conservativeness, but as we all known that converting non-convex
stable conditions and positive conditions to convex conditions simultaneously
is very difficult since most of the convex methods are just for general systems
and there are no positivity constrains for general systems. When positivity
constrains are taken into consideration, those convex methods for general
systems may not be able to work. In addition, the convexification is prob-
lem dependent, which means the convexificiation method from one paper
may not be able to be applied to other non-convex problems, therefore, it
is a hard task to find a proper method to deal with the non-convex prob-
lem so that the stability conditions and positivity conditions can be ensured
to be convex simultaneously. In our paper, the first task is to find a proper
method to transform the non-convex conditions into convex ones. After solv-
ing this tricky problem, the second task is to reduce the conservativeness by
employing membership-function-dependent techniques. Therefore, although
the convex method in our paper will bring some conservatism, the high degree
polynomial approximation method can effectively relax the conservativeness.
To clarify the concern, we have discussed it in Remark 3 in the revised paper:

Remark 3: Although the convex method given in our paper will introduce a
certain degree of conservativeness, this method makes it easier to transform
the non-convex stability conditions and positivity conditions into convex ones
simultaneously, which means the non-convex problem can be dealt with skill-
fully. In order to reduce the conservativeness, in the following, a high degree
polynomial approximation method will be introduced so that the information
embedded in MFs can be found and introduced into stability conditions.

The changes can be found on the right column, lines 44-52, page 5 of the
revised paper.
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Responses to the Reviewer 4’s comments and questions for the paper en-
titled “Membership-Function-Dependent Design of L1-Gain Out-
put Feedback Controller for Stabilization of Positive Polynomial
Fuzzy Systems” with Paper No.: TFS-2020-0730.

We would like to express our sincere gratitude to you for valuable and con-
structive comments. Our responses are as follows.

Comment 1
What do they call “non-convex stability conditions”?

Response 1
A convex condition requires each term is linear, if there exist nonlinear terms
in stability conditions, they belong to non-convex stability conditions. In
general, there are two different cases that may lead to non-convex stability
conditions. Firstly, non-convex conditions may be caused by coupling of
decision variables. For example, the (25) in the revised paper is non-convex
since the decision variables λ1 and the Kj(y) is coupled in this condition.

IT1 D̃ij(x,y) + λT1 Ãij(x,y) + λT2C

=IT1 (Di(x) + Ei(x)Kj(y)C) + λT1 (Ai(x) + Bi(x)Kj(y)C) + λT2C ≺ 0.

To solve this non-convex condition, (14) and (15) are introduced, we have:

IT1 (Di(x) + Ei(x)Kj(y)C) + λT1 (Ai(x) + Bi(x)Kj(y)C) + λT2C

� IT1Di(x) + 2IT1Ei(x)Kj(y)C + λT1Ai(x) + λT2C.

Secondly, non-convex conditions may be caused by the existence of other
nonlinear terms such as sin(x), cos(x), 1/f(x). For example, in the revised
paper, the condition (41) is non-convex as well because αd(x) which belongs
to the nonlinear term 1/f(x) exists in this condition.

p∑
i=1

c∑
j=1

((
ηij,d(x) + β

ij,d

)
Hij(x) +

(
βij,d − βij,d

)
Yij,d(x)

)
=

p∑
i=1

c∑
j=1

((
(η0.5ij,d(x))2αd(x) + β

ij,d

)
Hij(x) +

(
βij,d − βij,d

)
Yij,d(x)

)
� 0, ∀ d.

Then by multiplying both sides of (41) by the denominator of αd(x), this non-
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convex condition can be approximated by the following convex condition:

p∑
i=1

c∑
j=1

((
(η0.5ij,d(x))2αd,num + β

ij,d
αd,den(x)

)
Hij(x)

+
(
βij,d − βij,d

)
αd,den(x)Yij,d(x)

)
� 0, ∀ d.

Comment 2
Why in equation (1), specifically, in the equation for controlled output, y(t) =
Cx(t), does the matrix C not depend on the rule? that is, why not write Ci,
unlike the other matrices?

Response 2
Yes, we mainly aim at the case that the output y(t) is independent on the
fuzzy rules, therefore, the output matrix C does not written as Ci in our
paper. When the output is considered to be dependent on fuzzy rules, it
will be written as y =

∑p
i=1wi(x)Cix, which will lead to the stability and

positivity analysis more challenging and more effort needs to be made to deal
with the non-convex problem. Therefore, in this paper, we consider the case
that the output is independent on the fuzzy rules, that is, y(t) = Cx(t).

Comment 3
It should be noted that the fuzzy system is Type 1. Show each rule of the
fuzzy rule base.

Response 3
Yes, this fuzzy system belongs to Type 1. We totally agree with you that
showing each rule of the fuzzy rule base will be more intuitive and helpful
for readers to better understand the fuzzy systems, however, in order to keep
this paper concise, we prefer to show the fuzzy rules of fuzzy model and the
fuzzy rules of fuzzy controller as (1) and (3) in this paper, respectively.

Actually, the (1) can represent each fuzzy rule of the fuzzy model because
it shows the i-th fuzzy rule and i ∈ {1, 2, . . . , p} where p is where c is the
number of the fuzzy rules of the fuzzy controller.

Comment 4
It would be nice to add diagram of the system.

Response 4
The authors would like to thank the reviewer for the comment. As suggested
by this reviewer, we have added the diagram of system in the revised paper.
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Polynomial Fuzzy 

Controller

Positive Polynomial 

Fuzzy System

u(t) y(t)

disturbance

Fig. 1 The positive polynomial fuzzy closed-loop system with disturbance.

Comment 5
Indicate whether the elements of the disturbance signal w̃ are bounded.

Response 5
The authors would like to thank the reviewer for the comment. As suggested
by the reviewer, we have added an assumption in the revised paper to indicate
that the elements of the disturbance signal should be bounded.

Assumption 2 : The disturbance signal w̃(t) � 0 is bounded.

The changes can be found on the right column, lines 26, page 3 of the revised
paper.

Comment 6
The proof or any comment about the proof of theorems 1 and 2 is miss-
ing. Furthermore, there is no explicit way to obtain the feedback control
gains matrix of the output Kj(y). Nothing is stated about the membership
functions for the plant in Example 1, only for the controller.

Response 6
The authors would like to thank the reviewer for the comment. As suggested
by this reviewer, the formal proofs for both of Theorem 1 and Theorem 2
have been shown in the revised paper, which can be found from pages 4-7.

To make it clear that how to obtain the feedback control gains matrix of the
output Kj(y), we add the following sentence in the revised paper: “kjr(y) ∈
R1×l is the r-th row of the output feedback gain Kj(y) which can be obtained
directly if the above conditions are satisfied, for all j.”

The changes can be found on the right column, lines 23-25, page 4 and the
right column, lines 48-50, page 6 of the revised paper.

As suggested by this reviewer, we also add the statement for the membership
functions of the PPFMB system in the revised paper.

The PPFMB system is with 3 fuzzy rules and the corresponding MFs are
chosen as follows: w1(x1) = 1 − 1

1+e−(x1−9) , w2(x1) = 1 − w1(x1) − w3(x1),
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w3(x1) = 1
1+e−(x1−11) . According to the imperfect premise matching concept

[37], the number of the fuzzy rules of the PFOF controller is chosen as 2 which
is different from the number of the rules of the PPFMB system. The MFs of
the PFOF controller are shown as: m2(x1) = 1−m1(x1), m2(x1) = 1−m1(x1),

m1(x1) =


1, for x1 < 2;
−x1+18

16
, for 2 ≤ x1 ≤ 18;

0, for x1 > 18.

The changes can be found on the left column, lines 54-59, page 8 and on the
right column, lines 2-7, page 8 of the revised paper.

Comment 7
Show in detailed manner the application examples in order to let the reader
to reproduce the experiments. It would have been desirable to include a
second example with some real dynamics system.

Response 7
The authors would like to thank the reviewer for the comment. In order
to highlight the practical significance of studying positive systems, we add
some relevant content in the Introduction in the revised paper and give an
example with a real system in the following.

“Positive systems, whose state variables and outputs always remain in the
non-negative quadrant if both of the initial conditions and input are non-
negative, are often encountered in real-world applications [1]-[3]. A great
deal of practical models of such systems exist in a variety of disciplines, for
example, the control of the cortisol level within the hypothalamic-pituitary-
adrenal gland axis in the field of biology, the human immunodeficiency virus
viral mutation dynamics in the area of pharmacokinetic, the prey-predator
model in the aspect of ecology, and the concentration of substances in chem-
ical processes and so on [4]-[6]. As positive systems are closely related to our
daily life, it is of great practical significance to conduct in-depth research on
positive systems.”

The changes can be found on the left column, lines 34-46, page 1 of the
revised paper.

Based on [R1], a biological system model is chosen and applied to check the
effective of Theorem 2, but due to the limitation of the pages, the correspond-
ing results are just shown in this reply letter for checking by the reviewers.
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In the following, a single species with a stage structure model is given

ẋ1(t) = αx2(t)− γ1x1(t)− βx1(t)− ηx21(t) + δw̃(t) + ξu(t),

ẋ2(t) = βx1(t)− γ2x2(t),

where x1(t) is the density of immature population of the species and x2(t)
denotes the density of mature population of the species. α is the birth rate of
the immature population; for the immature population, γ1 and β are called
the death rate and transformation rate of immature, respectively; η is called
the density restriction for the immature population, γ2 is called the death rate
of the mature population; δ is the immigrant rates of immature population
of the species from other areas to this area; w̃(t) is the disturbance, which
denotes the density of the immigrant immature population of this species; ξ
is the control rate, and u(t) is the control input, which denotes the controlled
density of the immature population of this species.

Next, for simplify, x1(t) and x2(t) will be denoted by x1 and x2, respectively.

Defining the density of the immature species as x1 ∈ [0, 20], then we have

f(x1) = x1 = µ11(x1)fmax+µ12(x1)fmin, where µ11(x1) = f(x1)−fmin

fmax−fmin
, µ11(x1) =

1−µ12(x1), fmax = 20, fmin = 0. By employing the sector nonlinearity tech-
nique, we get the fuzzy model of this system, which is shown as follows:

Rule 1 : IF x1 is LARGE

THEN ẋ = A1(x)x + Bu + B1ωw̃,

Rule 2 : IF x1 is SMALL

THEN ẋ = A2(x)x + Bu + B1ωw̃,

Then the overall fuzzy model of this system is shown as follows:

ẋ =
2∑

i=1

wi(x)
(
Ai(x)x + Bu + B1ωw̃

)
,

y = Cx,

where wi(x), i ∈ 1, 2 is the membership function of the systems.

A1 =

[
−fmaxη − γ1 − β α

β −γ2

]
,A2 =

[
−fminη − γ1 − β α

β −γ2

]
,

B =
[
ξ 0

]T
,B1ω =

[
δ 0

]T
,x = [ x1 x2 ]T ,

where α, β, η, γ, k, β1, γ1, γ2, η1, δ and ξ are positive constant scalars.
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The membership functions of the system are w1(x1) = x1

20
and w2(x1) =

1−w1(x1). Then we assume that the output is y = x1, so the output matrix
is C = [1 0]. The controlled output z and the disturbance w̃ are chosen as
z = 1.5x1 + 1.1u and w̃ = 5e−t| cos(2t)|, respectively.

In the following, a polynomial fuzzy controller is designed as follows:

Rule 1 : IF y is LARGE

THEN u = K1(y)y,

Rule 2 : IF y is SMALL

THEN u = K2(y)y,

where K1(y) and K2(y) are the output feedback gains.

Then the polynomial fuzzy controller is designed as follows:

u =
2∑

j=1

mj(y)Kj(y)Cx,

where mj(y), j ∈ 1, 2 is the membership function of the controller.

Because y = x1 and the ranges of y is assumed as y ∈ [0, 20], hence, mj is
related to x1 and is chosen as follows:

m1(x1) =


1, for x1 < 2
−x1+18

16
, for 2 ≤ x1 ≤ 18

0. for x1 > 18

When we choose α = 0.3; γ1 = 0.1; β = 0.18; η = 0.01; γ2 = 0.1, δ = 0.5 and
ξ = 0.5, the system matric A1 and A2 are Metzler, B � 0 and C � 0, which
means the real system is a positive system. Then the whole operating region
is divided into 2 sub-regions and the highest degree of the approximation
polynomial functions is chosen as 3. The degrees of Kj(x) and Yij,d(x) are
chosen as 0, respectively. And by setting ε1 = ε2(x) = 0.001, the decision
variables λ1, λ2,Kj(x) and Yij,d(x) are obtained as follows:

γ = 1.1020, λ1 = [ 2.2020 9.1600 ]T , λ2 = 4.3095× 10−2,K1 = −1.2989,

K2 = −1.2905,Yij,d(:, :, 1, 1) =
[

1.3534 1.0218
]T
,

Yij,d(:, :, 1, 2) =
[

1.7592 1.2711
]T
,Yij,d(:, :, 2, 1) =

[
1.6862 1.3124

]T
,

Yij,d(:, :, 2, 2) =
[

1.3291 9.4836× 10−1
]T
,
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By choosing x(0) = [1 2]T , x(0) = [10 10]T and x(0) = [15 18]T , respec-
tively, the corresponding time responses are shown in the following figures:
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Fig 1. Time response of the states x1 and x2 with initial condition x(0) = [1 2]T and

time span of 300s for the open-loop and the closed-loop system, respectively.
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Fig 2. Time response of the states x1 and x2 with initial condition x(0) = [1 2]T and

time span of 100s for the open-loop and the closed-loop system, respectively.
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Fig 3. Time response of the states x1 and x2 with initial condition x(0) = [10 10]T and

time span of 300s for the open-loop and the closed-loop system, respectively.
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Fig 4. Time response of the states x1 and x2 with initial condition x(0) = [10 10]T and

time span of 100s for the open-loop and the closed-loop system, respectively.
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Fig 5. Time response of the states x1 and x2 with initial condition x(0) = [15 18]T and

time span of 300s for the open-loop and the closed-loop system, respectively.
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Fig 6. Time response of the states x1 and x2 with initial condition x(0) = [15 18]T and

time span of 100s for the open-loop and the closed-loop system, respectively.

According to the time responses of the open-loop system, we can see that the
original systems are reasonable, because the density of immature population
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and the mature polulation of the species are limited, which caters for the
fact that the species should not keep growing practically.

It can be seen from the time responses of the closed-loop system that the con-
troller can drive the system to be asymptotically stable. Meanwhile, we can
see that the positivity of the closed-loop system also can be ensured because
all of the state variables always stay in the positive quadrant. Therefore, the
validity and reliability of the theory in our paper are verified.

[R1] Zhang, Q., Liu, C., Zhang, X. “Complexity, analysis and control of
singular biological systems.” (Springer, London, 2012).

Comment 8
To extract the information from the original membership functions, high-
degree polynomial approximations were used, however, goodness of fit with
r or r2 is not reported.

Response 8
The authors would like to thank the reviewer for the comment. As suggested
by this reviewer, we have obtained the goodness of fit with r2 for the degrees
of approximation polynomials being 3 and 5 when D = 1. The details are
shown in the following:

Table I Goodness of Fit with r2

(i, j) degree of polynomials being 3 degree of polynomials being 5
(1, 1) 9.9146× 10−1 9.9696× 10−1

(1, 2) 9.1942× 10−1 9.9247× 10−1

(2, 1) 5.4276× 10−1 8.6451× 10−1

(2, 2) 5.4276× 10−1 8.6451× 10−1

(3, 1) 9.1942× 10−1 9.9247× 10−1

(3, 2) 9.9146× 10−1 9.9696× 10−1

From the above Table, we can see that when the degree of the approximation
polynomials is 3, the cross terms of membership functions w1(x)m2(x) and
w2(x)m1(x) cannot be fitted very well, but when the degree of the approxima-
tion polynomials is 5, the cross terms of membership functions w1(x)m2(x)
and w2(x)m1(x) can be fitted better. It is reasonable because when the de-
gree of the approximation polynomials is higher, the obtained approximation
effect is better.

Comment 9
It is concluded that using a single example ... that a broader region of
stability is obtained. However, this is mathematically inaccurate.

Response 9
The authors would like to thank the reviewer for the comment. Although we
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only show a simulation example for verifying the reliability and effectiveness
of the theorems in our paper, we analyze this example from different aspects.
Besides, for each of the aspects, we analyze and compare the simulation
results based not only on one case but on multiple cases. Therefore, the
obtained conclusions aiming at each of the aspects are convincing. The details
are shown as follows:

1) How the stability regions vary with the values of D. In order to show
the influence of the number of subdomains D for stability regions, we mainly
compare the results in the following cases.

Case 1: the highest degree of the polynomial functions is set as 3 without the
fraction αd(x1), then comparing the stability regions for D = 1 and D = 2.
Please compare the stability region (“×”) with the stability region (“+”) in
Fig. 2 in the revised paper.

Case 2: the highest degree of the polynomial functions is set as 5 without the
fraction αd(x1), then comparing the stability regions for D = 1 and D = 2.
Please compare the stability region (“�”) with the stability region (“×”) in
Fig. 3 in the revised paper.

Case 3: the highest degree of the polynomial functions is set as 3 with the
fraction αd(x1), then comparing the stability regions for D = 1 and D = 2.
Please compare the stability region (“∗”) with the stability region (“�”) in
Fig. 4 in the revised paper.

Case 4: the highest degree of the polynomial functions is set as 5 with the
fraction αd(x1), then comparing the stability regions for D = 1 and D = 2.
Please compare the stability region (“×”) with the stability region (“+”) in
Fig. 5 in the revised paper.

By comparing and analyzing the simulation results in the above four cases,
we can safely draw a conclusion that the number of the subdomains is larger,
the stability region is more extensive.

2) How the stability regions change with the highest degrees of approximated
polynomial function. For showing relaxation effect of the highest degrees of
approximated polynomial function, the following four cases are considered.

Case 1: the number of subdomains is chosen as D = 1, when the fraction
αd(x1) is removed, comparing the stability region for the highest degree of
the polynomial functions being 3 with the one for the highest degree of the
polynomial functions being 5. Please compare the stability region (“×”) in
Fig. 2 with the stability region (“�”) in Fig. 3 in the revised paper.
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Case 2: the number of subdomains is chosen as D = 2, when the fraction
αd(x1) is removed, comparing the stability region for the highest degree of
the polynomial functions being 3 with the one for the highest degree of the
polynomial functions being 5. Please compare the stability region (“+”) in
Fig. 2 with the stability region (“×”) in Fig. 3 in the revised paper.

Case 3: the number of subdomains is chosen as D = 1, when the fraction
αd(x1) is considered, comparing the stability region for the highest degree of
the polynomial functions being 3 with the one for the highest degree of the
polynomial functions being 5. Please compare the stability region (“∗”) in
Fig. 4 with the stability region (“×”) in Fig. 5 in the revised paper.

Case 4: the number of subdomains is chosen as D = 2, when the fraction
αd(x1) is considered, comparing the stability region for the highest degree of
the polynomial functions being 3 with the one for the highest degree of the
polynomial functions being 5. Please compare the stability region (“�”) in
Fig. 4 with the stability region (“+”) in Fig. 5 in the revised paper.

By comparing and analyzing the simulation results in the above four cases, we
can safely draw a conclusion that the higher degrees of polynomial functions
will lead to more relaxed results.

3) How the stability regions are affected by the αd(x1). We analyze the
influence of the fraction αd(x1) for stability regions in four cases.

Case 1: the number of subdomains is D = 1 and the highest degree of
the polynomial functions is set as 3, then comparing the stability region
obtained without considering the fraction αd(x1) with the one obtained with
considering the fraction αd(x1). Please compare the stability region (“×”) in
Fig. 2 with the stability region (“∗”) in Fig. 4 in the revised paper.

Case 2: the number of subdomains is D = 1 and the highest degree of
the polynomial functions is set as 5, then comparing the stability region
obtained without considering the fraction αd(x1) with the one obtained with
considering the fraction αd(x1). Please compare the stability region (“�”) in
Fig. 3 with the stability region (“×”) in Fig. 5 in the revised paper.

Case 3: the number of subdomains is D = 2 and the highest degree of
the polynomial functions is set as 3, then comparing the stability region
obtained without considering the fraction αd(x1) with the one obtained with
considering the fraction αd(x1). Please compare the stability region (“+”) in
Fig. 2 with the stability region (“�”) in Fig. 4 in the revised paper.

Case 4: the number of subdomains is D = 2 and the highest degree of
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the polynomial functions is set as 5, then comparing the stability region
obtained without considering the fraction αd(x1) with the one obtained with
considering the fraction αd(x1). Please compare the stability region (“×”) in
Fig. 3 with the stability region (“+”) in Fig. 5 in the revised paper.

By comparing and analyzing the simulation results in the above four cases,
we can safely draw a conclusion that αd(x1) is in favour of extending the
stability regions.

4) Compare the stability regions obtained using the method with the ones
obtained using other methods. For comparing with the approximated method
in [36] in the revised paper, we will discuss the results in two cases.

Case 1: setting the number of subdomains as D = 4 and the highest de-
gree of the approximated polynomial functions as 2 without considering the
boundary information of the state variables, comparing the stability region
obtained by using the approximated method in this paper with the one ob-
tained by using the approximated method in [36] in the revised paper. Please
compare the stability region (“×”) with the stability region (“�”) in Fig. 6.

Case 2: setting the number of subdomains as D = 4 and the highest degree of
the approximated polynomial functions as 2 with considering the boundary
information of the state variables, comparing the stability region obtained
by using the approximated method in this paper with the one obtained by
using the approximated method in [36] in the revised paper. Please compare
the stability region (“+”) in Fig. 2 with the stability region (“�”) in Fig. 7.

By comparing and analyzing the simulation results in the above two cases,
it arrives at a conclusion that the method in our paper can generate better
relaxation effect than the method in [36] no matter the boundary information
of the state variables is taken into account or not.

Comment 10
Define each acronym, each variable, constant, symbol used in each equation.

Response 10
The authors would like to thank the reviewer for the comment. As suggested
by the reviewer, we have deleted some acronyms which only occur once or
twice. The acronyms that still remain in use have been summarised in Table
I in the revised paper. Meanwhile, we have defined the constant, symbol
used in each equation in Table II. The details are shown as follows:

1. ”LMI” is replaced by ”linear-matrix-inequality”.
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2. ”IMP” is replaced by ”imperfect premise matching”.

3. ”LP” is replaced by ” linear programming”.

4. ”LKF” is replaced by ”Lyapunov-Krasovskii functional”.
Table I Description of the Acronyms

Acronyms Explanation Acronyms Explanation
T-S Takagi-Sugeno MFD membership-function-dependent
SOS sum-of-squares PPFMB positive polynomial fuzzy-model-based
MFs membership functions PFOF polynomial fuzzy output feedback

Table II Description of Notations
Notation Description Notation Description

x system state vector u input vector
z control output w̃ disturbance
y output vector Kj(y) static output feedback gain

wi(x) MFs of positive systems mi(y) MFs of fuzzy controllers
ξ augmenting vectors λ constant vector to be determined
γ L1 performance level αd(x) fractional function

ηij,d(x) approximated polynomial ∆ηij,d(x) approximation error

β
ij,d

lower bound of error term βij,d upper bound of error term

The changes can be found on the right column, lines 2-18, page 2.

39

Page 52 of 58IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Responses to the Reviewer 5’s comments and questions for the paper en-
titled “Membership-Function-Dependent Design of L1-Gain Out-
put Feedback Controller for Stabilization of Positive Polynomial
Fuzzy Systems” with Paper No.: TFS-2020-0730.

We would like to express our sincere gratitude to you for valuable and con-
structive comments. Our responses are as follows.

Comment 1
Please clarify the motivation of this work, since nearly every paragraph seems
to contain a motivation as its last sentence, but they just turn out to be some
claims of adding up complexity or reducing conservativeness. Is there any
practical sense in studying such a complicated system as well as using the
mentioned control strategies.

Response 1
The authors would like to thank the reviewer for this comment. As mentioned
in the first paragraph in the Introduction, a great deal of practical models
of positive systems exist in a variety of disciplines, for example, the field of
biology, the area of pharmacokinetic, the aspect of ecology, and so on. In
order to highlight the practical significance of studying positive systems, we
add some relevant content in the first paragraph in the Introduction. The
details are shown as follows:

“Positive systems, whose state variables and outputs always remain in the
non-negative quadrant if both of the initial conditions and input are non-
negative, are often encountered in real-world applications [1]-[3]. A great
deal of practical models of such systems exist in a variety of disciplines, for
example, the control of the cortisol level within the hypothalamic-pituitary-
adrenal gland axis in the field of biology, the human immunodeficiency virus
viral mutation dynamics in the area of pharmacokinetic, the prey-predator
model in the aspect of ecology, and the concentration of substances in chem-
ical processes and so on [4]-[6]. As positive systems are closely related to our
daily life, it is of great practical significance to conduct in-depth research on
positive systems. ”

The changes can be found on the left column, lines 42-49, page 1.

In addition, in the view of the control strategies, it is relatively simple to
design a fuzzy controller based on the full states feedback control strategy
for positive polynomial fuzzy systems, but in actual life, it is usually difficult
to obtain the full states information of real systems. In this case, designing
output feedback fuzzy controllers is more effective and easier to implement
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because it only depends on output variables instead of the full states infor-
mation. Therefore, investigating such a complicate systems and using this
kind of control strategy have important practical significance.

In order to highlight the practical significance of using the output feedback
control strategy, we add some relevant content in the Introduction. The
details are shown as follows:

“In the view of control synthesis of PPFMB systems, it is relatively simple to
design fuzzy controllers according to the full state feedback control strategy,
but in actual life, it is usually difficult to obtain the full states information
of real systems. Hence, when some of the state variables are not available,
this strategy does not work anymore. In this case, designing fuzzy controllers
based on output feedback strategy is more effective and easier to implement
because it does not dependent on the full state information but only the
output state variables.”

The changes can be found on the left column, lines 10-16, page 2.

Comment 2
The paper is stuffed with acronyms which impede a fluent understanding
of the content. It is suggested to make a clear table for summarizing these
acronyms.

Response 2
The authors would like to thank the reviewer for this comment. To enhance
the readability of this paper, we delete some acronyms which only occur once
or twice. After processing, the acronyms that still remain in use have been
summarised in Table I in the revised paper. The details are shown as follows:

1. ”LMI” is replaced by ”linear-matrix-inequality”.

2. ”IMP” is replaced by ” imperfect premise matching”.

3. ”LP” is replaced by ” linear programming”.

4. ”LKF” is replaced by ”Lyapunov-Krasovskii functional”.
Table I Description of the Acronyms

Acronyms Explanation Acronyms Explanation
T-S Takagi-Sugeno MFD membership-function-dependent
SOS sum-of-squares PPFMB positive polynomial fuzzy-model-based
MFs membership functions PFOF polynomial fuzzy output feedback

The changes can be found on the right column, lines 2-7, page 2.
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Comment 3
It appears that the studied fuzzy models are formulated based on the type-1
fuzzy set. Why not use the more general type-2 fuzzy set to model such a
system? Moreover, please compare this work with [R1], since the latter has
considered the PFMB with type-2 fuzzy sets and also used the SOS tool to
ensure stability. Then what is the difficulty in considering type-2 fuzzy set
for this system in the presence of positive dynamics?

[R1] B. Xiao, H.-K. Lam, and H. Li, Stabilization of Interval Type-2 Polynomial-
Fuzzy-Model-Based Control Systems, IEEE Transactions on Fuzzy Systems,
vol. 25, no. 1, pp. 205-217, 2017.

Response 3
Yes, the studied fuzzy models are formulated based on the Type-1 fuzzy set
instead of Type-2 fuzzy set. There are some differences from the Type-1 and
Type-2. Firstly, both of the Type-1 fuzzy set and Type-2 fuzzy set can cope
with the nonlinearities in control systems, but Type-2 fuzzy set has the ca-
pability to handle the uncertainties in nonlinear systems, while Type-1 fuzzy
set cannot deal with the uncertainties because the membership functions in
Type-1 fuzzy set do not contain any uncertain information. Secondly, com-
paring with the Type-2 fuzzy set, using Type-1 fuzzy set to analyze positive
nonlinear systems is relatively simpler because there are only nonlinearities
and positivity to be considered, but no uncertainties require to be considered.
Therefore, at present, most of studied results on positive nonlinear systems
are in terms of Type-1 fuzzy set instead of Type-2 fuzzy set.

In our paper, the existence of polynomials, positivity constrain and distur-
bance have made the stability analysis very complex, especially, how to trans-
form the non-convex positivity conditions and stability conditions into convex
ones simultaneously has become head-scratching, therefore, the more com-
plex Type-2 fuzzy set is not taken into consideration in this paper.

Although the authors in [R1] have considered the PFMB with type-2 fuzzy
sets and also used the SOS tool to ensure stability, the work in our paper
and the work in [R1] cannot be compared with each other directly. We will
give the reasons from the following several aspects.

Firstly, from the perspective of the type of control systems, in our paper, the
positive polynomial fuzzy systems with disturbance based on Type-1 fuzzy
set are investigated, which means the unique positivity and the disturbance
of positive systems are considered but the uncertainties are not considered.
However in [R1], the general polynomial fuzzy systems based on Type-2 fuzzy
set are studied, which means the authors mainly coped with the uncertainties

42

Page 55 of 58 IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



for general systems but not for positive systems with disturbance in [R1].

Secondly, from the view of the control strategy, in our paper, considering the
case where only some of the state variables are measurable, we investigate
the static output feedback control strategy, while in [R1], the authors mainly
study the state feedback control strategy. Comparing with state feedback
control strategy, the static output feedback control strategy is more practical
because in many real systems, it is hard to obtain full state variables of the
systems. But it is worth mentioning that static output control strategy will
cause non-convex problem or make non-convex problem more difficult to deal
with, which is the reason why relatively few study results on static output
feedback control for positive nonlinear systems have been existed.

Thirdly, from the angle of the stability analysis, in our paper, the linear
co-positive Lyapunov function is employed to analyze the stability of the
closed-loop systems, which not only can well capture the elegant positivity
of positive systems, but also can reduce the difficulty of the analysis process.
However, in [R1], the quadratic polynomial Lyapunov function is employed,
although this kind of Lyapunov function also can be used for positive systems
in theory, it cannot well capture the unique positivity of positive systems,
therefore, when quadratic Lyapunov function is employed for positive sys-
tems, it will lead to relatively conservative results.

Based on above analysis, we can see that there are many different aspects
from the the work in our paper and the work in [R1].

In our opinion, the difficulties in considering Type-2 fuzzy set for positive
nonlinear systems mainly include the following several aspects: (1) The non-
convex problem will become more difficult to be solved when the Type-2
fuzzy set is used to investigate the positive nonlinear systems because the
uncertainties will be introduced into the stability analysis for Interval Type-2
positive polynomial fuzzy systems. Hence, the uncertainties, positivity and
disturbance will make the stability analysis very challenging. (2) Novel mem-
bership function approximation methods require to be proposed when Type-2
fuzzy set is used because most of the existing membership function-dependent
techniques are for membership functions without uncertain information.

Comment 4
The organization of Section III needs adjustment, since the content between
Section III and Section III-A seems still the part of formulating the system
and giving preliminaries, which is supposed to be presented in Section II.
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Response 4
The authors would like to thank the reviewer for this comment. As suggested
by this reviewer, we have adjusted the organization of Section III. And the
Section III-A has been removed into the Section II-D.

Comment 5
The content of Theorem 1 and Theorem 2 are excessively long. Moreover,
why the last parts of both Theorems 1 and 2 look like summaries of the
notation usage? Since they took up too much space of the theorem presen-
tation, moving them into the notation part (Section II-A) could be better.
Not every formula needs to be numbered if you do not actually mention it in
the text.

Response 5
The authors would like to thank the reviewer for this comment. As suggested
by this reviewer, some of the notations in the last parts of both Theorems 1
and 2 have been moved into the notation part (Section II-A). Furthermore,
the numbers of some formula which are not mentioned in the text have been
removed.

The changes can be found on the left column, lines 27-30, page 3.

Comment 6
Why are there no formal proofs for both Theorem 1 and Theorem 2? It
is understandable that some analysis has been made before each theorem
presentation, but it is quite unclear if this analysis can be deemed the strict
proof for the corresponding theorem. It is suggested to more formally present
your results.

Response 6
The authors would like to thank the reviewer for this comment. As suggested
by this reviewer, we have revised this paper and the formal proofs for both
Theorem 1 and Theorem 2 have been presented.

The changes can be found from pages 4-7.

Comment 7
Please carefully refine the language, including correcting some typos and
grammar errors, such as ”In recent...” (page 1, third paragraph), the title of
Section IV-F ”compare with other results”, etc.

Response 7
The authors would like to thank the reviewer for this comment. After a
double check, we have tried our best to revise these typos and grammar
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errors, for example

1. “ In recent,” has been revised as “In recent decades”. This change can be
found on the right column, line 52, page 1.

2.“ imperfectly matched premises” has been revised as “imperfect premise
matching”. This change can be found on the right column, line 43, page 1.

3.“ Compare with other results” has been revised as “ Comparison with other
results”. This change can be found on the right column, line 52, page 10.

4.“ that is known ” has been revised as “, which is well known”. This change
can be found on the left column, line 35, page 2.

Comment 8
Regarding the fuzzy systems, is it possible to make some extensions to hybrid
fuzzy systems, see e. g.,

Mengqi Xue, et al., Practical output synchronization for asynchronously
switched multi-agent systems with adaption to fast-switching perturbations,
Automatica, vol. 116, art. No. 108917,Jun. 2020. (Regular Paper)

Input-to-State Stability for Nonlinear Systems with Stochastic Impulses, Au-
tomatica, vol. 113, no. 3, art no. 108766, Mar. 2020.

Response 8
The authors would like to thank the reviewer for this comment. We have
studied the above papers and cited them in our paper as the references [9]
and [10]. After learning about the hybrid fuzzy systems, in our opinion, it
is possible to combine the positive switch systems with the switched multi-
agent systems, but we have not study further. In the future, we would like
to have a try to make some extensions to hybrid fuzzy systems.
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