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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

The reconfigurable manufacturing system (RMS) paradigm 
was introduced in the last decade of the 20th century [1, 2]. An 
RMS is typically designed for balancing fluctuating demand 
levels [2]. However, the roll-out in the industry is rare [3, 4] in 
the past two decades due to a number of challenges. Unlike a 
conventional production line with predefined machines and 
fixed architecture, an RMS consists of several kinds of 
adjustable components, such as several reconfigurable machine 
tools, or even a flexible material handling system. These 
flexible parts make designing an optimal control system [5] for 
an RMS an arduous task. An adequate control system wire-
walks among production scheduling, process planning, 
reconfiguration control, and task assignment, amongst others.  

To observe an RMS system and optimise its objectives, 
multi-agent architecture is one of most often used control 
systems of RMS [6]. Under this architecture, the RMS 
scheduling problem is considered as a variant of the flexible 
job-shop scheduling problem [7]. Recently, reinforcement 
learning (RL) applications on finding close-to-optimal 
scheduling policy is becoming more powerful and versatile.  

Different from mathematical programming or meta-heuristic 
algorithms [8], RL tackles this NP-hard [8, 9] problem by 
formulating the problem into a Markov decision process. RL 
asks an agent / agents to keep interacting with the environment 
to gain transitions and rewards. With adequate experience on 
interacting, an RL agent / agents become(s) “far-sighted” and 
“resilient” to a dynamic environment like RMS. Under multi-
agent environment, RL agents could also gain cooperation 
ability [10] for maximising the global rewards.  

RL for RMS scheduling has been previously investigated in 
[11] where the authors demonstrated its great potential. This 
paper builds on the work of [11] and presents an upgraded RMS 
control policy training framework based on a deep 
reinforcement learning method and a multi-agent discrete event 
simulation environment. The framework is able to reduce the 
complexity of the control system by assigning limited action 
space to every agent. These agents self-organise and provide an 
optimal policy based on an artificial neural network.  

The rest of this paper is organised as follows: section 2 
briefly reviews the relevant research on multi-agent RMS 
control system and multi-agent RL on scheduling optimisation. 
Section 3 describes the information flow among RL agents and 

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia CIRP 00 (2021) 000–000 

  
     www.elsevier.com/locate/procedia 

   

 

 

 

2212-8271 © 2022 The Authors. Published by ELSEVIER B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference 

55th CIRP Conference on Manufacturing Systems 
Reconfigurable manufacturing system scheduling: a deep reinforcement 

learning approach 
 Jiecheng Tang, Yousef Haddad, Konstantinos Salonitis*  

aSustainable Manufacturing Systems Centre, Cranfield University, Bedford, MK43 0AL, UK  
* Corresponding author. Tel.: +44 (0) 1234 758347. E-mail address: k.salonitis@cranfield.ac.uk 

Abstract 

Reconfigurable Manufacturing Systems (RMS) bring new possibilities toward meeting demand fluctuations while, at the same time, challenges 
scheduling efficiency. This paper presents a novel approach that, for the scheduling problem of RMS on multiple products, finds a dynamic 
control policy via a group of deep reinforcement learning agents. These teamed agents, embedded with a shared value decomposition network, 
aim on minimising the make-span of a constant updating order group by guiding a group of automated guided vehicles to move modules of 
machine, raw materials, and finished products inside the system.  
 
© 2022 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review - Peer-review under responsibility of the International Programme committee of the 55th CIRP Conference on Manufacturing 
Systems 
 Keywords: Reconfigurable Manufacturing System; Multi-agent System; Deep Reinforcement Learning; Flexible Job-shop Scheduling Problem 

 
1. Introduction 

The reconfigurable manufacturing system (RMS) paradigm 
was introduced in the last decade of the 20th century [1, 2]. An 
RMS is typically designed for balancing fluctuating demand 
levels [2]. However, the roll-out in the industry is rare [3, 4] in 
the past two decades due to a number of challenges. Unlike a 
conventional production line with predefined machines and 
fixed architecture, an RMS consists of several kinds of 
adjustable components, such as several reconfigurable machine 
tools, or even a flexible material handling system. These 
flexible parts make designing an optimal control system [5] for 
an RMS an arduous task. An adequate control system wire-
walks among production scheduling, process planning, 
reconfiguration control, and task assignment, amongst others.  

To observe an RMS system and optimise its objectives, 
multi-agent architecture is one of most often used control 
systems of RMS [6]. Under this architecture, the RMS 
scheduling problem is considered as a variant of the flexible 
job-shop scheduling problem [7]. Recently, reinforcement 
learning (RL) applications on finding close-to-optimal 
scheduling policy is becoming more powerful and versatile.  

Different from mathematical programming or meta-heuristic 
algorithms [8], RL tackles this NP-hard [8, 9] problem by 
formulating the problem into a Markov decision process. RL 
asks an agent / agents to keep interacting with the environment 
to gain transitions and rewards. With adequate experience on 
interacting, an RL agent / agents become(s) “far-sighted” and 
“resilient” to a dynamic environment like RMS. Under multi-
agent environment, RL agents could also gain cooperation 
ability [10] for maximising the global rewards.  

RL for RMS scheduling has been previously investigated in 
[11] where the authors demonstrated its great potential. This 
paper builds on the work of [11] and presents an upgraded RMS 
control policy training framework based on a deep 
reinforcement learning method and a multi-agent discrete event 
simulation environment. The framework is able to reduce the 
complexity of the control system by assigning limited action 
space to every agent. These agents self-organise and provide an 
optimal policy based on an artificial neural network.  

The rest of this paper is organised as follows: section 2 
briefly reviews the relevant research on multi-agent RMS 
control system and multi-agent RL on scheduling optimisation. 
Section 3 describes the information flow among RL agents and 
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RMS environment, and explains how agents train a universal 
policy inside a neural network. Section 4 presents two 
numerical case studies based on the proposed framework 
chasing the optimal on-time delivery, first one, although not 
entirely successful, helped develop the modelling approach 
whereas the seconds one provides acceptable outcome. The 
final section presents the concluding remarks and future 
research directions. 

2. Related work 

Problems pertaining to reconfigurable manufacturing 
systems (RMS) design, flexible job-shop scheduling, and 
reinforcement learning on scheduling have been extensively 
investigated in the contemporary literature. This section will, 
therefore, briefly highlight key papers in the extant literature. 

The authors in [5] highlighted two main categories of drivers 
of responding to change when designing an RMS. The first 
being demand changing drivers, which include changes in 
product, manufacturing process, lead time, volume, quality 
level and product price. While the other is production system 
environment changing drivers, which include changes of 
supply, resources, legislative environment, and readjustment 
cost. Key reviews of RMS [3, 12, 13] suggested volume 
fluctuation is one of the most important attributes to 
investigate. Architecture of RMS is another key feature to be 
considered while modelling such a production environment. 

 The authors in [14] modelled an RMS based on complex 
adaptive system theory as a multi-layer multi-agent system. In 
the aforementioned model, a workshop manager agent 
manages several workshop agents. Through a rule-based 
system (i.e. a series if-else conditions), each workshop agent 
can control several resource agents. Based on an agent-
communication language, the author in [15] designed a multi-
robot system that shares knowledge inside the system. With 
RL-based optimisation, this system separates a global plan into 
local tasks and provides a better solution than meta-heuristic 
algorithms, such as ant colony optimisation and particle swarm 
optimisation. Other papers [9, 16–18] suggest similar results 
that RL normally outperform meta-heuristic approaches in 
complex systems. For example, two decades ago, the authors 
in [16] used Q-III reinforcement learning method to choose the 
best real-time system operating mode among 3 kinds of fixed 
dispatching rules. The authors in [11] developed a framework 
which can provide an optimal online task-launching policy 
based on a trained Deep Q Network (DQN) in a simplified 
RMS. The authors in [19] modelled a flexible manufacturing 
systems (FMS) as a Petri net then used multi-agent RL to 
outperform conventional heuristics and meta-heuristics on 
finding the best dispatching rule on every single machine.  

A material handling system (MHS) is one of major 
components of an RMS which help transporting materials and 
finished product from point to point [3]. Automatic guided 
vehicles (AGVs) are widely used in FMS [20, 21] and some 
novel production lines [21] as MHS. The authors in [22] solved 
an AGV task scheduling problem in an FMS by using 
collaborative evolutionary genetic algorithm which belong to 
meta-heuristic approaches. The authors in [21] used Q-
learning, an RL approach, to solve a multi-AGV scheduling 

problem on a production line. The result suggest that their 
approach has more advantage on minimising the average 
makespan with more complex systems. After the game of Go 
is mastered in 2013 [23], deep reinforcement learning (DRL) 
gained significant attention. Several advanced techniques had 
been invented for helping agent converge more quickly and for 
keeping the policy stable after convergency such as Double 
DQN [24] and prioritised experience replay [25]. Discrete-
event simulation (DES) helps transferring a production 
environment into a Markov process. The authors in [26] 
speeded up the optimisation process of a sim-heuristic 
framework by applying a genetic algorithms on a DES. The 
authors in [27] optimised the schedules of a linear production 
line, a parallel production line, and a re-entrant production line 
by combining DES and DRL. The result massively outperforms 
the fixed dispatching rules in all three systems, while showing 
robustness to time randomness. Considering the RMS and 
DRL’s unique features and challenges, this paper presented a 
framework bridges these two areas together on a simplified 
scheduling problem. 

3. A novel framework of RMS scheduling 

   Compared to a flexible manufacturing system aims on 
providing generalized flexibility, reconfigurable 
manufacturing systems (RMSs) with structural adjustable 
components bring great potential on handling fluctuating and 
customised demands while a proper mechanism for scheduling 
is needed to release such potential. This section describes a 
scheduling problem in a simplified grid-world shape RMS 
discrete-event simulation (DES) and a deep reinforcement 
learning-based scheduling agent training process for gaining a 
scheduling policy. The general idea behind reinforcement 
learning (RL) is asking an agent with limited action space to 
interact with a predefined environment. With the reward 
feedbacked from the environment, an RMS-DES in this paper, 
the agent can constantly update its prediction on the 
environment and gain higher long term accumulated reward.  

 

Fig. 1. Grid-world shape RMS-DES 

3.1.  A Grid-world shape RMS 

Fig. 1 presents the RMS-DES used in this paper. This 
simplified m × n grid-world-shaped RMS, with several 
automated guided vehicles (AGVs) presented as fork-lift icons 
in Fig. 1, is used to perform discrete-event simulation (DES). 
These AGVs, controlled by a centralised-trained agent, move 
“freely” inside the RMS. Several reconfigurable machine tools 
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(RMTs), presented as blue blocks in Fig. 1, are randomly 
assigned at first place. All of these machine tools are fixed in 
place after initialisation. The agent asks AGVs to bring 
modules and material to the machine tools, which themselves 
are reconfigurable. These RMTs in the RMS-DES model react 
passively when AGVs attempt to interact with them. This RMS 
has an order list which contains several randomly generated 
orders to mimic fluctuating demand. Each order requests one 
kind of product with a random batch size and a due date.  

The distributed executing action space for an AGV is 6, 
which include 4 kinds of movement: up, down, left, and right. 
The other two are waiting and interacting. Inside the RMS, 
AGVs are allowed to spend a tiny negative local reward, to 
move in any direction until they hit a wall. If an AGV is asked 
to hit a wall, this AGV will be forced to stay in front of the wall 
until next turn and receive a big local negative reward. If the 
agent asks an AGV to stay at the current location and wait until 
next event, this AGV will receive a small local negative reward 
from the RMS-DES. AGVs can also interact with RMTs and 3 
kinds of warehouses across the RMS. The first one is a Module 
Storage (MDS) showed as an orange block at left edge in Fig-
1. MDS provide certain kind of module that can be installed to 
RMTs. RMT can only manufacture raw material with modules 
installed. A raw material delivers from the second kind of 
warehouses, Material Storage (MTS). AGVs can only deliver 
raw material to RMT installed correct module then trigger a 
manufacturing process event. After this process, the material in 
an RMT change to a finished good. AGV now need to transfer 
this product to the third kind of warehouses, a Finished Good 
Storage (FGS), where RMS check stock level when an order is 
due. After every AGV interact with RMS-DES, the RMS-DES 
will check whether there is an order need to deliver. If there is 
a due order and FSG has sufficient inventory, RMS will 
broadcast a huge global positive reward to all AGVs inside the 
system. On the other hand, if an FSG does not have enough 
stock while an order is due, all AGV agent will receive a big 
negative global reward. The order met due date would be 
replaced by another random generated order regardless of it has 
been fulfilled or not. All possible event due to interactions 
between AGV and RMS-DES are listed in Table 1. 

Table 1. All RMS-DES possible AGV interaction events 

Scenario Description 

1 An AGV moves to an available place. RMS will update this AGV’s 
location and return a tiny local negative reward. 

2 An AGV moves toward a wall. RMS will freeze this AGV until the 
next turn and return a big local negative reward. 

3 An AGV remains for one turn. RMS will freeze this AGV until next 
turn and return a small local negative reward. 

4 An AGV with an empty cargo attempts to interact with the module 
storage. RMS will randomly pick one kind of modules and return a 
decent local positive reward. 

5 An AGV carries a module and attempts to interact with the module 
storage. RMS will randomly unload the module from the AGV, or 
switch to a one kind of module and return a tiny local negative reward. 

6 An AGV carries a non-module part and attempts to interact with the 
module storage. RMS will freeze the AGV until the next turn and 
return a tiny local negative reward. 

7 An AGV with an empty cargo attempts to interact with the material 
storage. RMS will randomly pick one kind of materials and load it to 
this AGV and return a decent local positive reward. 

8 An AGV carries a material and attempts to interact with the material 
storage. RMS will switch to one kind of materials randomly and 
return a tiny local negative reward. 

9 An AGV carries a module or a finished good and attempts to interact 
with the material storage. RMS will freeze this AGV until next turn 
and return a small local negative reward 

10 An AGV carries a finished good and attempts to interact with the 
finished good storage. RMS will unload the finished good from this 
AGV to the inventory and return a decent local positive reward and 
broadcast a global reward 

11 An AGV attempts to interact with the finished good storage without 
a finished good. RMS will freeze this AGV until the next turn and 
return a small local negative reward  

12 An AGV with an empty cargo attempts to interact with an RMT that 
has a finished good. RMS will unload the finished good from this 
RMT to the AGV, set this RMT to free from next turn and return a 
huge local positive reward. 

13 An AGV carries a material attempts to interact with a free RMT with 
a matched module. RMS will unload the material from the AGV to 
this RMT, set this RMT to busy mode until it finishes production and 
return a huge local positive reward. 

14 An AGV carries a material attempts to interact with a free RMT with 
an un-matched module. RMS will freeze this AGV until next turn and 
return a small local negative reward. 

15 An AGV carries a module attempts to interact with a free RMT with 
a different module. RMS will switch the module from the AGV to this 
RMT, set this RMT to busy until it finishes reconfiguring, and return 
a tiny local negative reward. 

16 An AGV carries a module attempts to interact with a free RMT with 
the same module. RMS will freeze this AGV until next turn and return 
a small local negative reward. 

17 An AGV attempts to interact with a busy RMT. RMS will freeze this 
AGV until next turn and return a small local negative reward. 

18 After all AGV interaction, FGS has enough stock for a due order. 
RMS will return a huge global positive reward. 

19 After all AGV interacted with RMS-DES, FGS has not enough stock 
for a due order. RMS will return a big global negative reward. 

20 An AGV decide not moving until next turn. RMS will return a tiny 
local negative reward. 

3.2. Prioritised experience replay (PER) 

An experience replay buffer can significant improving agent 
converging speed and stability after convergency [28]. 
However, given that moving inside the system would be the 
major AGV action inside the RMS-DES, an effective 
mechanism is needed to reduce the replay probability of the 
transitions due to these actions. An RL agent with Prioritised 
Experience Replay (PER) can learn more frequently from 
transitions which have larger reward expectation difference. 
Using the absolute value of the already-computed TD error δ 
as the ranking criterion, PER automatically decides which 
transition to store into a database with sum-tree data frame and 
which experiences worth replaying to the RL agent. Comparing 
to a common DQN transition {st, at, rt, st’}, the transitions 
stored in a PER are in form {st, at, rt, st’, p} where p represents 
a priority value equal to |δ| + ϵ, and ϵ is a small positive number 
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that prevents a transition from never being revisited if this 
transition have zero error. 

When sampling transitions from a PER, uniform random 
sampling could get a lot of useless data. However, only picking 
up the ‘useful’ data could also lead to over-fitting. Stochastic 
prioritisation sampling, similar to the epsilon-greedy strategy 
in RL training, is used in this paper. The probability of a certain 
transition being sampled can be presented as P(i) = pαi / ∑k pαk 
where k is the ratio between total transitions in PER and the 
mini-batch needed to be sampled, and α is a hyperparameter to 
control how much prioritisation is used. To control the bias 
brought by stochastic prioritisation sampling, an importance-
sampling weight is introduced as wi =(N∙P(i))-β where β is an 
incrementing value from β0, another hyperparameter, to 1. 
Combining  the importance-sampling weight w with TD error 
δ, Q-network can be updated and annealing from bias. 

3.3. RMS scheduling by reinforcement learning 

By taking the advantages of DES and PER, the proposed RL 
scheduling policy can be described in Algorithm 1 below. To 
start training the scheduling agent, some hyperparameters are 
needed including prioritisation exponent, initial anneal 
exponent, learning step size, buffer size, and all other settings 
for RMS-DES. The training process is performed in Double 
DQN form where two separated neural networks (NNs) are 
used during training. The primary NN is the Q network which 
updates all the time for best performance and the secondary NN 
is the Qtarget network which gets updated from time to time. 

 
Algorithm 1. Double DQN-Based Method with PER 

 Input: Exponents α and β0, mini-batch k, step-size η, minimum 
random probability ε, replay capacity N 

 Output: A Smart Scheduling Agent 

01 Initialise a prioritised experience replay buffer D with N capacity, 
∆=0 

02 Initialise an online network Q with random weights θ and a target 
network Qtarget 

03 Initialise an RMS with n RMTs and v AGVs 

04 for episode = 1 to iteration limit M do: 

05     for t = 1 to T do: 

06         Reset an Accumulated Global Reward R = 0 

07         for AGV01 to AGVv do: 

08             Observe the current state sAGV
t 

09             Choose an action aAGV
t according to Q with ε probability for 

a random action 

10             Execute aAGV
t on DES and get a local reward, rAGV

t, for 
current AGV, a global reward, and a new state sAGV

t’ 

11             Add the global reward to R while store the transition {sAGV
t, 

aAGV
t, rAGV

t, sAGV
t’} in a temporary list tl 

12         Store v transitions {sAGV
t, aAGV

t, rAGV
t, sAGV

t’} from tl with 
maximum priority pt = maxi<t  pi to D 

13         end for 

14         for j = 1 to k do: 

15             Sample a transition j ~ P(j) = pα
j / ∑i pαi  

16             Compute importance-sampling weight wj - (N ∙ P(j))-β / 
maxiwi  

17             Compute TD-error δj =rj+ γj Qtarget (sj, argmaxαQ(sj, a)) – 
Q(sj-1, aj-1) 

18             Update transition priority pj ← |δj| 

19             Accumulate weight-change Δ ← Δ + wj · δj ·▽θ Q(sj-1, aj-1) 

20         end for 

21         Update weights θ ← θ + η ·Δ then reset Δ = 0 

22         Update Qtarget from Q time to time 

23     end for 

24 end for 

 
The scheduling agent manipulates the AGVs inside the 

RMS-DES one by one. The observation for each AGV, sAGVt, 
contains several elements include current AGV location and 
carriage, the order list status, all RMT status, and all other AGV 
locations and their carriages. When current AGV finishes an 
interaction, the new observation from this AGV and a local 
reward well be stored in the temporary place waiting the global 
reward accumulate from all AGVs. Once all AGVs finishes 
interacting with the RMS-DES, the local rewards stored in 
temporary transitions would be plus/minus the accumulated 
global reward and form final transitions. These transitions 
would be then stored into the PER for training agent. This 
process shows in Fig. 2. 
 

 

Fig. 2. Double DQN agent training interaction flow-chat 

4. Case study, results & analysis 

To test the effectiveness of current framework, two 
numerical case studies had been implemented in this paper.  
Both case studies request a fully automated reconfigurable 
manufacturing system (RMS) to produce three (3) kinds of 
products. Every product request one unique kind of module 
installed on one reconfigurable machine tool (RMT). With a 
correct module, an RMT can keep taking the appointed kind 
material and manufacturing product. The simulation time for 
one episode is 28800 minutes. 

4.1. Case study one: a worthy exploration 

The first case study built a 20×13 grid-world shape RMS-
DES which installed 15 RMTs and 25 AGVs. The 
reconfiguring time from one module to another module is 5 
minutes. The manufacturing time for one product is 3 minutes. 
The orders in the order list have a batch size from 50 to 1500 
and deliver time gap is a random value from 1000 to 5000 
minutes. All RMTs and AGVs initialised empty. The finished 
good inventory initialised with 500 stocks for all three 
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products. The reward setting for every scenario mentioned in 
last section in shown in table 2. 

Table 2. Numerical case 1 reward setting 

Scenario 
# 

Local 
Reward 

Global 
Reward 

Scenario 
# 

Local 
Reward 

Global Reward 

1 -5 N/A 11 -1 N/A 

2 -1k N/A 12 +10k N/A 

3 -20 N/A 13 +10k N/A 

4 +1k N/A 14 -3 N/A 

5 -1 N/A 15 -1 N/A 

6 -2 N/A 16 -3 N/A 

7 +1k N/A 17 -3 N/A 

8 -1 N/A 18 N/A +10k × order  

9 -2 N/A 19 N/A -1k × order 

10 +10k +10k 20 -1 N/A 

 
The reward quickly converges after only several rounds of 

training. However, there is not on-time delivery at all after the 
initial stock run out. To investigate the phenomenon, one 
AGV’s movement in first training episode had been sliced out 
and presented in Figure 3.  

 

 

Fig. 3. Double DQN agent training interaction flow-chat 

Figure 3 is a 3D plot. Alongside the grid-world shape RMS, 
a third axis had been added to represent the simulation time. 
The trajectory clearly shows this AGV randomly wandering 
inside the system at very beginning. However, with the greedy 
value reduce, agent tend to ask AGVs stay at the same place in 
case gaining too many negative rewards. Considering this 
situation, the training process cancelled. A new reward 
mechanism had been used for a new case study. 

4.2. Case study two: a fair approach 

For case study two, the size of RMS was reduced to 10×7, a 
quarter compared to the previous case. This RMS has 5 RMTs 
and 15 AGVs. The new reward mechanism, shows in Table 3, 
increases the negative reward an AGV will receive if it chooses 
to keep at current location. To increase the stimulation during 
the process, the local rewards generated by loading materials 
from material storage and deliver finished goods are increased. 

Every time a simulation episode starts, two RMTs will be 
initialised empty, one RMT will be initialised having a finished 

good waiting to be carried away, one RMT will be initialised 
with a module wait for a material and the last RMT will be 
initialised with an on-going manufacturing process. Every 
AGV is initialised with an empty cargo, a module, a material 
or a finished good. These limitations and behaviour 
compositions are placed for helping agent experience 
rewarding situation more frequent and constant. Training 
results are shown in Figures 4 and 5 presenting the reward 
increasing curve and actual product an RMS could produce 
when testing.  

Table 3. Numerical case 2 reward setting 

Scenario 
# 

Local 
Reward 

Global 
Reward 

Scenario 
# 

Local 
Reward 

Global Reward 

1 -1 N/A 11 -1 N/A 

2 -1000 N/A 12 +1M N/A 

3 -20 N/A 13 +10k N/A 

4 +1k N/A 14 -3 N/A 

5 -1 N/A 15 -1 N/A 

6 -2 N/A 16 -3 N/A 

7 +100k N/A 17 -3 N/A 

8 -1 N/A 18 N/A +10k × order  

9 -2 N/A 19 N/A -1k × order 

10 +1M +10k 20 -2 N/A 

 
The training reward trend shows in Fig. 4. It is clearly that 

the agent quickly learned not to hit the wall.  
 

 
Fig. 4. Reward trend 

However, the training did not progress for a very long time 
until a sudden leap around 45 millions trials. Figure 5 below 
shows the actual sum of products delivered from the RMS. 
Considering that the orders are randomly generated, the results 
look encouraging. 
 

 
Fig. 5. Productivity trend 
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5. Conclusion  

The results obtained from the case studies suggest that the 
proposed training framework is applicable, and efficient, when 
applied to medium and small-scale RMS scheduling problems. 
With carefully designed rewarding mechanism, some imitation 
demonstrations, the composition of behaviours, and most 
importantly, enough training episodes, this DDQN-based 
scheduling policy training approach can provide encouraging 
result. The instability can be mitigated if this framework 
engages with other advanced technologies, such as bagging 
strategy and duelling network architecture. Although the case 
study clearly demonstrated that the proposed framework can 
generate desirable results, the scalability of current framework 
should be further validated. The simplified grid-world RMS 
has been developed at high-level, in order to improve the 
applicability to wide RMS settings, therefore applying the 
framework on a real case study, with more real-life 
complexities is necessary for further validation. Future work on 
more complex real-life case studies can also further integrate 
and expand cooperative behaviours among agents. Another 
possible research direction can be to upgrade the RMS-DES to 
argumentation-based multi-agent system to examine the 
improvement in information-exchange efficiency. 
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