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Abstract. We consider the predictor-corrector numerical methods for solving Caputo-Hadamard
fractional differential equation with the graded meshes log tj = log a+

(
log tN

a

)( j
N

)r
, j = 0, 1, 2, . . . , N

with a ≥ 1 and r ≥ 1, where log a = log t0 < log t1 < · · · < log tN = log T is a partition
of [log t0, log T ]. We also consider the rectangular and trapezoidal methods for solving Caputo-

Hadamard fractional differential equation with the non-uniform meshes log tj = log a+
(

log tN
a

) j(j+1)
N(N+1)

, j =

0, 1, 2, . . . , N . Under the weak smoothness assumptions of the Caputo-Hadamard fractional deriva-
tive, e.g., CHD

α
a,ty(t) /∈ C1[a, T ] with α ∈ (0, 2), the optimal convergence orders of the proposed

numerical methods are obtained by choosing the suitable graded mesh ratio r ≥ 1. The numerical
examples are given to show that the numerical results are consistent with the theoretical findings.
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1. Introduction. Recently fractional differential equation is an active research
area due to its applications in a wide range of fields including Mechanics, Computer
Science and Biology [2] [10] [18] [19]. There are different kinds of fractional derivatives,
e.g., Caputo, Riemman-Liouville, Riesz, etc, which have been studied extensively in
literature. However, the Hadamard fractional derivative is also very important and
used to model the different physical problems [1], [6], [9], [4], [8], [11], [17].

The Hadamard fractional derivative was suggested in early 1892 [7]. More re-
cently, a new derivative which involved a Caputo-type modification on the Hadamard
derivative known as the Caputo-Hadamard derivative was suggested [8]. The aim of
this paper is to study and analyze some useful numerical methods for solving Caputo-
Hadamard fractional differential equations with graded and non-uniform meshes under
the weak smoothness assumptions of the Caputo-Hadamard fractional derivative, e.g.,

CHD
α
a,ty(t) /∈ C1[a, T ] with α ∈ (0, 2).

We thus consider the following Caputo-Hadamard fractional differential equation,
with α > 0, [8]

(1.1)

{
CHD

α
a,ty(t) = f(t, y(t)), 1 ≤ a ≤ t ≤ T,

δky(a) = y
(k)
a , k = 0, 1, . . . , dαe − 1,

where f(t, y) is a nonlinear function with respect to y ∈ R, and the initial values y
(k)
a

are given and n−1 < α < n, for n = 1, 2, 3, . . . . Here the fractional derivative CHD
α
a,t

denotes the Caputo-Hadamard derivative defined by

(1.2) CHD
α
a,ty(t) =

1

Γ(dαe − α)

∫ t

a

(
log

t

s

)dαe−α−1

δny(s)
ds

s
, t ≥ a ≥ 1,
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with δny(s) = (s d
ds )ny(s), and where dαe denotes the smallest integer greater than or

equal to α [8].
To make sure that (1.1) has an unique solution, we assume that the function f is

continuous and satisfies the following Lipschitz condition with respect to the second
variable y [6], [5]

|f(t, y1)− f(t, y1)| ≤ L|y1 − y2| for L > 0, y1, y2 ∈ R.

For some recent existence and uniqueness results for Caputo-Hadamard fractional
differential equations, the readers can refer to [23], [24], [25] and the references therein.

It is well known that the equation (1.1) is equivalent to the following Volterra
integral equation, with α > 0, [1]

(1.3) y(t) =

dαe−1∑
ν=0

y(ν)
a

(log t
a )ν

ν!
+

1

Γ(α)

∫ t

a

(
log

t

s

)α−1

f(s, y(s))
ds

s
.

Let us review some numerical methods for solving (1.1). Gohar et al. [6] studied
the existence and uniqueness of the solution of (1.1) and Euler and predictor-corrector
methods were considered. Gohar et al. [5] further considered the rectangular, trape-
zoidal and predictor-corrector methods for solving (1.1) with uniform meshes under
the smooth assumption of the fractional derivative, e.g., CHD

α
a,ty(t) ∈ C2[a, T ] with

α ∈ (0, 1). There are also some numerical methods for solving Caputo-Hadamard
time fractional partial differential equations [6], [13]. In this paper, we shall assume
that CHD

α
a,ty(t) /∈ C2[a, T ] with α ∈ (0, 2) and assume that CHD

α
a,ty(t) behaves as(

log t
a

)σ
with σ ∈ (0, 1) which implies that the derivatives of CHD

α
a,ty(t) have the

singularities at log a. In such case, we can not expect the numerical methods with
uniform meshes have the optimal convergence orders. To obtain the optimal conver-
gence orders, we shall use the graded and non-uniform meshes as in Liu et al. [14], [15]
for solving Caputo fractional differential equations. We shall show that the predictor-
corrector method has the optimal convergence orders with the graded meshes log tj =
log a +

(
log tN

a

)(
j
N

)r
, j = 0, 1, 2, . . . , N for some suitable r ≥ 1. We also show that

the rectangular, trapezoidal methods also have the optimal convergence orders with

some non-uniform meshes log tj = log a+
(

log tN
a

) j(j+1)
N(N+1) , j = 0, 1, 2, . . . , N .

For some recent works for the numerical methods for solving fractional differential
equations with graded and non-uniform meshes, we refer to [3],[13], [12], [22]. In par-
ticular, Stynes et al. [20] [21] applied a graded mesh on a finite difference method for
solving subdiffusion equations when the solutions of the equations are not sufficiently
smooth. Liu et al. [14] [15] applied a graded mesh for solving Caputo fractional
differential equation by using a fractional Adams method with the assumption that
the solution was not sufficiently smooth. The aim of this work is to extend the ideas
in Liu et al. [14] [15] for solving Caputo fractional differential equations to solve the
Caputo-Hadamard fractional differential equations.

The paper is organized as follows. In Section 2 we consider the error estimates of
the predictor-corrector method for solving (1.1) with the graded meshes. In Section
3 we consider the error estimates of the rectangular, trapezoidal methods for solv-
ing (1.1) with non-uniform meshes. In Section 4 we will provide several numerical
examples which support the theoretical conclusions made in Sections 2, 3.

Throughout this paper, we denote by C a generic constant depending on y, T, α,
but independent of t > 0 and N , which could be different at different occurrences.
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2. Predictor-corrector method with graded meshes. In this section, we
shall consider the error estimates of the predictor-corrector method for solving (1.1)
with graded meshes. We first recall the following smoothness properties of the solu-
tions to (1.1).

Theorem 1. [16] Let α > 0. Assume that f ∈ C2(G) where G is a suitable set.
Define v̂ = d 1

αe − 1. Then there exists a function φ ∈ C1[a, T ] and some constants
c1, c2, . . . , cv̂ ∈ R such that the solution y of (1.1) can be expressed in the following
form

y(t) = φ(t) + c1

(
log

t

a

)α
+ c2

(
log

t

a

)2α

+ · · ·+ cv̂

(
log

t

a

)v̂α
.

An example of this would be when 0 < α < 1, f ∈ C2(G). We would have
v̂ = d 1

αe − 1 ≥ 1 and

y = c
(

log
t

a

)α
+ smoother terms.

This implies that the solution y of (1.1) would behave as (log t
a )α, 0 < α < 1. As

such the solution y /∈ C2[a, T ].
Theorem 2. [16] If y ∈ Cm[a, T ] for some m ∈ N and 0 < α < m, then

CHD
α
a,ty(t) = Φ(t) +

m−dαe−1∑
l=0

δl+dαey(a)

Γ(dae − α+ l + 1)

(
log

t

a

)dae−α+l

,

where Φ ∈ Cm−dαe[a, T ] and δny(s) = (s d
ds )ny(s) with n ∈ N.

With the above two theorems, we can see that if one of y and CHD
α
a,ty(t) is

sufficiently smooth then the other will not be sufficiently smooth unless some special
conditions have been met.

Recall that, by (1.3), the solution of (1.1) can be written as the following form,

with α ∈ (0, 1) and ya = y
(0)
a ,

(2.1) y(t) = ya +
1

Γ(α)

∫ t

a

(
log t− log s

)α−1[
CHD

α
a,sy(s)

]ds

s
.

Therefore it is natural to introduce the following smoothness assumptions for the
fractional derivative CHD

α
a,ty(t) in (1.1).

Assumption 3. Let 0 < σ < 1 and α > 0. Let y be the solution of (1.1). Assume
that CHD

α
a,ty(t) can be expressed as a function of log t, that is, there exists a smooth

function Ga : [0,∞)→ R such that

(2.2) Ga(log t) := CHD
α
a,ty(t) ∈ C2(a, T ].

Further we assume that Ga(·) satisfies the following smooth assumptions, with
1 ≤ a ≤ t ≤ T ,

(2.3) |G′a(log t)| ≤ C(log t− log a)σ−1, |G′′a(log t)| ≤ C(log t− log a)σ−2,
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where G′a(·) and G′′a(·) denote the first and second order derivatives of Ga, respectively.
Denote

ga(t) := Ga(log t), 1 ≤ a ≤ t ≤ T.

We then have

δga(t) :=
(
t

d

dt

)
ga(t) = G′a(log t),

δ2ga(t) :=
(
t

d

dt

)2
ga(t) = (t

d

dt
)(t

dga

dt
) = G′′a(log t),(2.4)

Hence the assumptions (2.3) is equivalent to, with 1 ≤ a ≤ t ≤ T ,

(2.5) |δga(t)| ≤ C
(

log
t

a

)σ−1

, |δ2ga(t)| ≤ C
(

log
t

a

)σ−2

,

which are similar to the smoothness assumptions given in Liu et al. [14] for the
Caputo fractional derivative CD

α
0,ty(t).

Remark 1. Assumption 3 gives the behavior of ga(t) near t = a and implies that
ga(t) has the singularity near t = a. It is obvious that ga /∈ C2[a, T ]. For example, we
may choose ga(t) = (log t

a )σ with 0 < σ < 1.
Let N be a positive integer and let a = t0 < t1 < · · · < tN = T be the partition

on [a, T ]. We define the following graded mesh on [log(a), log(T )] with

log a = log t0 < log t1 < · · · < log tN = log T,

such that, with r ≥ 1,

log tj − log a

log tN − log a
=
( j
N

)r
,

which implies that

log tj = log a+
(

log tN − log a
)( j
N

)r
.

When j = N we have log tN = log T . Further we have

log tj+1 − log tj = log
tj+1

tj
= log

T

a

[(j + 1

N

)r
−
( j
N

)r]
.

Denote yk ≈ y(tk), k = 0, 1, 2, . . . , N the approximation of y(tk). Let us introduce
the different numerical methods for solving (1.3) with α ∈ (0, 1) below. Similarly
we may define the numerical methods for solving (1.3) with α ≥ 1. The fractional
rectangular method for solving (1.3) is defined as

(2.6) yk+1 = y0 +

k∑
j=0

bj,k+1f(tj , yj),
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where the weights bj,k+1 are defined as

(2.7) bj,k+1 =
1

α+ 1

[(
log

tk+1

tj

)α
−
(

log
tk+1

tj+1

)α]
, j = 0, 1, 2, . . . , k.

The fractional trapezoidal method for solving (1.3) is defined as

(2.8) yk+1 = y0 +

k+1∑
j=0

aj,k+1f(tj , yj),

where the weights aj,k+1 for j = 0, 1, 2, . . . , k + 1 are defined as

(2.9) aj,k+1 =
1

Γ(α+ 2)


1

log
t1
a

A0, j = 0,

1

log
tj+1
tj

Aj + 1

log
tj−1
tj

Bj , j = 1, 2, . . . , k,(
log tk+1

tk

)α
, j = k + 1,

Aj =
(

log
tk+1

tj+1

)α+1

−
(

log
tk+1

tj

)α+1

+ (α+ 1)
(

log
tj+1

tj

)(
log

tk+1

tj

)α
, j = 0, 1, ..., k,

Bj =
(

log
tk+1

tj

)α+1

−
(

log
tk+1

tj−1

)α+1

+ (α+ 1)
(

log
tj
tj−1

)(
log

tk+1

tj−1

)α
, j = 1, 2, ..., k.

The predictor-corrector Adams method for solving (1.3) is defined as, with α ∈
(0, 1), k = 0, 1, . . . , N − 1,

(2.10)

{
yPk+1 = y0 +

∑k
j=0 bj,k+1f(tj , yj),

yk+1 = y0 +
∑k
j=0 aj,k+1f(tj , yj) + ak+1,k+1f(tk+1, y

P
k+1),

where the weights bj,k+1 and aj,k+1 are defined as above.
If we assume that ga(t) := CHD

α
a,ty(t) satisfies the Assumption 3, we shall prove

the following error estimate.
Theorem 4. Assume that ga(t) := CHD

α
a,ty(t) satisfies Assumption 3. Further

assume that y(tj) and yj are the solutions of (1.3) and (2.10), respectively.
1. If 0 < α ≤ 1, then we have

max
0≤j≤N

|y(tj)− yj | ≤


CN−r(σ+α), if r(σ + α) < 1 + α,

CN−r(σ+α) log(N), if r(σ + α) = 1 + α,

CN−(1+α), if r(σ + α) > 1 + α.

2. If α > 1, then we have

max
0≤j≤N

|y(tj)− yj | ≤


CN−r(1+σ), if r(1 + σ) < 2,

CN−2 logN, if r(1 + σ) = 2,

CN−2, if r(1 + σ) > 2.
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2.1. Proof of Theorem 4. In this subsection, we shall prove Theorem 4. To
help with this we will start by proving some preliminary Lemmas. In Lemma 5 we will
be finding the error estimate between ga(s) and the piecewise linear function P1(s)
for both 0 < α ≤ 1 and α > 1. This will be used to estimate one of the terms in our
main proof.

Lemma 5. Assume that ga(t) satisfies Assumption 3
1. If 0 < α ≤ 1, then we have

∣∣∣∣∫ tk+1

a

(
log

tk+1

s

)α−1

(ga(s)− P1(s))
ds

s

∣∣∣∣ ≤

CN−r(σ+α), if r(σ + α) < 2,

CN−2 logN, if r(σ + α) = 2,

CN−2, if r(σ + α) > 2.

2. If α > 1, then we have

∣∣∣∣∫ tk+1

a

(
log

tk+1

s

)α−1

(ga(s)− P1(s))
ds

s

∣∣∣∣ ≤

CN−r(1+σ), if r(1 + σ) < 2,

CN−2 logN, if r(1 + σ) = 2,

CN−2, if r(1 + σ) > 2,

where P1(s) is the piecewise linear function defined by,

P1(s) =
log s

tj+1

log
tj
tj+1

g(tj) +
log s

tj

log
tj+1
tj

g(tj+1), s ∈ [tj , tj+1].

Proof. Note that, with k=0,1,2,. . . , N-1,

∫ tk+1

a

(
log

tk+1

s

)α−1

(ga(s)− P1(s))
ds

s

=
(∫ t1

a

+

k−1∑
j=1

∫ tj+1

tj

+

∫ tk+1

tk

)(
log

tk+1

s

)α−1

(ga(s)− P1(s))
ds

s

= I1 + I2 + I3.

For I1, we have

(2.11) I1 =

∫ t1

a

(
log

tk+1

s

)α−1[
ga(s)− P1(s)

] ds

s
.

Note that, with s ∈ [a, t1],

ga(s)− P1(s)

= ga(s)−
[ log s− log t1

log a− log t1
ga(a) +

log s− log a

log t1 − log a
ga(t1)

]
=

log s− log t1
log a− log t1

(
ga(s)− ga(a)

)
+

log s− log a

log t1 − log a

(
ga(s)− ga(t1)

)
=

log s− log t1
log a− log t1

∫ s

a

G′a(log τ) d log τ +
log s− log a

log t1 − log a

∫ s

t1

G′a(log τ) d log τ,
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which implies that, by Assumption 3,

|ga(s)− P1(s)| ≤
∫ s

a

|G′a(log τ)| d log τ +

∫ t1

s

|G′a(log τ)| d log τ

≤ C
∫ s

a

(
log

τ

a

)σ−1

d log
τ

a
+ C

∫ t1

s

(
log

τ

a

)σ−1

d log
τ

a

≤ C
(

log
s

a

)σ
+ C

(
log

t1
a

)σ
.(2.12)

Thus we have, by (2.11),

|I1| ≤C
∫ t1

a

(
log

tk+1

s

)α−1(
log

s

a

)σ ds

s
+ C

∫ t1

a

(
log

tk+1

s

)α−1(
log

t1
a

)σ ds

s
.

Note that there exists a constant C > 0 such that

log
tk+1

a
≥ log

tk+1

t1
≥ C log

tk+1

a
, k = 1, 2, . . . , N − 1,

which follows from

1 ≤
log tk+1

a

log tk+1

t1

=

(
k+1
N

)r
(
k+1
N

)r
−
(

1
N

)r = 1 +
1

(k + 1)r − 1
≤ 1 +

1

2r − 1
≤ C.

Thus we have, for 0 < α ≤ 1,

|I1| ≤C
(

log
tk+1

t1

)α−1
∫ t1

a

(
log

s

a

)σ ds

s
+ C

(
log

tk+1

t1

)α−1(
log

t1
a

)σ+1

≤C
(

log
tk+1

t1

)α−1(
log

t1
a

)σ+1

≤ C
(

log
tk+1

a

)α−1(
log

t1
a

)σ+1

≤C
(

log
tk
a

)α−1(
log

t1
a

)σ+1

= C
(

log
T

a

)α−1( k
N

)r(α−1)(
log

T

a

)σ+1( 1

N

)r(σ+1)

=C(kr(α−1)N−r(α+σ)) ≤ CN−r(α+σ).

For α > 1, we have

|I1| ≤C
(

log
tk+1

a

)α−1
∫ t1

a

(
log

s

a

)σ ds

s
+ C

(
log

tk+1

a

)α−1(
log

t1
a

)σ+1

≤C
(

log
tk+1

a

)α−1(
log

t1
a

)σ+1

≤ C
(

log
tk
a

)α−1(
log

t1
a

)σ+1

=C
(

log
T

a

)α−1( k
N

)r(α−1)(
log

T

a

)σ+1( 1

N

)r(σ+1)

=C(kr(α−1)N−r(α+σ)) ≤ CN−r(1+σ).

For I2 we have, with ξj ∈ (tj , tj+1), j = 1, 2, . . . , k − 1 and k = 2, 3, . . . , N − 1,
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|I2| =
1

2

∣∣∣∣∣∣
k−1∑
j=1

∫ tj+1

tj

(
log

tk+1

s

)α−1

δ2ga(ξj)
(

log
s

tj

)(
log

s

tj+1

)ds

s

∣∣∣∣∣∣ ,
where we have used the following fact, with s ∈ (tj , tj+1),

ga(s)−
[ log s− log tj+1

log tj − log tj+1
ga(tj) +

log s− log tj
log tj+1 − log tj

ga(tj+1)
]

=
1

2!
δ2ga(ξj)(log s− log tj)(log s− log tj+1),

which can be seen easily by noting ga(s) = Ga(log s) and (2.4).

By Assumption 3 and by using [21, Section 5.2], we have, with k ≥ 4,

|I2| ≤C

∣∣∣∣∣∣
k−1∑
j=1

(
log

tj+1

tj

)2(
log

tj
a

)σ−2
∫ tj+1

tj

(
log

tk+1

tj

)α−1 ds

s

∣∣∣∣∣∣
≤C

∣∣∣∣∣∣
d k−1

2 e−1∑
j=1

(
log

tj+1

tj

)2(
log

tj
a

)σ−2
∫ tj+1

tj

(
log

tk+1

tj

)α−1 ds

s

∣∣∣∣∣∣
+ C

∣∣∣∣∣∣
k−1∑

j=d k−1
2 e

(
log

tj+1

tj

)2(
log

tj
a

)σ−2
∫ tj+1

tj

(
log

tk+1

tj

)α−1 ds

s

∣∣∣∣∣∣
=I21 + I22,

where dk−1
2 e defines the ceiling function defined as before. For each of these integrals

we shall consider the cases when 0 < α ≤ 1 and when α > 1.

For I21, when 0 < α ≤ 1, we have, with k ≥ 4,

I21 ≤C
d k−1

2 e−1∑
j=1

(
log

tj+1

tj

)2(
log

tj
a

)σ−2(
log

tk+1

tj+1

)α−1(
log

tj+1

tj

)

≤C
d k−1

2 e−1∑
j=1

(
log

tj+1

tj

)3(
log

tj
a

)σ−2(
log

tk+1

tj+1

)α−1

.

Note that, with ξj ∈ [j, j + 1], j = 1, 2, . . . , dk−1
2 e − 1,

(2.13)(
log

tj+1

tj

)
=
(

log
tN
a

)
((j+1)r−jr)N−r = Crξr−1

j N−r ≤ Cr(j+1)r−1N−r ≤ Cjr−1N−r,

and
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(
log

tk+1

tj+1

)α−1

=
(

log
tN
a

)α−1( Nr

(k + 1)r − (j + 1)r

)1−α

≤
(

log
tN
a

)α−1( Nr

(k + 1)r − dk+1
2 er

)1−α

≤C(Nr(k + 1)−r)
1−α
≤ C(N/k)r(1−α).(2.14)

Thus, with k ≥ 4,

I21 ≤C
d k−1

2 e−1∑
j=1

(jr−1N−r)3(j/N)r(σ−2)(N/k)r(1−α)

=C

d k−1
2 e−1∑
j=1

jr(α+σ)−3N−r(σ+α)(j/k)r(1−α) = CN−r(σ+α)

d k−1
2 e−1∑
j=1

jr(α+σ)−3.

Case 1, If r(σ + α) < 2, we have

I21 ≤ CN−r(σ+α)

d k−1
2 e−1∑
j=1

jr(σ+α)−3 ≤ CN−r(σ+α).

Case 2, If r(σ + α) = 2, we have

I21 ≤ CN−2

d k−1
2 e−1∑
j=1

j−1 ≤ CN−2
(

1 +
1

2
+ ...+

1

N

)
≤ CN−2 logN.

Case 3, If r(σ + α) > 2, we have

I21 ≤ CN−r(σ+α)

d k−1
2 e−1∑
j=1

jr(σ+α)−3 ≤ CN−r(σ+α)kr(σ+α)−2 = C(k/N)r(σ+α)−2N−2

≤ CN−2.

Thus, we have that for 0 < α ≤ 1

I21 ≤


CN−r(σ+α), if r(σ + α) < 2,

CN−2 logN, if r(σ + α) = 2,

CN−2, if r(σ + α) > 2.

Next we will take the case for when α > 1, we have, with k ≥ 4,
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I21 ≤C
d k−1

2 e−1∑
j=1

(
log

tj+1

tj

)2(
log

tj
a

)σ−2(
log

tk+1

tj

)α−1(
log

tj+1

tj

)

≤C
d k−1

2 e−1∑
j=1

(
log

tj+1

tj

)3(
log

tj
a

)σ−2(
log

tk+1

a

)α−1

≤C
d k−1

2 e−1∑
j=1

(jr−1N−r)3(j/N)r(σ−2)(k/N)r(α−1)

≤CN−r−rσ
d k−1

2 e−1∑
j=1

jr(1+σ)−3.

Thus, we have that for α > 1,

I21 ≤


CN−r(1+σ), if r(1 + σ) < 2,

CN−2 logN, if r(1 + σ) = 2,

CN−2, if r(1 + σ) > 2.

For I22, we have, noting that with dk−1
2 e ≤ j ≤ k − 1, k ≥ 2,

(
log

tj
a

)σ−2

=
(

log
tN
a

)σ−2

(j/N)r(σ−2) =
(

log
tN
a

)
(N/j)r(2−σ) ≤ C(N/k)r(2−σ),

which implies that

I22 ≤C

∣∣∣∣∣∣
k−1∑

j=d k−1
2 e

(kr−1N−r)2(N/k)r(2−σ)

∫ tj+1

tj

(
log

tk+1

s

)α−1 ds

s

∣∣∣∣∣∣
≤Ckrσ−2N−rσ

∫ tk

t
d k−1

2
e

(
log

tk+1

s

)α−1 ds

s
.

Note that

∫ tk

t
d k−1

2
e

(
log

tk+1

s

)α−1 ds

s
=

1

α

[(
log

tk+1

td k−1
2 e

)α
−
(

log
tk+1

tk

)α]

≤ 1

α

(
log

tk+1

td k−1
2 e

)α
≤ 1

α

(
log

tk+1

a

)α
=

1

α

(
log

tN
a

)α
((k + 1)/N)rα ≤ C(k/N)rα,(2.15)

we get, with k ≥ 2 and α > 0,
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I22 ≤Ckrσ−2N−rσ(k/N)rα = CN−r(σ+α)kr(σ+α)−2

≤

{
CN−r(σ+α), if r(σ + α) < 2,

CN−2, if r(σ + α) ≥ 2.

For I3, we have, with ξk ∈ (tk, tk+1), k = 1, 2, . . . , N − 1,

|I3| =
∣∣∣∣∫ tk+1

tk

(
log

tk+1

s

)
(ga(s)− P1(s))

ds

s

∣∣∣∣
=

∣∣∣∣∫ tk+1

tk

(
log

tk+1

s

)
δ2g(ξk)

(
log

s

tk

)(
log

s

tk+1

)ds

s

∣∣∣∣ .
By Assumption 3, we then have, with α > 0,

|I3| ≤C
(

log
tk+1

tk

)2(
log

tk
a

)σ−2
∫ tk+1

tk

(
log

tk+1

s

)α−1 ds

s

=C
(

log
tk+1

tk

)2(
log

tk
a

)σ−2 1

α

(
log

tk+1

tk

)α
=C

(
log

tk+1

tk

)2+α(
log

tk
a

)σ−2

≤C
(

log
tN
a

)2+α

(kr−1Nr)2+α
(

log
tN
a

)σ−2

(k/N)r(σ−2)

=Ckr(α+σ)−2−αN−r(α+σ)

≤

{
CN−r(σ+α), if r(σ + α) < 2 + α,

CN−(2+α), if r(σ + α) ≥ 2 + α.

Obviously the bound for I3 is stronger than the bound for I21. Together these es-
timates complete the proof of this lemma. In Lemma 6 below, we state that the
weights aj,k+1 and bj,k+1 are positive for all values of j.

Lemma 6. Let α > 0. We have
1. aj,k+1 > 0, j = 0, 1, 2, . . . , k+ 1 where aj,k+1 are the weights defined in (2.9),
2. bj,k+1 > 0, j = 0, 1, 2, . . . , k + 1 where aj,k+1 are the weights defined in (2.7).

Proof. The proof is obvious, we omit the proof here. For Lemma 7, we are
attempting to find an upper bound for ak+1,k+1. This will be used in the main proof
when addressing the ak+1,k+1 term.

Lemma 7. Let α > 0. We have, with k = 0, 1, 2, . . . , N − 1,

ak+1,k+1 ≤ CN−rαk(r−1)α,

where ak+1,k+1 is defined in (2.9).
Proof. We have, by (2.9), with ξk ∈ (k, k + 1),

ak+1,k+1 ≤
1

Γ(α+ 2)

(
log

tk+1

tk

)α
≤ C

(
log

tN
a

)α
N−rα((k + 1)r − kr)α

=CN−rα(rξr−1
k )α = CN−rα(r(k + 1)(r−1))α = CN−rαk(r−1)α.
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In Lemma 8 we will be finding the error estimate between ga(s) and the piecewise
constant function P0(s) for both 0 < α ≤ 1 and α > 1. This will be used to estimate
one of the terms in our main proof.

Lemma 8. Assume that ga(t) satisfies Assumption 3.

1. If 0 < α ≤ 1, then we have
(2.16)∣∣∣∣ak+1,k+1

∫ tk+1

a

(
log

tk+1

s

)α−1

(ga(s)− P0(s))
ds

s

∣∣∣∣ ≤

CN−r(σ+α), if r(σ + α) < 1 + α,

CN−r(σ+α) logN, if r(σ + α) = 1 + α,

CN−1−α, if r(σ + α) > 1 + α.

2. If α > 1, then we have
(2.17)∣∣∣∣ak+1,k+1

∫ tk+1

a

(
log

tk+1

s

)α−1

(ga(s)− P0(s))
ds

s

∣∣∣∣ ≤
{
CN−r(σ+α), if r(σ + α) < 1 + α,

CN−1−α, if r(σ + α) ≥ 1 + α,

where P0(s) is the piecewise constant function defined as below, with j = 0, 1, 2, . . . , k

P0(s) = ga(tj), s ∈ [tj , tj+1].

Proof. The proof is similar to the proof of Lemma 5. Note that

ak+1,k+1

∫ tk+1

a

(
log

tk+1

s

)α−1

(ga(s)− P0(s))
ds

s

= ak+1,k+1

(∫ t1

0

+

k−1∑
j=1

∫ tj+1

tj

+

∫ tk+1

tk

)(
log

tk+1

s

)α−1

(ga(s)− P0(s))
ds

s

= I ′1 + I ′2 + I ′3.

For I ′1, by Assumption 3, we have

|ga(s)| = |Ga(log s)| ≤ C
(

log
s

a

)σ
, |P0(s)| = |ga(a)| = 0.

Hence we get

|I ′1| ≤ak+1,k+1

(∫ t1

a

(
log

tk+1

s

)α−1

|ga(s)|ds

s
+

∫ t1

a

(
log

tk+1

s

)α−1

|P0(s)|ds

s

)
≤(CN−rαk(r−1)α)

(∫ t1

a

(
log

tk+1

s

)α−1(
log

s

a

)σ ds

s
+

∫ t1

a

(
log

tk+1

s

)α−1

0σ
ds

s

)
=(CN−rαk(r−1)α)

(∫ t1

a

(
log

tk+1

s

)α−1(
log

s

a

)σ ds

s

)
.

If 0 < α ≤ 1, we have
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|I ′1| ≤(CN−rαk(r−1)α)
(

log
tk+1

t1

)α−1(
log

t1
a

)σ+1

≤(CN−rαk(r−1)α)
(

log
tk+1

a

)α−1(
log

t1
a

)σ+1

=(CN−rαk(r−1)α)
(

log
T

a

)α−1(k + 1

N

)r(α−1)(
log

T

a

)σ+1( 1

N

)r(σ+1)

≤(CN−rαk(r−1)α)(CN−r(α+σ)) = C(k/N)rαk−α(CN−r(α+σ)) ≤ CN−r(α+σ).

If α > 1, we have

|I ′1| ≤(CN−rαk(r−1)α)
(

log
tk+1

a

)α−1(
log

t1
a

)σ+1

=(CN−rαk(r−1)α)
(

log
T

a

)α−1(k + 1

N

)r(α−1)(
log

T

a

)σ+1( 1

N

)r(σ+1)

≤(CN−rαk(r−1)α)(CN−r(1+σ)) ≤ C(k/N)(r−1)αN−αN−r(1+σ)

≤CN−r(1+σ)−α ≤ CN−1−α.

For I ′2, we have, with ξj ∈ (tj , tj+1), j = 1, 2, . . . , k − 1,

|I ′2| ≤ ak+1,k+1

k−1∑
j=1

∫ tj+1

tj

(
log

tk+1

s

)α−1

|δga(ξj)|
(

log
s

tj

)ds

s
.

Hence, by Assumption 3,

|I ′2| ≤Cak+1,k+1

( d k−1
2 e−1∑
j=1

+

k−1∑
d k−1

2 e

)(
log

tj+1

tj

)(
log

tj
a

)σ−1
∫ tj+1

tj

(
log

tk+1

s

)α−1 ds

s

=I ′21 + I ′22.

For I ′21, if 0 < α ≤ 1, then we have, with k ≥ 4,

I ′21 ≤(CN−rαk(r−1)α)

d k−1
2 e−1∑
j=1

(
log

tj+1

tj

)2(
log

tj
a

)σ−1(
log

tk+1

tj+1

)α−1

=(CN−rαk(r−1)α)

d k−1
2 e−1∑
j=1

(jr−1N−r)2(j/N)r(σ−1)(N/k)r(1−α)

≤C(k/N)rα
d k−1

2 e−1∑
j=1

jr(α+σ)−2−α(j/k)α(j/k)r(1−α)N−r(α+σ)

≤CN−r(α+σ)

d k−1
2 e−1∑
j=1

jr(α+σ)−2−α ≤


CN−r(α+σ), if r(α+ σ) < 1 + α,

CN−r(α+σ) logN, if r(α+ σ) = 1 + α,

CN−1−α, if r(α+ σ) > 1 + α.
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If α > 1, we have

I ′21 ≤(CN−rαk(r−1)α)

d k−1
2 e−1∑
j=1

(
log

tj+1

tj

)2(
log

tj
a

)σ−1(
log

tk+1

a

)α−1

≤(CN−rαk(r−1)α)

d k−1
2 e−1∑
j=1

(jr−1N−r)2(j/N)r(σ−1)(N/k)r(1−α)

=C(k/N)(r−1)αN−αN−rσ−r
d k−1

2 e−1∑
j=1

jr+rσ−2

≤CN−α−rσ−r
d k−1

2 e−1∑
j=1

jr+rσ−2.

Note that r + rσ − 2 > −1 for any r ≥ 1. Hence, we have

I ′21 ≤ CN−α−rσ−rkr+rσ−1 = C(k/N)r+rσ−1N−1−α ≤ CN−1−α.

For I ′22, we have

I ′22 ≤ (CN−rαk(r−1)α
k−1∑
d k−1

2 e

((
log

tj+1

tj

)(
log

tj
a

)σ−1
∫ tj+1

tj

(
log

tk+1

s

)α−1 ds

s

)
.

Noting that, with dk−1
2 e ≤ j ≤ k − 1, k ≥ 2,

(
log

tj
a

)σ−1

=
(

log
tN
a

)σ−1

(j/N)r(σ−1) =
(

log
tN
a

)σ−1

(N/j)r(1−σ) ≤ C(N/k)r(1−σ),

we have, with α > 0,

I ′22 ≤(CN−rαk(r−1)α)

k−1∑
d k−1

2 e

(
(Ckr−1N−r)(N/k)r(1−σ)

∫ tj+1

tj

(
log

tk+1

s

)α−1 ds

s

)
≤(CN−rαk(r−1)α)kr−1−r+σN−r+r−rσ(k/N)rα ≤ Ckr(σ+α)−1−αN−r(σ+α)

≤

{
CN−r(σ+α), if r(σ + α) < 1 + α,

CN−1−α, if r(σ + α) ≥ 1 + α.

For I ′3, we have, with α > 0,

|I ′3| ≤(CN−rαk(r−1)α)
(

log
tk+1

tk

)(
log

tk
a

)σ−1(
log

tk+1

tk

)α
≤(CN−rαk(r−1)α)

(
log

tk+1

tk

)α+1(
log

tk
a

)σ−1

.
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Further we have

|I ′3| ≤(CN−rαk(r−1)α)(kr−1N−r)1+α(k/N)r(σ−1)

=C(k/N)rαk−αkr(α+σ)−α−1N−r(α+σ)

≤Ckr(α+σ)−α−1N−r(α+σ)

≤

{
CN−r(σ+α), if r(σ + α) < 1 + α,

CN−1−α, if r(σ + α) ≥ 1 + α.

Together these estimates complete the proof of this Lemma. For Lemma 9, we are
attempting to find an upper bound for the sum of our weights. This will be used in
the main proof when simplifying several terms.

Lemma 9. Let α > 0. There exists a positive constant C such that

k∑
j=0

aj,k+1 ≤C
(

log
T

a

)α
,(2.18)

k∑
j=0

bj,k+1 ≤C
(

log
T

a

)α
,(2.19)

where aj,k+1 and bj,k+1, j = 0, 1, 2, . . . , k are defined by (2.9) and (2.7), respec-
tively.

Proof. We only prove (2.18). The proof of (2.19) is similar. Note that

∫ tk+1

a

(
log

tk+1

s

)α−1

ga(s)
ds

s
=

k+1∑
j=0

aj,k+1g(tj) +R1,

where R1 is the remainder term. Let ga(s) = 1, we have

k+1∑
j=0

aj,k+1 =

∫ tk+1

a

(
log

tk+1

s

)α−1

· 1ds

s
=

1

α

(
log

tk+1

a

)α
≤ C

(
log

T

a

)α
.

Thus, (2.18) follows by the fact ak+1,k+1 > 0 in Lemma 6. We will now use the
above lemmas to prove the error estimates of Theorem 4.

Proof. [Proof of Theorem 4] Subtracting (2.10) from (1.3), we have

y(tk+1)− yk+1 =
1

Γ(α)

{∫ tk+1

a

(
log

tk+1

s

)α−1

(f(s, y(s))− P1(s))
ds

s

+

k∑
j=0

aj,k+1(f(tj , y(tj))− f(tj , yj)) + ak+1,k+1(f(tk+1, y(tk+1))− f(tk+1, y
P
k+1))


=

1

Γ(α)
(I + II + III).

The term I is estimated by Lemma 5. For II, we have, by Lemma 6 and the Lipschitz
condition of f ,
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|II| =

∣∣∣∣∣∣
k∑
j=0

aj,k+1(f(tj , y(tj))− f(tj , yj))

∣∣∣∣∣∣
≤

k∑
j=0

aj,k+1 |(f(tj , y(tj))− f(tj , yj))|

≤L
k∑
j=0

aj,k+1|y(tj)− yj |.

For III, we have, by Lemma 6 and the Lipschitz condition for f,

|III| = |ak+1,k+1(f(tk+1, y(tk+1))− f(tk+1, y
P
k+1))| ≤ ak+1,k+1L|y(tk+1)− yPk+1|.

Note that

y(tk+1)− yPk+1 =
1

Γ(α)

{∫ tk+1

a

(
log

tk+1

s

)α−1

(f(s, y(s))− P0(s))
ds

s

+

k∑
j=0

bj,k+1(f(tj , y(tj))− f(tj , yj))

 .

Thus,

|III| ≤Cak+1,k+1L

∫ tk+1

a

(
log

tk+1

s

)α−1

|f(s, y(s))− P0(s)|ds

s

+Cak+1,k+1L

k∑
j=0

bj,k+1|f(tj , y(tj))− f(tj , yj)|

=III1 + III2.

The term III1 is estimated by Lemma 8. For III2, we have, by Lemma 6,

III2 ≤Cak+1,k+1L

k∑
j=0

bj,k+1|y(tj)− yj | ≤ (CN−rαk(r−1)α)

k∑
j=0

bj,k+1|y(tj)− yj |

≤C(k/N)(r−1)αN−α
k∑
j=0

bj,k+1|y(tj)− yj |

≤CN−α
k∑
j=0

bj,k+1|y(tj)− yj |.

Hence, we obtain
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|y(tk+1)− yk+1| ≤C|I|+ C

k∑
j=0

aj,k+1|y(tj)− yj |

+C|III1|+ CN−α
k∑
j=0

bj,k+1|y(tj)− yj |.

The rest of the proof is exactly the same as the proof of [14, Theorem 1.4]. The proof
of Theorem 4 is complete.

3. Rectangular and Trapezoidal Methods with non-uniform meshes.
In this section we will consider the error estimates for the fractional rectangular and
trapezoidal methods for solving (1.1). These results are based on the error estimates
proposed by Liu et al. [15]. First we will introduce the non-uniform meshes for solving
(1.1).

Let N be a positive integer and let a = t0 < t1 < · · · < tN = T be the partition
on [a, T ]. We define the following non-uniform mesh on [log(a), log(T )] with

log a = log t0 < log t1 < · · · < log tN = log T,

such that

log tj − log a

log tN − log a
=

j(j + 1)

N(N + 1)
,

which implies that

log tj = log a+
(

log tN − log a
) j(j + 1)

N(N + 1)
.

Now we see when j = 0, we have log t0 = log a. When j = N we have log tN = log T .
Further we have

τj := log tj+1 − log tj = log
tj+1

tj
=

2(j + 1)

N(N + 1)
log

tN
a
.

3.1. Rectangular Method. In this subsection we prove the following error
estimate for the rectangular method over the given non-uniform mesh.

Theorem 10. Assume that ga(t) := CHD
α
a,ty(t) satisfies Assumption 3. Further

assume that y(tj) and yj are the solutions of (1.3) and (2.6), respectively.
1. If 0 < α ≤ 1, then we have

max
0≤j≤N

|y(tj)− yj | ≤


CN−2(σ+α), if 0 < 2(σ + α) < 1,

CN−2(σ+α) log(N), if 2(σ + α) = 1,

CN−1, if 2(σ + α) > 1.
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2. If α > 1, then we have

max
0≤j≤N

|y(tj)− yj | ≤ CN−1.

To prove Theorem 10, we need some preliminary lemmas. Here we only state the
lemmas without proofs since the proofs are similar as in Liu et al. [15]. In Lemma 11
we will be defining a key estimate which we will be using in our main proof.

Lemma 11. Assume that ga(t) := CHD
α
a,ty(t) satisfies Assumption 3.

1. If 0 < α ≤ 1, then we have, with k = 0, 1, 2, . . . , N − 1, N ≥ 1,

∣∣∣ 1

Γ(α)

k∑
j=0

∫ tj+1

tj

(
log

tk+1

s

)α−1

ga(s)
ds

s
−

k∑
j=0

bj,k+1g(tj)
∣∣∣

≤


CN−2(σ+α), if 0 < 2(σ + α) < 1,

CN−2(σ+α) log(N), if 2(σ + α) = 1,

CN−1, if 2(σ + α) > 1.

2. If 1 < α < 2, then we have

∣∣∣ 1

Γ(α)

k∑
j=0

∫ tj+1

tj

(
log

tk+1

s

)α−1

ga(s)
ds

s
−

k∑
j=0

bj,k+1g(tj)
∣∣∣ ≤ CN−1.

In Lemma 12 we will find some upper bounds for our weights bj,k+1 and aj,k+1.
Lemma 12. If α > 0, k is a non-negative integer and τj ≤ τj+1, j = 0, 1, . . . , k−1,

then the weights bj,k+1 and aj,k+1 defined by equations (2.7) and (2.9), have the
following estimates:

bj,k+1 ≤ Cατj
(

log
tk+1

tj

)α−1

, j = 0, 1, 2, . . . , k,

and

aj,k+1 ≤ Cα

τ0
(

log tk+1

a

)α−1

, j = 0,

τj

(
log tk+1

tj

)α−1

+ τj−1

(
log tk+1

tj−1

)α−1

, j = 1, 2, . . . , k + 1,

where Cα = 1
Γ(α+1) max{2, α} In Lemma 13 we will give an adapted Gronwall in-

equality to be used in the main results.

Lemma 13. Assume that α,C0, T > 0 and bj,k = C0τj

(
log tk

tj

)α−1

, j = 0, 1, 2, . . . , k−
1 for 0 = t0 < t1 < · · · < tk < · · · < tN = T, k = 1, 2, . . . , N where N is a positive
integer and τj = log

tj+1

tj
. Let g0 be positive and the sequence {ψk} meet

{
ψ0 ≤ g0,

ψk ≤
∑k−1
j=1 bj,kψj + g0,
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then

ψk ≤ Cg0, k = 1, 2, . . . , N.

Proof. [Proof of Theorem 10:]For k=0,1,2,. . . ,N-1, we have

|y(tk+1 − yk+1| =
∣∣∣ 1

Γ(α)

∫ tk+1

a

(
log

tk+1

s

)α−1

ga(s)
ds

s
−

k∑
j=0

bj,k+1f(tj , yj)
∣∣∣

≤ 1

Γ(α)

∣∣∣ k∑
j=0

∫ tj+1

tj

(
log

tk+1

s

)α−1

(ga(s)− g(tj))
ds

s

∣∣∣
+
∣∣∣ k∑
j=0

bj,k+1(g(tj)− f(tj , yj))
∣∣∣ = I + II.

The first term I can be estimated by Lemma 11. For II, we can apply Lemma 6 and
the Lipschitz condition of f,

II =
∣∣∣ k∑
j=0

bj,k+1(g(tj)− f(tj , yj))
∣∣∣ ≤ L k∑

j=0

bj,k+1|y(tj)− yj |.

Substituting into the original we get

|y(tk+1)− yk+1| ≤ I + L

k∑
j=0

bj,k+1|y(tj)− yj |.

By applying Lemma 13, we will get

|y(tk+1)− yk+1| ≤ CI.

This completes the proof of Theorem 10.

3.2. Trapezoid formula. In this subsection we will consider the error estimates
of the trapezoid method over the non-uniform mesh. We shall prove the following
theorem

Theorem 14. Assume that ga(t) := CHD
α
a,ty(t) satisfies Assumption 3. Further

assume that y(tj) and yj are the solutions of (1.3) and (2.8), respectively.
1. If 0 < α ≤ 1, then we have

max
0≤j≤N

|y(tj)− yj | ≤


CN−2(σ+α), if 0 < 2(σ + α) < 2,

CN−2(σ+α) log(N), if 2(σ + α) = 2,

CN−2, if 2(σ + α) > 2.
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2. If 1 < α < 2, then we have

max
0≤j≤N

|y(tj)− yj | ≤ CN−2.

To prove Theorem 14, we need the following lemma. In Lemma 15 we will be
defining a key estimate which we will be using in our main proof.

Lemma 15. Assume that ga(t) := CHD
α
a,ty(t) satisfies Assumption 3.

1. If 0 < α ≤ 1, then we have, with k = 0, 1, 2, ...N − 1, N ≥ 1,

∣∣∣ 1

Γ(α)

k∑
j=0

∫ tj+1

tj

(
log

tk+1

s

)α−1

ga(s)
ds

s
−

k∑
j=0

aj,k+1g(tj)
∣∣∣

≤


CN−2(σ+α), if 0 < 2(σ + α) < 2,

CN−2(σ+α) log(N), if 2(σ + α) = 2,

CN−2, if 2(σ + α) > 2.

2. If 1 < α < 2, then we have

∣∣∣ 1

Γ(α)

k∑
j=0

∫ tj+1

tj

(
log

tk+1

s

)α−1

ga(s)
ds

s
−

k∑
j=0

aj,k+1g(tj)
∣∣∣ ≤ CN−2.

Proof. [Proof of Theorem 14] For k = 0, 1, 2, . . . , N − 1, we have

|y(tk+1)− yk+1| =
∣∣∣ 1

Γ(α)

∫ tk+1

a

(
log

tk+1

s

)α−1

ga(s)
ds

s
−
k+1∑
j=0

aj,k+1f(tj , yj)
∣∣∣

≤
∣∣∣ 1

Γ(α)

k∑
j=0

∫ tj+1

tj

(
log

tk+1

s

)α−1(
ga(s)− log s− log tj+1

log tj − log tj+1
g(tj)−

log s− log tj
log tj+1 − log tj

g(tj+1)
)ds

s

∣∣∣
+
∣∣∣ k+1∑
j=0

aj,k+1(g(tj)− f(tj , yj))
∣∣∣

=I + II.

The term I is estimated by Lemma 15. For II we can apply Lemma 12 and the
Lipschitz condition of f,

II =
∣∣∣ k+1∑
j=0

aj,k+1(g(tj)− f(tj , yj))
∣∣∣ ≤ L k+1∑

j=0

aj,k+1|y(tj)− yj |.

Thus we obtain

|y(tk+1)− yk+1| ≤ I + L

k+1∑
j=0

aj,k+1|y(tj)− yj |.

By using the corresponding Gronwall Lemma 13 we have |y(tk+1)−yk+1| ≤ CI. This
completes the proof of Theorem 14.
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4. Numerical Examples. In this section we will consider some numerical ex-
amples to confirm the theoretical results obtained in the previous sections. For sim-
plicity, all the examples below will take 0 < α < 1. All the following results may be
adapted for all α > 1.

Example 1 : Consider the following nonlinear fractional differential equation,
with α ∈ (0, 1) and a = 1,

(4.1)

{
CHD

α
a,ty(t) = f(t, y), 1 ≤ a < t ≤ T,

y(a) = 0,

where

f(t, y) =
Γ(6)

Γ(6− α)
(log t)5−α − Γ(5)

Γ(5− α)
(log t)4−α +

2Γ(4)

Γ(4− α)
(log t)3−α

− y2 +
(
(log t)5 − (log t)4 + 2(log t)3

)2
.

The exact solution of this equation is y(t) = (log t)5− (log t)4 + 2(log t)3. We will
be solving Example 1 over the interval [1, 2]. Let N be a positive integer and let log a =
log t0 < log t1 < · · · < log tN = log T be the graded mesh on the interval [log a, log T ].

This mesh is defines as log tj = log a +
(

log T
a

)
(j/N)r for j = 0, 1, 2, . . . , N with

r ≥ 1. Therefore, we have by Theorem 4,

(4.2) ||eN || := max
0≤j≤N

|y(tj)− yj | ≤ CN−(1+α).

In Tables 1 we can see the maximum absolute error and experimental order of
convergence (EOC) for the predictor-corrector method at varying α and N values.
For our different 0 < α < 1, we have chosen N values as N = 10×2l, l = 0, 1, 2, . . . , 7.
For this example we have taken r = 1. The maximum absolute errors ||eN ||∞ were
obtained as shown above with respect to N and we calculate the experimental order

of convergence or EOC as log
(
||eN ||∞
||e2N ||∞

)
.

As we can see, the EOCs for this example are almost O(N−(1+α)) which was pre-
dicted by Theorem 4. Due to the solution of the FODE being sufficiently smooth,
any value of r will give the optimal convergence order given above. As we are using
r = 1, this means that we are using a uniform mesh and so can compare these results
with the methods introduced by Gohar et al. [5]. We can see, we have obtained a
similar result.

In Fig. ??, we have plotted the order of convergence for Example 1. From
Equation (4.2) we have, with h = 1/N ,

(
log2 ||eN ||

)
≤
(

log2 C
)

+
(

log2N
−(1+α)

)
≤
(

log2 C
)

+
(
1 + α

)(
log2 h

)
.

Let y =
(

log2 ||eN ||
)

and let x =
(

log2 h
)
. We then plotted a graph for y against

x for h = 1
5×2l

, l = 0, 1, . . . , 7. Doing this, we get that the gradient of the graph would
equal the EOC. To compare this to the theoretical order of convergence, we have also
plotted the straight line y = (1+α)x. For Fig. ?? we choose α = 0.8. We can observe
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N α = 0.4 EOC α = 0.6 EOC α = 0.8 EOC
10 3.475E-02 1.734E-02 9.960E-03
20 1.263E-02 1.460 5.427E-03 1.676 2.761E-03 1.851
40 4.446E-03 1.507 1.686E-03 1.687 7.617E-04 1.858
80 1.562E-03 1.509 5.275E-04 1.676 2.106E-04 1.854
160 5.543E-04 1.495 1.668E-04 1.661 5.850E-05 1.848
320 1.992E-04 1.477 5.328E-05 1.646 1.632E-05 1.842
640 7.241E-05 1.460 1.716E-05 1.635 4.568E-06 1.837
1280 2.657E-05 1.446 5.562E-06 1.625 1.283E-06 1.832

Table 1
Table to show the maximum absolute error and EOC for solving (4.1) using the Predictor-

Corrector method

that the two lines drawn are parallel. Therefore we can conclude that the order of
convergence of this predictor-corrector method is O(h1+α)

Example 2 : Consider the following nonlinear fractional differential equation,
with α, β ∈ (0, 1) and a = 1,

(4.3)

{
CHD

α
a,ty(t) = f(t, y), 1 ≤ a < t ≤ T,

y(a) = 0,

where

f(t, y) =
Γ(1 + β)

Γ(1 + β − α)
(log t)β−α + (log t)2β − y2.

We will be solving Example 2 over the interval [1, 2]. The exact solution of this

equation is y = (log t
a )β and CHD

α
a,ty(t) = Γ(1+β)

Γ(1+β−α) (log t)β−α. This implies that the

regularity of CHD
α
a,ty(t) behaves as (log t)β−α. This means that CHD

α
a,ty(t) satisfies

Assumption 3. We will be using the same graded mesh as in Example 1. Therefore,
we have by Theorem 4, with σ = β − α,

(4.4) ||eN || := max
0≤j≤N

|y(tj)− yj | ≤


CN−rβ , if r < 1+α

β ,

CN−rβ logN, if r = 1+α
β ,

CN−(1+α), if r > 1+α
β .

In Tables 2-4 we can see the EOC for the Predictor-Corrector method with varying
values of α and with r values at r = 1 and r = 1+α

β . With a fixed β = 0.9 we have
obtain the EOC and maximum absolute error for increasing values of N . By doing
so we can see that the EOC are almost O(N−rβ) = 0.9 when r = 1 and the EOC are
almost O(N−(1+α)) = 1 + α when r = 1+α

β .
When r = 1, we are using a uniform mesh and we can see that the EOC obtained

is the same as those obtained by Gohar et al. [5]. Comparing these to the results of
the graded mesh when r = 1+α

β we can see that a higher EOC has been obtained and
an optimal order of convergence is recovered.

In Fig. ??, we have plotted the order of convergence for Example 2 when r = 1+α
β

and α = 0.8. This plot is the same as for Fig. ??. We have also plotted the straight
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line y = (1 + α)x. We can observe that the two lines drawn are parallel. Therefore
we can conclude that the order of convergence of this predictor-corrector method is
O(h1+α)

N r = 1 EOC r = 1+α
β EOC

10 1.100E-02 1.858E-02
20 5.635E-03 0.965 6.141E-03 1.598
40 3.177E-03 0.827 2.048E-03 1.584
80 1.737E-03 0.871 7.009E-04 1.547
160 9.380E-04 0.889 2.457E-04 1.512
320 5.043E-04 0.895 8.780E-05 1.485
640 2.706E-04 0.898 3.184E-05 1.464
1280 1.451E-04 0.899 1.167E-05 1.448

Table 2
Table to show the maximum absolute error and EOC for solving (4.3) using the Predictor-

Corrector method for α = 0.4, β = 0.9

N r = 1 EOC r = 1+α
β EOC

10 2.151E-02 6.370E-03
20 1.193E-02 0.851 1.922E-03 1.728
40 6.468E-03 0.883 5.954E-04 1.691
80 3.480E-03 0.894 1.888E-04 1.657
160 1.868E-03 0.898 6.083E-05 1.634
320 1.001E-03 0.899 1.980E-05 1.620
640 5.368E-04 0.900 6.482E-06 1.611
1280 2.877E-04 0.900 2.130E-06 1.605

Table 3
Table to show the maximum absolute error and EOC for solving (4.3) using the Predictor-

Corrector Scheme for α = 0.6, β = 0.9

N r = 1 EOC r = 1+α
β EOC

10 3.536E-02 4.523E-03
20 1.916E-02 0.884 1.299E-03 1.800
40 1.030E-02 0.895 3.731E-04 1.800
80 5.528E-03 0.898 1.071E-04 1.800
160 2.963E-03 0.900 3.077E-05 1.800
320 1.588E-03 0.900 8.836E-06 1.800
640 8.510E-04 0.900 2.537E-06 1.800
1280 4.561E-04 0.900 7.287E-07 1.800

Table 4
Table to show the maximum absolute error and EOC for solving (4.3) using the Predictor-

Corrector method for α = 0.8, β = 0.9

Example 3 : Consider the following nonlinear fractional differential equation,
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with α, β ∈ (0, 1) and a = 1,

(4.5)

{
CHD

α
a,ty(t) + y(t) = 0, 1 ≤ a < t ≤ T,

y(a) = 1,

The exact solution of this FODE is y(t) = Eα,1
(
− (log t)α

)
. Therefore CHD

α
a,ty(t) =

−Eα,1
(
− (log t)α

)
, where Eα,γ(z) is defined as the Mittag-Leffler function

Eα,γ(z) =

∞∑
k=0

zk

Γ(αk + γ)
, α, γ > 0.

Therefore

CHD
α
a,ty(t) = −

∞∑
k=0

(
− log t

)αk
Γ(αk + γ)

= −1−
(
− log t

)α
Γ(α+ 1)

−
(

log t
)2α

Γ(α+ 1)
− . . . , α > 0.

This shows that CHD
α
a,ty(t) behaves as c + c

(
log t

)α
. This means that CHD

α
a,ty(t)

satisfies Assumption 3. Therefore, with σ = α, we have by Theorem 4,

(4.6) ||eN || := max
0≤j≤N

|y(tj)− yj | ≤


CN−r(2α), if r < 1+α

2α ,

CN−r(2α) logN, if r = 1+α
2α ,

CN−(1+α), if r > 1+α
2α .

We will be solving this equation over the same graded mesh as in Example 1 with
varying r values. In Tables 5-7, we have calculated the EOC and maximum absolute
error with respect to increasing N values and with r values at r = 1 and r = 1+α

2α . The

experimental orders of convergence are shown to be almost O(Nr(2α)) if we choose

r = 1 and almost O(Nr(1+α)) if we choose r = (1+α)
2α . Once again it is shown when

we use a graded mesh at the optimal r value, we get a higher order of convergence to
that obtained by the uniform mesh at r = 1

In Fig. ??, we have plotted the order of convergence for Example 3 when r = 1+α
β

and α = 0.8. This plot is the same as for Fig. ??. We have also plotted the straight
line y = (1 + α)x. We can observe that the two lines drawn are parallel. Therefore
we can conclude that the order of convergence of this predictor-corrector method is
O(h1+α) for choosing the suitable graded mesh ratio r.

Example 4 In this example we will be applying the rectangular and trapezoidal
methods for solving (4.5). Let N be a positive integer and let log tj = log a+

(
log tN−

log a
) j(j+1)
N(N+1) be the graded mesh on the interval [log a, log T ] for j = 0, 1, 2, . . . , N .

We will be using a = 1 and T = 2.
In Table 8, we have calculated the EOC and maximum absolute error with respect

to increasing N values and with α = 0.2, 0.4, 0.6 for the rectangular method. By once
again using the fact that σ = α and applying Theorem 10 we can say

max
0≤j≤N

|y(tj)− yj | ≤


CN−4α, if 0 < 4α < 1,

CN−4α log(N), if 4α = 1,

CN−1, if 4α > 1.
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N r = 1 EOC r = 1+α
2α EOC

10 9.399E-03 3.677E-03
20 2.049E-03 2.197 1.234E-03 1.575
40 4.752E-04 2.108 4.687E-04 1.397
80 1.000E-03 -1.074 2.116E-04 1.147
160 9.226E-04 0.116 8.834E-05 1.260
320 6.885E-04 0.422 3.542E-05 1.319
640 4.670E-04 0.560 1.388E-05 1.352
1280 3.002E-04 0.637 5.367E-06 1.371

labelfont=color=red,font=color=red
Table 5

Table to show the maximum absolute error and EOC for solving (4.5) using the Predictor-
Corrector method for α = 0.4

N r = 1 EOC r = 1+α
2α EOC

10 6.864E-04 1.512E-03
20 9.020E-04 -0.394 4.756E-04 1.669
40 5.967E-04 0.645 1.766E-04 1.429
80 3.767E-04 0.914 6.423E-05 1.459
160 1.495E-04 1.034 2.233E-05 1.524
320 6.982E-05 1.098 7.587E-06 1.558
640 3.177E-05 1.136 2.545E-06 1.576
1280 1.423E-05 1.159 8.473E-07 1.586

labelfont=color=red,font=color=red
Table 6

Table to show the maximum absolute error and EOC for solving (4.5) using the Predictor-
Corrector method for α = 0.6

The experimental orders of convergence are shown to be almost O(N−4α) if we choose
α < 0.25 and almost O(N−1) if we choose α ≥ 0.25. This confirms the theoretical
error estimates calculated in Section 4. In Table 9, we have used the same method
to solve (4.5) but using the uniform mesh. This shows how a larger EOC is achieved
when using non-uniform mesh over a uniform mesh.

In Table 10, we have calculated the EOC and maximum absolute error with
respect to increasing N values and with α = 0.2, 0.4, 0.6 for the trapezoidal method.
By once again using the fact that σ = α and applying Theorem 10 we can say

max
0≤j≤N

|y(tj)− yj | ≤


CN−4α, if 0 < 4α < 2,

CN−4α log(N), if 4α = 2,

CN−2, if 4α > 2.

The experimental orders of convergence are shown to be almost O(N−4α) if we choose
α < 0.5 and almost O(N−2) if we choose α ≥ 0.5. This confirms the theoretical error
estimates calculated in Section 4. In Table 11, we have used the same method to solve
(4.5) but using the uniform mesh. This shows how a larger EOC is achieved when
using graded mesh over a uniform mesh.

5. Conclusion. In this paper we propose several numerical methods for solv-
ing Caputo-Hadamard fractional differential equations with graded and no-uniform
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N r = 1 EOC r = 1+α
2α EOC

10 4.175E-04 6.100E-04
20 1.700E-04 1.297 1.717E-04 1.829
40 7.021E-05 1.275 4.972E-05 1.788
80 2.589E-05 1.439 1.459E-05 1.769
160 9.062E-06 1.514 4.308E-06 1.760
320 3.089E-06 1.553 1.274E-06 1.758
640 1.038E-06 1.574 3.766E-07 1.758
1280 3.459E-07 1.585 1.111E-07 1.760

labelfont=color=red,font=color=red
Table 7

Table to show the maximum absolute error and EOC for solving (4.5) using the Predictor-
Corrector method for α = 0.8

N α = 0.2 EOC α = 0.4 EOC α = 0.6 EOC
40 7.919E-02 8.348E-03 2.852E-03
80 4.843E-02 0.710 2.869E-03 1.141 1.404E-03 1.023
160 2.921E-02 0.730 9.688E-04 1.166 6.951E-04 1.014
320 1.742E-02 0.745 3.239E-04 1.181 3.454E-04 1.009
640 1.030E-02 0.758 1.491E-04 1.119 1.720E-04 1.006
1280 6.053E-03 0.767 7.336E-05 1.023 8.577E-05 1.004

Table 8
Table to show the maximum absolute error and EOC for solving (4.5) using the Rectangular

method on a graded mesh

meshes. We first introduce a predictor-corrector method and calculate the convergence
and error estimates over a graded mesh so to show that the optimal convergence orders
can be recovered when the solutions are not sufficiently smooth. We then introduce
the error estimates on the fractional rectangle and fractional trapezoidal methods
with some non-uniform meshes. Finally we consider several numerical simulations to
support the theoretical results made for the above methods on the convergence orders
and error estimates.

We have the equal contributions to this work. C.G. considered the theoretical
analysis and wrote the original version of the work. Y.L. considered the theoretical
analysis and performed the numerical simulation. Y.Y introduced and guided this
research topic.
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