
Citation: Zhang, J.; Roumeliotis, I.;

Zolotas, A. Sustainable Aviation

Electrification: A Comprehensive

Review of Electric Propulsion System

Architectures, Energy Management,

and Control. Sustainability 2022, 14,

5880. https://doi.org/10.3390/

su14105880

Academic Editors: Bowen Xiao,

Binbin Peng and Xiaodan Guo

Received: 6 April 2022

Accepted: 9 May 2022

Published: 12 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Sustainable Aviation Electrification: A Comprehensive Review
of Electric Propulsion System Architectures, Energy
Management, and Control

Jinning Zhang 1,2,*, Ioannis Roumeliotis 1 and Argyrios Zolotas 2

1 Centre for Propulsion, School of Aerospace, Transport and Manufacturing, Cranfield University,

Bedfordshire MK43 0AL, UK; i.roumeliotis@cranfield.ac.uk
2 Centre for Autonomous and Cyber-physical Systems, School of Aerospace, Transport and Manufacturing,

Cranfield University, Bedfordshire MK43 0AL, UK; a.zolotas@cranfield.ac.uk

* Correspondence: jinning.zhang@cranfield.ac.uk

Abstract: The civil aviation sector plays an increasingly significant role in transportation sustainability

in the environmental, economic, and social dimensions. Driven by the concerns of sustainability in

the aviation sector, more electrified aircraft propulsion technologies have emerged and form a very

promising approach to future sustainable and decarbonized aviation. This review paper aims to

provide a comprehensive and broad-scope survey of the recent progress and development trends

in sustainable aviation electrification. Firstly, the architectures of electrified aircraft propulsion are

presented with a detailed analysis of the benefits, challenges, and studies/applications to date. Then,

the challenges and technical barriers of electrified aircraft propulsion control system design are

discussed, followed by a summary of the control methods frequently used in aircraft propulsion

systems. Next, the mainstream energy management strategies are investigated and further utilized to

minimize the block fuel burn, emissions, and economic cost. Finally, an overview of the development

trends of aviation electrification is provided.

Keywords: environmental sustainability; aviation electrification; system architectures; control system

design; setpoint tracking control; transient control; safety constraints; energy management strategy;

fuel economy; emissions

1. Introduction

The global aircraft fleet consumes over 7% of oil products (276 million tons of jet fuel)
and produces 2.7% of energy-consumption-related CO2 emissions due to in-flight com-
bustion. Furthermore, the global aviation demand is anticipated to grow at around 4.8%
annually [1]. By the year 2050, a greater than 60% increase in global commercial air travel
seat miles and a 38% increase in energy use are projected by the U.S. Energy Information
Administration, with corresponding CO2 emissions projections of 209 million metric tons
CO2e [2]. Thus, it is critical to reduce the environmental footprint of the aviation sector, and
the civil aviation sector plays an increasingly significant role in transportation sustainability
in the environmental, economic, and social dimensions. The major organizations and
research councils have all published pathways for sustainable aviation decarbonization
to reduce aviation-related pollutant emissions. For example, the NASA ‘N+3′ strategic
implementation plan aims for −75% NOx emissions, −70% fuel burn, and −55 dB noise at
the airport boundary in the year 2035 [3], and Flightpath 2050 targets a 75% reduction in
CO2 emissions per passenger kilometer and a 90% reduction in NOx emissions relative to
the technology level of the year 2000 [4]. However, the potential efficiency improvements
achieved by conventional technology progress in airframes, structure, propulsion, and
air-traffic management are already reaching a plateau. Driven by the concerns of environ-
mental sustainability in the aviation sector, electrified aircraft propulsion technologies have
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emerged and have been identified as the most promising approach to realize sustainable
and decarbonized aviation.

Many historical surveys have been published to provide a mature insight into elec-
trified aircraft propulsion systems. For example, the existing potential and forecasted
progress of aircraft hybrid electric architectures and their impact on the environment are
surveyed in [5]. The recent progress, opportunities, and challenges of conceptual design
and the technical advances of electrical system components are presented in [6], along
with a discussion of the aircraft-level effects of electrification and the emerging problem
of thermal management. Furthermore, the research work and development trends of
conceptual design, preliminary sizing, and multidisciplinary optimization frameworks are
comprehensively reviewed in [1], which also includes original and detailed assessments of
regulations, certifications, and infrastructure. Furthermore, a life-cycle-oriented sustain-
ability assessment of emerging aircraft technologies is investigated in [7] to identify these
hotspots and problem shifts and provide further guidance for actions aimed at sustainable
aviation development at an early stage. Additionally, technical advances in aviation electri-
fication are explored to enhance strategy research and development investment analysis
in [8].

This paper aims to provide a comprehensive and broad-scope survey of the recent
progress and development trends in aviation electrification. In Section 2, the major archi-
tectures of electrified aircraft propulsion systems are presented from the perspectives of
concepts, benefits, challenges, and studies/applications to date, and we further identify
the performance requirements of the electrical system components. Section 3 discusses
the challenges and technical barriers of the control system design of electrified aircraft
propulsion systems and then summarizes the mainstream control techniques for aircraft
propulsion systems. Next, the research gap on hybrid electric aircraft energy management
strategies is discussed in Section 4, followed by a review of the recent progress in energy
management strategy research. Finally, Section 5 presents an overview of the development
trends of aviation electrification.

2. Electrified Aircraft Propulsion System Architectures

Electric propulsion architectures are generally classified as: all-electric, series hybrid
electric, parallel hybrid electric, and turboelectric [9]. In this section, each architecture will
be introduced individually from the perspectives of concepts, benefits, challenges, and
studies/applications to date.

2.1. All-Electric Architecture

In all-electric propulsion architecture, batteries are the only energy source for the
propulsion systems, as shown in Figure 1. The all-electric configuration is a high-efficiency
energy conversion system and is the only candidate that has the potential to achieve zero
emissions [10].

Figure 1. All-electric architecture [9].
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All-electric aircraft are identified as a feasible and cost-competitive approach to reduce
the environmental impacts of short-haul flights, including vertical take-off and landing
aircraft (eVTOLs) [11,12], commuter aircraft [13], rotorcraft [14,15], and general aviation
airplanes. The key applications and studies to date are summarized in Table 1. The
potential benefits that can be exploited from the global aircraft fleet are critically dependant
on battery-pack technical advances [16]. All-electric aircraft with a battery-pack specific
energy of 800 Wh/kg enable a flight mission range of up to 600 nmi, which can cover half
of all aircraft departures. At this stage, NOx emissions at airport areas can be significantly
mitigated by 40%, and block fuel burn and direct CO2 emissions can be reduced by 15%.
To reach cost effectiveness with conventional aircraft, carbon taxes and batteries should
be below USD 100 per kWh [17]. To enable a flight mission of 900 nmi with an all-electric
propulsion system, the battery specific energy is required to reach 1200 Wh/kg [18].

Table 1. Applications/studies/conceptual design of all-electric aircraft to date.

Study Category Technical Specification Key Findings

Airbus E-Fan
[19]

Two-seat electric aircraft for pilot training.
Endurance: 60 min;

first flight year: 2014

Battery: Li-ion, 207 Wh/kg
EM power: 30 kW

Two electric motors via eight-blade
ducted fans, each producing a thrust of

0.75 kN.

Magnus eFusion
[20]

Two-seat training aircraft with light aerobatic
capabilities, serving as flying testbed for the

sub-100 kW electric propulsion system.
First flight year: 2016.

Propulsion system: RRP70D
EM: continuous power 70 kW

Siemens Extra 330 LE
[20]

Two-seat aerobatic aircraft as a flying testbed
for motors in the class of 0.25 to 0.5 MW.

First flight year: 2016

Propulsion system: RRP 260D
EM power: 260 kW

EM power density: 5.2 kW/kg

Airbus Vahana
[21]

Single-seat eVTOL.
Range: 50 km;

first flight year: 2019

EM power: 8 × 45 kW
Batteries: 38 kWh

All-electric propulsion system for a
tilt-wing aircraft configuration; flight

testing culmination time: 12 h, totaling
500 nmi.

Boeing Aurora
[22]

2 PAX eVTOL.
Target YEIS: 2020

21 ft long with a 36 ft wingspan, 12
independent lift fans.

Rolls-Royce/YASA
ACCEL Project

[23]

Single-passenger light sport and training
aircraft.

Range: 200 miles;
first flight year: 2020

Developing the world’s fastest electric
aircraft, expected to reach 480 km/h.

NASA X-57 Maxwell
[24]

Two-seat Tecnam P2006T general aviation
aircraft. Maximum operational altitude:

14,000 ft;
cruise speed: 172 mph;
first flight year: 2020

Aircraft weight: 3000 lb
Batteries: Li-ion, 69.1 kWh
Power distribution: 460 V

14 motors and propellers (two large
cruise motors and propellers and 12
small high-lift motors and propellers

located across the wing to increase
airflow).

EVIATION ALICE
[25]

9 PAX commuter aircraft.
Range: 440 nmi;

maximum cruise speed: 250 kts;
maximum payload: 2500 lbs;

target YEIS: 2021

MTOW: 16,500 lbs
Propulsion: magni650

Max Power: 2 × 640 kW

Airbus CityAirbus
[26]

Four-seat eVTOL.
Range: 80 km; cruise speed: 120 km/h;

target YEIS: 2023

MTOW: 2200 kg
Propulsion system: RRP200D

EM power: 8 × 200 kW
EM torque density: 30 Nm/kg

A fixed wing with V-shaped tail; eight
electric-powered propellers with
distributed propulsion system.

Wright Electric/Easy Jet
[27]

100 PAX large commercial aircraft on the
platform of BAe 146.

Endurance: 1 h;
target YEIS: 2026

EM power: 2 MW
EM SP: 10 kW/kg

Inverter power: 2 MW
Inverter frequency: 300 kHz

Inverter volume density: 20 kW/L

10 × 2 MW motors totaling 20 MW, as
powerful as an A320 Airbus aircraft.

Rolls-Royce/Siemens
CleanSky 2 ELICA

[28,29]

19 PAX commuter aircraft.
Target YEIS: 2060

Battery SE: 500 Wh/kg
Battery SP: 1 kW/kg
EM SP: 7.7 kW/kg

All-electric concept with 16 distributed
propellers for design range of 200 nmi

and 400 nmi.

* EM: electric machine, MTOW: maximum take-off weight, SE: specific energy, SP: specific power, PAX: passenger,
YEIS: year of entry into service.

The Committee on Propulsion and Energy Systems to Reduce Commercial Aviation
Carbon Emissions identified the electrical system component performance requirements
for all-electric propulsion systems, as shown in Table 2 [10].
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Table 2. Electrical system component performance requirements for all-electric propulsion systems.

Aviation Sector EM Power Capacity EM Specific Power Battery Specific Energy

General aviation Motor: <1 MW Motor: >6.5 kW/kg >400 Wh/kg

Regional/single-aisle Motor: 1–11 MW Motor: >6.5 kW/kg >1800 Wh/kg

Twin-aisle Not feasible Not feasible Not feasible

2.2. Series Hybrid Electric Architecture

The series hybrid electric architecture is presented in Figure 2. It is normally made
compatible with distributed propulsion by using multiple relatively small electric motors
and propellers/fans [10]. In series configurations, the fans/propellers are driven by electric
motors, and the electrical power is either from a gas-turbine-driven generator or from a
battery energy storage source. Because of the electrical power conversion and the transmis-
sion system, the operation of the gas turbine can be decoupled from fans/propellers, which
enables the gas turbine to operate at its maximum efficiency. However, in series-hybrid
electric propulsion systems, the electric motors should provide all of the propulsive power.
Consequently, the electric motors need to be the right size to achieve their maximum power,
which will increase the mass and volume of the propulsion system [30]. A summary of
series hybrid electric architecture studies is provided in Table 3.

Figure 2. Series hybrid electric architecture [9].

Table 3. Applications/studies/conceptual design of series hybrid electric aircraft to date.

Study Category Technical Specification Key Findings

Zunum Aero
[31]

Seat capacity: 12 economy, 9 premium,
6 executives;

max payload: 2500 lbs;
range: 700 nmi;

target YEIS: 2020

Propulsion system: series hybrid with
range extender

Max power: 1 MW
Turbogenerator: 500 kW

Emissions: 0.0 to 0.3 lbs CO2/ASM
Operating cost: 8 cents/seat mile, USD

250 per hour.

XTI TriFan 600
[32]

6-seat fixed-wing aircraft with VTOL.
Range: 600 nmi in VTOL, 900 nmi for

conventional take-off and landing;
YEIS: 2024

Propulsion system: a turboshaft
engine driving 3 generators for

electrical energy generation, powering
motors which are mechanically

connected to propellers

Three ducted fans, hybrid energy
system (hydrogen fuel cell, sustainable

aviation fuel compatible).

Airbus E-Fan X
[33]

100-seat regional jet.
Payload: 6650 kg;

YEIS: 2030

Motor power: 2 MW
Generator power: 2.5 MW

EM power density: 10 kW/kg
Power distribution: 3 kV DC

One of the four jet engines (AE2100) was
replaced by a 2 MW electric motor.
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2.3. Parallel Hybrid Electric Architecture

In a parallel hybrid electric architecture, as shown in Figure 3, both the electric motor
and the conventional gas turbine are mounted on a shaft to drive the fans/propellers.
The electric power on-take can be used to boost either the low-pressure shaft, known as
Mechanically Integrated Parallel Hybrid architecture (MIPH), or the high-pressure shaft,
known as Cycle-Integrated Parallel Hybrid architecture (CIPH) [34]. Additionally, the
electric motor is backed up with a battery energy storage system that can be charged
onboard or on the ground.

Figure 3. Parallel hybrid electric architecture [9].

The parallel configuration requires fewer electrical components compared with the
serial hybrid configuration, so it has the advantage of weight saving [35]. However, the
operation and control in the parallel electric configuration are relatively complicated due to
the mechanical coupling relations of the propulsive device, gas turbine, and electrical sys-
tem. Furthermore, the parallel hybrid electric operation may deteriorate the performance of
the turbomachinery components. For example, in MIPH arrangements, under a fixed thrust
demand, hybridization operation reduces the power demand from the engine core, and
the gas turbine operation of the overall pressure ratio, pressure build-up, and core/bypass
mass flow is noticeably affected due to the components’ rematching effects, as shown in
Figure 4 [36]. To provide a lower shaft power, the rotational speed of the high-pressure
shaft is accordingly reduced, which causes a flow mismatch between the two spools [37].
This will eventually lead to a reduced surge margin in the low-pressure compressor and sig-
nificantly increase the fan rotational speed [34]. For CIPH configurations, the low-pressure
compressor is more likely to choke because of the components’ rematching caused by
hybridization, and the high-pressure shaft compressor moves towards a high rotational
speed [34]. Thus, the operation of the parallel hybrid configuration is complicated, because
it should avoid potential fluttering (stalling or choking) and ensure mechanical integrity.
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Figure 4. Parallel hybrid electric operation in take-off conditions [36].

The applications of and ongoing research on parallel hybrid electric architecture are
summarized in Table 4.

Table 4. Applications/studies/conceptual design of parallel hybrid electric aircraft to date.

Study Category Technical Specification Key Findings

NASA Boeing SUGAR Volt
[37,38]

150 PAX single-aisle aircraft.
Range: 900 nmi

Battery SE: 750 Wh/kg
EM SP: 3–5 kW/kg
EM efficiency: 93%

EM power capacity: 1.3 MW
(balanced), 5.3 MW (core shutdown)

Transonic truss-braced wing,
‘balanced’ version: reduces fuel
burn by 60% and energy use by
54%. ‘Core shutdown’ version:
EM for cruise on 100% electric

power, reduces fuel burn by 64%
and energy use by 46%.

NASA UTRC hGTF
[38,39]

150 PAX single-aisle aircraft.
Range: 900 nmi

EM power capacity: 2.1 MW
Battery SE: 1000 Wh/kg

Optimized geared turbofan
engine for cruise, electric power
boosting for take-off and climb;
7–9% block fuel burn reduction

and 3–5% energy saving.

NASA R-R LibertyWorks EVE
[39,40]

150 PAX single-aisle aircraft,
exploring mission optimization
using battery power for taxiing,
idle decent, and take-off power

augmentation

EM power capacity: 1 MW-2.6 MW

28% fuel burn reduction for
900 nmi mission, 10% energy

saving for 500 nmi mission, 18%
reduction in total fleet fuel usage.
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Table 4. Cont.

Study Category Technical Specification Key Findings

Horizon 2020 H3PS
(High-Power High-Scalability
Aircraft Hybrid Powertrain)

[40]

4-seat general aviation aircraft
developed on the platform of

Tecnam P2010

Engine: Rotax 915 (141 hp)
EM power capacity: 30 kW (thrust
booster motor during take-off and
climb, operating as a generator to
recharge batteries during cruise)

TECNAM: airframe and system
integration, BRP-ROTAX: design

and integration of combustion
engine and e-motor,

ROLLS-ROYCE: e-motor and
power storage.

Clean Sky 2 NOVAIR project
[41,42]

150 PAX single-aisle large
passenger aircraft (retrofitted on

A320 NEO).
Range: 800 nmi

Technology level: 2040+
Battery efficiency: 95.0%

Battery SE: 1 kWh/kg
EM efficiency: 98.0%
EM SP: 15.0 kW/kg

With downscaled, more efficient
turbofan engine core, potential

trip fuel reduction is about 14%.

The technology levels of the electrical system components required by parallel hybrid
electric architecture are investigated in [10] and presented in Table 5. The potential applica-
tions of all-electric and parallel hybrid electric propulsion systems are largely dependent on
the technical advances in battery energy storage systems. A regional jet or single-aisle air-
craft is feasible with a battery specific energy of over 800 Wh/kg for a parallel architecture.
However, the current state-of-the-art battery specific energy is only 200–250 Wh/kg [10].

Table 5. Electrical system component performance requirements for parallel hybrid electric propul-

sion systems.

Aviation Sector EM Power Capacity EM Specific Power Battery Specific Energy

General aviation Motor: <1 MW Motor: >3 kW/kg >250 Wh/kg

Regional/single-aisle Motor: 1–6 MW Motor: >3 kW/kg >800 Wh/kg

Twin-aisle Not studied Not studied Not studied

2.4. Turboelectric Architecture

In the turboelectric configuration as shown in Figure 5, the gas turbine drives the
generators to provide electricity. The electricity is subsequently transmitted to power in-
verters, individual direct current (DC) electric motors, and eventually drives the individual
distributed fans/propellors. The turboelectric configuration does not include electrical
energy storage; it stores all energy in jet fuel and converts part or all of it to electricity. The
key studies on turboelectric research are listed in Table 6.

Figure 5. Turboelectric architecture [9].
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Table 6. Applications/studies/conceptual design of turboelectric aircraft to date.

Study Category Technical Specification Key Findings

NASA N3-X
[38,43]

300 PAX hybrid wing body with
fully distributed propulsion, 16-aft

motor-driven fans.
Range: 7500 nmi

Superconducting electric machines
and power distribution.

Power distribution: 7500 V
Fully distributed power: 50 MW

70% fuel burn reduction
compared to Boeing 777–200 LR.

Empirical Systems Aerospace
ECO-150 R
[38,44,45]

150 PAX regional jet, fully
distributed propulsion system with

a split-wing concept.
Maximum payload range: 1500 nmi

Superconducting electrical
machines cooled with liquid

hydrogen
16-wing motor-driven fans.

NASA STARC-ABL
[38,46]

154 PAX single-aisle aircraft with
tube and wing airframe.

Range: 900 nmi;
target YEIS: 2035

EM SP: 8 hp/lb
EM efficiency: 96%

Inverter SP: 10 hp/lb
Inverter efficiency: 98%

Power distribution: 1000 V
Motor power capacity: 2.6 MW

12% reduction in start of cruise
TSFC, 9% reduction in economic

mission block fuel, 15% reduction
in design mission block fuel.

Boeing SUGAR Freeze
[38,47]

154 PAX single-aisle aircraft using a
truss-braced wing combined with

boundary-layer ingestion.
Range: 900 nmi

Solid oxide fuel cell,
superconducting motor,

cryogenic power management
system

56% reduction in fuel burn.

Turboelectric architecture with distributed propulsion has been identified as the top
priority approach for developing advanced electric propulsion technologies that could be
implemented in the next c. 10–30 years for aviation decarbonization, because it does not
rely on the technical advances of battery energy storage. Furthermore, the performance
requirements of the electrical system components can be developed with smaller advances
beyond the state-of-the-art technology, as shown in Table 7 [10].

Table 7. Electrical system component performance requirements for turboelectric propulsion systems.

Aviation Sector EM Power Capacity EM Specific Power Battery Specific Energy

General aviation Motor and generator: <1 MW Motor and generator: >6.5 kW/kg NA

Regional/single-aisle
Motor: 1.5–3 MW

Generator: 1–11 MW
Motor and generator: >6.5 kW/kg NA

Twin-aisle
Motor: 4 MW

Generator: 30 MW
Motor and generator: >10 kW/kg NA

3. Electrified Aircraft Propulsion System Dynamic Modeling and Control System
Design

In this section, the challenges and technical barriers of the control system design for
advanced electrified aircraft propulsion (EAP) systems are presented. Then, the control
methods for integrated power and propulsion systems are introduced with the latest
research.

In a conventional gas-turbine aero-engine control architecture, as shown in Figure 6,
the electronic engine control (EEC) units calculate the control commands according to
the received requests of thrust demands, aircraft power, and bleed offtake demands and
the engine-sensed feedback measurements. Then, the control commands are sent to the
actuator of the engine-fuel metering valve. Herein, the fuel flow rate is the primary control
variable to control the engine thrust output. As the thrust cannot be measured directly,
a closed-loop fuel flow controller is normally designed based on a correlated feedback
measurement of the fan speed or engine pressure ratio [48]. Furthermore, the actuators
of the variable-area fan nozzle (VAFN) and variable bleed valve (VBV) are open-loop
scheduled to improve engine operability. The control system design of aircraft propulsion
systems is highly challenging and complex due to nonlinearities, performance constraints,
and physical and safety limits [49]. The operation of a gas turbine is an extremely complex
nonequilibrium and nonlinear aerothermodynamic process, and the model accuracy is
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expected to capture the interaction accurately enough for control design but without
requiring excessive computational efforts [50,51]. Additionally, the aircraft operates in
a wide flight envelope over an extreme range of environmental conditions, defined by
altitude, Mach number, and temperature [52]. The control system of a gas turbine aero-
engine is not only responsible for maintaining thrust at a specified level for a given throttle,
guaranteeing a fast and smooth transition operation between demanded thrust levels, but
must also take into consideration the safety, reliability, maintainability, and environmental
impact [53]. The control design is a highly demanding task necessitating the fulfilment of a
set of performance and safety requirements including the steady state accuracy, transient
accuracy, disturbance rejection, stability, stall margin, structural integrity, and engine
degradation. In summary, aircraft propulsion control systems can be classified as in Table 8.
The control system design procedure is normally as follows: the flight envelope is divided
into several regions. In each region, the linear model is obtained for the flight conditions,
so that the controllers are designed for each linear model using control theories. Finally, the
full flight envelope control is achieved via gain scheduling [54].

Figure 6. Control architecture of conventional gas-turbine propulsion system [48].

Table 8. Aircraft propulsion control systems and performance requirements [54].

Control System Performance Requirements

Setpoint control Regulate the gas turbine performance near a desired operating condition, e.g., idle, take-off, cruise

Transient control Transient operation (performance variables change with time)

Limit protection
Physical limits: shaft speed, turbine blade maximum temperature, maximum combustion pressure,

surge/stall of compressor

Future electrified propulsion systems will pose further significant challenges because
of new configurations, structures, and electric components, presenting much more complex
problems with significantly increased numbers of control system parameters to design and
tune [55]. In the EAP control architecture, as shown in Figure 7, the supervisory controller
is the communication interface between the aircraft and the propulsion system and is also
responsible for coordinating the operation of both subsystems, the conventional gas turbine
and the electrical powertrain. The supervisory control strategies are proposed to minimize
fuel/energy consumption, lessen the challenges of thermal management, achieve dynamic
control to ensure engine operability during transients, and maintain overall operating
limits [48]. In the bottom layer, EEC units control the gas turbine’s operation, and the
electronic component controller (including the motor control unit, generator control unit,
power electronic control unit, and battery management system) regulates the operation of
the electrical powertrain.
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Figure 7. Control architecture of electrified propulsion system [48].

Apart from the existing technical barriers of conventional gas-turbine aero-engine
control, the EAP control system design brings with it more challenges and concerns. Firstly,
the coupling and interaction between the gas turbine and electrical powertrain should
be considered, which involve mechanical, hydraulic, thermal, electrical, and electronic
elements. The interaction can result in a loss of setpoint tracking and safety constraint
violations, and the power on-take provided by electric motors could compromise the
gas turbine operability [56]. Taking MIPH architecture as an example, the gas turbine
operation in terms of the overall pressure ratio, pressure build-up, and core/bypass mass
flow is noticeably affected due to the electrical power on-take and component rematching
effects. The electrical power on-take will cause a decrease in the resistive torque load on
the engine shaft, significantly increase the fan rotational speed, and eventually lead to a
reduced surge margin in low-pressure compressors [34]. Another challenge is the negative
impedance instability behavior in the power load regulation of the electrical powertrain
subsystem, where an increase in voltage across the device’s terminals results in a decrease
in the electric current, and vice versa [57]. Along with the low inertia of the electrical
powertrain subsystem, the negative impedance instability is very likely to destabilize the
voltage buses [58]. Furthermore, the dynamics of a conventional gas turbine subsystem and
electrical powertrain subsystem have differences in terms of their time scales; specifically,
the voltage dynamics of the electrical powertrain have time constants in the order of
milliseconds, while the gas turbine’s shaft rotational speeds have time constants in the
order of seconds [59]. This phenomenon further complicates the control system design
of the integrated EAP system, and the local controllers of subsystems are designed for
different update rates, which limits the opportunities for communication. The frequency
band of interest for EAP control systems is presented in Figure 8. Based on the dynamic
response gap between the engine and electrical powertrain, the engine response lag can be
potentially compensated by the motor torque to reduce the shaft torque fluctuation [60]. In
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addition, more failures may occur in the EAP system due to the diversity of components
and the coupled operation. Thus, fault detection and tolerance, or system reconfiguration
in response to faults, are expected to be embedded within the control system design [48].

Figure 8. Frequency band of EAP control system [48,54].

Table 9 outlines the main control methodologies for aircraft propulsion systems,
including both the conventional propulsion system and the electrified aircraft propulsion
system. However, the control methodologies for electrified aircraft propulsion systems have
not been universally investigated. Each control method will be introduced individually,
highlighting the benefits and limitations of its application. Additionally, the distinct
differences between classical control theory and modern control theory are presented in
Table 9.

3.1. Classical Control

The most common example of a classical control method is the proportional integral
derivative (PID) controller, which is widely used in practice due to its simple imple-
mentation and relative efficiency [61]. However, PID controllers can only be used for
single-input–single-output (SISO) systems. Thus, the application of a PID controller in
a multivariable aircraft propulsion system relies on system dynamics decoupling to pro-
duce multiple SISO systems that can be handled directly, but this approach will limit the
allowable controller gains for system stability [62]. Another approach is a control structure
consisting of a cascaded series of control loops with a supervisory multivariable controller
that will coordinate control loops and generate output setpoints as references for low-
level actuator PID controllers, which is well-known as a hierarchical control structure [63].
Furthermore, the classical control theory cannot be applied to nonlinear systems directly;
thus, the system linearization at predefined equilibrium points is required before controller
design. Additionally, min–max limiting logic is a necessity for system safety constraint
handling, e.g., maximum speed limits, combustor pressure limits, and ratio unit limits [49].

The basic design process and control architecture of a commercial turbofan engine
is presented in [49]; it contains an engine pressure ratio and fan speed setpoint controller
and limit regulators to constrain the transient to guarantee safe operation, including a
rotor speed limiter, a combustor pressure limiter, an acceleration schedule, and a ratio unit
limiter. These are all implemented by the PI controller with integral wind-up protection,
and a min–max strategy is applied to determine the control signal sent to the fuel metering
valve. Furthermore, the aircraft propulsion system operates over a wide range of flight
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conditions, which adds significant complexity to the control system design. This challenge
is handled by using gain scheduling with interpolation, to break a large, complex, nonlinear
system into a series of range-limited linear subsystems and tune the controller at each
breakpoint. At each time step, the controller gains are obtained by linear interpolation
between the nearest defined subsystems [52]. On this basis, meta-heuristic global opti-
mization algorithms, namely the competent genetic algorithm, linkage-learning genetic
algorithm, and aggregative gradient-based algorithm, have been respectively applied to
solve the engine controller gain-tuning problem for a turbojet gas turbine, with the global
optimization objectives of response time, fuel consumption, maneuverability, and safety
considerations [55,64]. Additionally, a cascade ensemble radial basis function (RBF)-based
optimization algorithm is also proposed for global optimal control gain scheduling for aero-
engine transient processes [65]. Fuzzy gain scheduling is proposed for the PID controller
tuning, which is achieved by using nonlinear Mamdani mapping. Additionally, the multi-
objective genetic algorithm is employed to find the optimal solutions for a wide-envelope
controller covering idle, cruise, and full-power conditions [53]. For system safety constraint
handling, the min–max limit protection is improved by using the state feedback method
and linear matrix inequalities, which can significantly reduce the probability of transient
limit violation [66]. However, due to the vacillating nature of the min–max structure, the
stability of the overall system cannot be guaranteed. Thus, a main–max selector scheme
with a stability analysis method is further developed by transforming the basic control
structure into the form of Lure’s system, where the global asymptotic stability is proved
for the control system of a turbofan engine [67]. A novel model-based multivariable limit
protection control method is proposed to improve the loss of thrust and is achieved by
adaptive command reconstruction, multiple control loop selections, and switch logic [68].
In [69], nonlinear dynamic models of turbomachinery and electrical power systems were
developed for the STARC-ABL concept with a partially turboelectric single-aisle propulsion
system. A gain-scheduled PI controller with protection logic for turbomachinery and a
PI speed controller with a vector controller of pulse width modulation (PWM) was devel-
oped based on the piece-wise linear model, and the controller design was examined for
the performance metrics of increasing time and operability margins. An optimal control
and energy management method for hybrid gas–electric propulsion has been developed,
wherein the standard PI controller is adopted to command fuel flow for turbofan speed
regulation, and the electromechanical torque is given by linear state feedback and bias,
with gains calculated numerically from engine linearization [70].

3.2. Hierarchical Control

Hierarchical control is a form of the networked control system, which is widely used
for multienergy systems; the main idea is to decompose a complicated control problem
into different time-based modules and in turn organize it into layers. This system can be
designed in centralized, decentralized, distributed, or hybrid configurations, as shown in
Figure 9 [71]. The centralized control model can provide the optimal solution because it has
full knowledge of the system and authority over all inputs; however, it is computationally
demanding and does not consider the preservation of subsystem privacy. In decentralized
control, both subsystems are operated separately by local controllers without communi-
cation. This introduces less computational burden than the centralized control strategy.
The interactions among subsystems are largely treated as exogenous disturbances to be
rejected by subsystem local controllers. Without a consideration of subsystem interactions,
the control performance will be degraded. The distributed control can achieve coordinated
control actions where local subsystem cost functions are augmented with a global term to
account for the impact of their inputs on the entire system [72].
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Figure 9. Hierarchical control scheme classification [73].

The hierarchical control scheme is normally implemented with a combination of other
control methods, such as classical PI–hierarchical control, hierarchical multiagent control,
and hierarchical predictive control. For instance, a two-layer hierarchical architecture is
proposed to coordinate the operations of a twin-engine propulsion system, where the upper-
propulsion-level controller accounts for load balancing and health management, and each
individual engine is operated under the supervision of a local discrete-event supervisory
controller at the lower level [74]. Furthermore, a hierarchical multivariable robust control
design with nonparallel distributed compensators is proposed for conventional turbofan
engines, with the model representation of an uncertain TS fuzzy model, where the level-one
compensator ensures the robust performance, and the level-two compensator restrains the
uncertainty [75]. Furthermore, a hierarchical model predictive control (MPC) approach is
proposed for aircraft electrothermal systems, wherein the coordination of electrothermal
systems is achieved by decomposing the multi-energy-domain constrained optimization
problem into a set of computationally efficient subproblems that can be solved in real
time [76]. For hybrid electric aircraft, a set-based hierarchical MPC framework has been
proposed and proven to be a computationally efficient approach to coordinate complex
systems across multiple timescales whilst providing guaranteed constraint satisfaction [77].
To face the notable challenge of the coordination of multidomain and multi-timescale
system dynamics, a hierarchical control architecture with a predictive controller and graph-
based modeling framework has been proposed; the upper-level MPC controller with a long
preview horizon is designed to plan the slow timescale system dynamics of battery SOC,
the lower-level MPC controller is used to regulate the medium timescale system dynamics
of the propeller speed and genset current, and the regulatory embedded controller controls
the fastest timescale system dynamics of motor speed and avionic load current directly [78].
A three-level hierarchical load management system has been proposed for other electric
aircraft; the upper task level is designed for electrical consumption demand allocation,
the medium level is for optimal power distribution, and the lower level is for condition
monitoring [79].

3.3. Robust Control

Robust control is an approach to controller design that explicitly deals with bounded
system uncertainty and disturbances [80]. The most important techniques of robust control
are H-infinity control and sliding mode control, which have been extensively used for
aero-engine controller design.

For H-infinity control theory, a novel robust gain-scheduling tracking control strategy
for aero-engines has been proposed that considers performance degradation. In this study,
the onboard engine model with health parameters is represented as piecewise linearized
Kalman filters. Then, H-infinity control theory is used for controller design to achieve
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good reference tracking with robustness and stability [81]. The H-infinity output track-
ing problem for aero-engines with a model representation of switched linear-parameter-
varying (LPV) systems is also investigated. In [82], a set of switched LPV controllers
and a parameter- and mode-dependent switching law are developed to enhance control
design flexibility based on multiple-parameter-dependent Lyapunov functions. In [83],
the switched LPV model is converted to a switched convex polytopic form with hystere-
sis switching logic, and then a theoretical sufficiency criterion is provided to guarantee
H-infinity performance. Furthermore, a parameter-dependent multiple discontinuous Lya-
punov function approach is proposed to solve the H-infinity refined antidisturbance control
problem for the switched LPV systems, achieving the required disturbance attenuation and
rejection [84]. H-infinity control theory has not been investigated for electrified aircraft
propulsion systems to date, but there exist some studies of H-infinity control method appli-
cations in hybrid electric vehicle powertrains. In [85], a hierarchical control structure with
two robust H-infinity controllers is proposed for plug-in hybrid electric vehicles to achieve
a fast and smooth operating mode transition, where the upper-layer H-infinity controller is
responsible for calculating the demand clutch torque considering the clutch engaging time
and the vehicle jerk, and the lower-layer H-infinity controller aims to perform accurate
position tracking control even with the parameter uncertainties and external disturbance.
The cooperative control of the drive motor and clutch for the gear shaft is effectively solved
by H-infinity loop shaping, even in the presence of model uncertainties and disturbances,
as well as the coupling effects between subsystems [86].

Sliding mode control (SMC) is recognized as an efficient approach to robust controller
design for complex high-order nonlinear dynamic systems under uncertain conditions. It
has the benefits of low sensitivity to system parameter variations and disturbances. Further-
more, SMC can decouple the overall system motion into independent partial subsystems
of a lower dimension and consequently reduce the complexity of controller design [87].
In [88], a multi-input and multi-output control scheme is proposed for aero-engine setpoint
tracking; it consists of a multivariable SMC controller as a nominal regulator, a series of
single-input SMC regulators with min–max selection logic to protect limits, and predictor-
based switching logic to ensure the smooth transitions between the main regulator and
the limiters. Furthermore, an improved multipower reaching law is proposed for SMC
controller design to reduce high-frequency oscillation in aero-engine tracking control [89].
SMC has also been investigated in hybrid electric vehicle powertrain control. For instance,
a double-SMC-based control system design is proposed for the efficiency improvement of
series hybrid electric vehicles, which also has the advantages of modularity and can be
easily implemented on other series hybrid electric vehicle powertrain systems with model
and parameter uncertainties [90]. In [91], a fuzzy SMC control method is proposed for the
fast and smooth mode transition of parallel hybrid electric vehicles, also offering robustness
against vehicle model uncertainties.

3.4. Optimal Control

Optimal control is an approach to determine the control signals of a dynamic system
to satisfy the physical constraints whilst minimizing the cost function [92]. The optimal
control problem is normally formulated as the cost function mapping of system states and
control actions, states and input constraints, and system dynamics, which is represented
as a set of differential equations with initial conditions [61]. The representative optimal
control methods include the linear quadratic regulator (LQR) and the linear quadratic
Gaussian (LQG) methods. In LQR control theory, the system dynamics is represented in
a linear time-invariant form with the quadrative objective function, and the analytically
derived feedback control law is given by using a mathematical optimization algorithm [63].
An LQR-based controller has been developed to stabilize systems and provide better
performance in terms of settling time, rising time, and maximum overshoot than a classical
PI controller [93]. Additionally, a nonlinear controller was designed using the feedback
linearization technique in conjunction with pole placement and LQR theory to guarantee
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accurate command tracking and mode blending and ensure the robustness of the engine
controller to parameter variations [94]. Furthermore, direct surge margin control for
aero-engines has been proposed based on an improved support vector regression (SVR)
machine and LQR theory, wherein the SVR machine is used to construct a surge margin
prediction model and the LQR controller is improved by augmenting the tracking errors
into the state vector to guarantee good robustness and performance over a wide range
of power states and flight conditions [95]. For the applications in electrified propulsion
systems, an LQR controller has been developed for hybrid electric urban air mobility;
this controller can effectively achieve the desired steady state for a wide range of initial
conditions [96]. The LQG method has been further developed based on LQR control theory,
with a state estimator providing an estimated state vector of measurable outputs [63]. A
robust controller for gas turbines has been proposed based on the discrete-time LQG/loop
transfer recovery (LTR) approach with self-tuning features, which provides a measure of
robustness with regard to both structured uncertainty and the uncertainty caused by the
engine operating environment [97]. On this basis, an online estimation method for gas
turbine rotation has been further developed based on the LQG/LTR method, which can
have only a small effect on the system’s natural frequency but allow for a larger open-loop
gain to improve the steady state tracking control accuracy [98]. However, this method
has not yet been rigorously investigated for applications in electrified aircraft propulsion
systems or hybrid electric vehicle powertrains.

3.5. Model Predictive Control

Model predictive control (MPC), also known as receding-horizon control, determines
the current timeslot control action by solving a finite-horizon optimization problem over
the prediction horizon. Then, the prediction horizon is shifted forward, and the optimiza-
tion calculations are repeated with updated plant states [99]. The MPC method offers
advantages when dealing with nonlinearities and handling constraints. However, the
closed-loop stability of the MPC control system cannot be guaranteed, and it is inherently
less robust than classical feedback, where the optimizations are infeasible with large un-
certainties [63,100]. MPC has been extensively applied in the control system design of
both conventional propulsion systems and electrified propulsion systems. For example,
a multivariable MPC controller was designed and implemented in real time based on a
discrete-time linearized state-space model to provide the required thrust and protection
limits, where a feedback correction was used to compensate for the model mismatch [101].
In this framework, a semi-alternative-optimization-strategy-based MPC controller was
proposed based on the extended Kalman filter turbofan engine model [102]. An advanced
constraints management strategy for real-time gas turbine transient control was devel-
oped based on the MPC approach. In this study, the MPC controller was designed to
identify the engine control modes, which was achieved by using Lagrangian multipliers
to handle the constraint inequalities and Hildreth’s quadratic programming to select the
controller weighting values [103]. To improve the engine response performance and reduce
the computational complexity, direct thrust control with nonlinear MPC was proposed
based on a linearized online sliding-window deep neural network predictor [104]. For
application in EAP systems, a coordinated MPC controller has been developed to achieve
the setpoint tracking of large transient thrust and electrical loads whilst ensuring system
constraints [56,105]. This study was further developed to improve the match between the
rate-based linear prediction model and the nonlinear system by introducing an auxiliary
offset state [106]. Furthermore, the bus voltage behaviors were stabilized by imposing
a power rate constraint and incorporating this with the energy storage subsystem [107].
Furthermore, a distributed MPC controller was designed based on the alternating direction
method of the multiplier. This work presented an innovative approach accounting for
the differing control update rates of gas turbine and electrical powertrain subsystem local
controllers and the preservation of subsystem privacy [108].
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Table 9. Overall characteristics of classical control theory and modern control theory [61].

Methodology Benefits and Limitations Applications

Classical Control
PID controller

Simple implementation in practice with
relative efficiency. Only applied in

single-input–single-output (SISO) systems,
requires the system model to be

linear-time-invariant (LTI), cannot
incorporate constraints, and lacks overall

performance optimization.

Conventional propulsion system:
[49,52,55,64–68]

Electrified propulsion system:
[69,70]

Hierarchical Control
Centralized control, decentralized control,

distributed control

A form of networked control system; a
computationally efficient approach for
multidomain, multi-timescale system

dynamics; decomposes a complicated control
problem into different time-based modules

and, in turn, organizes them into layers.

Conventional propulsion system:
[74–76]

Electrified propulsion system:
[77–79]

Robust Control
H-infinity, sliding mode control

Explicitly deals with bounded system
uncertainty and disturbances.

Decouples the overall system motion into
independent partial subsystems of lower
dimension and consequently reduces the

complexity of feedback design.

Conventional propulsion system:
[81–84,87–89]

Electrified propulsion system:
[85,86,90,91]

Optimal Control
LQR, LQG, H2

Determines the control signals of a dynamic
system to satisfy the physical constraints

whilst minimizing the cost function.

Conventional propulsion system:
[93–95,97,98]

Electrified propulsion system:
[96]

Model Predictive Control
Flexible nonlinearity and constraint handling;
closed-loop stability cannot be guaranteed;

poor robustness.

Conventional propulsion system:
[101–104]

Electrified propulsion system:
[59,105–107]

Table 10. Summary of aircraft propulsion system control methodologies [61].

Classical Control Theory Advanced Control Theory

Domain Frequency, S-domain Time domain

Model representation Transfer function State-space

Continuity Continuous Continuous, discrete, hybrid

Linearity Linear Linear, nonlinear

Time variance Time-invariant Time-variant

Dimensions Single input, single output Multiple input, multiple output

Determinism Deterministic Deterministic, stochastic

Implementation Cheap, easy Expensive, complex

4. Electrified Aircraft Propulsion System Supervisory Energy Management Strategy

Energy management strategies (EMSs) have been extensively explored for hybrid
electric vehicles, microgrids, and power grids [108,109]. However, HEA EMS consideration
is recognizably different from these ground-based energy systems. Especially for commer-
cial aviation, the mission analysis and performance assessment are based on the premise
of balancing the thrust to drag with the fuel flow and electrical power flow within the
set operational and performance constraints defined by the top-level requirements. Nor-
mally, the mission segments are discretized by an energy-based approach with a mission
explicitly defined for each step, which involves a large number of iterations between the
propulsion system performance module and the aircraft performance module based on
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a multidisciplinary analysis of the aerodynamics, propulsion system performance, and
weight property [110]. Moreover, the weight is a major consideration for flight mission
analysis, especially for hybrid electric aircraft, since the additional weight of the electrical
powertrain and battery energy storage will degrade the integrated aircraft performance
due to the induced weight-related drag penalty [111]. Propulsion system electrification
and hybridization can ultimately improve block fuel burn and emissions at the isolated
propulsion system level due to electrical power on-take and more efficient operation, but
the promising improvements and benefits cannot be guaranteed from the perspective of
the integrated aircraft level, due to the weight-related drag penalty [36]. Furthermore, the
in-flight gas turbine fuel flow also leads to changes in aircraft mass and further affects the
aerodynamics performance, such as lift-dependent drag and thrust demand, especially
for regional jets that operate at a high altitude with long flight durations. Therefore, a
fully coupled propulsion–aerodynamic model with multidisciplinary analysis is required
for hybrid electric propulsion system performance assessment at the integrated aircraft
level. Furthermore, energy onboard should be equal to mission energy demand as a key
system constraint, since the carrying of an excessive amount of energy induces a weight
and drag penalty [112]. For hybrid electric aircraft with dual energy sources, both the con-
sumable mass energy sources of the fuel and the nonconsumable mass energy sources of
the battery should be considered. Thus, hybrid electric aircraft EMSs should be considered
from a global optimization perspective at the integrated aircraft level with a fully coupled
aerodynamics–propulsion multidisciplinary model, which will also greatly increase the sys-
tem complexity and computational load. Thus, the HEA EMS is complicated, challenging
to implement, and has not yet been widely investigated.

This section provides a comprehensive survey of the HEA EMS literature to date,
systematically summarizes the state-of-the-art HEA EMS technology, and explores the
research trends in this field. EMSs can be classified as rule-based and model-based opti-
mization methods. Model-based optimization strategies can be further divided into global
optimization EMSs and instantaneous optimization EMSs, as shown in Table 11.

Table 11. Summary of energy management strategy methodologies.

Methodologies Advantages Disadvantages

Rule-Based EMS
Deterministic rule-based EMS,

fuzzy rule-based EMS.
Easy to implement, low computational load.

Aircraft performance is determined by
predefined rules; highly dependent on

designers’ expertise; highly sensitive to flight
mission profile.

Global Optimization EMS

Convex programming (CP),
dynamic programming (DP),

Pontryagin’s minimum principle (PMP);
metaheuristic algorithms: genetic algorithm (GA),

particle swarm optimization (PSO), differential
evolution algorithm (DEA).

Provide a globally optimal solution (all);
stochastic solution generation to avoid local

optima (metaheuristic algorithms).

Analytical methods are frequently not
applicable for complicated problems with
complex constraints (PMP); strong model
simplification (CP, DP); require a planned

flight mission profile as a priori knowledge
(DP, metaheuristic algorithms); high

computation effort (metaheuristic algorithms).

Instantaneous Optimization EMS

Equivalent consumption minimization strategy
(ECMS),

model predictive control (MPC).

Easy to implement (ECMS); reduced
computation load; allow the current timeslot

to be optimized while keeping account of
future timeslots; handle many system

constraints simultaneously; applicable to a
multivariable problem (energy balance of

multiple sources of energy); applicable to a
multiobjective optimization problem (MPC).

Achieves optimal instantaneous equivalent
fuel consumption but cannot guarantee the

optimal aircraft performance at mission level
(ECMS); highly sensitive to flight mission

profile (ECMS); single-objective optimization,
cannot be expanded to operating costs,

emissions, etc. (ECMS).

4.1. Rule-Based EMS

The rule-based EMS is an effective approach for real-time implementation; it relies on
a set of predefined rules to take control actions instead of involving explicit minimization or
optimization [113]. The design of rules is generally based on heuristics, designers’ expertise,
or the insights of global optimal solutions through the offline optimization process. Thus,
the rule-based EMS is practical to implement and has a low computational load, but the
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HEA performance is highly dependent on the designers’ expertise and sensitive to the
flight mission profile.

A modeling approach for the rule-based EMS was investigated for the AirTaxi mission
of hybrid electric rotorcraft to reduce fuel consumption. It proposed and compared four
modes with the consideration of battery aging effects: only thermal engine operation, only
electric machine (EM) operation as a motor, both engine and EM operation with battery
discharging, and both engine and EM operation with battery recharging [114]. In [115],
a rule-based controller is designed to manage the power flow of the parallel HEPS with
three operating modes: internal combustion engine (ICE) only, ICE and EM, and ICE and
GE. By the utilization of both electric machines and internal combustion engines, HEPS
can effectively achieve fuel saving and a reduction in take-off noise and emission levels.
The systematic hybrid aircraft power schedule optimizer (SHAPSO) is proposed in [116].
Additionally, a rule-based EMS is presented to determine the optimal power management of
a parallel HEPS with the goals of mission block fuel burn reduction over the flight envelope.
The rule-based power schedules of constant power, power at climb, and power at cruise
are proposed and compared with the optimal control method and dynamic programming.
A fuzzy state machine (FSM)-based EMS has been proposed to control the power flow
for a hybrid electric UAV for online application [117]. It innovatively couples fuzzy logic
with a state machine, which can satisfy the power demand and effectively achieve block
fuel reduction for real-time implementation. A fuzzy logic parameter updating (FLPU)
method was developed to achieve adaptive power distribution for a light electric aircraft
with the dual energy sources of battery energy storage and fuel cells. The proposed method
could adaptively update the power distribution algorithm based on the aircraft operation
conditions [118].

4.2. Convex Programming

Convex programming (CP) is widely used to solve optimal control problems in
aerospace engineering for onboard real-time applications because of its fast convergence
and global optima [119]. A general convex optimization problem can be described as
Equation (1):

Minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . , m, (1)

where the functions f0, . . . , fm : Rn → R are convex, i.e., satisfy

fi(αx + βy) ≤ α fi(x) + β fi(y) (2)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0.
The algorithms are only applicable when the problem is strictly formulated in convex

terms: (1) the objective function must be convex, (2) the inequality constraint functions
must be convex, and (3) the equality constraint functions must be affine [120]. Thus,
the EMS using convex optimization requires strong model simplifications to transform a
nonconvex problem into a convex problem. For instance, HEA optimal energy management
is formulated as a convex problem to minimize the fuel consumed over a planned flight
path, where the point-mass aircraft dynamic model, the electrical powertrain, and the gas
turbine are simplified using quadratic approximations. Furthermore, this study requires
the drive power to be approximated a priori by assuming constant aircraft mass for the
duration of the flight [121]. A convex multiobjective optimization method is proposed for a
hybrid electric aircraft to minimize fuel consumption and polluted emissions during the
entire flight mission. The optimal EMS problem is formulated as mixed-integer nonlinear
programming by replacing the logic constraints of battery energy storage system operation
with the Karush–Kuhn–Tucker optimality condition [122]. A real-time supervisory energy
management control method is proposed for HEA series and parallel propulsion systems.
The convex formulation is derived from four simplifications: (1) a prior flight mission
profile and power demand; (2) convex propulsion system loss map functions based on
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an assumption of the monotonicity of the loss map; (3) reformulating the point-mass
aircraft dynamics as a quadratic function; and (4) relaxing the power balance equality to the
inequality. This convex optimization problem is solved by the alternating direction method
of multipliers (ADMM) algorithm, which can reduce the computation time by orders of
magnitude compared with the general convex interior point solver, CVX [123]. In summary,
the challenge of using convex optimization lies in recognizing and formulating the convex
optimization problems. Once a problem is formulated as a convex optimization problem, it
can be solved efficiently using algorithms, e.g., the gradient descent method, the steepest
descent method for unconstrained minimization problems, Newton’s method for equality-
constrained minimization problems, and interior-point methods for inequality-constrained
minimization problems [120].

4.3. Dynamic Programming

Dynamic programming (DP) is a model-based numerical optimization method based
on Bellman’s principle of optimality. The DP algorithm is widely used in energy manage-
ment strategy problems to provide the global optimal solution [124]. In the DP algorithm,
the problem is gridded according to time, states, and control signals and then divided into
a sequence of subproblems which are solved recursively backward in time from the final
step to the first. The optimal solution is achieved by minimizing the cost function, which is
defined as Equation (3) [108]:

J =
N−1

∑
k=0

gk(xk, uk, wk) + gN(xN) (3)

where gN represents the terminal cost; gk is the cost function incurred at the time slot k;
and xk, uk, wk denote system states, control decision, and disturbances, respectively, at the
time slot k.

The cost function of each DP subproblem is defined as Equation (4):

Jk(xk) = min
uk∈Uk(xk)







gk(xk, uk, wk)
︸ ︷︷ ︸

stage cost

+ Jk+1( fk(xk, uk, wk))
︸ ︷︷ ︸

cost-to-go







(4)

where k = N − 1, N − 2, . . . , 0 and the optimal solution is calculated backwards from N-1
to 0 with the initialization of terminal cost JN = gN(xN). The DP algorithm requires the
decomposition of the problem into subproblems, so the optimal solution accuracy highly
depends on the resolutions of the problem discretization. Additionally, the computational
demand will exponentially increase with the number of gridded variables, which is called
“the curse of dimensionality” [125].

The application of the DP algorithm in hybrid electric aircraft was first investigated to
optimize the power management and torque split of the powertrain for a parallel hybrid
electric UAV considering terminal state constraints. The study proposed a quasi-real-time
iterative algorithm based on the DP algorithm and further explored new flight capabilities
by the utilization of hybrid powertrain architecture [126]. A DP-algorithm-based EMS was
proposed to find an optimal power-splitting sequence to minimize the fuel consumption
over the whole flight mission for a hybrid electric lightweight rotorcraft. The optimal EMS
control problem was modeled as a graph structure, where the splitting sequences were
represented as the paths with the transition cost weights. Based on the graph structure
model, the optimal splitting sequence (shortest energy path) was obtained by using the
Dijkstra algorithm [127]. Furthermore, an offline EMS optimization method was proposed
using DP to minimize the fuel consumption in a hybrid electric helicopter for urban air-
mobility considering the effect of battery aging. This study assumed a planned flight
mission profile and considered a constant take-off weight, with the saved fuel being con-
verted into payload [128]. Similarly, an optimal energy management methodology was
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proposed to minimize fuel consumption based on the DP algorithm with a prescribed flight
mission; a point of originality was that this study took into account energy recovery via a
propeller during descent [129]. However, these studies assumed a fixed required propul-
sive power demand as prior knowledge, failing to consider the propulsion–aerodynamic
coupling effects and neglecting the variation in aircraft weight during flight. In summary,
the DP algorithm can provide the optimal global solution, but it is not applicable for real-
time implementation because it requires a priori information and a backward discretized
model [125]. Therefore, the DP algorithm is normally used to design rules for rule-based
EMSs or as a benchmark to evaluate other EMS solutions.

4.4. Pontryagin’s Minimum Principle

Pontryagin’s minimum principle (PMP) is a model-based analytical optimization
method that can provide a globally optimal solution by transforming a global optimization
problem described by DP into an instantaneous Hamiltonian optimization problem and
then minimizing the Hamiltonian function according to the co-state [130]. This method has
been widely used in the EMS problem of hybrid electric vehicles [131–133]; however, few
studies have investigated PMP method application in the field of HEA EMS problems. This
is because analytical solutions are frequently not applicable for complicated problems with
complex constraints [134].

The Hamiltonian function is defined as Equation (5) [113]:

H(x(t), u(t), λ(t), t) = L(x(t), u(t), t) + λ(t)T
· f (x(t), u(t), t) (5)

where f (x(t), u(t), t) is the system dynamics model; L(x(t), u(t), t) is the instantaneous
cost; and λ(t) is a vector of the optimization variables—co-states of the system. In PMP, the
following conditions should be satisfied if x∗(t) is the optimal control law.

1. The state and co-state should satisfy the following conditions, as represented by
Equations (6)–(9):

.
x
∗
(t) =

∂H

∂λ

∣
∣
∣
∣
u∗(t)

= f (x∗(t), u∗(t), t) (6)

.
λ
∗
(t) = −

∂H

∂x

∣
∣
∣
∣
u∗(t)

= h(x∗(t), u∗(t), λ∗(t), t)

= −
∂L

∂x
(x∗(t), u∗(t), t)− λ∗(t) ·

[
∂ f

∂x
(x∗(t), u∗(t), t)

]T

(7)

x∗(t0) = x0 (8)

x∗
(

t f

)

= xtarget (9)

2. For all t ∈
[

t0, t f

]

, u∗(t) globally minimizes the Hamiltonian function:

H(u(t), x∗(t), λ∗(t), t) ≥ H(u∗(t), x∗(t), λ∗(t), t), ∀u(t) ∈ U(t), ∀t ∈
[

t0, t f

]

i.e., u∗(t) = argmin
u(t)∈U(t)

H(u(t), x(t), λ(t), t) (10)

where U(t) is the set of admissible control values at time t. This optimal control
problem using the minimum principle is normally solved by the shooting method.
This method applies an arbitrary initial value of the co-state at the beginning, λ0, and
then solves the minimization problem for the dynamic model at each time slot. The
optimization procedure ends, and the optimal solutions can be obtained if the final
values of the state and co-state can satisfy the terminal constraints. Otherwise, the
initial value of λ should be changed until the solution meets all the constraints.
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In the research field of HEA EMSs, a PMP-based real-time EMS has been innovatively
proposed for hybrid electric aircraft propulsion systems to achieve emission reductions
and system efficiency improvements. By applying PMP, the EMS optimal control problem
with constraints is converted into a point-wise optimization with the battery pack temper-
ature and SOC as co-states to achieve a computationally efficient solution. Additionally,
the formulation of the EMS optimal control problem using PMP strongly depends on
model simplification, e.g., assuming a priori knowledge of mission profile data and thrust
request [135].

4.5. Metaheuristic Algorithms

Metaheuristic algorithms are derivative-free methods inspired by nature, which are
generally utilized to solve optimization problems with a large search space of likely so-
lutions, e.g., simulated annealing (SA), genetic algorithm (GA), differential evolution
algorithm (DEA), ant colony optimization (ACO), particle swarm optimization (PSO), and
cuckoo search (CS) [108]. These metaheuristic algorithms employ alternative methods to
populate candidates for an optimal solution instead of derivative calculations, and the
optimization performance and convergence behavior highly depend on the selection of
hyperparameters to avoid local minima. These methods have been extensively investigated
in offline HEA EMS optimal control problems.

A representative nature-inspired method, the PSO algorithm is inspired by social
organism movements in groups, such as swarms and ant colonies. This algorithm populates
the states, positions, and velocities of the particles. These particles can interact locally
with each other to share information and then store their best positions and the group’s
best solution to improve the next population until the target is achieved [136]. The PSO
algorithm can be expressed as Equations (11) and (12) [137]:

vi
d(k + 1) = wvi

d(k) + c1·r1·

(

pBesti(k)− xi
d(k)

)

+ · · · c2·r2·

(

gBesti(k)− xi
d(k)

)

(11)

xi
d(k + 1) = xi

d(k) + vi
d(k + 1) (12)

where i represents each particle; pBest and gBest are particle best position and global
best position; and w, c1, c2, r1, r2 are inertia weight, positive parameters, and random
parameters within [0,1], respectively. Maximum and minimum particle velocity should be
within ±vmax

d . The PSO algorithm can be effectively applied in the optimization problem
with complex objective functions, where only two variables (particle position and velocity)
are required in population and iteration.

Another typical metaheuristic optimization method is the GA, which is inspired by
natural evolution with the procedures of reproduction, crossover, and mutation and in-
volves randomness to guarantee population diversity [138]. As shown in Figure 10, the
algorithm creates a population of individual solutions (chromosome) and randomly selects
individuals from the current population as parents to produce the children for the next
generation at each generation. Over successive generations, the population converges to an
optimal solution where a balance of computational load and precision is achieved [139]. Fol-
lowing the general outline of the GA, the nondominated sorting genetic algorithm II (NSGA
II) has been developed to solve a Pareto-optimal front for the constrained multiobjective
optimization problem [140].
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Figure 10. Flow chart of genetic algorithm.

Metaheuristic algorithms have been extensively used in energy management for
electric aircraft. A comparative analysis of the most efficient up-to-date metaheuristic
algorithms, such as the artificial bee colony (ABC), grey wolf optimization (GWO), the
cuckoo search (CS), and the moth swarm algorithm (MSA), has been presented in the litera-
ture [141]. It evaluates the performance of metaheuristic algorithms in the application of
energy management for fuel-cell-based hybrid emergency power units in electrical aircraft.
In another study [142], the synergy effects between powertrain, structure, and mission are
exploited by applying the multiobjective optimization method, NSGA-II, and the S-metric
selection evolutionary multiobjective algorithm (SMS-EMOA), and the potential benefit of
structural integration and multifunctionalization are addressed. The nonlinear nature of the
HEPS for aircraft is highlighted in [143], and DEA techniques are applied for power man-
agement in series-, full-electric-, and turboelectric-powered UAVs, respectively. An active
energy management strategy is proposed for a fuel-cell/battery/supercapacitor-powered
aircraft to control the battery and supercapacitor SOCs as well as to minimize hydrogen
consumption by applying metaheuristic algorithms including the ant lion optimizer (ALO),
moth–flame optimization (MFO), the dragonfly algorithm (DA), the sine cosine algorithm
(SCA), the multi-verse optimizer (MVO), particle swarm optimization (PSO), and the whale
optimization algorithm (WOA) [144]. Rendón et al., in [145], proposed a model-based fully
coupled propulsion–aerodynamics optimization framework for the HEA EMS problem by
using the NSGA-II algorithm to address the design trade-off, i.e., block fuel burn, energy
consumption, and emissions. This study showcased an innovative approach considering
the sizing cascading effects in HEA propulsion system design and mission analysis.

4.6. Equivalent Consumption Minimization Strategy

The equivalent consumption minimization strategy (ECMS) is a heuristic method to
provide effective solutions for optimal control problems. The ECMS algorithm introduces
an electricity-to-fuel equivalent factor, which converts electricity consumption into fuel con-
sumption to allow for unifying fuel and electricity consumption in a single objective. The
instantaneous equivalent fuel consumption is minimized to obtain instantaneous optimal
power distribution, which is defined as Equations (13) and (14), see [113,146]:

.
Wfeq(t) =

.
W f (t) + Q(t)·

PBatt(t)

LHV
(13)

Global : minPBatt(t)∈UBatt

∫ t f

t0

.
W f (t)dt, SOCmin < SOC < SOCmax

Instantaneous :
∫ t f

t0

minPBatt(t)∈UBatt

.
Wfeq(t)dt, SOCmin < SOC < SOCmax (14)
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where
.

W f (t), Q(t), PBatt(t),
.

Wfeq(t), LHV, and t are actual fuel flow rate, electricity-
to-fuel equivalent factor, battery power, equivalent fuel consumption, fuel lower heating
value, and time step, respectively.

Using the ECMS method, the global optimization problem is converted to a local
instantaneous optimal problem. Due to this, the ECMS algorithm is a more computationally
efficient and easier-to-implement method that is suitable for online applications. It can
provide control actions close to globally optimal solutions with the tuning of the electricity-
to-fuel equivalent factor. The optimal equivalent factor is obtained by offline optimization;
thus, the aircraft performance of the ECMS is highly sensitive to the flight mission profile.

A fuzzy-logic-based equivalent consumption optimization method has been proposed
for hybrid-electric-powered unmanned aerial vehicles (UAVs) [147], which achieves the
suboptimal hybridization of fuel and electrical energy for online optimization and sustains
the battery SOC within the desirable range. Furthermore, the authors of [36] developed an
ECMS with hard constraints and an ECMS with a penalty function and compared them
with a global optimization (GA)-based EMS. With the offline tuning of the equivalent factor,
ECMS methods can effectively obtain similar optimal solutions to global optimization (GA)-
based EMS methods but significantly reduce the computational time. In [128], an online
optimizer was developed based on the knowledge of global optimal solutions provided by
dynamic programming, which took particular account of the desired SOC and the actual
state of health (SOH) and could be opportunely adapted to specific cases.

4.7. Model Predictive Control

Model predictive control (MPC) has been utilized in an online EMS optimization
algorithm to obtain the optimal control actions, where future information is incorporated
into the control problem to improve EMS performance [36]. At each sampling time, the
algorithm uses the system model to predict the future states of the plant over the prediction
horizon with length N, and then the optimal control policy from t to t+N is obtained
by rolling optimization. After that, the control policy of the current sampling time is
applied regardless of the rest, and the system state is updated accordingly. The MPC-based
EMS performance is determined by model fidelity, sampling step, and the length of the
prediction horizon [1]. The length of the prediction horizon is tuned accordingly to consider
the trade-off between the computational effort and optimization performance. This allows
the current timeslot to be optimized while keeping future timeslots in mind. Thus, the
MPC EMS can significantly reduce the computational effort as compared to the global
optimization algorithm while achieving very similar optimization performance [36].

A nonlinear MPC-based EMS was proposed for parallel HEPS to minimize mis-
sion block fuel burn, energy consumption, and emissions, based on a fully coupled
aerodynamics–propulsion HEA model. Additionally, the penalty function was introduced
to reduce the computational effort but effectively maintain the system constraints [36].
Furthermore, a system-level centralized optimal load and energy management strategy
was proposed for aircraft microgrids to schedule the battery system, provide flexibility in
the demand side, and satisfy time-varying operational requirements. This was achieved by
using a multiobjective MPC model with a mixed-integer linear programming algorithm
(MILP) [147]. A predictive control strategy was proposed for real-time implementation that
took into account the variation in aircraft mass during flight. At each sampling interval,
rolling optimization was achieved by a convex formulation of the problem of minimizing
fuel consumption over a predicted future flight path [121,148].

5. Summary

Electrified aircraft propulsion technologies, forming a very promising approach to
sustainable aviation decarbonization, were investigated and explored. In particular, this
paper provided comprehensive insights into the recent progress in control system design
and energy management aspects for electrical aircraft propulsion systems, together with a
detailed analysis of the emerging challenges and technical barriers in this new and chal-
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lenging research field. The control design of aircraft propulsion is a rather demanding
task, while the operation of gas turbines is an extremely complex nonequilibrium and
nonlinear aerothermodynamic process. In addition to this, a set of performance and safety
requirements regarding the steady state accuracy, transient accuracy, disturbance rejection,
stability, stall margin, structural integrity, and engine degradation must be fulfilled. For
electrified aircraft propulsion, multiple challenges and technical barriers have emerged:
(1) the coupling and interactions between the gas turbine and electrical powertrain, in-
volving mechanical, hydraulic, thermal, electrical, and electronic elements; (2) the negative
impedance instability behavior of the power load regulation of the electrical powertrain
subsystem; (3) multiple timescales between the gas turbine and electrical powertrain
subsystems; and (4) the more frequent failure of the EAP system due to the diversity of
components and the coupled operation. Energy management strategies have been exten-
sively explored in the literature for hybrid electric vehicles, microgrids, and power grids;
however, EMSs for aircraft/aerial systems are undoubtedly more challenging compared to
the ground-based energy systems mentioned above. Especially for commercial aviation,
the mission analysis and performance assessment are based on balancing the thrust to drag
with the fuel flow and electrical power flow based on a multidisciplinary analysis of the
aerodynamics, propulsion system performance, and weight property. In addition, aircraft
weight is a significant concern for flight mission analysis. The additional weight of the
electrical powertrain and battery energy storage will degrade the aircraft performance due
to the induced weight-related drag penalty. Thus, a fully coupled propulsion–aerodynamic
model with multidisciplinary analysis is required for hybrid electric propulsion system
performance assessment at the integrated aircraft level. While this topic has received in-
creased attention in recent years, there are significant challenges to enabling commercially
available sustainable electrification in the aviation sector.
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Abbreviations

HEA Hybrid Electric Aircraft

EM Electric Machine

GE Generator

MTOW Maximum Take-Off Weight

SE Specific Energy

SP Specific Power

PAX Passenger

YEIS Year of Entry Into Service

MIPH Mechanically Integrated Parallel Hybrid

CIPH Cycle-Integrated Parallel hybrid

DC Direct Current

EAP Electrified Aircraft Propulsion

EEC Electronic Engine Control

VAFN Variable-Area Fan Nozzle

VBV Variable Bleed Valve

PID Proportional Integral Derivative

SISO Single Input Single Output
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RBF Radial Basis Function

PWM Pulse Width Modulation

MPC Model Predictive Control

LPV Linear Parameter Varying

SMC Sliding Mode Control

LQR Linear Quadratic Regulator

LQG Linear Quadratic Gaussian

LTR Loop Transfer Recovery

EMSs Energy Management Strategies

CP Convex Programming

DP Dynamic programming

PMP Pontryagin’s Minimum Principle

GA Genetic Algorithm

PSO Particle Swarm Optimization

DEA Differential Evolution Algorithm

ECMS Equivalent Consumption Minimization Strategy

SHAPSO Systematic Hybrid Aircraft Power Schedule Optimizer

FSM Fuzzy State Machine

FLPU Fuzzy Logic Parameter Updating

ADMM Alternating Direction Method of Multipliers

SA Simulated Annealing

ACO Ant Colony Optimization

CS Cuckoo Search

NSGA II Nondominated Sorting Genetic Algorithm II

ABC Artificial Bee Colony

GWO Grey Wolf Optimization

MSA Moth Swarm Algorithm

SMS-EMOA S-Metric Selection Evolutionary Multi-Objective Algorithm

ALO Ant Lion Optimizer

AFO Moth Flame Optimization

DA Dragonfly Algorithm

SCA Sine Cosine Algorithm

MVO Multi-Verse Optimizer

WOA Whale Optimization Algorithm

UAVs Unmanned Aerial Vehicles

SOH State of Health

MILP Mixed-Integer Linear Programming Algorithm
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