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Structure-from-motion with varying principal point
W. A. P. Smith, P. Lewińska, M. A. Cooper, E. R. Hancock, Fellow, IEEE, J. A. Dowdeswell, and D. M. Rippin

Abstract—We consider the problem of structure-from-motion
(SfM) for images with fixed calibration but varying principal
point. This scenario occurs for archival imagery taken using
historic glass plate and film cameras without fiducial markers,
when images have been inconsistently cropped or when image
plates are broken into multiple fragments. We derive initialisation
and pose estimation methods and regularisation penalties tuned
specifically for this scenario leading to a complete archival
imagery SfM pipeline. We illustrate the performance of our
methods on challenging real world examples from image archives.
Specifically, we use archival images of the East coast of Greenland
from the British Arctic Air Route Expedition (BAARE). This is
of particular glaciological interest for measuring historic ice loss.
We use a modern digital elevation model (ArcticDEM), masked
to stable regions, as ground truth to evaluate our method.

I. INTRODUCTION

Photogrammetry has long provided valuable data for Earth

surface analysis. Examples include landslide and snow cover

monitoring, and glacier terminus and surface evolution [1],

[2]. Aerial photogrammetry is usually favoured due to the

relatively large areas that can be covered in a short time,

thus allowing the study of dynamic changes [2]. Especially for

environmental studies, a geolocalisation is required, and this

proves to be difficult with historic images since the terrain has

often eroded and there is not enough high quality data available

for the creation of reliable ground control points (GCPs) or

reference model for alignment [2]–[4]. Also, the change of

capture medium from glass plates to film and then to digital

and changes in the construction of the camera itself brings

many challenges for accurate 3D reconstruction.

Historical images, archival, analogue photographs present

several challenges such as low quality, various state of original

medium and complex and unknown processing pipeline from

capture to digitisation that could alter the geometry. Images

were taken with or without fiducials (markers on the image

used for the calculation of internal camera calibration param-

eters [5]). Where available, fiducials can be used to correct

for film shrinkage or linear deformation from image scanning.

Alternatively, if the intrinsics are not known but all images

were taken by the same camera, then the scanned images can

be cropped and moved so that they retain the same size after

the scanning procedure [5]. Even though some approaches rely

on removing fiducials [5], images that do not have any intrinsic

information are harder to process in a traditional way [3].

State-of-the-art SfM methods [6] perform self-calibration, but

W. Smith, P. Lewińska and E. Hancock are with the Department
of Computer Science and M. Cooper and D. Rippin with the Depart-
ment of Environment and Geography, University of York, UK e-mail:
william.smith@york.ac.uk. J. Dowdeswell is with the Scott Polar Research
Institute, University of Cambridge, Cambridge, UK

Manuscript received April 19, 2005; revised September 17, 2014.

A B

A A

C

B

C

D

C

Fig. 1. Motivating scenario. To enable changing plates in daylight, a glass
plate (B) is placed in a fabric envelope (A). The envelope is placed inside
an envelope adaptor (C). When the adaptor is attached to the camera, the
draw-slide (D) is pulled open, allowing the plate to be exposed. The plate
can move within the adaptor (middle) and the draw-slide may not be pulled
fully open. The exposed area is therefore bounded by the envelope cut-out on
three sides and the draw-slide on the other, none of which are fixed.

in practice this procedure can be unstable [7]. Making use of

known camera calibration parameters is thus to be preferred.

Pose estimation plays a key role in SfM for the purpose

of aligning images to the reconstructed model. Perspective-n-

point (PnP) methods differ in the minimum number of points,

n, required and whether they can self-calibrate for focal length,

f, or principal point (PP), uv. In the context of our scenario,

some relevant uncalibrated pose estimation methods have been

proposed. An uncalibrated version of EPnP [8], known as

UPnP [9], computes both pose and focal length. Minimal

methods exist for P4Pf with unknown focal length [10] and

P4.5Pfuv with both unknown focal length and PP [11].

Scenario. We consider a camera with fixed parameters that

captures multiview images of a scene. However, each image

is subject to a different unknown, image plane transformation

and, or cropping. This amounts to assuming fixed focal length

and distortion parameters through the sequence but varying

PP. This occurs when images are arbitrarily cropped or with

archival images when the physical medium moves within the

camera (Fig. 1) or scanner and there are no fixed reference

fiducial markers that can be used to compensate.

Contributions First, we identify a new problem with wide

applicability (Sec. II). Second, we introduce the PnPuv prob-

lem and propose a first solution (Sec. III). Third, we propose

the first SfM pipeline for this scenario, including a novel

exposed area constraint that makes PP estimates between

images non-independent (Sec. III). Fourth, we describe a

variant of our pipeline that can handle fragmented images

and implicitly reassemble the fragments (Sec. IV). Finally, we

find a real world application scenario in which our method

is applicable and outperforms standard pipelines. To the best

of our knowledge the case of unknown PP with known focal

length has not been previously studied. Of course, modern

SfM pipelines such as COLMAP [12] can optimise PP position

during bundle adjustment. However, no existing tools provide

the option to share all intrinsic parameters across images while

allowing PP to vary between images.
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Fig. 2. Coordinate systems: (a) camera, (b) photographic medium, (c) cropped
digital image.

II. PROBLEM SCENARIO

We model the physical camera as a classical pinhole with

fixed intrinsic parameters (we additionally model nonlinear

distortion during bundle adjustment):

λ

[

u
cam
ij

1

]

=





fmm 0 0
0 fmm 0
0 0 1





[

Ri ti

]

[

xj

1

]

, (1)

where λ is a scale, fmm is the physical focal length in

world units (i.e. millimetres), Ri ∈ SO(3) and ti ∈ R
3

the pose of the ith camera that transforms from world to

camera coordinates, xj = [xj , yj , zj ]
⊤ the jth world point and

u
cam
ij = [uij , vij ]

⊤ the corresponding projection into the ith
image, i.e. camera coordinates in world units (see Fig. 2(a)).

The image is captured on a photographic medium which

can move between exposures (we assume a 2D rigid transfor-

mation). The coordinate system with respect to the medium

(e.g. measured from the upper left corner of the plate -

see Fig. 2(b)) is different for each image and defined as:

u
media
ij =

[

R
media
i t

media
i

]

[ucam
ij

⊤, 1]⊤, where R
media
i ∈ SO(2)

and t
media
i ∈ R

2 define a 2D rigid transformation of the

medium within the camera. This coordinate system is still in

world units, e.g. millimetres.

Finally, physical media is digitised via scanning and man-

ually cropped (Fig. 2(c)). This change in coordinate system

amounts to a scale (world units to pixels) and translation (a

rotation could also be included here without changing the final

model but usually the medium can be aligned to the edge of the

scanner in a consistent manner): uij = si(u
media
ij + t

scan
i ), with

uij now in units of pixels and si is the scanning resolution in

units of pixels per millimetre, known from metadata.

Combining the above series of transformations, we note that

R
media
i can be factored into Ri, i.e. we compensate for image

plane rotation via camera pose, and combine the translations

to form the effective centre of projection:λ[s−1
i u

⊤
ij , 1]

⊤ =
Ki

[

Ri ti

]

[x⊤
j , 1]

⊤, where Ki is the intrinsic matrix with

focal length fmm and PP [ui0, vi0]
⊤ = t

scan
i + t

media
i . With si

assumed known, this amounts to a scenario of fixed intrinsics

(focal length) but varying PP, i.e. we have (ui0, vi0) unknown

per image. This model is applicable to scanned physical media

or digital camera images with inconsistent crops.

III. ARCHIVAL IMAGE SFM PIPELINE

We assume that focal length remains fixed throughout the

image sequence. Where a geolocated model is required, we

assume that sparse GCPs are available. Feature extraction and

matching is identical to traditional SfM pipelines. However,

for initialisation, pose estimation during incremental SfM and

bundle adjustment we propose specialised methods to account

for per-image varying PP.

Feature extraction and matching For all images we extract

SIFT features [13], [14]. We perform brute force matching

and discard ambiguous matches using Lowe’s ratio test [13]

with a ratio of 1.5. Finally, we perform geometric verification

by fitting a fundamental matrix with MLESAC [15] and

discarding image pairs with fewer than 30 inlying matches.

Initialisation In modern SfM pipelines, intrinsics are usually

initialised by reading focal length in millimetres and the

camera model from image meta data, allowing a good initial

estimate for the focal length in pixels. In the archival scenario,

contemporary logs can play the same role: often the focal

length was recorded. In addition, either the physical size of

the plate or film is known or, if a flat bed scanner was used,

the scanning resolution in real world units is known. Again,

this enables a good initialisation for the focal length in pixels.

We initialise camera pose for the first two images using

GCPs. We select the pair of images with maximum mutually

visible GCPs and then solve for pose using the known focal

length and the given 2D/3D GCP correspondences with our

PnPuv method in Sec. III. We triangulate matched features

between the initial pair, initialise distortion parameters to zero

and run an initial bundle adjustment (see Sec. III).

PnPuv A key component of an SfM pipeline is an absolute

pose solver to align new views to the current reconstruction.

With unknown PP this PnPuv problem contains 8 unknowns

(6 for pose, 2 for PP) and so, in principal, a minimal P4Puv

solution could be derived, e.g. by adapting [11]. However,

a good initialisation/prior is available for the PP (the image

centre) which would not normally be true for focal length in

PnPf. Also, in the archival scenario, GCPs may be available,

manual outlier removal may be viable and speed is not a

concern. Hence, we do not seek a minimal solution but instead

a least squares solution over all points which can optionally

incorporate regularisation of the PP according to a prior.

We show how to write PnPuv as separable nonlinear least

squares [16], i.e. a form that is linear in some parameters

and nonlinear in the rest. This means that the optimal PP

can be implicitly solved for using linear least squares and

only requires nonlinear optimisation over pose. We denote

by: u(x, f,R, t) =
[

f(r1x+t1)
r3x+t3

f(r2x+t2)
r3x+t3

]⊤

, the perspective

projection of x without accounting for the PP. Each corre-

spondence (uj ,xj) gives us a pair of equations of the form:

u(xj , f,R, t) + u0 = uj . Note that this equation is linear in

u0, but nonlinear in t and any parameterisation of R. Hence,

stacking the equations for all points and introducing a PP prior,

we can write it in the form Au0 = d(R, t), where:

A =

[

1n×1 ⊗ I2

wPPI2

]

, d(R, t) =











u1 − u(x1, f,R, t)
...

un − u(xn, f,R, t)
wPPu

init
0











,

(2)

⊗ is the Kronecker product, u
init
0 is the PP prior (usually

set to the image centre) and wPP is the prior weight (set to
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Fig. 3. Exposed area constraint. Aligning images (top) by their estimated
centres of projection defines a bounding box (bottom right, dashed) which
should lie within the physical film gate (bottom left, gray) and we penalise
the additional area (red stripes).

zero for an unregularised solution). The linear least squares

solution for u0 is given by A
+
d where A

+ is the pseu-

doinverse of A which does not depend on any optimisation

variables and has a very simple closed form: A+ = 1/(w2
PP +

n)
[

11×n ⊗ I2 wPPI2

]

. Substituting the optimal PP into (2)

we can write a nonlinear least squares problem in terms of

only pose: minR,t ‖AA
+
d(R, t)− d(R, t)‖

2
2. We solve this

optimisation using Levenberg-Marquardt and parameterise R

using axis-angle. We initialise using EPnP [8] with the PP

assumed to be at the image centre.

Exposed area constraint Variations in PP position between

images imply an alignment of the images by translating to

align their PPs. This provides a constraint. The film gate is

the frame in front of the film or glass plate which has the

dual purpose of holding the film in place and letting light

through. The film gate has fixed area. Hence, once the images

have been aligned, the total area of the exposed pixels cannot

exceed the film gate area. Alignment by per-image PP implies

an exposed area (see Fig. 3) with width and height given by:

Wea = max
i

(ui0) + max
i

(Wi − ui0) and Hea = max
i

(vi0) +

max
i

(Hi − vi0), where Wi and Hi are the width and height

of the ith image. For film gate with dimensions Wfg ×Hfg we

define an exposed area loss which penalises the exposed area

having larger dimensions than the measured film gate:

Eea = max(0,Wea −Wfg)Hea +max(0, Hea −Hfg)Wea. (3)

Bundle adjustment and incremental SfM We perform in-

cremental SfM. For each new view we initialise by solving

PnPuv using any keypoints that have been reconstructed pre-

viously. We initialise new 3D scene points by triangulating

any keypoints seen for the second time. Finally, we perform

bundle adjustment over all views. We repeat this process until

finally performing bundle adjustment over the entire dataset.

Our bundle adjustment procedure solves the following op-

timisation problem: minΘ Ereproj + weaEea + wf priorEf prior,

where Θ = (θ, {θi}i, {xj}j), with per-dataset parameters θ =
(fmm, k1,2,3, p1,2) (in which k1,2,3 and p1,2 are nonlinear dis-

tortion parameters), per-image parameters θi = (Ri, ti,ui0)
and 3D scene points xj . All the loss functions in our objective

are sums of squared quantities and we solve the resulting non-

linear least squares problem using the Levenberg-Marquardt

algorithm. The reprojection error is given by:

Ereproj =
∑

i

∑

j∈Vi

‖uij − π(θ, θi,xj)‖
2
2 , (4)

where Vi is the set of keypoints visible in image i and

π(θ, θi,xj) performs perspective projection (with radial and

tangential distortion) of xj . We normalise the reprojection er-

ror by the number of keypoints in each image. The focal length

prior encourages the estimated focal length to stay close to the

initial physical focal length f init
mm: Ef prior =

∥

∥fmm − f init
mm

∥

∥

2

2
. We

set wea = 0.1 and wf prior = 0.001 empirically and use these

weights in all experiments.

Implementation Our pipeline is implemented in Matlab. Our

sparse reconstruction, estimated camera intrinsics and extrin-

sics and normalised images with embedded camera meta data

can be exported to existing dense reconstruction tools [17].

IV. IMAGE FRAGMENTS

Our pipeline can be applied, with slight modification, to

a scenario in which one or more of the images in the

sequence has been fragmented into parts. This could occur,

for example, due to a photographic glass plate being broken

or a photographic print being torn into pieces. In this case,

the correct arrangement of the fragments into a single image

requires estimation of a 2D rigid transformation for each

fragment relative to one chosen reference fragment. With

real fragmented images there is usually some image missing

along the fragment boundaries and so they cannot be used to

reassemble the fragments. Instead, we use 3D geometric scene

information to resolve the 2D placement of fragments.

We assume that the ith image has been fragmented into

ni parts where ni = 1 for images that are complete. We

partition the 2D keypoints associated with the ith image into

non-overlapping sets of keypoints, one for each fragment:

F i
1, . . . ,F

i
ni

. Image matching and geometric verification is

applied independently to each fragment. We choose as the

reference fragment the one with the highest number of matches

to previously reconstructed points. To initialise, we solve

PnPuv for keypoints in this fragment alone using the method

in Section III. Then, for each additional fragment we keep

pose and intrinsics fixed and compute the optimal 2D rigid

transformation for that fragment in closed form.

During bundle adjustment, we use a modified reprojection

error that incorporates per-fragment transformation:

Ereproj =

ni
∑

k=1

∑

j∈Fi

k

∥

∥

∥
RFi

k

uij + tFi

k

− π(θ, θi,xj)
∥

∥

∥

2

2
,

where RFi

k

∈ SO(2) and tFi

k

∈ R
2 are a 2D rotation and

translation respectively. Assuming the first fragment is the
reference to which other fragments are aligned then RFi

1

= I3

and tFi

1

= 0. Hence, each additional fragment in each image
adds 3 unknowns to the optimisation (rotation angle and 2D
translation). Finally, we require an additional constraint to
avoid fragments overlapping each other. We assume that each
fragment is scanned separately and that a per-pixel mask
indicates which image pixels belong to the fragment (Fig. 6)
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Fig. 4. Quantitative PnP results with unknown PP and ablation of PP prior.
We show median errors over 1000 runs. EPnP does not estimate PP so is not
included in right hand plot.

Coloured dense point cloud Distance to ground truth Masked to stable regions

Fig. 5. Qualitative results for region 1. Top row: baseline method, bottom
row: proposed pipeline. The middle column shows the point to point distance
to a modern reference DEM. The right column shows the same but cropped
to ‘stable regions’. Errors over 70m are clipped.

Method Input Geoloc. Egeo (m) Epp (pixels)
mean / max

[17] Orig GCP 0.046 / 0.324 0.00
∗

[12] Orig “GPS” 0.236 / 1.100 47.9
Ours Crop GCP 0.125 / 1.24 73.2± 6.5

Ours w/o Eea Crop GCP 0.134 / 1.100 194.9± 20.2

[17] Crop N/A Failed to reconstruct
[12] Crop N/A Failed to reconstruct

Ours + [17] Crop “GPS” 0.091 / 0.999 N/A†

Ours + [12] Crop “GPS” 0.218 / 0.837 N/A†

TABLE I
QUANTITATIVE RESULTS FOR ZAGÓRZ DATASET.

Method Change (m) Error (m)

Region 1
Baseline 19.4± 41.5 12.2± 33.3

Proposed 15.6± 39.6 6.65± 27.6

Region 2
Baseline 30.4± 66.3 26.5± 64.3

Proposed 10.6± 41.1 8.37± 38.0

TABLE II
QUANTITATIVE RESULTS FOR ARCHIVAL IMAGE DATA.

such that Mi
k is the set of pixels in the mask for the k-

th fragment in the i-th image. For each fragment mask, we
compute the distance transform of the compliment of the mask
(i.e. it has zero value outside the fragment and increases with
distance inside the fragment) see Fig. 6 for an example. This
distance map, dik(u), can be evaluated at any (non-integer)
position u via differentiable bilinear interpolation. We can now
measure interpenetration between aligned fragments:

Eoverlap =
∑

i

ni
∑

k=1

ni
∑

l=k+1

∑

u∈Mi

l

d
i

k

[

R
−1

Fi

k

(

RFi

l

u+ tFi

l

− tFi

k

)]2

.

This additional cost pushes fragments apart when they overlap

and is added to the overall bundle adjustment objective.

V. EXPERIMENTS

PnPuv We begin by quantitatively evaluating proposed PnPuv

method on synthetic data using the same parameters as our real

Mask 1

Original scans of fragments

Aligned result

Mask 2

Mask 1 

distance 

transform

Reconstruction result

Fig. 6. Top: original scans of image fragments and (inset) pixel-wise masks
and distance transform for mask 1. Middle: alignment using the estimated 2D
rigid transformation for the second fragment with zoomed regions illustrating
good alignment of features that cross the crack. Bottom: Results for three
image sequence containing cracked image. Heat maps show distance to ground
truth for whole model (middle) and stable regions only (right).

data (focal length 7in, scene scale ranging 1km-10km, image

size 5in × 4in). We generate 8 random 3D points in the field of

view of the camera and project to 2D before adding Gaussian

noise of standard deviation 1mm. We examine how pose and

PP position estimation behaves as the true PP is varied up

to 10mm from the centre of the image. While no existing

methods solve the PnPuv problem, the classical direct linear

transform (DLT) can be used for this purpose. We use the DLT

to estimate the camera matrix then decompose to P = K[R t]
via the RQ decomposition [18], providing a PP estimate in

K. We also compare against EPnP [8] when assuming the

PP is the image centre. We perform an ablation on the PP

prior, comparing wPP = 0 and wPP = 2. For our method

pose accuracy does not degrade as the PP moves away from

the image centre while the PP itself is accurately estimated

(Fig. 4). Using the PP prior always improves performance.

SfM In Table I we begin with a quantitative evaluation on

the Zagórz dataset [19] (see supplementary material) using

either the original uncropped images (Orig) or cropped images

(Crop) as shown in supplementary material. To geolocate the

point clouds to ground truth, we either use GCPs (GCP) or
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the camera positions estimated by our method as pseudo GPS

locations (“GPS”). We compare against Agisoft metashape

[17] and COLMAP [12]. We treat the [17] result on uncropped

images as pseudo ground truth for PP (∗). Results labelled †

use the same PP estimates as Ours. We also provide an ablation

study removing the exposed area constraint (Ours w/o Eea).

Next we use the 1931 British Arctic Air Route Expedition

(BAARE) dataset consisting of aerial oblique images taken

along the East coast of Greenland using a Williamson P14

camera with a 7in (177.8mm) focal length lens and 5in × 4in

glass plates. For ground truth we use the modern (2015-2018)

ArcticDEM [20]. We process image sequences covering two

regions: the Hutchinson glacier (region 1, 11 images) and an

unnamed glacier at W31◦49′18.84′′, N68◦5′41.64′′ (region 2,

13 images). For comparison, our baseline method is to run

Agisoft Metashape [17], allowing all camera parameters to

vary between images. We show results in Fig. 5 and Table II,

where we show mean ± standard deviation of point to point

distance between our reconstructed models and ground truth

DEM. Change denotes distances over the whole model giving

the overall degree of change while Error is calculated only

over stable regions and can be used to quantify the accuracy

of the model. When using stable regions (areas that do not

include changeable glaciers or sea level) to compare against

ground truth, we achieve a reduction in mean error of 45% and

68% respectively. Our result for non-stable regions, that will be

used in the future for evaluating glacier change between 1931

and current times, show more uniform change across the ice

covered areas and better highlights the change in ice covered

areas in region 2. The estimated camera locations place the

aeroplane altitude at an average of 2,372m and 2,851m for

the two regions - plausible given the typical 10,000ft (3,048m)

reported in contemporary logs [21].

Finally, we show a three image sequence in which the glass

plate for the middle image was broken in half. Fig. 6 top and

middle shows the processing pipeline and illustrates the result

of aligning the bottom fragment to the top. Note that linear

features on the terrain that cross the crack boundary appear

well aligned in the zoomed regions. Fig. 6 bottom shows a

reconstruction result from a three image sequence including

the cracked image. This is highly challenging due to the

extreme viewpoint change, sparse regions of correspondence

(approximately indicated by bounding boxes) and the cracked

middle image. We are still able to achieve average error of

5.13 ± 14.8m over stable regions. The baseline method fails

on this sequence. With the fragments not precisely aligned,

geometric verification fails to find inliers in both fragments.

Treating each fragment as a separate image also fails.

VI. CONCLUSIONS

In this paper we have presented a SfM pipeline that is

specifically adapted to work with archival photographs. Most

importantly, this deals with the motion of photographic media

within the camera but also can handle images that have been

fragmented into parts. We demonstrated that our approach

yields significantly more accurate reconstructions on challeng-

ing real world data of glaciological interest. Besides applica-

tion to other historical datasets, there are several interesting

avenues for future technical work. For cracked images, a

textured dense model may provide a model-based approach

to inpainting the missing regions in the cracked image. The

laborious task of labelling GCPs could be automated by

solving a very challenging matching task between modern and

archival images.
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[19] P. Lewińska, A. Żadło, M. Róg, and S. Szombara, “To save from

oblivion: comparative analysis of remote sensing means of documenting
forgotten architectural treasures - Zagórz monastery complex, Poland,”
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