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Abstract
Extreme water-wave motion is investigated analytically and numerically by consider-
ing two-soliton and three-soliton interactions on a horizontal plane. We successfully
determine numerically that soliton solutions of the unidirectional Kadomtsev–
Petviashvili equation (KPE), with equal far-field individual amplitudes, survive
reasonably well in the bidirectional and higher-order Benney–Luke equations (BLE).
A well-known exact two-soliton solution of the KPE on the infinite horizontal plane is
used to seed the BLE at an initial time, and we confirm that the KPE-fourfold ampli-
fication approximately persists. More interestingly, a known three-soliton solution of
the KPE is analysed further to assess its eight- or ninefold amplification, the latter of
which exists in only a special and difficult-to-attain limit. This solution leads to an
extreme splash at one point in space and time. Subsequently, we seed the BLE with
this three-soliton solution at a suitable initial time to establish themaximum amplifica-
tion: it is approximately 7.8 for a KPE amplification of 8.4. Herein, the computational
domain and solutions are truncated approximately to a fully periodic or half-periodic
channel geometry of sufficient size, essentially leading to cnoidal-wave solutions.
Moreover, special geometric (finite-element) variational integrators in space and time
have been used in order to eradicate artificial numerical damping of, in particular,
wave amplitude.
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1 Introduction

Of crucial practical importance in the maritime sector is that structures such as, e.g.,
ships, wind-turbines and harbour walls should be constructed so as to be able to resist
extreme events such as freak waves, primarily to ensure the safety of the crew and staff
that maintain and/or occupy such structures. Additionally, at the stage of structural
design and manufacture, an a priori knowledge, even estimated, of the external forces
to be anticipated is essential in terms of both improving safety and minimising repair
costs. It is within this context that the motivation for the present work lies: that of
augmenting both existing comprehension and, where possible, quantification, of the
formation and dynamics of freak waves, with the goal of ameliorating safety and
cost-effectiveness in a real-world maritime setting.

Abnormal, freak or rogue waves are roughly defined as rare waves with an extreme
height Hr larger than twice the ambient wave height Ha, so that the abnormality
index AI = Hr/Ha > 2. More advanced definitions are given in [9, 17]. Such rogue
waves can be found at sea, on lakes or in laboratory wave tanks at larger or smaller
scales, relative to the ambient wave height, in sole terms of which they are defined.
In general, however, rogue waves are associated with rare and extremely large waves
at sea, either in the open ocean or near the coast [27]. These waves are rare in that
they may not often occur and can emerge suddenly out of a sea of ambient waves.
There are various approaches for explaining the rare-event or extreme-value statis-
tics of rogue waves, with some theories attributing third-order nonlinear effects as
being important for describing the statistical distributions simulated and observed
[26], and alternative theories showing that the observed statistics are described well
by linear wave-height models and “second-order narrow-band models” [30]. Further
comparison with oceanic measurements is needed to resolve which theories are most
convincing in explaining extreme-wave statistics and predictions.

Of present interest is recent research [3] in which spatio-temporal observations of
rogue waves reveal that they are more common than can be deduced from point mea-
surements and, additionally, that crest-trough correlations are highly significant [12]
in predicting rogue-wave occurrence. Herein, the constructive interference of disper-
sive three-dimensional wave interactions in combination with effects of second-order
bound modes, described by the skewness, have been found to contribute in a major
way to the probability density function of spatio-temporal extreme (nonlinear) crest
heights. The three-dimensionality in particular results from sea states being short-
crested, involving crossing seas stemming from interacting waves with two (or three)
distinct main directions, as argued by Benetazzo et al. [3]. Given the high wave ampli-
tudes associated to rogue waves, Hafner et al. [12] perhaps surprisingly conclude that
linear superposition forms the main pathway to predicting “everyday” rogue waves
with minor corrections due to weak nonlinearity. They therefore argue that the term
“rogue wave” should perhaps be restricted to more exclusive and exceptionally high
and steepwaves.Whilewewill not consider rogue-wave statistics, this study is inspired
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by the aforementioned rogue-wave investigations of short-crested waves of extremely
high amplitude. We will focus on a particular type of extreme wave emerging in cross-
ing seas,withwaves described analytically as solutions of theKadomtsev–Petviashvilli
equation (KPE) [15] and resolved numerically in higher-order wavemodels, for which
the KPE is an asymptotic approximation.

Water waves are commonly modelled by the potential-flow wave equations (e.g.,
[24, 31]), using incompressible flow with a free surface in the absence of vorticity so
that the three-dimensonal velocity field can be expressed as the gradient of a velocity
potential, or by asymptotic approximations thereof. Both direct representations, as
partial differential equations, or spectral representations are used of these potential-
flow equations [22]. Solutions to two approximations to these potential-flow equations
will be considered here: the bidirectional Benney–Luke equations (BLE) [4, 7, 28],
and the unidirectional KPE [15, 18]. The KPE is also an asymptotic approximation of
the BLE. The advantage of using this simplified KPE is that it has exact solutions in
the form of web solitons [1, 18]. The KPE is a two-dimensional extension of the one-
dimensional Korteweg–De-Vries (KdV) equation, based on introducing or keeping
weak interactions in the other horizontal, i.e. lateral, direction [15]. The famous KdV-
sech soliton is therefore also a single-line soliton solution of theKPE.Web solutions of
theKPEcomprise interacting line solitons, each consisting of such a sech-solutionwith
with an orientation differing from that of the others in the far field on an infinite plane.
As per the KdV-equation, the KPE also allows periodic wave solutions in the form of
cnoidal waves (but these exist for the KPE in two horizontal dimensions), leading to
high-amplitude short-crested wave solutions where these “individual” cnoidal waves
interact with or cross one another [13]. Such short-crested high-amplitude crossing
waves have also been observed, both at sea and in the laboratory [13, 21], which links
them to some extent to the rogue waves in crossing seas discussed above.

Alternatively, certain two-soliton solutions of the KPE on the infinite plane can be
used to describe approximately the interaction of one soliton travelling along a wall
encountering, and thus interacting with, a corner or sharp turn in that wall, see Fig. 1a,
b). This corresponds to a certain KPE-solution of two-line solitons, with the solid wall
seen as the line of symmetry where the normal velocity equals zero. For a certain angle
of this corner or turn, the amplification of an incoming soliton of amplitude Ã can be
shown analytically to become fourfold over time [18, 25], i.e. to reach an asymptotic
amplitude of 4 Ã when it has travelled for a while along the straight wall after the
turn; for the two interacting line solitons this fourfold amplification is sustained and
propagating on an infinite plane. One difference between the infinite-plane and finite-
domain solutions is that in the latter case it takes time for the solution interacting with
the wall to reach asymptotically the fourfold amplification [18, 25]. Note that the KPE
is unidirectional so the introduction of actual walls is not allowed, since there cannot
be any factual reflection, and the above conclusions are based on comparison with
laboratory experiments [23] as well as on numerical simulations of the BLE [11].

As part of a fluid-dynamics’ demonstration conducted in 2010 [8], it was shown
that a soliton-complex travelling along a channel led to a tenfold amplification into
a so-called soliton-splash at the apex of a linear contraction found at the channel
end. A simplified set-up instead considers a sech-soliton travelling along the channel
which, when interacting with the two turns at the contraction entrance, can lead to two
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Fig. 1 Sketches of (a, b) two or (c, d) three interacting line solitons. (a, c) portray the infinite-plane cases,
(b) shows a soliton turning a corner, and (d) shows a soliton running into a linear contraction. The various
far-field line solitons involved, e.g. [1, 2], [3, 4], [5, 6] have been indicated, including their phase shift due
to interactions

waves growing towards this maximum fourfold amplification in the KPE, and these
two colliding amplified waves can in turn form the soliton splash at the apex, see also
Fig. 1c, d. Of course, in the closed contraction, reflection occurs at and around the
apex, so that the amplification could be larger than in the infinite-plane KPE-analogue
of a similar set-up. In the latter case on an infinite plane, three-line solitons will be
interacting, with the two interactions of two-times-two-line solitons colliding at one
point in space and time into a localised soliton splash, which subsequently decomposes
again into two-times-two-line solitons.

Several researchers have analysed such three-soliton interactions on an infinite
horizontal plane within the KPE framework. Below follows a brief overview. Bion-
dini et al. [5] analysed the interactions of line solitons that lead to large amplitudes.
For three interacting solitons, six wavenumbers are needed, which can be ordered



Numerical Experiments on Extreme. . .

as k1 < k2 < k3 < 0 < k4 < k5 < k6 as we will see later. Biondini et al. [5]
state an upper bound of the maximum splash amplitude of 1

2 (kmax − kmin)
2 with

far-field solitons of amplitude 1
2 , which we will analyse in detail for a three-soliton

interaction (note that here kmax = k6 and kmin = k1). The three-line solitons have
amplitudes 1

2 (k2 − k1)2, 1
2 (k6 − k5)2, 1

2 (k4 − k3)2 in the far field. However, whether
the upper-bound maximum is obtained depends on the details of the soliton con-
figuration. Kodama [19, 20] calculated the three-line-soliton interactions using the
values (k1, k2, k3, k4, k5, k6) = (−1.501,−0.501,−0.5, 0.5, 0.501, 1.501), leading
to a maximum amplification of circa nine times, in fact 8.6; this is in line with Bion-
dini’s estimate given above, leading here to a just-above-ninefold amplification (for a
video of such a splash in a miniature-tank set-up see [32]). Using these coefficients,
Baker [2] and Gidel [10] checked and reproduced these calculations. Overarching
questions are whether such high-amplitude solutions of the KPE will survive as
approximate solutions of the potential-flow water wave equations, or higher-order
bidirectional approximations thereof, and, furthermore, to what extent such amplifi-
cations can be observed in reality?

The fourfold amplification of a soliton against a channel bend as counterpart of two
interacting line solitons has been observed in experiments. Li et al. [23] observed a
nearly threefold amplification in Mach-stem reflection, i.e. the two-line-soliton ana-
logue of a soliton travelling along a wall and encountering a corner. In Gidel et al.
[11], numerical simulations were performed to check whether the fourfold amplifica-
tion predicted in theKPE is valid for the interaction of a soliton encountering a corner in
a wall, while using the more accurate, higher-order (in wave amplitude and dispersion
parameters) bidirectional BLE. Such simulations are more challenging than imposing
the solution for two-line solitons as an initial-value problem, because the amplitude of
the soliton after it turns into a Mach-stem wave at the corner grows only slowly, over
time, to its asymptotic value. Such simulations of the Benney–Luke system showed
that the maximum amplification obtained reached 3.6, somewhat short of the fourfold
amplification in the KPE or the amplification of 3.9 observed for simulations in which
the KPE solution was imposed as a pair of initial values in the BLE [1].

The goals of the current paper are “extreme-wave” extensions of these investigations
—of two interacting line solitons with equal far-field amplitudes—into the realm of
three interacting line solitons of equal far-field amplitudes. The strategy to achieve
these goals is as follows:

• to derive the conditions for which three-line solitons of equal amplitude Ã in the
far field reach a maximum-amplitude factor of nine, i.e. amplitude 9 Ã at one point
in space and time, as solution of the KPE; and,

• to establish numerically the extent to which this three-line-soliton solution of the
asymptotic KPE remains valid in the bidirectional and more accurate higher-order
BLE.

The outline of the paper is as follows. The BLE andKPE are introduced in Sect. 2 as
well as their respective coordinate systems and the relation between them. The three-
line-soliton solution of the KPE is introduced in Sect. 3 in order to allow initialisation
within the BLE. Moreover, a proof of the maximum amplification of these solitons is
given and detailed further in an Appendix. Numerical simulations of the amplification
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of interacting line solitons in the BLE, initialised with exact solutions of the KPE, are
shown and interpreted in Sect. 4 before we draw a conclusion in Sect. 5.

2 Mathematical Models

In this section, two mathematical approaches for modelling water waves are
considered—theBenney–Luke equations and theKadomtsev–Petviashvilli equation—
including the scalings used to arrive at a standardised form.

2.1 The Benney–Luke Equations

We define a Cartesian coordinate system (x, y, z), in which (x, y) are the horizontal
coordinates and z is the vertical coordinate, the latter of which is positive above
a flat sea bed at z = 0. In dimensionless form, the water depth is described by
h(x, y, t) = 1 + εη(x, y, t), where t is time, η(x, y, t) is the free-surface deviation
from the rest depth, and ε is an amplitude parameter. The domain is denoted by Ω ,
with z ∈ [0, h(x, y, t)] and horizontal extent Ωh . In deriving the BLE, potential-flow
theory, which considers the fluid as irrotational, is applied. This allows us to write
the fluid velocity in terms of a scalar velocity potential φ through u(x, y, z, t) =
∇3φ(x, y, z, t), where ∇3 = (∂x , ∂y, ∂z) is the three-dimensional Cartesian gradient
operator. The corresponding gradient operator in two-dimensional horizontal space
will be denoted by ∇ = (∂x , ∂y).

The Benney–Luke approximation is based on the assumption of long and shallow
water waves and allows us to reduce the dynamics to two-dimensions by tracking
only the free-surface evolution and the velocity potential at a specified height. The
BLE were first derived in [4] and in a variational manner also in [7, 11, 28]. Only
these variational versions of the BLE will be considered here. The non-dimensional
governing BLE are given by

∂tΦ − μ

2
∂t∇2Φ + ε

2
|∇Φ|2 + η = 0 in Ωh, (1a)

∂tη − μ

2
∂t∇2η + ∇ · (

(1 + εη)∇Φ
) − 2μ

3
∇4Φ = 0 in Ωh, (1b)

n · ∇Φ = 0 on ∂Ωh, (1c)

n · ∇(∇2Φ) = 0 on ∂Ωh, (1d)

where Φ(x, y, t) = φ(x, y, z = 0, t) is the sea-bed potential. The two boundary
conditions (1c), (1d) represent no-flux conditions at the boundary of the domain ∂Ωh ,
where n is the outward unit normal vector. The Benney–Luke equations include two
parameters, ε andμ, which are both assumed to be small in the current approximation;
in particular, the amplitude parameter ε is defined as the ratio of wave amplitude
over the mean water depth, and μ is a dispersion parameter proportional to ratio of
wavelength over water depth.
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The energy of the Benney–Luke system in (1) is defined by

E(t) =
∫

Ωh

[
1

2
η2 + 1

2
(1 + εη)|∇Φ|2 + μ

3
(∇2Φ)2

]
dx dy, (2)

where the first term in the integrand is the potential energy and the remaining terms
therein represent the kinetic energy of the system. The total energy defined above is
conserved in time, with a proof given in Appendix A.

2.2 The Kadomtsev–Petviashvili Equation

The Kadomtsev–Petviashvili equation is a two-dimensional analogue of the KdV
equation and describes unidirectional propagation of waves in two dimensions. While
the KdV equation is appropriate for wave propagation in the x-direction, the KPE also
includes weak diffraction effects in the y-direction (as can be seen below in (3) where
the y-scale is smaller than the x-scale). The KPE can be obtained from the BLE by
using the following transformation (see also the combined asymptotic and variational
approach in [7])

X̃ =
√

ε

μ
(x − t), Ỹ = ε√

μ
y, τ̃ = ε

√
ε

μ
t, (3)

and taking μ = ε2, where the domain of validity of the new variables is (X̃ , Ỹ , τ̃ ) ∈
R
2 × R

+. Subsequently, we introduce the formal perturbation expansions

η = ũ + O(ε2), Φ = √
ε
(
Ψ̃ + O(ε2)

)
, (4)

where Ψ̃X̃ = ũ. Substituting these expansions into Eqs. (1a), (1b) and retaining terms
up to order ε2, yields the leading-order equation, cf. [11]

∂X̃

(
2∂τ̃ ũ + 3ũ∂X̃ ũ + 1

3
∂X̃ X̃ X̃ ũ

)
+ ∂Ỹ Ỹ ũ = 0. (5)

We finally take another transformation in order to cast Eq. (5) in the “standard” KPE
form [18, 21], as follows

X =
(

3√
2

)1/3

X̃ , Y =
(

3√
2

)2/3

Ỹ , τ = √
2 τ̃ , u =

(
3

4

)1/3

ũ; (6)

applying this on Eq. (5) results in the well-known KPE [15] of the form

∂X (4∂τ u + 6u∂X u + ∂X X X u) + 3∂Y Y u = 0. (7)

The coordinates and variables in the KPE (7) are connected to those in the BLE (1)
through the rescaling below, obtained by combining scalings (3) and (6), withμ = ε2,
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and given by

x =
√

μ

ε

(√
2

3

)1/3

X + 1

ε

√
μ

2ε
τ, y =

√
μ

ε

(√
2

3

)2/3

Y , t = 1

ε

√
μ

2ε
τ, (8a)

η(x, y, t) =
(4
3

)1/3
u(X , Y , τ ), (8b)

Φ(x, y, t) = 2
√

ε

(
4
√
2

9

)1/3

∂X ln
(
K (X , Y , τ )

)
, (8c)

which will be used later to set up the KPE-solutions in X , Y , τ -space for the
BLE. The function K (X , Y , τ ) emerges in the next section as u(X , Y , τ ) ≡
2∂X X ln

(
K (X , Y , τ )

)
.

3 MaximumAmplification with Three Equal-Amplitude Line Solitons

After transforming the KPE in the standard form (7), line-soliton solutions of the
following form can be constructed using Hirota’s transformation [14]

u(X , Y , τ ) = 2∂X X ln
(
K (X , Y , τ )

) = 2

[
∂X X K

K
−

(
∂X K

K

)2
]

, (9)

where function K (X , Y , τ ) can be obtained from the Wronskian

K (X , Y , τ ) =

∣∣∣
∣∣∣∣∣
∣∣

f1 f (1)
1 . . . f (N−1)

1

f2 f (1)
2 . . . f (N−1)

2
...

...
...

fN f (1)
N . . . f (N−1)

N

∣∣∣
∣∣∣∣∣
∣∣

, (10a)

in which f (n)
i denotes the nth partial derivative of fi with respect to X , and the fi are

such that they satisfy the linear equations ∂Y fi = ∂X X fi and ∂τ fi = −∂X X X fi [5,
18]. Particular line-soliton solutions are obtained by taking

fi =
M∑

j=1

ai j e
θ j , (10b)

where θ j = k j X + k2j Y − k3j τ , with coefficients k j being ordered as k1 < k2 < · · · <

kM , and the ai j ’s are the elements of an N × M matrix A (see also [18]).
The solution written in the form (9) is also called a (N−, N+)-soliton, which com-

prises N− = M − N line solitons as Y → −∞ and N+ = N line solitons as
Y → ∞ [18]. Therefore single-line solitons have (N , M) = (1, 2), two-line solitons
(N , M) = (2, 4) and three-line solitons (N , M) = (3, 6), the latter explainingwhywe
had used six k j ’s, for j = 1, 2, . . . , 6, in the introduction. These three cases are now
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discussed in turn, so as to set up the analysis and expression for the three-line-soliton
case with equal amplitudes in the far field.

3.1 Single-Line Soliton

For the single-line soliton, we use N = 1, M = 2 in Eqs. (10) and take a11 = 1,
a12 = a > 0, resulting in K = f1 = eθ1 + a eθ2 . The solution then becomes

u(X , Y , τ ) = 1

2
(k1 − k2)

2sech2
1

2
(θ1 − θ2 − ln a)

= (k1 − k2)2

2
sech2

1

2

(
(k1 − k2)X + (k21 − k22)Y − (k31 − k32)τ − ln a

)
,

(11)

which is a line soliton with centreline at X + (k1 + k2)Y = (k21 + k1k2 + k22)τ +
(ln a)/(k1 − k2), as found by setting the argument of the sech2 function to zero. Here,
the parameter a essentially determines the location of the soliton solution. Note that
when k1 + k2 = 0 and k1 < k2, this soliton propagates in the positive X -direction and
its crest lies parallel to the Y -axis, an observation used later for the case with three-line
solitons.

3.2 Two Interacting Line orO-Solitons of Equal Amplitude

The two-line soliton has the following set-up with the 2 × 4 matrix

A =
(
1 a 0 0
0 0 1 b

)
, (12)

such that

f1 = eθ1 + a eθ2 , f2 = eθ3 + b eθ4 , (13)

where a, b are positive constants. Hence, the interim function K becomes

K (X , Y , τ ) = (k3 − k1) e
θ1+θ3 + a(k3 − k2) e

θ2+θ3

+ b(k4 − k1) e
θ1+θ4 + ab(k4 − k2) e

θ2+θ4 (14a)

= (k3 − k1) e
θ3

(
eθ1 + a

(k3 − k2)

(k3 − k1)
eθ2

)

+ b(k4 − k1) e
θ4

(
eθ1 + a

(k4 − k2)

(k4 − k1)
eθ2

)
(14b)

= (k3 − k1) e
θ1

(
eθ3 + b

(k4 − k1)

(k3 − k1)
eθ4

)

+ a(k3 − k2) e
θ2

(
eθ3 + b

(k4 − k2)

(k3 − k2)
eθ4

)
, (14c)
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and the parameters k1,2,3,4 satisfy the ordering k1 < k2 < 0 < k3 < k4 without loss
of generality. On the one hand, in the limit Y → ∞ when X > 0, the second term
in (14b) dominates since k4 > k3, which recovers the [1, 2] single-line soliton

u[1,2](X , Y , τ ) = 1

2
(k2 − k1)

2sech2
1

2
(θ1 − θ2 − ln ã). (15a)

On the other hand, taking the limit Y → ∞ when X < 0 causes the second term
in (14c) to dominate since k2 > k1, and we obtain the [3, 4] single-line soliton

u[3,4](X , Y , τ ) = 1

2
(k4 − k3)

2sech2
1

2
(θ3 − θ4 − ln b̃), (15b)

with shift factors

ã = a

(
k4 − k2
k4 − k1

)
and b̃ = b

(
k4 − k2
k3 − k2

)
. (16)

The above arguments also hold when k1 < k2 < k3 = −k4 < 0 < k4 or k1 =
−k2 < 0 < k2 < k3 < k4, in the case where one of the [3, 4] or [1, 2] single-line
soliton propagates in the positive X -direction. We refer to these cases as limits in the
three-line soliton case.

Defining the far-field soliton amplitudes by

A[1,2] = 1

2
(k2 − k1)

2, A[3,4] = 1

2
(k4 − k3)

2, (17)

and assuming the solitons have equal amplitudes A[1,2] = A[3,4] = Ã, Kodama [18]
(and others) showed that

A[1,2] + A[3,4] ≤ max
(X ,Y ,τ )

u(X , Y , τ ) ≤ A[1,2] + A[3,4] + 2
1 − √

ΔO

1 + √
ΔO

√
A[1,2] A[3,4],

(18a)

with

ΔO = (k3 − k2)(k4 − k1)

(k4 − k2)(k3 − k1)
, (18b)

so that the amplification lies between two and four, since 0 ≤ ΔO ≤ 1. The minimum
(twofold) amplitude is reached when k1 = k2 or k3 = k4, that is forΔO = 1, while the
maximum (fourfold) amplification is reached when k2 = k3, i.e. for ΔO = 0. In the
latter case of maximum amplification, (15a) and (15b) diverge but the general solution
(14a) does not. Hence, for later use we set a = b = 1, k4 = −k1 and k3 = k2 = 0, so
the dominant balance in (14) for X 	 1, Y 	 1 is

K ≈ 2k4eθ1+θ4 + k4eθ4 = 2
√
2 k4eθ4+ θ1

2 cosh
1

2
(θ1 + ln 2), (19a)
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and for X � −1, Y 	 1 we find

K ≈ 2k4eθ1+θ4 + k4eθ1 = 2
√
2 k4eθ1+ θ4

2 cosh
1

2
(θ4 + ln 2). (19b)

3.3 Three Interacting Line Solitons of Equal Amplitude

It is possible tofind an analytical exact solution of theKPE that describes the interaction
of three solitary waves, as shown in [2, 18]. Such a solution is called a (3, 3)-soliton
and it follows from equation (9) with N = 3, M = 6, and using the matrix

A =
⎛

⎝
1 a 0 0 0 0
0 0 1 b 0 0
0 0 0 0 1 c

⎞

⎠ , (20)

where the positive constants a, b, c shift the location of the solution; in what follows
we take a = b = c = 1 which corresponds to no shift. The functions fi , i = 1, 2, 3
in (10b) are hence given by

f1 = eθ1 + a eθ2 , f2 = eθ3 + b eθ4 , f3 = eθ5 + c eθ6 , (21)

and are such that they would each form a single-line soliton when considered alone,
as described in Sect. 3.1. The interim function K in (10a) then becomes

K (X , Y , τ ) = (k3k25 − k5k23 − k1k25 + k1k23 + k5k21 − k3k21) e
θ1+θ3+θ5

+ a(k3k25 − k5k23 − k2k25 + k2k23 + k5k22 − k3k22) e
θ2+θ3+θ5

+ c(k3k26 − k6k23 − k1k26 + k1k23 + k6k21 − k3k21) e
θ1+θ3+θ6

+ ac(k3k26 − k6k23 − k2k26 + k2k23 + k6k22 − k3k22) e
θ2+θ3+θ6

+ b(k4k25 − k5k24 − k1k25 + k1k24 + k5k21 − k4k21) e
θ1+θ4+θ5

+ ab(k4k25 − k5k24 − k2k25 + k2k24 + k5k22 − k4k22) e
θ2+θ4+θ5

+ bc(k4k26 − k6k24 − k1k26 + k1k24 + k6k21 − k4k21) e
θ1+θ4+θ6

+ abc(k4k26 − k6k24 − k2k26 + k2k24 + k6k22 − k4k22) e
θ2+θ4+θ6 (22a)

≡ A135 e
θ1+θ3+θ5 + A235 e

θ2+θ3+θ5

+ A136︸︷︷︸ eθ1+θ3+θ6 + A236 e
θ2+θ3+θ6

+ A145 e
θ1+θ4+θ5 + A245 e

θ2+θ4+θ5

+ A146︸︷︷︸ eθ1+θ4+θ6 + A246 e
θ2+θ4+θ6 , (22b)

with the following conditions satisfied between parameters k j , j = 1, . . . , 6: k1 <

k2 < k3 < 0 < k4 < k5 < k6 (marked pairs indicate equal pre-factors, i.e. A135 =
A246, A235 = A245, A136 = A146 and A236 = A145 for k1 = −k6, k2 = −k5, k3 =
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Fig. 2 Definition of the subscript notation for three interacting solitary waves. Subscripts [5, 6], [1, 2], and
[3, 4] indicate solitary waves extending from top-left to bottom-right in the (x, y)-plane, from top-right
to bottom-left, and from top to bottom, respectively. The angle θ is defined between the positive y-axis
and the solitary wave [1, 2]. Points (x1, y1), (x2, y1), (x1, y2), and (x2, y2) are the southwest, southeast,
northwest, and northeast corners, respectively

−k4; more details will be provided later in Sect. 3.4). Note that, without loss of
generality, herein the middle line soliton is aligned to propagate in the positive X -
direction, leading to the choice k3 + k4 = 0. We also note that the above ordering of
parameters k j has been directed by the nature of the far-field expressions of the line
solitons, which is explained next.

By using the KPE solution (9) in the case of three-line solitons, we can find approx-
imate solutions for each solitary wave far away from the region of interaction. This can
be achieved by considering waves along lines X + (ki +k j )Y = c0, for some constant
c0 and for |Y | → ∞, where the pair (i, j) takes the values (1, 2), (3, 4), or (5, 6), and
keeping only the dominant exponential terms in (22). The three solitary wave solutions
in separation, i.e. far from the interaction region, are then approximately given by the
following expressions (see also Sect. 3.4)

u[1,2] ≈ 1

2
(k2 − k1)

2 sech2
1

2

(
Θ[1,2] − ln G[1,2]

)
, for XY 	 1, (23a)

u[5,6] ≈ 1

2
(k6 − k5)

2 sech2
1

2

(
Θ[5,6] − ln G[5,6]

)
, for XY � −1, (23b)

u[3,4] ≈ 1

2
(k4 − k3)

2 sech2
1

2

(
Θ[3,4]

)
, for X = 0, (23c)

with

Θ[i, j] = θi − θ j = (ki − k j )
(

X + (ki + k j )Y − (k2i + ki k j + k2j )τ
)
, (23d)

and

G[1,2] =
{

A246/A146, for X > 0, Y → ∞
A235/A135, for X < 0, Y → −∞,

G[5,6] =
{

A136/A135, for X < 0, Y → ∞
A246/A245, for X > 0, Y → −∞.

(23e)
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The solitary waves indicated by subscripts [5, 6], [3, 4] or [1, 2] are travelling in a
northeast, east or southeast direction in the (x, y)-plane when viewed from above,
as seen in Fig. 2. The equations in (23) provide information about the amplitude,
speed and angle of each solitary wave (angle θ is between wave and positive y-axis,
see Fig. 2). In particular, the wave characterised by subscript [i, j] has amplitude
1
2 (k j − ki )

2, speed (k2i + ki k j + k2j ), and angle with tan θ = −(ki + k j ), where the
pair [i, j] takes values [1, 2], [3, 4] or [5, 6].

Without loss of generality, we take the middle [3, 4] soliton to be parallel to the
Y -axis and travelling in the positive X -direction, and the other two-line solitons, [1, 2]
and [5, 6], are assumed to have equal and opposite angles ±θ with the Y -axis as that
should make the amplitude at the collision of the three solitons maximal. Finally, the
outer two solitons are assumed to have equal amplitude, taken to be 1/λ times the
amplitude Ã = 1

2 (k4 − k3)2 of the [3, 4] soliton. We will ultimately take λ = 1 to
determine the maximum amplitude of three colliding solitons of equal amplitude Ã,
but here we allow exploration around λ ≈ 1.

Consequently, the following conditions hold for the parameters k1, . . . , k6,

k3 + k4 = 0, (24a)

k1 + k2 = − tan θ, (24b)

k5 + k6 = tan θ, (24c)

k4 − k3 =
√
2 Ã, (24d)

k2 − k1 =
√
2 Ã/λ, (24e)

k6 − k5 =
√
2 Ã/λ, (24f)

with angle θ > 0. The equations in (24) can be solved to give the solutions

k6 = −k1 = 1

2
tan θ +

√
Ã/2λ =

√
Ã

(√
2/λ + √

1/2 + δ
)

, (25a)

k5 = −k2 = 1

2
tan θ −

√
Ã/2λ =

√
Ã

(√
1/2 + δ

)
, (25b)

k4 = −k3 =
√

Ã/2. (25c)

In Eqs. (25), we have introduced a new parameter δ defined by

δ = k5 − k4√
Ã

= k3 − k2√
Ã

= tan θ

2
√

Ã
−

(√
1/2λ + √

1/2
)

> 0, (26a)

which allows us to eliminate tan θ from the expressions for ki . Note that by using
definition (26a), we can express the amplitude in terms of θ and δ as follows

Ã = 1

2
(k4 − k3)

2 = 1

2

(
tan θ

√
λ√

λ + 1 + δ
√
2λ

)2

, (26b)
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noting that we do not yet know when and where the maximum will occur. The sym-
metry of the set-up immediately seems to make clear that the maximum will occur
when the three intersection points coincide at a space-time point (X∗, Y ∗, τ ∗) based
on the far-field expressions.

3.4 Proof of MaximumAmplification

We begin by finding the location (X∗, Y∗, τ∗) in space-time where the KPE solution
u given in (9), with K given in (22), attains its maximum. The argument is entirely
geometrical: we calculate the two intersection points of the centrelines of the [5, 6]
and [3, 4] line solitons, as well as the the centrelines of the [1, 2] and [3, 4] line
solitons. This yields two Y -positions, Y[1,2] and Y[5,6], the mean of which is Y∗. The
X -position X∗ and time τ∗ when the maximum is attained then follow by satisfying
Y[1,2] = Y[5,6] = Y∗.

The solution (22) is rewritten as follows

K (X , Y , τ ) = A135 e
θ1+θ3+θ5 + A235 e

θ2+θ3+θ5

+ A136 e
θ1+θ3+θ6 + A236 e

θ2+θ3+θ6

+ A145 e
θ1+θ4+θ5 + A245 e

θ2+θ4+θ5

+ A146 e
θ1+θ4+θ6 + A246 e

θ2+θ4+θ6 (27a)

= A135 e
θ3+θ5

(
eθ1 + A235

A135
eθ2

)
+ A136 e

θ3+θ6
(
eθ1 + A236

A136
eθ2

)

+ A145 e
θ4+θ5

(
eθ1 + A245

A145
eθ2

)
+ A146 e

θ4+θ6
(
eθ1 + A246

A146
eθ2

)

(27b)

= A135 e
θ1+θ5

(
eθ3 + A145

A135
eθ4

)
+ A235 e

θ2+θ5
(
eθ3 + A245

A235
eθ4

)

+ A136 e
θ1+θ6

(
eθ3 + A146

A136
eθ4

)
+ A236 e

θ2+θ6
(
eθ3 + A246

A236
eθ4

)

(27c)

= A135 e
θ1+θ3

(
eθ5 + A136

A135
eθ6

)
+ A235 e

θ2+θ3
(
eθ5 + A236

A235
eθ6

)

+ A145 e
θ1+θ4

(
eθ5 + A146

A145
eθ6

)
+ A245 e

θ2+θ4
(
eθ5 + A246

A245
eθ6

)
.

(27d)

We note that all expressions in (27) are equivalent, but each one of them will be used
to obtain the dominant term in the limits Y → ±∞ and for different values of X . For
X > 0, Y → ∞, we find that eθ4 	 eθ3 and eθ6 	 eθ5 in (27b), making the term
underlined therein dominant, thereby leading to the [1, 2] soliton (23a). However, for
X < 0, Y → −∞ we obtain the double-underlined term as the dominant one (in
particular, substitute X + (k1 + k2)Y = 0 to determine the dominant term), which is
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the one we need for comparing the pair of intersection points of the (perturbed) [5, 6]
and [1, 2] line solitons with the (perturbed) [3, 4] line soliton. For X ≈ 0, Y → ∞,
we find that eθ6 	 eθ5 and eθ1 	 eθ2 , so the underlined term in (27c) dominates over
the other terms and leads to the [3, 4] soliton (23c). For X < 0, Y → ∞, we find
that eθ1 	 eθ2 and eθ3 	 eθ4 in (27d), making the underlined term therein dominant,
thereby leading to the [5, 6] soliton (23b).

Recall that we have set a = b = c = 1. Therefore in the far-field, we obtain,

K[1,2] ≈ A135 e
θ3+θ5

(
eθ1 + A235

A135
eθ2

)
= A135 e

θ3+θ5
(
eθ1 + G[1,2] eθ2

)
, (28a)

K[3,4] ≈ A136 e
θ1+θ6

(
eθ3 + A146

A136
eθ4

)
= A136 e

θ1+θ6
(
eθ3 + eθ4

)
, (28b)

K[5,6] ≈ A135 e
θ1+θ3

(
eθ5 + A136

A135
eθ6

)
= A135 e

θ1+θ3
(
eθ5 + G[5,6] eθ6

)
, (28c)

with G[1,2] = A235/A135, G[5,6] = A136/A135. From (22) we find that

A135 = A246 = k4k6(k6 − k4) + k5k6(k6 + k5) − k5k4(k5 + k4)

= k25(k6 − k4) + k26(k4 + k5) − k24(k6 + k5)

= −k25k4 + k26(k4 + k5) − k24k5 + k6(k
2
5 − k24)

−−→
δ=0

k26(k4 + k5) − k4k5(k4 + k5) = 2k5(k
2
6 − k25) (29a)

A245 = A235 = 2k5(k
2
5 − k24) −−→

δ=0
0 (29b)

A146 = A136 = 2k6(k
2
6 − k24) −−→

δ=0
2k6(k

2
6 − k25) (29c)

A145 = A236 = k25(k6 + k4) + k26(k5 − k4) − k24(k6 + k5)

−−→
δ=0

k25(k6 + k4) − k24(k6 + k5) = k25(k6 + k5) − k25(k6 + k5) = 0, (29d)

in which we have used k1 = −k6, k2 = −k5, k3 = −k4 and k4 = k5, the latter of
which is true when δ = 0 (see (25)). The limit δ → 0 provides the optimal angle: it
will be used later to establish the maximum amplification. We note that, in the above
calculations, it is important to take either the branches for X < 0 or those for X > 0
in determining the average Y = Y∗, on which plane the maximum will have to occur.
The corresponding three-line-soliton solutions for X < 0 and Y → ±∞ thus become,
using (28),

u[1,2] = 1

2
(k1 − k2)

2 sech2
1

2
(θ1 − θ2 − ln G[1,2]), (30a)

u[5,6] = 1

2
(k5 − k6)

2 sech2
1

2
(θ5 − θ6 − ln G[5,6]), (30b)

u[3,4] = 1

2
(k3 − k4)

2 sech2
1

2
(θ3 − θ4). (30c)
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The centrelines of these line solitons coincidewith the arguments of the sech2 functions
in (30) being zero, i.e. when

θ1 − θ2 − ln G[1,2] = (k1 − k2)X + (k21 − k22)Y − (k31 − k32)τ − ln G[1,2]
= −(k6 − k5)X + (k26 − k25)Y + (k36 − k35)τ − ln G[1,2] = 0,

(31a)

θ5 − θ6 − ln G[5,6] = (k5 − k6)X + (k25 − k26)Y − (k35 − k36)τ − ln G[5,6] = 0,
(31b)

θ3 − θ4 = (k3 − k4)X + (k23 − k24)Y − (k33 − k34)τ

= (k3 − k4)X − (k33 − k34)τ = 0, (31c)

while again using k1 = −k6, k2 = −k5, k3 = −k4. Hence, the centreline of the [3, 4]
soliton resides at

X = (k23 + k3k4 + k24)τ. (32)

Substitution of this relation (32) into (31a)–(31b) yields

Y = Y[1,2] = τ
(k23 + k3k4 + k24

k6 + k5
− k26 + k5k6 + k26

k6 + k5

)
+ ln G[1,2]

(k26 − k25)
, (33a)

Y = Y[5,6] = −τ
(k23 + k3k4 + k24

k6 + k5
− k26 + k5k6 + k26

k6 + k5

)
− ln G[5,6]

(k26 − k25)
, (33b)

respectively, the average of which yields

Y∗ = 1

2
(Y[1,2] + Y[5,6]) = 1

2

ln
(

k5(k25 − k24)/[k6(k26 − k24)]
)

(k26 − k25)
. (34)

The Y -coordinates in relations (33) equal Y∗ when τ∗ = 0 for which X∗ = 0 from
(32). Hence, the space-time point with the maximum amplitude is

(X∗, Y∗, τ∗) =
(
0,

1

2

ln
(

k5(k25 − k24)/[k6(k26 − k24)]
)

(k26 − k25)
, 0

)
, (35)

where we have assumed that this is where the three-soliton centrelines coalesce.
The next step is to assess the maximum possible amplification

u(X∗, Y∗, τ∗)/ Ã.

After defining θlmn = (k2l + k2m + k2n)Y∗, with l, m, n = 1, 2, . . . , 6 and l = m = n,
we observe and determine the following relations
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θ235 − θ135 = (k25 − k26)Y∗, (36a)

θ136 − θ135 = (k26 − k25)Y∗, (36b)

θ236 − θ135 = 0, (36c)

θ145 − θ135 = 0, (36d)

θ245 − θ135 = (k25 − k26)Y∗, (36e)

θ146 − θ135 = (k26 − k25)Y∗, (36f)

θ246 − θ135 = 0. (36g)

Using these relations together with those in (29), the following relations emerge when
taking the derivatives in ∂X X K

(k1 + k3 + k5)
2 = (k2 + k4 + k6)

2 = Ã

2λ

(√
λ + 2

)2
, (37a)

(k2 + k3 + k5)
2 = (k1 + k3 + k6)

2 = (k2 + k4 + k5)
2

= (k1 + k4 + k6)
2 = Ã

2
, (37b)

(k2 + k3 + k6)
2 = (k1 + k4 + k5)

2 = Ã

2λ

(√
λ − 2

)2
, (37c)

as well as the definition (coming from (34))

F = e(k26−k25)Y∗ =
(

k5(k25 − k24)

k6(k26 − k24)

)1/2

=
(

k2(k22 − k23)

k1(k21 − k23)

)1/2

, (38)

we find that

K e−θ135 = A135 + A246 + A236 + A145 + (A235 + A245)/F + (A136︸︷︷︸+ A146︸︷︷︸)F

= 2
(

A246 + A236 + A245/F + A146F
)

(39a)

∂X X K e−θ135 = (k1 + k3 + k5)
2A135 + (k2 + k4 + k6)

2A246

+ (k2 + k3 + k6)
2A236 + (k1 + k4 + k5)

2A145

+ (k2 + k3 + k5)
2A235/F + (k2 + k4 + k5)

2A245/F

+ (k1 + k3 + k6)
2A136F + (k1 + k4 + k6)

2A146F (39b)

= 1

2
Ã
(
(A135 + A246)

(
√

λ + 2)2

λ
+ (A235 + A245)/F

+ (A136 + A146)F + (A236 + A145)
(
√

λ − 2)2

λ

)

= Ã
(

A246
(
√

λ + 2)2

λ
+ A245/F + A146F + A236

(
√

λ − 2)2

λ

)
,

(39c)
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where equal pairs have been indicated (the four pairs are in principle different prior
to fixing the ki ’s, except for using the properties k1 = −k6, k2 = −k5, k3 = −k4).
Hence, the amplification at the peak relative to the largest soliton with amplitude Ã
and with λ ≥ 1 becomes as follows

u(0, Y∗, 0)
Ã

= 2∂X X ln K

Ã
= 2

(∂X X K )K − (∂X K )2

ÃK 2
= 2∂X X K

ÃK

=
(

A246
(
√

λ+2)2

λ + A245/F + A146F + A236
(
√

λ−2)2

λ

)

(
A246 + A236 + A245/F + A146F

) (40a)

=
(√

λ + 2
)2

λ
−

(
211

λ3

)1/4(
(
√

λ + 1)(
√

λ + 2)
)1/2√

δ

+
(
25

λ

)1/2

(
√

λ + 3)δ +
(
25

λ3

)1/4
(
λ3/2 + 9 λ + 11

√
λ − 2

)

(
(
√

λ + 1)(
√

λ + 2)
)1/2 δ3/2

+ 4(3λ + 3
√

λ − 2)

(
√

λ + 1)
√

λ
δ2 + O(δ5/2) (40b)

−−→
δ=0

1 + 4

λ
+ 4√

λ
, (40c)

in which the definitions of k1, . . . , k6 found in (25), with their dependence on δ, λ, Ã,
have been substituted as well as (29), the latter also in the limit δ → 0. Quantitative
illustrations of the dependence upon δ of both the absolute error in (40b) (computed
relative to (40a)), and the maximum peak-amplification factor predicted by (40b) are
shown in Fig. 3 for the specific value λ = 1.

Since both λ > 0 and δ > 0, the series form (40b) implies that the peak-
amplification factor, μp say, is maximised when δ = 0, at which its value is given
by (40c). This follows from the positive-definiteness of the coefficient of

√
δ in (40),

wherein neglected terms are of order O(δ5/2). Immediately obvious from (40b) is that
∂
∂δ

μp is of order O(δ−1/2) as δ → 0, whereas ∂
∂λμp is of order O(δ1/2) as δ → 0.

Thus the maximum value of μp is respectively cusped and smooth with respect to
variations in δ and λ.

That the maximum peak-amplification factor (40c) as δ → 0 is the unique global
maximum (with respect to both δ and λ) can be proven explicitly using the algebraic
manipulatorMaple. Differentiating the exact expression (40a) with respect to δ yields
a rational fraction inwhich both numerator and denominator are cumbersome transcen-
dental functions of λ, δ > 0; their presentation is facilitated using the pictorial form
in Fig. 4, in which the negative sign initiating the numerator and positive-definiteness
of all other terms confirms that ∂

∂δ
μ < 0 for all λ, δ > 0. The conclusion ∂

∂λμ < 0
for all λ, δ > 0 can be similarly reached; the details are omitted. Hence, since (40a) is
positive-definite and partial derivatives with respect to both its independent variables
are globally negative-definite in the domain of definition, the maximum value (40c)
as δ → 0 is unique.
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Fig. 3 (a) Log–log plot of the absolute error, as a function of δ, between exact maximum peak-amplification
factor (40a) and series approximation (40b) for the “base state” λ = 1. The dashed line indicates
23 δ5/2/(211/433/2), confirming the error in (40b) with λ = 1, departure from which at the smallest
value of δ signifies entry of the calculations into the rounding plateau of the double-precision arithmetic
used. (b) Semi-log plot of the maximum peak-amplification factor (40a) as a function of δ, for λ = 1: the
nine-fold amplification as δ → 0 is evident

Fig. 4 Maple-generated explicit forms of the numerator dPn and denominator dPn of the derivative with
respect to δ of (40a). Clearly the numerator and denominator are respectively negative- and positive-definite
for all λ, δ > 0. An analogous inference follows when the derivative with respect to λ is considered, though
the corresponding formulae are not presented
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Fig. 5 Maximum amplification
u(0, Y∗, 0)/ Ã as a function of δ

for λ = 1, 1.05, . . . , 1.5,
increasing in the direction of the
arrow. The maximum at δ = 0 is
a cusp, indicated by the blue
crosses. Indicated by a circle is
δ = 0.00140445 with
amplification 8.41 for λ = 1,
used later in simulation SP3

Note that Y∗ in (34) diverges when k4 → k5 in the limit k5 − k4 = δ
√

Ã → 0, as
follows

Y∗ = 1

2

ln
(
δ
√

Ã k5(k5 + k4)/[k6(k26 − k24)])
)

(k26 − k25)
−−→
δ→0

−∞, (41)

and also that the term A146F → 0 when δ → 0. Moreover, in the above calculation
we have used that A245 → 0 and A236 → 0 when δ → 0, as shown in (29). However,
it may be useful to adjust the A–matrix in (20) by using a, b, c = 1 such that Y∗
resides by construction at Y = 0, if possible. We have therefore established that the
maximum amplification occurs for δ = 0, shown both asymptotically from the Taylor
expansion in (40) and graphically, see Fig. 5.

The reason that the above result comprises a valid rather than heuristic proof, despite
the fact that it is based on the far-field expressions, is as follows. Prior to reaching the
maximumat (X∗, Y∗, τ∗), there is a phase shift between the branches of [1, 2], [5, 6] for
Y < Y∗ and Y > Y∗, seemingly meaning that the far-field expressions cannot be used
to find the interaction point geometrically. However, the phase shift swaps directions
when it passes through the time atwhich themaximumoccurs. That is, the symmetry of
the set-up implies that the phase shift becomes zero at the maximum point (X∗, Y∗, τ∗)
in space-time. Given that we have calculated and therefore know (X∗, Y∗, τ∗), an a
posteriori proof that it is indeed the maximum is provided in Appendix B.

4 Numerical Verification of MaximumAmplification for the BLE

4.1 Use of Geometric/Conservative Finite-Element Method

The BLE are a Hamiltonian pair of wave equations that conserve mass, energy and
phase-space volume. Since we are interested in assessing numerically the maximum
wave amplification of interacting solitons, it is important to choose a numericalmethod
that preserves wave amplitude and, preferably, the entire geometric or Hamiltonian
structure of the underlying partial differential equations. Without such conservation
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Table 1 Overview of the simulations undertaken with the KPE parameter values employed

Simulation Solitons tan θ Ã λ

SP2 2
(
2
9

)1/6 1
4
√

ε
≈ 8.7013 × 10−1 tan2 θ

2 ≈ 3.7856 × 10−1 –

SP3 3
(
2
9

)1/6 1
4
√

ε
≈ 8.7013 × 10−1 9.4454 × 10−2 1

In all simulations, we take ε = 0.05, μ = ε2. The expression taken for tan θ =
(
2
9

)1/6 1
4
√

ε
is such that

to make the tangent of the angle between η0[1,2] and the y-axis for BLE equal to 1/4. SP2/SP3 concern
simulations in a domain periodic in the x-direction

Table 2 Values of parameters ki , obtained from (25) with the parameters in Table 1

Simulation k1 k2 k3 δ

SP2 − tan θ 0 0 0

SP3 −0.65238 −0.21775 −0.21732 k3−k2√
Ã

≈ 0.00140445

properties, the maximum amplification obtained numerically could be too low due to
artificial dissipation; additionally, (computationally expensive) high resolution may
be required to minimise such dissipation. We therefore solve the BLE by employing
a continuous Galerkin (CG) finite-element method (FEM) based on a geometric or
variational space-time discretisation. In particular, we employ a second-order Störmer-
Verlet scheme in time, and Lagrange interpolation polynomials of order one, two, three
and four to discretise space, denoted by CG1/CG2/CG3/CG4 in the rest of this section.
The reader is directed to references [7, 8, 11] for details on this geometric-discretisation
approach. In addition, the method is implemented and available in Firedrake [29],
which is “an automated system for the solution of partial differential equations using
the finite element method”.

4.2 Numerical Strategies

Two solutions of the KPE will be used as initial conditions for simulations of the
BLE, in order to test whether the calculated maximum amplification is reached and/or
maintained. We therefore run two sets of simulations, each using the parameter values
shown in Tables 1 and 2, and described as follows:

• simulations SP2 use initial conditions formed by the two-line soliton solution (9),
with K (X , Y , τ ) given in (14) and k1 < k2 = 0 = k3 < k4; and,

• simulations SP3 use initial conditions formed by the three-line soliton solution
(9), with K (X , Y , τ ) given in (22) and the ki ’s given in (25).

However, these KPE solutions hold on an infinite horizontal plane, and the region
of interaction, where the far-field line solitons cross, propagates in the x-direction.
Consequently, a numerical simulation ideally needs to occur within a domain that is
sufficiently large to admit influence or decay, to nearly zero, of the effect of the inter-
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actions near the domain boundaries. The remaining issue is then how to deal with the
moving single-line solitons at these domain edges. To achieve energy conservation,
such far-field single-line solitons should be normal to the domain walls: clearly, this
would necessitate awkwardly shaped domains, which concomitantly places challeng-
ing computational demands on the numerical methodology deployed. Accordingly,
the following strategy has been devised for the simulations.

The solutions can be set to become approximately periodic when the domain is
sufficiently large. Consider Fig. 2 as one cell in a domain either periodic in X - or
periodic in both the X - and Y -directions, in which we have placed the X -shaped
[1, 2], [5, 6] line solitons exactly at the corners of a periodic domain. Such domains
can be patched together to form crossing seas. Hence, a domain periodic in only the
X -direction or in both X - and Y -directions is chosen. This approach has the additional
advantage that energy will be approximately conserved, with any energy oscillations
remaining bounded and decaying to zero as O(Δt2) when the time step Δt → 0,
given the second-order geometric time integrators and geometric spatial FEM used.
However, while the reconstructed η is periodic, the velocity potential Φ is not and
requires to be split into Φ = (U0x + c0) + Φ̃ for a suitable choice of U0 and c0. The
rewritten BLE for the periodic η, Φ̃ are given below in Sect. 4.3.

Furthermore, in the numerical simulations, we halve the X - and Y - directional
periodic domain with respect to Y = Y∗. After that, whilst retaining X -directional
periodicity, we impose Neumann boundary conditions on the top and the bottom
Y = Y∗ of the half domain using the symmetry of K . These Neumann boundary
conditions are approximate – with ∂yΦ0 = 0, ∂yη0 = 0 – and required for the proof,
because ∂yΦ0 and ∂yη0 are not exactly zero on the top boundary whereon there will
be “kinks” due to the periodicity procedure imposed. Note that K is symmetric about
Y = Y∗, that is, K (X , Y∗ − Y , τ ) = K (X , Y∗ + Y , τ ), for all (X , Y , τ ) ∈ R

3.
On the other hand, if K is Y -directional periodic with 2p-periodicity (p > 0), then
K (X , Y∗ + p − Y , τ ) = K (X , Y∗ − (p − Y ), τ ) = K (X , Y∗ − (p − Y ) + 2p, τ ) =
K (X , Y∗ + p + Y , τ ), i.e. K is symmetric with respect to Y∗ + p or Y∗ − p. Thus,
the symmetry allows ∂Y K = 0 on Y = Y∗ + pk for an integer k. Therefore, we can
halve the X -, Y -directional periodic domain about Y = Y∗, or Y = Y∗ + p while
imposing Neumann boundary condition on Y = Y∗ and Y = Y∗ + p. To assess the
approximations made, we will shortly compare two simulations, one of which uses
the full periodic domain and the other the half-periodic domain.

The resolution for each simulation is provided in Table 3. Meshes are regular and,
givenΔx,Δy, the time step is determined by trial and error such that the energy oscil-
lations are stable, which we will confirm per simulation when discussing numerical
results. By using a posteriori the linear dispersion relationship of the BLE and the
stability criterion for the Störmer–Verlet time-stepping scheme, as well as our choice
of Δx,Δy, we verified that our chosen time step was (linearly) stable.

4.3 Initial Conditions and Set-Up in (Half) Periodic Domain

As described in the previous section, the solutions can be made approximately peri-
odic when the domain is sufficiently large. Assuming a doubly periodic domain with
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Table 3 Values of several numerical parameters for each simulation set

Simulation Lx L y T Nx Ny Δx = Lx
Nx

Δy = L y
Ny

Δt

SP2–CG1/2/3 10.2772 40 50 132 480 0.0779 0.0833 0.005

SP3–CG1

SP3–CG2 20.8934 47 200 252 564 0.0829 0.0833 0.005

SP3–CG3

SP3–CG4 20.8934 47 200 126 282 0.1658 0.1666 0.005

Here, T is the total simulation time defined as T = tend−t0 with t0 = 0, −200 for SP2 andSP3, respectively.
For SP2, Lx = x2 − x1 ≈ 10.2772 (see (46)), soΔx ≈ Δy given that the fields are quite isotropic in space.
For SP3, Lx = x2 − x1 ≈ 20.8934 (see (48)), so again Δx ≈ Δy. The time step used was chosen by trial
and error to give convergence for the higher-order polynomials used in CG2/CG3. The CG4 simulations
use a quarter of the elements and have a slightly higher number of degrees-of-freedom than CG2

{(x, y) ∈ [x1, x2] × [y1, y2]}, we set up a half-periodic domain by truncating the
width of the domain in half, i.e. we take Ωh = {(x, y) ∈ [x1, x2] × [y∗, y2]} where
y∗ = (y1 + y2)/2 is either the branch point (simulation SP2) or the location of the
maximum (simulation SP3). The value of y∗ is found by the exact solution of KPE for
a specific choice of parameters ki .

The BLE (1) are rewritten for (half-)periodic η and Φ̃, where Φ̃ is defined through
Φ = (U0x + c0) + Φ̃, as follows

∂t Φ̃ − μ

2
∂t∇2Φ̃ + ε

2
U 2
0 + U0∂x Φ̃ + ε

2

∣∣∇Φ̃
∣∣2 + η = 0, (42a)

∂tη − μ

2
∂t∇2η + εU0∂xη + ∇ · (

(1 + εη)∇Φ̃
) − 2μ

3
∇4Φ̃ = 0, (42b)

and are both satisfied on Ωh = {(x, y) ∈ [x1, x2]× [y∗, y2]} for appropriately chosen
x1, x2, y2. The domain size is hence |Ωh | = Lx × L y = (x2 − x1) × (y2 − y∗). The
initial conditions imposed are

η0(x, y) = η(x, y, t0) = 2
(4
3

)1/3
∂X X ln

(
K (X , Y , τ )

)
, (43a)

Φ0(x, y) = Φ(x, y, t0) = 2
√

ε
(4

√
2

9

)1/3
∂X ln

(
K (X , Y , τ )

)
, (43b)

in which we use transformations (8) with t = t0. For the given initial conditions, U0
can be calculated using the periodicity of Φ̃, and c0 is found by setting Φ̃(x1, y) =
Φ̃(x2, y) = 0, as given below

U0 = U0(y) = Φ0(x2, y) − Φ0(x1, y)

x2 − x1
, for y ∈ [y1, y2], (44a)

c0 = c0(y) = −U0(y)x1 + Φ0(x1, y), (44b)
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in which c0(y) is defined to make U0x1 + c0 = Φ0(x1, y). Hence, when defining the
line F(x) = U0x + c0 connecting (x1, Φ0(x1, y)) to (x2, Φ0(x2, y)), we observe that
F(x) = U0(x − x1) + Φ0(x1, y) such that c0 = F(0).

4.3.1 Simulation SP2 with Two-Soliton Interaction

The initial condition for the case with two interacting solitons in an x-periodic domain
is set up as follows. Given the KPE solution u(X , Y , τ ) and K (X , Y , τ ) in (14) for
the two interacting web solitons, we use (43) to find the initial condition for the BLE
at τ = 0 and corresponding t = 0. Furthermore, the four values k1, k2 = k3 = 0,
k4 = −k1 used are defined in Table 2. We introduce the initial condition using the
expressions of the far-field solitons

η0[1,2](x, y) ≈
(4
3

)1/3 1
2
(k2 − k1)

2 sech2
1

2
a[1,2], for x > 0, y → ∞, (45a)

η0[3,4](x, y) ≈
(4
3

)1/3 1
2
(k4 − k3)

2 sech2
1

2
a[3,4], for x < 0, y → ∞, (45b)

with arguments a[i, j] = a[i, j](x, y) defined by

a[1,2](x, y) = k1

√
ε

μ

(
3√
2

)1/3
[

x + k1

(
3√
2

)1/3 √
ε y

]

+ ln 2, (45c)

a[3,4](x, y) = k4

√
ε

μ

(
3√
2

)1/3
[

x + k4

(
3√
2

)1/3 √
ε y

]

+ ln 2, (45d)

from the arguments in (19). We choose the ends of the domains x1, x2, y2 such that
to make the [1, 2] line soliton (45a) exactly pass through the corner (x2, y2), and the
[3, 4] line soliton (45b) pass through the corner (x1, y2).

Firstly, we choose y2 to be sufficiently larger than y∗, here, y2 = y∗ + 40 =
−20 + 40 = 20. We note that when a full periodic domain is used, the lower
end of the domain is at y1 = y∗ − 40. We can subsequently find x2 such that
η0[1,2](x2, y2) = max(η0[1,2]), that is where the argument of the sech2–function (45c)
is zero, a[1,2](x2, y2) = 0. Following a similar argument, we can obtain x1 by setting
a[3,4](x1, y2) = 0 using (45d). Consequently we find

x2 = −k1

(
3√
2

)1/3 √
ε y2 −

√
μ

ε

(√
2

3

)1/3

k−1
1 ln 2 ≈ 5.1386, (46a)

x1 = −k4

(
3√
2

)1/3 √
ε y2 −

√
μ

ε

(√
2

3

)1/3

k−1
4 ln 2 ≈ −5.1386. (46b)

These initial conditions for SP2 are shown in Fig. 6.
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(a) Initial condition for η0. (b) Initial condition for Φ0.
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(c) Cross-section of η0 on y = 10. (d) Cross-section of η0 on y = 20.

Fig. 6 Initial conditions for (a) η0, and (b) Φ0, at initial time t0 = 0 in the case of SP2. (c, d) show cross-
sections of η0 on y = 10, and on the upper boundary y = y2 = 20, respectively. The initial data (η0, Φ0)

are defined such that the height of each solitary wave is 0.4167, as seen in (c), and the angles between each
line soliton and the positive y-axis are tan θ[1,2] = 1/4 = − tan θ[3,4], so that both line solitons exactly
pass through the respective corners of the domain

4.3.2 Simulation SP3 with Three-Soliton Interaction

The initial condition for the case with three interacting web-solitons in an x-periodic
domain is set up as follows. Given the KPE solution u(X , Y , τ ) and K (X , Y , τ ) in
(27) for the three interacting web-solitons, we define the initial condition for the BLE
at t = t0 = −200 (the corresponding value of τ is found from (8a)). Note that we start
the simulation at a negative time t0 < 0 to allow the solution to reach its maximum
at t = 0, according to the results of Sect. 3.4. Furthermore, the six values k1, k2, k3,
k4 = −k3, k5 = −k2, k6 = −k1 used in the simulations are defined in Table 2.

We calculate the end-points of the domain in a similar manner as done for SP2, that
is, by using the expressions of the far-field solitons at the initial time,

η0[1,2](x, y) ≈
(4
3

)1/3 1
2
(k2 − k1)

2 sech2
1

2
a[1,2], for x > 0, y → ∞, (47a)
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(a) Initial condition for η0. (b) Initial condition for Φ0.
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(c) Cross-section of η0 on y = 35. (d) Cross-section of η0 on y = y∗.

Fig. 7 Initial conditions for (a) η0, and (b) Φ0, at initial time t0 = −200 in the case of SP3. (c, d) show
cross-sections of η0 at the far-field y = 35, and on the upper boundary y = y∗ = −6.9716, respectively.
The initial data (η0, Φ0) are defined such that the height of each solitary wave is 0.1040, as seen in (c), and
the angles between each line soliton and the positive y-axis are tan θ[1,2] = 1/4 = − tan θ[5,6]

η0[5,6](x, y) ≈
(4
3

)1/3 1
2
(k6 − k5)

2 sech2
1

2
a[5,6], for x < 0, y → ∞, (47b)

with arguments a[i, j] = a[i, j](x, y) defined by

a[i, j](x, y) = (ki − k j )

√
ε

μ

(
3√
2

)1/3 [
x + c + (ki + k j )

(
3√
2

)1/3 √
ε y

−
(
1 + (k2i + ki k j + k2j )

(4
3

)1/3
ε

)
(−200)

]
− ln G[i, j], (47c)

where functions G[i, j] are defined in (23e), and c = −5+ t0 is given as a shifting con-
stant in x for convenience (the value of this constant is chosen such that to have initial
conditions ‘centered’ around x = 0). Our goal is to make the [1, 2] line soliton (47a)
exactly pass through the corner (x2, y2), and the [5, 6] line soliton (47b) pass through
corner (x1, y2)—see also Fig. 2.
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Table 4 Height of a line soliton, Ã(t):=maxx (η(·, y, t)), maximum amplitude of η, and their ratio, both
for the re-scaled KPE solution, ηK P , and the BLE solution, η

Case Equation Ã max max / Ã

ηK P 0.415 1.66 4.0

SP2–CG1 η 0.414–0.488 1.67–1.91 3.77–4.49

SP2–CG2 η 0.399–0.435 1.56–1.69 3.64–4.01

SP2–CG3 η 0.399–0.435 1.56–1.70 3.64–4.01

ηK P 0.104 0.396–0.875 8.41

SP3–CG1 η 0.104–0.126 0.398–0.990 3.69–8.49

SP3–CG2 η 0.103–0.111 0.390–0.818 3.60–7.83

SP3–CG3 η 0.103–0.111 0.390–0.817 3.60–7.82

Results are shown for simulations SP2 and SP3, using CG1/2/3 in each case. See also Figs. 9 and 12, for
the respective simulation results. The corresponding parameter values are found in Table 2

We begin by again choosing a sufficiently large y2, compared to y∗, here taken to
be y2 = y∗ + 47 = −6.9716+ 47 = 40.0284. The value of y∗ is found by scaling Y∗
found in (34) using (8a). Then we find x2 such that η0[1,2](x2, y2) = max(η0[1,2]), that
is where the argument of the sech2–function is zero, a[1,2](x2, y2) = 0. Following a
similar argument, we can obtain x1 by setting a[5,6](x1, y2) = 0. We therefore find

x2 = 5 − (k1 + k2)

(
3√
2

)1/3 √
ε y2 +

(
(k21 + k1k2 + k22)

(4
3

)1/3
ε

)
(−200)

−
√

μ

ε

(√
2

3

)1/3
1

k2 − k1
ln

A246

A146
≈ 8.6769, (48a)

x1 = 5 − (k5 + k6)

(
3√
2

)1/3 √
ε y2 +

(
(k25 + k5k6 + k26)

(4
3

)1/3
ε

)
(−200)

−
√

μ

ε

(√
2

3

)1/3
1

k6 − k5
ln

A136

A135
≈ −12.2165. (48b)

These initial conditions for SP3 are shown in Fig. 7.

4.4 Discussion of Numerical Simulations

In discussing the simulations, wewill address the following points: first, we demon-
strate that the difference in simulations between the fully periodic and x-periodic
domain is sufficiently minor to warrant usage of the smaller x-periodic domain; sec-
ond, simulations with the higher-order polynomial resolution CG2 and CG3 are more
suitable for the above numerical experiments than the simulationwith CG1; third, BLE
can explain short-crested high-amplitude crossing waves; and, finally, BLE numerical
solutions are consistent with ones of KPE, that is, their difference is within order ε. An
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(c) Ã := maxx(η(·, 35, t

(a) Maximum values (b) Relative difference of maximum

)) (d) Relative difference of Ã

(e) max(η)/Ã against time

Fig. 8 SP3–CG2: demonstration that using the half-periodic domain strategy compares sufficiently well
with the full x- and y-periodic domain strategy. The scaled amplitude Ã relevant for BLE is used, using
(8a), for both SP2 and SP3 diagnostics

overview of the amplitude and maximum amplifications attained in each simulation
is provided in Table 4.

Regarding the first point on domain periodicity, we show this by performing
three-soliton interaction simulations (SP3) in a domain periodic in both the x- and
y-directions, as well as the half-periodic domain in a channel with solid walls and
periodicity in the x-direction only, as described in Sect. 4.2. The maximum values of
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(a) Maximum of η (b) Ã against time

(c) max /Ã against time

Fig. 9 Results obtained from SP2 simulations, employing different basis function spaces, CG1, CG2, and
CG3. (a) Maximum values of η over time. While the result with CG1 is overshot, the results with CG2
and CG3 are stable and similar to each other. (b) Ã(t):=maxx (η(·, 10, t)) versus time. (c) Amplification
max(η)/ Ã against time

Fig. 10 Deviation of energy
E(t) − E(0) in time for
simulation SP2–CG2, where
E(t) is defined in (2) for the
BLE system. The energy
deviation from E(0) = 19.01 is
of the order of 10−5, which
indicates a stable numerical
integration

η and the relative difference is shown in Fig. 8. The more computationally expensive
simulation crashes before the end-time is reached, but the proximity between the two
simulations shows that we arewarranted to use the half-domain computational strategy
for SP3.
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(a) ηKP at t (b)52= ηKP at t = 50

(c) η at t (d)52= η at t = 50
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(e) η(x, 10) at t (f)52= η(x, 10) at t = 50
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(g) η(x,−20) at t (h)52= η(x,−20) at t = 50

Fig. 11 SP2–CG2: (a, b) re-scaled KPE solution ηK P using (8a), and (c, d) numerical solution of η, at
times t = 25 (panels on the left) and t = 50 (panels on the right), respectively. Cross-sections of η on
y = 10 are shown in (e, f), and cross sections on y = y∗ = −20 are shown in (g, h)
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4.4.1 SP2 Simulations

The evolution of the wave amplitude in time, the maximum amplification and the ratio
of the two is presented in Fig. 9, for the three polynomial orders CG1/CG2/CG3. The
profiles obtained with CG1 are overshot compared to those of CG2 and CG3, and
compared with the exact solutions of the KPE. Hence, the simulation with CG1 seems
unreliable with insufficient spatial and possibly temporal resolution, even though the
energy oscillations appear to be bounded. Clearly, the results obtained using CG2 and
CG3 are close to each other with their point-wise difference in L∞ at most 10−4. We
can therefore conclude that CG2 andCG3 have converged, and that these computations
are therefore reliable. Because computations using CG3 are computationally much
more expensive, we focus on explaining the CG2 results next.

Starting from the initial conditions seen in Fig. 6, the solution evolves in time as
seen in Fig. 11; top views of solutions at two different times t = 25, 50 are shown
for (rescaled) KPE and BLE, as well as cross-sections of the BLE solution in y at
the same times. The location and value of the solution maximum is also seen in
the top and bottom panels. The evolution of the respective energy (2) is shown in
Fig. 10, indicating bounded oscillations and hence a stable numerical integration.
Furthermore, Fig. 9a shows that the maximum of η is maintained around 1.6, while
Fig. 9b illustrates that Ã is around 0.41. So their amplification turns out to about 3.8
as seen in Fig. 9c. We note that the oscillations are due to dispersion effects in BLE.
Unlike the exact KPE solution ηK P , the numerically-obtained η initially grows in
amplitude. Subsequently, dispersion separates small ripples behind the main solitary
waves, so both the maximum and Ã are seen to decrease for a while. By the time
the maximum and Ã start to increase again, small ripples have circulated around the
periodic domain and meet the main solitary waves. That is why the amplification is
oscillating somewhat, but still remains around 3.9. Finally, we note that our result is
consistent with the amplification of circa 3.6 found in Gidel et al. [11] and that of 3.9
found in Ablowitz and Curtis [1].

4.4.2 SP3 Simulations

In SP3 simulations with three soliton interactions, an amplification of 7.8 is attained
despite the initial increasing, separation of ripples and oscillation of amplitudes, as
seen in Fig. 12, similarly to the phenomena observed in SP2 where a 5% error was
found between numerically-obtained and exact amplifications (3.8 vs. 4.0). The ampli-
fication of 7.8 for three-soliton interactions is within 7.25% error when compared to
the amplification of 8.41 for the exact solution of the KPE, obtained for the same value
of δ ≈ 0.0014 (see Fig. 5 and Table 2). The BLE numerical solutions are observed to
be only different relative to the exact solution of the KPE within O(ε), with ε = 0.05
here, see Figs. 14 and 15. This means that the BLE modelling is consistent with the
KPEmodelling, in that extreme-wave propagation and creation exists and is sustained
in the BLE as well. The bounded energy fluctuations in Fig. 13 confirm that SP3–CG2
is stable. Finally, the time evolution of the free surface can be seen in the video avail-
able in [16], where all variables are transformed to dimensional units using ε = 0.05,
Ã = 0.5, and a rest water level H0 = 20m. The video ends with two figures showing
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(b)seulavmumixaM(a) Ã against time

(c) max(η)/Ã against time

Fig. 12 Results obtained from SP3 simulations, employing finite-element polynomials of order CG1, CG2,
CG3 and CG4. (a) Maximum values of η over time. CG1 is not resolved (may not be stable) and yields
maximum values that are too large. (b) Ã(t):=maxx (η(·, 35, t)) indicating that the basic amplitude is
unstable for CG1. (c) Amplification max(η)/ Ã against time. Both CG2 and CG3 appear to have converged
and are reliable. Results obtained with CG4 further confirm the CG2/3 results but with reduced dispersion
and amplitude errors

Fig. 13 Deviation of energy
E(t) − E(−200) in time for
simulation SP3–CG2, where
E(t) is defined in (2) for the
BLE system. The energy
deviation from E(−200) = 3.11
is of the order of 10−5, which
indicates a stable numerical
integration
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(a) ηKP at t = −128 (b) ηKP at t = −59

(c) η at t = −128 (d) η at t = −59
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(e) η(x, 35) at t = −128 (f) η(x, 35) at t = −59

Fig. 14 SP3–CG2: (a, b) re-scaled KPE solution ηK P using (8a), and (c, d) numerical solution of η, at
times t = −128 (panels on the left) and t = −59 (panels on the right), respectively. At t = −128, the
maximum of η in both (a, c) first reaches the symmetry boundary. (e, f) show that the height of η in the far
field y = 35 is close to the initial height 0.1040, at both times t = −128 and t = −59
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(a) (b)η at t 0= ηKP at t = 0
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(c) η(x, 35) at t = 0

Fig. 15 SP3–CG2: continued from Fig. 14: (a, b) show that the global maximum values of η and ηK P are
attained at t = 0. (c) shows η in the far field (y = 35) at t = 0, where the height can be seen to retain its
initial value 0.1040, similarly to Fig. 12e, f

the time evolution and spatial location of the free-surface maximum, for both KPE
and BLE.We note that running the simulation for much longer allows for repetition of
the maximum amplification in time, due to the cnoidal-wave structure of the solution
(see also video reference in [16]).

5 Summary and Conclusions

Extreme waves may arise randomly in crossing seas comprising waves aligned with
two or more directions of travel. Linear superposition with weak nonlinearity has been
proposed to explain so-called “everyday” extreme waves, those with an amplitude of
at least twice that of those in the surrounding ambient sea. Extreme waves may alter-
natively arise through higher-order nonlinear effects in statistical distributions; these
have been simulated and observed to lead to extreme waves. In the former case, it has
been proposed to reserve the term“roguewaves” for exceptionally high and steepwater
waves. Thus motivated, we have investigated exact and numerical “rogue-wave” solu-
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Fig. 16 Cnoidal waves created
by crossing seas (photo
courtesy: V. Zwart; also used
with permission in [6])

tions ofwater-wave equations for crossing seas, but here in a deterministicmanner. Two
exact web-solitons have been analysed for the unidirectional Kadomtsev–Petviashvili
equation (KPE), and numerical solutions have been simulated for the bi-directional
and higher-order Benney–Luke equations (BLE) in two horizontal dimensions, the
latter seeded at an initial time by either one of the two exact web-soliton solutions
of the KPE. The first exact solution of the KPE is well known and consists of two
main soliton branches of amplitude Ã, interacting at an angle, and leading to a soli-
ton branch with fourfold amplitude 4 Ã. The second exact solution of the KPE is less
well-known and consists of three main soliton branches, each of amplitude Ã in the
far field, involving waves coming from three directions, leading to a wave splash of
extreme height at one point in space and time. We have analysed this exact three-line
soliton solution in detail under a symmetric set-up and show in a novel analysis that its
maximum amplification peaks at 9 Ã for a certain angle between a main solitary wave
travelling in a given direction (we use the positive Cartesian x-direction) and two
other solitary waves whose directions of travel are symmetrically disposed thereto.
However, due to a phase shift, it is currently possible to prove the theoretical nine-
fold amplification only analytically for the KPE, in terms of a suitably defined small
parameter δ, and it is an open question how to set up the numerical BLE simulation
in the limit δ → 0. This is because the spatial location of the maximum amplification
is determined only for positive values of δ, as shown in Sect. 3.4. Finally, we note
that the limit of δ → 0 also provides the optimal angle for maximum amplification

which is given by tan θ =
√
8 Ã for KPE (this is found from Eq. (26b) with λ = 1).

The corresponding optimal angle for BLE (and the respective dimensional equations),

θBLE, can be calculated through tan θBLE = √
ε ( 92 )

1/6 tan θ =
√

12A
H0

(by using (8)

and (26)), with dimensional far-field soliton amplitude A and (rest) water depth H0.
Computational simulation of such solutions is challenging and potentially cumber-

some given both the speed of wave propagation and infinite nature of the 2-D solution
domain. Given the symmetries inherent in the twoKPEweb-soliton solutions, we have
(necessarily artificially) imposed them as initial conditions on a 2-D computational
domain that is sufficiently large (in an experimentally determined sense) and periodic
in both x- and y-directions. Additionally, by using a symmetry relative to a fixed value
of y, we have shown that it suffices to conduct computations on only a half-domain,
bounded by two solid walls in the y-direction and periodic in the x-direction. By doing
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so, we have effectively created cnoidal-wave solutions of crossing seas (see, for exam-
ple, Fig. 16). Hence, we have seeded simulations of the BLE with two exact solutions
of the KPE at some initial time, and have used geometric or variational (finite-element)
integrators to discretise the BLE in space and time. The numerical methodology is
specifically designed to avert artificial numerical damping of wave amplitudes, as
it allows conservation of phase-space volume and mass, and keeps energy oscilla-
tions small and bounded. Simulations at different resolutions (using polynomial or
p-refinement) reveal that these two types of extreme waves or web-solitons reach
maximum-amplification factors of ∼ 3.6–4.0 when the corresponding factor for the
exact solutions of theKPE is 4.0, and of∼ 7.8when it is 8.4. Deviations from the exact
KPE solutions have moreover emerged because of minor secondary waves, created
after the initial time, which induce small-scale oscillations in the far-field soliton(s) of
original amplitude Ã; this has the effect of eroding the (computed) maximum amplifi-
cation. Computed maximum amplitudes and amplifications are summarised in Table 4
and depicted in Figs. 9 and 12.

The final soliton splash examined in our simulations does indeed create a rogue
wave in the sense of the definition thereof based on the abnormality-index calculation
(see Appendix C). In the case of three interacting line solitons, we find an abnormality
index of AI = max(η)/Hs = 4.0, where Hs is the “significant wave height”,1 and the
maximum value of η is the yellow text annotating Fig. 15a. Details of this calculation
are included in Appendix C.

Several research extensions based on the present study emerge naturally. An amal-
gamation of bespoke numerics and appropriate wave theory could seed simulations
able to achieve (more closely) the theoretically predicted nine-fold maximum ampli-
fication factor. The three-line-soliton solution for the BLE could be simulated in a
suitable channel geometry, as indicated in Fig. 1. The two web-soliton solutions could
be simulated using potential-flow water-wave equations, possibly combined with a
wave-breaking parametrisation scheme, in both periodic and channel-geometry set-
tings. Such potential-flow simulations could offer a means of assessing how realistic
these “KPE/BLE-rogue” waves are and whether they would endure sufficiently to
attain their theoretical maximum amplitudes.
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A Conservation of Energy

The total energy E(t) as defined in Eq. (2) is conserved at all times, as shown below.
Multiplying Eq. (1b) by (−∂tΦ) and integrating in Ωh , gives

0 =
∫

Ωh

−∂tΦ

(
∂tη − μ

2
∂t∇2η + ∇ · ((1 + εη)∇Φ) − 2μ

3
∇4Φ

)
dx dy

=
∫

Ωh

[
∂tη

(
−∂tΦ + μ

2
∂t∇2Φ

)
− ∇ ·

(
(1 + εη) ∇Φ

)
∂tΦ + 2μ

3
(∇4Φ)(∂tΦ)

]
dx dy

=
∫

Ωh

[
∂tη

(
η + ε

2
|∇Φ|2

)
+ (1 + εη) ∇Φ · ∇∂tΦ + 2μ

3
(∇2Φ)(∇2∂tΦ)

]
dx dy

= d

dt

∫

Ωh

[
1

2
η2 + 1

2
(1 + εη) |∇Φ|2 + μ

3
(∇2Φ)2

]
dx dy

= dE(t)

dt
, (49)

where the other equations in (1) were used to get to the final result.

B Further Proof of MaximumAmplification

A posteriori, we will confirm that (40) is the maximum value of (9), provided that Y∗
and τ∗ are known a priori. As in the main text, let Apqr = k2r (kq − kp) + k2q(kp −
kr )+k2p(kr −kq), for p < q < r . Expression (22) for K (X , Y , τ ), after some algebra,
can be shown to be equivalent to

K (X , Y , τ ) = C1

{
C2

(
A135 cosh

(
(k1 + k3 + k5)X + (k31 + k33 + k35)τ

)

+ A236 cosh
(
(k2 + k3 + k6)X + (k32 + k33 + k36)τ

))

+ C3A136 cosh
(
k3X + k33τ

)
cosh

(
(k21 − k22)(Y − Y∗)

)}
, (50a)

where we have defined the coefficients

C1 = e(k21+k23+k25)Y e(k21−k22)Y∗ , C2 = 2e−(k21−k22)Y∗ , C3 = 4. (50b)

http://creativecommons.org/licenses/by/4.0/
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We can now calculate the following derivatives of K from (50a),

K X = C1

{
C2

(
(A135(k1 + k3 + k5) sinh

(
(k1 + k3 + k5)X + (k31 + k33 + k35)τ

)

+ A236(k2 + k3 + k6) sinh
(
(k2 + k3 + k6)X + (k32 + k33 + k36)τ

))

+ C3A136k3 sinh
(
k3X + k33τ

)
cosh

(
(k21 − k22)(Y − Y∗)

)}
, (51a)

and

K X X = C1

{
C2

(
A135(k1 + k3 + k5)

2 cosh
(
(k1 + k3 + k5)X + (k31 + k33 + k35)τ

)

+ A236(k2 + k3 + k6)
2 cosh

(
(k2 + k3 + k6)X + (k32 + k33 + k36)τ

))

+ C3A136k23 cosh
(
k3X + k33τ

)
cosh

(
(k21 − k22)(Y − Y∗)

)}
. (51b)

Looking at the ratios K X X/K and K X/K which are used to define u in (9), it becomes
evident that u is symmetric about Y = Y∗ (since C1 cancels from both numerator and
denominator), as well as about X = 0 when τ = 0. Therefore the solution u given in
(9) satisfies two symmetries: first, u(X , Y − Y∗, τ ) = u(X , Y + Y∗, τ ), and second,
u(X , Y , 0) = u(−X , Y , 0); when both of these symmetries are valid, then the three
solitary waves (23a)-(23c) gather at (0, Y∗, 0).

We will now prove that (0, Y∗, 0) is the maximum point of (9) in two steps:

• Step 1: max u(X , Y , 0) = u(X , Y∗, 0).
Considering X is fixed, we concentrate on the Y -dependence of u as follows

u(X , Y , 0) = K∂X X K − (∂X K )2

K 2 = α + β cosh(Y − Y∗) + γ cosh2(Y − Y∗)
(
ζ + ξ cosh(Y − Y∗)

)2 ,

(52)

where we have defined the following parameters (which are all functions of X
only)

α = C1C2

{
A135(k1 + k3 + k5)

2 cosh
(
(k1 + k3 + k5)X

)

+ A236(k2 + k3 + k6)
2 cosh

(
(k2 + k3 + k6)X

)}

× C1C2

{
A135 cosh

(
(k1 + k3 + k5)X

) + A236 cosh
(
(k2 + k3 + k6)X

)}

− (C1C2)
2
{

A135(k1 + k3 + k5) sinh
(
(k1 + k3 + k5)X

)

+ A236(k2 + k3 + k6) sinh
(
(k2 + k3 + k6)X

)}2
, (53a)

β = C1C2

{
A135(k1 + k3 + k5)

2 cosh
(
(k1 + k3 + k5)X

)

+ A236(k2 + k3 + k6)
2 cosh

(
(k2 + k3 + k6)X

)}
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− C1C2

{
A135(k1 + k3 + k5) sinh

(
(k1 + k3 + k5)X

)

+ A236(k2 + k3 + k6) sinh
(
(k2 + k3 + k6)X

)}

× C3A136k3 sinh(k3X), (53b)

γ = (C3A135k3)
2, (53c)

ζ = C1C2

(
A135 cosh

(
(k1 + k3 + k5)X

) + A236 cosh
(
(k2 + k3 + k6)X

))
,

(53d)

ξ = C1C3A136 cosh(k3X). (53e)

Given the cosh-dependence in (52), it can be observed that the maximum of
u(X , Y , 0) must lie at Y = Y∗. Of course, this is not a constructive argument
given that we needed to have an alternative proof for determining Y∗ in the first
place, since it was used to obtain (50a). However, Y∗ is unambiguously determined
by the symmetry of the set up.

• Step 2: max u(X , Y∗, 0) = u(0, Y∗, 0).
We define

G(X) = g1 cosh(b1X) + g2 cosh(b2X) + g3 cosh(b3X), (54)

where the cosh arguments are assumed to satisfy b1 ≤ b2 ≤ b3. The derivatives
of this function are

G X = g1b1 sinh(b1X) + g2b2 sinh(b2X) + g3b3 sinh(b3X), (55a)

G X X = g1b21 cosh(b1X) + g2b22 cosh(b2X) + g3b23 cosh(b3X), (55b)

so we find

∂X X ln
(
G(X)

) = G X X G − (G X )2

G2

= g1b21 + g2b22 + g3b23
G2 (55c)

+ g1g2(b21 + b22) cosh
(
(b2 − b1)X

)

G2

+ g1g3(b21 + b23) cosh
(
(b3 − b1)X

) + g2g3(b22 + b23) cosh
(
(b3 − b2)X

)

G2 .

(55d)

Since (55c) is the reciprocal of a summation of the cosh–functions, (55c) has the
maximum at X = 0. Moreover, (55d) also has its maximum at X = 0 due to the
following inequality

max
{
cosh

(
(b2 − b1)X

)
, cosh

(
(b3 − b1)X

)
, cosh

(
(b3 − b2)X

)} ≤ cosh(b3X).

(56)

Therefore, themaximum of ∂X X ln G lies at X = 0. Finally, we claim that G(X) =
K (X , Y∗, 0); this is clear by finding K (X , Y∗, 0) from (50a) and comparing with
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the expression for G in (54), where we set

g1 = C1C2A135, g2 = C1C3A136, g3 = C1C2A236, (57a)

b1 = k1 + k3 + k5, b2 = k3, b3 = k2 + k3 + k6, (57b)

such that b1 < b2 < b3 is satisfied. This leads us to u(X , Y∗, 0) =
2∂X X ln K (X , Y∗, 0) = 2∂X X ln G(X). As a consequence, the maximum of
u(X , Y∗, 0) lies at X = 0.

Now that the two steps above are proved, we can conclude that

max u(X , Y , τ ) = max
X

max
Y

u(·, ·, 0) = max
X

u(·, Y∗, 0) = u(0, Y∗, 0). (58)

C Abnormality Index

Based on the results of simulation SP3, we can calculate the abnormality index AI
defined as the ratio of the maximum wave amplification, max(η), to the significant
wave height, Hs . The maximum of η is attained at t = 0 as shown in Fig. 15a,
and the significant wave height is defined as four times the standard deviation of
the surface elevation [9]. Hence we need to determine Hs at t = 0, i.e. at the time
when the surface elevation is maximised. The computational domain in SP3 is Ωh =
[−12.2465, 8.6769] × [−6.97, 40.03] (see also Sect. 4.3.2), which has area |Ωh | =
Lx × L y = 20.8934 × 47 = 981.99, so the average of η is

η̄ = 1

|Ωh |
∫

Ωh

η(x, y, 0) dx dy = 23.107

981.99
= 2.35 × 10−2, (59)

and the standard deviation is

σ =
(

1

|Ωh |
∫

Ωh

(
η(x, y, 0) − η̄

)2 dx dy

)1/2

=
√

2.564

981.99
= 5.11 × 10−2. (60)

Therefore the abnormality index is found to be

AI = max(η)

Hs
= max(η)

4σ
= 0.8174

0.2044
= 4.0. (61)
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