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Abstract 30 

Food security is threatened by the combined pressures of increasing populations and climate change. 31 

Agricultural land is vulnerable to overexploitation and environmental change. Within this review, we 32 

identify the role of multiple cropping systems as an adaptation method towards climate change. 33 

Intercropping, the relay or simultaneous cultivation of two or more crops, and agroforestry, the 34 

incorporation of trees on at least 10% of agricultural land, provides an alternative cropping practice 35 

which can provide many advantages over industrial sole cropping. Examples from these systems are 36 

given to indicate how multiple cropping can provide increased yield, stability, ecosystem services 37 

and societal benefits when adopted. We also discuss instances where multiple cropping systems may 38 

be maladaptive or instances where desired benefits may not be achieved. Finally, we highlight the 39 

important considerations or constraints limiting the adoption of alternate systems and indicate how 40 

modelling approaches can be used to reduce the uncertainty of altering agricultural systems. This 41 

review challenges the traditional concept of how to increase industrial crop yields whilst maintaining 42 

sustainability. Future research should be aimed at overcoming the constraints limiting adoption of 43 

alternative cropping systems to revolutionise global crop production.44 
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1. Introduction 45 

Improving crop productivity is a key aim of agricultural production. With a changing environment 46 

this must be achieved through sustainable approaches, minimising the effect of climate change on 47 

crop growth, whilst restricting further negative impacts of agriculture on the environment 48 

(Rosenzweig and Hillel, 2008). Approximately 50% of habitable land has been converted to 49 

agriculture including croplands, pastures and rangelands (Ritchie and Roser, 2019). In the tropics, 50 

80% of this expansion has occurred into forested areas (Foley et al., 2005; 2011), with approximately 51 

92 million hectares of forest lost between 1990 and 2010 in Latin America and the Caribean alone 52 

(Willaarts et al., 2014). This has increased the vulnerability of the systems to changes in abiotic and 53 

biotic factors.  54 

As climate variability increases, the strain on systems is likely to exceed existing adaptive capacity 55 

(Lin et al., 2015). The term “adaptive capacity” is defined here as the ability for the ecosystem to 56 

absorb climatic change with minimal impact on function (resistance) or evolve to climatic 57 

disturbances through altering structure or composition (resilience). Ecologically-based management 58 

alternatives that combine multiple components in one system may provide a robust path to increase 59 

the productivity, sustainability and resilience of agricultural production (Altieri, 2002). These 60 

diversified agricultural systems provide examples by which structural complexity can help to adapt 61 

to a change in climate to stabilise and improve crop yields (Lin, 2011). Two examples of these 62 

systems include intercropping and agroforestry.  63 

Intercropping refers to the cultivation of two or more crop species, or genotypes, simultaneously for 64 

a period of time (Andrews and Kassam, 1976; Vandermeer, 1989). This can either be for the full crop 65 

life cycle or for only a part, termed relay intercropping. Intercropping can be designed to achieve 66 

spatial and/or temporal complementarity. There are several basic spatial, temporal or functional 67 

arrangements utilised in intercropping and most practical systems are variations of these 68 

arrangements (Table 1). Similarly, the proportion of each component relative to sole cropping 69 

geometry can be altered. In additive intercrops, the ‘base crop’ is sown at 100% of the population of 70 

a sole crop and the second component, termed the ‘intercrop’ is sown around the base crop, usually 71 

at less than the optimal population size if sown as a sole crop (Maitra et al., 2021). In comparison, in 72 

a replacement intercrop, both component crops are sown at less than their optimised population size. 73 

Often a set proportion of one crop is sacrificed and the second component is sown within this space. 74 

Dependent on competitive ability and resource requirements, the optimum plant density of an 75 

intercrop may be greater than that of sole crops, as seen in pea-barley systems (Hauggaard-Nielsen et 76 

al., 2006). This is due to the altered phenology of components permitting a reduced competitive 77 

pressure plus a suppression of weed infestation within the system. 78 
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Agroforestry refers to the cultivation of trees on at least 10% of the agricultural land for timber, 79 

firewood or other products, with crops or livestock systems (Montagnini and Nair, 2004).  80 

Agroforestry includes the incorporation of trees with livestock and/ or crops in different spatial 81 

arrangements, however the rest of this review will focus on examples from tree and crop systems only 82 

(Table 2). Agroforestry systems can be generated via two routes; either through the conversion of 83 

existing farmland or pasture to an agroforestry system by incorporating trees, or through thinning of 84 

existing woodland or rainforest to enable agricultural production. This latter example enables the area 85 

of agricultural land to be expanded, whilst simultaneously attempting to preserve the ecosystem 86 

services provided by tree cover. In areas of northeast USA, up to 65% of agricultural land is classified 87 

as woodland and recent research has focussed on the conversion of this land into agricultural uses, 88 

primarily silvopasture, to meet the increasing consumer demand of the region (Coble et al., 2020; 89 

Orefice et al., 2019; USDA-NASS, 2014). 90 

The practices of intercropping and agroforestry are widespread in many areas of world, with visibility 91 

of these multiple cropping systems increasing at the national and international levels. These systems 92 

are especially prevalent in regions such as the tropics, where they can be the dominant form of 93 

agriculture (Beets, 1982; Francis, 1986; Kass, 1978; Vandermeer, 1989). Globally, most 94 

intercropping and agroforestry occurs on a small-scale in resource-poor environments (Ghosh-Jerath 95 

et al., 2021; Lithourgidis et al., 2011), although adoption is increasing in developed countries such as 96 

the USA and areas of Europe ( Blackshaw et al., 2007; Coble et al., 2020; Hauggaard-Nielsen et al., 97 

2009; Jensen et al., 2005). Whilst prevalent in small-scale production, such systems are currently 98 

underutilised in terms of industrial production, where nutrient cycles are predominantly externally 99 

regulated (Bybee-Finley and Ryan, 2018). 100 

1.2. Climatic variables influencing crop productivity 101 

Climate change will substantially contribute to food insecurity affecting both crop production and 102 

food prices. The Intergovernmental Panel for Climate Change (IPCC) indicated that substantial 103 

climate change has already occurred since the 1950’s, and global mean surface temperatures are 104 

projected to rise by <3.1°C by the end of the century (IPCC, 2014, 2019, 2022). This temperature 105 

change, and the associated changes to precipitation, will influence crop yields, with comparatively 106 

narrow thresholds required for optimum yields (Gregory and Ingram, 2000; Hatfield et al. 2011; Luo, 107 

2011; Passioura, 2007). The increase in frequency of extreme events will be further deleterious to 108 

production across the globe (Beillouin et al., 2020; Chavez et al., 2015; Elahi et al., 2021). The effects 109 

of climate change on agricultural production will differ depending on region. In higher latitudes, 110 

climatic trends indicate potential positive increases in productivity associated with increased carbon 111 

dioxide (CO2) levels, warmer temperatures and lengthened growing seasons (Alcamo et al., 2007; 112 
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Meng et al., 2014; Peltonen-Sainio et al., 2016). In contrast, regions closer to the equator are expected 113 

to experience negative effects of climate change with reduced yield, higher yield variability and a 114 

reduction in suitable cultivation areas (Berg et al., 2013; Olesen and Bindi, 2002; Shi and Tao, 2014). 115 

However, the specific effect on crop performance will depend on geographical location as well as 116 

local environmental conditions or constraints, such as nutrient and water availability, crop type, and 117 

phenology. 118 

Climate change is also projected to increase the frequency and severity of extreme climatic events 119 

(Moriondo et al., 2011). Such events are often associated with crop damage and yield loss due to 120 

extreme changes in temperature, precipitation, including both droughts and floods, and/or high wind 121 

speeds (Lesk et al., 2016). Extreme events or a higher variability in climate conditions will  have a 122 

greater effect on yield production than changes in mean climate alone (Moriondo et al., 2011; Porter 123 

and Semenov, 2005;). In many regions, variability in rainfall or severity of extreme weather events 124 

are greatly exacerbated by other factors such as land use change and local biogeographical features 125 

(Lesk et al., 2016; Verchot et al., 2005;). For example, practices such as deforestation, overgrazing 126 

and continuous cropping can contribute to land degradation and the vulnerability of specific 127 

ecosystems. Greater effects are felt in developing countries, whereby a quarter of damage and losses 128 

attributed to climate-related disasters are associated with the agricultural sector in these regions 129 

(FAO, 2015). For instance, Goettsch et al. (2021), found that 14% of crop wild relatives of 130 

Mesoamerican taxa are threatened by climate change. In contrast, for developed parts of the world 131 

such as the US corn belt, agriculture relies heavily on mechanisation. Therefore one of the main 132 

effects of climate change felt relate to the timings of farm operations, with rainfall variability and 133 

uncertainty limiting the number of viable planting or harvesting days (Tomasek et al., 2015, 2017).  134 

With the anticipated increase in climate variability, the range of available adaptation options 135 

decreases while the cost and complexity of implementing these options increases (Guan et al., 2017; 136 

Kassie et al., 2015). Agricultural vulnerability points to the need to develop resilient systems that can 137 

buffer crops from climatic variability and extreme climatic events, especially during crucial 138 

developmental periods. The following sections will discuss how intercropping and agroforestry can 139 

be used to adapt to these changes.  140 

2 Adopting multiple cropping systems as an adaptation method 141 

Multiple cropping systems may contribute to many of the sustainable development goals (SDGs, UN 142 

2015a, b) including: SDG2, to eradicate hunger; SDG13, climate action and SDG15, to improve life 143 

on land particularly through restoring degraded land and soil including areas subject to desertification, 144 

droughts and floods. Complementarity is a general term used to describe the positive effects occurring 145 
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in diverse ecosystems ( Cardinale et al., 2007; Loreau and Hector, 2001; Tilman et al. 2012). 146 

Primarily, two mechanisms can contribute to complementarity, and both can be achieved using 147 

multiple cropping. The first is resource partitioning, in which two or more components can more 148 

efficiently utilise resources than a single component on its own (Loreau and Hector, 2001; Tilman 149 

and Snell-Rood, 2014). The second is facilitation, whereby one component reduces a limitation of a 150 

resource that improves the environmental conditions for another component (Bybee-Finley and Ryan 151 

2018; Loreau and Hector, 2001; Saharan et al., 2018; Singh et al., 2020). An overview of the key 152 

changes in microclimate and social variables during conversion from a single to multiple cropping 153 

system is given in Figure 1. 154 

2.1 Increased yield and stabilisation 155 

Per equivalent component crop area, the production of a greater yield on a given piece of land is the 156 

most commonly perceived advantage of multiple cropping systems (Dhima et al. 2007; Lithourgidis 157 

et al., 2011; Malézieux et al. 2009; Mucheru-Muna et al. 2010). This can be determined as a land 158 

equivalence ratio (LER) where values above 1.0 indicate a higher yield production through multiple 159 

cropping over monoculture (Mead and Willey, 1980). Productive systems enable growth resources 160 

such as light, water and nutrients to be more efficiently exploited as a results of difference in growth 161 

or competitive ability of the component crops (Burgess et al., 2017; Midmore, 1993; Tsubo et al., 162 

2001). Architectural traits can be selected which enable exploitation of a greater volume such as 163 

combining deep roots with shallow roots or a tall component crop with erect leaf structure with a 164 

short component with horizontal leaf structure (e.g. Burgess et al., 2017; Li et al., 2021; Makumba et 165 

al., 2009). This form of spatial differentiation can also be achieved through plasticity of the 166 

component crops selected, whereby cultivation in an intercrop modifies the arrangement of plant 167 

material to avoid severe competition or alters functional traits–for example increasing the reliance of 168 

N fixation for a legume (Hauggaard-Nielsen et al., 2006; Schiffers et al., 2011; Zhang et al., 2020a). 169 

Alternatively, the timing of peak resource requirements can be staggered to reduce competition 170 

through either selecting components with different maturation rates or by staggering sowing, as 171 

achieved in relay intercropping (Dowling et al., 2021; Engbersen et al., 2021; Maitra et al., 2021; 172 

Tilman and Snell-Rood, 2014). This is particularly beneficial in regions of restricted water availability 173 

(see below) or limited time for crop management as the second crop is generally seeded once the first 174 

has passed a major growth stage (Baldé et al., 2011). 175 

Increased yields allow either an increase in production on the same or a reduced land area. In 176 

intercropping scenarios, cereal-legume systems are commonly adopted to create a synergistic system, 177 

with N-fixing provided by the legume component (Dhima et al., 2007; Ofori and Stern, 1987). In 178 

agroforestry systems, the crop component generally performs better if it has higher shade 179 
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requirements or early in agroforestry establishment as competition for light is one of the predominant 180 

yield limiting factors in such systems (Ong et al., 2015). The tree canopy can therefore provide an 181 

optimised microclimate as well as other ecosystem services (section 2.3), and provide other additional 182 

sources of income from timber, fruit or fodder products. 183 

Whilst intercropping is traditionally considered as species diversity, a system containing functional 184 

diversity could also be considered. Planting multiple varieties of the same species increases the 185 

genetic diversity present. Using the examples of wheat, oats and corn the associated benefits include: 186 

extending the growing season, mitigating transfer of disease and overall increase in productivity 187 

(Borg et al., 2017; Tooker and Frank, 2012; Reiss and Drinkwater, 2018).  188 

Multiple cropping systems have been shown to decrease the risk of crop failure by improving yield 189 

stability (Raseduzzaman and Jensen, 2017). This can occur temporally, through improved yield 190 

stability over years at the same location, or through improvements in the production consistency 191 

throughout the year. Yield stability can also be achieved spatially, by reducing the variability in 192 

production within and between different fields. In addition, agroforestry systems have also been 193 

shown to reduce human impacts on natural forests, which in turn are essential to counter climate 194 

change (Mbow et al., 2014). 195 

In some instances, multiple cropping systems results in undesirable outputs, mainly as a result of 196 

component crop selection or geographical region (see also Section 3). Reduction in crop yield, either 197 

per plant or on a land area basis, can arise due to inter- and intra-specific competition within 198 

intercropping systems. Architectural traits may limit the uptake of resources to one or both 199 

components. For example, in annual intercropping, a taller component crop may cast shade on a 200 

shorter component restricting photosynthesis or encouraging lodging, or similarities in root structure 201 

may lead to competition for nutrients or water in the same soil volume (Celette et al., 2009; Chui and 202 

Shibles, 1984; Fukai and Trenbath, 1993; Mushagalusa et al., 2008; Raza et al., 2020). In agroforestry 203 

systems, light is likely to be the limiting resource for understorey crops in many regions, with 204 

reductions in yield associated with increase in shade (Artru et al., 2017; Charbonnier et al. 2013). To 205 

some extent this may be compensated by adaptive of tolerance mechanisms of the component species, 206 

through spatial arrangements of the system or through management practices such as pruning. For 207 

example, in a coffee agroforestry system in Costa Rica, net primary production was relatively stable 208 

across different levels of shade despite up to a 60% reduction in irradiance. This was attributed to an 209 

increase in light use efficiency of 50% associated with changes in carbon allocation between organs 210 

(Charbonnier et al., 2017). Alternatively boundary planting or alley cropping (Table 2) enable light 211 

competition to be minimised, with optimised row orientations dependent upon latitude (Dupraz et al., 212 

2018). However, light limitation will restrict yields in many temperate regions or for high-light 213 
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requiring species such as rice, maize or other C4 species (Artru et al., 2017; Lin et al. 2015; Peng et 214 

al., 2009). 215 

2.2 Diversified farm economics 216 

As well as increased yield and stabilisation, multiple cropping systems can optimise farm economics. 217 

This may partly arise through diversifying the crop or tree products but also through optimised 218 

resource capture, reducing the need for additional applications of fertilisers or pesticides, and through 219 

more efficient use of equipment or labour. In some instances, producers are able to spread the 220 

production costs and fixed costs of equipment and land, or seasonal labour costs over multiple 221 

components (; Antle and Ray, 2020; de Roest et al., 2018; Khanal et al., 2021; Palmer et al., 1993). 222 

Although this must be balanced against potential damage associated with soil compaction in 223 

mechanised agriculture or timings of farm operations with relation to viable planting or harvesting 224 

days (Tomasek et al., 2015, 2017).  225 

Alternatively, intercropping may provide a means to cultivate certain crops over a wider geographical 226 

range than previously. For example, a higher profitability of organic lentil-wheat intercrops compared 227 

to sole crops was found in Europe despite the additional costs associated with grain sorting (Loïc et 228 

al., 2018). This is due to the reduction in lodging in lentils when intercropped, which increased the 229 

mechanical harvest efficiency by 50% relative to sole cropped lentils, despite a reduction in actual 230 

yield production. Combined with the additional wheat harvest, this resulted in an overall increase in 231 

the mean marketable gross margin of the intercrops compared to sole cropped lentils. Similarly, in 232 

agroforestry systems, farmers may maximise farm income and productivity by cultivating around 233 

trees, utilising woody perennials for livestock browsing and producing construction materials and 234 

firewood from trees. Other agroforestry products include food, fuel, gums and resins (Graß et al., 235 

2020).  The contribution of these different components towards food security and farm stability will 236 

depend upon tree and crop density, rainfall, labour availability and market prices of each of the 237 

components (Rinaudo, 2014). 238 

2.3 Ecosystem services 239 

Not only does mixed cropping provide diversity of crops in time and space, but it may also provide a 240 

set of ecosystem services that are not possible under monocropping. Many of these factors influence 241 

the microclimate and energy balance of the system (Figure 1). 242 

2.3.1 Climate regulation–wind and temperature  243 

Introducing spatially contrasting components to a cropping system can help to regulate climatic 244 

variables. For example, incorporating a tall component can reduce the impacts of drought and heat 245 

stress on a shorter component crop through partial shading and a reduction in wind speed. This can 246 
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be achieved through altered phenology and growth in a relay intercrop, or through species selection 247 

in both intercrop and agroforestry systems. However, this comes at the expense of light and could 248 

lead to adverse results such as lodging, effecting possible yield gains (Mushagalusa et al., 2008; Raza 249 

et al., 2020).  250 

The effect of altered wind movement is particularly evident in agroforestry systems. Trees and 251 

understorey plants are able to deflect some of the moving air upwards via stream flow or downwards 252 

via tunnelling as well as modifying the lateral flow of wind (Ong et al., 2015). Geometry, crown size 253 

and planting density will determine the relative ratio of each of these flows. Thus the structural and 254 

biomechanical components of the system will determine the degree of wind protection that trees are 255 

able to provide (Onyewotu et al., 2004; Stigter et al., 2002). Through these modifications, 256 

agroforestry can reduce air pollution and reduce extremes in temperature ( Ellison et al., 2017; 257 

Montagnini et al., 2013).  258 

2.3.2 Water relations 259 

Multiple cropping systems can alter the water available to component crops. Altered canopy structure 260 

can modify rainfall interception causing spatial redistribution through canopy drip and stem flow. A 261 

potentially successful way to increase water use efficiency of systems is to reduce the amount of 262 

water lost through soil evaporation and transpiration. The rate of transpiration is generally related to 263 

leaf area of the canopies however, changes can be induced through structural modification of above-264 

ground matter. Crops grown in highly shaded areas receive less direct solar radiation, reduced air 265 

temperatures and higher humidity than those in exposed areas (Coble et al., 2020; Gutierrez et al., 266 

1994). This is partly due to a reduction in the vapour pressure deficit and soil evaporation rates 267 

(Grossiord et al., 2020; Lott et al., 2009; Ong et al., 2015) and is particularly beneficial during the 268 

reproductive phase where grain production and quality are two factors greatly influenced by quantity 269 

of precipitation (Ndjiondjop et al., 2010; 2018). 270 

Differential growth of two components can maximise water use efficiency and reduce the risk 271 

associated with crop loss through drought (Nelson et al., 2021). Where maturity is reached at different 272 

time points (typically <40 days apart in intercrops), or when sowing is staggered as in relay 273 

intercropping, components are likely to reach peak water requirements at different times. This is 274 

especially valuable in water-limited environments, providing temporal complementarity as a result 275 

of improved resource capture (Gebru, 2015; Wang et al., 2018). Conversely, reduction in performance 276 

may occur where component species have similar life cycles, and thus require specific resources at 277 

the same time. In such instances, the dominant (most competitive) component is likely to outperform 278 

the other (Fukai and Trenbath, 1993; Mushagalusa et al., 2008). 279 
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Spatial complementarity in water use (and nutrient uptake) can be achieved by combining 280 

components that exploit different soil volumes through selection of root traits including root length 281 

and density (Ren et al., 2017), or through selection components that enable the transfer of water or 282 

nutrients to the other component species (Bayala and Prieto 2020; Bogie et al., 2018; Saharan et al., 283 

2018; Singh et al., 2020). For example, the water availability and nutrient uptake of finger millet can 284 

be improved by the presence of pigeon pea through redistribution of resources in processes called 285 

bioirrigation (i.e. water transfer trough hydraulic lift) and biofertilisation (i.e. mobilisation of 286 

nutrients available in soils), respectively (Saharan et al., 2018; Singh et al., 2020).  287 

As in annual intercropping, combining architectural traits can aid resource capture in agroforestry 288 

systems. This is particularly the case for root systems, whereby resource use and more complete soil 289 

exploitation can be achieved through root stratification of tree and crop roots (Bayala and Prieto, 290 

2020; Borden et al., 2017; Cannell et al., 1996). It is generally desirable to have tree components 291 

containing deep-rooted, vertically stratified root systems to exploit soil volume; access leached 292 

nutrients below crops and contribute to soil carbon storage through input of organic matter although 293 

the optimised traits will depend upon the component crops present (Bambrick et al., 2010; Bergeron 294 

et al., 2011; Upson and Burgess, 2013). In some instances, root systems can exploit water from up to 295 

20 m depth. Trees can also provide bioirrigation or biofertilisation effects dependent on species 296 

selection (Bayala and Prieto, 2020; Bogie et al. 2018; Rosenstock et al., 2014s;). 297 

Within agroforestry systems, water security can be enhanced through improved infiltration to soils 298 

and groundwater (Bargués Tobella et al., 2014). Management practices such as pruning can also be 299 

used to reduce competition for water (Nicodemo et al., 2016). At the landscape scale, this may alter 300 

regional water cycles, through recycling rainwater, reducing stormflow and recharging aquifers. 301 

However, dependent on species and planting density, agroforestry can deplete groundwater thus 302 

altering the risks and impacts of droughts and floods (Van Noordwijk et al., 2014). In eastern Zambia 303 

and Zimbabwe, conversion of monocropped maize to rotations containing leguminous trees led to a 304 

42–600% increase in steady state infiltration rates, a 40–133% increase in time for water run-off and 305 

an 88–900% improvement in drainage (Sileshi et al., 2014). Together with fertilisation effects of the 306 

incorporated trees, this led to an increase in maize yield of between 89–318%.  307 

There may be significant trade-offs associated with high tree cover within various specific land use 308 

types, farming systems, or with changing climatic conditions,  and the extent of microclimate 309 

modifications will depend on previous land use. Several studies indicate a higher water use from the 310 

tree layer compared to monocropping systems thus future provision of water or susceptibility to 311 

drought stress must be considered prior to promoting tree species diversity (Schume et al., 2004; 312 

Yang et al., 2021; Zhang et al., 2016). For example, conversion of forest land to silvopasture through 313 
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tree thinning will be affected differently than the conversion of monoculture to multiple cropping. 314 

Coble et al. (2020) found that conversion of forest to silvopasture in north-eastern USA led to a 35% 315 

reduction in transpiration rates, which accounted for a greater overall water saving despite an increase 316 

in soil evaporation. In contrast, Awessou et al., (2017) found that agroforestry systems in the African 317 

Sudanian belt were less efficient than the previous forest stands at recycling local rainfall due to 318 

altered species composition and a reduced tree density.  319 

Below-ground competition for water and nutrients may also provide another barrier to success 320 

implementation of a multiple cropping system. This will be dependent on rooting traits including 321 

occupied soil space, rooting depth, morphological and physical plasticity as well as temporal and 322 

spatial variation in the soil substrate (Gao et al. 2013; Mao and Zeng, 2009). Competition for water 323 

is also likely to limit yields of agroforestry systems, particularly in low rainfall areas or where root 324 

systems are unable to reach deep water reserves (Ong et al., 2014). 325 

Recent work has shown that introducing alternative cropping systems as an adaptive measure can 326 

also help increase the awareness of climate change events. For example, introducing agroforestry 327 

practices in Kenya has been shown to alter the perception of floods and droughts (Quandt et al., 2017). 328 

Households that practiced agroforestry largely reported a reduction in the frequency of droughts 329 

whereas many of the households not practicing agroforestry reported the opposite thus suggesting 330 

that households were more conscious of local environmental conditions if they adopted agroforestry 331 

on their land. This reflects previous work whereby trees incorporated into agriculture are considered 332 

to be more intimately linked to the local society than trees found in forestry settings (Ong et al., 2015). 333 

They are important in supporting both national and international economies and have an important 334 

role in efforts towards improving sustainability. 335 

2.3.3 Soil improvement and carbon sequestration 336 

Human-induced soil degradation is currently projected to affect approximately 25% of the Earth’s 337 

ice-free land area, with a large proportion located in the tropics (IPCC, 2019). The organic matter 338 

found within soils (SOM) contains approximately three times more carbon than in the atmosphere, 339 

functioning as a carbon sink (Jobbágy and Jackson, 2000). However, land degradation, climate and 340 

soil properties can convert this sink into a source; releasing vast quantities of carbon back into the 341 

atmosphere (IPCC, 2019). 342 

Approximately 23% of the total greenhouse gas (GHG) emissions come from agriculture, forestry 343 

and land degradation, with further emissions associated with deforestation, fertiliser use, waste 344 

management and other related activities (IPCC, 2019). Farming practices such as mechanisation, 345 

pesticide or fertiliser application and livestock farming generate large quantities of GHGs (Chen et 346 
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al., 2014b;Daly and Hernandez-Ramirez, 2020; Wang et al., 2019). However, multiple cropping 347 

practices such as agroforestry can remove significant amounts of GHGs through increased carbon 348 

storage above and below ground in plant material and soil organic carbon (SOC) (Ramachandran 349 

Nair et al., 2009; IPCC, 2019). Globally, tree cover is highest (>45%) in humid regions of Southeast 350 

Asia, Central, eastern and South America plus central and coastal West Africa; moderate (10-30%) 351 

in South Asia, Africa, Central and Western Europe and; low (<10%) in Eastern China, Northwest 352 

India, Western Asia, North America and Southwest Australia (Zomer et al., 2016). Given the amount 353 

of land suitable for increased tree cover, the potential for increasing agroforestry to maximise carbon 354 

sequestration is a suitable and potentially rapid route towards mitigating GHG emissions (Baah-355 

Acheamfour et al. 2016;Bastin et al. 2019; Zomer et al., 2016).  356 

Land use type as well as system design influence the SOC storage efficiency within agroforestry 357 

systems (Dollinger and Jose, 2018). Via a meta-analysis approach, De Stefano and Jacobson (2018) 358 

found that shift from a system without any trees (including monocrop, pasture or un-cultivated land) 359 

to agroforestry resulted to an increase of SOC by <40 %. Conversely, shifting from a primary- or 360 

managed-forest to agroforestry generally results in a decrease in SOC storage by <26 %. Remote 361 

sensing data indicated that in 2010, 43% of global agricultural land contained at least 10% tree cover, 362 

accounting for carbon storage of approximately 45.3 Pg C, 75% of which can be attributed to the 363 

trees (Zomer et al., 2016). This represents a 3.7% increase in global tree cover from 2000, 364 

corresponding to a 4.6%, or 0.2 Pg C yr-1 increase in carbon storage as biomass. Conversely, above 365 

ground loss due to tropical land conversion equates to 0.6-1.2 Pg C yr-1 loss. 366 

The benefits derived from SOC may be mitigated by high emissions of nitrous oxide (N2O) or 367 

methane (CH4) from soil under certain management practices or environmental conditions (Amadi et 368 

al., 2018; Priano et al., 2018). In Argentina, systems containing trees were found to have a higher 369 

SOC storage and reduced emissions of CH4 relative to prairie land (Priano et al., 2018). However, 370 

Amadi et al., (2018) found that this was dependent upon water regimes in Canadian shelterbelts, 371 

whereby greater emissions of CH4 and N2O were found under irrigated conditions compared to 372 

rainfed and riparian forests emitting more GHGs than other land uses. Similar results were found by 373 

Moore et al., (2018) whereby soil water content and fertiliser input altered the carbon sequestration 374 

capacity plus N2O and CH4 emissions from an agroforestry orchard.  375 

Annual intercropping systems have also been explored as a means to mitigate GHG emissions and 376 

thus provide clean agricultural production (Abagandura et al., 2020; Wang et al., 2016, 2021; Zhuang 377 

et al., 2019). In particular, intercrop mixtures containing a legume component have been shown to 378 

increase the number of N-fixing bacteria in soil and improve the crops ability to absorb N, thus 379 

reducing the requirements for additional fertiliser application (Hauggaard-Nielsen et al., 2016; 380 
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Solanki et al., 2019; Yu et al., 2019). In South China, excessive fertiliser application (360–500 kg N 381 

ha-1) plus up to three harvests per year is a common practice for the cultivation of sweet maize (Zea 382 

mays L. saccharata) (Liang et al., 2009). Incorporation of soybean into sweet maize cultivation has 383 

been shown to increase crop productivity per unit land area (Wang et al., 2021). N fixation by the 384 

legume contributed to the improved sweet maize yield and a reduction in GHG emissions at a fertiliser 385 

input of 300 kg N ha-1 combined with an increase in SOC sequestration, although the yield of soybean 386 

was reduced. However, under complete elimination of N fertilisation, the N2O emissions were 387 

reduced but the CO2 emissions significantly increased because of soil respiration, resulting in the 388 

overall highest GHG emissions. This phenomenon is proposed to be a result of N mineralisation; 389 

whereby soil microorganisms decompose a greater amount of SOM under N-limiting conditions 390 

(Moorhead and Sinsabaugh, 2006; Wang et al., 2014).  391 

Soil conditions such as moisture content, temperature and nutrition have large effects on the 392 

abundance and action of the soil microbiome, including N-fixing bacteria (St. Clair and Lynch, 2010). 393 

Therefore, introducing multiple crop or tree components can help boost this action through soil 394 

improvement, including the incorporation of N-fixing species or promotion of microbial activity and 395 

decomposition in the soil. Intercropping systems containing grass-legume mixtures can self-regulate 396 

based on soil N levels. This is important for reducing the amount of reactive N, thus reducing nitrate 397 

leaching and denitrification, which are major contributors to fresh-water pollution and GHG 398 

emissions, respectively (Mariotti et al., 2015; Whitmore and Schröder, 2007). In addition, there was 399 

a reduction of agrochemical inputs due to a mix of deterrent pest crops, pathogen resistant varieties 400 

(Ratnadass et al., 2012) or N-fixing species might help mitigate GHG emissions by reducing the 401 

amount of inorganic agrochemicals produced (Jensen et al., 2012).  402 

Improved soil nutrition is particularly prevalent in agroforestry systems whereby tree presence is 403 

relatively permanent, leading to improvement and retention of SOC over the long-term (Li et al., 404 

2015; Lorenz & Lal, 2014). The process of litter decomposition and mineralisation can greatly 405 

improve the nutrient capacity of soils (Dollinger and Jose, 2018). This is further complemented by 406 

throughfall and stemflow which facilitate the nutrient transfer from above-ground plants parts to the 407 

forest floor (Dawoe et al., 2018). Not only do agroforestry systems improve nutrient accumulation 408 

but also nutrient availability. Salim et al. (2018) found that home gardens present greater soil fertility 409 

than primary or secondary forests in Brazil despite a reduced SOM accumulation, because nutrient 410 

availability was improved. As soil fertility and organic content is related to temperature and moisture 411 

status, benefits can be seen through modifications to the microclimate and ecosystem stabilisation 412 

(Zomer et al., 2016). 413 
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Under certain instances and with careful selection of species, multi-cropping can restore soils 414 

contaminated with inorganic and/or organic compounds in the process of phytoremediation (Kidd et 415 

al., 2015). For example, monocropping or intercropping of alfalfa (Medicago sativa) and poplar 416 

(Populus x canadensis) has been shown to be effective and improving soil health in degraded peri-417 

urban areas (Gómez-Sagasti et al., 2021) with previous applications in phytoremediation of soils 418 

contaminated with metals and hydrocarbons (Bonfranceschi et al.,, 2009; Lingua et al., 2008; 419 

Marchand et al., 2016; Panchenko et al., 2017). Intercropping wheat with Sedum plumbizincicola or 420 

incorporating multipurpose tree species has been effective in improving remediation of soils 421 

contamination with heavy metals including cadmium (Cd) and zinc (Zn) (Kaur et al., 2018; Zou et 422 

al., 2021). Dependent on the location and contaminants present, multiple cropping has been proposed 423 

as an integrated approach to provide phytoremediation, post processing energy conversion and high-424 

value element recovery (i.e. phytomining) (Jiang et al., 2015). In the UK and Australia, this has shown 425 

to be a viable approach towards recovering Nickel, Arsenic and Platinum group metals (Jiang et al., 426 

2015; Rosenkranz et al., 2019). 427 

2.3.4 Biodiversity, weeds, pollination, disease and pest control  428 

Alternative cropping systems that include multiple components can provide high species diversity 429 

within a small area of land (Leakey, 1999). The actual increase in biodiversity will depend upon 430 

maturation as well as the number of components involved in the system; with a greater number of 431 

crops or tree species generally leading to a higher biodiversity. Additional benefits may also arise 432 

through the increased habitat or landscape connectivity through the generation of wildlife corridors. 433 

For example, tropical home gardens, a type of mutltistrata agroforestry, contain the highest 434 

biodiversity of all human-created ecosystems. Home gardens in Indonesia contain 60–70% of animal 435 

species found in the surrounding rainforest (Kumar & Nair, 2004; Leakey, 2012). Whilst increasing 436 

species richness provides a form of ecological insurance in relation to abiotic or biotic buffering, 437 

mixed cultivation may not always be suitable as an adaptation method (Brang et al., 2014). 438 

The ability for multiple cropping systems to provide a buffer for crops and farmers to adapt to 439 

changing climate parameters highlights the utility of this type of agriculture to maintain production 440 

levels through variable future scenarios. Increased temperatures have been shown to shorten the 441 

developmental cycles of disease and pest organisms, favouring their altitudinal and latitudinal 442 

expansion as well as increased virulence (Battisti et al., 2005; Hlásny and Turčáni, 2009). Weed and 443 

pest prevalence is likely to differ between monocrops versus mixed cropping and in many cases, there 444 

is a reduction in the incidence of insect pests and weeds under multiple cropping. More generally, 445 

pest and diseases can be limited through three methods: by reducing the number of susceptible hosts 446 

(dilution effect), by incorporating resistant plants that function as a physical barrier to susceptible 447 
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plants (barrier effect), and by compensating for a species that is more susceptible or by reducing the 448 

speed of pest or disease adaptation through disruptive selection (Borg et al., 2017). In certain multiple 449 

cropping systems, exudates of one component may inhibit a pest or pathogen which is prevalent on 450 

another component as seen in maize-soybean intercropping (Zhang et al., 2020b). Other factors 451 

affecting disease or weed dynamics include changes in vector dispersal; modification to the 452 

microclimate; changes in host or system physiology and morphology; or direct pathogen and weed 453 

inhibition (Boudreau, 2013). In the latter scenario, this is often achieved through maximising resource 454 

partitioning between the components in the system, resulting in a reduction in the resources available 455 

to the weeds (Hauggaard-Nielsen et al., 2001, 2006; Liebman and Dyck, 1993). Maturity date of 456 

component species is an important trait benefitting weed suppression, as seen in legume intercropping 457 

systems (Rodino et al., 2007; Vollmann et al., 2010).  458 

In some systems, the component species may release phytotoxic components limiting the germination 459 

and growth of the second component species or understory plants in the case of agroforestry. For 460 

example, teak (Tectona grandis L.f.) releases phenolics, benzofurans, quinones, terpenes, 461 

apocarotenoids and phenylpropanoids from the decomposition of leaf litter which suppresses weed 462 

and growth of certain crop species (Kato-Noguchi, 2021). Similar phytotoxic effects are evident in 463 

agroforestry systems containing species of alder (Alnus nepalensis), jackfruit (Artocarpus 464 

heterophyllus) and the Indian gooseberry (Emblica officinalis) (Kumar et al., 2006). Thus careful 465 

selection of component species is important to minimise weed or pest competition without restricting 466 

crop growth. 467 

2.4. Livelihood and societal benefits 468 

Multiple cropping systems can improve livelihoods through diversified income and cash crop systems 469 

(e.g. coffee, cocoa and nuts). This is particularly important for smallholder farmers and helps to 470 

improve access to nutritious foods and education (Agroforestry Network, 2018; Kiptot et al., 2014; 471 

Rigal et al., 2018). Furthermore, agroforestry systems also provide the benefits of tree-products for 472 

either sale or home use. Pruning of trees for firewood can retain all ecosystem service benefits of tree 473 

cover whilst simultaneously preventing deforestation in regions where wood is the primary cooking 474 

fuel. A comparison of farmers in Kenya who adopted agroforestry practices versus those who did not 475 

showed that agroforestry was able to enhance standards of living by increasing income, productivity 476 

and environmental conditions (Thorlakson and Neufeldt, 2012). Incorporating climate resilient 477 

practices such as multiple cropping can also help reduce the economic recovery time following 478 

natural disasters or extreme weather events (Simelton et al., 2015). However, potential productivity 479 

may be limited by a lack of education, access to finances, industrial equipment, or market chains (see 480 

Section 5 for more details; Agroforestry Network, 2018). 481 
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 482 

In many developing regions, women constitute the majority of farm labour whilst their male 483 

counterparts are usually travelling for work (Leder et al., 2016). Female farmers generally have less 484 

access to resources or opportunities and thus diversified cropping could provide a suitable system to 485 

improve natural resource access (Agroforestry Network 2018; Kiptot et al., 2014; Rigal et al., 2018). 486 

3. Constraints limiting the adoption of alternative cropping practices 487 

An overview of factors relevant to adoption and deployment of alternative cropping practices is 488 

presented in Table 3. 489 

3.1 Financial Constraint 490 

There are several barriers preventing the broad-scale implementation of multiple cropping practices 491 

such as inefficient markets, limited access to knowledge or finance and unclear land-rights 492 

(Agroforestry Network, 2018). Widescale adoption of alternative cropping practices will only occur 493 

through appropriate support from policies, institutions and market demand that influence both farmer 494 

and consumer behaviour (Alam et al., 2014; Dhandapani et al., 2020; Isaacs et al., 2016). Markets for 495 

agroforestry and intercropping products must be present on a sufficient scale to have meaningful 496 

environmental, economic and social impacts (Gyau et al., 2014). In general, economic incentives are 497 

the main element encouraging the transition to alternative cropping practices. Historically, policy 498 

makers have focused almost exclusively on forest and wood production and the goods and services 499 

provided by trees in the forestry setting. However increasing interest in the social and environmental 500 

services provided by trees, including their role in adaptation to climate change, provides an incentive 501 

for a greater practical consideration of trees in agricultural settings and elsewhere (Stigter, 2010). 502 

Although the benefits outweigh the costs of implementing agroforestry, uptake is often restricted by 503 

legal constraints, adverse policies and lack of coordination between governmental departments. These 504 

restrictions include policies which segregate forest from agriculture and therefore miss benefits at the 505 

landscape scale (FAO 2013; Mbow et al., 2014). Possible ways to promote alternative cropping 506 

systems could include incentives such as subsidies, financial support or cost-share programmes. In 507 

the context of agroforestry, measures to improve adoption of agroforestry practices include improving 508 

farmer access to markets and value chains for products, supporting financial models which 509 

acknowledge the long-term returns on agroforestry systems, and improving participatory and 510 

inclusive research (Agroforestry Network, 2018). In some regions, efforts are being made to alter 511 

policy and provide such incentives, such as the acknowledgement of agroforestry systems as eligible 512 

for the basic payment scheme (BPS) by farmers in the UK (DEFRA, 2020). 513 
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Despite an international goal to increase the uptake of agroforestry practices, significant gaps exist 514 

between a countries’ ambition and their capability of measurement, reporting and verification of 515 

uptake (Rosenstock et al., 2019). As of June 2018, a study carried out by the Consultative Group for 516 

International Agricultural Research (CGIAR)  found that 59 of 147 developing countries proposed 517 

agroforestry as means to mitigate climate change under their nationally determined contributions 518 

(NDC) under the United Nations framework convention on climate change (UNFCCC) (Rosenstock 519 

et al., 2019). Agroforestry systems are most widely proposed in Africa (71%), with a lesser amount 520 

in the Americas (34%), Asia (21%) and Oceania (7%).  521 

3.2 Agronomic constraints 522 

Multiple cropping systems can be designed in an almost infinite combination of species, temporal 523 

and spatial arrangements. The choice of component crops and their layouts may be tailored depending 524 

on any environmental or geographical constraints of the location. Similarly, consumer habits and 525 

dietary information may influence the quantities of crops required (Brooker et al., 2015). This may 526 

also determine whether a mixed cropping system is adopted. For example, many intercropped grain-527 

crop mixtures with similar maturation timings cannot be machine harvested to produce a marketable 528 

commodity unless appropriately spaced or with appropriate methods for separation. For example, flax 529 

and wheat can be mechanically harvested and separated, however the mechanised separation of other 530 

mixtures may be prohibited. In such instances, multiple cropping systems may be restricted to regions 531 

of cheap and plentiful manual labour or designated for animal feed.  532 

The choice of component species for multiple cropping as well as their spatial arrangement is critical 533 

in determining the level of competition between components as well as the potential perceived 534 

benefits. Thus, designing the optimal combination of components can be difficult, often requiring a 535 

greater number of skills and knowledge than monoculture. Additional skills are also required for the 536 

careful timing of field operations, alterations in cultivation practices or the use of external inputs such 537 

as fertiliser or mulches and changes to the series of crop rotation to ensure sufficient separation of 538 

plant families over time (Mohler and Johnson, 2020).  539 

Traits that may confer optimal performance within one setting may be different to those that benefit 540 

another system, i.e. the crop varieties chosen for a monoculture are likely to differ from those which 541 

will perform better in a multiple cropping system (Zhu et al., 2015, 2016), thus requiring either 542 

additional knowledge or trial and error when selecting optimal combinations. Similarly, the often-543 

high initial investment costs and low initial returns, particularly during the slow establishment of an 544 

agroforestry system, may be prohibitive in many instances. Knowledge regarding the optimal 545 

management techniques is also important in receiving the greatest returns from multiple cropping 546 

systems. In the case of agroforestry, management practices could include pruning or removal of trees. 547 
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For example, the choice of regeneration cut is a crucial factor contributing to changes in species 548 

richness or competition (Brang et al., 2014). Therefore selection for the optimal adaptive system 549 

requires not only conscious selection of the varieties, the species diversity present but also knowledge 550 

of the maintenance and management practices required as well as the cost and time requirements 551 

needed to maintain the system (Brang et al., 2014). Both the additional labour required or the added 552 

complexity of the management needed may therefore prohibit uptake (Fletcher et al., 2016). 553 

Geographical variation in tree species is one of the fundamental issues determining the success of 554 

agroforestry or reforestation attempts (Ong et al., 2015). Evidence of poor selection can be found in 555 

failed plantations or poorly developed shelterbelts, indicating the importance of appropriate seed and 556 

species selection (Morgenstern, 1996). Many of the considerations governing the success of forestry 557 

management, such as close-to-nature silviculture (CNS), also apply to agroforestry (Brang et al., 558 

2014). For CNS, six core principles have been identified to enhance the adaptive capacity of the 559 

system to climate change: 1) increased tree species richness, 2) increased structural diversity, 3) 560 

increased genetic variation within species, 4) increased resistance to abiotic and biotic stresses, 5) 561 

reduce the size of growing stocks and 6) replace high-risk stands. Domestication of agroforestry tree 562 

species emerged as a farmer-driven initiative in the last three decades, increasing the knowledge and 563 

suitability of tree species for co-cultivation with crops and/or livestock (Leakey et al., 2005). For 564 

example, indigenous fruit and nut trees have been progressively improved in villages of Nigeria and 565 

Cameroon, with vegetative propagation used to maintain desirable traits (Leakey et al., 2004). 566 

Indigenous crop varieties, seed conservation and access to forest foods and weeds are often adopted 567 

as an adaptation strategy in regions of India (Ghosh-Jerath et al., 2021). In addition, it is key to call 568 

attention to inclusion of local species that help enhance biodiversity, and that are well adapted to 569 

microclimate conditions and might have developed resilience to climate change or to extreme weather 570 

events (Ghosh-Jerath et al., 2021). Copper et al. (2020) demonstrate how indigenous grape varieties 571 

for wine production in Cypriot can tolerate the hot and dry conditions and, in comparison to 572 

commercial varieties, can be productive without additional irrigation inputs. Rendón-Sandoval et al. 573 

(2020) showed that traditional agroforestry systems in seasonally dry tropical forests in Mexico can 574 

keep on average 68% of the forest species from adjacent patches, highlighting the importance of 575 

considering native species and local knowledge in the design of agroforestry systems. 576 

3.3 Varietal constraints 577 

Despite perceived benefits of multiple-cropping systems, breeding and genetic improvement for 578 

system components has received very little attention, with varieties specifically targeting multiple 579 

cropping being unavailable (Brooker et al., 2015; Duc et al. 2015; Haug et al. 2021; Litrico and Violle 580 

2015; Saxena et al. 2018). Thus, varieties currently used in intercropping or agroforestry were bred 581 
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for monoculture and their performance in alternative systems is often left unevaluated (Brooker et al., 582 

2015). This restricts many of the potential benefits of such systems due to a lack of adaptability (Duc 583 

et al., 2015; Saxena et al., 2018). Simulation studies indicate that intercrop breeding programmes 584 

which use genomic selection can produce faster genetic gain than programmes using phenotypic 585 

information only (Bančič et al., 2021). This can aid in reducing the generation interval of new 586 

varieties and increasing both the selection intensity and accuracy of breeding. However, breeding for 587 

multi-species assemblages requires more complex and integrated objectives for breeders (Duc et al., 588 

2015). This requires selection for a combination of genotypes, plant species and associated symbionts, 589 

plus potential targets dependent on spatial arrangements of the system. 590 

Breeding and genetic improvement for tree component of agroforestry systems is also a complex task. 591 

Genetic variation in forest trees is amongst the highest observed in all living organisms (Lal and 592 

Bhandari, 2020). Compared to agricultural crops, genetic improvement of tree species takes several 593 

years at a higher overall cost (Grattapaglia et al., 2018; Lebedev et al., 2020). This is partly a result 594 

of long-life cycles of tree species, meaning that phenotypic selection for traits is generally only 595 

possible at 30–50% of the rotation age for fast-growing species and 25% for long-duration trees 596 

(Durán et al. 2017; Harfouche et al. 2012; Lebedev et al. 2020; Muranty et al. 2014). Each tree 597 

breeding programme will depend on the overall aim, but generally includes improvement of traits of 598 

high economic and social importance whilst maintaining genetic diversity (Wanders et al., 2021). 599 

Geographical location of the native population of plant material is known as provenance, with 600 

significant genetic variation present between different provenances. In comparison, tree species with 601 

limited natural geographical range or isolated within a small population have comparatively low 602 

genetic diversity (Lal and Bhandari, 2020; Lowe et al., 2009). Therefore, the selection of progenitor 603 

individuals is critical in retaining genetic diversity with provenance testing essential for identification 604 

of the best performing populations (Makueti et al., 2015; Wanders et al., 2021). Where background 605 

genetic information is not available or optimal provenances cannot be identified, locally selected 606 

cultivars are expected to be better adapted to local environmental conditions compared to commercial 607 

varieties (Picucci et al., 2020; Rigal et al., 2018; Waruhiu et al., 2004). The timespan available for 608 

the adoption of multiple cropping systems is an important factor determining feasibility. This is 609 

particularly evident in agroforestry systems, whereby benefits are predominantly achieved if they are 610 

maintained for extended periods (Frenzel and Scherr, 2002; Mercer, 2004). For example, it is 611 

expected to take 3-6 years for the benefits of agroforestry to be fully realised (Lin et al., 2015). 612 

4. Future research: optimising agriculture for climate change through modelling approaches  613 

Understanding the plant response to the environment in which it is grown, including the cropping 614 

system or practices adopted, will be critical in optimising our agricultural systems. To optimise the 615 
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system for climate change, Van Noordwijk and Minang, (2011) proposed that at least three 616 

representations must be considered for each location: 1) open-field agriculture, 2) medium tree cover 617 

or agroforestry and 3) full tree cover or forestry. For this review, this can also be extended to a fourth 618 

representation encompassing intercropping systems or multispecies assemblages, without tree 619 

presence. The differences between these systems as well as the relative response of each to changes 620 

in climate should form the basis for decisions on desirable component species chosen, their planting 621 

layouts and densities and other societal requirements per location. This long-scale meso-622 

climatological approach emphasizes the need to take into account all climate and landscape factors 623 

in the adaptability of agroecosystems and provides a systematic criterion for disaster risk reduction 624 

(Van Leeuwen et al., 2014). This can encompass the generation of multiple designs of cultivation 625 

systems combining components to maximise outputs based on current subsistence requirements, 626 

markets and historical agricultural practices. Similar frameworks can also be applied to combatting 627 

other factors relating to land degradation or climatic factors (Onyewotu et al., 2004; Stigter et al., 628 

2002). 629 

Modelling approaches can be used to estimate productivity in multiple cropping systems. This can 630 

overcome some of the uncertainties relating to the selection of the optimal components, planting 631 

density or spatial arrangements. Simulation of the assessment of different combinations of crops can 632 

simultaneously be applied to different locations if climatic or weather data can be included. Such 633 

approaches could provide an initial screening for assessing crop combinations before more time-, 634 

labour- and space-incentives methods are used (Burgess et al., 2017; Evers et al., 2019). Additionally, 635 

coupling physical modelling with dynamic growth models could provide a means to link causative 636 

genomics with yield models, particularly where models are aimed primarily at optimising sustainable 637 

yields in complex multi-component systems. In functional structural plant (FSP) modelling, 638 

complementary and competitive interactions between individuals are assessed to determine overall 639 

crop performance and, as such, can be used to simulate interactions in multi-species mixtures (Evers 640 

et al., 2019). 641 

For climate change impact assessment, crop growth models have been widely used to evaluate the 642 

development, growth and yield of crops by combining future climate conditions with the simulation 643 

of CO2 physiological effects, such as using Free Air Concentration Enrichment experiments (FACE), 644 

(Ainsworth and Long, 2005). However, whilst FACE experiments have been extensively used for 645 

monocultures, multi species systems have received little attention (Calfapietra et al., 2010; Chen et 646 

al., 2014a; Esmail and Oelbermann, 2011; Yang et al. 2021b). Within agroforestry systems, this is 647 

partly a result of system constraints, with tree size, microclimate modifications and length of growth 648 

seasons limiting potential experimental design (Calfapietra et al., 2010). Similarly, ecosystem-scale 649 
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warming experiments are seldom due to difficulties in manipulating air temperature outside of growth 650 

chambers (Rustad et al., 2001). Thus, optimised cropping designs need to also account for elevated 651 

CO2 and temperature, requiring advanced methodologies to overcome current constraints with FACE 652 

or ecosystem-scale warming experiments. 653 

Future conditions are generally obtained from General or Regional Circulation Models (GCMs and 654 

RCMs respectively), which incorporate the dynamics of physical component of the atmosphere and 655 

ocean circulation with future GHG projections. These often relate to several key environmental 656 

factors including elevated CO2 concentration, temperature, tropospheric O3 concentration plus 657 

variation in spectral composition including ultraviolet (UV) B radiation. However, simulating all 658 

environmental changes simultaneously within field experiments is not feasible due to geographical 659 

or diurnal variation and single-factor responses do not account for interactions between variables 660 

(Calfapietra et al., 2010). For realistic projections of the effect of climate change on crop production, 661 

there is a need to also include impacts to the entire production chain and market mechanisms, 662 

including socio-economic factors (Tubiello and Rosenzweig, 2008). Together these factors can be 663 

incorporated to determine the most vulnerable regions, which are generally developing countries with 664 

an often higher baseline temperature, increased exposure to extreme weather events and reduced 665 

capital to invest in adaptation measures. 666 

5. Conclusions  667 

With changes in climate and increased incidence of extreme weather events, many of our current 668 

agricultural systems will be ill equipped to buffer against damage. However, transition towards more 669 

biodiverse systems could provide a solution, with implementation of intercropping and/ or 670 

agroforestry providing an adaptive measure towards climate change. These systems can provide 671 

numerous benefits both at the farm and ecosystem levels, encompassing biotic, abiotic, economic and 672 

social advantages. However, whether such benefits are achieved is dependent upon the system 673 

implemented including geographical location and the careful selection of components plus their 674 

spatial arrangement. There are numerous constraints limiting the adoption of alternative cropping 675 

practices however, advances in modelling provide one solution to aid identification of potentially 676 

productive systems. 677 

  678 



Jo
urn

al 
Pre-

pro
of

22 

 

Tables 679 

Table 1. Basic spatial or functional arrangements used during intercropping 680 

Schematic Description Examples 

 

Row intercropping: The 

cultivation of two or more 

crops at the same time with at 

least one crop planted in 

rows. 

(Ren et al., 

2017; Schulz 

et al., 2020) 

 

Strip intercropping: The 

cultivation of two or more 

crops together, wide enough 

such that they permit access 

to separate machinery but 

close enough for the crops to 

interact. 

(Iqbal et al., 

2019; Li et 

al., 2001; van 

Oort et al., 

2020) 

 

Mixed intercropping: The 

cultivation of two or more 

crops together in no distinct 

row arrangement. 

(Agegnehu et 

al., 2008; 

Senbayram et 

al., 2015) 

 

Relay intercropping: Planting 

a second crop into a standing 

crop part way through its 

development but prior to 

harvesting. 

(Amossé et 

al., 2014; 

Zhang et al., 

2008) 

 

Push-pull intercropping: A 

specific system adopted for 

pest management whereby a 

‘trap/pull’ crop attracts pests 

away from the main crop and 

a ‘push’ crop aids to repel 

pests. 

(Hailu et al., 

2018; Khan et 

al., 2016; Xu 

et al., 2018) 

  681 



Jo
urn

al 
Pre-

pro
of

23 

 

Table 2. Overview of different types of agroforestry system 682 

Schematic Description 

 

Silvopastoral: Combining forestry and 

grazing of domesticated animals on 

pastures, rangelands or on-farm.  

 

Agrosilvopastoral: Combining trees 

crops and animals in the same area. 

 

Agrisilvicultural: Combining crops and 

trees in the same area: this can come 

under different spatial arrangements 

detailed below. 

 

Random planting: Trees are randomly 

distributed throughout the field. 

 

Boundary planting: Trees are planted 

around the edge of the field to form a 

boundary. 

 

Riparian buffer: Linear bands of 

permanent vegetation, such as trees, 

shrubs etc, are grown adjacent to an 

aquatic ecosystem to maintain or 

improve water quality 



Jo
urn

al 
Pre-

pro
of

24 

 

 

Alley planting: Trees are grown in 

rows with wide alleys in between for 

crop cultivation. 

 

Polyculture: Combining multiple trees 

and crops in the same space, usually 

with no distinct arrangement. 

683 
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Table 3. Considerations for the feasibility of adopting alternative cropping practices including intercropping and 685 

agroforestry (adapted from Romanillos et al., 2010). 686 

Factor Details 

Geographical Consideration of soil type, land relief, climate, growth season and other 

biophysical factors 

Environmental Can the system improve microclimatic conditions? Can the system alter 

ecosystem services? Will the system help ease the effects of climate change on 

plant diversity, soil conditions, water, soil and energy conservation and nutrient 

cycling 

Technical Is the alternative cropping system complementary to the existing land area, 

capital, management approaches and labour? Are there support systems to 

promote the system such as government regulations, marketing or technical 

assistance? Are management practices known that can be implemented to improve 

the system and is the infrastructure in place to do so? Are the chosen components 

suitable for a multiple cropping system? 

Economic Will the system be profitable both in the short- and long- term?  

Social Does the system match the current socio-economic environment? including 

factors such as food or crop preferences, market demand, land tenure and security.  

Political Is there political or institutional support for adoption of multiple cropping 

systems? 

Other What is the timespan of adopting the alternative system? Does this agree with all 

the factors given above?  

 687 
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Figures 688 

Figure 1: Changes in key microclimate and social variables during conversion from a single to multiple cropping system. Adapted from (Ong et al., 689 

2015).690 
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