UNIVERSITYW

This is a repository copy of An Approach to Formally Specifying the Behaviour of Mixed-
Criticality Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/186879/

Version: Published Version

Proceedings Paper:

Burns, Alan orcid.org/0000-0001-5621-8816 and Jones, Cliff (Accepted: 2022) An
Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems. In:
Proceedings, 34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Euromicro Conference on Real-Time Systems, 05-08 Jul 2022 ACM . (In Press)

https://doi.org/10.4230/LIPIcs.ECRTS.2022.12

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

An Approach to Formally Specifying the
Behaviour of Mixed-Criticality Systems

A. Burns &
University of York, York, UK

CIiff B. Jones &

Newecastle University, Newcastle upon Tyne, UK

—— Abstract

This paper proposes a formal framework for describing the relationship between a criticality-aware
scheduler and a set of application tasks that are assigned different criticality levels. The exposition
employs a series of examples starting with scheduling simple jobs and then moving on to mixed-
criticality robust and resilient tasks. The proposed formalism extends the rely-guarantee approach,
which facilitates formal reasoning about the functional behaviour of concurrent systems, to address
real-time properties.

2012 ACM Subject Classification Computer systems organization — Embedded and cyber-physical
systems; Software and its engineering — Real-time schedulability

Keywords and phrases real-time, scheduling, mixed criticality, rely /guaranteed conditions
Digital Object ldentifier 10.4230/LIPIcs. ECRTS.2022.12

Funding This research has been supported in part by EPSRC (UK) grants, STRATA and MCCps
and by Leverhulme Trust grant RPG-2019-020

Acknowledgements The authors acknowledge useful suggestions made by lain Bate, Sanjoy Baruah

and Tan Hayes

1 Introduction

Since Vestal published his seminal paper in 2007 [61], there have been a wealth of models
and protocols published [16, 17] on the topic of Mixed Criticality Systems (MCS). One of
the aims of this wide ranging set of techniques is to improve the survivability of systems by
providing a variety of degraded behaviours that can take effect if the system experiences
overrunning execution times.

Inevitably these techniques require significant support from the underlying operating
system. Unfortunately commercially-available, general-purpose, RTOSs do not provide this
support. Hence, in order to utilise many of the more advanced scheduling ideas that are to
be found in the MCS literature, it is necessary to develop the code for a bespoke scheduler as
part of the application. Programming languages such as Ada [11] do provide the primitives
necessary for this software to be developed but to deliver a reliable MCS scheduler the
MCS protocols and models must be precisely specified. Research papers that focus on the
algorithmic properties of protocols tend to give, at best, informal descriptions of the actual
required run-time behaviour of the required scheduler.

The objective of the research described in this paper is to develop a framework for formally
specifying and reasoning about timing correctness properties of mized-criticality systems. The
following paragraphs explain this objective in greater detail. In general, correctness in safety-
critical systems can be considered from two perspectives: (i) (pre-run-time) verification, and
(ii) (run-time) survivability.

Pre-run-time verification of a safety-critical system involves verifying, prior to deployment,
that the run-time behaviour of the system will be consistent with expectations. Verification
? A. Burns and C.B.. Jones; .

37 icensed under Creative Commons License CC-BY 4.0
34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 12; pp. 12:1-12:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

12:2

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

assumptions are made regarding the kinds of circumstances that will be encountered by the
system during run-time and guarantees are used to specify the required runtime behaviour
of the system (provided that the assumptions hold).

In contrast, survivability addresses expectations of system behaviour in the event that the
assumptions fail to hold fully (in which case a fault or error is said to have occurred during
run-time). Survivability may further be considered to comprise two notions: robustness and
resilience [14]. Informally, the robustness of a system is a measure of the degree of fault it
can tolerate without compromising the quality of service it offers; resilience refers to the
degree of fault for which it can provide a degraded, yet acceptable, criticality-aware quality
of service.

The contribution of this paper is to develop a framework for the formal specification of
MCS; we define a formal approach that:

Demonstrates that the Rely/Guarantee approach (see Section 2) can be extended to

cover temporal properties (see Section 3) of concurrent systems (in addition to their

functionality).

Precisely specifies the required behaviour of a run-time scheduler (in normal and degraded

modes of operation).

Enables proofs to be developed and discharged that employ the contract(s) between the

jobs and tasks comprising an application, and the scheduler.

Enables, with additional specifications of the functional elements of the scheduler, the

code of the scheduler to be produced as a refinement of these specifications.

Enables the scheduler to be replaced or modified by verifying that a new version satisfies

the original specification.

Identifies the assumptions that the analysis (scheduling and execution time) makes such

that the result of the analysis confirms that the system will meet its timing requirements.

Enables the many approaches to resilience and robustness to be compared — this requires

the formal framework to be sufficiently expressive to capture the semantics of the various

schemes that have been proposed.
This initial description of our approach focusses on the specification aspects; future work will
address verification. We do however demonstrate where proof can be used to ensure that,
whenever a degraded mode must be entered, its prerequisites are ensured by the guaranteed
conditions of the mode that has just been abandoned. We also make explicit the proof
obligations on the offline scheduling analysis that must be applied to the application prior to
deployment.

We explain the elements of the framework via a series of related, increasingly challenging,
examples. The initial examples are sufficiently straightforward that, arguably, a full formal
specification is not required; however the later examples do show the value of precise
specifications. The examples illustrate the approach with at most two criticality levels, this
helps to explain the framework, but again the full value of a formal approach comes when the
system has increased complexity as happens when there are three or more criticality levels.

In this paper an MCS is assumed to consist of a finite set of jobs/tasks and a single specific
Scheduler. Rely and guarantee conditions capture the run-time relationship between the
Scheduler and the jobs/tasks, yielding a specification of the necessary behaviours/properties
of the Scheduler. Note that this process does not delve into the internal structure of the
Scheduler: the scheduling-theoretic issues of how it meets its specification (if indeed it can)
is not the focus of this work. Rather, in this paper we are only seeking to provide a clear and
intuitive explanation of the formalism. The history of formal methods (such as Hoare Logic)
leads us to believe that methods can be developed for showing that specific MC-scheduling

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

A. Burns and C.B. Jones

algorithms can satisfy (or not) the proof obligations that arise from the Rely/Guarantee
(R/G) specifications. Related work in this area includes PROSA which addresses mechanised
verification of results from scheduling analysis [21, 10]. (Mechanisation of R/G reasoning is
on-going [29, 22]).

Organisation. The paper is organised as follows. After an introduction to R/G conditions
(Section 2), the basic properties of the proposed framework are developed in Section 3 via a
focus on jobs — this allows the approach to be motivated and explained. Mixed-criticality
jobs are then covered in Section 4 including the introduction of fault-tolerance via modes of
operation each with their own R/G conditions. Extensions of the same ideas to tasks are
then given in Sections 5 and 6. Conclusions are in Section 7.

2 Introduction to Rely/Guarantee conditions

Hoare’s ‘Axiomatic Approach’ provides the basis of a development method for sequential
programs. Although [32] employed post conditions of single states, subsequent development
methods such as VDM [39], B [1] and Event-B [2] use relational post conditions that define
acceptable final states with respect to their initial values. Crucially, there is a relatively
obvious notion of compositionality for sequential programs where a specification can be
replaced by anything that satisfies its pre/post condition specification.

Finding compositional development methods for the development of concurrent programs
proved to be difficult precisely because of the ‘interference’ that comes with (shared-variable)
concurrency. One approach is to record and reason about interference using rely and guarantee
conditions [37, 38] (a more algebraic presentation of the ideas is covered in [31]). The details
and proof obligations of the R/G approach are not the main issue in the current paper. The
basic idea is straightforward: just as pre conditions define a subset of possible starting states
on which a component is expected to operate, rely conditions record interference that the
specified component must tolerate; and, just as post conditions abstract from algorithms
to achieve the transition from initial to final state, guarantee conditions are relations that
define the maximum interference that the component may inflict on its environment. It is
important to remember that pre and rely conditions are assumptions that a developer is
invited to make; in contrast, guarantee and post conditions are obligations on the code to be
created. A guarantee condition needs to be satisfied (only) as long as the corresponding rely
condition is respected. Stating this negatively, if the environment makes a transition that
does not satisfy the rely condition, the developed code is free from further obligations.

The R/G idea targeted the design of concurrent programs where the R/G conditions
provide a way of decomposing designs. Papers such as [30, 42, 19] show that the R/G idea
can be used to tackle the design of fault-tolerant CPS by using rely conditions to describe
assumptions about physical system components. Where the physical components exhibit
continuous change, the rely conditions record assumptions about the rate of such changes.
This work also showed how layered R/G conditions can assist in addressing fault tolerance;
resilience is represented by hierarchically related R/Gs—strong rely conditions address
full functionality, weaker rely conditions are matched with lesser guarantees (perhaps only
the safety-critical aspects), even weaker rely conditions might only guarantee safe fail-stop
behaviour. These properties of related R/G conditions are central to the framework developed
in this paper.

12:3

ECRTS 2022

12:4

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

3 Job-based system model

This section focuses on a system comprising a set of jobs, J, that are managed by a Scheduler
(denoted by the symbol S). A representative job, j € J, has a relative deadline of Dj,
arrives (and is released for execution) at time a; and thus has an absolute deadline at time
dj = a; + D;. Let f; denote the time at which it completes (finishes) its execution.! The set
act(J,t) is the subset of J containing the jobs that are active at time ¢, i.e.

jeact(T,t) e je T A(a; <t <f))

A job that is immediately terminated on arrival (as required in specific circumstances by
some MCS protocols) has f; = a;; it is deemed never to be active and to have missed its
deadline.

We assume a discrete time model in which all job parameters are given as non-negative
rational numbers with arbitrary precision. Time is an external physical phenomenon: the
Scheduler has no control over the passage of time.

The specification of each job, j, consists of its pre-condition, P;, post-condition @Q;, rely
condition R; and guarantee condition G;. In this paper each of these conditions is expressed
as a predicate over the system state. For an actual system these conditions will capture
both the functional and timing behaviour of the job; here we focus only on the temporal
properties. This requires that system states are indexed by time? and that the rely and
guarantee conditions directly reference time. We write Rg(t)/Ggs(t) for the Scheduler and
R;(t)/G,(t) for jobs.

Properties that should remain true as time progresses are normally classed as invariants
but here are represented as rely or guarantee conditions. This is because the jobs (and
Scheduler) must take action in order to maintain correct behaviour — a job will miss its
deadline if it is not scheduled appropriately.

The primary concern for each job is its execution time; and hence we define, for each job
J, €j(t) which is the amount of execution time the job has consumed up to time ¢. There are
obvious properties (axioms) for e:

Vie J,teei(t) < WCET, (1)
where WCET is the worst-case execution time of the job;

Vje J, t1,ta, 1 <t206j(t2)—ej(t1)§t2—t1 (2)
no job can execute faster than ‘real time’;

Vi€ T, ti,ta, t1 <taee;(ty) <ej(ta) (3)
a job cannot ‘lose’ execution time; and

Vjejo(vtgajoej(t)zo/\Vthjoej(t):ej(f)) (4)

a job cannot execute before it arrives or after it has finished.

L A job that is yet to finish has f=c0; a job that is permanently suspended but never terminated retains
this value.

2 A slightly different approach to handling the progress of time was taken in [40]. In that paper a
distinction is made between an abstract notion of Time and the ClockV alues stored in a computer.

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

A. Burns and C.B. Jones

In this section the scheduler is deemed to exist for the entire life-time of the system, it is
therefore specified by a single rely condition Rg(t) and a single guarantee condition G ().

The following derivations first illustrate the basic approach with a set of single criticality
jobs. Note that the role of the formal framework is to represent precisely the relationship
between the Scheduler and the client jobs in a range of degraded and partial behaviours. It
is not a model of a particular scheduler’s run-time behaviour; rather it is a specification of
the required properties of any scheduler (and its schedulability test) that is being proposed
for the particular problem under investigation.

A key feature of mixed-criticality models is that they allow a system to degrade gracefully
when faults occur. This leads to the Scheduler’s run-time behaviour having different modes
of operation. In each mode, different R and G conditions for the jobs and scheduler are
defined, as is the transition between R/G contracts.

We start by considering a finite set of jobs that each have the same criticality; there is no
degraded behaviour and hence only a single mode of operation. A job j is characterised by its
Worst-Case Execution Time, WCET) (this is a value that will not be known with certainty)
and C; an estimate of WCET;. The timely execution of a job relies on this estimate of
WCET being valid, and the Scheduler can only meet its obligations with a reliance of each
job executing for no more than C}. If these rely conditions hold, a valid Scheduler guarantees
to manage the processing capacity so as to ensure that all jobs complete by their deadlines
regardless of when the jobs arrive; each job guarantees to execute, when active, for no more
than Cj.

Note that the value C; plays a number of roles: the job relies on its environment behaving
according to whatever model or measuring process was used to derive Cj, but the job also
has a contract with the scheduler not to execute for more than C;. The scheduler is assumed
to have used some form of analysis to verify (offline usually) that, if all jobs respect their

guarantee conditions, then it will be able to provide the necessary capacity to each job.

Hence the job can rely upon being allowed to execute for up to C; before its deadline.
With all four axioms ((1)-(4) above) in force, the rely and guarantee conditions of any
valid Scheduler are as follows:

Rs(t) %' Vj € act(T,t) e e;(t) < C;

Gs(t) L Wjeact(T,t)ot+(C;—e;(t) < d
The Scheduler relies on all jobs executing within their estimated WCET and guarantees
to provide sufficient resource, following a defined policy, to ensure that each job always
has sufficient space to complete before its deadline (i.e. that t + (C; —e;(t)) < d;). * The
Scheduler’s guarantee is an obligation that must be achieved by its code —i.e. the Scheduler’s
offline schedulability test must ensure this property. The conditions Rg(t) and Gs(t) are
defined to refer only to jobs that are active at time ¢.

In order to satisfy G g, the Scheduler must manage the dispatching of jobs in an appropriate
manner. If necessary it will allocate to each job up to C; execution time. It follows that if
WCET; < C; then each job will terminate by its deadline (i.e. f; < d;).

The R and G conditions of each active job are therefore:

def
Rj(t) = WCETJ < Oj Nt + (Cj — Bj(t)) < dj
8 An alternative formulation [12] to the one presented here is for the Scheduler to guarantee a budget (of

at least C for each job), and for each job to rely on this budget. Example specifications and further
investigations indicated that the method defined in the current paper is the more realistic and effective.

12:5

ECRTS 2022

12:6

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250
251

252
253

254

255

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

Gi(t) = 1) <G
At run-time, the job does not need to be aware of its deadline or current execution time;
although more expressive and flexible behaviours may require this. Once a job (j) terminates
the R; and G conditions no longer apply.
The constraints imposed upon execution time are represented as guarantees and not
post-conditions for a number of reasons:

1. post-conditions are, by definition, required to hold upon termination, but a failure may
lead to the job not terminating;

2. to add fault tolerance (i.e. to cope with jobs whose estimated execution times are not
respected) we will need to know the point in time at which a rely condition fails to hold
(and hence a guarantee condition no longer has to hold); and

3. deadlines may change (or be removed) during the execution of the job (see later examples).

The semantics of rely/guarantee conditions is that guarantees are required to be met
as long as the rely conditions are satisfied. If a job overruns and breaks its guarantee that
e;(t) < C; there must be a rely condition ‘at fault’. For this reason, we explicitly include
WCET; < Cj in the rely condition: in an environment where this assumption does not hold,
a job is not obliged to guarantee its temporal properties.

If the environment (hardware platform including the influence of concurrently executing
jobs, preemption effects on cache etc.) behaves such that the WCET estimate of some job
k is exceeded, then this job may execute for more than C}, thus breaking its guarantee
condition. As a consequence the rely condition for the Scheduler would not be satisfied and
hence it would be under no obligation to provide the necessary capacity to every job — some
jobs may still be active at their deadlines. This takes us to the topic of survivability and
how MCS supports graceful degradation.

4 Mixed-criticality jobs

To illustrate how a level of resilience can be added, two criticality levels are considered: HI-
crit and LO-crit; with J, a set of LO-crit jobs, Jx a set of HI-crit jobs, and J = J; U Jx.
Job h is a representative H I-crit job; [is a representative LO-crit job; j continues to represent
any job. So, for example, Ry, (t) is the rely condition for any H I-crit job, h € J3. With Mixed-
Criticality jobs there are two estimates of C;: C;(L) and C;(H); with C;(L) < C;(H) [61].

It is initially assumed that the system is either in the Normal mode, in which case all
jobs should meet their deadlines, or in the HI-crit mode in which only the HI-crit jobs are
guaranteed to meet their deadlines. For the Normal (V) mode the (R, G) conditions are as
above except that C;(L) replaces C; in Rj,G;, Rg and Gg:

RY(t) L Vj € act(T,t)ee;(t) < C;(L)
GY () X Wi cact(T,t) ot + (C;(L) — e;(t)) < d
RY(t) € WCET; < Cj(L) A t+(Cj(L) - ¢;(t) < d;

G () = et) < (L)

The rely and guarantee conditions for the N mode are therefore:

RY(t) = RSO~ N\ BRY (D)
JjeET

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273
274

275

276

277

278

279
280

281

282

283

284

285

286

287

288

289

290

291

292

A. Burns and C.B. Jones

GN(t) = Gimn N\ GY (@)
JET
Most of these rely and guarantee conditions are mutually supportive in the sense that they
“cancel out” when looking at the whole system. The only rely condition that depends on
external compliance is:

4.1 Adding resilience to HI-crit jobs

Considering H I-crit jobs (h € J3) and their rely condition:

def

RN (t) = WCET), < Ch(L) A t+ (Ch(L) —en(t)) <dp

We want to give a higher (safer) bound on WCET, so we consider a more conservative value
(Ch(H)), where Cr(H) > Cp(L). Now for all HI-crit jobs (h) we have a new HI-crit mode
(H) and:

def

R}I;I(t) = WCET}, < Ch(H) AT+ (Ch(H) — eh(t)) <dy

GH(t) € ent) < Cu(H)

The Scheduler’s definition for mode H is

def

RE(t) = Vh € act(Ty,t) een(t) < CL(H) A Vi€ act(Tg,t) e et) < Ci(L)

def

GH(t) = Vh € act(Ty, t) ot + (Cp(H) — en(t)) < dp

In this HI-crit mode there is no obligation to provide any level of service to the lower
criticality jobs or indeed to prevent these jobs from using resources (perhaps at a background
priority in a priority-based scheduler). Hence:

def

Rf!(t) = WCET, < Cy(L)

Gl (1) = a(t) < QD)

The above specification is, however, not sufficient for many of the protocols advocated
for mixed-criticality scheduling. The standard ‘mixed-criticality’ mechanism for being able
to add more capacity to the HI-crit jobs is to take computation time away from the LO-crit
jobs. Or, more precisely, to no longer execute these jobs. This further adds to the guarantees
of the Scheduler.

To facilitate this functionality it is necessary to know the time at which RY became false
(i.e. when an active HI-crit job has first executed for C(L) without terminating). We refer
to this as mode N’s deviation time, n"; defined by the following property:

I b€ act(Tr, ™) o en(n™) = Cu(L) A VEE <™, g € act(Tn,t) » eq(t) < Cy(L)

At the deviation time Rév becomes false, mode N is left and, simultaneously?, mode H
is entered. The rely and guarantee conditions R (t) and G (t) apply for t > n™.

4 The notion of simultaneous is taken from the Timebands [18] framework that allows instantaneous
actions to be defined at one time band (granularity) but implemented by an activity at a finer time
band.

12:7

ECRTS 2022

12:8

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

We assume here the extreme Vestal behaviour of not executing LO-crit jobs again after
n™V. This leads to a full specification for the guarantee condition for the Scheduler:

def

GH(t) = Vh € act(Tn,t) ot + (CL(H) —en(t)) < dp A Vi€ act(Jz,t) o et) =e(n™)

with a simplified rely condition as the Scheduler no longer relies on the behaviour of LO-crit
jobs as it guarantees that they do not execute:

def

RE(t) = Vh € act(Tp,t) e en(t) < Cu(H)

and therefore:

RU(t) = RSO~ N BRI N\ Rl ()

lede heJn
Gy = cémn N\ G N\ G
lede heTn

This strategy of pausing all LO-crit jobs is not an option that the Scheduler could choose,
but a requirement that is part of the specification of the job’s behaviour — and hence must
be explicitly contained in Gg .

With this specification the LO-crit jobs are suspended; but they may execute later in
another mode (perhaps after their deadlines). To abort these and future LO-crit jobs, rather
than preempt them indefinitely, the Scheduler could (if specified to do so) enforce termination:

Vit >N e act(Jc,t) =0

4.2 Transitioning from mode N to mode H

The specification above requires a movement from mode N to mode H. To provide useful
fault tolerance, it must be true that, whenever the rely condition for N fails to be satisfied,
the corresponding rely condition for H is satisfied (and remains so) i.e. at time n”V when
RN (n™) no longer pertains: R (n") is satisfied. If R¥(n") is true then the guarantee
condition, G (t), is delivered for all t > ¥, and as a consequence R (¢) must hold.

In general a mode change could involve modes with unrelated functionality and hence
the truth of the rely condition in the new mode would need to be asserted independently of
the rely condition in the old mode. This is identical to what is required at system startup
where the rely condition of the initial mode must be established. In this work, however, we
require a more constrained relationship between the modes:

» Definition 1. Mode B is a weakened form of mode A if
1. for all times (t) before n* when RA(t) is true then RB(t) is true (i.e. RA(t) = RB(t));
and
2. at time n when some aspect of R (n™) is no longer true R (n4) remains true.
As RE(n?) is true, it followed that GZ(t) is true for all ¢ > pA.
Counter FExample. We require that mode H is a weakening of mode N. Consider the
first element of the definition of weakening: in two of the three rely conditions, this is indeed
the case as:

RS (t) = R{(t); R (t) = R’ (t)

but R (t) does not have a simple relationship to R (¢). The first conjunct is a weakening of
the ‘external’ rely condition as WCET), < Cy(L) = WCET)}, < C,(H). The second conjunct

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

A. Burns and C.B. Jones

is, however, a strengthening; hence modes N and H do not have the required hierarchical
relationship — H is not a weakened form of N.

A Modified Definition of Mode N (N*). In order to assert that mode H is a weakened
form of the initial mode it is necessary to constrain the behaviour of the Scheduler further
in the Normal mode. It must do more than simply guarantee to provide for all jobs C(L)
before the deadline d, it must also reserve sufficient slack so that, at any time a switch can
be made, it is possible to guarantee C(H) before d.

It follows that, for a HI-crit jobs, h, to be schedulable in both N* and H modes, there
exists a virtual deadline vy, with

vp < dp — (Crp(H) — Cr(L))

that is defined (and confirmed) by the applicable scheduling analysis, such that: if the
Scheduler in mode N* guarantees C'(L) by v, then the Scheduler in mode H will be able
to guarantee C(H) by d.> To accommodate this constraint the guarantee condition of the
Scheduler in mode N* must be modified to:

* def
G§ (1)

= Vj€act(J,t)et+ (C;(L) —e;(t)) < wvj

and the Rely conditions of HI-crit jobs becomes

def

RN (t) € WCET), < Ch(L) A t+ (Ch(L) —en(t)) < vn

For LO-crit jobs (1) v; = d; and hence G has not changed for these jobs. For HI-crit jobs
(h) there is a proof obligation on the scheduling analysis to demonstrate:

Vi, h € act(Ty,t) @ GN () = t + (Ch(H) —en(t)) < dj, (5)
Such an obligation could be verified using mechanised proof tools such as PROSA [21, 10].
» Lemma 2. Mode H is a weakening of mode N*.

Proof. As noted above Vt : RY(t) = RH(t) and RN (t) = R (t). The modification to
N* does not effect these rely conditions. Also WCET,, < C(L) = WCET,, < C(H)
(as Cr(H) > Cr(L)). Finally t + (Cr(L) — en(t)) < vp = t + (Ch(H) — en(t)) < dj as
vp < dp, — (Ch(H) — Cp(L)).

The second step is to show that, at time n™" (when RN (V") fails), R¥(n™") remains
true. Condition RN (n™V") is false because the WCET, for some HI-crit job k, is not
bounded by Cj(L). Moreover V" is the first time instant at which RV is false. Hence at
time V", RY (nN") is false, but R (nN") is true as Oy (H) > Cx(L). <

This weakening property and the proof obligation represented by eqn (5) are therefore
sufficient to ensure that, whenever the Normal mode must be abandoned, the HI-crit mode
can be entered and will deliver its guaranteed behaviour. The final point to note about the
transition from N* to H is that the Guarantee conditions are also weakened. The system
moves from guaranteeing all job deadlines to just guaranteeing the HI-crit ones. Hence

GN(t) = GH(¢).

5 This virtual deadline is used directly in the EDF-based scheduling scheme EDF-VD [5] and in fixed-
priority scheduling is equivalent to the worst-case (maximum) computed response time of the HI-crit
job in the Normal mode [6]. Note whatever scheduling protocol is employed at run-time there is an
implicit (if not explicit) virtual deadline in the Normal mode. If this were not the case then there would
be insufficient spare capacity in the Normal mode to satisfy the extra demand of the HI-crit mode.
Strictly, we require Cy(H) > Ci(L)+ ¢ where § is the minimum time step that the system can undertake
in its discrete model of time.

12:9

ECRTS 2022

12:10

368

369
370
371
372
373
374
375
376
377

378

379
380

381

382

383

384

385

386
387

388

389
390

391

392
393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

409

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

4.3 Postponing the deviation time

As noted in the introduction, the main focus of this paper is to motivate and define a formal
framework for the specification of mixed criticality systems. In this section we are able to
give an example of how this framework can be utilised.

A system is considered to degrade at deviation time n"V" which is defined, above, as the
first time that a HI-crit job executes beyond its C(L) constraint. But if this deviation time
could be postponed then the dynamics of the system may alleviate the need to make the
mode change — the LO-crit jobs could continue to meet their deadlines. Possible favourable
dynamic behaviours include sporadic jobs not arriving at their maximum rate, and other jobs
executing for less than their maximum C(L) bound. To explore the possibility of delaying
the deviation time consider again the specification of the N* mode:

RY (t) = Vj € act(T,1) e ¢;(t) < Cy(L)

GY (1) % Wi € act(T,t) et + (C5(L) — e;(t)) < v

def

RY"(t) = WCET; < Cj(L) A t+(Cj(L) — ¢;(t) < v

* def
G (t) = e(t) <Cy(L)
where v; = d; for LO-crit jobs and v; < d; — (Cy(H) — Ci(L)) for HI-crit jobs.
If all jobs behave according to this R/G specification then all virtual deadlines will be
met. This implies there is a weakened form of behaviour (which we denote as mode N *):

R;*(t) f Vj € act(J,t) et <wj

GN (1) Lt <,

with G§" = GY" and R = R)".
From the definition of the virtual deadline we have RY™ = RY" and GI" = GIV".

The deviation time (when RY" becomes false for the first time) is now when a HI-crit
job is still execut