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Abstract 

      Analysis of nonlinear systems has been studied extensively. Based on some recently 

developed results, a new systematic approach to the analysis of nonlinear Volterra systems in 

the frequency domain is proposed in this paper, which provides a novel insight into the 

frequency domain analysis and design of nonlinear systems subject to a general input instead 

of only specific harmonic inputs using input-output experimental data. A general procedure 

to conduct an output frequency response function (OFRF) based analysis is given, and some 

fundamental results and techniques are established for this purpose. A case study for the 

analysis of a circuit system is provided to illustrate this new frequency domain method. 

Keywords 

      Output frequency response function, Nonlinear systems, Volterra series 

 

1  Introduction 

      Frequency domain analysis of a linear system can usually provide some intuitional 

insights into the system of interest, and thus is extensively used in engineering analysis and 

design. However, when it comes to a nonlinear system, it is not as easy as that for a linear 

system to perform a frequency domain analysis. The frequency domain theory for linear 

systems can not directly be extended to the nonlinear case. It is also known that nonlinear 

systems are often observed to have harmonics, complex inter-modulations and even chaos 

etc, which transfer energy between different frequencies and give outputs at some quite 

different frequencies to those of the input. These phenomena further complicate the study of 

nonlinear systems in the frequency domain. A systematic approach to the analysis of 

nonlinear systems in the frequency domain is yet to be developed. 

      In the past decades, some progress has been made in this topic in spite of these 

difficulties. Traditionally, the effect of a nonlinear term existing in a system can be analysed 



by using its describing function (Taylor 1999, Graham and McRuer 1961). This method can 

only be used to analyse a specific nonlinear term subject to a harmonic input. Limitations of 

the describing function based analysis are noted in many cases (Engelberg 2002). To 

overcome the drawbacks of the describing functions, there are some improved methods 

reported in literature (Sanders 1993, Elizalde and Imregun 2006, Nuij et al 2006). Moreover, 

the frequency output properties of a class of nonlinear systems driven by multiharmonic 

signals are also studied by classifying nonlinear distortions into harmonic and interharmonic 

contributions (Solomou et al 2002). Alternatively, for a wide class of nonlinear systems, 

frequency domain analysis can also be conducted based on Volterra series theory (Volterra 

1959, Rugh 1981). It has been proved in Sandberg (1982ab, 1983ab) and Boyd and Chua 

(1985) that there exists a locally convergent Volterra series expansion of finite order for any 

time invariant causal nonlinear systems under certain conditions. The nonlinear systems 

which have a Volterra series expansion are simply referred to as nonlinear Volterra systems. 

Based on the Volterra series expansion, the generalized frequency response function (GFRF) 

is proposed in George (1959). Thereafter, many researches on the frequency domain analysis 

of nonlinear Volterra systems are carried out by using this concept (Brilliant 1958, Kim and 

Powers 1988, Bendat 1990, Nam and Powers 1994, Petkovska and Do 2000). This kind of 

frequency domain analysis methods can deal with nonlinear systems driven by a general 

input and does not necessarily restrict to a specific nonlinear term, thus is a more general 

methodology. However, it is noted that estimation and computation of the GFRFs and 

Volterra kernels for a nonlinear Volterra system usually involve too much complicated 

computation and symbolic operations (Yue et al. 2005). This, to a certain extent, inhibits the 

understanding and application of the corresponding results. It can be seen that a 

straightforward analytical expression for the relationship between system time-domain 

model parameters and system output frequency response can considerably facilitate the 

analysis and design of nonlinear systems in the frequency domain.  

      For this purpose, recently Lang et al (2006) discovered that output spectrum of nonlinear 

Volterra systems can be written into a simple polynomial function of model parameters, 

which can reveal a straightforward relationship between system output spectrum and model 

parameters of nonlinear systems and was referred to as output frequency response function 

(OFRF). The explicit relationship was further developed in Jing et al (2006a), where the 

OFRF was determined definitely with detailed polynomial structure up to any high orders. 

Based on these results, a novel systematic approach to the frequency domain analysis of 

nonlinear Volterra systems is proposed in this paper. The new approach, referred to as OFRF 



based analysis, allows analysis, design and optimization of output frequency response of 

nonlinear Volterra systems to be conducted in terms of system time domain model 

parameters, and has no restriction on input signal. A general procedure is proposed for the 

new frequency domain analysis method, and some fundamental results and practical 

techniques are developed to support the application of this new method. A case study is 

provided to illustrate the effectiveness of the new results.  

2  Fundamental concept of the OFRF based analysis for nonlinear systems 

      Nonlinear systems considered in this paper can be described by the following nonlinear 

differential equation (NDE) model 
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nonlinearity in terms of y(t) and u(t), and K is the maximum order of the derivative. In this 

model, the parameters such as c0,1(.) and c1,0(.) are linear parameters, which correspond to 

the linear terms in the model, i.e., 
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)()( , e.g., qp tuty )()( . p+q is called the nonlinear degree of the nonlinear 

parameter )(⋅pqc . Moreover, )(⋅pqc and )('' ⋅qpc are referred to as different type of nonlinearity if 

'pp ≠ or 'qq ≠ . Similar to the NDE model (1), a discrete nonlinear model known as NARX 

model is often used for practical nonlinear system identification from experimental data, 

which is given by 
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In engineering practise, the NDE or NARX model can represent a wide class of nonlinear 

dynamical systems and include several well known nonlinear input-output models as special 

cases (Chen and Billings 1989).  

      If the system is stable at zero equilibrium and has fading memory, model (1) or (2) can 

both be approximated in the neighbourhood of the equilibrium by a Volterra series of 

sufficient orders (Boyd and Chua 1984). In order to conduct a frequency domain analysis for 

this class of nonlinear systems, the generalized frequency response function (GFRF) was 

proposed in (George 1959), which is defined by 
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where ),,( 1 nnh ττ L is a real valued function of nττ ,,1 L  called the nth order Volterra kernel of 

the system. By probing method (Rugh 1981), the recursive algorithms for the computation of 

the GFRFs for model (1) and (2) were developed in Peyton-Jones and Billings (1991) and 

Billings and Peyton-Jones (1989). Based on these results, the system output frequency 

response can be obtained for a general input signal as (Lang and Billings 1996) 
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where )( ωjU is the Fourier transform of a general input u(t), and N is the largest order of the 

Volterra series expansion. When the system is subject to a multi-tone input described by 
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then the system output spectrum can be written as 
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      Although these results provide an important basis for frequency domain analysis of 

nonlinear systems, it can be seen that the direct computation of system output spectrum 

involves very complicated integral and symbolic operations in multi-dimensional complex 

space, and the analytical relationship between model parameters and output spectrum can not 

be demonstrated clearly by the recursive algorithms. For these reasons, the concept of output 

frequency response function (OFRF) was proposed in Lang et al (2006), which defines an 

analytical relationship between the system output spectrum and the model parameters of 

nonlinear systems, and reveals that the system output spectrum of model (1) can be written 

into a simple polynomial form as  

∑=
Ns

Ns

NNs
jj

j
s

j
jj xxjY

L

L L
1

1

1 1)()( ωγω                                            (7) 

where 
Nsxx L1 are the elements in a set consisting of all the system nonlinear parameters, 
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which is a function of frequency variable and depends on the system linear parameters. The 

OFRF was further studied in Jing et al (2006a) through parametric characteristic analysis. 

The results explicitly reveal the analytical polynomial relationship between system nonlinear 

parameters and system output spectrum, and allow the detailed structure of the OFRF to be 

determined up to any high orders without complicated symbolic computations in multi-

dimensional complex space. Based on the results in Jing et al (2006a,b), Equation (7) can be 

written into a more explicit form as 
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where, )( ωϕ jn stands for a complex valued function vector which has the same dimension as 

))(( ⋅nHCE ,  CE(.) is a novel coefficient extraction operator defined in Jing et al (2006a,b) (for 

the detail refer to Appendix A), and ))(( ⋅nHCE is the parametric characteristics of the nth-

order GFRF )(⋅nH , which can be recursively determined by 
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= for some p, q. The terminating condition is 

CE(H1(.))=1. Obviously, the elements of ))(( ⋅nHCE are functions of the system time domain 

model parameters which define nonlinearities. For more clarity, (8a) can be rewritten as 
TjjY )()( ωψω Φ⋅=                                                            (9) 

where [ ])()()()()),(( 211
ωϕωϕωϕωψ jjjjHCE Nn

N

n
L=Φ⋅⊕=

=
. Note that )()( 11 ωωϕ jHj =  is the 

first order GFRF, which represents the linear part of model (1) or (2). 

      Equation (8a) or (9) provide a straightforward analytical expression for the relationship 

between system time-domain model parameters and system output frequency response. 

Hence, it can considerably facilitate the analysis and design of nonlinear systems in the 

frequency domain, and provide a useful insight into the frequency domain analysis and 

design of nonlinear Volterra systems. In many practical applications, the problems are, how 

some specific model parameters affect system output spectrum, and what the effect is. 

Therefore, the main idea for the OFRF based analysis proposed in this paper is, once the 

model of a nonlinear system is given in the form of model (1) or (2), then ))(( ⋅nHCE can be 

computed according to (8b) and )( ωϕ jn can be obtained according to a numerical method 

which will be discussed later, thus the OFRF of the nonlinear system subject to any a 



specific input function can be achieved, which is an analytical function of nonlinear 

parameters of the nonlinear system model, and finally frequency domain analysis for the 

nonlinear system can be conducted in terms of the specific model nonlinear parameters of 

interest. Related to this topic, some useful techniques and fundamental results are developed 

in this study.  

      In what follows, Section 3 introduces a general procedure for the OFRF based analysis, 

and some useful techniques for the determination of OFRF are proposed such that the 

computation of the OFRF of a nonlinear Volterra system automatically by computer 

programming; further results for the OFRF based analysis are given in Section 4, which 

facilitates the determination of the parametric characteristics of the OFRF for some special 

cases and demonstrates some potential application of the OFRF based analysis; a case study 

is given in Section 5 to illustrate the effectiveness of these new results; finally, Section 6 

summarizes the conclusions of this study. 

3  A general procedure for the OFRF based analysis 

      Generally, given the system model (1) or (2), there are several basic steps for the OFRF 

based analysis. An assumption is made that the input-output relationship of the interested 

system has a convergent Volterra series expansion. Usually, there must be a locally 

convergent Volterra series expansion for a time invariant causal nonlinear system in the 

neighbourhood of its stable equilibrium for a sufficient small input according to the theories 

in Sandberg (1982ab, 1983ab) and Boyd and Chua (1985). Based on the system model, the 

following procedure and related techniques can be followed to obtain the OFRF of the 

nonlinear system of interest, and then frequency domain analysis and design of the nonlinear 

system can be carried out based on the system OFRF.  

3.1  Computation of the parametric characteristics of OFRF 

      This step is to derive ))((
1

⋅⊕=
= n

N

n
HCEψ in (9).  

3.1.1  Determination of the largest order of the Volterra series expansion 

      To derive the parametric characteristics of OFRF, the first task is to compute the largest 

order, i.e., N, of the Volterra series expansion for the nonlinear system, which is basically 

determined by the significance of the truncation error in the Volterra series expansion of 

finite order. This can alternatively be to evaluate the magnitude value of the nth-order output 

frequency response )( ωjYn . For example, based on some new bound characteristics of 

NARX model developed recently in Jing et al 2006c, the magnitude bound of )( ωjYn can be 

evaluated by 



T
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where nn h,α are complex valued functions, and nb is a function vector of the system model 

parameters. For the detailed definitions for nnn b h,,α refer to Appendix B or Jing et al (2006c). 

If the magnitude bound of a certain order of )( ωjYn is less than a predefined value (for 

instance 10-8), then the largest order N is obtained. It should be noted that the magnitude 

bound is a function of the model nonlinear parameters, therefore, the largest ranges of 

interest for each nonlinear parameter should be considered in the evaluation of )( ωjYn .  

3.1.2  Determination of the parametric characteristics of the GFRFs 

      Once the largest order N is determined, the next step is to derive the parametric 

characteristics of GFRFs for the nonlinear system, i.e., ))(( ⋅nHCE from n=2 to N, which will 

be used in the computation of ))((
1

⋅⊕=
= n

N

n
HCEψ . Note that ))(( ⋅nHCE  is computed in terms of 

the parameter vectors )],,(,),1,,0(),0,,0([ ,,,, 43421LLLL
qp

qpqpqpqp KKcccC
+

= for some p,q in (8b). 

      Basically, for some specific parameters to be analysed for a system, ))(( ⋅nHCE can be 

recursively computed by Equation (8b) with respect to these parameters of interest with the 

other nonzero nonlinear parameters being 1. Alternatively, ))(( ⋅nHCE  can also be computed 

for all the nonlinear parameters for system model (1) or (2), then the general form of 

))(( ⋅nHCE needs only be computed once and can be stored for any future usage by replacing 

the corresponding parameter vector qpC ,  of interest with respect to the specific nonlinear 

system, while the nonzero parameters of no interest being 1. 

      In order for ))(( ⋅nHCE to be determined directly without recursive computations, an 

algorithm can be obtained by using the following result.  

      Proposition 1. The elements of CE( ),,( 1 nn jjH ωω L ) includes the nonlinear parameter in 

C0n and all the non-repetitive monomial functions of the nonlinear parameters in (1) or (2) of 

the form 
kk qpqpqppq CCCC ⊗⊗⊗⊗ L

2211
, where the subscripts satisfy knqpqp

k

i
ii +=+++ ∑

=1

)( , 

knqp ii −≤+≤2 , 20 −≤≤ nk , knqp −≤+≤2  and knp −≤≤1 . That is, the set of all the 

subscript combinations of the form ),,,,( 11 kk qpqpqp L corresponding to the nonlinear 

parameter monomials of the form
kk qpqpqppq CCCC ⊗⊗⊗⊗ L

2211
 which are included in 

CE( ),,( 1 nn jjH ωω L ), belong to 



⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−≤+≤−≤+≤

+=+++

−≤≤−≤≤

∑
=

knqpknqp

knqpqp

knpnk

qpqpqp

ii

k

i
iikk

2,2

)(

1,20

),,,,(
1

11 L ),0( n∪                     (11) 

Proof. See Appendix C.  

      Consider two subscript combinations ),,,,,( 2211 qpqpqp and ),,,,,( 1122 qpqpqp which 

correspond to the nonlinear parameter monomials 
2211 qpqppq CCC ⊗⊗ and 

1122 qpqppq CCC ⊗⊗  

respectively. Obviously, the two monomials are the same one. In this case the two subscript 

combinations are equivalent and regarded as to be repetitive with respect to each other, thus 

only one is counted in set (11). According to Proposition 1, if all the non-repetitive subscript 

combinations in (11) are determined, then the nonlinear parameter monomials involved in 

))(( ⋅nHCE can be obtained directly. Computation of, for example, ( )),,( 414 ωω jjHCE L  is given 

to illustrate the result in Proposition 1:  

When k=0, all the subscript combinations are (p,q): (0,4); (1,3), (2,2),(3,1),(4,0). Hence, 

the involved nonlinear parameters are: C0,4, C1,3, C3,1, C2,2, C4,0;  

When k=1, then 51411 =+=+++ qpqp , all the non-repetitive subscript combinations are 

(p,q,p1,q1): (1,1,0,3), (1,1,1,2), (1,1,2,1), (1,1,3,0), 

                        (1,2,0,2), (1,2,2,0), (2,0,0,3), (2,0,2,1), (2,0,3,0), (2,1,0,2), (3,0,0,2) 

Hence, the involved nonlinear parameter monomials are:  

C1,1⊗C0,3, C1,1⊗C1,2, C1,1⊗C2,1, C1,1⊗C3,0, C1,2⊗C0,2, C1,2⊗C2,0, C2,0⊗C0,3, C2,0⊗C2,1, 

C2,0⊗C3,0, C2,1⊗C0,2, C3,0⊗C0,2 

When k=2, then 6242211 =+=+++++ qpqpqp , all the non-repetitive subscript 

combinations are  

(p,q,p1,q1,p2,q2): (1,1,0,2,0,2), (1,1,0,2,1,1), (1,1,0,2,2,0), (1,1,1,1,1,1), (1,1,1,1,2,0), 

                           (1,1,2,0,2,0), (2,0,0,2,0,2), (2,0,0,2,2,0), (2,0,2,0,2,0) 

Hence, the involved nonlinear parameter monomials are:  

C1,1⊗C0,2⊗C0,2, C1,1⊗C0,2⊗C1,1, C1,1⊗C0,2⊗C2,0, C1,1⊗C1,1⊗C1,1, C1,1⊗C1,1⊗C2,0, 

C1,1⊗C2,0⊗C2,0, C2,0⊗C0,2⊗C0,2, C2,0⊗C0,2⊗C2,0, C2,0⊗C2,0⊗C2,0 

Therefore,  

( )),,( 414 ωω jjHCE L = C0,4+C1,3+C3,1+C2,2+C4,0+C1,1 o C0,3+C1,1 o C1,2+ C1,1 o C2,1 

                                  +C1,1 o C3,0+C1,2 o C0,2+C1,2 o C2,0+C2,0 o C0,3+ C2,0 o C2,1+  

                                  +C2,0 o C3,0+ C2,1 o C0,2+C3,0 o C0,2+ C1,1 o C0,2
2+C1,1

2
o C0,2 

                                                     +C1,1 o C0,2 o C2,0+ C1,1
3+C1,1

2
o C2,0+C1,1 o C2,0

2+C2,0 o C0,2
2

 

                                                     +C2,0
2
o C0,2+C2,0

3
 



where“⊕ ” and “⊗ ” are substituted by “+” and “ o ” for clarity, respectively.  

      Simply, the computation of the parametric characteristic ))(( ⋅nHCE can be conducted as 

follows, which is referred to as Process A. For 20 −≤≤ nk ,  

(1) Generate all the combinations (r0, r1, r2…, rk) satisfying knrr
k

i
i +=+∑

=1
0  and 

knri −≤≤2  with respect to a specific value of k; 

(2) Generate all the possible combinations (pi,qi) with respect to each ri satisfying pi+qi = 

ri, and note that when it is for r0, knp −≤≤ 01 ;  

(3) All the possible combinations can now be generated based on Step (1) and (2), then 

remove all the repetitive terms;  

(4) ))(( ⋅nHCE  is obtained in terms of the parameter vectors qpC , for some p,q, which can 

be stored for any future usage. For a specific nonlinear system, ))(( ⋅nHCE can be obtained 

only by replacing the corresponding interested parameter vector qpC , with respect to the 

specific nonlinear system, and the other parameters in  ))(( ⋅nHCE  are set to be zero if it is 

zero or 1 if it is not of interest to be analysed.  

(5) Achieve the final result by manipulating ))(( ⋅nHCE  according to the operation rules of 

“⊕ ” and “⊗” (See Appendix A), and removing the repetitive terms.  

By this method, the parametric characteristic ))(( ⋅nHCE can be obtained without recursive 

computations.  

      For a summary, the parametric characteristic vector ))((
1

⋅⊕=
= n

N

n
HCEψ can be computed by 

following the process bellow, which is referred to as Process B: 

(1) Determine the set of the nonlinear parameters of interest, denoted by SC; 

(2) Determine the largest possible ranges for the interested nonlinear parameters, 

denoted by CS∂ ; 

(3) Determine the largest order N of the Volterra series expansion according to (10) and 

the discussions following inequality (10). 

(4) Computation of ))(( ⋅nHCE with respect to the interested parameters SC following 

Process A or Equation (8b) from n=2 to N. 

(5) Combine the final parametric characteristic vector ))((
1

⋅⊕=
= n

N

n
HCEψ .  

3.2  Determination of the OFRF based on a numerical method 



      Based on the results in the previous steps, this step is mainly to determine 

[ ])()()()( 21 ωϕωϕωϕω jjjj NL=Φ  in (9), then the OFRF in (9) is obtained consequently.  

      Since the system model is known and the parametric characteristic vector 

))((
1

⋅⊕=
= n

N

n
HCEψ is achieved, the complex valued function vector )( ωjΦ can be derived with 

respect to any a specific input by following a numerical method used in Lang et al 2006. 

Note that )( ωjΦ is invariant with respect to ))((
1

⋅⊕=
= n

N

n
HCEψ , therefore, )( ωjΦ can be derived 

as follows, which is referred to as Process C: 

(1) Choose a series of different values of the interested nonlinear parameters which are 

properly distributed in CS∂ , and thus form a series of vectors ρψψ L1 , where ρ is a 

positive integer number, such that  
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0)det(

0)det(
T
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where TTT ][ 1 ρψψ L=Ψ , det(.) is the determinant of matrix (.), and ψ denotes the 

dimension of vector ψ . 

(2) Choose an observed frequency point ω  where the output frequency response of the 

nonlinear system is to be analysed or designed. Usually, the harmonic frequency 

with the largest output magnitude is a proper observed frequency point.  

(3) Actuate the system using the same input under the different values of the nonlinear 

parameters ρψψ L1 , then collect the time domain output y(t) for each case, and 

consequently obtain a series of output frequency response ρωω )()( 1 jYjY L  at the 

frequency ω  by FFT technique. 

(4) Step 3 yields 
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⎪⎩

⎪
⎨
⎧

≠⋅ΨΨΨ

=⋅Ψ
=Φ

−

−

ψρω

ψρω
ω

)()(

)(
)(

1

1

jYY

jYY
j

TT
T                                     (14) 

      Therefore, by following Process C, the complex valued function vector )( ωjΦ can be 

obtained. Although LS method is adopted in Process C to compute the vector )( ωjΦ , it 



should be noted that there may be some other methods for this purpose such as Least mean 

square, Recursive Least Square, and OLS etc, which are not discussed in detail here.  

      Based on the results above, the OFRF (9) is now completely determined by following 

Step 3.1 and 3.2 for the nonlinear system of interest subject to a general input. Moreover, 

note that since ))(( ⋅nHCE is known, and [ ])()()()( 21 ωϕωϕωϕω jjjj NL=Φ  is determined, 

then T
nnn jHCEjY )())(()( ωϕω ⋅⋅= is also determined, which represents the analytical function 

for the nth-order output frequency response (in (4b) or (6b)) of nonlinear systems. 

3.3  Analysis based on the OFRF 

      The OFRF of nonlinear systems defined in (9) which can be obtained by following the 

procedure above is an explicit analytical function of the system time domain model 

parameters of interest. Based on this expression, analysis, design and optimization of 

nonlinear Volterra systems described by model (1) or (2) can be carried out in terms of these 

interested model parameters which define system nonlinearities and may represent some 

structural and controllable factors of a practical engineering system. For example, the 

sensitivity of system output frequency response with respect to a nonlinear parameter can be 

studied based on the analytical expression (9). And also, by using the link between the 

nonlinear terms of interest and the components of a practical engineering system and 

structure, the OFRF may provide a useful insight into the design of nonlinear components in 

the system to achieve a desired output performance. It should be noted that the control input 

of nonlinear systems is not necessarily harmonic input. Therefore, the OFRF based analysis 

method provides a novel and more general approach to the analysis and synthesis of a 

considerably wide class of nonlinear systems in the frequency domain. These are further 

discussed in detail in the following section. 

4  Some further results for the OFRF based analysis 

      The parametric characteristic vector ))(( ⋅nHCE for all the nonlinear model parameters can 

be obtained according to (8b) or Process A, and if there are only some parameters of interest, 

the computation can be conducted by only replacing the other nonzero parameters with 1 as 

mentioned above. Note that in many cases, only several special nonlinear parameters of the 

same degree and the same type, for example some parameters in Cp,q, are of interest for a 

specific nonlinear system. Then the computation of the parametric characteristic vector in (9) 

can be simplified greatly. The following results are established for this purpose.  

      Proposition 2. Consider only the nonlinear parameter Cp,q=c. The parametric 

characteristic vector of the nth-order GFRF with respect to the parameter c is 
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where ⎣ ⎦⋅ is to get the integer part of (.),
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Proof. See Appendix D.  

      Note that here c may be one parameter or a vector of some parameters of the same 

nonlinear degree and type in Cpq. Also note that 43421 L
n

n cccc ⊗⊗= and ⊗  is the reduced 

Kronecker product defined in Appendix A, when c is a vector. Proposition 2 establishes a 

very useful result to study the effects on the output frequency response from a specific 

nonlinear degree and type of nonlinear parameters. It should be noted that if some nonlinear 

parameters in model (1) or (2) are zero, only part terms in )),,(( 1 nn jjHCE ωω L take an 

effective role. The detailed form of )),,(( 1 nn jjHCE ωω L can be derived from Process A and B. 

However, direct using equation (15) does not affect the final result and is more convenient.  

      Corollary 1. If all the other degree and type of nonlinear parameters are zero except that 

Cp,q=c is nonzero. Then the parametric characteristic vector of the nth-order GFRF with 

respect to the parameter c is: if (n>p+q and p>0), or (n=p+q), and if additionally 1
1
−+

−
qp

n is an 

integer, then 

1
1
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else                                                0)),,(( 1 =nn jjHCE ωω L  

which can be summarized as 
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Proof. The results are directly followed from Propositions 1 and 2.  

      Corollary 1 provides a more special case of nonlinear system (1) or (2). There are only 

several nonlinear parameters of the same nonlinear type and degree in the considered system. 

This result will be used in the example of Section 5. Based on the results above, the 

following results can be achieved for the output frequency response.  

      Corollary 2. Consider only the nonlinear parameter Cp,q=c. The parametric characteristic 

vector of the output spectrum in (9) with respect to the parameter c can be written as 
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If all the other degree and type of nonlinear parameters are zero except that Cp,q=c is nonzero 

(p+q>1). Then the parametric characteristic vector of the output spectrum in (9) with respect 

to the parameter c is:  

if p=0 
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Proof. The results are straightforward from Proposition 2 and Corollary 1.  

      The results above involve the computation of cn. If c is an I-dimension vector, there will 

be many repetitive terms involved in cn. To simplify the computation, the following lemma 

can be used.  

      Lemma 1. Let be c=[c1,c2,…,cI] which can also be denoted by c[1:I], and 43421 L
n

n cccc ⊗⊗= , 

“⊗ ” is the reduced Kronecker product defined in Appendix A, 1≥n and 1≥I . Then 

[ ]In
n

innn
nnn csccsisscccc ⋅⋅+−⋅= −−− ])1([,,])1(:1)()1([,, 11

1
1 LL  

where ∑
=

−=
I

ij
nn jsis 1)()( , s(.)1=1, and Ii ≤≤1 . Moreover, 1)1()( += n

n scDIM , and the location of 

ci
n in cn is s(1)n+1-s(i)n+1+1. 

Proof. See Appendix E.  

      Based on the result in Corollary 2 and equation (9), with respect to a specific parameter c, 

the output frequency response function can be written as 

LL l
l +++++= )()()()()( 2

2
10 ωϕωϕωϕωϕω jcjcjcjjY                          (17a) 

Since )( ωjY is also a function of c, therefore, (20a) is rewritten more clearly as 

LL l
l +++++= )()()()();( 2

2
10 ωϕωϕωϕωϕω jcjcjcjcjY                          (17a) 

);( cjY ω is in fact a series of an infinite order. When it is for a finite order N, the right side of 

equation (17) stops at lwhich is a positive integer and can be determined by Corollary 2. 

)( ωϕ ji  can be obtained by following the same method as Process C. If all the other degree 

and type of nonlinear parameters are zero except that Cp,q=c is nonzero (p+q>1),  

then )()(1 ωϕωϕ jj ii =+ (the later is defined in equations (8-9)), Based on equation (17), the 

following analysis can be conducted. 

 



(1) Optimization of the output frequency response in terms of nonlinear 

parameters. 

      This is to give a desired output frequency response )(* ωjY , an optimal c* can be found 

such that  

)();(min * ωω jYcjY
c

−  

Many methods in literature for optimization can be adopted for this purpose, which are not 

discussed here. 

(2) Sensitivity of the output frequency response to nonlinear parameters. 

      Based on equation (17), this can be obtained easily as  
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      Similarly, the sensitivity of the magnitude of the output frequency response with respect 

to the nonlinear parameters can also be derived. Note that 
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where )(⋅ℜ is to get the real part of (.), and <x,y> is the inner product of x and y. It is obvious 

that the spectral density of the output frequency response is still a polynomial function of the 

parameter c. Note that equation (19) can also be directly derived by following Process C. 

Thus, the sensitivity of the magnitude of the output spectrum to the parameter c can be 

obtained as 

∑ ∑
∞

=
=+≤≤

−≤≤

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
ℜ=

∂

∂
=

∂

∂

1
,
10

1
2

),(2
);(2

1);(
);(2

1);(

l
ll

l

ll

jiji
i

jic
cjYc

cjY
cjYc

cjY
ϕϕ

ω
ω

ω
ω           (20a) 

Given (18), (20) can also be computed as 
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      The sensitivity function of system output spectrum to a nonlinear parameter provides a 

useful insight into the effect on system output performance and robustness from the specific 

model parameters. This will be illustrated in Section 5. Another possible application of the 

sensitivity function is for the output oscillation suppression problem. In many engineering 



practice, the oscillation in system output should be suppressed as small as possible. Based on 

equation (20), it can be seen that it should be 0
);(
<

∂

∂

c
cjY ω  for some c in order to reduce the 

magnitude level of output frequency response by properly designing the value of c. Consider 

equation (19), the following conclusion is obvious.  
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      If a nonlinear parameter c satisfies p1= 0))(),(( 10 <><ℜ ωϕωϕ jj , then it can be utilized for 

the purpose of output oscillation suppression.  

(3) Evaluation of the radius of convergence for the output frequency response with 

respect to nonlinear parameters. 

      It is followed from (17) that the radius of convergence is given by 
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Obviously, if |c|<R, then the series is convergent. Define a Ratio Function 
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which is a function of l  and also varying with different nonlinear parameters. It can be seen 

that, if 

l

l

l

l

Δ
Δ

>
Δ

Δ );();( 21 cRcR                                                 (23) 

then the output spectrum has a larger radius of convergence with respect to c1 than that with 

respect to c2. Equation (22) and inequality (23) can be used as an evaluation of the effect on 

the system stability from a specific parameter and the comparative advantage between 

different parameters. This analysis can provide some useful information for the design of 

system output frequency response in terms of model parameters.  

      There may be some other results can be developed based on equation (17) and (19). This 

is under study and will be discussed in the future. And it should also be noted that similar 

results can be established when there are multiple type and degree of nonlinear parameters of 

interest simultaneously.  

5  A case study 



      To demonstrate the effectiveness and application of the new OFRF based analysis 

method, a simple circuit system is studied in this section, which is shown in Fig 1.  

 
Figure 1. A circuit system 

There are two nonlinear components and one active unit in this circuit. The output property 

of the capacitor satisfies ( ) ))()((1 3

1 ∫∫ += dttiCdtti
C

U , and the resistor ))()(( 3
1 tiRtiRU += . In 

this study, the active unit is designed to satisfy ( )22
2

1 )()()()( ∫∫ += dttiticdttiticU . The system 

dynamics can be described by  

( ) )(1)(
3

1
3

1 ∫∫ +=−+−− dtiCdti
C

ViRiR
dt
diLu                                      (24a) 

For convenience, let the output be 

∫= dttiDy )(                                                              (24b) 

The task for this case study is to investigate how the nonlinear terms included both in 

passive and active unites affect the output and what the effect might be, and thus to provide a 

useful analysis for the design of corresponding nonlinear parameters to achieve a desired 

output frequency response.  

      For clarity in discussion, let ∫= dtix , CCc 13 = , 14 RRc ⋅= , 240=L , C=1/16000, R=296, 

and D=16000, then (24) can be rewritten as  

)(29616000240 3
4

3
3

2
2

2
1 tuxcxcxxcxxcxxx +−−−−−−= &&&&&&                      (25a) 

y= x16000                                                                                   (25b) 

(25a) is a simple case of the NDE model (1) with M=3, K=2, 240)2(10 =c , 296)1(10 =c , 

16000)0(10 =C , 430 )111( cc = , 130 )110( cc = , 230 )100( cc = , 330 )000( cc = , 1)0(01 −=c , and all the other 

parameters are zero. Therefore, what is interested in for this study is to analyse the effect of 

the nonlinear terms with coefficients c1, c2, c3 and c4 on the system output frequency 

response. This may provide a useful insight into the nonlinear parameter design for a 

predefined output performance in the frequency domain. To achieve this objective, the 

procedure proposed in Section 3 are adopted to derive the OFRF of system (25), and the 

results in Section 4 will be used for the computation of the parametric characteristic of the 

Active
unit

V

C L

R
u(t) 

i(t)



OFRF with respect to the nonlinear parameters c1, c2, c3 and c4. Moreover, though the 

method proposed in this paper is suitable for a general input function u(t), yet for 

convenience in discussion, the input of system (25) is considered to be a sinusoidal function 

)1.8sin(100)( ttu = . In the following, the procedure proposed in Section 3 is followed to 

conduct an OFRF based analysis. To illustrate the new results more clearly and conveniently, 

the parameter c2 under the case of c1=c3=c4=0 is studied firstly in detail. 

(1)  Determine the parametric characteristics of OFRF 

Note that all the interested nonlinear parameters belong to C30, and the other degrees of 

nonlinear parameters are all zero. Thus Corollary 1 and 2 can be utilised directly. Therefore,  
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where c=c2. To derive the detailed form for ψ , the largest order N should be determined first 

according to Process B in Section 3.2. In order to have a larger range in which the 

parameters can vary, in this case let )10,0( 8
2 ∈c . Then the magnitude bound of )( ωjYn can be 

evaluated as mentioned in Process B. However, for paper limitation, the detailed 

computation is omitted in this case. Simply, the largest N can be set to be a proper value after 

several trails. It can be verified that N=23 is enough for use in this case.  Therefore, 

 ⎣ ⎦
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⎤

⎢⎣
⎡=

−
2

12321 ccc Lψ =[1, c2, c2
2, c2

3, c2
4, c2

5, …, c2
11] 

(2)  Determination of the complex valued function )( ωjΦ  for OFRF  

      Following Process C, the matrix TTT ][ 1 ρψψ L=Ψ should be constructed first. Note that in 

many cases, the parameters may be set to be very large values and cover a very large range. 

This will make the element values in the matrix Ψ  extraordinarily large. Then when the 

inverse of matrix Ψ  is computed, there may be some computation error involved in Matlab. 

To overcome this problem, ψ in (18b) can be rewritten as 
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Then equation (9) can be rewritten as 

[ ][ ]TT jkjkjkckckcjcjY )()()()/()/()/(1)();( 21
2 ωϕωϕωϕωψω l

ll LL=Φ⋅=     (26) 



where ⎣ ⎦2
1−= Nl . Moreover, the range for each parameter can be divided into several sub-

range, and the final result is the combination of these results obtained for each sub-range. In 

this case, let k=105, then ]1000,0[2
2 ∈= k

cc . Choose 2c  to be the following values, 

respectively, for the simulation study to construct TTT ][ 1 ρψψ L=Ψ , i.e., 

0.1,1,50,65,80,100,150,200,250,300,350,400,450,500,550,600,650,700,750,800,850,900, 

950,980,1000. The output frequency response  

)( ωjYY = [ ]ρωωω )()()( 21 jYjYjY L  

of system (25) at 1.8=ω rad/s corresponding to different values of c2 can be obtained through 

FFT of the time-domain output response. Then using (26), it can be derived from (14) that 

[ ]TT jkjkjj )()()()( 21 ωϕωϕωϕω l
lL=Φ = )()( 1 ωjYYTT ⋅ΨΨΨ − . Therefore, the output 

frequency response function of system (25) with respect to nonlinear parameter c2 in the case 

of c1=c3=c4=0 is obtained as 

     );( 2cjY ω = (2.060893505718041e+002 -2.402014548824790e+002i) 

+ k-1 ( -5.14248529981906 + 5.35676372314361i) c2 

+ k-2 (0.08589533966805 - 0.08827649204263i) c2
2 

+ k-3 (-8.068953639113292e-004 +8.248154776018186e-004i) c2
3 

+ k-4 (4.598423724418538e-006 -4.686570228695798e-006i) c2
4 

+ k-5 (-1.679591261850433e-008 +1.708497491564935e-008i) c2
5 

+ k-6 (4.056287337706451e-011 -4.120496550333245e-011i) c2
6 

+ k-7 (-6.544911009113156e-014 +6.641760366680977e-014i) c2
7 

+ k-8 (6.976300614229155e-017 -7.073928662624432e-017i) c2
8 

+ k-9 (-4.713366512185836e-020 +4.776287453573993e-020i) c2
9 

+ k-10(1.827866445826756e-023 -1.851299290299388e-023i) c2
10 

+ k-11(-3.098310700824303e-027 +3.136656793561425e-027i) c2
11 

 

      Based on this function, (19) can be further computed as  

LLL l
l +++++= 2
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2
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2);( pcpccppcjY ω  

=(1.001695593467675e+005)+(-4.693027791051078e+003)c 

   +(1.329525858242289e+002)c2+(-2.55801250200731)c3 

   +(0.03645314106899)c4+(-3.968756773045435e-004)c5 

   +0.01517275811829c6+… 



Note that this is an alternating series and it holds that 1+> ii pp  and 0→ip . Hence the 

series will keep decreasing when c is going larger and within its radius of convergence. By 

following the similar method demonstrated above, the output frequency response functions 

of system (25) with respect to nonlinear parameters c1, c2, c3 and c4 under any cases can all 

be obtained, for instance );( 1cjY ω , );( 3cjY ω , and );( 4cjY ω  with the other nonlinear 

parameters zero if not appearing in the function. The results are shown in Figure 2-4.  

      Figure 2 shows that the variation of the magnitude of the output frequency response 

functions with respect to each nonlinear parameter. It can be seen that the larger the 

nonlinear terms are, the larger the effect they have on the system output frequency response 

is. However from both Figure 2 and Figure 3 it can also be seen that the system output 

frequency response is much more sensitive to the variation of the nonlinear parameters when 

they are small. Once the value of a nonlinear parameter is sufficient large, then the 

sensitivity will tend to be zero. Comparisons between these four nonlinear terms, it can be 

concluded that the system output frequency response is more sensitive to the variation of the 

nonlinear parameter c4 when the values are small; however when the values of each 

nonlinear parameters are sufficient large, the system output spectrum is more sensitive to the 

nonlinear parameter c2. From Figure 4 it can be seen that the convergence of the output 

frequency response functions are all very fast. This can also be understood that the energy 

disperse quickly with the nonlinear order going larger. It is noted that the ratio functions of 

c2 and c3 go up much faster than that of c1, especially c2. This implies that the system is more 

robust with respect to c2 and the radius of convergence corresponding to c2 should be larger. 

Simulation tests verify that the system is still stable when c2=1017 where the magnitude of 

the output spectrum is 0.0216, while the system tends to be unstable when c1 tends to be 

larger than 108.  

      From the analysis above for the four nonlinear parameters of nonlinear degree 3, 

respectively, it can be concluded that  

(1) The system is more robust to the nonlinear parameters c2, c3 and c4, and less robust to c1;  

(2) The system output spectrum is more sensitive to c4 and less sensitive to c3;  

(3) If the output spectrum with respect to a nonlinear parameter is an alternating series 

satisfying 1+> ii pp  and 0→ip , then the system output spectrum may be reduced to 

zero if additionally the radius of convergence for this parameter is sufficiently large;  

(4) Introduction of nonlinear terms into a linear system may greatly improve the 

performance of output frequency response, the magnitude of output spectrum is not 



necessarily proportional to the increase of the values of the nonlinear parameters, and the 

stability of a nonlinear system is not necessarily deteriorated with the values of the 

nonlinear parameters increasing;  

(5) Several simple nonlinear terms can work together to achieve a better performance. 

 

To demonstrate further the advantage of the OFRF based analysis and to show more 

clearly the effect on the system output spectrum from several nonlinear parameters together, 

the OFRF with respect to c1, c2 and c3, i.e., ),,;( 321 cccjY ω is derived. Let 

],105,0[],106,0[],10,0[ 5
3

5
2

5
1 ⋅∈⋅∈∈ ccc and c4=-500, then the largest order N of the output 

spectrum can be determined to be 11 according to the evaluation of (10), and consequently 

(18b) can be obtained as ( ],,[ 321 cccc = ) 

⎣ ⎦
⎥⎦
⎤

⎢⎣
⎡=

−
2

11121 ccc Lψ =[1,c1,c2,c3,c1
2,c1c2,c1c3,c2

2,c2c3,c3
2,c1

3,c1
2c2,c1

2c3,c1c2
2,c1c2c3, 

c2
3,c2

2c3,c2c3
2,c3

3,c1
4,c1

3c2,c1
3c3,c1

2c2
2,c1

2c2c3,c1
2c3

2,c1c2
3,c1c2

2c3,c1c2c3
2,c1c3

3,c2
4,c2

3c3, 

c2
2c3

2,c2c3
3,c3

4,c1
5,c1

4c2,c1
4c3,c1

3c2
2,c1

3c2c3,c1
3c3

2,c1
2c2

3,c1
2c2

2c3,c1
2c2c3

2,c1
2c3

3,c1c2
4, 

c1c2
3c3,c1c2

2c3
2,c1c2c3

3,c1c3
4,c2

5,c2
4c3,c2

3c3
2,c2

2c3
3,c2c3

4,c3
5]. 

Finally, following the same procedure, the OFRF ),,;( 321 cccjY ω in this case can be obtained. 

The results are shown in Figure 5-6. It can be seen that  

      (1) By using the OFRF, the output spectrum can be plotted and analyzed under different 

combinations of the nonlinear parameters c1, c2 and c3. This provides a straightforward 

insight into the relationship between system output spectrum and model parameters which 

define nonlinearities.  

      (2) The OFRF is varying with different values of c1, c2 and c3. Thus the parameters 

should be optimized in order to get the best output frequency response performance. The 

OFRF provides a useful basis for this kind of analysis and optimization.  

 

      From the discussions above, it can be concluded that the OFRF based analysis provides a 

novel, effective and useful approach to the analysis and design of nonlinear Volterra systems 

in the frequency domain.  

 

6  Conclusions 

      Based on some recently developed results, the OFRF based analysis for nonlinear 

Volterra systems is proposed, which is a novel and effective approach to the analysis and 

design of nonlinear Volterra systems in the frequency domain, and totally different from 



some existing methods such as GFRF based analysis which is usually difficult to be used to 

obtain some quantitative information about a system, and involves too much recursive 

complicated computations which may even be difficult to be carried out when the involved 

nonlinearity order is too large, and describing function based methods which can only deal 

with harmonic input. Some fundamental results, techniques, and a general procedure for the 

determination and analysis of OFRF are provided to support the application of this novel 

frequency domain analysis method. A case study for a simple circuit system shows that the 

OFRF based analysis is a useful approach to the analysis, design and optimization of 

nonlinear Volterra systems in the frequency domain. 
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Appendices 

 

Appendix A: Coefficient extraction (CE) operator (Jing et al 2006ab) 

Consider a series  

σσ fcfcfcH CF +++= L2211 Ψ∈  

where the coefficients ci (i=1,…,σ ) are complex numbers, C=σ denotes the dimension of 

vector C, fi Ψ∈ (i=1,…,n) are complex valued functions, Ψ denotes a set of complex valued 

scalar functions, C=[c1,c2,…,
σc ], and F=[ f1,f2,…, σf ]T. Obviously, this series is separable 



with respect to the coefficients ci for i=1,…,σ . Define a Coefficient Extraction operator 
σC→Ψ:CE for this series such that 

σ
σ C∈== CcccHCE CF ],,,[)( 21 L  

where σC is the σ -dimensional complex valued vector space. This operator has the following 

properties, also acting as operation rules: 

(1) Reduced vectorized sum “⊕ ”.  

     ],[)()()( 212122112211
CCCCHCEHCEHHCE FCFCFCFC ′=⊕=⊕=+ , )( 2122 CCCVECC ∩−=′ , 

where { } { }222111 1)(,1)( CiiCCCiiCC ≤≤=≤≤= , VEC(.) is a vector consisting of all the 

elements in set (.). 2C ′ is a vector including all the elements in C2 except the same 

elements as those in C1.  

(2) Reduced Kronecker product “⊗ ”.  

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤≤

=
=⊗=⊗=⋅

3

211213
321 1

])(,,)1([
)()()()(

22112211 Ci

CCCCCC
iCVECCCHCEHCEHHCE FCFCFCFC

L
 

      which implies that there are no repetitive elements in 21 CC ⊗ . 

(3) Invariant. (a) )()( CFCF HCEHCE =⋅α  ℜ∈∀α but  is not a parameter of interest; (b) 

CHCEHHCE FFCCFCF ==+ + )()( )( 2121
 

(4) Unitary. If CFH is not a function of ci for i=1…n, 1)( =CFHCE .  

      When there is a unitary 1 in CE(HCF), there is a nonzero constant term in the 

corresponding series HCF which has no relation with the coefficients ci (for i=1…n). 

In addition, if CFH =0, then CE(HCF)=0. 

(5) Inverse. CE-1(C)=HCF. 

(6) )()(
2211 FCFC HCEHCE ≈  if the elements of C1 are the same as those of C2, where “ ≈ ” 

means equivalence, i.e., both series are in fact the same result considering the order 

of cifi in the series has no effect on the value of a function series HCF. This further 

implies that the CE operator is also commutative and associative, for instance, 

1221 )()(
11222211

CCHHCECCHHCE FCFCFCFC ⊕=+≈⊕=+ . Hence, the results by the CE 

operator with respect to the same purpose may be different but all correspond to the 

same function series and are thus equivalent.  

(7) Separable and concerned parameter only. A parameter in a series can only be 

extracted if the series is separable with respect to this concerned parameter. Thus the 

operation result is different for different purposes.  



       

Appendix B: Notations for the Bound of Yn( ωj ) (Jing et al 2006c) 

∫ ∏
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with terminal condition b1=[0,1], where the operators “ • ” and “ o ” are defined as follows.  

      Consider two polynomials of degree n and m respectively,  
T
n

n
na ahahaaf hL ⋅=+++= 10 , and T

m
m

nb bhbhbbf hL ⋅=+++= 10  

where the coefficients a0, a1, …, an; b0, b1,…, bm are all real numbers, h stands for a real or 

complex valued function, a=[ a0, a1, …, an], b=[ b0, b1,…, bm], and ih =[1, h, …, hi].  

      Define a multiplication operator “ • ” as 

      cba =• , where c is an n+m+1-dimension vector, c(k)= ∑
≤≤≤≤

=+
njni

kji
jiba

0,0

for nmk +≤≤0 .  

Denote ( ) ∑
≤≤≤≤

=+

=•

mjni
kji

jibakba

0,0

)( . From this operator it follows that, for example, T
mnba baff +⋅•=⋅ h . 

Similarly, define an addition operator “ o ” as 

      cba =o , where c is an x-dimension vector, x=max{m,n}, c(k)=a(k)+b(k) for xk ≤≤0 . If 

k>n or m, then a(k)=0 or b(k)=0, accordingly.  

      From the operator“ o ” it follows that, for example, T
mnba baff ),max(ho ⋅=+ .  

 

Appendix C: Proof of Proposition 1 

The parametric characteristics of the nth-order GFRF is given by (Jing et al 2006ab) 
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      C0,n is the first term in equation (C1). For clarity, consider a simpler case that there is 

only output nonlinearities in (C1), then (C1) is reduced to only the last term of equation (C1), 
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combinations of (r1,r2,…,rp) satisfying nr
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, 11 +−≤≤ pnri , and np ≤≤2 . Moreover, 

CE( )(1 ⋅H )=1 since there are no nonlinear parameters in it, and any repetitive combinations 

have no contribution. Hence, ( ))(
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combinations of (r1,r2,…,rk) satisfying kpnr
k

i
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, 12 +−≤≤ pnri  and pk ≤≤1 . So does 

CE( ),,( 1 nn jjH ωω L ). Each of the subscript combinations corresponds to a monomial of the 

involved nonlinear parameters. Thus, including the term Cp,0 and considering the range of 

each variable (i.e., ri, p, and k), CE( ),,( 1 nn jjH ωω L ) must include all the possible non-

repetitive monomial functions of the nonlinear parameters of the form 

0000 21 krrrp CCCC ⊗⊗⊗⊗ L satisfying knrp
k

i
i +=+∑

=1

, knri −≤≤2 , 20 −≤≤ nk  and knp −≤≤2 . 

When the other types of nonlinearities are considered, just extend the results above to a more 

general case that the nonlinear parameters appear in the form
kk qpqpqppq CCCC ⊗⊗⊗⊗ L

2211
and 

the subscripts satisfy knqpqp
k

i
ii +=+++ ∑

=1

)( , knqp ii −≤+≤2 , 20 −≤≤ nk , knqp −≤+≤2  

and knp −≤≤1 . Hence, the proposition is proved.  

 

Appendix D: Proof of Proposition 2 

      Regard all other nonlinear parameters as constants or 1. From Proposition 1, if p+q>n then the 

parameter has no contribution to CE(Hn(.)), in this case CE(Hn(.))=1 with respect to this parameter. 

Similarly, if p+q=n then the parameter is an independent contribution in CE(Hn(.)), thus 

CE(Hn(.))=[1 c] with respect to this parameter in this case. If p+q<n and p>0, then the independent 

contribution in CE(Hn(.)) for this parameter should be 
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This completes the proof.  

 

Appendix E: Proof of Lemma 1 

      The lemma is summarized by the following observation. For clarity, let I=3. 
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      To complete the proof, the complete mathematical induction can be adopted. An outline 

for this proof is given here. Note that  
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