
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 107 (2022) 1198–1203

2212-8271 © 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the International Programme committee of the 55th CIRP Conference on Manufacturing Systems
10.1016/j.procir.2022.05.131

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the International Programme committee of the 55th CIRP Conference on Manufacturing Systems

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2021) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference

55th CIRP Conference on Manufacturing Systems
Reconfigurable manufacturing system scheduling: a deep reinforcement

learning approach
 Jiecheng Tang, Yousef Haddad, Konstantinos Salonitis*

aSustainable Manufacturing Systems Centre, Cranfield University, Bedford, MK43 0AL, UK
* Corresponding author. Tel.: +44 (0) 1234 758347. E-mail address: k.salonitis@cranfield.ac.uk

Abstract

Reconfigurable Manufacturing Systems (RMS) bring new possibilities toward meeting demand fluctuations while, at the same time, challenges
scheduling efficiency. This paper presents a novel approach that, for the scheduling problem of RMS on multiple products, finds a dynamic
control policy via a group of deep reinforcement learning agents. These teamed agents, embedded with a shared value decomposition network,
aim on minimising the make-span of a constant updating order group by guiding a group of automated guided vehicles to move modules of
machine, raw materials, and finished products inside the system.

© 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review - Peer-review under responsibility of the International Programme committee of the 55th CIRP Conference on Manufacturing
Systems
 Keywords: Reconfigurable Manufacturing System; Multi-agent System; Deep Reinforcement Learning; Flexible Job-shop Scheduling Problem

1. Introduction

The reconfigurable manufacturing system (RMS) paradigm
was introduced in the last decade of the 20th century [1, 2]. An
RMS is typically designed for balancing fluctuating demand
levels [2]. However, the roll-out in the industry is rare [3, 4] in
the past two decades due to a number of challenges. Unlike a
conventional production line with predefined machines and
fixed architecture, an RMS consists of several kinds of
adjustable components, such as several reconfigurable machine
tools, or even a flexible material handling system. These
flexible parts make designing an optimal control system [5] for
an RMS an arduous task. An adequate control system wire-
walks among production scheduling, process planning,
reconfiguration control, and task assignment, amongst others.

To observe an RMS system and optimise its objectives,
multi-agent architecture is one of most often used control
systems of RMS [6]. Under this architecture, the RMS
scheduling problem is considered as a variant of the flexible
job-shop scheduling problem [7]. Recently, reinforcement
learning (RL) applications on finding close-to-optimal
scheduling policy is becoming more powerful and versatile.

Different from mathematical programming or meta-heuristic
algorithms [8], RL tackles this NP-hard [8, 9] problem by
formulating the problem into a Markov decision process. RL
asks an agent / agents to keep interacting with the environment
to gain transitions and rewards. With adequate experience on
interacting, an RL agent / agents become(s) “far-sighted” and
“resilient” to a dynamic environment like RMS. Under multi-
agent environment, RL agents could also gain cooperation
ability [10] for maximising the global rewards.

RL for RMS scheduling has been previously investigated in
[11] where the authors demonstrated its great potential. This
paper builds on the work of [11] and presents an upgraded RMS
control policy training framework based on a deep
reinforcement learning method and a multi-agent discrete event
simulation environment. The framework is able to reduce the
complexity of the control system by assigning limited action
space to every agent. These agents self-organise and provide an
optimal policy based on an artificial neural network.

The rest of this paper is organised as follows: section 2
briefly reviews the relevant research on multi-agent RMS
control system and multi-agent RL on scheduling optimisation.
Section 3 describes the information flow among RL agents and

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2021) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference

55th CIRP Conference on Manufacturing Systems
Reconfigurable manufacturing system scheduling: a deep reinforcement

learning approach
 Jiecheng Tang, Yousef Haddad, Konstantinos Salonitis*

aSustainable Manufacturing Systems Centre, Cranfield University, Bedford, MK43 0AL, UK
* Corresponding author. Tel.: +44 (0) 1234 758347. E-mail address: k.salonitis@cranfield.ac.uk

Abstract

Reconfigurable Manufacturing Systems (RMS) bring new possibilities toward meeting demand fluctuations while, at the same time, challenges
scheduling efficiency. This paper presents a novel approach that, for the scheduling problem of RMS on multiple products, finds a dynamic
control policy via a group of deep reinforcement learning agents. These teamed agents, embedded with a shared value decomposition network,
aim on minimising the make-span of a constant updating order group by guiding a group of automated guided vehicles to move modules of
machine, raw materials, and finished products inside the system.

© 2022 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review - Peer-review under responsibility of the International Programme committee of the 55th CIRP Conference on Manufacturing
Systems
 Keywords: Reconfigurable Manufacturing System; Multi-agent System; Deep Reinforcement Learning; Flexible Job-shop Scheduling Problem

1. Introduction

The reconfigurable manufacturing system (RMS) paradigm
was introduced in the last decade of the 20th century [1, 2]. An
RMS is typically designed for balancing fluctuating demand
levels [2]. However, the roll-out in the industry is rare [3, 4] in
the past two decades due to a number of challenges. Unlike a
conventional production line with predefined machines and
fixed architecture, an RMS consists of several kinds of
adjustable components, such as several reconfigurable machine
tools, or even a flexible material handling system. These
flexible parts make designing an optimal control system [5] for
an RMS an arduous task. An adequate control system wire-
walks among production scheduling, process planning,
reconfiguration control, and task assignment, amongst others.

To observe an RMS system and optimise its objectives,
multi-agent architecture is one of most often used control
systems of RMS [6]. Under this architecture, the RMS
scheduling problem is considered as a variant of the flexible
job-shop scheduling problem [7]. Recently, reinforcement
learning (RL) applications on finding close-to-optimal
scheduling policy is becoming more powerful and versatile.

Different from mathematical programming or meta-heuristic
algorithms [8], RL tackles this NP-hard [8, 9] problem by
formulating the problem into a Markov decision process. RL
asks an agent / agents to keep interacting with the environment
to gain transitions and rewards. With adequate experience on
interacting, an RL agent / agents become(s) “far-sighted” and
“resilient” to a dynamic environment like RMS. Under multi-
agent environment, RL agents could also gain cooperation
ability [10] for maximising the global rewards.

RL for RMS scheduling has been previously investigated in
[11] where the authors demonstrated its great potential. This
paper builds on the work of [11] and presents an upgraded RMS
control policy training framework based on a deep
reinforcement learning method and a multi-agent discrete event
simulation environment. The framework is able to reduce the
complexity of the control system by assigning limited action
space to every agent. These agents self-organise and provide an
optimal policy based on an artificial neural network.

The rest of this paper is organised as follows: section 2
briefly reviews the relevant research on multi-agent RMS
control system and multi-agent RL on scheduling optimisation.
Section 3 describes the information flow among RL agents and

	 Jiecheng Tang et al. / Procedia CIRP 107 (2022) 1198–1203� 1199
2 Tang et al. / Procedia CIRP 00 (2019) 000–000

RMS environment, and explains how agents train a universal
policy inside a neural network. Section 4 presents two
numerical case studies based on the proposed framework
chasing the optimal on-time delivery, first one, although not
entirely successful, helped develop the modelling approach
whereas the seconds one provides acceptable outcome. The
final section presents the concluding remarks and future
research directions.

2. Related work

Problems pertaining to reconfigurable manufacturing
systems (RMS) design, flexible job-shop scheduling, and
reinforcement learning on scheduling have been extensively
investigated in the contemporary literature. This section will,
therefore, briefly highlight key papers in the extant literature.

The authors in [5] highlighted two main categories of drivers
of responding to change when designing an RMS. The first
being demand changing drivers, which include changes in
product, manufacturing process, lead time, volume, quality
level and product price. While the other is production system
environment changing drivers, which include changes of
supply, resources, legislative environment, and readjustment
cost. Key reviews of RMS [3, 12, 13] suggested volume
fluctuation is one of the most important attributes to
investigate. Architecture of RMS is another key feature to be
considered while modelling such a production environment.

 The authors in [14] modelled an RMS based on complex
adaptive system theory as a multi-layer multi-agent system. In
the aforementioned model, a workshop manager agent
manages several workshop agents. Through a rule-based
system (i.e. a series if-else conditions), each workshop agent
can control several resource agents. Based on an agent-
communication language, the author in [15] designed a multi-
robot system that shares knowledge inside the system. With
RL-based optimisation, this system separates a global plan into
local tasks and provides a better solution than meta-heuristic
algorithms, such as ant colony optimisation and particle swarm
optimisation. Other papers [9, 16–18] suggest similar results
that RL normally outperform meta-heuristic approaches in
complex systems. For example, two decades ago, the authors
in [16] used Q-III reinforcement learning method to choose the
best real-time system operating mode among 3 kinds of fixed
dispatching rules. The authors in [11] developed a framework
which can provide an optimal online task-launching policy
based on a trained Deep Q Network (DQN) in a simplified
RMS. The authors in [19] modelled a flexible manufacturing
systems (FMS) as a Petri net then used multi-agent RL to
outperform conventional heuristics and meta-heuristics on
finding the best dispatching rule on every single machine.

A material handling system (MHS) is one of major
components of an RMS which help transporting materials and
finished product from point to point [3]. Automatic guided
vehicles (AGVs) are widely used in FMS [20, 21] and some
novel production lines [21] as MHS. The authors in [22] solved
an AGV task scheduling problem in an FMS by using
collaborative evolutionary genetic algorithm which belong to
meta-heuristic approaches. The authors in [21] used Q-
learning, an RL approach, to solve a multi-AGV scheduling

problem on a production line. The result suggest that their
approach has more advantage on minimising the average
makespan with more complex systems. After the game of Go
is mastered in 2013 [23], deep reinforcement learning (DRL)
gained significant attention. Several advanced techniques had
been invented for helping agent converge more quickly and for
keeping the policy stable after convergency such as Double
DQN [24] and prioritised experience replay [25]. Discrete-
event simulation (DES) helps transferring a production
environment into a Markov process. The authors in [26]
speeded up the optimisation process of a sim-heuristic
framework by applying a genetic algorithms on a DES. The
authors in [27] optimised the schedules of a linear production
line, a parallel production line, and a re-entrant production line
by combining DES and DRL. The result massively outperforms
the fixed dispatching rules in all three systems, while showing
robustness to time randomness. Considering the RMS and
DRL’s unique features and challenges, this paper presented a
framework bridges these two areas together on a simplified
scheduling problem.

3. A novel framework of RMS scheduling

 Compared to a flexible manufacturing system aims on
providing generalized flexibility, reconfigurable
manufacturing systems (RMSs) with structural adjustable
components bring great potential on handling fluctuating and
customised demands while a proper mechanism for scheduling
is needed to release such potential. This section describes a
scheduling problem in a simplified grid-world shape RMS
discrete-event simulation (DES) and a deep reinforcement
learning-based scheduling agent training process for gaining a
scheduling policy. The general idea behind reinforcement
learning (RL) is asking an agent with limited action space to
interact with a predefined environment. With the reward
feedbacked from the environment, an RMS-DES in this paper,
the agent can constantly update its prediction on the
environment and gain higher long term accumulated reward.

Fig. 1. Grid-world shape RMS-DES

3.1. A Grid-world shape RMS

Fig. 1 presents the RMS-DES used in this paper. This
simplified m × n grid-world-shaped RMS, with several
automated guided vehicles (AGVs) presented as fork-lift icons
in Fig. 1, is used to perform discrete-event simulation (DES).
These AGVs, controlled by a centralised-trained agent, move
“freely” inside the RMS. Several reconfigurable machine tools

1200	 Jiecheng Tang et al. / Procedia CIRP 107 (2022) 1198–1203
 Tang et al. / Procedia CIRP 00 (2019) 000–000 3

(RMTs), presented as blue blocks in Fig. 1, are randomly
assigned at first place. All of these machine tools are fixed in
place after initialisation. The agent asks AGVs to bring
modules and material to the machine tools, which themselves
are reconfigurable. These RMTs in the RMS-DES model react
passively when AGVs attempt to interact with them. This RMS
has an order list which contains several randomly generated
orders to mimic fluctuating demand. Each order requests one
kind of product with a random batch size and a due date.

The distributed executing action space for an AGV is 6,
which include 4 kinds of movement: up, down, left, and right.
The other two are waiting and interacting. Inside the RMS,
AGVs are allowed to spend a tiny negative local reward, to
move in any direction until they hit a wall. If an AGV is asked
to hit a wall, this AGV will be forced to stay in front of the wall
until next turn and receive a big local negative reward. If the
agent asks an AGV to stay at the current location and wait until
next event, this AGV will receive a small local negative reward
from the RMS-DES. AGVs can also interact with RMTs and 3
kinds of warehouses across the RMS. The first one is a Module
Storage (MDS) showed as an orange block at left edge in Fig-
1. MDS provide certain kind of module that can be installed to
RMTs. RMT can only manufacture raw material with modules
installed. A raw material delivers from the second kind of
warehouses, Material Storage (MTS). AGVs can only deliver
raw material to RMT installed correct module then trigger a
manufacturing process event. After this process, the material in
an RMT change to a finished good. AGV now need to transfer
this product to the third kind of warehouses, a Finished Good
Storage (FGS), where RMS check stock level when an order is
due. After every AGV interact with RMS-DES, the RMS-DES
will check whether there is an order need to deliver. If there is
a due order and FSG has sufficient inventory, RMS will
broadcast a huge global positive reward to all AGVs inside the
system. On the other hand, if an FSG does not have enough
stock while an order is due, all AGV agent will receive a big
negative global reward. The order met due date would be
replaced by another random generated order regardless of it has
been fulfilled or not. All possible event due to interactions
between AGV and RMS-DES are listed in Table 1.

Table 1. All RMS-DES possible AGV interaction events

Scenario Description

1 An AGV moves to an available place. RMS will update this AGV’s
location and return a tiny local negative reward.

2 An AGV moves toward a wall. RMS will freeze this AGV until the
next turn and return a big local negative reward.

3 An AGV remains for one turn. RMS will freeze this AGV until next
turn and return a small local negative reward.

4 An AGV with an empty cargo attempts to interact with the module
storage. RMS will randomly pick one kind of modules and return a
decent local positive reward.

5 An AGV carries a module and attempts to interact with the module
storage. RMS will randomly unload the module from the AGV, or
switch to a one kind of module and return a tiny local negative reward.

6 An AGV carries a non-module part and attempts to interact with the
module storage. RMS will freeze the AGV until the next turn and
return a tiny local negative reward.

7 An AGV with an empty cargo attempts to interact with the material
storage. RMS will randomly pick one kind of materials and load it to
this AGV and return a decent local positive reward.

8 An AGV carries a material and attempts to interact with the material
storage. RMS will switch to one kind of materials randomly and
return a tiny local negative reward.

9 An AGV carries a module or a finished good and attempts to interact
with the material storage. RMS will freeze this AGV until next turn
and return a small local negative reward

10 An AGV carries a finished good and attempts to interact with the
finished good storage. RMS will unload the finished good from this
AGV to the inventory and return a decent local positive reward and
broadcast a global reward

11 An AGV attempts to interact with the finished good storage without
a finished good. RMS will freeze this AGV until the next turn and
return a small local negative reward

12 An AGV with an empty cargo attempts to interact with an RMT that
has a finished good. RMS will unload the finished good from this
RMT to the AGV, set this RMT to free from next turn and return a
huge local positive reward.

13 An AGV carries a material attempts to interact with a free RMT with
a matched module. RMS will unload the material from the AGV to
this RMT, set this RMT to busy mode until it finishes production and
return a huge local positive reward.

14 An AGV carries a material attempts to interact with a free RMT with
an un-matched module. RMS will freeze this AGV until next turn and
return a small local negative reward.

15 An AGV carries a module attempts to interact with a free RMT with
a different module. RMS will switch the module from the AGV to this
RMT, set this RMT to busy until it finishes reconfiguring, and return
a tiny local negative reward.

16 An AGV carries a module attempts to interact with a free RMT with
the same module. RMS will freeze this AGV until next turn and return
a small local negative reward.

17 An AGV attempts to interact with a busy RMT. RMS will freeze this
AGV until next turn and return a small local negative reward.

18 After all AGV interaction, FGS has enough stock for a due order.
RMS will return a huge global positive reward.

19 After all AGV interacted with RMS-DES, FGS has not enough stock
for a due order. RMS will return a big global negative reward.

20 An AGV decide not moving until next turn. RMS will return a tiny
local negative reward.

3.2. Prioritised experience replay (PER)

An experience replay buffer can significant improving agent
converging speed and stability after convergency [28].
However, given that moving inside the system would be the
major AGV action inside the RMS-DES, an effective
mechanism is needed to reduce the replay probability of the
transitions due to these actions. An RL agent with Prioritised
Experience Replay (PER) can learn more frequently from
transitions which have larger reward expectation difference.
Using the absolute value of the already-computed TD error δ
as the ranking criterion, PER automatically decides which
transition to store into a database with sum-tree data frame and
which experiences worth replaying to the RL agent. Comparing
to a common DQN transition {st, at, rt, st’}, the transitions
stored in a PER are in form {st, at, rt, st’, p} where p represents
a priority value equal to |δ| + ϵ, and ϵ is a small positive number

	 Jiecheng Tang et al. / Procedia CIRP 107 (2022) 1198–1203� 1201
4 Tang et al. / Procedia CIRP 00 (2019) 000–000

that prevents a transition from never being revisited if this
transition have zero error.

When sampling transitions from a PER, uniform random
sampling could get a lot of useless data. However, only picking
up the ‘useful’ data could also lead to over-fitting. Stochastic
prioritisation sampling, similar to the epsilon-greedy strategy
in RL training, is used in this paper. The probability of a certain
transition being sampled can be presented as P(i) = pαi / ∑k pαk
where k is the ratio between total transitions in PER and the
mini-batch needed to be sampled, and α is a hyperparameter to
control how much prioritisation is used. To control the bias
brought by stochastic prioritisation sampling, an importance-
sampling weight is introduced as wi =(N∙P(i))-β where β is an
incrementing value from β0, another hyperparameter, to 1.
Combining the importance-sampling weight w with TD error
δ, Q-network can be updated and annealing from bias.

3.3. RMS scheduling by reinforcement learning

By taking the advantages of DES and PER, the proposed RL
scheduling policy can be described in Algorithm 1 below. To
start training the scheduling agent, some hyperparameters are
needed including prioritisation exponent, initial anneal
exponent, learning step size, buffer size, and all other settings
for RMS-DES. The training process is performed in Double
DQN form where two separated neural networks (NNs) are
used during training. The primary NN is the Q network which
updates all the time for best performance and the secondary NN
is the Qtarget network which gets updated from time to time.

Algorithm 1. Double DQN-Based Method with PER

 Input: Exponents α and β0, mini-batch k, step-size η, minimum
random probability ε, replay capacity N

 Output: A Smart Scheduling Agent

01 Initialise a prioritised experience replay buffer D with N capacity,
∆=0

02 Initialise an online network Q with random weights θ and a target
network Qtarget

03 Initialise an RMS with n RMTs and v AGVs

04 for episode = 1 to iteration limit M do:

05 for t = 1 to T do:

06 Reset an Accumulated Global Reward R = 0

07 for AGV01 to AGVv do:

08 Observe the current state sAGV
t

09 Choose an action aAGV
t according to Q with ε probability for

a random action

10 Execute aAGV
t on DES and get a local reward, rAGV

t, for
current AGV, a global reward, and a new state sAGV

t’

11 Add the global reward to R while store the transition {sAGV
t,

aAGV
t, rAGV

t, sAGV
t’} in a temporary list tl

12 Store v transitions {sAGV
t, aAGV

t, rAGV
t, sAGV

t’} from tl with
maximum priority pt = maxi<t pi to D

13 end for

14 for j = 1 to k do:

15 Sample a transition j ~ P(j) = pα
j / ∑i pαi

16 Compute importance-sampling weight wj - (N ∙ P(j))-β /
maxiwi

17 Compute TD-error δj =rj+ γj Qtarget (sj, argmaxαQ(sj, a)) –
Q(sj-1, aj-1)

18 Update transition priority pj ← |δj|

19 Accumulate weight-change Δ ← Δ + wj · δj ·▽θ Q(sj-1, aj-1)

20 end for

21 Update weights θ ← θ + η ·Δ then reset Δ = 0

22 Update Qtarget from Q time to time

23 end for

24 end for

The scheduling agent manipulates the AGVs inside the

RMS-DES one by one. The observation for each AGV, sAGVt,
contains several elements include current AGV location and
carriage, the order list status, all RMT status, and all other AGV
locations and their carriages. When current AGV finishes an
interaction, the new observation from this AGV and a local
reward well be stored in the temporary place waiting the global
reward accumulate from all AGVs. Once all AGVs finishes
interacting with the RMS-DES, the local rewards stored in
temporary transitions would be plus/minus the accumulated
global reward and form final transitions. These transitions
would be then stored into the PER for training agent. This
process shows in Fig. 2.

Fig. 2. Double DQN agent training interaction flow-chat

4. Case study, results & analysis

To test the effectiveness of current framework, two
numerical case studies had been implemented in this paper.
Both case studies request a fully automated reconfigurable
manufacturing system (RMS) to produce three (3) kinds of
products. Every product request one unique kind of module
installed on one reconfigurable machine tool (RMT). With a
correct module, an RMT can keep taking the appointed kind
material and manufacturing product. The simulation time for
one episode is 28800 minutes.

4.1. Case study one: a worthy exploration

The first case study built a 20×13 grid-world shape RMS-
DES which installed 15 RMTs and 25 AGVs. The
reconfiguring time from one module to another module is 5
minutes. The manufacturing time for one product is 3 minutes.
The orders in the order list have a batch size from 50 to 1500
and deliver time gap is a random value from 1000 to 5000
minutes. All RMTs and AGVs initialised empty. The finished
good inventory initialised with 500 stocks for all three

DDQN Agent Learning ProcessInforma5on Exchange

State – sAGVt

Ac5on – aAGV
t

Local Reward –
aAGV

t

Next State –
sAGVt’

Online Q-network

Ac5on
Selector

Next State

Terminal

Ac5on

Current State

Reward

Target Q-network

Priori5sed
Experience Replay

Es#mate Q
Value

Probabilis5c
Batch Sampling

RMS
DES

Priority
Calcula5on

Joint Buffer

Global Reward
R

Transi5on
List

Backward Loss and
Op5miser

Target Q
Value

Loop All
AGVs

1202	 Jiecheng Tang et al. / Procedia CIRP 107 (2022) 1198–1203
 Tang et al. / Procedia CIRP 00 (2019) 000–000 5

products. The reward setting for every scenario mentioned in
last section in shown in table 2.

Table 2. Numerical case 1 reward setting

Scenario

Local
Reward

Global
Reward

Scenario

Local
Reward

Global Reward

1 -5 N/A 11 -1 N/A

2 -1k N/A 12 +10k N/A

3 -20 N/A 13 +10k N/A

4 +1k N/A 14 -3 N/A

5 -1 N/A 15 -1 N/A

6 -2 N/A 16 -3 N/A

7 +1k N/A 17 -3 N/A

8 -1 N/A 18 N/A +10k × order

9 -2 N/A 19 N/A -1k × order

10 +10k +10k 20 -1 N/A

The reward quickly converges after only several rounds of

training. However, there is not on-time delivery at all after the
initial stock run out. To investigate the phenomenon, one
AGV’s movement in first training episode had been sliced out
and presented in Figure 3.

Fig. 3. Double DQN agent training interaction flow-chat

Figure 3 is a 3D plot. Alongside the grid-world shape RMS,
a third axis had been added to represent the simulation time.
The trajectory clearly shows this AGV randomly wandering
inside the system at very beginning. However, with the greedy
value reduce, agent tend to ask AGVs stay at the same place in
case gaining too many negative rewards. Considering this
situation, the training process cancelled. A new reward
mechanism had been used for a new case study.

4.2. Case study two: a fair approach

For case study two, the size of RMS was reduced to 10×7, a
quarter compared to the previous case. This RMS has 5 RMTs
and 15 AGVs. The new reward mechanism, shows in Table 3,
increases the negative reward an AGV will receive if it chooses
to keep at current location. To increase the stimulation during
the process, the local rewards generated by loading materials
from material storage and deliver finished goods are increased.

Every time a simulation episode starts, two RMTs will be
initialised empty, one RMT will be initialised having a finished

good waiting to be carried away, one RMT will be initialised
with a module wait for a material and the last RMT will be
initialised with an on-going manufacturing process. Every
AGV is initialised with an empty cargo, a module, a material
or a finished good. These limitations and behaviour
compositions are placed for helping agent experience
rewarding situation more frequent and constant. Training
results are shown in Figures 4 and 5 presenting the reward
increasing curve and actual product an RMS could produce
when testing.

Table 3. Numerical case 2 reward setting

Scenario

Local
Reward

Global
Reward

Scenario

Local
Reward

Global Reward

1 -1 N/A 11 -1 N/A

2 -1000 N/A 12 +1M N/A

3 -20 N/A 13 +10k N/A

4 +1k N/A 14 -3 N/A

5 -1 N/A 15 -1 N/A

6 -2 N/A 16 -3 N/A

7 +100k N/A 17 -3 N/A

8 -1 N/A 18 N/A +10k × order

9 -2 N/A 19 N/A -1k × order

10 +1M +10k 20 -2 N/A

The training reward trend shows in Fig. 4. It is clearly that

the agent quickly learned not to hit the wall.

Fig. 4. Reward trend

However, the training did not progress for a very long time
until a sudden leap around 45 millions trials. Figure 5 below
shows the actual sum of products delivered from the RMS.
Considering that the orders are randomly generated, the results
look encouraging.

Fig. 5. Productivity trend

	 Jiecheng Tang et al. / Procedia CIRP 107 (2022) 1198–1203� 1203
6 Tang et al. / Procedia CIRP 00 (2019) 000–000

5. Conclusion

The results obtained from the case studies suggest that the
proposed training framework is applicable, and efficient, when
applied to medium and small-scale RMS scheduling problems.
With carefully designed rewarding mechanism, some imitation
demonstrations, the composition of behaviours, and most
importantly, enough training episodes, this DDQN-based
scheduling policy training approach can provide encouraging
result. The instability can be mitigated if this framework
engages with other advanced technologies, such as bagging
strategy and duelling network architecture. Although the case
study clearly demonstrated that the proposed framework can
generate desirable results, the scalability of current framework
should be further validated. The simplified grid-world RMS
has been developed at high-level, in order to improve the
applicability to wide RMS settings, therefore applying the
framework on a real case study, with more real-life
complexities is necessary for further validation. Future work on
more complex real-life case studies can also further integrate
and expand cooperative behaviours among agents. Another
possible research direction can be to upgrade the RMS-DES to
argumentation-based multi-agent system to examine the
improvement in information-exchange efficiency.

References

[1] Koren Y, Ulsoy AG (1997) Reconfigurable manufacturing systems,
engineering research center for reconfigurable machining systems
(ERC/RMS) report# 1, the university of michigan. Ann Arbor

[2] Koren Y, Heisel U, Jovane F, et al (1999) Reconfigurable Manufacturing
Systems. CIRP Ann 48:527–540.

[3] Koren Y, Gu X, Guo W (2018) Reconfigurable manufacturing systems:
Principles, design, and future trends. Front Mech Eng 13:121–136.

[4] Maganha I, Silva C, Ferreira LMDF (2018) Understanding
reconfigurability of manufacturing systems: An empirical analysis. J
Manuf Syst 48:120–130.

[5] Benyoucef L. Reconfigurable Design to Systems: From Manufacturing
Implementation. Springer Series in Advanced Manufacturing. Cham,
Switzerland: Springer Nature Switzerland; 2020.

[6] Kruger K, Basson AH (2013) Multi-agent systems vs IEC 61499 for
holonic resource control in reconfigurable systems. Procedia CIRP
7:503–508.

[7] Bhargav A, Sridhar CNV, Deva Kumar MLS (2017) Study of Production
Scheduling Problem for Reconfigurable Manufacturing System (RMS).
Mater Today Proc 4:7406–7412.

[8] He Y, Wu G, Chen Y, Pedrycz W (2021) A Two-stage Framework and
Reinforcement Learning-based Optimization Algorithms for Complex
Scheduling Problems. 1–11

[9] Zhang Z, Zheng L, Weng MX (2007) Dynamic parallel machine
scheduling with mean weighted tardiness objective by Q-Learning. Int
J Adv Manuf Technol 34:968–980.

[10] Vinyals O, Ewalds T, Bartunov S, et al (2017) StarCraft II: A New
Challenge for Reinforcement Learning

[11] Tang J, Salonitis K (2021) A Deep Reinforcement Learning Based
Scheduling Policy for Reconfigurable Manufacturing Systems.
Procedia CIRP 103:1–7.

[12] Napoleone A, Pozzetti A, Macchi M (2018) Core Characteristics of
Reconfigurability and their Influencing Elements. IFAC-PapersOnLine
51:116–121.

[13] Yelles-Chaouche AR, Gurevsky E, Brahimi N, Dolgui A (2021)
Reconfigurable manufacturing systems from an optimisation
perspective: a focused review of literature. Int J Prod Res 59:6400–
6418.

[14] He P, Wang QL, Yu JC (2006) A multi-agent model for reconfigurable
manufacturing system based on complex adaptive system. IEEE Int
Conf Intell Robot Syst 3723–3727.

[15] Oprea M (2018) Agent-based modelling of multi-robot systems. IOP
Conf Ser Mater Sci Eng 444:.

[16] Aydin ME, Öztemel E (2000) Dynamic job-shop scheduling using
reinforcement learning agents. Rob Auton Syst 33:169–178.

[17] Bakakeu J, Tolksdorf S, Bauer J, et al (2018) An Artificial Intelligence
Approach for Online Optimization of Flexible Manufacturing Systems.
Appl Mech Mater 882:96–108.

[18] Stricker N, Kuhnle A, Sturm R, Friess S (2018) Reinforcement learning
for adaptive order dispatching in the semiconductor industry. CIRP
Ann 67:511–514.

[19] Baer S, Bakakeu J, Meyes R, Meisen T (2019) Multi-agent
reinforcement learning for job shop scheduling in flexible
manufacturing systems. Proc - 2019 2nd Int Conf Artif Intell Ind AI4I
2019 22–25.

[20] Xu W, Guo S (2019) A multi-objective and multi-dimensional
optimization scheduling method using a hybrid evolutionary
algorithms with a sectional encoding mode. Sustain 11:.

[21] Xue T, Zeng P, Yu H (2018) A reinforcement learning method for multi-
AGV scheduling in manufacturing. Proc IEEE Int Conf Ind Technol
2018-February:1557–1561.

[22] Xiao H, Wu X, Zeng Y, Zhai J (2020) A CEGA-Based Optimization
Approach for Integrated Designing of a Unidirectional Guide-Path
Network and Scheduling of AGVs. Math Probl Eng 2020:.

[23] Schrittwieser J, Antonoglou I, Hubert T, et al (2020) Mastering Atari,
Go, chess and shogi by planning with a learned model. Nature
588:604–609.

[24] Hasselt H van, Guez A, Silver D (2016) Deep Reinforcement Learning
with Double Q-Learning. Proc Thirtieth AAAI Conf Artif Intell 30:7

[25] Schaul T, Quan J, Antonoglou I, Silver D (2016) Prioritized experience
replay. 4th Int Conf Learn Represent ICLR 2016 - Conf Track Proc 1–
21

[26] Rabe M, Deininger M, Juan AA (2020) Speeding up computational times
in simheuristics combining genetic algorithms with discrete-Event
simulation. Simul Model Pract Theory 103: 102089.

[27] Shi D, Fan W, Xiao Y, et al (2020) Intelligent scheduling of discrete
automated production line via deep reinforcement learning. Int J Prod
Res 58:3362–3380.

[28] Long-Ji L (1992) Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine learning, 8(3-4):293–32.

