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A B S T R A C T   

Interferometric Synthetic Aperture Radar (InSAR) is widely used to measure deformation of the Earth's surface 
over large areas and long time periods. A common strategy to overcome coherence loss in long-term interfero
grams is to use multiple multilooked shorter interferograms, which can cover the same time period but maintain 
coherence. However, it has recently been shown that using this strategy can introduce a bias (also referred to as a 
“fading signal”) in the interferometric phase. We isolate the signature of the phase bias by constructing “daisy 
chain” sums of short-term interferograms of different length covering identical 1-year time intervals. This shows 
that the shorter interferograms are more affected by this phenomenon and the degree of the effect depends on 
ground cover types; cropland and forested pixels have significantly larger bias than urban pixels and the bias for 
cropland mimics subsidence throughout the year, whereas forests mimics subsidence in the spring and heave in 
the autumn. We, propose a method for correcting the phase bias, based on the assumption, borne out by our 
observations, that the bias in an interferogram is linearly related to the sum of the bias in shorter interferograms 
spanning the same time. We tested the algorithm over a study area in western Turkey by comparing average 
velocities against results from a phase linking approach, which estimates the single primary phases from all the 
interferometric pairs, and has been shown to be almost insensitive to the phase bias. Our corrected velocities 
agree well with those from a phase linking approach. Our approach can be applied to global compilations of 
short-term interferograms and provides accurate long-term velocity estimation without a requirement for 
coherence in long-term interferograms.   

1. Introduction 

Interferometric Synthetic Aperture Radar (InSAR) is a powerful tool 
for monitoring ground deformation associated with earthquakes, vol
canoes, landslides, and anthropogenic activities (e.g. Biggs et al., 2009; 
Foroughnia et al., 2019; Juncu et al., 2017; Massonnet et al., 1995; 
Temtime et al., 2018; Walters et al., 2011; Weiss et al., 2020). On a first 
order, the accuracy of the estimated deformation is thought to depend 
on uncorrected tropospheric and ionospheric delays, errors in phase 
unwrapping, uncertainties in knowledge of satellite position, phase 
decorrelation due to changes in scattering behavior between successive 
images, and system noise. Most of these error terms are associated with 
individual epochs and cancel out when calculating the wrapped loop 
closure phase at full spatial resolution, Δφ, defined for three epochs (i, j, 
k) as: 

Δφi,k =
⃒
⃒φi,k −

(
φi,j + φj,k

) ⃒
⃒

2π (1)  

where φi, j, for example, is the phase difference for a pixel in the inter
ferogram between epochs i and j, and ||2π indicates that the result is 
given modulo 2π (i.e. wrapped) (Michaelides et al., 2019; Zwieback 
et al., 2016). 

For full-resolution processing, the wrapped loop closure phase must 
be zero. If multilooking, or other forms of spatial filtering, is carried out 
as part of the processing, then Δφ will not be precisely equal to zero. The 
nonzero closure phase cannot be due to some real signals as the phase 
variations due to real signals such as the genuine deformation or at
mospheric delay inside a multilooking window are generally small and 
does not result in inconsistent phases. This nonzero term is because the 
filtering adds a term to each interferogram, the aim of which is reduce 
the noise term, which does not cancel in the closure phase calculation. 
This is not an issue for applications provided that the expected value of 
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this term is zero. However, De Zan et al. (2015) showed that the ex
pected value of the filtering term is non-zero for some ground cover 
types. 

Nonzero closure phases are a product of the spatial filtering and are 
mainly associated with the scattering and electrical properties of the 
ground surface (De Zan et al., 2015; Michaelides et al., 2019). Previous 
studies have suggested that changes in soil moisture and in the water 
content of vegetation might lead to these phase inconsistencies (De Zan 
and Gomba, 2018; De Zan et al., 2014). Although the amount of the bias 
caused by such inconsistencies is small in each individual interferogram, 
its accumulation in time can significantly impact the final estimated 
velocities, particularly for applications where millimetric accuracy is 
required. Ansari et al. (2021) showed short-interval multilooked in
terferograms are more impacted by this phenomenon and referred to 
this effect as the fading signal due to its short-lived nature. This is 
particularly problematic for time-series analysis approaches that exploit 
pixels where coherence can only be maintained for short time intervals – 
these pixels are likely to be strongly impacted by phase bias. 

Mitigation strategies that have been proposed include correcting 
interferograms using physical models such as a moisture-induced phase 
model (De Zan and Gomba, 2018) or using “phase linking” (PL) ap
proaches, described below. Due to the varied sources of the phase bias, 
employing a single physical moisture-induced phase model cannot ac
count for all possible sources of phase inconsistencies and no generic 
model exists to incorporate all possible sources of the phase bias (Ansari 
et al., 2021). PL approaches, on the other hand, can effectively mitigate 
this phenomenon by incorporating all possible N(N − 1)/2 interfero
metric phases obtained from N SAR acquisitions (Guarnieri and Tebal
dini, 2008). The key step in the PL approaches is to optimally estimate 
single-master phases for each pixel from all possible interferometric 
combinations. These methods retrieve maximum available information 
in InSAR data stacks (Samiei-Esfahany et al., 2016). Though efficient 
and robust, PL approaches require a large number of interferograms and 
are computationally expensive, particularly for systems like Sentinel-1, 
where there might be several hundred acquisitions. Moreover, the 
quality of the PL estimated phases highly depends on the availability of 
the long-term interferograms. In case of the decorrelated regions, the 
applicability and practicality of PL methods is limited. (De Luca et al., 
2021) outlined a framework that did not show any significant bias. They 
showed that while exploiting networks of small baseline interferograms 
with also relatively high temporal baselines and including the process
ing stage discussed in (Pepe et al., 2015), which is an adaptation of the 
phase linking approach to the small baseline subset (SBAS) context using 
an efficient interferograms selection, the phase bias is not visible. This 
framework was tested on a set of high-coherent SAR pixels. Further 
investigation is needed to check the validity for lower coherence regions 
where the long-term coherence is difficult to maintain. 

In this contribution, we first explore the characteristics of the phase 
bias by investigating its temporal and spatial behavior. We then develop 
and test an empirical mitigation strategy to correct short-term in
terferograms for the phase bias. Correcting for the phase bias in the 
short-term interferograms is of great importance, in particular when the 
small baseline algorithms e.g. (Berardino et al., 2002; Morishita et al., 
2020) are being used. 

Our approach assumes that there is a linear relationship between the 
bias in a single interferogram and the sum of the biases in the shorter 
interferograms spanning the same time. Employing this assumption, we 
can estimate bias corrections for each interferogram through a linear 
least squares inversion. We demonstrate the effectiveness of the pro
posed mitigation strategy by comparing the resultant velocities with the 
phase linking approach inversion. 

2. Study site 

We chose a study area in the west of Turkey that has a variety of 
ground cover types, including forested and agricultural areas where 

long-term coherence is difficult to maintain (Fig. 1). Spatial heteroge
neity in the land cover allows us to investigate the bias effect in these 
different land covers ranging from more coherent urban areas to the 
agricultural and forest areas. The area is imaged by Sentinel-1 A and B 
data on every overpass. We processed all interferometric pairs from one- 
year of Sentinel-1 acquisitions on track 36, where 60 images were ac
quired in the period spanning 1 February 2017 to 31 January 2018. All 
interferograms were generated using the automated workflows from the 
COMET-LiCSAR system (Lazecký et al., 2020), and were multilooked by 
factors of 5 in the range and 20 in the azimuth directions and geocoded 
onto a 100 m grid using elevation data from the Shuttle Radar Topog
raphy Mission (Farr et al., 2007). 

3. Phase bias characterization 

Although the bias in individual interferograms cannot be isolated, we 
can measure phase bias in sets of interferograms by examining loop 
closure phases using different combinations of data. Fig. 2 shows how 
we calculate the closure phase using a set of multilooked interferograms 
in a loop. In this example, we subtracted the sum of three 6-day in
terferograms (b), (c) and (d) from an 18-day interferogram (a) to isolate 
the loop closure phase (e). We use the notation 

Δφ18− 6 = 18 day −
∑3

1(6 day) to denote this loop closure phase. For 
the rest of this paper Δφn− m indicates the loop closure phase from sub
tracting the summation of all m dayinterferograms from an n-day 
interferogram spanning the same time. We also use the notation 
∑

360 days
Δφn− m , for example, to show the 360-day cumulative loop closure 

phase calculated as the difference between the 360-day “daisy chain” 
sum of interferograms with length n-days and m-days, where each “daisy 
chain” sum is calculated by adding successive n- or m-day interfero
grams with the secondary image in one interferogram becoming the 
primary image in the next. It should be noted that the closure phase 
values is assumed to be less than π in the absence of noise. We examined 
the validity of this assumption by checking the histograms of the long 
loops such as Δφ360− 6 and found out that, in our dataset, except for a 
small fraction of the pixels (<0.5%) the value is less than π (see Sup
plementary Fig. S1 in Supplementary material). 

We use wrapped phases throughout this study to calculate the 
closure phases, with the result of any phase differences rewrapped to the 
interval ±π. Taking a closer look at Fig. 2(e), we can see a spatially 
correlated signal that varies across the image. 

To understand how the phase bias varies in interferograms of 
different lengths, we calculated the 360-day cumulative loop closure 
phase using n = 60 and m = 6, 12, 18, 24, 30 and 36. The results are 
shown in Fig. 3(top). 

The results show that shorter interferograms are more affected by 
this phenomenon, with cumulative loop closure phases reducing in size 
dramatically as the length of the shorter interferograms in the loop in
creases. This observation agrees with the effect of the fading signal 
(Ansari et al., 2021). The magnitude of the bias averaged over multiple 
pixels strongly depends on the ground cover type, with cropland and 
forested pixels having significantly larger bias than urban pixels (Fig. 3 
(bottom)). 

To test how the phase bias accumulates in time, we calculated 
∑t

i=1
(
Δφ18− 6)

i for t = 1, …,20, 20 being the total number of consecutive 
18-day interferograms in the 360-day observation period (Fig. 4). The 
results show that although the amount of the closure phase is small in 
each individual loop, it increases with time. The rate of bias accumu
lation is not steady throughout the year, being highest for cropland and 
lowest for urban pixels. 

We also investigated the temporal variation in bias accumulation by 
calculating Δφ60− 6 and Δφ60− 12 loop closure phases (Fig. 5). Each plot in 
the first two rows of Fig. 5 belongs to a two-month period. Fig. 5 (bot
tom) illustrates the mean values for the total areas and also for different 
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landcovers. The plots indicate that the strength of the bias varies 
throughout the year. The largest mean value of phase bias is observed in 
the first plot, which corresponds to the period February and March. 

The smallest mean value, on the other hand, occur in late summer 
(August to September). Comparing the values for Δφ60− 12 and Δφ60− 6, 
we see that they vary in a similar way, although as expected Δφ60− 12 is 
smaller, indicating that the ratio between them remains broadly con
stant (Fig. 5 bottom). 

This matches well with the precipitation season in the west coast of 
Turkey (highest in January to March and lowest in July to September) as 
shown in Fig. 6. The closure phase in cropland pixels is more complex 
and may depend on several factors, including the vegetation growth as 
well as moisture variation. 

Finally, in the last experiment of this section, we investigated the 
effect of the adaptive phase filtering (Goldstein and Werner, 1998) on 
phase bias. Phase filtering is commonly applied to interferograms to 
reduce phase noise which greatly improves phase unwrapping perfor
mance. We applied a spatial filter to the multilooked interferograms 
using an adaptive power spectrum filter with FFT window size = 32 and 
alpha = 1. Fig. 7 compares the cumulative loop closure phase 

∑

360 day

(
Δφ18− 6) using unfiltered and filtered interferograms. Filtering 

increases the mean value of the loop closure phase (the bias), by effec
tively increasing the multilooking factor. Therefore, we recommend 
caution in using filtered interferograms for time-series analysis. 

4. Phase bias correction 

In the COMET-LiCSAR automatic processing system (Lazecký et al., 
2020), interferograms have been processed that connect each epoch, i, 
to the three or four nearest acquisitions in time, backward and forward. 
We therefore aim to develop a bias correction approach that uses just the 
interferograms formed from the closest three connections so that accu
rate velocities can be obtained without requiring mass processing of 
large numbers of additional longer-term interferograms. 

Several loop closure phases can be calculated for an individual pixel, 
from these interferograms, including: 

Δφi,i+2 = φi,i+2 −
(
φi,i+1 +φi+1,i+2

)
and (2)  

Fig. 1. Study site: (a) Overview of the study area located in the western Turkey. Izmir is the major city, situated along the Aegean coast. The white polygon shows the 
footprint of the Sentinel-1 data from descending path 36. (b) Land cover map obtained through the Copernicus Land Monitoring Service (https://lcviewer.vito.be). 

Fig. 2. Example of closure phase calculated from an 18-day interferogram and three 6-day interferograms. 18-day interferogram (a) spans 2017-02-18 to 2017-03- 
08. Three 6-day interferograms (b,c and d) span 2017-02-18 to 2017-02-24 (b), 2017-02-24 to 2017-03-02 (c) and 2017-03-022017-03-08 (d). The resulting closure 
phase is shown in (e). 
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Δφi,i+3 = φi,i+3 −
(
φi,i+1 +φi+1,i+2 +φi+2,i+3

)
, (3)  

where Δφi, i+2 and Δφi, i+3 are the Δφ12− 6 and Δφ18− 6 loop closure phases 
respectively. Assuming the closure phase is due to biases and noise in 
each interferogram, Eq. (2) and (3) can be written as: 

Δφi,i+2 = δi,i+2 −
(
δi,i+1 + δi+1,i+2

)
+ ε and (4)  

Δφi,i+3 = δi,i+3 −
(
δi,i+1 + δi+1,i+2 + δi+2,i+3

)
+ ε, (5)  

where δi, j is the unknown phase bias in the interferogram formed from 
images i and j, and ε is the sum of the noise terms. 

If we want to solve for the unknown phase bias terms δi, j on each 6-, 

12- and 18-day interferogram, using the two sets of loop closure ob
servations, Δφi, i+2 and Δφi, i+3, then with N acquisitions we have 2 N-5 
observations and 3 N-6 unknowns. The system of equations is therefore 
underdetermined. (Michaelides et al., 2019) approached this problem 
by forming a set of closure phase equations as a function of the so-called 
“decorrelation phase”. The resulting matrix of observation equations is 
obviously a rank deficient. To solve this, they employed singular value 
decomposition (SVD) but this gives a solution that ignores any compo
nent of the real answer that lies in the null space. 

In this study, we use the fact that, although the bias varies in time, we 
observe that it varies in a similar fashion for interferograms spanning 
different time intervals. This allows us to set up an overdetermined in
verse problem, by introducing the assumption that the bias in an 

Fig. 3. 360-day cumulative loop closure phases, 
∑

360 day

(
Δφ60− m), for varying timespans, m (top), and mean value of cumulative loop closure phases for different land 

cover classes as a function of m (bottom). 
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interferogram is linearly related to the sum of biases in shorter in
terferograms spanning the same time. In other words, although the bias 
varies in strength with time, we assume the change in strength of the 
bias in interferograms of different length is a constant ratio. i.e. 

δi,i+2 = a1
(
δi,i+1 + δi+1,i+2

)
and (6)  

δi,i+3 = a2
(
δi,i+1 + δi+1,i+2 + δi+2,i+3

)
, (7)  

where a1 and a2 are unknown constants that linearly relate the bias in 
the longer interferograms to the sum of the corresponding biases in the 
short interferograms covering the same time period. 

If we assume that 360-day interferograms have negligible bias, a1 
and a2 can be estimated for each pixel by calculating the ratio of the 
cumulative loop closure phases for 12- and 6-day interferograms and 18- 
and 6-day interferograms respectively: 

a1 =
Δφ360− 12

Δφ360− 6 and (8)  

a2 =
Δφ360− 18

Δφ360− 6 (9) 

When estimating the regularization parameters a1 and a2, only pixels 
that remain coherent for a period of 1 year can be used. Fig. 8 shows the 
maps of the a1 and a2 and their histograms. Although estimates of a1 and 
a2 for each pixel are noisy, there is no systematic pattern in space (Fig. 8 
(top)), suggesting that a single value is appropriate. In this study, we 
used the mean values of 0.47 and 0.31 for a1 and a2 respectively for all 
pixels. 

If a1 and a2 are constants, using Eqs. (4) to (7) and including all 
observations in epochs i to i + 3 leads to a series of observation equations 
relating the closure phases to unknowns δi, i+1. 
⎛

⎝
Δφi,i+2

Δφi+1,i+3
Δφi,i+3

⎞

⎠ ≅

⎛

⎝
a1 − 1 a1 − 1 0

0 a1 − 1 a1 − 1
a2 − 1 a2 − 1 a2 − 1

⎞

⎠

⎛

⎝
δi,i+1

δi+1,i+2
δi+2,i+3

⎞

⎠. (10) 

This reduces the number of unknowns to N-1, the biases for the 6-day 
interferograms. The system of equations is then overdetermined when N 

Fig. 4. The temporal accumulation of the loop closures obtained by 
∑t

i=1
(
Δφ18− 6)

i (top), and temporal accumulation of phase bias averaged for different land covers 
within the scene (bottom). 
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≥ 5 (with 2 N-5 loop closure observations) and the unknown bias terms 
can be estimated using a linear least squares inversion. 

Upon the estimation of the bias terms, every single 6-, 12- and 18-day 
interferogram can then be corrected using 

φc
i,i+1 = φi,i+1 − δ̂i,i+1 and (11)  

φc
i,i+2 = φi,i+2 − δ̂i,i+2 = φi,i+2 − a1

(
δ̂i,i+1 + δ̂i+1,i+2)

)
and (12) 

Fig. 5. Seasonal variation of the bias: the temporal plots of Δφ60− 6 (first row), Δφ60− 12 (second row) in 1 year, and mean value of Δφ60− 6 for different land cover 
classes (bottom panel). The mean values of Δφ60− 12 are plotted as a dashed line. 

Fig. 6. Average monthly temperature and rainfall of Turkey for 1991–2020 obtained from https://climateknowledgeportal.worldbank. 
org/country/turkey/climate-data-historical 
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φc
i,i+3 = φi,i+3 − δ̂i,i+3 = φi,i+3 − a2

(
δ̂i,i+1 + δ̂i+1,i+2 + δ̂i+2,i+3

)
, (13)  

where φi, i+1, φi, i+2 and φi, i+3 are the original 6-day, 12-day and 18-day 
interferograms and φi, i+1

c, φi, i+2
c and φi, i+3

c are the corrected in
terferograms. The δ̂i,j are the estimated bias terms. More in-depth 
investigation of a1 and a2 is in progress to gain more insight on their 
physical interpretation. 

5. Correction results 

All the experiments in this section were carried out on a set of 
coherent pixels, which were selected by applying a threshold of 0.3 on 
the 18-day average coherence. We estimated the corrections using Eq. 
(10) and corrected all the 6-day 12-day and 18-day interferograms 
covering our 360-day study period using Eqs. (11), (12) and (13) 
respectively. 

Fig. 9 shows a comparison between the closure phase 

Fig. 7.
∑

360 day

(
Δφ18− 6) and its histogram applied to the multilooked interferograms that are not filtered (a) and those that are (b). Here we used the adaptive 

Goldstein filtering. 

Fig. 8. Maps of a1 and a2 (top), and their corresponding histograms (bottom).  
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Fig. 9. The cumulative loop closure phase 
∑

1yr
(18 day − 6 day) calculated using (a) the original interferograms (b) interferograms corrected with our empir

ical correction. 

Fig. 10. The LOS time-series displacement for two example points in each land cover. RMS and RMS(corrected) show the root-mean-square of residuals calculated 
before and after correction respectively. 
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∑

360 day

(
Δφ18− 6) using the original interferograms and that found using 

the corrected interferograms. It is clear that correcting the interfero
grams has significantly decreased the closure phase, with its mean and 
the standard deviation decreasing from − 1.05 ± 2.7 rad prior to 
correction to 0.03 ± 1.7 rad. 

We also show (Fig. 10) corrected and uncorrected time series of line 
of sight (LOS) displacement calculated from just the 6-day interfero
grams for some example points in different land covers. Pixels in urban 
areas change the least with the correction, whereas the agricultural 
pixels have larger values of corrections. We also calculate the root-mean- 
square (RMS) of the residuals before and after the correction (Fig. 10); 
the correction reduces the scatter of the data for all land cover types. 
Considering all the pixels, the mean RMS residual of fit to the linear time 
series model has reduced from 27.2 rad before the bias correction to 
20.7 rad after correcting for the phase bias. 

In order to better understand the temporal variation of the estimated 
bias, we plotted the mean 6-day bias corrections, estimated from Eq. 
(10) for different land covers (Fig. 11). The bias is essentially zero for 
urban pixels throughout the year, whereas there is always a strong 
positive bias for cropland, which peaks in summer and has lowest values 
in winter, as we might expect if the physical cause is due to vegetation 
growth. The bias for forest is the most interesting, as it has positive 
values for most of the year, peaking in spring, but switches to negative 
values in autumn. This suggests a physical cause due to leaves growing 
on springtime and falling in the autumn. These curves are also consistent 
with the seasonal variation of the Δφ60− 6 and Δφ60− 12 shown in Fig. 5. 

6. Validation 

As well as demonstrating the reduction in cumulative loop closure 
phases, we can also compare line-of-sight velocities estimated from our 
corrected and uncorrected data with velocities from an approach that is 
less sensitive to phase bias. We use a Phase Linking (PL) approach for 
this validation test, which uses all possible interferograms and has been 
shown to be unaffected by phase bias of short-term interferograms 
(Ansari et al., 2021). There are a number of PL methods in the literature. 
These methods try to obtain the best estimates of N − 1 phase differences 
for a pixel relative to the primary date using the N(N − 1)/2 available 
interferometric phases. PL methods are categorized into maximum- 
likelihood estimators (Ferretti et al., 2011), least squares estimators 
(Samiei-Esfahany et al., 2016), Eigen decomposition-based phase esti
mators (Cao et al., 2016; Fornaro et al., 2015) and Eigen decomposition- 
based Maximum-likelihood estimator (Ansari et al., 2018). 

Eigen decomposition-based methods are relatively computationally 
efficient and straightforward to implement; we use the approach from 
(De Zan et al., 2007; Fornaro et al., 2015), hereafter referred to as EPL, 
as our reference method to compare with results from our inversion that 
only uses short-interval interferograms. 

T =
∑N

i=1
λivivH

i (14)  

where the eigenvalues λi are arranged in descending order as λ1 ≥ λ2 ≥ , 
…,  ≥ λN, vi is the corresponding eigenvector associated with eigenvalue 
λi and H stands for the conjugate transpose. Phases φ̂ are estimated by 
extracting the phases of the eigenvector associated with the largest 
eigenvalue. The EPL velocity i.e. VEPL can then be estimated using these 
linked phases. Full details of the algorithm are described in (De Zan 
et al., 2007; Fornaro et al., 2015). We used the a posteriori coherence of 
(Ferretti et al., 2011) as a quality measure for phase estimation. The a 
posteriori coherence is a measure of goodness of fit between the PL 
estimated phases and the observed interferometric phases. In this study, 
we chose a value of 0.4 as a threshold for this measure to mask out the 
unreliable phases. 

We calculated velocities from our corrected and uncorrected 6-day 
interferograms over the 360-day time period and checked the effec
tiveness of our bias correction strategy by comparing our estimated 
velocities before and after correction with the EPL velocities (Figs. 12, 
13). 

A scatterplot of the original 6-day estimated velocities for all pixels in 
our Turkey frame, V6 day, versus the velocities from EPL, VEPL, is skewed 
to left (Fig. 12 (a)), indicating that the velocities for many of the pixels in 
the uncorrected 6-day velocities have a negative bias. By comparison, 
the scatterplot of the corrected 6-day velocities, V6 day

c, versus the VEPL is 
centred on the diagonal 1:1 line (Fig. 12 (b)) indicating a high-degree of 
correlation between V6 day

c and VEPL and a dramatic reduction in the 
phase bias. The coefficient of determination, R2, increases from 0.19 
before the correction to 0.63 after correction, and the RMSE decreased 
from 11.3 to 6.28 after correcting for the interferograms. 

Plotting maps of the difference between velocities obtained with EPL 
and those calculated from our corrected/uncorrected 6-day interfero
grams (Fig. 13) confirms that the corrected velocities are much closer to 
those from EPL. Comparing the histograms shows that the mean and 
standard deviation of the differences between the velocities, changes 
from − 7.08 ± 8.8 mm/yr, to − 0.28 ± 6.2 mm/yr after correction. 

In the next experiment, we included all the 6, 12 and 18-day in
terferograms in our velocity estimation. We calculated velocities using 
both the original (V6/12/18 day) and the corrected interferograms (V6/12/ 

18 day
c) and calculated their difference with VEPL (Fig. 14). Using the 

corrected interferograms decreases the mean velocity bias to − 0.1 mm/ 
yr. 

Similar to the velocity estimation using 6-day interferograms only, 
the scatterplot (Fig. 15) shows good correlation between EPL velocities 
and those estimated from 6/12/18-day interferograms, after correction. 
The coefficient of determination, R2, increases from 0.63 before the 
correction to 0.66 after correction, and the RMSE decreased from 6.4 to 
6.0 after correcting for the interferograms. 

Fig. 11. Mean 6-day bias corrections obtained from Eq. (10) for different land covers.  
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Table 1 shows a summary of the average velocities obtained with the 
6-day and 6/12/18-day interferograms before and after correction in 
different land cover classes. The EPL estimated velocities are also given 
in this table. For all land cover classes, our corrected velocities agree 

well with those from phase linking approach. The remaining velocities 
observed for all techniques may be contaminated by residual atmo
spheric noise (our time series only covers 1 year), but also likely reflects 
genuine ground motion – agricultural areas in many parts of Turkey 

Fig. 12. Scatterplot of 360-day velocities obtained from Eigen decomposition Phase Linking (VEPL) against velocities obtained from (a) uncorrected 6-day in
terferograms, V6 day, and (b) 6-day interferograms corrected with our empirical approach V6 day

c Considering T as the N by N coherence matrix, the Eigen 
decomposition of T can be obtained as 

Fig. 13. Effect of the phase bias correction on the velocity estimation. Difference between the EPL velocity and (a) the uncorrected 6-day velocity i.e. VEPL − V6 day, 
(b) corrected 6-day velocity i.e. VEPL − V6 day

c are shown as maps and histograms. (c,d) zoomed-in views of the two subsets for areas A and B. 
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suffer from subsidence due to water extraction (Orhan, 2021). 
Comparing Figs. 13 and 14 reveals that correcting the interferograms 

using the proposed strategy led to consistent phases. Upon correcting for 
the phase bias using the proposed method, it does not make any sig
nificant difference which stack of the interferograms be used for velocity 

estimation and the 6-day velocity will have very similar performance as 
the 6, 12 and 18-day velocity. This demonstrates the consistency of the 
proposed strategy for correcting the phase bias. 

Fig. 14. The effect of the phase bias correction on the velocity estimation. VEPL − V6/12/18 day is shown in (a) and VEPL − V6/12/18 day
c is shown in (b). The zoomed-in 

view of the two subsets A and B are shown in panels (c) and (d) respectively. 

Fig. 15. Scatterplot of 360-day velocities obtained from Eigendecomposition Phase Linking (VEPL) against velocities obtained from (a) uncorrected 6/12/18-day 
interferograms, V6/12/18 day, and (b) 6/12/18-day interferograms corrected with our empirical approach V6/12/18 day

c.. 
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7. Conclusions 

We have confirmed that short-interval interferograms can be highly 
affected by a phase bias, and its accumulation in time can highly impact 
estimated velocities. We provide a readily applicable method to estimate 
the bias corrections using only short interval interferograms. Our pro
posed correction strategy is simple and effective in addressing the phase 
bias and leads to velocities that compare well to the phase linking 
approach. The method relies on the estimation of two constant regula
rization parameters, which can easily be calculated using a single long- 
term interferogram. The proposed method is based on the assumption 
that the phase bias in an interferogram is linearly related to the sum of 
the bias shorter interferograms spanning the same time. This implies 
that, despite the decay of the average bias in time, the relative change in 
strength of the bias in interferograms of different length remains con
stant. This is entirely consistent with the bias exponential decay curve 
shown in (Ansari et al., 2021); this will be true as long as the decay time 
remains constant and only the magnitude of the bias changes. In this 
study, we used constant values for a1 and a2, which relate the biases in 6- 
day interferograms with those in 12-day and 18-day interferograms. 
Further investigation is needed to determine if these are universal 
constants or if they vary spatially. Also, an in-depth and comprehensive 
investigation is needed to provide insight into the physical meaning of 
the constant values and whether they can be improved by other models/ 
scenarios. We note that a similar approach could also be developed for 
areas where the revisit time for Sentinel-1 is 12 days. 

Though efficient and robust, PL approaches are computationally 
expensive both in terms of generating N(N − 1)/2 interferograms and 
estimating the (N − 1) optimal phases through often iterative optimi
zations of the underlying covariance matrix. However, our proposed 
method only requires calculating (3 N – 6) interferometric phases and 
solves for the bias correction through a single-step, straightforward and 
inexpensive least square inversion of Eq. (10). This is of high impor
tance, particularly for automatic InSAR systems such as COMET-LiCSAR, 
which are designed to automatically produce InSAR products by pro
cessing all Sentinel-1 acquisitions in a frame (~60 new 6-day acquisi
tions per frame per year over Europe). The method can easily be adapted 
to allow larger number of connections. Given M as the number of con
nections per epoch, we have 

∑M
k=1k

( N− 1
k
)
− k + 1 observations and N-1 

unknowns. Here, the constant values a1, a2, …, aM− 1 can be calculated 
using the same procedure given in Eqs. (8) and (9). Additional research 
is needed to show that this works in practice. 

More importantly, the quality of the PL estimated phases highly 
depends on the coherence of the long-term interferograms. In the case of 
the decorrelated regions such as forests or agricultural areas, where 
long-term coherence is difficult to maintain, the a posteriori coherence is 
degraded. Our proposed method, on the other hand, is less sensitive to 
this coherence loss as it only relies on the short term interferograms (6/ 
12/18-day in this study) for estimating the correction terms. We iden
tified a total of 2,400,000 points as coherent pixels, whereas this number 
decreased to 1,300,000 points when using the EPL approach. It should 
be noted that due to this limitation of the PL approach, we were only 
able to validate the proposed method over the coherent pixels (ac
cording to the a posteriori coherence). Yet, these pixels represents 
various land cover classes (forest, urban and cropland) and thus can be a 

good representative set for the validation. Additional ground truth 
would be needed to expand the validation for all the pixels, but we note 
that velocities estimated for the non-coherent pixels are generally 
consistent with velocities for nearby validated coherent pixels. Our 
correction method can be applied to global compilations of short-term 
interferograms and offers the possibility of accurate long-term veloc
ities without a requirement for coherence in long-term interferograms. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2022.113022. 
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