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Abstract The capturability of the Three-Dimensional (3D) Realistic True Proportional Naviga-

tion (RTPN) guidance law is thoroughly analyzed. The true-arbitrarily maneuvering target is con-

sidered, which maneuvers along an arbitrary direction in 3D space with an arbitrary but upper-

bounded acceleration. The whole nonlinear relative kinematics between the interceptor and target

is taken into account. First, the upper-bound of commanded acceleration of 3D RTPN is deduced,

using a novel Lyapunov-like approach. Second, the reasonable selection range of navigation gain of

3D RTPN is analyzed, when the maneuver limitation of interceptor is considered. After that, a

more realistic definition of capture is adopted, i.e., the relative range is smaller than an acceptable

miss-distance while the approaching speed is larger than a required impact speed. Unlike previous

researches which present Two-Dimensional (2D) capture regions, the inequality analysis technique

is utilized to obtain the 3D capture region, where the three coordinates are the closing speed,

transversal relative speed, and relative range. The obtained capture region could be taken as a

sufficient-but-unnecessary condition of capture. The new theoretical findings are all given in explicit

expressions and are more general than previous results.
� 2021 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Proportional Navigation (PN) guidance laws are widely used
in the guidance system design for guided weapons like torpe-
does, missiles, and exoatmospheric interceptors.1 In the non-

linear form, PN guidance laws can be categorized into two
major classes: the interceptor velocity referenced class and
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the Line-of-Sight (LOS) referenced class.2,3 The first one
mainly includes the Pure Proportional Navigation (PPN) guid-
ance law and its variants.4–10. For this class of PN, the com-

manded acceleration is required to be perpendicular to the
interceptor’s velocity. Hence, they are usually used for endoat-
mospheric or underwater interception.

The LOS-referenced class of PN mainly includes True Pro-
portional Navigation (TPN),11 Realistic True Proportional
Navigation (RTPN),12 Generalized True Proportional Naviga-

tion (GTPN),13, Ideal Proportional Navigation (IPN),14 and
General Ideal Proportional Navigation (GIPN).15,16 For this
class of PN, the commanded acceleration is required to be per-
pendicular to a direction related to LOS, which is more prefer-

able for exoatmospheric interception12,14,17 and space
rendezvous.18

According to the PN’s unified approach,2 TPN is the pri-

mary LOS-referenced PN, whose commanded acceleration is
perpendicular to LOS and is proportional to the product of
the initial closing speed and the real-time LOS angular rate.

RTPN is the practical implementation of TPN using the
real-time closing speed to replace the initial closing speed.
GTPN, IPN, and GIPN are certain extensions of TPN and

RTPN and are said to be with larger capturability. However,
they all have command projections along LOS, which is hard
for practical implementation. Therefore, TPN and RTPN are
still the most commonly used LOS-referenced PNs.12,17

In common exoatmospheric interception scenarios, the per-
formance of RTPN is close to that of TPN, since the closing
speed between the interceptor and target varies very little dur-

ing most of the guidance process. Compared with TPN, RTPN
is more mathematically tractable. Thus, a lot of researches
have been devoted to the performance analysis of RTPN.

For example, C.D. Yang and C.C. Yang19 analyzed the perfor-
mance of Three-Dimensional (3D) RTPN against nonmaneu-
vering target and maneuvering target, based on the 3D

nonlinear coupled relative kinematic equation set. However,
in their work, the maneuvering target was guided by IPN.
Garai et al.20 derived the approximate closed-form solution
of 2D RTPN using the Adomian decomposition method,

and then they calculated the capture region numerically assum-
ing that the target acceleration is constant. With the help of the
Modified Polar Coordinate system (MPC) and Modified Polar

Variables (MPVs), Tyan15,16 proposed a phase plane method
to study the capturability of 3D GIPN. Notice that, 3D GIPN
is an extension of 3D RTPN with an additional commanded

acceleration along LOS; hence, the capturability of 3D
RTPN can be directly obtained from the analysis results of
3D GIPN.

Ballistic warheads and spacecraft are trying to develop

active maneuverability to escape from exoatmospheric inter-
ceptors. The escape acceleration could be along an arbitrary
and time-varying direction in 3D space with an uncertain

time-varying magnitude. The capturability of RTPN against
nonmaneuvering target has been fully explored.12,19 However,
concerning the capturability of RTPN or its extension like IPN

and GIPN against maneuvering targets, existing literatures still
suffer from on main drawback: only certain escape accelera-
tion models of target have been discussed, which is not general

enough for practical interception missions. Besides, in some lit-
eratures,15,16 the obtained capture region needs to be calcu-
lated numerically, which is not intuitive and may not be
suitable for real-time missions because of calculation burden.
Recently, Li et al.12 obtained the 2D capture region of 2D
RTPN against the arbitrarily maneuvering target. Neverthe-
less, the target maneuvering acceleration was assumed to be

just along the normal direction of LOS. Then, this is still not
a real ‘‘arbitrarily maneuvering target”.

In this paper, the capturability of 3D RTPN is revisited.

The whole nonlinear relative kinematics between the intercep-
tor and target is considered and no linearization is utilized. The
above-mentioned drawback of the target acceleration model is

released. Unlike previous literatures, the maneuverability lim-
itation of interceptor is considered, and the obtained capture
region is expressed explicitly in 3D space.

First, a 3D relative kinematic equation set established in the

LOS Rotation Coordinate (LRC) system1 is considered to mit-
igate the cross-coupling issue that exists in the 3D relative
kinematic equation set established in the traditional LOS coor-

dinate system.19,21 In this way, the relative motion could be
decoupled into the 2D relative motion in the Instantaneous
Rotation Plane of LOS (IRPL, which is also the instantaneous

engagement plane) and the rotation of this plane. Hence, the
design and analysis of 3D guidance laws could be greatly sim-
plified. A few 3D guidance laws were already devised and ana-

lyzed using this rotating LOS or similar coordinate system.
Advantages of utilizing this type of coordinate system were
also demonstrated. For example, Li et al.22,23 used this kine-
matic equation set to study the performance of a 3D Differen-

tial Geometric Guidance Law (DGGL); Shin et al.24,25 used
this kinematic equation set to study the capturability of a 3D
Finite Time Sliding Mode Guidance (FTSMG) law.

Second, the true-arbitrarily maneuvering target is consid-
ered. The target maneuvering acceleration is assumed to be
along an arbitrary and time-varying direction in the 3D space,

while its magnitude is also assumed to be arbitrary but upper-
bounded. A novel Lyapunov-like approach6,26 which has been
proven to be a powerful tool in the field of missile guidance law

design and performance analysis is utilized to obtain the
upper-bound of commanded acceleration of 3D RTPN against
this true-arbitrarily maneuvering target, and the selection
range of the navigation gain of 3D RTPN is also thoroughly

discussed.
After that, the capture region of 3D RTPN is analyzed

using an inequality analysis technique. A more realistic defini-

tion of capture is adopted, i.e., the relative range is smaller
than an acceptable miss distance while the approaching speed
is larger than a required impact speed. This is more general

compared with the previous nonzero miss-distance require-
ment.27 The deduced capture region is expressed explicitly in
3D space where the three coordinates are the closing speed,
transversal relative speed, and relative range. The capture

region deduced in this paper could be taken as a sufficient-
but-unnecessary condition of capture.

The over structure of this paper is given as follow: an intro-

duction of the main contents of this paper is given at first. In
the preliminaries section, preliminaries including the engage-
ment geometry, relative kinematics, and research assumptions

are addressed. The Capturability Analysis section provides the
main performance analysis results of 3D RTPN, including
upper-bound of commanded acceleration, selection range of

navigation gain, and 3D capture condition, etc. Finally, the
Conclusion section concludes this study after demonstrating
the effectiveness of the new theoretical findings using numeri-
cal simulation examples in the Numerical Simulation section.
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2. Preliminaries

The 3D engagement geometry is depicted in Fig. 1.

For the simplicity of capturability analysis of 3D RTPN,
this paper assumes that:

(1) The interceptor and target are taken as point-masses.
(2) The dynamic lags of the interceptor and target are

neglected.

(3) The gravity is neglected.
(4) No guidance or control error is considered.

Traditionally, 3D pursuit is handled by constructing two

independent guidance laws in the vertical and horizontal
planes of the LOS coordinate system and taking their cross-
coupling effect into account, as shown in Refs. [17,19,21]. This

approach might complicate the description of the relative
motion due to the cross-coupling effect and introduce some
auxiliary variables. Establishing the kinematic equation set in

LOS Rotation Coordinate system (LRC) could ease the com-
plexity of the description of 3D relative kinematics.4–6 The rel-
ative motion in LRC can be divided into two decoupled sub-

motions:

(1) The relative motion in the instantaneous osculating
plane of the interceptor and the target spanned by the

relative position and velocity vectors, which is also
called ‘‘the instantaneous engagement plane” or ‘‘the
Instantaneous Rotation Plane of LOS (IRPL)”.

(2) The rotation of this plane.

The kinematic equation set of LOS is shown as below,4–6
_er ¼ xseh

_eh ¼ �xser þ Xsex

_ex ¼ �Xseh

8><
>: ð1Þ
where er is the unit vector along LOS, and ex the unit vector
along the LOS angular velocity, eh = ex � er the unit normal
vector of LOS; er, eh, and ex form the bases of LRC; er and eh
constitute IRPL; xs = xsex is the angular velocity of LOS and
xs the 3D LOS rate; Xs = Xser is the angular velocity of IRPL
and Xs the IRPL rotation rate.
Fig. 1 3D engagement geometry.
Note that, if ex is initially defined as the unit vector along
the LOS angular velocity and the motion of the LRC frame
(er, eh, ex) is calculated by integrating Eq. (1), as stated in

Ref. [16] where LRC is called ‘‘LOS fixed coordinate system”,
then xs is initially positive and could be either positive or non-
positive during the guidance process. In Refs. [4–6], ex is

defined as the real-time unit vector along the LOS angular
velocity, and hence xs is defined to be always nonnegative.
Concerning the value of Xs, it could be either positive or non-

positive, no matter which definition of ex is adopted. In this
paper, for the continuities of xs(t) and (er(t), eh(t), ex(t)), the
definitions of xs and ex presented in Ref. [16] are adopted.

The relative position vector is defined as

r ¼ rt � rm ¼ rer ð2Þ
where r is the relative position vector and r is the relative dis-
tance; rt and rm are the position vectors of the target and inter-
ceptor, respectively. Taking the derivative of Eq. (2) yields

_r ¼ v ¼ vt � vm ¼ _rer þ rxseh ¼ vrer þ vheh ð3Þ
where the overdot means the first-order time derivative; v is the
relative velocity vector; vt and vm are the velocity vectors of the
target and interceptor, respectively. Note that, in this paper,

the closing speed is defined as vr ¼ _r, the transversal relative
speed is defined as vh = rxs, and the approaching speed
between the interceptor and target is defined as the absolute

value of the closing speed, i.e., |vr|, which is always
nonnegative.

Taking the derivative of Eq. (3) with respect to time yields

€r� rx2
s ¼ at � erð Þ � am � erð Þ ¼ atr � amr

r _xs þ 2 _rxs ¼ at � ehð Þ � am � ehð Þ ¼ ath � amh

rxsXs ¼ at � exð Þ � am � exð Þ ¼ atx � amx

8><
>: ð4Þ

where the double-overdot means the second-order time deriva-

tive; at and am are the acceleration vectors of the target and
interceptor, respectively; subscripts ‘‘r, h, and x” represent
projections of a variable along er, eh, and ex, respectively. As

shown in Eq. (4), the first two equations can be decoupled
from the third one.

Actually, Eqs. (1) and (4) can be deduced from the transfor-

mation of the relative kinematic equation set in the arc-length
system to the time domain,28 or be directly deduced according
to the definition of the LRC,4–6 or else be deduced by using the
modified polar coordinate system (MPC).15,16

The commanded acceleration of 3D RTPN is1

am ¼ �N _rxseh ð5Þ
where N is the navigation gain.

For the guidance system Eq. (4), the initial values of system

states are r(0) = r0, _r 0ð Þ ¼ _r0, xs(0) = xs0, and Xs(0) = Xs0.
Note that, for the exoatmospheric interception scenario, it is
usually assumed that the initial closing speed is quite smaller

than zero.
The target acceleration is assumed to be arbitrary and time-

varying, which satisfies

atr tð Þj j 6 ar; ath tð Þj j 6 ah; atx tð Þj j 6 ax ð6Þ
where ar = const. > 0, ah = const. > 0, and ax = const. > 0.
Then, the total magnitude of the target acceleration is

at tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2tr tð Þ þ a2th tð Þ þ a2tx tð Þ

q
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r þ a2h þ a2x

q
¼ a2 ð7Þ
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where a is the total upper-bound of the target maneuvering

acceleration.
According to the above Eqs. (6) and (7), the magnitude of

the target maneuvering acceleration is arbitrary and time-

varying but subjected to an upper-bound, while its direction
can be along an arbitrary and time-varying direction in 3D
space. This is a real ‘‘arbitrarily maneuvering target”, which
is more general compared with previous literatures.

3. Capturability analysis

When exploring the capturability of LOS-referenced PNs, it is

usually assumed that the interceptor has infinite maneuverabil-
ity, and hence the obtained capture region is quite large, as
shown in Refs. 11–14,19. Although in some papers15,16 the

maneuverability limitations of the interceptor and target are
considered, the obtained capture region needs to be calculated
numerically, which is not intuitive enough and brings calcula-

tion burden.
In this section, the capturability of 3D RTPN is restudied.

At first, the upper-bound of commanded acceleration of 3D

RTPN against the true-arbitrarily maneuvering target with
upper-bounded acceleration is deduced. Then, considering
the maneuverability limitation of interceptor, the reasonable
selection range of the navigation gain of 3D RTPN is ana-

lyzed. After that, the 3D capture region of 3D RTPN is
obtained, where the three coordinates are the closing speed,
transversal relative speed, and relative range.

3.1. Upper-bound of commanded acceleration

Traditionally, the capture of target is commonly defined by2

r tfð Þ ¼ 0; _r tfð Þ < 0 ð8Þ
where tf is the final time of the engagement. Some researchers
considered the nonzero miss-distance,27 and the definition of
capture is adjusted into

r tfð Þ < rMiss; _r tfð Þ < 0 ð9Þ
where 0 < rMiss < r0 is the acceptable miss-distance.

However, for an effective impact between the interceptor
and target, it is reasonable that the approaching speed must
be larger than a certain value, i.e.,

_r tð Þ < _rImp ¼ const: < 0; for t 2 0;þ1½ Þ ð10Þ
where vrImp ¼ _rImp ¼ const: is the required closing speed.

Therefore, when considering the impact speed, the definition
of capture needs adjustment. Therefore, the definition of cap-
ture proposed in Ref. 11 is employed here.

Definition 1. The capture of target is defined by

r tfð Þ < rMiss; vr tfð Þ ¼ _r tfð Þ < vrImp ¼ _rImp ð11Þ
Theorem 1. Consider the guidance system Eq. (4). For the

interceptor guided by 3D RTPN of Eq. (5) against the true-
arbitrarily maneuvering target with acceleration satisfying

Eq. (6), if the navigation gain meets

N > 2þ r0ar
_r2Imp

ð12Þ

and the closing speed satisfies
_r tð Þ 6 _rImp < 0; for t 2 0; t0½ � ð13Þ
where t0 2 0;þ1ð Þ is a constant, then the following inequality
must be valid,

_r tð Þxs tð Þj j 6 d ¼ max _r0xs0j j; ah
N�2� r0ar

_r2
Imp

( )
; 8t 2 0; t0½ � ð14Þ

and the magnitude of commanded acceleration of 3D RTPN

must meet

k am tð Þ k ¼ N _r tð Þxs tð Þj j 6 Nd ¼ max N _r0xs0j j; Nah
N�2� r0ar

_r2
Imp

( )
; 8t 2 0; t0½ �

ð15Þ
Proof. Firstly, the inequality of Eq. (14) will be proved by

contradiction. If Eq. (14) does not hold, from the continuities
of _r tð Þ and xs(t), it is trivial that there must exist some con-

stants t1, t2 2 0; t0½ � such that

_r t1ð Þxs t1ð Þj j ¼ d ð16Þ

_r tð Þxs tð Þj j > d; for t1 < t 6 t2 ð17Þ
Consider the Lyapunov-like function W ¼ _rxsð Þ2=2. Tak-

ing the derivative of W with respect to time and recalling
Eq. (4) yields

_W ¼ _rxs €rxs þ _r _xsð Þ

¼ _rxs xs rx2
s þ atr � amr

� �þ _r
�2 _rxs þ ath � amh

r

� �
ð18Þ

Substituting Eq. (5) into the above equation yields

_W ¼ _rxs xs rx2
s þ atr

� �þ _r N�2ð Þ _rxsþath
r

h i
¼ r _rx4

s þ atr _rx2
s þ _r2

r
xs N� 2ð Þ _rxs þ ath½ �

ð19Þ

Recalling Eqs. (6) and (13) yields

_W 6 �ar _rx2
s þ _r2

r
xs N� 2ð Þ _rxs þ ah½ �

¼ _r2

r
xs N� 2ð Þ _rxs þ ah � rar

_r2
_rxs

h i
¼ � _r2

r
xsj j N� 2� rar

_r2

� �
_rxsj j � ah

h i
6 � _r2

r
xsj j N� 2� r0ar

_r2
Imp

	 

_rxsj j � ah

� �
ð20Þ

Given the bound on _rxsj j assumed in Eq. (17) for t 2 [t1,t2]
and recalling Eq. (12), it is clear that

_W 6 0; for t 2 t1; t2ð � ð21Þ
which implies that

_r tð Þxs tð Þj j 6 d; for t1 < t 6 t2 ð22Þ
This contradicts Eq. (17). Hence, Eq. (14) is valid during

the guidance process. Then, the validation of Eq. (15) can be
easily proved according to Eqs. (5) and (14). Then, the proof

is over.
Remark 1. According to Theorem 1 it can be seen that, as

long as Eq. (13) is valid during the engagement, if the naviga-

tion gain of 3D RTPN is larger than 2þ r0ar= _r
2
Imp, which is a

constant, for an interceptor guided by 3D RTPN against an
arbitrarily maneuvering target whose acceleration satisfying
Eq. (6), even though the 3D LOS rate xs may diverge to a large
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value during the guidance process, the commanded accelera-
tion of 3D RTPN is always bounded.

In the above Theorem 1, the term r0ar= _r
2
Imp is used for the

determination of N. The reader may worry about that a large
N is required according to Eq. (12). However, since _rImp is a

user-defined parameter, the value of r0ar= _r
2
Imp could be limited

to be small, if a large and proper _rImp

�� �� is selected.
For example, for a typical exoatmospheric interception sce-

nario, if the initial relative range is assumed to be r0 = 100 km,
the initial closing speed is assumed to be _r0 ¼ 10 km/s, and the

target maneuvering acceleration along LOS is assumed to be
with an upper-bound of 2 g, i.e., ar = 2 g, where
g = 9.8 m/s2, the required closing speed could be chosen as

_rImp = �8 km/s, then r0ar= _r
2
Imp = 0.030625. Nevertheless, if

_rImp = �1 km/s is selected in this case, then

r0ar= _r
2
Imp = 1.96. Therefore, for a proper selection of the nav-

igation gain, a large _rImp

�� �� should be selected. This is also in

accordance with the internal requirement of the effective
impact between the interceptor and target.

3.2. Selection range of navigation gain

For practical exoatmospheric interception missions, the inter-
ceptor’s maneuverability must be limited. For certain initial

relative states between the interceptor and target, through
proper selection of the navigation gain N, the commanded
acceleration of 3D RTPN will not exceed the physical limita-

tion of the interceptor. This will be shown in the following
corollary.

Corollary 1. Consider the guidance system Eq. (4). For the

interceptor guided by 3D RTPN of Eq. (5) against the true-
arbitrarily maneuvering target with acceleration satisfying
Eq. (6), in addition to Eq. (13), if the initial relative states meet

_r0xs0j j 6 amax � ah
2þ r0ar

_r2
Imp

ð23Þ

where amax = const. > ah is the maximum acceleration that

can be provided by the interceptor, and N is selected by

amax

amax � ah
2þ r0ar

_r2Imp

 !
6 N 6 amax

_r0xs0j j ð24Þ

then, Eqs. (14), (15), and the following inequalities will be
valid,

k am tð Þ k 6 amax; 8t 2 0; t0½ � ð25Þ
Proof. It is trivial to find that Eq. (23) leads to the valida-

tion of

amax

amax � ah
2þ r0ar

_r2Imp

 !
6 2þ r0ar

_r2Imp

þ ah
_r0xs0j j 6

amax

_r0xs0j j ð26Þ

Then, N can be selected by

amax

amax � ah
2þ r0ar

_r2Imp

 !
6 N 6 2þ r0ar

_r2Imp

þ ah
_r0xs0j j ð27Þ

or

2þ r0ar
_r2Imp

þ ah
_r0xs0j j 6 N 6 amax

_r0xs0j j ð28Þ
Hence, Eq. (12) is valid, no matter N is selected by Eq. (27)
or Eq. (28). Then, Eqs. (12) and (13) means Theorem 1 is sat-
isfied, under Eqs. (4)-(6). Therefore, Eqs. (14) and (15) are

valid in this case.
On one hand, if N is selected by Eq. (27), then, the Right

Hand Side (RHS) of Eq. (27) leads to

_r0xs0j j 6 ah
N� 2� r0ar

_r2
Imp

ð29Þ

which means d ¼ ah= N� 2� r0ar= _r
2
Imp

� �h i
from Eq. (14).

Then, Eq. (15) leads to

amh tð Þj j 6 Nd ¼ Nah
N�2� r0ar

_r2
Imp

; 8t 2 0; t0½ � ð30Þ

which leads to Eq. (25) together with the left hand side of Eq.
(27).

On the other hand, if N is selected by Eq. (28), then, the left

hand side of Eq. (28) leads to

_r0xs0j j P ah
N� 2� r0ar

_r2
Imp

ð31Þ

which means d ¼ _r0xs0j j from Eq. (14). Then, Eq. (15) leads to

amh tð Þj j 6 Nd ¼ N _r0xs0j j; 8t 2 0; t0½ � ð32Þ
which leads to Eq. (25) together with RHS of Eq. (28).

Note that Eqs. (27) and (28) lead to Eq. (24). Then, the
proof of this corollary is over.

Remark 2. According to Corollary 1, when Eq. (23) is sat-
isfied, the selection range of the navigation gain of 3D RTPN
is Eq. (24), which can be divided into two parts, i.e., Eqs. (27)

and (28). Besides, from Eqs. (23) and (24) it can be seen that,
for certain ar and ah, it is better for the interceptor to have a
large maneuverability, which lead to a looser condition on

the initial relative states and a larger selection range of the nav-
igation gain of 3D RTPN.

For PN, it is commonly required that the interceptor’s

maneuverability is several times of the target’s maneuverabil-
ity, for example, amax = 4ah. Then, if r0 = 100 km, _r0 =
�10 km/s, _rImp = �8 km/s, ar = 2 g, ah = 2 g, and

xs0 = 2 � 10�3 rad/s, then, Eq. (23) is satisfied and Eq.
(24) indicates that 2.7075 < N � 3.92. This is different from

the engineering experience that N should be selected by
N 2 3; 5½ � for PN guidance laws.29 However, one should know
that, a large N may cause the interceptor to use the maximum
acceleration to cope with the large initial heading error or the

strong target maneuverability during the guidance process.
Then, N 2 3; 5½ � may not be the proper selection for the nav-
igation gain of 3D RTPN.

3.3. Capture region

The capture condition of 3D RTPN against the true-arbitrarily

maneuvering target is another important issue, which will be
fully discussed in the following Theorem 2. Before introducing
Theorem 2, a lemma from Ref. [11] will be firstly given, which

shows the maximum approaching speed between the intercep-
tor and target.

Lemma 1. Consider the guidance system Eq. (4). For the
interceptor guided by 3D RTPN of Eq. (5) against the true-
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arbitrarily maneuvering target with the acceleration satisfying
Eq. (6). The closing speed must meet

_r tð Þ P �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r20 þ 2arr0

q
; t 2 0;þ1½ Þ ð33Þ

Proof. From Eq. (6) and the first equation of Eq. (4), it can
be deduced that

€r ¼ rx2
s þ atr P �ar ð34Þ

Integrating both sides of the above inequality with respect
to time yields

r tð Þ P r0 þ _r0t� ar
2
t2 ¼ f tð Þ ð35Þ

For physical consideration, r(t) � 0 leads to f(t) � 0, which
further leads to

f t�ð Þ ¼ 0

_r tð Þ P _r t�ð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r20 þ 2arr0

q(
ð36Þ

where

t� ¼ _r0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2
0
þ2arr0

p
ar

; t 2 0;þ1½ Þ ð37Þ

Then, Eq. (33) is satisfied and this lemma is proven.

From Lemma 1 it can be seen that, the maximum
approaching speed between the interceptor and target isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_r20 þ 2arr0
q

, when the interceptor is guided by 3D RTPN

and there is an upper-bound of the target maneuvering accel-
eration along LOS.

Theorem 2. Consider the guidance system Eq. (4). For the
interceptor guided by 3D RTPN of Eq. (5) against the true-
arbitrarily maneuvering target with acceleration satisfying

Eq. (6), if the initial relative states meet

_r0 < _rImp

2 _r20x
2
s0 <

_r4
0
� _r4

Impð Þ�4 _r2
0
þ2arr0ð Þar r0�rMissð Þ

r2
0
�r2

Miss

8<
: ð38Þ

and N satisfies

N > 2þ r0ar
_r2Imp

þ ah
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 r20 � r2Missð Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r40 � _r4Imp

� �
� 4 _r20 þ 2arr0
� �

ar r0 � rMissð Þ
r ð39Þ

then, the following inequalities must be valid,

_r tð Þxs tð Þj j 6 d ¼ max _r0xs0j j; ah
N�2� r0ar

_r2
Imp

( )
; 8t 2 0;þ1½ Þ

ð40Þ

k am tð Þ k ¼ N _r tð Þxs tð Þj j 6 Nd

¼ max N _r0xs0j j; Nah
N�2� r0ar

_r2
Imp

( )
;

8t 2 0;þ1½ Þ ð41Þ

_r tð Þ < _rImp ¼ const: < 0; for r tð Þ > rMiss; 8t 2 0;þ1½ Þ
ð42Þ

Notice that Eq. (42) means there must exist a constant
tf 2 0;þ1ð Þ that makes Eq. (11) be valid and hence the cap-
ture of the target is guaranteed.
Proof. Theorem 2 is proven by contradiction. The inequal-
ity of Eq. (42) is firstly proven. If Eq. (42) does not hold, from
the continuities of r(t) and _r tð Þ, recalling the first inequality of

Eq. (38), it is trivial that there must exist a constant t3
2 0;þ1ð Þ such that

r t3ð Þ > rMiss; _r t3ð Þ ¼ _rImp ð43Þ
According to Eq. (43) and considering the continuity of

_r tð Þ, it implies that

_r tð Þ < _rImp; for 8t 2 0; t3½ Þ ð44Þ

According to Eqs. (39) and (44), Eqs. (12) and (13) are sat-
isfied for t 2 0; t3½ Þ. Then, according to Theorem 1,

_r tð Þxs tð Þj j 6 d; 8t 2 0; t3½ Þ ð45Þ
Substituting Eq. (45) into the first equation of Eq. (4) and

recalling amr = 0 for 3D RTPN yield

€r ¼ r _rxsð Þ2
_r2

þ atr 6 r
_r2
d2 þ ar; 8t 2 0; t3½ Þ ð46Þ

Since €r ¼ d _r=dt ¼ _rd _r=dr and recalling Eq. (33), Eq. (46)
can be rewritten into

_r3 d _r
dr
6 rd2 þ _r2ar 6 rd2 þ _r20 þ 2arr0

� �
ar; 8t 2 0; t3½ Þ ð47Þ

Integrating both sides of the above inequality, it can be fur-

ther deduced that

_r4 tð Þ P _r40 þ 2d2 r2 tð Þ � r20
� 


þ4 _r20 þ 2arr0
� �

ar r tð Þ � r0½ � ¼ f tð Þ; 8t 2 0; t3½ Þ ð48Þ

From the continuities of r(t), _r tð Þ , and f(t), the three condi-

tions of Eqs. (43), (48), and f 0ð Þ ¼ _r40 > 0 indicate that there

must exist a constant t4 2 0; t3½ � such that f t4ð Þ ¼ _r4Imp holds,

which means

_r40 þ 2d2 r2 t4ð Þ � r20
� 
þ 4 _r20 þ 2arr0

� �
ar r t4ð Þ � r0½ � ¼ f t4ð Þ

¼ _r4Imp ð49Þ
Recalling Eq. (44), it has r(t4) > rMiss, then it can be further

deduced from Eq. (49) that

2d2 r20 � r2Miss

� �þ 4 _r20 þ 2arr0
� �

ar r0 � rMissð Þ
� _r40 � _r4Imp

� �
> 0 ð50Þ
Then, there are two subcases need to be discussed.
Firstly, if the inequality of Eq. (29) is valid, which means

d ¼ ah= N� 2� r0ar= _r
2
Imp

� �h i
, then Eq. (50) leads to

N < 2þ r0ar
_r2Imp

þ ah
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 r20 � r2Missð Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r40 � _r4Imp

� �
� 4 _r20 þ 2arr0
� �

ar r0 � rMissð Þ
r ð51Þ

which contradicts Eq. (39). Hence, in this subcase Eq. (42)

must hold. Besides, from Eq. (29) it can be deduced that

N 6 2þ r0ar
_r2Imp

þ ah
_r0xs0j j ð52Þ

Combining Eqs. (39) and (52) easily leads to Eq. (38).
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Secondly, if Eq. (29) is not valid, which means d ¼ _r0xs0j j,
then Eq. (50) leads to

2 _r20x
2
s0 >

_r40 � _r4Imp

� �
� 4 _r20 þ 2arr0
� �

ar r0 � rMissð Þ
r20 � r2Miss

ð53Þ

which contradicts Eq. (38). Therefore, in this subcase Eq. (42)

also must holds. Besides, the invalidity of Eq. (29) is equal to

N > 2þ r0ar
_r2Imp

þ ah
_r0xs0j j ð54Þ

Combining Eqs. (38) and (54) easily leads to Eq. (39).

After the proof of Eq. (42), inequalities of Eqs. (40) and
(41) are proven. It is trivial that Eqs. (39) and (42) means The-
orem 1 is valid for t0=+1, under Eqs. (4)-(6). Hence, Eqs.

(40) and (41) can be directly deduced from Eqs. (14) and (15).
Therefore, inequalities of Eqs. (40)-(42) are also proven.
Remark 3. According to Theorem 2, if (A) the interceptor is

with infinite maneuverability, (B) the initial relative states of

the interceptor and target are located in the region of Eq.
(38), and (C) the navigation gain of 3D RTPN satisfies Eq.
(39), no matter what type of escape model the target adopts,

Eq. (42) will be valid during the engagement and the intercep-
tor guided by 3D RTPN will definitely capture the true-
arbitrarily maneuvering target.

Although Theorem 2 has presented an initial capture condi-
tion Eq. (38) and a requirement on the navigation gain of 3D
RTPN, i.e., Eq. (39), however, the maneuver limitation of the
interceptor has not been considered, which makes Theorem 2
Fig. 2 3D capture re
impractical. The capture region of 3D RTPN with maneuver
limitation will be discussed in the following corollary.

Corollary 2. Consider the guidance system Eq. (4). For the

interceptor guided by 3D RTPN of Eq. (5) against the arbitrar-
ily maneuvering target with acceleration satisfying Eq. (6), if
the initial relative states satisfy Eq. (23) and

_r0 < _rImp < 0; _r40 � _r4Imp

� �
�4 _r20 þ 2arr0
� �

ar r0 � rMissð Þ > 2 r2
0
�r2

Missð Þ amax�ahð Þ2

2þ r0ar

_r2
Imp

	 
2
ð55Þ

and the navigation gain is selected by Eq. (24), then Eq. (42)

will be valid and

k am tð Þ k 6 amax; 8t 2 0;þ1½ Þ ð56Þ
Proof. According to the proof process of Corollary 1, if Eq.

(23) is satisfied, then Eq. (26) is valid and N could be selected
by Eq. (24). Then, it is trivial to find that the Left Hand Side

(LHS) of Eqs. (24) and (25) lead to the validities of Eqs. (38)
and (39). Therefore, Theorem 2 is valid under Eqs. (4)-(6),
which means Eq. (42) is valid.

Let t0=+1. Then, Eqs. (23), (24), and (42) lead to the
validity of Corollary1, under Eqs. (4)-(6). Hence, Eq. (25) is
valid, which leads to Eq. (56) for t0=+1. The proof is over.

Remark 4. According to Corollary 2, for the interceptor

guided by 3D RTPN with acceleration saturation of amax

against the true-arbitrarily maneuvering target whose acceler-
ation satisfying Eq. (6), if the initial relative states between
gion of 3D RTPN.
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the interceptor and target are located in the region bounded by
Eqs. (23) and (55), N could be selected by Eq. (24), then Eq.
(42) will be valid and the capture of the target described by

Eq. (11) will be guaranteed. Furthermore, Eq. (56) will be
valid, which means the commanded acceleration of 3D RTPN
will never reach the acceleration saturation of the interceptor.

Therefore, the region bounded by Eqs. (23) and (25) can be
taken as the capture region of 3D RTPN. For a better expres-
sion of the capture region of 3D RTPN, recalling vr ¼ _r,
vh ¼ rxs, and vrImp ¼ _rImp, Eqs. (23) and (25) could be rewritten

as

Capture Condition 1.

vr0vh0j j 6 r0 amax � ahð Þ
2þ r0ar

v2
rImp

ð57Þ
Fig. 3 2D capture region of 3D RTPN
Capture Condition 2.

vr0 < vrImp < 0; v4r0 � v4rImp

� �
�4 v2r0 þ 2arr0
� �

ar r0 � rMissð Þ > 2 r2
0
�r2

Missð Þ amax�ahð Þ2

2þ r0ar

v2
rImp

	 
2
ð58Þ

For the capture region of 3D RTPN defined by Eqs. (57)
and (58), rMiss and vrImp are user-defined parameters, amax is

the maximum acceleration that the interceptor can provide,
and ar and ah are the upper-bounds of the target maneuvering
acceleration along er and eh, respectively. Therefore, the cap-
ture region can be drawn in the 3D space spanned by vr0,

vh0, and r0.
For example, if rMiss = 0.2 m, vrImp = �8 km/s or �1 km/s

(for comparison), ar = 2 g, ah = 2 g, and amax = 6 g or 10 g
on the (vr0, vh0) plane when r0 is fixed.



Table 1 Initial states of interceptor and target.

Parameter Quantity Value

r0 (km) Initial relative range 3

qb0 (�) Initial LOS azimuth angle 40

qe0(�) Initial LOS elevation angle 30

rm0 (m) Initial position of missile [0, 0, 0]T

vt0 (m/s) Initial target speed 300

vm0 (m/s) Initial missile speed 500

wm0 (�) Initial interceptor velocity azimuth angle 41

um0 (�) Initial interceptor velocity elevation angle 40.7576

40.4576

wt0 (�) Initial target velocity azimuth angle 220

ut0 (�) Initial target velocity elevation angle 0
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(for comparison), the 3D capture region of 3D RTPN is shown
in Fig. 2. It can be seen that a smaller impact speed require-
ment or larger interceptor maneuverability leads to a larger

capture region. For a better understanding, if the initial rela-
tive range is further fixed as r0 = 100 km, the capture region
could be drawn on the relative velocity plane, as shown in

Fig. 3. It can be seen that the capture region defined by Eqs.
(57) and (58) are located in the region defined by Eq. (38).
According to Fig. 2 and Fig. 3, when the initial approaching

speed between the interceptor and the target is large enough,
Capture Condition 1, which represents the capture require-
ment on the initial relative states caused by the maximum
maneuverability of the interceptor, becomes the main capture

condition of the arbitrarily maneuvering target.
Remark 5. The capture region of 3D RTPN obtained in this

paper is actually a sufficient-but-unnecessary condition for the

capture of the true-arbitrarily maneuvering target, since the
target maneuvering acceleration is arbitrary which is not
exactly known to the interceptor and the inequality analysis

method is utilized. Although the analysis results obtained in
this paper are conservative in some degree, they are still very
general and could be used as guidance to the guidance and

control system design of the practical exoatmospheric
interceptor.

Remark 6. According to the relative kinematic equation set
Eq. (4), the target acceleration along ex, i.e., atx, will not influ-

ence the varying of the relative range r and that of the 3D LOS
rate xs. Hence, it has little influence on the capturability of 3D
RTPN.

4. Numerical simulations

In this section, numerical simulation examples are simulated to

demonstrate the validities of the theorems proposed in this
paper.

The capture region of 3D RTPN guarantees the capture of

the true-arbitrarily maneuvering target and simultaneously
avoids the saturation of commanded acceleration is given in
Section III, which is consisted of two capture conditions, i.e.,

Eqs. (57) and (58). The effectiveness of this capture region
could be validated by Monte-Carlo simulation method. The
authors have done numerous simulations to demonstrate the
validity and effectiveness of the capture region of 3D RTPN

proposed in this paper. However, for the length of this paper,
two initial condition sets of the interceptor and the target will
be adopted to demonstrate the validities of Theorem 1,
Fig. 4 2D capture region of 3D RTPN and th
Corollary 1, Theorem 2, and Corollary 2 in the following text.
The first one is in the capture region and near the boundary,

while the second one is outside the capture region. The initial
states of the missile and target in this case are shown in
Table 1.

Let rMiss = 0.2 m, vrImp = �600 m/s. Two kinds of target
maneuvering acceleration are considered. The first one is a
constant maneuvering acceleration, which is atr = 10 m/s2, at-

h = 20 m/s2, atx = 10 m/s2, while the second one is a sinu-
soidal maneuver, which is atr = 9 + sin(2pt + p/2) m/s2,
ath = 2[9 + sin(2pt + p/2)]m/s2 and atx = 9 + sin(2pt +
p/2) m/s2. Hence, ar = 10 m/s2, ah = 20 m/s2, and
ax = 10 m/s2. The maximum acceleration that the interceptor
can provide is assumed to be amax = 50 m/s2. The relative
states of the missile and target and the capture region of 3D

RTPN are shown in Fig. 4.
For um0 = 42.9576�, it has (vr0, vh0)=(�747.0275, 38.3920)

which is denoted as ‘‘Initial states 1”, while for

um0 = 69.4270�, (vr0, vh0)=(�9924.1177, 325.8391) which is
outside the capture region and is denoted as ‘‘Initial states
2”. It is trivial to find that ‘‘Initial states 1” and ‘‘Initial states

2” both satisfy Eq. (38) of Theorem 2. Hence, according to Eq.
(39) of Theorem 2, if

N > 2þ r0ar
_r2Imp

þ ah
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 r20 � r2Missð Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r40 � _r4Imp

� �
� 4 _r20 þ 2arr0
� �

ar r0 � rMissð Þ
r

	 2:3351 ð59Þ
the target can be captured, which means Eq. (42) will be valid
for both ‘‘Initial states 1” and ‘‘Initial states 2”. Furthermore,
e initial relative states on the (vr0, vh0) plane.



Fig. 5 3D trajectories of the interceptor and target (Initial states

1 and constant target maneuver).

Fig. 6 Closing speed and transversal relative speed (Initial states

1 and constant target maneuver).

Fig. 7 Absolute value of |vr�xs| (Initial states 1 and constant

target maneuver).

Fig. 8 Magnitude of commanded acceleration of 3D RTPN

(Initial states 1 and constant target maneuver).
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since Theorem 2 is a sufficient-but-not-necessary condition, a
smaller N may also lead to the validness of Eq. (42) in simula-
tion examples. Nevertheless, Eq. (59) gives an analytical bot-

tom line for the selection of the navigation gain of 3D RTPN.
Although the satisfactory of Eq. (59) leads to the validity of

Eq. (42), the commanded acceleration of 3D RTPN may

exceed the physical limitation of the interceptor, i.e., kam(t)k
>amax. Therefore, a more suitable N may need to be further
selected. It is easy to find that the inequality of Eq. (23) is valid
for the ‘‘Initial states 1”, since it is in the capture region.

Hence, according to Corollary 1, N could be selected according
to Eq. (24) to guarantee Eqs. (42) and (56) simultaneously, i.e.,

amax

amax � ah
2þ r0ar

_r2Imp

 !
	 3:4722 6 N 6 amax

_r0xs0j j 	 3:5025 ð60Þ

While for the ‘‘Initial states 2”, as it is outside the capture

region, the inequality of Eq. (23) is not satisfied. Then, a
proper N to guarantee Eq. (56) together with Eq. (42) might
not be able to find analytically. According to above analysis,

for detailed comparison, N = 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and
5.0 are selected for both ‘‘Initial states 1” and ‘‘Initial states 2”.

The sampling period is selected as T = 10 ms. When the

closing speed vr becomes nonnegative, which means the inter-
ceptor is leaving the target, the simulation stops. Then, the
miss distance is approximated by the Zero-Effort-Miss
ZEM = r2|xs|/v,

1 using the last data before vr turns its sign.
4.1. Constantly maneuvering target

Firstly, the ‘‘Initial states 1” is utilized. The target adopts con-

stant maneuvering acceleration of atr = 10 m/s2, ath = 20 m/
s2, atx = 10 m/s2. The simulation results are shown in Figs. 5–
10.

The 3D trajectories of the interceptor and the target under
Initial states 1 when the target adopts constant maneuver are
shown in Fig. 5. It can be seen that, for all navigation gains
of N = 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and 5.0, the miss distance

is smaller than 0.01 m.
The closing speed and the transversal relative speed under

Initial States 1 when the target adopts constant maneuver

are shown in Fig. 6. It can be seen that, the absolute value
of the closing speed |vr| is always larger than |vrImp|=600 m/
s. This together with the fact that all the miss distances are

smaller than 0.01 m means the target can be captured for all
navigation gains of N = 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and 5.0.
Then, the validity of Theorem 2 is demonstrated. It can also

be seen that the transversal relative speed decreases more
rapidly as N grows.

For the demonstration of Theorem 1, the value of |vr�xs| is
depicted in Fig. 7 and the commanded acceleration of RTPN



Fig. 9 3D LOS rate (Initial states 1 and constant target

maneuver).

Fig. 10 Zero-miss-effort (Initial states 1 and constant target

maneuver).

Fig. 11 3D trajectories of the interceptor and target (Initial

states 2 and constant target maneuver).
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am is shown in Fig. 8. It can be easily found that Eqs. (12) and
(13) of Theorem 1 are satisfied during the guidance process, as

shown by Eq. (59) and in Fig. 6. Then, according to Eq. (14) of
Theorem 1, |vr�xs| is always smaller than its initial value

|vr0�xs0|=14.2755 m�rad/s2 or ah= N� 2� r0ar= _r
2
Imp

� �
=

{63.1579, 21.8182, 16.4384, 14.1176, 12.3711, 10.4348,
6.8571} for N= 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and 5.0, respectively.
And this is valid as shown in Fig. 7. Besides, it can be

seen that, |vr�xs| finally becomes smaller than

ah= N� 2� r0ar= _r
2
Imp

� �
for all navigation gains.

Furthermore, according to Eq. (15) of Theorem 1, am is

always smaller than Nd={151.5789, 65.4545, 54.2466,
49.9643, 52.8194, 57.1020, 71.3775} for N = 2.4, 3.0, 3.3,
3.5, 3.7, 4.0, and 5.0, respectively. This is also valid as shown

in Fig. 8. Besides, it can be seen that, only for N = 3.5, the
commanded acceleration of RTPN is below the physical limi-
tation of the interceptor amax. That is because N = 3.5 is prop-

erly chosen according to Eq. (24) of Corollary 1. And
according to Corollary 2, the capture of the target can be guar-
anteed while the acceleration saturation of the interceptor can

be avoided. Then, Corollary 1 and Corollary 2 are
demonstrated.

The 3D LOS rate under Initial states 1 when the target
adopts constant maneuver is shown in Fig. 9. It can be found
that, RTPN with N = 2.4, 3.0, 3.3, and 3.5 cannot guarantee
the convergence of xs during the guidance process. For
N = 3.7, 4.0, and 5.0, the convergence of xs can be guaran-

teed. And it can be seen that, as N grows, the final value of
xs decreases, which leads to small ZEM.

The ZEM under Initial states 1 when the target adopts con-

stant maneuver is shown in Fig. 10. It can be seen that all the
ZEM curves are always decreasing during the guidance pro-
cess. And as N grows, the decrease speed of ZEM increases.

For comparison, when the initial relative states are outside
the capture region, i.e., ‘‘Initial states 2”, the simulation results
are shown in Figs. 11–16.

The 3D trajectories of the interceptor and the target under

Initial states 2 when the target adopts constant maneuver are
shown in Fig. 11. It can be seen that, for all navigation gains
of N = 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and 5.0, the miss distance

is smaller than 0.01 m.
The closing speed and the transversal relative speed under

Initial States 2 when the target adopts constant maneuver

are shown in Fig. 12. It can be seen that, |vr| is always larger
than |vrImp|=600 m/s. This together with the fact that all the
miss distances are smaller than 0.01 m means the target can

be captured for N = 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and 5.0. Then,
the validity of Theorem 2 is demonstrated.

The curve of |vr�xs| is depicted in Fig. 13 and the curve of
am are shown in Fig. 14. It can be easily found that, for this

case, Eqs. (12) and (13) are satisfied during the guidance pro-
cess, as shown by Eq. (59) and in the top subfigure of Fig. 12.
Then, according to Eq. (14) of Theorem 1, |vr�xs| is always

smaller than its initial value |vr0�xs0|=14.9259 m�rad/s2 or

ah= N� 2� r0ar= _r
2
Imp

� �
= {63.1579, 21.8182, 16.4384,

14.1176, 12.3711, 10.4348, 6.8571} for N = 2.4, 3.0, 3.3, 3.5,

3.7, 4.0, and 5.0, respectively. And this is valid as shown in
Fig. 13. Besides, it can be seen that, |vr�xs| finally becomes

smaller than ah= N� 2� r0ar= _r
2
Imp

� �
for all navigation gains.

Furthermore, according to Eq. (15) of Theorem 1, am is
always smaller than Nd={151.5789, 65.4545, 54.2466,
52.2406, 55.2258, 59.7035, 74.6294} for N = 2.4, 3.0, 3.3,

3.5, 3.7, 4.0, and 5.0, respectively. This is also valid as shown
in Fig. 14. Besides, it can be seen that, for the selected naviga-
tion gains of N = 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and 5.0, no one

could guarantee that the commanded acceleration of 3D
RTPN is smaller than the maximum maneuverability of the



Fig. 12 Closing speed and transversal relative speed (Initial

states 2 and constant target maneuver).

Fig. 13 Absolute value of |vr�xs| (Initial states 2 and constant

target maneuver).

Fig. 14 Magnitude of commanded acceleration of 3D RTPN

(Initial states 2 and constant target maneuver).

Fig. 15 3D LOS rate (Initial states 2 and constant target

maneuver).

Fig. 16 Zero-miss-effort (Initial states 2 and constant target

maneuver).
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interceptor, i.e., Eq. (56). Although there might be a possible

navigation gain between 3 and 5 to make Eq. (56) valid, how-
ever, it may need to be selected through plenty of numerical
simulation examples, rather than being directly selected
according to the analytical inequality of Eq. (24).
The 3D LOS rate under Initial states 2 when the target

adopts constant maneuver is shown in Fig. 15. It can be found
that, RTPN with N< 3.5 cannot guarantee the convergence of
xs during the guidance process. For N = 3.7, 4.0, and 5.0, the

convergence of xs could be guaranteed. And it can be seen
that, as N grows, the final value of xs decreases, which leads
to small ZEM.

The ZEM under Initial states 2 when the target adopts con-
stant maneuver is shown in Fig. 16. It can be seen that all the
ZEM curves are always decreasing during the guidance pro-
cess. And as N grows, the decrease of ZEM also speeds up.

4.2. Sinusoidally maneuvering target

In this subsection, the target adopts the sinusoidal maneuver-

ing acceleration of atr = 9 + sin(2pt + p/2) m/s2, ath = 2[9 +
sin(2pt + p/2)] m/s2 and atx = 9 + sin(2pt + p/2) m/s2.
Hence, it also has ar = 10 m/s2, ah = 20 m/s2, and

ax = 10 m/s2. Firstly, the ‘‘Initial States 1” is utilized. The sim-
ulation results are shown in Figs. 17–22.

The 3D trajectories of the interceptor and the target under

Initial states 1 when the target adopts sinusoidal maneuver are
shown in Fig. 17. It can be seen that, for all navigation gains of
N = 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and 5.0, the miss distance is
smaller than 0.01 m.



Fig. 17 3D trajectories of the interceptor and target (Initial

states 1 and sinusoidal target maneuver).

Fig. 18 Closing speed and transversal relative speed (Initial

states 1 and sinusoidal target maneuver).

Fig. 19 Absolute value of |vr�xs| (Initial states 1 and sinusoidal

target maneuver).

Fig. 20 Magnitude of commanded acceleration of 3D RTPN

(Initial states 1 and sinusoidal target maneuver).

Fig. 21 3D LOS rate (Initial states 1 and sinusoidal target

maneuver).

Fig. 22 Zero-miss-effort (Initial states 1 and sinusoidal target

maneuver).
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The closing speed and the transversal relative speed under
Initial states 1 when the target adopts sinusoidal maneuver

are shown in Fig. 18. It can be seen that, |vr| is always larger
than |vrImp|=600 m/s. This together with the fact that all the
miss distances are smaller than 0.01 m means the target can

be captured for N = 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and 5.0. Then,
the validity of Theorem 2 is demonstrated.

The curve of |vr�xs| is depicted in Fig. 19 and the curve of
am are shown in Fig. 20. It can be easily found that Eqs.
(12) and (13) of Theorem 1 are satisfied during the guidance

process for this case, as shown by Eq. (59) and the top subfig-
ure of Fig. 18. Then, according to Eq. (14) of Theorem 1, |vr-
�xs| is always smaller than its initial value |vr0�xs0|

=14.2755 m�rad/s2 or ah= N� 2� r0ar= _r
2
Imp

� �
= {63.1579,

21.8182, 16.4384, 14.1176, 12.3711, 10.4348, 6.8571} for
N = 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and 5.0, respectively. And this



Fig. 24 Closing speed and transversal relative speed (Initial

states 2 and sinusoidal target maneuver).

Fig. 25 Absolute value of |vr�xs| (Initial states 2 and sinusoidal

target maneuver).
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is valid as shown in Fig. 19. Besides, it can be seen that, |vr�xs|

finally becomes smaller than ah= N� 2� r0ar= _r
2
Imp

� �
for all

navigation gains.
Furthermore, according to Eq. (15) of Theorem 1, am is

always smaller than Nd={151.5789, 65.4545, 54.2466,
49.9643, 52.8194, 57.1021, 71.3776} for N = 2.4, 3.0, 3.3,

3.5, 3.7, 4.0, and 5.0, respectively. This is also valid as shown
in Fig. 20. Besides, it can be seen that, only for N = 3.5, the
commanded acceleration of RTPN is below the physical limi-

tation of the maneuverability of interceptor, i.e., amax. That is
because N = 3.5 is properly chosen according to Eq. (24) of
Corollary 1. And according to Corollary 2, the capture of

the target can be guaranteed while the acceleration saturation
of the interceptor can be avoided. This is in accordance with
the case of ‘‘Initial states 1 and constant target maneuver”.

Then, Corollary 1 and Corollary 2 are demonstrated.
The 3D LOS rate under Initial States 1 when the target

adopts sinusoidal maneuver is shown in Fig. 21. It can be
found that, the curve of xs is wavy for all navigation gains.

This is caused by the sinusoidal maneuvering acceleration of
the target. And it can be seen that, as N grows, the final value
of xs decreases, which leads to small ZEM. This principle is

similar to the cases where the target adopts constant
maneuver.

The ZEM under Initial States 1 when the target adopts

sinusoidal maneuver is shown in Fig. 22. It can be seen that
all the ZEM curves are wavy and always decreasing during
the guidance process. And as N grows, the decrease of ZEM

also speeds up.
For comparison, when the initial relative states are outside

the capture region, i.e., ‘‘Initial states 2”, the simulation results
are shown in Figs. 23–28.

The 3D trajectories of the interceptor and the target under
Initial states 2 when the target adopts sinusoidal maneuver are
shown in Fig. 23. It can be seen that, for all navigation gains of

N = 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and 5.0, the miss distance is
smaller than 0.01 m.

The closing speed and the transversal relative speed under

Initial states 2 when the target adopts sinusoidal maneuver
are shown in Fig. 24. It can be seen that, |vr| is always larger
than |vrImp|=600 m/s. This together with the fact that all the
miss distances are smaller than 0.01 m means the target can

be captured for N = 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and 5.0. Then,
the validity of Theorem 2 is demonstrated.
Fig. 23 3D trajectories of the interceptor and target (Initial

states 2 and sinusoidal target maneuver).

Fig. 26 Magnitude of commanded acceleration of 3D RTPN

(Initial states 2 and sinusoidal target maneuver).
The curve of |vr�xs| is depicted in Fig. 25 and the curve of
am are shown in Fig. 26. It can be easily found that Eqs.
(12) and (13) of Theorem 1 are satisfied during the guidance

process for this case, as shown by Eq. (59) and the top subfig-
ure of Fig. 24. Then, according to Eq. (14) of Theorem 1, |vr-
�xs| is always smaller than its initial value |vr0�xs0|



Fig. 27 3D LOS rate (Initial states 2 and sinusoidal target

maneuver).

Fig. 28 Zero-miss-effort (Initial states 2 and sinusoidal target

maneuver).
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=14.9259 m�rad/s2 or ah= N� 2� r0ar= _r
2
Imp

� �
= {63.1579,

21.8182, 16.4384, 14.1176, 12.3711, 10.4348, 6.8571} for
N = 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and 5.0, respectively. And this
is valid as shown in Fig. 25. Besides, it can be seen that, |vr�xs|

finally becomes smaller than ah= N� 2� r0ar= _r
2
Imp

� �
for all

navigation gains.
Furthermore, according to Eq. (15) of Theorem 1, am is

always smaller than Nd={151.5789, 65.4545, 54.2466,
52.2406, 55.2258, 59.7035, 74.6294} for N = 2.4, 3.0, 3.3,
3.5, 3.7, 4.0, and 5.0, respectively. This is also valid as shown

in Fig. 26. Besides, it can be seen that, for the selected naviga-
tion gains of N = 2.4, 3.0, 3.3, 3.5, 3.7, 4.0, and 5.0, no one
could guarantee Eq. (56). Although there might be a possible

navigation gain between 3 - 5 to make Eq. (56) valid, however,
it may need to be selected through plenty of numerical simula-
tion examples, rather than being directly selected according to

the analytical inequality of Eq. (24). This is in accordance with
the case of ‘‘Initial states 2 and constant target maneuver”.

The 3D LOS rate under Initial states 2 when the target
adopts sinusoidal maneuver is shown in Fig. 27. It can be

found that, the curve of xs is wavy for all navigation gains.
This is caused by the sinusoidal maneuvering acceleration of
the target. And it can be seen that, as N grows, the final value
of xs decreases, which leads to small ZEM. This principle is
similar to the cases when the target adopts constant maneuver.

The ZEM under Initial states 2 when the target adopts sinu-

soidal maneuver is shown in Fig. 28. It can be seen that all the
ZEM curves are wavy and always decreasing during the guid-
ance process. And as N grows, the decrease of ZEM also

speeds up.
According to the above simulation results, when the initial

relative states are in the capture region of 3D RTPN defined by

Corollary 2 proposed and the navigation gain of 3D RTPN is
properly selected according to Eq. (24) of Corollary 1, the true-
arbitrarily maneuvering target whose maneuvering accelera-
tion satisfying Eq. (6) can be captured, i.e., the capture defini-

tion of Eq. (11) will be valid, and the commanded acceleration
of 3D RTPN will not exceed the maneuverability limitation of
the interceptor, i.e., Eq. (56).
5. Conclusions

(1) The capturability of 3D RTPN against the true-

arbitrarily maneuvering target is thoroughly analyzed,
when the maneuver limitation of interceptor is taken
into account. Using a novel Lyapunov-like approach,
the upper-bound of commanded acceleration of 3D

RTPN is obtained. The reasonable selection range of
the navigation gain is also analyzed. After that, the 3D
capture region is obtained, whose three axes are the clos-

ing speed, transversal relative speed, and relative range.
When the initial or real-time relative states are located in
the capture region and the navigation gain of 3D RTPN

is properly chosen according to the analytical inequality
obtained, the true-arbitrarily maneuvering target could
be captured, and the commanded acceleration of 3D

RTPN will not exceed the maneuverability limitation
of interceptor.

(2) The new theoretical findings obtained in this paper are
based on the Lyapunov-like approach and the inequality

analysis technique. No linearization assumption or sim-
plification is utilized. Hence, the obtained theoretical
results are globally general. The boundary of the

obtained capture region is an analytical function of
parameters of acceptable miss-distance, required closing
speed, target maximum maneuvering acceleration along

LOS, target maximum maneuvering acceleration along
the normal direction of LOS, and interceptor maximum
maneuvering acceleration. Hence, the capture region
could be previously calculated according to the apriori

information about the interceptor and target.
(3) Only deterministic problem is investigated in this paper.

In the future work, the influences of measurement errors

on the capture region of 3D RTPN may need further
discussion. Besides, the ideal relative dynamics is consid-
ered here. The dynamic lags of the interceptor seeker

and thrusters also need further investigations.
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