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Abstract—We present recent developments to the software 

packaged PDielec that can be used to post-process solid-state DFT 

calculations to determine the THz spectra of single crystals and 

thin crystalline films, including effects of crystalline orientation, 

beam incidence angle and beam polarisation, allowing the full 

interpretation of complex THz spectra. We use the explosive 

Cyclotrimethylenetrinitramine (RDX) as a previously well studied 

example.  

I. INTRODUCTION 10PT SMALL CAPS 

 YCLOTRIMETHYLENETRINITRAMINE or RDX is a 

powerful explosive that is well studied in the THz spectral 

region. It exists in a range of polymorphic forms and has 

been characterised as a powder [1-4], a crystalline film [5] and 

as an orientated single crystal [6-8] with a range of calculation 

methods [2,9,10] used to help interpret the complex THz 

spectrum. As such it makes an excellent testbed when 

implementing new calculation methodologies. 

PDielec [11-12] is a Python package for post-processing 

solid state QM and MM calculations of infrared spectra. 

Previous work has concentrated on the interpretation of spectra 

of powders, combined with an inert non-absorbing material and 

pressed into pellets. In the most recent release of PDielec (7.1.2) 

[13] we have implemented a tool which allows the THz and IR 

spectrum of an orientated single crystal or thin crystalline film 

to be calculated. Calculation of the single crystal optical 

properties is performed using a generalized transfer matrix 

methodology developed by Passler and co-workers [14-15] and 

available as a Python module, PyGTM [16]. This allows the 

single crystal dielectric permittivity tensor to be calculated, and 

from that determine the transmittance, reflectance and 

absorption for a single crystal with a specific morphology. In 

this case absorption is defined as the fraction of radiation which 

is not reflected and not transmitted. 

The measurement can be visualized as seen in Fig. 1. The 

information required for the calculation is the angle of 

incidence of the incoming beam (θ) and the orientation of the 

crystal (in particular the face of the crystal the beam is incident 

on) and the azimuthal angle (γ) between the plane of the 

incident beam and the crystalline axis. In the majority of 

transmission and reflection measurements the incident beam 

will be at normal incidence to the crystal face (along the z-axis 

in Fig 1) meaning that � � 0°.  

Two methods of optical property calculation have been 

implemented within PDielec. In the thin film approximation 

you can input the crystal thickness along with the refractive 

index of the material before and after the crystal (air by default). 

This can be used to interpret transmission measurements of 

single crystals but also allows the calculation of the optical 

properties of a thin film grown on a known substrate. A second 

method, the thick slab, assumes a thick crystal where total 

absorption will take place within the crystal without any 

internal reflection. This method is useful for interpretation of 

reflectance measurements.  

DFT Calculations of α-RDX were performed using the 

academic release of CASTEP 19.1 [17] using the Perdew-

Burke-Ernzerhof (PBE) functional [18] and D3-BJ dispersion 

correction [19,20]. The CASTEP 19.1 norm-conserving 

pseudo-potentials were taken from the ‘on-the-fly’ pseudo-

potentials built using the NCP19 keyword as input to the 

‘SPECIES_POT’ directive. The cutoff energy used was 1000 

eV with a Monkhorst-Pack grid of 1,1,1.  

II.  RESULTS 

Fig. 2 and 3 show calculations of the optical properties of 

RDX using the thin film approximation with an assumed crystal 

thickness of 1 μm and assuming normal incidence. Fig. 2 shows 

the absorption spectrum of α-RDX with a beam incident on a 

number of different faces for both p- and s-polarisations of the 

incident beam. The crystal faces were chosen to represent the 

crystals measured by a number of groups previously [6-8]. 

Calculations that are identical use dotted, rather than solid, lines 

to show the overlaping spectra. Fig. 4 shows calculations for the 

(001) face calculations with p-polarisation as the azimuthal 

angle (γ) is changed from 0° to 90°. 

The general correlation between these calculations and 

previously published results is generally good, in particular the 

peak at 0.82 GHz is reported to change significantly with both 

morphology and crystal rotation. Direct comparison between 

these calculations and published experiments remains difficult. 

This is, in part, because previous publications can omit 

important details (like beam polarisation) or do not include their 

definition of azimuthal angle which is often defined to an 

arbitrary axis. All current experiments also use relatively thick 

crystals (~500 μm) which can cause peak distortion and 

saturation effects that are not currently included in either the 

thin-film or thick slab approximations. However, this new 
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Fig. 1. a schematic diagram of the single crystal or film measurement. θ is 

the angle of incidence and is 0° at normal incidence (along the z-axis).  γ is 
the azimuthal angle between the plane of the incident beam and the 

crystalline axis.   



implementation still provides a useful tool to provide a detailed 

insight into these common spectral measurements.    

 

 
Fig. 2. Shows the calculated THz spectra for α-RDX crystals where the 

incident beam is incident on a number of different crystalline faces for both 

p- (top pane) and s-polarisation (bottom pane) incident light. The beam is 

assumed to be at normal incident to the crystalline face with � � 0°. 

 

 
Fig. 3. Shows the calculated THz spectra for an α-RDX crystal (001) with 

the incident beam (p-polarisation) at normal incidence as the azimuthal 
angle between the plane of the incident light and the crystalline axis is 

changed. 
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