
����������
�������

Citation: Klimkowska, A.; Cavazzi,

S.; Leach, R.; Grebby, S. Detailed

Three-Dimensional Building Façade

Reconstruction: A Review on

Applications, Data and Technologies.

Remote Sens. 2022, 14, 2579. https://

doi.org/10.3390/rs14112579

Academic Editor: Csaba Benedek

Received: 31 March 2022

Accepted: 15 May 2022

Published: 27 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Review

Detailed Three-Dimensional Building Façade Reconstruction:
A Review on Applications, Data and Technologies
Anna Klimkowska 1,*, Stefano Cavazzi 2 , Richard Leach3 and Stephen Grebby 1

1 Nottingham Geospatial Institute, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, UK;
stephen.grebby@nottingham.ac.uk

2 Ordnance Survey, Adanac Drive, Southampton SO16 0AS, UK; stefano.cavazzi@os.uk
3 Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham,

University Park, Nottingham NG7 2RD, UK; richard.leach@nottingham.ac.uk
* Correspondence: anna.klimkowska@nottingham.ac.uk

Abstract: Urban environments are regions of complex and diverse architecture. Their reconstruction
and representation as three-dimensional city models have attracted the attention of many researchers
and industry specialists, as they increasingly recognise the potential for new applications requiring
detailed building models. Nevertheless, despite being investigated for a few decades, the compre-
hensive reconstruction of buildings remains a challenging task. While there is a considerable body
of literature on this topic, including several systematic reviews summarising ways of acquiring and
reconstructing coarse building structures, there is a paucity of in-depth research on the detection and
reconstruction of façade openings (i.e., windows and doors). In this review, we provide an overview
of emerging applications, data acquisition and processing techniques for building façade reconstruc-
tion, emphasising building opening detection. The use of traditional technologies from terrestrial and
aerial platforms, along with emerging approaches, such as mobile phones and volunteered geography
information, is discussed. The current status of approaches for opening detection is then examined in
detail, separated into methods for three-dimensional and two-dimensional data. Based on the review,
it is clear that a key limitation associated with façade reconstruction is process automation and the
need for user intervention. Another limitation is the incompleteness of the data due to occlusion,
which can be reduced by data fusion. In addition, the lack of available diverse benchmark datasets
and further investigation into deep-learning methods for façade openings extraction present crucial
opportunities for future research.

Keywords: façade parsing; building openings; object detection; images; point cloud; platforms;
sensors

1. Introduction

For decades, three-dimensional (3D) city models have been primarily used for visu-
alisation, with an increasing number of stakeholders and practitioners recognising their
advantages in decision-making processes. A key reason for this is that the world around
us, presented in 3D form, as opposed to two-dimensional (2D) maps and drawings, is
typically more comprehensible and easier to perceive and can readily serve as a tool for
communicating and sharing information [1].

Therefore, 3D city models play an essential role when analysing and managing urban
data, and this is evidenced by the large number of applications that utilise this informa-
tion [2]. The integration of 3D city models with non-geometrical data, such as social,
economic, acoustic or historical information has proven its utility in fields including 3D
cadastre [3], emergency response [4], decision-making, urban planning [5], smart cities [6]
and more recently, in the digital twin field where 3D city models serve as a fundamental
source of information [7].
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Among the many elements that make up city models, one of the most prominent,
if not the most important, are the buildings. Nevertheless, despite their usefulness, the
publicly available 3D building models are often presented as coarse, solid blocks in most
cases. Occasionally, these block models are augmented with simplified roof shapes and
image texture [8]. However, details of the building openings (windows and doors) are
often missing.

There is a significant body of literature focused on trying to automate building model
reconstruction to make it low-cost, faster, accurate and easy to update. Nevertheless, many
of the approaches proposed to solve the challenge of automatic generation of detailed
models require a great deal of pre-and post-processing, therefore restricting their utilisation
as standalone solutions [9].

This challenge is partly associated with the complex geometry of buildings, restricted
access in performing measurements, or the presence of objects that obscure the façade,
especially their lower parts [10]. An example illustrating the complexity of buildings based
on their architectural style is presented in Figure 1. This diversity of styles poses problems
to developing universal and robust methods for the reconstruction of building façades in
the city environment.

Figure 1. Examples of architectural styles in United Kingdom. Top row from left: Tudor,
Baroque, Georgian, Victorian and Edwardian; bottom row from left: Art Deco, 1930s, Modern
(white-grey building) and Green ‘Living Wall’. The images were taken from multiple modalities :
Modern: https://architizer.com/blog/inspiration/collections/architecture-on-the-market-london-
contemporary-homes/, accessed on 17 January 2022, Living Wall: https://tugc.co.uk/portfolio-
item/maintaining-one-of-the-biggest-living-walls-in-london/, accessed on 17 January 2022, Others:
https://www.bohaglass.co.uk/british-architectural-styles/, accessed on 17 January 2022.

3D building reconstruction is relevant to a wide range of research fields, such as com-
puter vision, computer graphics, photogrammetry, geodesy, architecture, civil engineering
and construction. To avoid confusion, in this review, the concept of 3D building reconstruc-
tion encompasses the processing workflow consisting of several steps: data acquisition,
data registration, scene interpretation and object extraction and 3D modelling (Figure 2).

Figure 2. The general workflow of the reconstruction process includes data acquisition and registra-
tion, scene interpretation and modelling. Red boxes indicate elements of the process covered in this
review for detailed façade reconstruction.

Data acquisition is a crucial step in building reconstruction. A building’s architectural
style, size, location (i.e., city centre versus suburbs) and the level of detail at which the

https://architizer.com/blog/inspiration/collections/architecture-on-the-market-london-contemporary-homes/
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final product is to be presented can all determine the choice of the sensor technologies and
platforms used to acquire the necessary data used as a basis for reconstructing a building.
The next step in the 3D building reconstruction pipeline is data registration. In many cases,
to obtain a complete picture of a building, it is necessary to combine data from different
perspectives (e.g., terrestrial and airborne) and sensors. Multiple methods are used to
register data from point clouds [11–16] or 2D images [17–21].

Scene interpretation is the next stage of the reconstruction pipeline. Many concepts
relate to scene interpretation, including façade parsing, segmentation and object extraction.
The primary purpose of these methods is to thoroughly extract and analyse the shape and
position of walls and façade openings (windows, doors and balconies) from the acquired
data. The final stage of the reconstruction process is the geometric modelling of the
façade and its elements. These can be achieved using parametric [22], surface [23–25] or
volumetric [26,27] modelling approaches.

To date, solutions for detecting the openings of the façade are scarce and generally
limited in application to buildings with a relatively narrow architectural variety. This
is due to, inter alia, a relatively monolithic type of publicly available data and from the
generally small amount of available data that would enable more research to be conducted.
Nevertheless, the number of applications that could take advantage of this knowledge of
detailed 3D building models is increasing.

Therefore, this review initially focuses on highlighting the current research on data and
key technologies used to enrich building façades, especially the methods used for façade
parsing and building-opening detection. Accordingly, the registration of input data [28]
and the geometric modelling of buildings [10,29] are beyond the scope of this review.

The first part of this review (Section 3) presents an overview of applications, such as
building-information modelling and solar energy potential estimation, that could benefit
from detailed 3D building models. Section 4 presents an overview of the platforms most
commonly used to record building façades, in addition, we introduce emerging platforms,
such as handheld scanners, the use of mobile phone images and volunteered geography
information. Next, the advantages and disadvantages of range-based and image-based
data used to identify façade openings are discussed (Section 5).

In Section 6, we discuss the methods developed to extract the façade elements from 3D
and 2D data and highlight the challenges of the current approaches. Finally, we present the
key limitations of the current methods and identify knowledge gaps in the current body of
research, and we subsequently proposed key areas for future investigation.

2. Methodology

The approach taken to collate existing publications on detailed façade reconstruction
for this review was based on an investigation of building reconstruction described in
other literature reviews [10,30,31]. This enabled an initial understanding of what had
been achieved within the building reconstruction field in the past and the identifica-
tion of relevant keywords to search for related literature. To the best of our knowledge,
there is no literature review dedicated to façade opening extraction, aside from that by
Neuhausen et al. [32], which presented methods for window detection from images.

The increased technological development in data collection and associated processing
methods has impacted the scientific community, as reflected in the increase in the number of
journal articles, books and series on facade-related studies (Figure 3). The origins of research
related to façade reconstruction involved the processing and analysing of images. About a
decade later, in 2011, the possibilities of point clouds for building reconstruction began to
be explored. The year 2016 represents the advent of research introducing deep-learning
methods, which, in 2021, comprised about two-thirds of publications on the use of deep
learning in façade opening extraction-related topics. To order the content of the collated
literature into a manageable taxonomy, a set of themes and questions was developed to
guide this review (Table 1).
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Figure 3. Number of façade opening extraction-related publications per year in journals, series
and books according to the Web of Science portal based on the following keywords (in quotes) and
Boolean Operators (in uppercases): (1) ‘façade parsing’ AND ‘image’, (2) ‘façade parsing’ AND ‘point
cloud’, (3) ‘façade segmentation’ AND ‘image’ NOT ‘indoor’, (4) ‘façade segmentation’ AND ‘point
cloud’ NOT ‘indoor’, (5) ‘window detection’ AND ‘image’ AND ’facade’ NOT ’indoor’, (6) ‘window
detection’ AND ‘point cloud’ AND ’facade’ NOT ’indoor’, (7) ‘façade reconstruction’ AND ‘deep
learning’, and (8) ‘façade segmentation’ AND ‘ deep learning’.

Table 1. Questions defining the main topics covered by the review.

Review Section Questions and Example

Section 3:
Applications What are the applications that could benefit from more detailed 3D build-

ing model? For example, solar potential estimation, building information
modelling and energy analysis.

Section 4:
Platforms What measurement technology is used? What strategy can deliver re-

liable and suitable data for façade opening extraction? For example,
airborne, ground level, mobile and static platforms. Are there any emerg-
ing technologies? Handheld, mobile phones and volunteered geography
information.

Section 5:
Data types
\representation

What are the advantages and disadvantages of data used for façade
opening extraction? What are the challenges of existing methods? For ex-
ample, what characteristics of range-based and image-based data should
be considered when extracting façade openings.

Section 6:
Scene interpreta-
tions

How is the data processed? For example, analysis of point cloud density
for façade opening extraction. Machine learning capabilities for façade
opening extraction. What are the benefits of data fusion?

3. Applications

Simplified and coarse representations of buildings can serve as an effective source for
analysis on either a city or national scale. However, a lack of detailed information on the
façade elements poses difficulties for analysis at street or building scale [33]. Despite much
research, the reconstruction of buildings with semantically rich façades remains a challenge
due to the complexity of the task or lack of adequate data. Nevertheless, the realisation of
an increasing number of applications that could benefit from detailed information about
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the composition and appearance of existing buildings has sparked growing interest among
academic and commercial researchers (Figure 4).

Figure 4. Applications of 3D building models for decision-making support. Reprinted with permis-
sion from Ref. [2].

3.1. Building Information Modelling

Among the applications requiring detailed façade information, building information
modelling (BIM), solar potential analysis estimation and a broad spectrum of energy analy-
ses are most common. BIMs are digital facility models containing rich semantic information.
The potential of BIM is recognised among the Architecture, Construction, Engineering and
Facility Management (ACE/FM) community, since BIMs facilitate communication between
a range of stakeholders involved at different stages of a facility’s life cycle.

BIM models, in most cases, are generated from blueprints at a level of detail that
exceeds that which is typically obtained based on remotely sensed data [10]. However,
despite the lower level of detail, creating 3D models of buildings directly from remotely
sensed data for BIM is useful when blueprints are unavailable (e.g., historic buildings) or
are old and outdated. In such cases, remote sensing methods allow the creation of a 3D
representation of buildings in as-built/as-is conditions [34–37].

3.2. Solar Energy Potential

Solar energy potential estimation is another application for which detailed information
about the façade and its elements is relevant. Roof surface analysis has been used for many
years in solar energy estimation, often overlooking the possibilities of also exploiting walls.
This is due to a tedious and time-consuming process if considering analyses on a city scale
and not individual buildings [38] or the need for more sophisticated tools based on 3D
geospatial data [39].

However, the growing interest in renewable energy policies has led to intensified
research on the solar energy potential associated with vertical surfaces (e.g., walls) in
the urban environment. This is of particular importance in the modern urban landscape
because the area of a façade often exceeds that available on the roof. Another advantage
of utilising vertical surfaces is that they are not typically affected by dust and snow cover
during the winter months. In recent years, several studies have investigated the potential
of solar energy from a building’s façade (vertical surfaces) [39,40].

For instance, Desthieux et al. [39] assessed the solar energy potential for rooftops and
façades in Geneva, Switzerland, by combining light detection and ranging (LiDAR) with 2D
and 3D cadastre data (i.e., 3D building models, 2D roof layer, 2.5D digital surface model).
Their experiment proved the practicality of 2D and 2.5D data for solar radiation analyses
conducted on large urban scales. However, the obtained level of detail was insufficient
when features, such as windows or balconies, were necessary for the analysis.
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Catita et al. [40] investigated the relevance of roofs and façades for the photovoltaic
potential of the University of Lisbon, Portugal, by combining aerial LiDAR data with
3D building models and solar radiation models. The authors presented a methodology
addressing which façade is most suitable for solar panels or where on the façade a panel
should be localised.

3.3. Energy Analysis

Detailed façade representations are also beneficial to applications under the broad
spectrum of energy analysis. For instance, the size and orientation of windows can have
a significant impact on the energy consumption of buildings [41]. To minimize energy
wastage, the area of doors and windows should be less than or equal to 20% of the floor
area [42]. Moreover, the number of floors (which can be estimated based on the number
of windows) and the window-to-wall ratio, among other factors, can contribute to heat
demand modelling [43].

Building height and the percentage of glaze were also among the many factors used
by Nageler et al. [44] for dynamic urban building energy simulation. Other energy analysis
applications that could make use of detailed façades include estimation of energy de-
mand [45], energy-efficient retrofits planning [46], assessment of energy performance [47]
and luminance mapping [48].

3.4. Civil Engineering

One of the important aspects considered by civil engineers is an assessment of the
stiffness of buildings, the resistance of which can be weakened by ground movements
(e.g., caused by underground construction or geohazards). In this case, information about
building openings, and in particular windows, is considered since they affect the over-
all stiffness of the building structure [8,49,50]. Information on façade openings is also
critical for evacuation planning and emergency response, where not only a geometrical
representation of façade openings are essential, but also their semantic representations [4].

3.5. Other Applications

The applications highlighted above are domains within which the advantages of using
more detailed building façades are clear. Other applications that could benefit from de-
tailed façades include light pollution and shadow simulations [51], prerequisite for disaster
management [52], movies and virtual reality [53], and potentially bird-window collision
analysis [54–56] where the window angle of orientation plays an important role in assessing
avian mortality. As outlined, the enrichment of volumetric 3D models with additional infor-
mation about façade openings clearly has significant potential for opening new possibilities
for more effective and accurate analyses and urban environment management.

4. Platforms

Although research into the reconstruction of 3D buildings has increased in recent
decades (see Figure 3), the majority of studies have sought to improve the accuracy of
determining the external geometry of buildings and marginalizing the detection and
reconstruction of building openings. In general, the data used for the reconstruction of
the façade can be grouped according to the viewing perspective from which they were
obtained or the type of data collected. Regarding the perspective, aerial and ground-based
platforms are mostly used due to their viewing angle. As for the sensor, the most commonly
used data are those acquired using ranging-based and imaging-based sensors (Figure 5).
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Figure 5. Data commonly used for 3D building reconstruction. Reprinted with permission from
Ref. [50].

The main factors that determine the choice of the platform from which the data for 3D
building reconstruction are acquired are the complexity and height of the specific building
feature/component of interest (e.g., roof, façade). Figure 6 shows what information about
the building can be collected depending on the level of the platform. For instance, data
acquired from aerial platforms are most suitable for reconstruction of the roof [57] or the top
of a tall building. In contrast, data collected from ground level captures parts of buildings
that are not visible from a plan view, such as the façade and its openings.

Figure 6. Building elements captured depending on the platform used. From left to right: nadir view
allows rooftop detection, the oblique view extends nadir by mapping façades, terrestrial platforms
capture façade information, and the combination of all allows mapping the whole building. Adapted
with permission from Ref. [58].

Airborne platforms provide the most pertinent data for roof modelling, building
footprint detection (oblique images), showcasing streets and mapping the locations of open
spaces. However, the capabilities of airborne platforms for detailed 3D elevation modelling
are limited. This is largely due to the downward-facing (nadir) viewing perspective offered
by most sensors that are mounted to airborne platforms. Alternative solutions to mapping
façades from airborne platforms include the use of sensors (e.g., cameras) that provide an
oblique viewing perspective [59–61] or unmanned aerial vehicles [62].

An airborne survey allows information for a large area to be readily acquired in a single
flight but at a high cost. A solution to this is through the use of unmanned aerial vehicles
(UAVs). Nevertheless, the use of UAVs for surveying complex urban environments poses
several challenges of its own. First, a UAV survey requires knowledge and appropriate
certificates on how to operate the drones. Moreover, the area and height at which UAVs
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can operate in cities are limited due to the safety and security risks posed by skyscrapers
and overhead power lines.

In addition to airborne platforms, data obtained from ground-based platforms are
used to gather information for the 3D reconstruction of buildings. This group of platforms
includes both static and mobile units (e.g., vehicle, backpack, robot). Static ground plat-
forms consist of a sensor most often placed on a tripod, with data collected in stop-and-go
mode. This means that, once all the required data are collected from one measuring point,
the equipment is then moved to the next point to perform measurements from a different
perspective [63]. Datasets acquired using static scanners are typically large, therefore,
requiring considerable storage and time for subsequent processing. Moreover, collecting
data for multiple buildings is time-consuming.

The availability of Global Positioning System (GPS) technology contributed to the
creation of mobile mapping systems (MMS) [64] in which sensors are mounted on moving
platforms (e.g., vehicle, rail cars, robot and backpack). Most commonly, mobile technologies
are equipped with sensors, such as a scanner and camera, Global Navigation Satellite
System (GNSS) and Inertial Measurement Unit (IMU), with data collected along the driving
path. Mobile systems reduce the time and cost needed to undertake a survey, as they can
be used to acquire data from large areas in a shorter amount of time.

In recent years, manual simultaneous localization and mapping (SLAM) based laser
scanners have emerged, allowing the relatively seamless collection of 3D data (Figure 7).
These handheld scanners are growing in popularity due to their measurement speed, low
cost and ease of use. These devices combine different sensors (LiDAR sensors, RGB camera
and IMUs), the data of which are used by SLAM technologies to track the position of the
device while creating a mapped environment [65]. Handheld scanners are especially useful
in the absence of a GPS signal which makes it difficult to determine the position of the
sensor or platform (e.g., satellite signal blockage due to building, bridges, trees, indoor
surveys and ’multipath’ effects). Solutions based on the SLAM approach allow for faster
and cheaper data acquisition at the expense of lower accuracy compared to traditional
methods.

Figure 7. An example of handheld technology. Source: Leica.

Over the past decade, in addition to traditional solutions, there has been a growing
interest in the geospatial community to use images acquired from smartphones. This data
collection method is cheap and fast and enables the acquisition of images from different
perspectives, making it possible to register façade elements not visible from other platforms.
An additional advantage of mobile phones is the GNSS sensor with which the device is
equipped.

The GNSS sensor allows for a relatively accurate determination of the position of the
camera when taking an image, depending on the quality of the signal and the sensor [66].
The potential use of images acquired from mobile phones for building modelling has been
investigated in several studies [67–69]. In these, phone images were used to create point
clouds of buildings through the structure from motion (SfM) [70] algorithm. The presented
results demonstrated that data acquired from mobile phones by multiple users could be
successfully combined to derive a 3D point cloud [67] (Figure 8).
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Figure 8. 3D building reconstruction from mobile phone images. Image boundary associate with the
colour coded cameras in the point cloud. Reprinted with permission from Ref. [67].

Data collection from multiple users echoes the concept of ’citizens as sensors’ of
Goodchild [71], which opened up the world of ’volunteered geography information’ (VGI)
and ’volunteered geography’ (VG) [72]. Due to the adoption of crowd-sourcing, many non-
experts can now share geospatial data. For example, Fan et al. [73] designed an integrated
platform to reconstruct 3D building models based on images collected by volunteers or
non-expert users. The results appear promising for delivering more detailed building
models, however, no information on the location accuracy was reported.

Despite the undisputed positives associated with citizens actively participating in data
collection, this approach raises questions about the quality assurance [74]. As for using
crowd-sourced data for a more detailed reconstruction of buildings, a set of well-designed
data acquisition guidelines could ultimately help enhance façade openings detection.

For example, many images from different locations, collected under various conditions,
could allow for more accurate recognition of city elements and thus the creation of more
robust and flexible methods for openings detection and modelling. In addition, such data
could be used to develop databases for training, validation and testing new strategies,
where dedicated and diverse datasets could assist data-driven approaches.

Data acquired from terrestrial platforms enable the collection of information on the
lower parts of buildings, which allows subsequent identification of building openings.
Nevertheless, data collected from this level poses several limitations. First, permission
to enter private properties (e.g., residential neighbourhoods) may be restricted for legal
reasons. Furthermore, objects on the ground can be obstacles that limit a sensor’s field
of view. These include, among others, pedestrians, passing and standing cars or street
furniture. These limitations pose difficulties in obtaining a complete dataset for a given
area of interest and, consequently, lead to problems with recreating a complete and detailed
3D building model. Missing façade elements can be supplemented with data from aerial
platforms obtained with an oblique camera. Although reconstructing detailed building
façades is possible, it is still a challenging task. This is mainly due to constraints associated
with the complexity of a building façade, occlusion and camera angle, radiometric changes
in illumination and perspective in different images, sensitivity to sun glint and hot spots [75,76].
This leads to incomplete coverage and holes in the data that make it difficult to correctly
identify objects or problems with image matching that can be used to replicate the point
cloud from images (Figure 9).
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Figure 9. Left: nadir, middle and right: oblique views of the same urban scene. The differences
in radiometric resolution between the views, cause difficulties in image matching. Reprinted with
permission from Ref. [77].

5. Data Types/Representation

The two most popular measurement techniques used in building reconstruction are
laser scanning and photogrammetry. The basics for these techniques can be found in
McManamon [78] and Mikhail [79] and Wolf et al. [80], respectively. Point cloud datasets
obtained from laser scanning or multi-view stereo vision are commonly used for 3D
building reconstruction and city mapping (Figure 10). Compared to data, such as 1D
measured distance or projected 2D images, point clouds provide high-resolution data for
accurately determining the shape, size and position of an object in 3D space, enabling object
reconstruction and modelling [81].

Figure 10. An example of point cloud from terrestrial laser scanning (left, source OS © Crown
copyright and database rights 2022 OS and dense multi-stereo matching from oblique aerial imagery
(right, reprinted with permission from Ref. [82]).

Range-based point clouds are quick to obtain, not affected by illumination and of
high accuracy, which makes them a good source of data for 3D building reconstruction.
However, the range-based point clouds have shortcomings which include lack of semantic
information, high costs of the equipment and high technical requirements for operation [83].

Additionally, the distribution and density of points obtained is not always uniform
and depends on the distance between the sensor and the object. A subsequent lack of
information, high redundancy and low distribution at the edges of objects are all factors
that can lead to difficulties in the reconstruction of complex buildings [84,85]. Moreover,
differences in the accuracy and density of point clouds do not allow for a simple fusion of
data obtained from different viewpoints and sensors [86].

Image-based point clouds are generated by applying triangulation to stereo-image
pairs, such as through SfM. One of the main advantages of image-based point clouds is that
they contain high-resolution textural and colour information, which enables the generation
of photorealistic models [87]. Nevertheless, point clouds obtained from SfM can suffer
from non-uniformities and may contain a higher noise level than range-based point clouds.
Compared to the raw point cloud from range-based methods, in which the 3D information
is obtained directly from the implicit scale factor, image-based point clouds require this
information to be extracted from the images using camera parameters (i.e., intrinsic and
extrinsic parameters).
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One of the essential differences between the two types of point clouds is the accuracy,
which, for range-based point clouds, is greater in the depth direction compared to image-
based point clouds. On the other hand, the accuracy of the image-based product is greater
in the direction perpendicular to the depth plane.

One of the point cloud characteristics used in detecting building openings is the
presence of holes (i.e., data gaps) where glass objects are located, which is due to signal
penetrating through the transparent surface (range-based) or difficulties with image match-
ing for glass/transparent surfaces (image-based). This feature is helpful in the detection
of elements, such as windows or glass doors; however, when the objects are covered (e.g.,
curtains and blinds), their detection based on the missing data is challenging. Figure 11
illustrates a point cloud with various examples of windows. As presented, the assumption
that a hole represents windows in a point cloud can be misleading. Specifically, some of the
windows are partially or entirely obscured, meaning that the holes in the point clouds do
not match the actual shape of the window.

Figure 11. Mobile mapping system point cloud representing a building façade. (A)—window
represented by holes without noise. (B–G)—samples of windows with varying degrees of obscuring.
Source: OS © Crown copyright and database rights 2022 OS.

In addition to using images to create a point cloud, 2D image data itself provides a
source of information that can be used for the semantic enrichment of building façades.
For instance, the edges of objects are easier to detect in images, which allows the bound-
aries of objects to be easily defined. Furthermore, the colour information (presented in
different colour spaces) can be used to segment the façade. Recky et al. [88] successfully
adapted a k-means clustering in a CIE-Lab colour space to detect windows on complex
historical buildings. Despite its advantages, the reconstruction of buildings based only on
photogrammetric methods provides several challenges. Occlusions related to vegetation,
pedestrians or vehicles, duplicate measurements of the same object, or insufficient data
volume related to site accessibility are among the main factors that prevent an accurate
reconstruction of objects.

6. Scene Interpretation

During the past decade, a large body of research has been conducted on 3D building
reconstruction. Nevertheless, most of this deals with the manifold facets of the buildings.
Specifically, there has been a primary focus on improving the accurate representation of
the external shape of the building without consideration of its details. To the best of our
knowledge, the work by Musialski et al. [30] is the most comprehensive review of the
methods used for automatic and semi-automatic reconstruction of buildings from images
and LiDAR data, which includes methods for window detection from image data.

The number of studies that addressed the subject of façade opening detection prior to
2013, when Musialski’s work was published, was minimal. However, recent advances in
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data processing approaches (e.g., computer vision and deep learning) and more accessible
hardware has contributed to the growing interest in detecting façade openings.

Here, we present an update of more recent research on building reconstruction, with
a focus on façade elements identification. With respect to scene interpretation methods,
we assume that segmentation refers to the assignment of a label only to known objects,
whereas scene parsing involves assigning annotations to all points. In contrast, object
detection selects specific elements (e.g., windows and doors) from a given dataset.

6.1. 3D Scene Interpretation

Essentially, point clouds generated from laser scanning or multi-view stereo vision
are commonly used for 3D reconstruction of buildings due to their ability to significantly
enhance geometry reconstruction and surface modelling [81]. Interpreting scenes obtained
from point clouds to extract information about the elevation of a building and its openings
can be divided into two stages. The process begins with segmentation that involves
grouping points belonging to one surface (e.g., a wall). These regions are further subdivided
to obtain more detailed façade information (e.g., doors, windows and balconies) using
feature extraction methods.

6.1.1. Segmentation

Although the segmentation process does not directly translate into the delineation of
the façade openings, it is a process that enables the distinction of those points within the
point cloud that belong to the building (Figure 12). The general concept is to group points
into homogeneous components based on the common features to exclude elements that are
outside the area of interest, thus reducing the number of points and allowing for quicker
processing. The advantages and disadvantages of common point cloud segmentation
methods are presented in Table 2 and further information can be found in the work of
Wang et al. [89] and Xu and Stilla [10].

Figure 12. Example of building segmentation. Raw point cloud collected from terrestrial laser scanner
with RGB values. Source OS © Crown copyright and database rights 2022.
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Table 2. Summary of different point cloud segmentation methods for building reconstruction

Method Advantages Disadvantages Examples

Model-based Resilience to outliers
and noise

Computationally
expensive,

time-consuming, high
memory

consumption,
difficulties with

reconstruction of
objects for which

there are no
mathematical
expressions

[90]

Region-growing

Good preservation of
edges and boundaries

of surfaces and
artifacts

Sensitive to outliers
and noise, over
segmentation

[91–93]

Clustering-based
Easy to implement,

no need for setting of
seeds

Over and under
segmentation, high
computational costs,
points on the edges

may meet the
requirements of more

than one cluster

[94,95]

6.1.2. Scene Parsing

Façade parsing is a crucial step in the 3D building reconstruction process that leads to
the classification of input data into semantic regions, such as walls, doors and windows [96]
(Figure 13). Façade parsing enables a better urban scene understanding and enables more
effective information storage on building façades. However, most examples of point cloud
semantic segmentation of the urban environment do not include the detection of openings
in the building façade.

Li et al. [24] introduced a façade parsing approach for which a point cloud is first
decomposed into depth planes. Next, façade elements are detected using a combination of
machine-learning-based classification and prior semantic knowledge. The overall perfor-
mance of the method presents good results. However, it can be challenging to apply if the
occluded area varies from the visible façade elements, hindering accurate reconstruction of
the occluded parts of façade. To improve the method, the authors suggested considering
the use of weak architectural principles or fusing the point cloud with images or GIS data.

Figure 13. Part of Paris-Lille-3D dataset. Semantic labels for each object class, with unique colour for
each class. Reprinted with permission from Ref. [97].

6.1.3. Façade Openings Extraction

The next step in the detailed 3D façade reconstruction is the extraction of the façade
openings. Current façade openings detection strategies for point clouds can be categorized
into hole-based and rule/symmetry-based (Table 3). Most building openings have glass
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elements, and their characteristic ’transparency’, which generates information gaps in the
point cloud, can be exploited for the detection of openings [98,99]. A second character-
istic often used to detect openings from point clouds is their typical rectangular shape
represented by two vertical and horizontal edges.

Hole-based opening detection methods search for empty spaces in a point cloud and
rely heavily on the point cloud density. The reason for this is twofold. On the one hand, a
dense raw point cloud for walls and low point density for glass objects allows the detection
of gaps in the point cloud. On the other hand, a low raw point density may be insufficient
for the reliable generation of feature geometries [100].

Many studies on hole-based opening detection use terrestrial laser scanners (TLS) since
their data density typically exceeds that of point clouds obtained from mobile mapping
systems (MMS) or aerial laser systems (ALS). Pu and Vosselman [101] tested their method
based on a Triangular Irregular Network of data from TLS (average point density 500
pts/m2) and MMS (around 100 pts/m2); while the method recovered the outlines of
building openings from the TLS data, the point cloud density from MMS was too low to
detect windows and doors.

High-density point clouds of the urban environment are not always available as TLS
data collection, compared to MMS and ALS, is more costly and time-consuming when
surveying large areas. The additional inconvenience of a highly-dense point cloud is the
additional data storage and management required.

To address these issues and assess the effect of point cloud density on correct façade
opening detection, Zolanvari et al. [102] tested their slicing method on three buildings
of diverse size and complexity. They suggested that a density of 130 pts/m2 should be
sufficient to achieve at least 90% of accuracy. Although hole-based methods allow for
façade opening detection, they present several shortcomings, such as sensitivity to outliers
and noisy points, user intervention [101,103,104] and challenges with detecting windows
covered by curtains [104–106].

Another façade opening detection strategy for 3D point clouds involves rule and
symmetry-based methods. Rules play an important role in detailed façade reconstruction
as openings follow architectural rules concerning their shape and spatial relationships (e.g.,
the locations of windows and doors relative to walls). Rules can be applied to openings
extracted from corner detectors [9,107], a graph model [73], machine learning [108] or based
on the assumption of symmetry in window distribution [109].

Applying rule and symmetry-based methods allow detection of openings from par-
tially missing data. However, these methods are heavily depend on symmetry, and repeti-
tive elements can affect their robustness [110]. Moreover, the approach is unsuitable for
low-rise buildings, as vertically repeated features are unlikely to be present. This diversity,
complexity and asymmetry of the façade structure does not allow for the creation of flex-
ible rules describing the façades and their elements, posing problems in automating the
reconstruction process of detailed 3D building models.

To address this problem, Fan et al. [73] proposed façade layout graph model method
based on Gestalt [111] principles and the principle of architectural form [112]. Although
the proposed method describes different types of façade structures, its applicability for
complex structures and automation needs further improvements.

The methods outlined are often tested on a limited number of datasets that are lacking
in the representation of buildings with diverse architectural styles. The lack of benchmark
datasets with various styles makes it difficult to develop and test new methods (e.g.,
deep-learning based) for façade opening detection or point cloud parsing. Despite a
recent increase in the number and availability point clouds of urban environments, their
classification does not include façade openings.
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Table 3. Summary of different methods for façade opening extraction from point cloud.

Method Advantages Disadvantages Examples

Hole-based

The assumption that
windows are an

integral part of the
façade reduces the

search area

Depends on point
cloud density,

misclassification due
to occlusion holes,

points reflected from
curtains may be
similar to those

reflected from wall
causing difficulties in
distinguishing façade

openings,
high-density point
cloud require more

data storage

[100–106,113,114]

Rule-symmetry-
based

Successful with low
resolution data,

allows detection from
partially missing data

Necessary user
intervention to create
rules, high reliability

on symmetry and
rules, difficulties with

application for
non-symmetrical

façade types

[9,73,107,108,115]

6.2. 2D Scene Interpretation

While this review focuses on 3D building reconstruction, it is also crucial to outline
methods used to detect façade elements from 2D data for two main reasons. First, there
is increasing amount of data being collected by MMS that, in addition to the acquiring
images, also provide the camera model parameters, GPS and IMU data [116], allowing
for 2D to 3D projection of data. Secondly, the 2D images allow the isolation of features
with linear components (e.g., windows and doors) that can improve the quality of the final
detailed building model [117,118].

6.2.1. Scene Parsing

Image semantic segmentation is a process of adding a semantic class to every image
pixel. Generally, segmentation-based methods for extracting façade elements from 2D im-
ages can be divided into two groups (Table 4). These are: (i) bottom-up methods [119–123];
(ii) grammar driven (top-down) methods [124–126].

Bottom-up methods solve the image segmentation problem at the pixel level. Although
bottom-up methods deliver satisfactory pixel-wise results, a result of the segmentation
is not suitable for every application due to divergence from basic architectural rules; for
instance, irregular shape (pixel-wise segmentation may not result in straight and even lines)
and incorrect size of windows or doors. These irregularities may be enough to estimate the
glass-to-wall ratio, which might be suitable for thermal related applications.

However, their usability for constructions-related applications, such as BIM, is insuf-
ficient. The reason for pixel labelling challenges is that radiometric variation in images,
dynamic or static occlusion, and shadows can hinder the precise recognition of objects.
The above-mentioned issues can lead to a partial or complete gap in the segmented scene.
To improve the quality of bottom-up methods, weak architectural constraints can be
applied [127–129], thus, reducing occlusion issues and improving the overall accuracy;
nevertheless, issues, such as the window’s vertical alignment, still persist.

Recent bottom-up methods rely on convolutional networks, however, the lack of datasets
with diverse architectural styles poses difficulties for 2D data segmentation [130,131]. Specifi-
cally, Lotte et al. [130] trained a neural network on different available datasets and then
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tested it on an entirely new dataset. The results suggest the need for accurate annotation
of the images and the lack of an exact extraction of façade elements on an unknown data
set, except where training and testing datasets share similar features. Moreover, Kong
and Fan [131] note that existing benchmark datasets constitute rectified images without
distortion, which are different from those acquired from the mobile mapping systems.
Hence, at present, methods developed on specific datasets cannot be easily transferable to
other scenarios.

Top-down methods segment images based on grammar rules. As opposed to bottom-
up methods, the implementation of grammar rules supports the prediction of the façade
element’s location, which is particularly important in the case of occlusion or changes in
illumination. Moreover, applying the grammar rules restrict the area in which the algorithm
searches for elements, as it considers only these segments that follow the rules.

Nevertheless, grammatical rules involve significant human intervention and prior
knowledge to construct the rules describing a given architectural style, making it difficult to
automate and adapt the methods to different data or sites. To reduce user intervention auto-
matic learning of rules with ground-truth image annotations have been proposed [124,132].

For example, Gadde et al. [124] experimented with applying a set of grammar rules
learned on one architectural style to another style. Their results indicated that the location
of the façade elements is not ground truthful, therefore demonstrating the problems with
the interchangeable application of grammatical rules.

Table 4. Summary of different methods for façade parsing from images.

Method Advantages Disadvantages Examples

Bottom-up

Better performance
compared to
rule-based

methods [131], less
prior-knowledge

necessary

Susceptible to
changes in lighting,

irregular shape of the
output (e.d., edges

are not straight lines),
occlusion hinders

precise segmentation,
lack of diverse

training datasets

[53,100–
102,104,106,113,114,
119,130,131,133–135]

Top-down

Higher prediction of
façade element’s
location, better

structure of detected
façade elements

Rely on strong prior
knowledge,

difficulties in
applying rules for one
architectural style to

other, lack of
flexibility when

facade is changed

[124–126,132,136]

6.2.2. Façade Openings Extraction

The studies presented above focus on parsing an entire building façade, however,
there is a considerable body of literature dedicated to window detection from 2D images.
Neuheusen et al. [32] published the most recent overview of window detection from images.
In that review, the methods are categorized into the following groups: grammar-based [137],
image processing [138] and machine learning [122]. The same author has since focused on
window detection from image data through a series of studies on window detection for
risk assessment analysis [8,50,139].

These specific studies involved the assessment of a soft cascade classifier for window
detection. Through a series of experiments, the authors proposed a final three-step pipeline.
The process commences with image rectification, then the detection of objects is performed
by a sliding window detector with a soft cascade classifier consisting of thresholded Haar-
like features (Figure 14). The last step concerns post-processing to refine the detection step.
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In future work, the authors plan to categorize windows by a type similar to that presented
by Lee and Nevatia [140].

Figure 14. Example results of windows (presented as green rectangles) detected in image. Reprinted
with permission from Ref. [50].

One of the main elements of the façades is entrance doors, the location of which could
find applications in navigation [141], emergency response and flood analysis. Nevertheless,
there has been little research dedicated to external front door detection. In contrast, there is
a considerable body of research on door detection and localization in indoor environments.
This has largely been driven by a growing demand for a variety of applications, such as
navigational assistance [142] and 3D building reconstruction [143].

Many of these case studies are associated with mobility restrictions for disabled people
or intelligence systems allowing safe navigation through indoor spaces. Although, in
theory, the appearance of doors from inside and outside is identical, their characteristics
differ significantly in terms of their surroundings, occlusion and lighting, which limits the
interchangeability of the same methods for door detection in varying environments.

In the case of entrance door detection in outdoor scenes, Liu et al. [144], Kang et al. [145]
and Talebi et al. [146] tackled this by implementing vision-based techniques, such as edge
detection, line segments or local features to detect front doors from RGB images. The
limitations of these studies are that they use small and relatively simple datasets to assess
the results [147] or, in the case of Talebi et al. [146], have challenges with door detection
from strongly tilted images and when the door and wall are almost identical in colour.

6.3. Data Fusion for Scene Interpretation

Many approaches to reconstructing façades utilise single-source datasets, where data
from one source (e.g., camera and scanner) but multiple viewpoints are linked together.
While this approach can cover a large area of interest, it does not mitigate or eliminate
the limitations associated with a given technology. For example, point cloud data are
unstructured, and the features determined directly from them are characterized by low
geometric continuity. On the other hand, 2D images, which can be registered for real-world
scale according to a point cloud, make it possible to describe the spatial distribution of
elements in the image (e.g., linear features).

Therefore, the combination of the features extracted from both images and a point
cloud allows for a more accurate reconstruction of building façades and their elements.
Such a solution can be synergistic through supplementing the limitations of one method
with the advantages of another (Figure 15), providing more reliable information [148].
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Figure 15. Sensing comparison: LiDAR vs. Camera. Green refers to good capability, yellow to fair
and red to poor capability.

Although LiDAR and cameras are the most popular data sources used for 3D building
reconstruction, both methods have limitations, that can be overcome by fusing data of
different modalities. Accordingly, multimodal sensor fusion can increase the level of detail
and quality of a building model and enable the creation of more information-rich 3D
city models. For instance, incorporating spectral information from hyperspectral imagery
would allow identification of the material properties of a wall.

Furthermore, combining data from thermal imagery allows for thermal attribute
mapping [149–151], while multispectral information can help assess the conservation state
of a building [152]. An interesting example of multimodal data fusion is reported by
Jarząbek-Rychard et al. [153]. In that study, 3D scene reconstruction is obtained from
Red-Green-Blue (RGB) and thermal infrared (TIR) images. The authors investigated the
applicability of spectral and geometric features for thermal analysis and the usability of a
3D thermal point cloud for façade opening extraction through a set of experiments.

The same type of data was used in Lin et al. [154] to detect windows through a combi-
nation of geometric features and thermal attributes. One of the fundamental assumptions
of this approach was that there is a significant difference in temperature between windows
and their surroundings (e.g., a wall). In some cases, due to the reflections from warm
objects, this temperature difference was apparent and, therefore, caused misclassification.
Additional grammar rules and topology analysis could help improve the performance of
this method.

The fusion of 3D point clouds and 2D optical images for façade feature extraction has
been the subject of several studies [98,118,148,155]. Pu and Vosselman [118] used point
cloud data to establish the general structure of a building façade before applying computer
vision edge detection on the images. Linear features in the images were then compared
with model edges in order to improve the final result. The authors concluded that 3D point
clouds enable straightforward extraction of areas and surface normals, which is challenging
with 2D image data.

On the other hand, image data outperforms point clouds when detecting boundaries
due to overall higher image resolution. Wang et al. [155] explored the fusion of a 3D point
cloud and image data in three steps. First, the structural information about a building
façade was retrieved from images. This was followed by the exploration of different
methods for mapping between the image feature and the 3D point cloud. In the last step,
the point cloud optimisation is performed by considering the structural information.

The potential limitation of the method is the difficulty with the feature extraction of
complex façades and missing data due to occlusions. Becker and Haala [98] integrated
information from a TLS and camera with a 3D city model. In the first stage of this approach,
point cloud data was used to retrieve larger building parts, and then the images were
processed to extract more detailed elements, such as window crossbars.
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7. Limitations and Challenges

Musialski et al. [30] identified three challenges affecting the methods of that time: full
automation, quality and scalability and acquisition constraints. Despite the passage of time
and the development of new algorithms and more sophisticated hardware, these problems
still persist nearly a decade later. Moreover, a few more factors can be added to the list of
limitations highlighted by Musialski et al. [30].

• Automation: Automation of 3D building reconstruction has been an aim for researchers
over the last couple of decades. However, the complexity of this task is high since
we seek to reconstruct a well-defined underlying object; however, as we do not know
the underlying object, it needs to be estimated from the data. Moreover, combining
the above-mentioned data acquisition methods with the presented data processing
techniques still relies upon many manual steps. Many new approaches require human
intervention in setting up processing parameters, resulting in low levels of automation.
Improving automation of the 3D building reconstruction by limiting the human input
should involve designing concepts that create more intelligent and flexible workflows.

• Quality: The reconstruction of 3D buildings is directly related to level of detail (LoD)
and level of accuracy (LoA), which are selected according to the application of the 3D
model, method of data acquisition, processing and labour costs. The current low level
of automation in the 3D reconstruction of buildings leads to the necessity of operator
intervention. This intervention may concern data capture, data quality control, data
processing settings, or the final result of the reconstruction assessment.
Each operator has different knowledge and experience, which may affect the quality
of the final 3D model. Therefore, it is imperative to develop good practice guidelines
to eliminate the subjectivity between operators. Automation can be the solution to this
problem. Hence, it is necessary to develop solutions for autonomous data processing
that would minimize the need for intervention by an experienced operator.

• Data acquisition: Due to its complexity, it is challenging to obtain a complete dataset
for an urban environment. For instance, differences in the dimensions of the buildings
lead to differences in the characteristics of the acquired dataset, e.g., a terrestrial point
cloud captured for a tall building will be less dense in the higher parts as the sensor’s
distance from the target will increase. Moreover, issues accessing buildings can result
in gaps in the acquired point clouds and hence lower quality of the data used in 3D
building reconstruction. Incomplete data are often the result of static objects (e.g.,
vegetation) or dynamic objects (e.g., vehicles and pedestrians) obscuring parts of
buildings, while data acquisition at different times of the day may help limit dynamic
occlusions [156], removing static occlusions is a more complex problem.
In this regard, the fusion of data collected from various platforms offering different
fields-of-view can help reduce the impact of static occlusions. For example, data
from oblique cameras show blueprints of the building, which are hidden behind the
stationary occluding object in the ground-level image. Another factor limiting data
acquisition is the sensitivity of optical data to weather conditions (e.g., shadow and
direct sunshine), resulting in a non-uniform image. One solution to this problem
is incorporating data from laser scanning, which is more resistant to lightning and
weather conditions.

8. Knowledge Gaps and Future Directions

• Deep-learning implementation: There been a recent rapid increase in the development
and use of deep-learning algorithms for processing point clouds and images. However,
the full application of these methods in reconstructing 3D buildings is still in its infancy.
One of the reasons for this is the lack of proven, state-of-the-art methods that could
be practically applied in commercial projects. In addition, most of the developed
algorithms focus on modelling indoor environments that differ from the outdoor
environment characterized by lower quality data (higher noise and outliers).
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The significant differences between outdoor and indoor environments therefore pre-
clude the opportunity to interchange techniques used to reconstruct objects within
each of these environments. Additionally, deep-learning approaches require a sig-
nificant amount of test data to train the algorithm in order to recognize individual
elements. The preparation of such data requires considerable time and manual work.
Data collection itself is an expensive task, especially in the case of laser scanning over
vast areas, and this is partly responsible for limiting the number of available datasets
that could be used for training an algorithm.
A possible solution to overcoming the requirement of an extensive training dataset
is the current data-centric deep-learning trend that emphasizes data quality rather
than quantity. Focusing on well-prepared training data instead of the selection of the
hyperparameters of a deep-learning model could help in the development of more
robust workflows for the reconstruction of 3D building models.

• Benchmark Datasets: Publicly available benchmark datasets are essential for the devel-
opment and evaluation of new methods and algorithms since they enable the direct
comparison with the existing strategies [157]. Despite the advantages and demand
for benchmark datasets, the number of suitable, readily-available datasets available
for the detailed segmentation of building façades remains low. One of the reasons for
this may be the relatively recent interest in building modelling beyond its traditional
representation in the form of a volumetric model.
Additionally, let us assume that the façade openings are not only to be located on an
image or a point cloud but also modelled (i.e., fitted into the body of the building).
In this case, information is needed to reconstruct the object’s location in space, while
it should not be an issue with point clouds, 2D image-based benchmark datasets
need to include ancillary information, such as camera calibration parameters and
sensor locations.
Only such sets of comparative data permit an accurate validation of the results of 3D
building reconstruction approaches. An additional requirement for creating a versatile
and universal benchmark dataset is sufficient diversity of feature classes and their
corresponding labels. Although currently low, the number of available benchmark
datasets for complex urban environments is increasing with the advent of smart cars
and autonomous vehicle applications (Table 5).
Even though these datasets, which often consist of both 3D and 2D data, have a specific
category of ’building’, they do not typically include sub-categories, such as windows
or doors. This is, however, slowly changing and since 2020 there has been a growing
interest in point cloud data that includes façade-level classes, such as windows, doors,
balconies [158,159]. Benchmark datasets based only on images contain more detailed
classes, which sometimes include windows and doors, however, they often lack the
internal and external parameters, therefore making 3D reconstruction of building
façades challenging.
Table 5 summarises benchmark datasets commonly used for detailed façade segmenta-
tion (with camera images) as well as data from multimodal sensors with the potential
to be used for complex 3D building reconstruction. However, it is worth recognising
the problems related to the use of benchmark datasets presented in Table 5, especially
the fact that these datasets were not explicitly designed for the detailed reconstruction
of buildings. Benchmark datasets are designed with a specific application in mind;
however, in many cases, their use goes beyond the boundaries of the tasks for which
these datasets were originally created [160].
In a recent study by Koch et al. [161], the problem of ’heavy borrowing’ of datasets
within the machine-learning community was noted, where data created to solve one
problem are used to solve another task, which can lead to misalignment. Many of
the available benchmark datasets are generated in a specific geographic location,
and using them elsewhere may yield poor outcomes. For example, a deep-learning
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model trained on data collected in the United States may not perform well on images
from Asia.
Additionally, factors, such as the sun path, weather conditions, variety of backgrounds
and different camera specifications, can affect the model’s accuracy. At the moment,
there are no available well-constructed benchmark datasets that can be used for de-
tailed 3D building reconstruction. Despite the possibility of using the data presented
in Table 5, it is necessary to approach them critically and verify that they are appro-
priate for the proposed application, or whether there is a need to create an entirely
new dataset.

• Computing power and data bottlenecks: The variety of applications utilising 3D building
models is leading to an increasing demand for data at different scales, from global
to local. This, in turn, is associated with an increase in the amount of data that
needs to be maintained, transmitted and processed. Although sophisticated methods
for building reconstruction may produce more desirable results, the time associated
with processing large volumes of data is typically greater than that of less complex
techniques, subsequently reducing their cost-effectiveness.
The solution to the big data processing problem may lie with high-performance
computing (HPC) technologies, a set of tools and systems that provide significantly
higher performance than a typical desktop computer, laptop, or workstation. HPC can
be used to overcome the issue of slow data processing on a local system or limitations
of CPU capacity. However, since HPC is often chargeable, a common method is to
run a small-scale test on a local device and then migrate the analysis to HPC [162].
Ultimately, coping with big data may contribute to the development of machine-
learning algorithms and the search for efficient data storage of pipelines [163,164].

Table 5. List of the benchmark datasets from mobile (t.m.) and static (t.s.) terrestrial platforms with
labels. For data from multimodal technology, the annotations do not specify building openings. Infor-
mation about building openings is distinguished in the datasets from the single-sensor technology.

Multimodal sensor

Platform Position
(GPS,IMU)

LiDAR Cameras Building Openings Objects

A2D2 Geyer et al. [165] t.m. Yes Yes Yes Yes No 3D, 2D

KITTI Geiger et
al. [166]

t.m. Yes Yes Yes Yes No 3D, 2D

Apollo Space Huang
et al. [167]

t.m. Yes Yes Yes Yes No 3D, 2D

Mapilliary Neuhold et
al. [168]

t.m. Yes Yes Yes Yes No 3D, 2D

CityScape Cordts et
al. [169]

t.m. Yes Yes Yes Yes No 3D, 2D

TUM-FACADE [158] t.m. No Yes No Yes Yes 3D

Semantic3D [170] t.s. Yes Yes No Yes Yes 3D

IDD: India Driving
Dataset Varma et
al. [171]

t.m. Yes Yes Yes Yes No 3D,2D

Single sensor

eTRIMS Korč and
Förstner [172]

t.s. No No Yes Yes Yes 2D

RueMonge Riemen-
schneider et al. [173]

t.s. No No Yes Yes Yes 2D

CMP Tyleček and
Šára [174]

t.s. No No Yes Yes Yes 2D

BDD100K Yu at
al. [175]

t.m. Yes No Yes Yes No 2D

• Completeness: 3D building reconstruction from images is a reverse-engineering task that
requires methods to validate newly produced results. One of the metrics for estimating
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the quality of the obtained 3D building model is completeness. Completeness has
two kinds of errors: omission and commission. The first relates to omitted building
elements, while the second concerns elements incorrectly classified as part of the
building.
Assessing the completeness of 3D building models generated from terrestrial images
is a challenging task due to elements that obscure the façade of the building (e.g., cars,
people and vegetation) and a lack of reference data. Although blueprints and BIM can
serve as a reference to assess the surface-based performance of developed algorithms,
the available BIM and blueprints data are again limited. Therefore, it is essential to
develop methods to readily determine the completeness of detailed building models.

9. Conclusions

Detailed façade segmentation, which includes the detection and location of building
openings, is becoming an essential topic among researchers and industry professionals.
However, despite the growing interest in more accurate building modelling, the detection
of façade elements still needs to be investigated, and many of the challenges require further
attention. In this review, we provided a comprehensive overview of the techniques and
sensors used to acquire data to detect and reconstruct building façades and their openings.

The benefits, limitations and research gaps in the field of detailed 3D building recon-
struction with a focus on opening extraction have been discussed. The main limitations of
the current methods include the problems with the automation of processes that require user
intervention and pre- and post-processing. User intervention throughout the entire workflow
also influences the final product’s quality, indicating the need for operator guidance.

Finally, the constraints associated with obtaining complete data representing buildings
pose a challenge to the detailed reconstruction of buildings. Through assessment of the state
of the art, the presented overview allows conclusions to be drawn about future research
directions. The first is data fusion from multi-modal sources and different platforms to
minimize the obscuring of façade elements by static and dynamic elements of the urban
environment.

In addition, there is a need for more diverse sets of comparative data that would
increase the possibility of creating robust and reproducible solutions for detailed 3D build-
ing reconstruction. Another potential direction for future research is the adaptation of
computer vision, machine-learning and deep-learning methods to automate the process
and limit user interference.

Despite the growing interest in using these strategies, well-established, proven and
publicly available solutions are lacking. Finally, there is a need to establish quality matri-
ces to help evaluate the proposed strategies and to develop pipelines for completeness,
effectiveness and efficiency.
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